A Treasury System for Cryptocurrencies: Enabling Better Collaborative Intelligence*

Bingsheng Zhang¹, Roman Oliynykov², and Hamed Balogun³

Lancaster University, UK
 b.zhang2@lancaster.ac.uk
 Input Output Hong Kong Ltd.
 roman.oliynykov@iohk.io
 Lancaster University, UK
 h.balogun@lancaster.ac.uk

Abstract. A treasury system is a community controlled and decentralized collaborative decision-making mechanism for sustainable funding of the blockchain development and maintenance. During each treasury period, project proposals are submitted, discussed, and voted for; topranked projects are funded from the treasury. The Dash governance system is a real-world example of such kind of systems. In this work, we, for the first time, provide a rigorous study of the treasury system. We modelled, designed, and implemented a provably secure treasury system that is compatible with most existing blockchain infrastructures, such as Bitcoin, Ethereum, etc. More specifically, the proposed treasury system supports liquid democracy/delegative voting for better collaborative intelligence. Namely, the stake holders can either vote directly on the proposed projects or delegate their votes to experts. Its core component is a distributed universally composable secure end-to-end verifiable voting protocol. The integrity of the treasury voting decisions is guaranteed even when all the voting committee members are corrupted. To further improve efficiency, we proposed the world's first honest verifier zero-knowledge proof for unit vector encryption with logarithmic size communication. This partial result may be of independent interest to other cryptographic protocols. A pilot system is implemented in Scala over the Scorex 2.0 framework, and its benchmark results indicate that the proposed system can support tens of thousands of treasury participants with high efficiency.

 $^{^{\}star}$ This article is the full version of a paper that has been accepted to appear at NDSS 2019

Table of Contents

1	Introduction	1
	1.1 Collaborative decision-making	2
	1.2 Our contributions	3
2	Preliminaries	4
	2.1 Notations	4
	2.2 The blockchain abstraction	4
	2.3 Additively homomorphic encryption	5
	2.4 Pedersen commitment	6
	2.5 Universal composability	6
	2.6 UC ideal functionalities	7
3	The Treasury System	9
	3.1 Entities	9
	3.2 Enabling stake delegation	9
		11
	3.4 Treasury funding sources	12
	3.5 Project proposal	12
		13
	3.7 Voting committee selection	13
		14
	3.9 Handling the treasury specific data in the payload	15
	3.10 Decision making	15
	3.11 Post-voting execution	16
	3.12 Partitionary budgeting	16
4	The proposed voting scheme	17
	4.1 Security modeling	17
	4.2 The voting scheme	19
		23
5	A new unit vector ZK proof	26
	5.1 Zero-knowledge proofs/arguments	26
	5.2 Schwartz-Zippel lemma	27
	5.3 The proposed unit vector ZK proof/argument	27
6	Implementation and performance	31
	6.1 Prototyping	31
	6.2 Test network	31
	6.3 Evaluations	32
7	v O	34
	1	36
8	Related work	11
9	Conclusion	13
Α	Our Treasury System DKG Protocol	16

1 Introduction

Following the success of Bitcoin, a great number of new cryptocurrencies and blockchain platforms are emerging on almost daily basis. Blockchains have become largely ubiquitous across various sectors, e.g., technology, academia, medicine, economics and finance, etc. A key feature expected from cryptocurrencies and blockchain systems is the absence of a centralized control over the operation process. That is, blockchain solutions should neither rely on "trusted parties or powerful minority" for their operations, nor introduce such (centralisation) tendencies into blockchain systems. Decentralization not only offers better security guarantees by avoiding single point of failure, but may also enable enhanced user privacy techniques. On the other hand, real-world blockchain systems require steady funding for continuous development and maintenance of the systems. Given that blockchain systems are decentralized systems, their maintenance and developmental funding should also be void of centralization risks. Therefore, secure and "community-inclusive" long-term sustainability of funding is critical for the health of blockchain platforms.

In the early years, the development of cryptocurrencies, such as Bitcoin, mainly rely on patron organizations and donations. Recently, an increasing number of cryptocurrencies are funded through *initial coin offering* (ICO) – a popular crowd-funding mechanism to raise money for the corresponding startups or companies. A major drawback of donations and ICOs is that they lack sustainable funding supply. Consequently, they are not suitable as long-term funding sources for cryptocurrency development due to the difficulty of predicting the amount of funds needed (or that will be available) for future development and maintenance. Alternatively, some cryptocurrency companies, such as *Zcash Electric Coin Company*, take certain percentage of hair-cut/tax (a.k.a. founders reward) from the miners' reward. This approach would provide the companies a more sustainable funding source for long-term planning of the cryptocurrency development.

Nevertheless, the aforementioned development funding approaches have risks of centralization in terms of decision-making on the development steering. Only a few people (in the organisation or company) participate in the decision-making process on how the available funds will be used. However, the decentralized architecture of blockchain technologies makes it inappropriate to have a centralized control of the funding for secure development processes. Sometimes disagreement among the organisation members may lead to catastrophic consequences. Examples include the splitting of Ethereum and Ethereum Classic as well as Bitcoin and Bitcoin Cash.

Ideally, all cryptocurrency stake holders are entitled to participate in the decision-making process on funding allocation. This democratic type of community-inclusive decentralized decision-making enables a better *collaborative intelligence*. The concept of *treasury system* has been raised to address the highlighted issue. A treasury system is a community controlled and decentralized collaborative decision-making mechanism for sustainable funding of the underlying blockchain development and maintenance. The Dash governance system [1]

is a real-world example of such systems. A treasury system consists of iterative treasury periods. During each treasury period, project proposals are submitted, discussed, and voted for; top-ranked projects are then funded. However, the Dash governance system has a few potential theoretical drawbacks. i) It does not offer ballot privacy to the voters (a.k.a. masternodes) [2]. Therefore, the soundness of any funding decision might be ill-affected. For instance, the masternodes may be subject to coercion. ii) It fails to effectively utilize the knowledge of community experts in the decision-making process. This is because the system can only support very basic type of voting schemes, and the voting power of experts are limited.

In this work, we propose to use a different approach – liquid democracy – to achieve better collaborative intelligence. Liquid democracy (also known as delegative democracy [3]) is an hybrid of direct democracy and representative democracy. It provides the benefits of both systems (whilst doing away with their drawbacks) by enabling organisations to take advantage of experts in a treasury voting process, as well as giving the stakeholders the opportunity to vote. For each project, a voter can either vote directly or delegate his/her voting power to an expert who is knowledgeable and renowned in the corresponding area.

1.1 Collaborative decision-making

The core component of a treasury system is a decision-making system that allows members of the community collectively reach some conclusions/decisions. During each treasury period, anyone can submit a proposal for projects to be funded. Due to shortage of available funds, only a few of them can be supported. Therefore, a collaborative decision-making mechanism is required. Note that in the literature, a few blockchain based e-voting schemes have been proposed. However, our treasury decision-making have a number of differences: (i) conventional e-voting scheme requires real-world identity authentication, while our treasury decision-making do not need to link voters to their real identities; (ii) in a conventional e-voting scheme, typically, each voter has one vote, while in our treasury decision-making, the voting power is proportional to the corresponding stake; (iii) our treasury decision-making supports liquid democracy with privacy assurance, while no other known e-voting scheme can support liquid democracy with provable security.

Proper selection of the voting scheme allows maximizing the number of voters satisfied by the voting results as well as minimizing voters' effort. In practice, there are two commonly used voting schemes: i) preferential or ranked voting and ii) approval voting. An extension of approval voting is the "Yes-No-Abstain" voting, where the voters express "Yes/No/Abstain" opinion for each proposal. Recent theoretical analysis of this election rule with variable number of winners, called Fuzzy threshold voting [4], shows advantages of this voting scheme for treasury application. Therefore, we will adopt this voting scheme in our treasury system. Nevertheless, we emphasize that a different voting scheme can be deployed to our treasury system without significantly changing the underlying cryptographic protocols.

1.2 Our contributions

In this work, we aim to resolve the funding sustainability issue for long-term cryptocurrency development and maintenance by proposing a novel treasury system. The proposed treasury system is compatible with most existing off-the-shelf cryptocurrencies/blockchain platforms, such as Bitcoin and Ethereum. We highlight the major contributions of this work as follows.

- For the first time, we provide a rigorous security modeling for a blockchain-based treasury voting system that supports liquid democracy/delegative voting. More specifically, we model the voting system in the well-known $Universally\ Composable\ (UC)$ framework [5] via an ideal functionality $\mathcal{F}_{VOTE}^{t,k,n,m}$. The functionality interacts with a set voters and experts as well as k voting committee members. It allows the voters to either delegate their voting power to some experts or vote directly on the project. If at least t out of k voting committee members are honest, the functionality guarantees termination. Even in the extreme case, when all the voting committee members are corrupted, the integrity of the voting result is still ensured; however, in that case we don't guarantee protocol termination.
- We propose an efficient design of the treasury system. The system collects funding via three potential sources: (i) Minting new coins; (ii) Taxation from miners' reward; (iii) Donations or charity. In an iterative process, the treasury funds accumulate over time, and the projects are funded periodically. Each treasury period consists of pre-voting epoch, voting epoch, and post-voting epoch, which can be defined in terms of number of blockchain blocks. In the pre-voting epoch, project proposals are submitted, and the voters/experts are registered. In the voting epoch, the voting committee is selected; after that, they jointly generate the voting key for the treasury period. The voters and experts then cast their ballots. In the post-voting epoch, the voting committee computes and signs the treasury decision. Winning proposals will then be funded. Any stakeholder in the community can participate in the treasury voting, and their voting power is proportional to their possessed stake. In our system, we distinguish coin ownership from stake ownership. That is, the owner of a coin can be different from the owner of the coin's stake. This allows blockchain-level stake delegation without transferring the ownership of the coin. It means that the user can delegate his/her stake to someone else without risk of losing the ultimate control of the coin(s). To achieve this, we introduced stake ownership verification mechanism using the payload of a coin. (Without loss of generality, we assume a coin has certain storage field for non-transactional data.)
- We proposed the world's first honest verifier zero-knowledge proof/argument for unit vector encryption with logarithmic size communication. Conventionally, to show a vector of ElGamal ciphertexts element-wise encrypt a unit vector, Chaum-Pedersen proofs [6] are used to show each of the ciphertexts encrypts either 0 or 1 (via Sigma OR composition) and the product of all the ciphertexts encrypts 1. Such kind of proof is used in many well-known

- voting schemes, e.g., Helios. However, the proof size is linear in the length of the unit vector, and thus the communication overhead is quite significant when the unit vector length becomes larger. In this work, we propose a novel special honest verifier ZK (SHVZK) proof/argument for unit vector that allows the prover to convince the verifier that a vector of ciphertexts (C_0, \ldots, C_{n-1}) encrypts a unit vector $\mathbf{e}_i^{(n)}$, $i \in [0, n-1]$ with $O(\log n)$ proof size. The proposed SHVZK protocol can also be Fiat-Shamir transformed to a non-interactive ZK (NIZK) proof in the random oracle model.
- We provide prototype implementation [7] of the proposed treasury system for running and benchmarking in the real world environment. Our implementation is written in Scala programming language over Scorex 2.0 framework and uses TwinsChain consensus for keeping the underlying blockchain. Main functionality includes proposal submission, registration of voters, experts, voting committee members and their corresponding deposit lock, randomized selection of the voting committee members among voters, distributed key generation (6-round protocol), ballots casting, joint decryption with recovery in case of faulty committee members (4-round protocol), randomness generation for the next treasury period (3-round protocol), reward payments, deposit paybacks, and penalties for faulty actors. All implemented protocols are fully decentralized and resilient up to 50% of malicious participants. During verification we launched a testnet that consisted of 12 full nodes successfully operating tens of treasury periods with different parameters.

2 Preliminaries

2.1 Notations

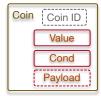
4

Throughout this paper, we will use the following notations. Let $\lambda \in \mathbb{N}$ be the security parameter. Denote the set $\{a, a+1, \ldots, b\}$ by [a, b], and let [b] denote [1, b]. We abbreviate probabilistic polynomial time as PPT. By $\mathbf{a}^{(\ell)}$, we denote a length- ℓ vector (a_1, \ldots, a_ℓ) . When S is a set, $s \leftarrow S$ stands for sampling s uniformly at random from S. When A is a randomised algorithm, $y \leftarrow A(x)$ stands for running A on input x with a fresh random coin x. When needed, we denote y := A(x; r) as running A on input x with the explicit random coin x. Let $\mathrm{poly}(\cdot)$ and $\mathrm{negl}(\cdot)$ be a polynomially-bounded function and negligible function, respectively.

2.2 The blockchain abstraction

Without loss of generality, we abstract the underlying blockchain platform encompasses the following concepts.

o Coin. We assume the underlying blockchain platform has the notion of Coins or its equivalent. Each coin can be spent only once, and all the value of coin must be consumed. As depicted in Fig. 1, each coin consists of the following 4 attributes:



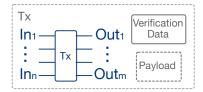


Fig. 1: Coin and transaction structure.

- Coin ID: It is an implicit attribute, and every coin has a unique ID that can be used to identify the coin.
- Value: It contains the value of the coin.
- Cond: It contains the conditions under which the coin can be spent.
- Payload: It is used to store any non-transactional data.
- \circ Address. We also generalize the concept of the address. Conventionally, an address is merely a public key, pk , or hash of a public key, $h(\mathsf{pk})$. To create coins associated with the address, the spending condition of the coin should be defined as a valid signature under the corresponding public key pk of the address. In this work, we define an address as a generic representation of some spending condition. Using the recipient's address, a sender is able to create a new coin whose spending condition is the one that the recipient intended; therefore, the recipient may spend the coin later.
- \circ Transaction. Each transaction takes one or more (unspent) coins, denoted as $\{\ln_i\}_{i\in[n]}$, as input, and it outputs one or more (new) coins, denoted as $\{\operatorname{Out}_j\}_{j\in[m]}$. Except special transactions, the following condition holds:

$$\sum_{i=1}^n \mathsf{In}_i.\mathsf{Value} \geq \sum_{j=1}^m \mathsf{Out}_j.\mathsf{Value}$$

and the difference is interpreted as transaction fee. As shown in Fig. 1, the transaction has a *Verification data* field that contains the necessary verification data to satisfy all the spending conditions of the input coins $\{\mathsf{In}_i\}_{i\in[n]}$. In addition, each transaction also has a Payload field that can be used to store any non-transactional data. We denote a transaction as $\mathsf{Tx}(A;B;C)$, where A is the set of input coins, B is the set of output coins, and C is the Payload field. Note that the verification data is not explicitly described for simplicity.

2.3 Additively homomorphic encryption

In this work, we adopt the well known threshold lifted ElGamal encryption scheme as the candidate of the threshold additively homomorphic public key cryptosystem. Let $\mathsf{Gen}^\mathsf{gp}(1^\lambda)$ be the group generator that takes input as the security parameter $\lambda \in \mathbb{N}$, and output the group parameters param , which define a multiplicative cyclic group \mathbb{G} with prime order p, where $|p| = \lambda$. We assume

the DDH assumption holds with respect to the group generator Gen^{gp}. More specifically, the additively homomorphic cryptosystem HE consists of algorithms (KeyGen^E, Enc, Add, Dec) as follows:

- KeyGen^E(param): pick $\mathsf{sk} \leftarrow \mathbb{Z}_q^*$ and set $\mathsf{pk} := h = g^{sk}$, and output $(\mathsf{pk}, \mathsf{sk})$.
 $\mathsf{Enc}_{\mathsf{pk}}(m;r)$: output $e := (e_1, e_2) = (g^r, g^m h^r)$.

- $\mathsf{Add}(c_1,\ldots,c_\ell)$: output $c:=(\prod_{i=1}^\ell c_{i,1},\prod_{i=1}^\ell c_{i,2})$. $\mathsf{Dec}_{\mathsf{sk}}(e)$: output $\mathsf{Dlog}(e_2\cdot e_1^{-\mathsf{sk}})$, where $\mathsf{Dlog}(x)$ is the discrete logarithm of x. (Note that since $\mathsf{Dlog}(\cdot)$ is not efficient, the message space should be a small set in practice.)

Lifted ElGamal encryption is additively homomorphic, i.e.

$$\operatorname{Enc}_{\mathsf{pk}}(m_1; r_1) \cdot \operatorname{Enc}_{\mathsf{pk}}(m_2; r_2) = \operatorname{Enc}_{\mathsf{pk}}(m_1 + m_2; r_1 + r_2)$$
.

Pedersen commitment

In the unit vector zero-knowledge proof, we use Pedersen commitment as a building block. It is perfectly hiding and computationally binding under the discrete logarithm assumption. More specifically, it consists of the following 4 PPT algorithms. Note that those algorithms (implicitly) take as input the same group parameters, param $\leftarrow \mathsf{Gen}^\mathsf{gp}(1^\lambda)$.

- KeyGen^C(param): pick $s \leftarrow \mathbb{Z}_q^*$ and set $\mathsf{ck} := h = g^s$, and output ck .
- $\mathsf{Com}_{\mathsf{ck}}(m;r)$: output $c := g^m h^r$ and d := (m,r).
- Open(c, d): output d := (m, r).
- Verify_{ck}(c,d): return valid if and only if $c=g^mh^r$.

Pedersen commitment is also additively homomorphic, i.e.

$$Com_{ck}(m_1; r_1) \cdot Com_{ck}(m_2; r_2) = Com_{ck}(m_1 + m_2; r_1 + r_2)$$
.

Universal composability 2.5

We model our system security under the standard *Universal Composability* (UC) framework. The protocol is represented as interactive Turing machines (ITMs), each of which represents the program to be run by a participant. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of ITMs (ITIs), that represent interacting processes in a running system. Specifically, an ITI is an ITM along with an identifier that distinguishes it from other ITIs in the same system. The identifier consists of two parts: A session-identifier (SID) which identifies which protocol instance the ITI belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol instance. Typically the PID is also used to associate ITIs with "parties" that represent some administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other's tapes in certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the system. With one exception (discussed within) we assume that all ITMs are PPT.

We consider the security of the voting system in the UC framework with static corruption in the random oracle (RO) model. The security is based on the indistinguishability between real/hybrid world executions and ideal world executions, i.e., for any possible PPT real/hybrid world adversary \mathcal{A} we will construct an ideal world PPT simulator \mathcal{S} that can present an indistinguishable view to the environment \mathcal{Z} operating the protocol.

2.6 UC ideal functionalities

In this work, we adopt the following UC ideal functionalities as building blocks.

The distributed key generation functionality. We use the key generation functionality $\mathcal{F}_{DKG}^{t,k}$ [8] for threshold key generation of the underlying public key crypto system. The functionality depicted in Fig. 2, interacts with a set of committees $\mathcal{C} := \{C_1, \ldots, C_k\}$ to generate a public key pk and deal the corresponding secret key sk among the committees. In Appendix A, we give a detailed description of our threshold distributed key generation protocol adopted from Gennaro et al. [9].

Functionality $\mathcal{F}_{ ext{DKG}}^{t,k}$

The functionality $\mathcal{F}_{\mathrm{DKG}}^{t,k}$ interacts with a set of voting committees $\mathcal{C}:=\{C_1,\ldots,C_k\}$, any party \mathcal{P} , and the adversary \mathcal{A} . It is parameterised with variable \mathcal{J} and algorithms $\mathsf{KeyGen}()$ and $\mathsf{Deal}()$. Initially, set $\mathcal{J}:=\emptyset$.

- Upon receiving (KeyGen, sid) from $C_j \in \mathcal{C}$, set $\mathcal{J} := \mathcal{J} \cup \{C_j\}$.
- If $|\mathcal{J}| = k$, generate a public key pair $(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{KeyGen}(1^{\lambda})$ and compute $(\mathsf{sk}_1, \dots, \mathsf{sk}_k) \leftarrow \mathsf{Deal}(t, k, \mathsf{sk})$. For $j \in [k]$, send message $(\mathsf{PRIVKEY}, \mathsf{sid}, \mathsf{sk}_j)$ to C_j .
- Upon receiving (READPK, sid) from any party $p \in \mathcal{P}$, if pk is not defined yet, ignore the request. Otherwise, it sends (PublicKey, sid, pk) to the requestor.

Fig. 2: Functionality $\mathcal{F}_{\mathrm{DKG}}^{t,k}$

The global clock functionality. The global clock functionality $\mathcal{G}_{\text{CLOCK}}$ interacts with all the parties. To handle offline parties, the parties can register and deregister themselves to the functionality $\mathcal{G}_{\text{CLOCK}}$, and the clock will advance if and only if all the registered honest parties have sent TICK command to it.

Functionality \mathcal{G}_{CLOCK}

The functionality interacts with a set of parties \mathbb{P} , a set of functionalities \mathbb{F} , and the adversary \mathcal{A} . It is parametrized with variable τ , \mathbb{P} , and \mathbb{F} . Initially, set $\tau := 0$, $\mathbb{P} := \emptyset$, and $\mathbb{F} := \emptyset$.

Registration:

- Upon receiving (REGISTER, sid) from party p, set $\mathbb{P} := \mathbb{P} \cup \{p\}$ and create variable $T_p := 0$.
- Upon receiving (REGISTER, sid) from functionality \mathcal{F} , set $\mathbb{F} := \mathbb{F} \cup \{\mathcal{F}\}$ and create variable $T_{\mathcal{F}} := 0$.
- Upon receiving (De-Register, sid) from party p, set $\mathbb{P} := \mathbb{P} \setminus \{p\}$ and remove variable T_p .
- Upon receiving (DE-REGISTER, sid) from functionality \mathcal{F} , set $\mathbb{F} := \mathbb{F} \setminus \{\mathcal{F}\}$ and remove variable $T_{\mathcal{F}}$.
- Upon receiving (Get-Reg, sid) from \mathcal{A} , return (Get-Reg, sid, \mathbb{P} , \mathbb{F}) to \mathcal{A} .

Synchronization:

- Upon receiving (TICK, sid) from party $p \in \mathbb{P}$, set $T_p := 1$; Invoke procedure Clock-Update and send (TICK, sid, p) to A.
- Upon receiving (Tick, sid) from functionality $\mathcal{F} \in \mathbb{F}$, set $T_{\mathcal{F}} := 1$; Invoke procedure Clock-Update and send (Tick, sid, \mathcal{F}) to \mathcal{F} .
- Upon receiving (GetTime, sid) from any participant, return (GetTime, sid, τ) to the requester.

Procedure Clock-Update:

- If $T_{\mathcal{F}}=1$ for all $\mathcal{F}\in\mathbb{F}$ and $T_p=1$ for all the honest $p\in\mathbb{P}$, then set $\tau:=\tau+1$, and reset $T_{\mathcal{F}}:=0$ for all $\mathcal{F}\in\mathbb{F}$ and $T_p:=0$ for all $p\in\mathbb{P}$.

Fig. 3: Functionality $\mathcal{G}_{\text{CLOCK}}$

The ledger ideal functionality. Our protocol is built on top of the state-of-the-art ledger ideal functionality proposed by Badertscher et al., [10]. For completeness, we recap the functionality here. As shown, in Fig. 4, the functionality maintains the set of registered parties \mathbb{P} , the (sub-)set of honest parties

 $\mathcal{H} \subseteq \mathbb{P}$, and the (sub-set) of de-synchronized honest parties $\mathbb{P}_{DS} \subset \mathcal{H}$. The set $\mathbb{P}, \mathbb{P}_{DS}, \mathcal{H}$ are all initially set to \emptyset . When a new honest party is registered, it is added to all \mathbb{P}_{DS} (hence also to \mathcal{H} and \mathbb{P} and the current time of registration is also recorded; similarly, when a party is deregistered, it is removed from both \mathbb{P} and \mathbb{P}_{DS} . For each party $p \in \mathbb{P}$, the functionality maintains a pointer pt_i (initially set to 1) and a current state view $\mathsf{state}_i := \epsilon$ (initially set to empty). The functionality also keeps track of the timed honest-input sequence in a vector $\mathsf{I}_\mathsf{H}^\mathsf{T}$ (initially $\mathsf{I}_\mathsf{H}^\mathsf{T} := \epsilon$)

3 The Treasury System

3.1 Entities

As mentioned before, the core of a treasury system is a collaborative decision-making process, and all the stake holders are eligible to participate. Let k, ℓ, n, m be integers in $poly(\lambda)$. The stake holders may have one or more of the following roles.

- The project owners $\mathcal{O} := \{O_1, \dots, O_k\}$ are a set of stake holders that have proposed project for support.
- The voting committees $\mathcal{C} := \{C_1, \dots, C_\ell\}$ are a set of stake holders that are responsible for generating the voting public key and announcing the voting result.
- The voters $\mathcal{V} := \{V_1, \dots, V_n\}$ are a set of stake holders that lock certain amount of stake to participate.
- The experts $\mathcal{E} := \{\mathsf{E}_1, \dots, \mathsf{E}_m\}$ are a special type of voters that have specialist knowledge and expertise in some field.

3.2 Enabling stake delegation

In our treasury system, the voting power of a voter is proportional to the corresponding locked stake value. We distinguish between the ownership of a stake and the ownership of the actual coin; namely, the stake of a coin can be "owned" by a user other than the coin owner. This feature allows us to delegate the stake of a coin to someone else without transferring the ownership of the coin. To achieve this, we introduce a stake attribute, denoted as S-Attr, that can be attached to the Payload of a coin. The user who can provide the required data that satisfies the condition(s) in the S-Attr is able to claim the stake of the coin. Of course, the stake of an unspent coin can only be claimed at most once at any moment. In practice, to ensure this, additional checks should be executed. If the user A wants to delegate the stake of a coin to the user B, he simply needs to put the user B's desired S-Attr in the Payload of the coin. Note that this type of delegation is persistent in the sense that if the coin is not consumed, the S-Attr of the coin remains the same. This feature allows users to stay offline while the stake of their coins can still be used in the treasury process by the delegatees.

Functionality $\mathcal{F}_{\text{Ledger}}$

It is parametrized by four algorithms Validate, ExtendPolicy, Blockify, and predict-time, along with two parameters: windowSize, $Delay \in \mathbb{N}$. The functionality manages variables state, NxtBC, buffer, τ_L and τ_{state}

 $\text{Initially, state} := \tau_{\textbf{state}} := \mathsf{NxtBC} := \epsilon, \mathsf{buffer} := \emptyset, \tau_{\mathsf{L}} = 1.$

The functionality maintains the set of registered parties \mathbb{P} , the (sub-)set of honest parties $\mathcal{H} \subseteq \mathbb{P}$, and the (sub-set) of de-synchronized honest parties $\mathbb{P}_{DS} \subset \mathcal{H}$. The set $\mathbb{P}, \mathbb{P}_{DS}, \overline{\mathcal{H}}$ are all initially set to \emptyset . When a new honest party is registered, it is added to all \mathbb{P}_{DS} (hence also to \mathcal{H} and \mathbb{P} and the current time of registration is also recorded; similarly, when a party is deregistered, it is removed from both \mathbb{P} and \mathbb{P}_{DS} . For each party $p \in \mathbb{P}$, the functionality maintains a pointer pt_i (initially set to 1) and a current state view $\mathsf{state}_i := \epsilon$ (initially set to empty). The functionality also keeps track of the timed honest-input sequence in a vector I_H^T (initially $I_H^T := \epsilon$)

Upon receiving any input I from any party or from the adversary, send (Gettime, sid) to $\mathcal{G}_{\text{CLOCK}}$ and upon receiving response (GETTIME, $\operatorname{\mathsf{sid}}, au$) set $au_L := au$ and do the follow-

- Let $\hat{\mathbb{P}} \subseteq \mathbb{P}_{DS}$ denote the set of desynchronized honest parties that were registered at time $\tau' \leq \tau_L$ Delay. Set $\mathbb{P}_{DS} := \mathbb{P}_{DS} \setminus \mathbb{P}$.

 If I was received from an honest party $p \in \mathbb{P}$:

 Set $\mathbf{I}_{\mathbf{H}}^{\mathbf{T}} := \mathbf{I}_{\mathbf{H}}^{\mathbf{T}} || (I, p, \tau_L);$
- - Compute $\mathbf{N} = (\mathbf{N_1}, \dots, \mathbf{N_l}) := \mathsf{ExtendPolicy}(\mathbf{I_H^T}, \mathsf{state}, \mathsf{NxtBC}, \mathsf{buffer}, \tau_{\mathtt{state}})$ and if $\mathbf{N} \neq \epsilon$ set state $:= \mathsf{state}||\mathsf{Blockify}((\mathbf{N_l}\mathbf{1})||\dots, \mathsf{Blockify}((\mathbf{N_l})))$ and $\tau_{\text{state}} := \tau_{\text{state}} || \tau_L^l, \text{ where } \tau_L^l = \tau_L ||, \dots \tau_L|$
 - For each $BTX \in buffer$: if (Validate, BTX, state, buffer,) = 0 then delete BTX from buffer. Also reset $\mathsf{NxtBC} := \epsilon$
 - If there exists $p_j \in \mathcal{H}$ such that $|\mathsf{state}| pt_j > \mathsf{windowSize}$ or $pt_j < |\mathsf{state}|$, then set $pt_k := |\mathsf{state}|$ for all $p_k \in \mathcal{H} \setminus \mathbb{P}_{DS}$
- Depending on the above input I and its sender's ID, $\mathcal{F}_{\text{Ledger}}$ executes the corresponding code from the following list:
 - \bullet Submitting a transaction: If I = (SUBMIT, sid, tx) and is received from a party $\overline{p \in \mathbb{P} \text{ or from } \mathcal{A} \text{ (on behalf of a corrupted party } p)}$ do the following
 - * Choose a unique transaction ID txid and set $BTX := (tx, txid, \tau_L, p_i)$
 - $* \ \ if \ \mathsf{Validate}(\mathsf{BTX}), \mathsf{state}, \mathsf{buffer} = 1, \ \mathsf{then} \ \ \mathsf{buffer} := \mathsf{buffer} \cup \{\mathsf{BTX}\}.$
 - * Send (SUBMIT, BTX) to \mathcal{A}
 - Reading the state: If I = (Read, sid) is received from a party $p \in \mathbb{P}$ then set $\overline{\mathsf{state}}|_{\mathsf{min}\{\mathsf{pt}_{\mathsf{i}},|\mathsf{state}|\}}$ and return (Read, sid, $\mathsf{state}_{\mathsf{i}}$) to the requester. If the requester is \mathcal{A} then send (state, buffer, $\mathbf{I}_{\mathbf{H}}^{\mathbf{T}}$) to \mathcal{A}
 - Maintaining the ledger state: If I = (MAINTAIN-LEDGER, sid, minerID) is received by an honest party p in \mathbb{P} and (after updating $\mathbf{I}_{\mathbf{H}}^{\mathbf{T}}$ as above) $\mathsf{predcit\text{-}time}(\mathbf{I}_{\mathbf{H}}^{\mathbf{T}}) = \hat{\tau} > \tau_L \text{ then send (Tick, sid) to } \mathcal{G}_{\mathsf{CLock}}. \text{ Else, send } I \text{ to } \mathcal{A}.$
 - The adversary proposing the next block: If $\overline{I = (\text{NEXT-BLOCK}, \mathsf{hFlag}, (txid_1, \dots, txid_l))}$ is sent from the adversary, update NxtBC as follows:
 - * Set listOfTxid $\leftarrow \epsilon$
 - * For i = 1, ..., l do: if there exists
 - $\mathsf{BTX} := (x, txid, minerID, \tau_L, p_i) \in \mathsf{buffer} \ \mathrm{with} \ \mathrm{ID} \ txid = txid_i \ \mathrm{then} \ \mathrm{set}$ $\mathsf{lisOfTxid} := \mathsf{listOfTxid}||txid_i|$
 - * Finally, set NxtBC := NxtBC || (hFlag, listOfTxid) and output (Next-Block, ok) to A
 - The adversary setting state-slackness: If
 - $I = (\text{Set-Slack}, (p_{i1}, p\hat{t}_{i1}), (p_{il}, p\hat{t}_{il}),) \text{ with } \{p_{i1}, \dots, p_{il}\} \subseteq \mathcal{H} \setminus \mathbb{P}_{DS} \text{ is }$
 - received from the adversary $\mathcal A$ do the following: * If for all $j \in [l]$: $|\mathsf{state}| p\hat{t}_{ij} \ge \mathsf{state}_{ij}|$, $setpt_i := p\hat{t}_i$ for every $j \in [l]$ and return (Set-Slack, ok) to A.
 - * Otherwise set $pt_j :=$ state for all $j \in [l]$
 - The adversary setting the state for desynchronised parties: If $I = (\text{DEESYNC-STATE}, (p_{i1}, \mathsf{state}'_{i1})) \text{ with } \{p_{i1}, \dots, p_{il}\} \subseteq \mathbb{P}_{DS} \text{ is received from }$ the adversary A, set $\mathsf{state}_{\mathsf{ij}} := \mathsf{state}_{\mathsf{ii}}'$ for each $j \in [l]$ and return (Desync-State, ok) to \mathcal{A} .

Fig. 4: Functionality $\mathcal{F}_{\text{Ledger}}$

Fig. 5: Treasury system epochs.

However, this type of delegation only guarantees pseudonymity-based privacy level, as anyone can learn "who owns" the stake of the coin by checking the S-Attr of the coin.

3.3 System overview

A treasury system consists of iterative treasury periods. A treasury period can be divided into three epochs: pre-voting epoch, voting epoch, and post-voting epoch. As shown in Figure 5, the pre-voting epoch includes two concurrent stages: project proposing stage and voter/expert registration stage. In the project proposing stage, the users can submit project proposals, asking for treasury funds. Meanwhile, the interested stake holders can register themselves as either voters and/or experts to participate in the decision making process by locking certain amount of their stake in the underlying cryptocurrency. The voter's voting power is proportional to his locked stake; while, the expert's voting power is proportional to the amount of voting power delegated to him. (We will explain delegation in details later.) Analogously, the voter's (resp. expert's) treasury reward is proportional to his locked stake (resp. his received delegations).

At the beginning of the voting epoch, there is a voting committee selection stage, during which, a set of voting committee members will be randomly selected from the registered voters who are willing to be considered for selection to the committee. The probability of being selected is proportional to locked stake. After the voting committee members are selected, they jointly run a distributed key generation protocol to setup the election public key. The voters and experts can then submit their ballots in the ballot casting stage. Note that the voters can either delegate their voting powers to some expert or vote directly on the projects. For each project, voters can delegate to different experts. At the postvoting epoch, the voting committee members jointly calculate and announce the tally result on the blockchain. Finally, in the execution stage, the winning projects are funded, and the voters, experts and voting committee members are rewarded (or punished) accordingly. These transactions will be jointly signed and executed by the voting committee. Meanwhile, the committee members also jointly commit to a random seed, which will be used to select a new voting committee in the next treasury period.

3.4 Treasury funding sources

As earlier motivated, treasury funding, perhaps is the most crucial ingredient in a decentralised community-controlled decision-making system. It must not only be regular, but also sourced from decentralised means. That is, source of funding for treasury system should not introduce centralisation into the system. To this end, desirable properties from the funding sources are secure, sustainable and decentralized.

We note that although not all potential funding sources possess these properties, a clever combination of some of these sources satisfy the set out requirement. Therefore, we propose 3 major sources of funding for the treasury system.

- Taxation/Haircut from block reward: Most blockchain platforms offer block rewards (including transaction fees) to proposers of new blocks, incentivizing honest behaviour. A fraction of such block rewards can be taken and contributed to the decentralised treasury. This type of funding source is sustainable as long as the block rewards of the underlying blockchain platform remain. However, block rewards may fluctuate over time, and it could cause unpredictability of the available funds.
- Minting new coins: Coin minting represents, perhaps, the most sustainable funding source of the potential sources. At the beginning of each treasury period, certain amount of new coins are created to fund projects. However, minting may cause inflation in terms of the fiat market value of the underlying cryptocurrency.
- Donations or charity: Donation is an opportunistic ad-hoc but unsustainable funding source. Therefore, meticulous blockchain development planning is difficult if donations is the only means of treasury funding.

3.5 Project proposal

To ensure input independency and eliminate unfair advantage caused by late submission, we adopt a two-stage project proposal scheme. In the first stage, the project owners O_1, \ldots, O_k post an encryption of their project proposals (encrypted under the election public key of the previous treasury period) to the blockchain. At the end of pre-voting epoch and the beginning of the voting epoch, the voting committee of previous treasury period will jointly decrypt those project proposals (together with revealing the seed, which will be explained later).

To commit a project, the project owner needs to submit a special transaction in form of

$$\mathsf{Tx}\Big(\{\mathsf{In}_i\}_{i=1}^n; \mathsf{TCoin}; \{\mathsf{PROJECT}, \mathsf{TID}, \mathsf{P-Enc}, \mathsf{Addr}\}\Big)$$
 ,

where $\{\ln_i\}_{i=1}^n$ are the input coins, and TCoin is a special output coin whose spending condition is defined as, the coin can only be spent according to the corresponding treasury decision (cf. Subsection "supplying the treasury", below). Moreover, the coin value TCoin.Value $\geq \alpha_{\min}$, where α_{\min} is the minimum required fee for a project proposal to prevent *denial-of-service* attacks. In the

Payload field, Project is a tag that indicates it is a special project proposal transaction; TID is the treasury ID that is used to uniquely identify a treasury period; P-Enc is the encrypted project proposal, and Addr is the return address for the project owner to receive money if the project succeeds in getting funded.

3.6 Voter/Expert registration

In order to register to be a voter, a stake holder (or a set of stake holders) need(s) to submit a special *voter registration transaction* in form of

$$\mathsf{Tx}\Big(\{\mathsf{In}_i\}_{i=1}^n; \mathsf{TCoin}; \Big\{\mathsf{VOTER}\text{-}\mathsf{REG}, \mathsf{TID}, \{\mathsf{S}_i\}_{i=1}^\ell, \mathsf{S}\text{-}\mathsf{Cond}, \mathsf{vk}, \mathsf{Addr}\Big\}\Big)$$
,

where $\{\mathsf{In}_i\}_{i=1}^n$ are the input coins, and TCoin is a special output coin whose spending condition is defined in Subsection "supplying the treasury", below. In the Payload field, Voter-Reg is a tag that indicates it is a special voter registration transaction; TID is the treasury ID that is used to uniquely identify a treasury period; $\{\mathsf{S}_i\}_{i=1}^\ell$ are the freezed unspent coins that will be used to claim stake value, S-Cond is the required data that satisfies all the stake attributes of $\{\mathsf{S}_i\}_{i=1}^\ell$, vk is a freshly generated signature key; and Addr is the return address for the voter to receive treasury reward. The voter's ID is defined as the hash of vk, denoted as $\mathsf{V}_i := \mathsf{hash}(\mathsf{vk})$.

Let β_{\min} be a predefined system parameter. To register as an expert, a stake holder (or a set of stake holders) need(s) to deposit exact β_{\min} amount of coins, by submitting a special expert registration transaction:

$$\mathsf{Tx}\Big(\{\mathsf{In}_i\}_{i=1}^n; \mathsf{TCoin}; \{\mathsf{EXPERT}\text{-}\mathsf{REG}, \mathsf{TID}, \mathsf{vk}, \mathsf{Addr}\}\Big)$$
,

where $\{\mathsf{In}_i\}_{i=1}^n$ are the input coins, and TCoin is a special output coin whose spending condition is defined in Subsection "supplying the treasury". Moreover, the coin value TCoin.Value $\geq \beta_{\min}$. In the Payload field, Expert-Reg is a tag that indicates it is a special expert registration transaction; TID is the treasury ID that is used to uniquely identify a treasury period; vk is a freshly generated signature key; and Addr is the return address for the expert to receive treasury reward.

The expert's ID is defined as the hash of vk, denoted as $E_j := \mathsf{hash}(\mathsf{vk})$. Note that the expert does not gain reward based on the amount of deposited coins, so it is not rational to deposit significantly more than β_{\min} coins in practice.

3.7 Voting committee selection

At the beginning of the voting epoch, the voting committee of the previous treasury epoch jointly reveal the committed seed, seed.

Let $\mathsf{st}_i = \sum_{j=1}^{\ell} S_j$. Value for all the stake coins S_j claimed in the payload of the voter registration transaction of vk_i , i.e. st_i is the total stake amount claimed by vk_i . Once seed is announced, any registered voter, who have an address vk_i

with claimed stake st_i , can volunteer to participate in the voting committee if the following inequality holds:

$$\mathsf{hash}(\mathsf{vk}_i, \mathsf{sign}_{\mathsf{sk}_i'}(\mathsf{seed})) \leq \mathsf{st}_i \cdot T$$

where sk_i' is the corresponding signing key for vk_i , and T is a pre-defined threshold. When the inequation holds, he/she can submit a special registration transaction in form of

$$\mathsf{Tx}\Big(\{\mathsf{In}_i\}_{i=1}^n; \mathsf{TCoin}; \Big\{\mathrm{VC\text{-}Reg}, \mathsf{TID}, \overline{\mathsf{vk}}, \tilde{\mathsf{pk}}, \mathsf{sign}_{\mathsf{sk}_i'}(\mathsf{seed}), \mathsf{Addr}\Big\}\Big) \enspace,$$

where $\{In_i\}_{i=1}^n$ are the input coins, and TCoin is a special output coin whose spending condition is defined in Subsection "supplying the treasury", below. Moreover, the coin value TCoin. Value $\geq \gamma_{\min}$. In the Payload field, VC-REG is a tag that indicates it is a special voting committee registration transaction; TID is the treasury ID that is used to uniquely identify a treasury period; vk is a freshly generated signature verification key; pk is a freshly generated public key for a pre-defined public key cryptosystem; $sign_{sk'}(seed)$ is the signature of seedunder the signing key corresponding to vk_i ; and Addr is the return address for the committee member to receive treasury reward. The threshold T is properly defined to ensure that approximately $\lambda' = \omega(\log \lambda)$ (e.g., $\lambda' = \text{polylog}(\lambda)$) committee members are selected, assuming constant fraction of them will be active. Note that, analogous to most proof-of-stake systems, T needs to be updated frequently. See [11] for a common threshold/difficulty T adjustment approach. **Remark.** Jumping ahead, we will need honest majority of the voting committee to guarantee voter privacy and protocol termination. Assume the majority of the stake of all the registered voters is honest; therefore, the probability that a selected committee member is honest is $p = 1/2 + \varepsilon$ for any $\varepsilon \in (0, 1/2]$. Let X be the number of malicious committee members selected among all λ' committee members. Since $\lambda' = \omega(\log \lambda)$, by Chernoff bound, we have

$$\begin{split} \Pr[X \geq \lambda'/2] &= \Pr[X \geq (1+\delta)(1/2-\varepsilon)\lambda'] \\ &< \exp(-\delta^2(1/2-\varepsilon)\lambda'/4) \\ &= \frac{1}{\exp(\omega(\log\lambda))} = \mathsf{negl}(\lambda) \end{split}$$

for $\delta = 2\varepsilon/(1-2\varepsilon)$.

3.8 Supplying the treasury

Treasury funds are accumulated via a collection of coins. For example, the taxation/haircut of the block reward can be collected through a special transaction at the beginning of each block. The output of this type of transactions are new coins, whose spending condition, Cond, specifies that the coin can only be spent according to the corresponding treasury decision. As will be mentioned in details later, the treasury funds will be distributed in forms of transactions jointly made by the corresponding voting committee; therefore, the coins dedicated to certain treasury period must allow the voting committee in that treasury period to jointly spend. More specifically, there are λ' committee members selected at the beginning of the voting epoch of each treasury period. Let $\mathsf{seed}_{\mathsf{TID}_i}$ denote the seed opened in the treasury period indexed by TID_i . Let $\{\overline{\mathsf{vk}}_j\}_{j=1}^\ell$ be the set of signature verification keys in the valid committee registration transactions proposed by vk_i such that the condition $\mathsf{hash}\big(\mathsf{vk}_i,\mathsf{sign}_{\mathsf{sk}_i'}(\mathsf{seed})\big) \leq \mathsf{st}_i \cdot T$ holds. The treasury coin can be spent in a transaction if majority of the signatures w.r.t. $\{\overline{\mathsf{vk}}_j\}_{j=1}^\ell$ are present.

3.9 Handling the treasury specific data in the payload

Note that typically the underlying blockchain transaction validation rules do not take into account of the content stored in the payload of a transaction. Therefore, additional checks are needed for the treasury specific transactions. More specifically, we verify the payload data of those transactions with additional algorithms. In particular, a coin must be *frozen* during the entire treasury period in order to claim its stake. This can be done by, for example, adding extra constrain in spending condition, saying that the coin cannot be spent until the certain block height, which is no earlier than the end of the treasury period. Furthermore, the stake of one coin can only be claimed once during each treasury period.

3.10 Decision making

During the decision making, the voting committee members, the voters, and the experts follow the protocol description in Sec. 4, below. It covers the key generation stage, the ballot casting stage, and the tally stage. In terms of security, as shown before, with overwhelming probability, the majority of the committee members are honest, which can guarantee voter privacy and protocol termination. In an unlikely extreme case, where all the voting committee members are corrupted, our voting scheme can still ensure the integrity of the voting result. If a cheating voting committee member is detected, she will lose all her deposit.

For each project, the voters/experts need to submit an independent ballot. The voter can either delegate his voting power to some expert or directly express his opinion on the project; whereas, the expert shall only vote directly on the project. In our prototype, we adopt the "YES-NO-ABSTAIN" type of voting scheme. More specifically, after the voting, the project proposals are scored based on the number of yes votes minus the number of no votes. Proposals that got at least 10% (of all votes) of the positive difference are shortlisted, and all the remaining project proposals are discarded. Shortlisted proposals are ranked according to their score, and the top ranked proposals are funded in turns until the treasury fund is exhausted. Each of the voting committee members will then sign the treasury decision and treasury transactions, and those transactions are valid if it is signed by more than t-out-of-k voting committee members.

3.11 Post-voting execution

Certain proportion (e.g. 20%) of the treasury fund will be used to reward the voting committee members, voters and experts. The voting committee members $C_{\ell} \in \mathcal{C}$ will receive a fix amount of reward, denoted as ζ_1 . Note that as the voting committee members are required to perform more actions in the next treasury period, their reward will only be transferred after the completion of those actions at the end of pre-voting epoch in the next treasury period. The voter $V_i \in \mathcal{V}$ will receive reward that is proportional to his/her deposited amount, denoted as $\zeta_2 \cdot \mathsf{st}_i$, where st_i is the amount of the stake claimed by V_i . The expert $\mathsf{E}_i \in \mathcal{E}$ will receive reward that is proportional to his/her received delegations, denoted as $\zeta_3 \cdot D_i$, where D_i is the amount of delegations that E_i has received. Meanwhile, if a voting committee member cheats or an expert fails to submit a valid ballot, he/she will lose the deposited coin as a punishment. In addition, the voting committee members will jointly generate and commit to a random seed for the next treasury period, in a protocol depicted as follows. To generate and commit a random seed, voting committee members C_{ℓ} , $\ell \in [k]$ needs to invoke a coin flipping protocol. However, the cost of such a protocol is very small when they already jointly setup a public key pk. More specifically, each voting committee members C_{ℓ} , $\ell \in [k]$ will pick a random group element $R_{\ell} \leftarrow \mathbb{G}$ and post the encryption of it, $C_{\ell} \leftarrow \mathsf{Enc}_{\mathsf{pk}}(R_{\ell})$ to the blockchain. $C := \prod_{\ell=1}^{k} C_{\ell}$ is defined as the committed/encrypted seed for the next treasury period. Note that C can be jointly decrypted as far as majority of the voting committee members are honest, and the malicious voting committee members cannot influence the distribution of the seed.

3.12 Partitionary budgeting

The main goal of treasury is decentralized community-driven self-sustainable cryptocurrency development through projects funding and adoption. The naive approach is to select projects for funding by ranking all submitted proposals according to the number of votes they get and take a number of projects whose total budget does not exceed the treasury budget. However, there exists a risk of underfunding vital areas due to numerous project submissions and inflated discussions on some other areas. We can categorize proposals and allocate a certain amount of treasury funding for each category to independently guarantee funds to every vital area.

Analysis of existing blockchain development funding [2] reveal marketing, PR, integration, software development and organisational costs are most prominent categories. Considering this and general business development rules, we propose to include (at least) the following categories.

 Marketing. This covers activities devoted to cryptocurrency market share growth; market analysis, advertisement, conferences, etc. The vastness of the area demands this category should take the biggest percent of the funding budget.

- Technology adoption. This includes costs needed for wider spreading of cryptocurrency; integration with various platforms, websites and applications, deployment of ATMs etc.
- Development and security. This includes costs allocated for funding core and non-core development, security incident response, patch management, running testnets, as well as similar critical technology areas.
- Support. This category includes user support, documentation, maintaining
 of web-infrastructure needed for the community and other similar areas.
- Organization and management. This category includes costs on team coordination and management, legal support, etc.
- General. This includes projects not covered by the earlier categories, e.g., research on prospective technologies for cryptocurrency application, external security audit, collaboration with other communities, charity and so on.

It should be noted that the given list of categories is not final, and treasury deployment in cryptocurrencies will take into account specific of a given solution based on its development effort.

Nevertheless, having such an approach guarantees that critical areas for cryptocurrency routine operation, support and development will always get funding via treasury, which in turn, guarantees cryptocurrency self-sustainability.

4 The proposed voting scheme

4.1 Security modeling

The entities involved in the voting schemes are a set of voting committee members $\mathcal{C} := \{\mathsf{C}_1, \dots, \mathsf{C}_k\}$, a set of voters $\mathcal{V} := \{\mathsf{V}_1, \dots, \mathsf{V}_n\}$, and a set of experts $\mathcal{E} := \{\mathsf{E}_1, \dots, \mathsf{E}_m\}$. We consider the security of our treasury voting scheme in the UC framework with static corruption. The security is based on the indistinguishability between real/hybrid world executions and ideal world executions, i.e., for any PPT real/hybrid world adversary \mathcal{A} we will construct an ideal world PPT simulator \mathcal{S} that can present an indistinguishable view to the environment \mathcal{Z} operating the protocol.

The Ideal world execution. In the ideal world, the voting committee \mathcal{C} , the voters \mathcal{V} , and the experts \mathcal{E} only communicate to an ideal functionality $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$ during the execution. The ideal functionality $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$ accepts a number of commands from $\mathcal{C}, \mathcal{V}, \mathcal{E}$. At the same time it informs the adversary of certain actions that take place and also is influenced by the adversary to elicit certain actions. The ideal functionality $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$ is depicted in Fig. 6, and it consists of three phases: Preparation, Voting/Delegation, and Tally.

Preparation phase. During the preparation phase, the voting committees $C_i \in \mathcal{C}$ need to initiate the voting process by sending (INIT, sid) to the ideal functionality $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$. The voting will not start until all the committees have participated the preparation phase.

The ideal functionality $\mathcal{F}_{ ext{VOTE}}^{t,k,m,n}$

The functionality $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$ interacts with a set of voting committees $\mathcal{C}:=\{\mathcal{C}_1,\ldots,\mathcal{C}_k\}$, a set of voters $\mathcal{V}:=\{\mathcal{V}_1,\ldots,\mathcal{V}_n\}$, a set of experts $\mathcal{E}:=\{\mathcal{E}_1,\ldots,\mathcal{E}_m\}$, and the adversary \mathcal{S} . It is parameterized by a delegation calculation algorithm DelCal (described in Fig. 7) and a tally algorithm TallyAlg (described in Fig. 8) and variables $\phi_1,\phi_2,\tau,J_1,J_2,J_3,T_1$ and T_2 . Denote \mathcal{C}_{cor} and $\mathcal{C}_{\text{honest}}$ as the set of corrupted and honest voting committees, respectively.

Initially, $\phi_1 = \emptyset$, $\phi_2 = \emptyset$, $\tau = \emptyset$, $J_1 = \emptyset$, $J_2 = \emptyset$, and $J_3 = \emptyset$.

Preparation:

- Upon receiving (INIT, sid) from the voting committee $C_i \in C$, set $J_1 := J_1 \cup \{C_i\}$, and send a notification message (INITNOTIFY, sid, C_i) to the adversary S.

Voting/Delegation:

- Upon receiving (VOTE, sid, v_i) from the expert $\mathsf{E}_i \in \mathcal{E}$, if $|J_1| < t$, ignore the request. Otherwise, record $(\mathsf{E}_i, \mathsf{VOTE}, v_i)$ in ϕ_1 ; send a notification message (VOTENOTIFY, sid, E_i) to the adversary \mathcal{S} . If $|\mathcal{C}_{\mathsf{cor}}| \geq t$, then additionally send a message (LEAK, sid, E_i , VOTE, v_i) to the adversary \mathcal{S} .
- Upon receiving (CAST, sid, v_j , α_j) from the voter $V_j \in \mathcal{V}$, if $|J_1| < t$, ignore the request. Otherwise, record $(V_j, \text{CAST}, v_j, \alpha_j)$ in ϕ_2 ; send a notification message (CASTNOTIFY, sid, V_j , α_j) to the adversary \mathcal{S} . If $|\mathcal{C}_{\text{cor}}| \geq t$, then additionally send a message (LEAK, sid, V_j , CAST, v_j) to the adversary \mathcal{S} .

Tally:

- Upon receiving (DelCal, sid) from the voting committee $C_i \in C$, set $J_2 := J_2 \cup \{C_i\}$, and send a notification message (DelCalNotify, sid, C_i) to the adversary S.
- If $|J_2 \cup C_{\mathsf{honest}}| + |C_{\mathsf{cor}}| \geq t$, send (LeakDel, sid, DelCal(\mathcal{E}, ϕ_2)) to \mathcal{S} .
- If $|J_2| \ge t$, set $\delta \leftarrow \mathsf{DelCal}(\mathcal{E}, \phi_2)$.
- Upon receiving (Tally, sid) from the voting committee $C_i \in \mathcal{C}$, set $J_3 := J_3 \cup \{C_i\}$, and send a notification message (TallyNotify, sid, C_i) to the adversary \mathcal{S} .
- $-\text{ If } |J_3 \cup \mathcal{C}_{\mathsf{honest}}| + |\mathcal{C}_{\mathsf{cor}}| \geq t, \text{ send } (\text{LeakTally}, \mathsf{sid}, \mathsf{TallyAlg}(\mathcal{V}, \mathcal{E}, \phi_1, \phi_2, \delta))$
- If $|J_3| \geq t$, set $\tau \leftarrow \mathsf{TallyAlg}(\mathcal{V}, \mathcal{E}, \phi_1, \phi_2, \delta)$.
- Upon receiving (ReadTally, sid) from any party, if $\delta = \emptyset \land \tau = \emptyset$ ignore the request. Otherwise, return (ReadTallyReturn, sid, (δ, τ)) to the requester.

Fig. 6: The ideal functionality $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$

Voting/Delegation phase. During the voting/delegation phase, the expert $\mathsf{E}_i \in \mathcal{E}$ can vote for his choice v_i by sending (VOTE, sid, v_i) to the ideal functionality $\mathcal{F}_{\mathrm{VOTE}}^{t,k,m,n}$. Note that the voting choice v_i is leaked only when majority of the voting committees are corrupted. The voter $\mathsf{V}_j \in \mathcal{V}$, who owns α_j stake, can either vote directly for his choice v_j or delegate his voting power to an expert $\mathsf{E}_i \in \mathcal{E}$. Similarly, when all the voting committees are corrupted, $\mathcal{F}_{\mathrm{VOTE}}^{t,k,m,n}$ leaks the voters' ballots to the adversary \mathcal{S} .

Tally phase. During tally phase, the voting committee $C_i \in \mathcal{C}$ sends (DelCal, sid) to the ideal functionality $\mathcal{F}_{\text{Vote}}^{t,k,m,n}$ to calculate and reveal the delegations received by each expert. After that, they then send (Tally, sid) to the ideal functionality $\mathcal{F}_{\text{Vote}}^{t,k,m,n}$ to open the tally. Once all the committees have opened the tally, any party can read the tally by sending (ReadTally, sid) to $\mathcal{F}_{\text{Vote}}^{t,k,m,n}$. Note that due to the nature of threshold cryptography, the adversary \mathcal{S} can see the voting tally result before all the honest parties. Hence, the adversary can refuse to open the tally depending on the tally result. The tally algorithm TallyAlg is described in Fig. 8.

The real/hybrid world execution. In the real/hybrid world, the treasury voting scheme utilises a number of supporting components. Those supporting components are modelled as ideal functionalities. First of all, we need a blockchain functionality $\mathcal{F}_{\text{LEDGER}}$ (cf. Fig. 4) to model the underlying blockchain infrastructure that the treasury system is built on. We then use the key generation functionality $\mathcal{F}_{\text{DKG}}^{t,k}$ [8] for threshold key generation of the underlying public key crypto system. Finally, a global clock functionality $\mathcal{G}_{\text{CLOCK}}$ (cf. Fig. 3) is adopted to model the synchronised network environment. Let $\text{EXEC}_{\Pi,\mathcal{A},\mathcal{Z}}$ denote the output of the environment \mathcal{Z} when interacting with parties running the protocol Π and real-world adversary \mathcal{A} . Let $\text{EXEC}_{\mathcal{F},\mathcal{S},\mathcal{Z}}$ denote output of \mathcal{Z} when running protocol ϕ interacting with the ideal functionality \mathcal{F} and the ideal adversary \mathcal{S} .

Definition 1. We say that a protocol Π UC-realizes \mathcal{F} if for any adversary \mathcal{A} there exists an adversary \mathcal{S} such that for any environment \mathcal{Z} that obeys the rules of interaction for UC security we have $\mathsf{EXEC}_{\Pi,\mathcal{A},\mathcal{Z}} \approx \mathsf{EXEC}_{\mathcal{F},\mathcal{S},\mathcal{Z}}$.

4.2 The voting scheme

Let m be the number of experts and n be the number of voters. Let $\mathbf{e}_i^{(m)} \in \{0,1\}^m$ be the unit vector where its i-th coordinate is 1 and the rest coordinates are 0. We also abuse the notation to denote $\mathbf{e}_0^{(\ell)}$ as an ℓ -vector contains all 0's. We use $\mathsf{Enc_{pk}}(\mathbf{e}_i^{(\ell)})$ to denote coordinate-wise encryption of $\mathbf{e}_i^{(\ell)}$, i.e. $\mathsf{Enc_{pk}}(e_{i,1}^{(\ell)}), \ldots, \mathsf{Enc_{pk}}(e_{i,\ell}^{(1)})$, where $\mathbf{e}_i^{(\ell)} = (e_{i,1}^{(\ell)}, \ldots, e_{i,\ell}^{(\ell)})$.

Algorithm DelCal

Input: a set of the expert labels \mathcal{E} , and a set of ballots ϕ_2 **Output:** the delegation result δ

Init:

- For $i \in [1, m]$, create and initiate $D_i = 0$.

Delegation interpretation:

- For each ballot $B \in \phi_2$: parse B in form of $(V_j, CAST, v_j, \alpha_j)$; if $v_j = (Delegate, E_i)$ for some $E_i \in \mathcal{E}$, then $D_i := D_i + \alpha_j$.

Output:

- Return $\delta := \{(\mathsf{E}_i, D_i)\}_{i \in [m]}$.

Fig. 7: The delegation calculation algorithm DelCal

The tally algorithm TallyAlg

Input: a set of the voters \mathcal{V} , a set of the experts \mathcal{E} , two sets of ballots ϕ_1, ϕ_2 and the delegation δ .

Output: the tally result τ

Init:

- Create and initiate $\tau_{\mathsf{yes}} = 0$, $\tau_{\mathsf{no}} = 0$ and $\tau_{\mathsf{abstain}} = 0$.
- Parse δ as $\{(\mathsf{E}_i, D_i)\}_{i \in [m]}$.

Tally Computation:

- For each ballot $B \in \phi_2$: parse B in form of $(V_j, CAST, v_j, \alpha_j)$; if $v_j = (Vote, a_j)$ for some $a_j \in \{yes, no, abstain\}$, then $\tau_{a_j} := \tau_{a_j} + \alpha_j$.
- For each ballot $B \in \phi_1$: parse B in form of $(\mathsf{E}_i, \mathsf{VOTE}, \check{b}_i)$ for some $b_i \in \{\mathsf{yes}, \mathsf{no}, \mathsf{abstain}\}$, then $\tau_{b_i} := \tau_{b_i} + D_i$.

Output:

- Return $\tau := (\tau_{yes}, \tau_{no}, \tau_{abstain}).$

Fig. 8: The tally algorithm

Vote encoding. In our scheme, we encode the vote into a (unit) vector. Let encode and encode be the vote encoding algorithm for the expert and voter, respectively. For an expert, upon receiving input $x \in \{\text{YES}, \text{No}, \text{ABSTAIN}\}$, the encode returns 100, 010, 001 for YES, No, ABSTAIN, respectively. For a voter, the input is $y \in \{\text{E}_1, \dots, \text{E}_m\} \cup \{\text{YES}, \text{No}, \text{ABSTAIN}\}$. When $y = \text{E}_i$, $i \in [m]$, it means that the voter delegate his/her voting power to the expert E_i . When $y \in \{\text{YES}, \text{No}, \text{ABSTAIN}\}$, it means that the voter directly vote on the project. The encode returns a unit vector of length (m+3), denoted as v, such that $v = e_i^{(m+3)}$ if $y = \text{E}_i$, for $i \in [m]$; and v is set to $e_{m+1}^{(m+3)}$, $e_{m+2}^{(m+3)}$, and $e_{m+3}^{(m+3)}$ if y is YES, No, ABSTAIN, respectively.

Since sending data to the blockchain consumes coins, we implicitly assume all the experts $\mathcal E$ and voters $\mathcal V$ have spare coins to pay the transaction fees that occurred during the protocol execution. More specifically, we let each party prepare $\{\mathsf{In}_i\}_{i=1}^{\ell_1}, \{\mathsf{Out}_j\}_{j=1}^{\ell_2}$ s.t.

$$\sum_{i=1}^{\ell_1} \mathsf{In}_i.\mathsf{Value} \geq \sum_{j=1}^{\ell_2} \mathsf{Out}_j.\mathsf{Value}$$
 .

Denote the corresponding coins owned by a voter $V_i \in \mathcal{V}$, an expert $E_j \in \mathcal{E}$, and a voting committee member $C_t \in \mathcal{C}$ as $(\{\ln_{\eta}^{(V_i)}\}_{\eta=1}^{\ell_1}, \{\operatorname{Out}_{\eta}^{(V_i)}\}_{\eta=1}^{\ell_2}), (\{\ln_{\eta}^{(E_j)}\}_{\eta=1}^{\ell_1}, \{\operatorname{Out}_{\eta}^{(E_j)}\}_{\eta=1}^{\ell_2}), \text{ respectively. The protocol is depicted in Fig. 9. It consists of preparation phase, voting/delegation phase, and tally phase.$

Sending/Reading data to/from \mathcal{F}_{Ledger} . Fig. 10 describes the macro for a party to send and read data to/from the blockchain $\mathcal{F}_{\text{Ledger}}$. According the blockchain model proposed by [10], three types of delays need to be considered. First, we have a bounded network delay, and it is assumed that all messages can be delivered within Δ_1 rounds, which is $2\Delta_1$ clock-ticks in [10]. Subsequently, a desynchronised user can get up-to-date within $2\Delta_1$ rounds (i.e. $4\Delta_1$ clock-ticks) after registration. The second type of delay is the fact that the adversary can hold a valid transaction up to certain blocks, but she cannot permanently denialof-service such a transaction. This is modeled by the ExtendPolicy in $\mathcal{F}_{\text{Ledger}}$, where if a transaction is more than Δ_2 rounds (i.e. $2\Delta_2$ clock-ticks) old, and still valid with respect to the current state, then it will be included into the state. Finally, we have a so-called windowsize. Namely, the adversary can set state-slackness of all the honest parties up to the windowsize, which is consistent with the *common prefix* property in [12]. Hence, all the honest parties can have a common state of any blocks that have been proposed more than windowsize. Denote Δ_3 rounds (i.e. $2\Delta_3$ clock-ticks) as the windowsize.

To send a message x to $\mathcal{F}_{\text{Ledger}}$, we need to first check if this party has deregistered and desynchronized. If so, the party needs to first send (Register, sid) to $\mathcal{F}_{\text{Ledger}}$. Note that the registered but desynchronized party can still send a transaction before it is fully updated. We simply make a 'dummy' transaction

The voting protocol $\Pi_{\text{VOTE}}^{t,k,m,n}$

Denote the corresponding coins owned by a voter $V_i \in \mathcal{V}$, an expert $E_j \in$ \mathcal{E} , and a voting committee member $C_t \in \mathcal{C}$ as $(\{\ln_{\eta}^{(V_i)}\}_{\eta=1}^{\ell_1}, \{\operatorname{Out}_{\eta}^{(V_i)}\}_{\eta=1}^{\ell_2}),$ $(\{\mathsf{In}_{\eta}^{(\mathsf{E}_j)}\}_{\eta=1}^{\ell_1}, \{\mathsf{Out}_{\eta}^{(\mathsf{E}_j)}\}_{\eta=1}^{\ell_2}), \text{ and } (\{\mathsf{In}_{\eta}^{(\mathsf{C}_t)}\}_{\eta=1}^{\ell_1}, \{\mathsf{Out}_{\eta}^{(\mathsf{C}_t)}\}_{\eta=1}^{\ell_2}), \text{ respectively.}$

Preparation phase:

- Upon receiving (Init, sid) from the environment \mathcal{Z} , the committee C_j , $j \in [k]$ sends (KeyGen, sid) to $\mathcal{F}_{\mathrm{DKG}}^{t,k}$ to generate pk and obtain the corresponding partial private key sk_j from $\mathcal{F}_{\mathrm{DKG}}^{t,k}$.

Voting/Delegation phase:

- Upon receiving (Vote, sid, v_i) from the environment \mathcal{Z} , the expert E_i , $j \in [m]$ does the following:
 - Send (Readph, sid) to $\mathcal{F}_{\mathrm{DKG}}^{t,k}$, obtaining (Publickey, sid, pk).
 - Set the unit vector $\mathbf{e}^{(3)} \leftarrow \mathsf{encode}^{\mathsf{E}}(v_j)$. Compute $\mathbf{c_j}^{(3)} \leftarrow \mathsf{Enc}_{\mathsf{pk}}(\mathbf{e}^{(3)})$ and its NIZK proof π_j (Cf. Sec. 5).
 - Execute macro Send-Msg $(c_{\mathbf{j}}^{(3)}, \pi_j), \{In_{\eta}^{(\mathsf{E}_j)}\}_{\eta=1}^{\ell_1}, \{Out_{\eta}^{(\mathsf{E}_j)}\}_{\eta=1}^{\ell_2}).$ (Cf.
- Upon receiving (Cast, sid, v_i , α_i) from the environment \mathcal{Z} , the voter V_i , $i \in [n]$ does the following:

 - Send (READPK, sid) to $\mathcal{F}_{\mathrm{DKG}}^{t,k}$, obtaining (PUBLICKEY, sid, pk). Set the unit vector $\mathbf{e}^{(m+3)} \leftarrow \mathsf{encode}^{\mathsf{V}}(v_i)$. Compute $\mathbf{u_i}^{(m+3)} \leftarrow \mathsf{Enc_{pk}}(\mathbf{e}^{(m+3)})$ and its NIZK proof σ_i (Cf. Sec. 5).
 - Execute macro Send-Msg $\left((\mathbf{u_i}^{(m+3)}, \sigma_i, \alpha_i), \{ \mathsf{In}_{\eta}^{(\mathsf{V}_i)} \}_{\eta=1}^{\ell_1}, \{ \mathsf{Out}_{\eta}^{(\mathsf{V}_i)} \}_{\eta=1}^{\ell_2} \right)$. (Cf. Fig. 10)

Tally phase:

- Upon receiving (DelCal, sid) from the environment \mathcal{Z} , the committee $C_t, t \in [k]$ does:
 - Execute macro Read-Msg and obtain data.
 - Fetch ballots $\{(\mathbf{c_i}^{(3)}, \pi_i)\}_{i \in [m]}$ and $\{(\mathbf{u_j}^{(m+3)}, \sigma_j, \alpha_j)\}_{j \in [n]}$ from data.
 - For $i \in [m]$, check $\mathsf{Verify}(\mathbf{c_i}^{(3)}, \pi_i) = 1$; for $j \in [n]$, Verify $(\mathbf{u_j}^{(m+3)}, \sigma_j) = 1$. Remove all the invalid ballots.
 - For $j \in [n]$, if a valid $\mathbf{u_j}^{(m+3)}$ is posted, parse $\mathbf{u_j}^{(m+3)}$ to $(\mathbf{a_i}^{(m)}, \mathbf{b_j}^{(3)}).$
 - For $j \in [n]$, $\ell \in [0, m-1]$, compute $z_{i,\ell} := a_{j,\ell}^{\alpha_j}$.
 - For $i \in [0, m-1]$, compute $s_i := \prod_{\ell=1}^n z_{\ell,i}$ and jointly decrypt it to w_i (Cf. [9]).
- Upon receiving (Tally, sid) from the environment \mathcal{Z} , the committee C_t , $t \in [k]$ does:
 - For $i \in [0, m-1], \ell \in [0, 2]$, compute $d_{i,\ell} := c_{i,\ell}^{w_i}$.
 - For $\ell \in [0, 2]$, compute $x_{\ell} := \prod_{j=0}^{m-1} d_{j,\ell} \cdot \prod_{j=1}^{n-1} b_{j,\ell}^{\alpha_j}$ and jointly decrypt it to y_{ℓ} (Cf. [9]). Execute macro
 - Send-Msg $(x_{\ell}, y_{\ell}), \{\mathsf{In}_{\eta}^{(\mathsf{C}_{t})}\}_{\eta=1}^{\ell_{1}}, \{\mathsf{Out}_{\eta}^{(\mathsf{C}_{t})}\}_{\eta=1}^{\ell_{2}}\}$. (Cf. Fig. 10)
- Upon receiving (READTALLY, sid) from the environment \mathcal{Z} , the party P does the following:
 - Execute macro Read-Msg and obtain data.
 - Fetch $\{(x_i, y_i)\}_{i \in [0,2]}$ from data, and return (READTALLYRETURN, sid, (y_0, y_1, y_2)) to the environment \mathcal{Z} .

Fig. 9: The voting protocol $\Pi_{\text{VOTE}}^{t,k,m,n}$ in $\{\mathcal{F}_{\text{LEDGER}}, \mathcal{F}_{\text{DKG}}^{t,k}\}$ -hybrid model

whose input coins and output coins share the same owner (spending condition), and the message x is stored in the payload of the transaction. To read a message (stored in the payload of some transaction) from $\mathcal{F}_{\text{Ledger}}$, analogously a deregistered party needs to first send (Register, sid) to $\mathcal{F}_{\text{Ledger}}$. After $4\delta_1$ clock-ticks, the party can get synchronised. In order to receive the latest message, the party needs to wait a maximum of $2(\Delta_2 + \Delta_3)$ clock-ticks for the transaction that carries the intended message to be included in the state of the party.

Sending and reading messages

Macro Send-Msg $(x, \{\ln_i\}_{i=1}^{\ell_1}, \{\operatorname{Out}_j\}_{j=1}^{\ell_2})$:

- If the party has deregistered and desynchronized:
 - Send (Register, sid) to $\mathcal{F}_{\text{Ledger}}$.
 - Send (SUBMIT, sid, $\mathsf{Tx}(\{\mathsf{In}_i\}_{i=1}^{\ell_1}; \{\mathsf{Out}_j\}_{j=1}^{\ell_2}; x)$) to $\mathcal{F}_{\mathsf{LEDGER}}$.
 - Send (De-Register, sid) to $\mathcal{F}_{\text{Ledger}}$.
- If the party is already synchronized:
 - Send (SUBMIT, sid, $\mathsf{Tx}(\{\mathsf{In}_i\}_{i=1}^{\ell_1}; \{\mathsf{Out}_j\}_{j=1}^{\ell_2}; x))$ to $\mathcal{F}_{\mathsf{LEDGER}}$.

Macro Read-Msg:

- If the party has deregistered and desynchronized:
 - Send (Register, sid) to $\mathcal{F}_{\text{Ledger}}$.
 - Wait for $\max\{4\Delta_1, 2(\Delta_2 + \Delta_3)\}$ clock-ticks by keeping sending (Tick, sid) to the $\mathcal{G}_{\text{Clock}}$.
 - Send (Read, sid) to $\mathcal{F}_{\text{Ledger}}$ and receive (Read, sid, data) from $\mathcal{F}_{\text{Ledger}}$.
 - Send (De-Register, sid) to $\mathcal{F}_{\text{Ledger}}$.
- If the party is already synchronized:
 - Wait for $\max\{4\Delta_1, 2(\Delta_2 + \Delta_3)\}$ clock-ticks by keeping sending (Tick, sid) to the $\mathcal{G}_{\text{Clock}}$.
 - Send (Read, sid) to $\mathcal{F}_{\text{Ledger}}$ and receive (Read, sid, data) from $\mathcal{F}_{\text{Ledger}}$.
- Return data.

Fig. 10: Macro for sending and receiving message via $\mathcal{F}_{\text{Ledger}}$

4.3 Security

The security of the treasury voting protocol is analysed in the UC framework. We provide Theorem 1.

Theorem 1. Let $t, k, n, m = \text{poly}(\lambda)$ and $k/2 < t \leq n$. Protocol $\Pi^{t,k,n,m}_{\text{VOTE}}$ described in Fig. 9 UC-realizes $\mathcal{F}^{t,k,m,n}_{\text{VOTE}}$ in the $\{\mathcal{F}_{\text{LEDGER}}, \mathcal{F}^{t,k}_{\text{DKG}}\}$ -hybrid world against static corruption under the DDH assumption.

Proof. To prove the theorem, we construct a simulator S such that no nonuniform PPT environment \mathcal{Z} can distinguish between (i) the real execution EXEC $_{\Pi_{\text{VOTE}}^{t,k,n,m},\mathcal{A},\mathcal{Z}}^{\mathcal{F}_{\text{LEDGER}},\mathcal{F}_{\text{DKG}}^{t,k}}$ where the parties $\mathcal{V}:=\{\mathsf{V}_1,\ldots,\mathsf{V}_n\},\,\mathcal{E}:=\{\mathsf{E}_1,\ldots,\mathsf{E}_m\}$ and $\mathcal{C}:=\{\mathsf{C}_1,\ldots,\mathsf{C}_k\}$ run protocol $\Pi_{\text{VOTE}}^{t,k,n,m}$ in the $\{\mathcal{F}_{\text{LEDGER}},\mathcal{F}_{\text{DKG}}^{t,k}\}$ -hybrid world and the corrupted parties are controlled by a dummy adversary \mathcal{A} who simply forwards messages from/to \mathcal{Z} , and (ii) the ideal execution $\mathsf{EXEC}_{\mathcal{F}^{t,k}_{\mathsf{Voor}}, \mathcal{S}, \mathcal{Z}}$ where the parties interact with functionality $\mathcal{F}_{\text{Vote}}^{t,k,m,n}$ in the ideal model and corrupted parties are controlled by the simulator \mathcal{S} . Let $\mathcal{V}_{\text{cor}} \subseteq \mathcal{V}$, $\mathcal{E}_{\text{cor}} \subseteq \mathcal{E}$ and $\mathcal{C}_{\mathsf{cor}} \subseteq \mathcal{C}$ be the set of corrupted voters, experts and voting committee members, respectively. Note that the underlying encryption scheme is IND-CPA secure, and its corresponding NIZK proofs are simulatable ZK under the DDH assumption.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment \mathcal{Z} . The simulator \mathcal{S} simulates honest voters $V_i \in \mathcal{V} \setminus \mathcal{V}_{cor}$, honest experts $E_i \in \mathcal{E} \setminus \mathcal{E}_{cor}$, trustees $C_j \in \mathcal{C} \setminus \mathcal{C}_{cor}$ and functionalities \mathcal{F}_{LEDGER} , $\mathcal{F}_{DKG}^{t,k}$. In addition, the simulator S simulates the following interactions with A.

In the preparation phase:

- Upon receiving (INITNOTIFY, sid, C_j) from the external $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$ for an honest voting committee $C_j \in \mathcal{C} \setminus \mathcal{C}_{\text{cor}}$, the simulator \mathcal{S} acts as C_j , following the protocol $\Pi_{\mathrm{VOTE}}^{t,k,n,m}$ as if C_j receives (INIT, sid) from the environment \mathcal{Z} . $-\mathcal{S}$ simulates $\mathcal{F}_{\mathrm{DKG}}^{t,k}$ so that it generates and stores (pk, sk).

In the voting/delegation phase:

- Upon receiving (VOTENOTIFY, sid, E_j) from the external $\mathcal{F}^{t,k,m,n}_{\mathrm{VOTE}}$ for an honest expert $\mathsf{E}_j \in \mathcal{E} \setminus \mathcal{E}_{\mathsf{cor}}$, the simulator \mathcal{S} reads pk from $\mathcal{F}^{t,k}_{\mathrm{DKG}}$. \mathcal{S} computes $\mathbf{c_j}^{(3)} \leftarrow \mathsf{Enc_{pk}}(\mathbf{0}^{(3)})$ and simulates its NIZK proof π_j using the NIZK simulator. It then executes macro $\mathsf{Send\text{-}Msg}\left((\mathbf{c_j}^{(3)},\pi_j),\{\mathsf{In}^{(\mathsf{E}_j)}_{\eta}\}_{\eta=1}^{\ell_1},\{\mathsf{Out}^{(\mathsf{E}_j)}_{\eta}\}_{\eta=1}^{\ell_2}\right)$.
- Upon receiving (Castnotify, sid, V_i, α_j) from the external $\mathcal{F}_{\text{Vote}}^{t,k,m,n}$ for an honest expert $V_i \in \mathcal{V} \setminus \mathcal{V}_{\mathsf{cor}},$ the simulator \mathcal{S} reads pk from $\mathcal{F}_{\mathrm{DKG}}^{t,k}$. \mathcal{S} computes $\mathbf{u_i}^{(m+3)} \leftarrow \mathsf{Enc_{pk}}(\mathbf{0}^{(m+3)})$ and simultates its NIZK proof π_i using the NIZK simulator. It then executes macro $\mathsf{Send\text{-}Msg}\Big((\mathbf{u_i}^{(m+3)},\sigma_i,\alpha_i),\{\mathsf{In}_{\eta}^{(\mathsf{V}_i)}\}_{\eta=1}^{\ell_1},\{\mathsf{Out}_{\eta}^{(\mathsf{V}_i)}\}_{\eta=1}^{\ell_2}\Big).$
- Once the simulated $\mathcal{F}_{\text{Ledger}}$ receives (Post, sid, $\mathbf{c_i}^{(3)}$) from a corrupted expert $\mathsf{E}_{i} \in \mathcal{E}_{\mathsf{cor}}$, the simulator \mathcal{S} uses sk to decrypt $\mathbf{c_{i}}^{(3)}$, obtaining the vote v_j . \mathcal{S} then sends (Vote, sid, v_i) to $\mathcal{F}_{\text{Vote}}^{t,k,m,n}$ on behave of E_j .

 Once the simulated $\mathcal{F}_{\text{Ledger}}$ receives (Post, sid, $\mathbf{u_i}^{(m+3)}, \alpha_i$) from a cor-
- rupted voter $V_i \in \mathcal{V}_{cor}$, the simulator \mathcal{S} uses sk to decrypt $\mathbf{u_i}^{(m+3)}$, obtaining the vote v_i . S then sends (VOTE, sid, v_i , α_i) to $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$ on behave of V_i .

In the tally phase:

- Upon receiving (DelCalNotify, sid, C_j) from the external $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$ for an honest trustee $C_j \in \mathcal{C} \setminus \mathcal{C}_{\text{cor}}$, the simulator \mathcal{S} acts as C_j , following the protocol $H_{\text{VOTE}}^{t,k,n,m}$ as if C_j receives (DelCal, sid) from \mathcal{Z} .
- Upon receiving (TallyNotify, sid, C_j) from the external $\mathcal{F}_{\text{Vote}}^{t,k,m,n}$ for an honest trustee $C_j \in \mathcal{C} \setminus \mathcal{C}_{\text{cor}}$, the simulator \mathcal{S} acts as C_j , following the protocol $\Pi_{\text{Vote}}^{t,k,n,m}$ as if C_j receives (Tally, sid) from \mathcal{Z} .
- Upon receiving (LeakDel, sid, δ) from the external $\mathcal{F}_{\text{VOTE}}^{t,k,m,n}$, the simulator \mathcal{S} simulates the last honest committee C_t 's decryption share according to δ , and it simulates the corresponding NIZK proof in the 1st round of the tally phase.
- Upon receiving (LeakTally, sid, τ) from the external $\mathcal{F}_{\text{Vote}}^{t,k,m,n}$, the simulator \mathcal{S} simulates the last honest committee C_t 's decryption share according to τ , and it simulates the corresponding NIZK proof in the 2nd round of the tally phase.

Indistinguishability. The indistinguishability is proven through a series of hybrid worlds $\mathcal{H}_0, \ldots, \mathcal{H}_4$.

Hybrid \mathcal{H}_0 : It is the real protocol execution $\mathsf{EXEC}^{\mathcal{F}_{\mathsf{LEDGER}},\mathcal{F}_{\mathsf{DKG}}^{t,k}}_{H^{t,k,n,m}_{\mathsf{VOTE}},\mathcal{A},\mathcal{Z}}$.

Hybrid \mathcal{H}_1 : \mathcal{H}_1 is the same as \mathcal{H}_0 except that during the voting/delegation phase, in \mathcal{H}_1 , the honest voter V_j 's encrypted ballots are replaced with $\mathsf{Enc}_{\mathsf{pk}}(\mathbf{0}^{(m+3)})$ and simulates its corresponding unit-vector NIZK proof.

Claim. \mathcal{H}_1 and \mathcal{H}_0 are indistinguishable if the underlying encryption scheme is IND-CPA and the unit-vector NIZK proof is simulatable ZK.

Proof. The proof is straightforward. Namely, if an adversary \mathcal{A} can distinguish \mathcal{H}_1 from \mathcal{H}_0 , then we can construct an adversary \mathcal{B} who can either break the IND-CPA game of the PKE encryption or the ZK probability of the unit-vector NIZK proof.

Hybrid \mathcal{H}_2 : \mathcal{H}_2 is the same as \mathcal{H}_1 except the following: During the voting/delegation phase, in \mathcal{H}_2 , the honest expert E_i 's encrypted ballots are replaced with $\mathsf{Enc}_{\mathsf{pk}}(\mathbf{0}^{(3)})$ and simulates its corresponding unit-vector NIZK proof.

Claim. \mathcal{H}_2 and \mathcal{H}_1 are indistinguishable if the underlying encryption scheme is IND-CPA and the unit-vector NIZK proof is simulatable ZK.

Proof. The same as the previous proof.

Hybrid \mathcal{H}_3 : \mathcal{H}_3 is the same as \mathcal{H}_2 except the followings. During the tally phase, \mathcal{H}_3 uses NIZK simulator to simulate all the decryption proofs instead of the real ones.

Claim. \mathcal{H}_3 and \mathcal{H}_2 are indistinguishable if the underlying decryption NIZK is simulatable ZK.

Proof. The advantage of the adversary is bounded by the ZK property of the decryption NIZK. \Box

Hybrid \mathcal{H}_4 : \mathcal{H}_4 is the same as \mathcal{H}_3 except the followings. During the tally phase, the honest committee C_t 's decryption shares are backwards calculated from the δ and τ received from the $\mathcal{F}_{\mathrm{VOTE}}^{t,k,m,n}$.

Claim. \mathcal{H}_4 and \mathcal{H}_3 are statistically indistinguishable.

Proof. The distribution of the decryption shares in \mathcal{H}_4 have identical distribution to the shares in \mathcal{H}_3 .

The adversary's view of \mathcal{H}_4 is identical to the simulated view $\mathsf{EXEC}_{\mathcal{F}^{t,k,m,n}_{\mathsf{VOTE}},\mathcal{S},\mathcal{Z}}$. Therefore, no PPT \mathcal{Z} can distinguish the view of the ideal execution from the view of the real execution with more than negligible probability. This concludes our proof.

5 A new unit vector ZK proof

5.1 Zero-knowledge proofs/arguments

Let \mathcal{L} be an NP language and $\mathcal{R}_{\mathcal{L}}$ is its corresponding polynomial time decidable binary relation, i.e., $\mathcal{L} := \{x \mid \exists w : (x,w) \in \mathcal{R}_{\mathcal{L}}\}$. We say a statement $x \in \mathcal{L}$ if there is a witness w such that $(x,w) \in \mathcal{R}_{\mathcal{L}}$. Let the prover P and the verifier V be two PPT interactive algorithms. Denote $\tau \leftarrow \langle P(x,w), V(x) \rangle$ as the public transcript produced by P and V. After the protocol, V accepts the proof if and only if $\phi(x,\tau) = 1$, where ϕ is a public predicate function.

Definition 2. We say (P, V) is a perfectly complete proof/argument for an NP relation $\mathcal{R}_{\mathcal{L}}$ if for all non-uniform PPT interactive adversaries \mathcal{A} it satisfies

- Perfect completeness:

$$\Pr\left[\begin{matrix} (x,w) \leftarrow \mathcal{A}; \tau \leftarrow \langle P(x,w), V(x) \rangle : \\ (x,w) \not \in \mathcal{R}_{\mathcal{L}} \lor \phi(x,\tau) = 1 \end{matrix} \right] = 1$$

- (Computational) soundness:

$$\Pr\left[\begin{matrix} x \leftarrow \mathcal{A}; \tau \leftarrow \langle \mathcal{A}, V(x) \rangle : \\ x \not\in \mathcal{L} \land \phi(x, \tau) = 1 \end{matrix}\right] = \mathsf{negl}(\lambda)$$

Let V(x;r) denote the verifier V is executed on input x with random coin r. A proof/argument (P,V) is called *public coin* if the verifier V picks his challenges randomly and independently of the messages sent by the prover P.

Definition 3. We say a public coin proof/argument (P, V) is a perfect special honest verifier zero-knowledge (SHVZK) for a NP relation $\mathcal{R}_{\mathcal{L}}$ if there exists a PPT simulator Sim such that

$$\Pr\begin{bmatrix} (x, w, r) \leftarrow \mathcal{A}; \\ \tau \leftarrow \langle P(x, w), V(x; r) \rangle : \\ (x, w) \in \mathcal{R}_{\mathcal{L}} \land \mathcal{A}(\tau) = 1 \end{bmatrix} \approx \Pr\begin{bmatrix} (x, w, r) \leftarrow \mathcal{A}; \\ \tau \leftarrow \mathsf{Sim}(x; r) : \\ (x, w) \in \mathcal{R}_{\mathcal{L}} \land \mathcal{A}(\tau) = 1 \end{bmatrix}$$

Public coin SHVZK proofs/arguments can be transformed to a non-interactive one (in the random oracle model [13]) by using Fiat-Shamir heuristic [14] where a cryptographic hash function is used to compute the challenge instead of having an online verifier.

5.2 Schwartz-Zippel lemma

For completeness, we recap a variation of the Schwartz-Zippel lemma [15] that will be used in proving the soundness of the zero-knowledge protocols.

Lemma 1 (Schwartz-Zippel). Let f be a non-zero multivariate polynomial of degree d over \mathbb{Z}_p , then the probability of $f(x_1, \ldots, x_n) = 0$ evaluated with random $x_1, \ldots, x_n \leftarrow \mathbb{Z}_p$ is at most $\frac{d}{n}$.

Therefore, there are two multi-variate polynomials f_1, f_2 . If $f_1(x_1, \ldots, x_n) - f_2(x_1, \ldots, x_n) = 0$ for random $x_1, \ldots, x_n \leftarrow \mathbb{Z}_p$, then we can assume that $f_1 = f_2$. This is because, if $f_1 \neq f_2$, the probability that the above equation holds is bounded by $\frac{\max(d_1, d_2)}{p}$, which is negligible in λ .

5.3 The proposed unit vector ZK proof/argument

We denote a unit vector of length n as $\mathbf{e}_i^{(n)} = (e_{i,0}, \dots, e_{i,n-1})$, where its i-th coordinate is 1 and the rest coordinates are 0. Conventionally, to show a vector of ElGamal ciphertexts element-wise encrypt a unit vector, Chaum-Pedersen proofs [6] are used to show each of the ciphertexts encrypts either 0 or 1 (via Sigma OR composition) and the product of all the ciphertexts encrypts 1. Such kind of proof is used in many well-known voting schemes, e.g., Helios. However, the proof size is linear in the length of the unit vector, and thus the communication overhead is quite significant when the unit vector length becomes larger.

In this section, we propose a novel special honest verifier ZK (SHVZK) proof for unit vector that allows the prover to convince the verifier that a vector of ciphertexts (C_0, \ldots, C_{n-1}) encrypts a unit vector $\mathbf{e}_i^{(n)}$, $i \in [0, n-1]$ with $O(\log n)$ proof size. Without loss of generality, assume n is a perfect power of 2. If not, we append $\mathsf{Enc}_{\mathsf{pk}}(0;0)$ (i.e., trivial ciphertexts) to make the total number of ciphertexts to be the next power of 2. The proposed SHVZK protocol can also be Fiat-Shamir transformed to a non-interactive ZK (NIZK) proof in the random oracle model. The basic idea of our construction is inspired by [16], where Groth and Kohlweiss proposed a Sigma protocol for the prover to show that he knows how to open one out of many commitments. The key idea behind our construction is that there exists a data-oblivious algorithm that can take input as $i \in \{0,1\}^{\log n}$ and output the unit vector $\mathbf{e}_i^{(n)}$. Let $i_1, \ldots, i_{\log n}$ be the binary representation of i. The algorithm is depicted in Fig. 11.

Intuitively, we let the prover first bit-wisely commit the binary presentation of $i \in [0, n-1]$ for the unit vector $\mathbf{e}_i^{(n)}$. The prover then shows that each of the

```
The algorithm that maps i \in [0, n-1] to \mathbf{e}_{i}^{(n)}

Input: index i = (i_{1}, \dots, i_{\log n}) \in \{0, 1\}^{\log n}

Output: unit vector \mathbf{e}_{i}^{(n)} = (e_{i,0}, \dots, e_{i,n-1}) \in \{0, 1\}^{n}

1. For \ell \in [\log n], set b_{\ell,0} := 1 - i_{\ell} and b_{\ell,1} := i_{\ell};

2. For j \in [0, n-1], set e_{i,j} := \prod_{\ell=1}^{\log n} b_{\ell,j_{\ell}}, where j_{1}, \dots, j_{\log n} is the binary representation of j;

3. Return \mathbf{e}_{i}^{(n)} = (e_{i,0}, \dots, e_{i,n-1});
```

Fig. 11: The algorithm that maps $i \in [0, n-1]$ to $\mathbf{e}_i^{(n)}$

commitments of $(i_1,\ldots,i_{\log n})$ indeed contain 0 or 1, using the Sigma protocol proposed in Section 2.3 of [16]. Note that in the 3rd move of such a Sigma protocol, the prover reveals a degree-1 polynomial of the committed message. Denote $z_{\ell,1}:=i_\ell x+\beta_\ell,\ \ell\in[\log n]$ as the corresponding degree-1 polynomials, where β_ℓ are chosen by the prover and x is chosen by the verifier. By linearity, we can also define $z_{\ell,0}:=x-z_{\ell,1}=(1-i_\ell)x-\beta_\ell,\ \ell\in[\log n]$. According to the algorithm described in Fig.11, for $j\in[0,n-1]$, let $j_1,\ldots,j_{\log n}$ be the binary representation of j, and the product $\prod_{\ell=1}^{\log n}z_{\ell,j_\ell}$ can be viewed as a degree-($\log n$) polynomial of the form

$$p_j(x) = e_{i,j} x^{\log n} + \sum_{k=0}^{\log n-1} p_{j,k} x^k$$

for some $p_{j,k}$, $k \in [0, \log n - 1]$. We then use batch verification to show that each of C_j indeed encrypts $e_{i,j}$. More specifically, for a randomly chosen $y \leftarrow \mathbb{Z}_p$, let $E_j := (C_j)^{x^{\log n}} \cdot \mathsf{Enc}(-p_j(x);0)$; the prover needs to show that $E := \prod_{j=0}^{n-1} (E_j)^{y^j} \cdot \prod_{k=0}^{\log n-1} (D_k)^{x^k}$ encrypts 0, where $D_\ell := \mathsf{Enc}_{\mathsf{pk}}(\sum_{j=0}^{n-1} (p_{j,\ell} \cdot y^j); R_\ell)$, $\ell \in [0, \log n - 1]$ with fresh randomness $R_\ell \in \mathbb{Z}_p$. The construction is depicted in Fig. 12, and it consists of 5 moves. Both the prover and the verifier shares a common reference string (CRS), which is a Pedersen commitment key that can be generated using random oracle. The prover first commits to each bits of the binary representation of i, and the commitments are denoted as I_ℓ , $\ell \in [\log n]$. Subsequently, it produces B_ℓ , A_ℓ as the first move of the Sigma protocol in Sec. 2.3 of [16] showing I_ℓ commits to 0 or 1. Jumping ahead, later the prover will receive a challenge $x \leftarrow \{0,1\}^{\lambda}$, and it then computes the third move of the Sigma protocols by producing $\{z_\ell, w_\ell, v_\ell\}_{\ell=1}^{\log n}$. To enable batch verification, before that, the prover is given another challenge $y \leftarrow \{0,1\}^{\lambda}$ in the second move. The prover the computes and sends the aforementioned $\{D_\ell\}_{\ell=0}^{\log n-1}$. The verification consists of two parts. In the first part, the verifier checks the following equations to ensure that I_ℓ commits to 0 or 1.

$$\begin{array}{l} - \ (I_\ell)^x \cdot B_\ell = \mathsf{Com}_\mathsf{ck}(z_\ell; w_\ell) \\ - \ (I_\ell)^{x - z_\ell} \cdot A_\ell = \mathsf{Com}_\mathsf{ck}(0; v_\ell) \end{array}$$

In the second part, the verifier checks if

$$\prod_{j=0}^{n-1} \left((C_j)^{x^{\log n}} \cdot \mathrm{Enc}_{\mathsf{pk}} (-\prod_{\ell=1}^{\log n} z_{\ell,j_\ell}; 0) \right)^{y^j} \cdot \prod_{\ell=0}^{\log n-1} (D_\ell)^{x^\ell}$$

is encryption of 0 by asking the prover to reveal the randomness.

```
Unit vector ZK argument
CRS: the commitment key ck
Statement: the public key pk and the ciphertexts C_0
\mathsf{Enc}_{\mathsf{pk}}(e_{i,0}; r_0), \dots, C_{n-1} := \mathsf{Enc}_{\mathsf{pk}}(e_{i,n-1}; r_{n-1})
 Witness: the unit vector \mathbf{e}_i^{(n)} \in \{0,1\}^n and the randomness r_0, \dots, r_{n-1} \in
Protocol:
        – The prover P, for \ell = 1, \ldots, \log n, do:
                                 • Pick random \alpha_{\ell}, \beta_{\ell}, \gamma_{\ell}, \delta_{\ell} \leftarrow \mathbb{Z}_p;
                                 • Compute I_{\ell} := \mathsf{Com}_{\mathsf{ck}}(i_{\ell}; \alpha_{\ell}), B_{\ell} := \mathsf{Com}_{\mathsf{ck}}(\beta_{\ell}; \gamma_{\ell}) and
                                              A_{\ell} := \mathsf{Com}_{\mathsf{ck}}(i_{\ell} \cdot \beta_{\ell}; \delta_{\ell});
        -P \to V: \{I_{\ell}, B_{\ell}, A_{\ell}\}_{\ell=1}^{\log n};
         -V \to P: Random y \leftarrow \{0,1\}^{\lambda};
        – The prover P for \ell = 0, \dots, \log n - 1, do:
       • Pick random R_{\ell} \leftarrow \mathbb{Z}_p and compute D_{\ell} := \mathsf{Enc_{pk}} \left( \sum_{j=0}^{n-1} (p_{j,\ell} \cdot y^j); R_{\ell} \right)
- P \rightarrow V : \{D_{\ell}\}_{\ell=0}^{\log n-1}; \{C_{\ell}\}_{\ell=0}^{\log n} : \{C_{\ell}\}_{\ell
        -V \to P: Random x \leftarrow \{0,1\}^{\lambda};
       The prover P does the following:

• Compute R := \sum_{j=0}^{n-1} (r_j \cdot x^{\log n} \cdot y^j) + \sum_{\ell=0}^{\log n-1} (R_\ell \cdot x^\ell);

• For \ell = 1, \dots, \log n, compute z_\ell := i_\ell \cdot x + \beta_\ell, w_\ell := \alpha_\ell \cdot x + \gamma_\ell, and
        v_{\ell} := \alpha_{\ell}(x - z_{\ell}) + \delta_{\ell};
- P \to V: R and \{z_{\ell}, w_{\ell}, v_{\ell}\}_{\ell=1}^{\log n}
 Verification:
         - Check the followings:
         - For \ell = 1, \ldots, \log n, do:
                                 \bullet \ (I_{\ell})^x \cdot B_{\ell} = \mathsf{Com}_{\mathsf{ck}}(z_{\ell}; w_{\ell})
                                 • (I_{\ell})^{x-z_{\ell}} \cdot A_{\ell} = \mathsf{Com}_{\mathsf{ck}}(0; v_{\ell})
        -\prod_{j=0}^{n-1} \left( (C_j)^{x^{\log n}} \cdot \mathsf{Enc}_{\mathsf{pk}} (-\prod_{\ell=1}^{\log n} z_{\ell,j_\ell}; 0) \right)^{y^j} \cdot \prod_{\ell=0}^{\log n-1} (D_\ell)^{x^\ell} = \mathsf{Enc}_{\mathsf{pk}} (0; R), where z_{j,1} = z_j and z_{j,0} = x - z_j.
```

Fig. 12: Unit vector ZK argument

Theorem 2. Assume the DDH problem is hard. The protocol described in Fig. 12 is a 5-move public coin special honest verifier zero-knowledge argument of knowledge of $\mathbf{e}_i^{(n)} = (e_{i,0}, \dots, e_{i,n-1}) \in \{0,1\}^n$ and $(r_0, \dots, r_{n-1}) \in (\mathbb{Z}_p)^n$ such that $C_j = \mathsf{Enc}_{\mathsf{pk}}(e_{i,j}; r_j), j \in [0, n-1].$

Proof. For perfect completeness, we first observe that the verification equations $(I_{\ell})^x \cdot B_{\ell} = \mathsf{Com}_{\mathsf{ck}}(z_{\ell}; w_{\ell})$ and $(I_{\ell})^{x-z_{\ell}} \cdot A_{\ell} = \mathsf{Com}_{\mathsf{ck}}(0; v_{\ell})$ holds. Indeed, by additively homomorphic property of the commitment scheme, $(I_{\ell})^x \cdot B_{\ell} = \mathsf{Com}_{\mathsf{ck}}(i_{\ell} \cdot x + \beta_{\ell}; \alpha_{\ell} \cdot x + \gamma_{\ell})$ and $(I_{\ell})^{x-z_{\ell}} \cdot A_{\ell} = \mathsf{Com}_{\mathsf{ck}}(i_{\ell} \cdot (x - z_{\ell}) + i_{\ell} \cdot \beta_{\ell}; \alpha_{\ell} \cdot (x - z_{\ell}) + \delta_{\ell}) = \mathsf{Com}_{\mathsf{ck}}(i_{\ell}(1 - i_{\ell}) \cdot x; v_{\ell})$. Since $i_{\ell}(1 - i_{\ell}) = 0$ when $i_{\ell} \in \{0, 1\}$, we have $(I_{\ell})^{x-z_{\ell}} \cdot A_{\ell} = \mathsf{Com}_{\mathsf{ck}}(0; v_{\ell})$. Moreover, for each $j \in [0, n-1]$, $\prod_{\ell=1}^{\log n} z_{\ell,j_{\ell}}$ is a polynomial in the form of

$$p_j(x) = e_{i,j} x^{\log n} + \sum_{k=0}^{\log n-1} p_{j,k} x^k$$

where x is the verifier's challenge. Therefore, it is easy to see that

$$\begin{split} & \prod_{j=0}^{n-1} \left((C_j)^{x^{\log n}} \cdot \operatorname{Enc}_{\mathsf{pk}} (-\prod_{\ell=1}^{\log n} z_{\ell,j_\ell}; 0) \right)^{y^j} \\ & \cdot \prod_{\ell=0}^{\log n-1} \operatorname{Enc}_{\mathsf{pk}} (\sum_{j=0}^{n-1} (p_{j,\ell} \cdot y^j); R_\ell)^{x^\ell} \\ & = \operatorname{Enc}_{\mathsf{pk}} \left(\sum_{j=0}^{n-1} \left(e_{i,j} \cdot x^{\log n} - p_j(x) + \sum_{\ell=0}^{\log n-1} p_{j,\ell} \cdot x^\ell \right) \cdot y^j; R \right) \\ & = \operatorname{Enc}_{\mathsf{pk}} (0; R) \ . \end{split}$$

For soundness, first of all, the Sigma protocols for commitments of i_ℓ , $\ell \in [\log n]$ is specially sound, i.e., given two transactions with the same $\{I_\ell, B_\ell, A_\ell\}_{\ell=1}^{\log n}$ and two different x and $\{z_\ell, w_\ell, v_\ell\}_{\ell=1}^{\log n}$, there exists a PPT extractor that can output the corresponding witness $i_\ell \in \{0, 1\}$.

Moreover, $\prod_{j=0}^{n-1} \left((C_j)^{x^{\log n}} \cdot \operatorname{Enc}_{\mathsf{pk}} (-\prod_{\ell=1}^{\log n} z_{\ell,j_{\ell}}; 0) \right)^{y^j}$ builds a degree-log n polynomial w.r.t. x in the plaintext. While, $\prod_{\ell=0}^{\log n-1} (D_{\ell})^{x^{\ell}}$ encrypts a degree-($\log n-1$) polynomial w.r.t. x. Since x is randomly sampled after D_{ℓ} is committed, Schwartz-Zippel lemma, $\prod_{j=0}^{n-1} \left((C_j)^{x^{\log n}} \cdot \operatorname{Enc}_{\mathsf{pk}} (-\prod_{\ell=1}^{\log n} z_{\ell,j_{\ell}}; 0) \right)^{y^j} \cdot \prod_{\ell=0}^{\log n-1} (D_{\ell})^{x^{\ell}}$ encrypts a zero polynomial w.r.t. x with overwhelming probability if the polynomial evaluation is 0. Therefore, $Q(y) := \sum_{j=0}^{n-1} (e_{i,j} - \prod_{\ell=1}^{\log n} i_{\ell,j_{\ell}}) \cdot y^j = 0$ with overwhelming probability. Similarly, by Schwartz-Zippel lemma, Q(y) is a zero polynomial; hence, we have for $j \in [0, n-1]$, $e_{i,j} = \prod_{\ell=1}^{\log n} i_{\ell,j_{\ell}}$ with overwhelming probability.

In terms of special honest verifier zero-knowledge, we now construct a simulator Sim that takes input as the statement (C_0, \ldots, C_{n-1}) and the given

challenges $x,y \in \{0,1\}^{\lambda}$, and it outputs a simulated transcript whose distribution is indistinguishable from the real one. More specifically, Sim first randomly picks $i_{\ell} \leftarrow \{0,1\}$ and $\alpha_{\ell}, \beta_{\ell}, \gamma_{\ell}, \delta_{\ell} \leftarrow \mathbb{Z}_p$, $\ell \in [\log n]$. It then computes $\{I_{\ell}, B_{\ell}, A_{\ell}\}_{\ell=1}^{\log n}$ and $\{z_{\ell}, w_{\ell}, v_{\ell}\}_{\ell=1}^{\log n}$ according to the protocol description. For $\ell \in \{1, \ldots, \log n - 1\}$, it then picks random $U_{\ell}, R_{\ell} \leftarrow \mathbb{Z}_p$ and computes $D_{\ell} := \mathsf{Enc}_{\mathsf{pk}}(U_{\ell}; R_{\ell})$. It then randomly picks $R \leftarrow \mathbb{Z}_p$, computes

$$D_0 := \frac{\mathsf{Enc}_{\mathsf{pk}}(0;R)}{\prod_{j=0}^{n-1} \left((C_j)^{x^{\log n}} \mathsf{Enc}_{\mathsf{pk}}(-\prod_{\ell=1}^{\log n} z_{\ell,j_\ell};0) \right)^{y^j} \cdot \prod_{\ell=1}^{\log n-1} (D_\ell)^{x^\ell}}$$

After that, Sim outputs the simulated transcript as

$$\left(\{I_{\ell}, B_{\ell}, A_{\ell}\}_{\ell=1}^{\log n}, y, \{D_{\ell}\}_{\ell=0}^{\log n-1}, x, \{z_{\ell}, w_{\ell}, v_{\ell}\}_{\ell=1}^{\log n}\right) .$$

This concludes our proof.

6 Implementation and performance

6.1 Prototyping

The proposed treasury system was implemented as a fully functional cryptocurrency prototype. As an underlying framework we used Scorex 2.0 [17] that provides basic blockchain functionality. It is a flexible modular framework designed particularly for fast prototyping with a rich set of already implemented functionalities such as asynchronous peer-to-peer network layer, built-in blockchain support with pluggable and extendable consensus module, simple transactions layer, JSON API for accessing the running node, etc. As treasury requires basic blockchain functions, we decided to select TwinsCoin [11] example and extend it with the proposed treasury system. Treasury integration required modification of the existed transactions structure and block validation rules, as well as introduction of new modules for keeping treasury state and managing transactions forging. All cryptographic protocols related to the voting procedure were implemented in a separate library to simplify code maintanance. It is also possible to reuse it not only in the blockchain systems but also as a standalone voting system. The implementation uses BouncyCastle library (ver.1.58) that provides needed elliptic curve math. Some operations in the finite field were implemented with help of the BigInteger class from the Java Core. Subprotocols of the developed system were implemented exactly as they are described in the paper without any protocol-level optimizations.

6.2 Test network

For testing developed treasury prototype in real environment a local network of 12 full nodes was launched. It successfully worked for several days with dozens of epochs. The treasury network had 9 voters with different amount of stake,

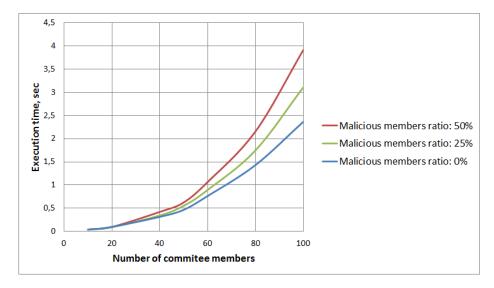


Fig. 13: DKG protocol execution time depending on the number of committee members

3 experts, 12 candidates to the voting committee (10 of them were selected to participate). The numbers of proposals varied from 1 to 7. Treasury cycle had 780 blocks. Underlying blockchain with TwinsCoin consensus had block generation time of 10 seconds (or approximately 4.5 hours treasury cycle).

During the tests many abnormal situations were simulated, for instance, a malicious behavior of the committee members, absence of the voters and expers, refusal to participate in the decryption stage, etc. With a correctly working majority of the committee members, the voting results were always successfully obtained and rewards were correctly distributed.

6.3 Evaluations

For evaluating performance of the cryptographic protocols a special set of tests were developed as a part of the cryptographic library. The working station has Intel Core i7-6500U CPU @ 2.50GHz and 16GB RAM.

We benchmarked key generation protocol running time for different number of voting committee members: from 10 to 100 (high numbers might be required to guarantee honest majority on member random selection among large amount of members). Shared public key generation was made both for all honest committee members and in presence of malicious ones (any minority amount, their exact ratio does not have influence on protocol running time for any honest participant). Results are given in Fig. 13.

Besides it, there is an estimated amount of data needed to be transmitted over a peer-to-peer network to complete the protocol, in dependence of committee

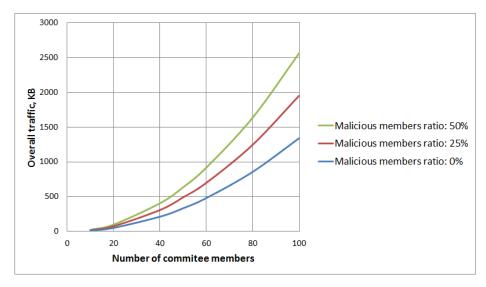


Fig. 14: Total size of the DKG protocol messages to be sent over the peer-to-peer network depending on the number of committee members

size and malicious members ratio. Results are given in Fig. 14 (recall that even controlling 50% of the committee, an attacker can break confidentiality of voters' ballots, but not their integrity or tally result).

Ballot generation is done once by a voter and takes less than 1 second for several hundreds of experts, so it has little influence on the voting protocol performance. To get tally results, it is needed to collect all ballots from participating voters, validate their correctness (via attached NIZK) and then do tally for all correct ballots. Figure 15 shows the prover's running time, the verifier's running time and the size of the unit vector ZK proof that has been used in the ballot casting.

Finally, the overall communication cost for all the voting ballots per project during the entire treasury period is depicted in Fig. 16. In particular, for a treasury period with 5000 voters and 50 experts, the overall communication is approximately 20 MB per project. Let us note that in practice, the treasury period is long enough, say, 30 days (approximately 4320 blocks for Bitcoin), so blockchain space overhead for treasury deployment in the cryptocurrency blockchain is insignificant.

Remark. Note that in practice, the treasury period is long enough, say, 30 days (approximately 4320 blocks for Bitcoin), so blockchain space overhead for treasury deployment in the cryptocurrency blockchain is insignificant. At the same time, we consider a sidechain approach [18], [19], [20] for treasury implementation as an effective solution. It allows separation of treasury functionality from the mainchain consensus, providing a number of advantages. In particular, treasury protocols do not influence the mainchain consensus, moving all

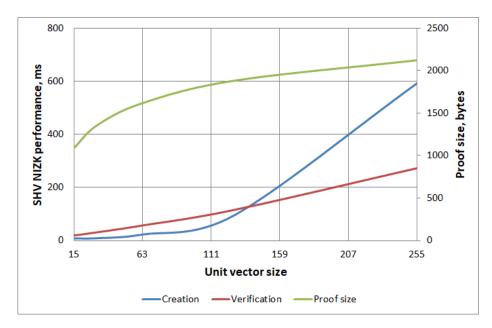


Fig. 15: The prover's running time, verifier's running time and the size of the unit vector ZK proof.

implementation complexity in a side chain. This modular construction also saves main chain space for core clients.

7 Analysing consensus

The overarching aim of decision-making mechanisms is to reach the best decision. However, it is usually unclear what constitutes the best alternative. In other words, in a multi-party decision-making process, it is difficult to agree on what constitutes the best solution, due to differences in individual preferences, interests, knowledge, skill, orientation, etc. Therefore, integration of community-wide knowledge, skills and expertise of members is fundamental for long-term sustainability (especially for blockchain developmental projects).

Consensus building [21] has been identified as a way to deal with complex, strategic and often controversial planning and decision-making. Sustained innovation and development requires the continued maintenance of the complex interaction between all stakeholders (with varying expertise, skill sets and values). The goal is to adopt and implement solutions that offers "mutual" gains among contending stakeholders. Consensus building or processes are typically time-costly and resource-consuming. However, blockchain infrastructure and nature of blockchains mitigates against these potential drawbacks. For instance, by

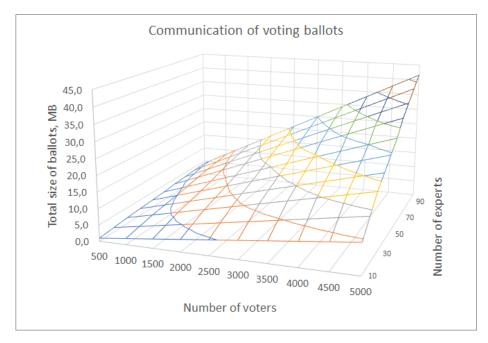


Fig. 16: The overall communication for all the voting ballots during an entire treasury period.

design, treasury system planning supports lengthy discussions and deliberations over the range of treasury epochs available in any single treasury period. Furthermore, the decentralised nature of blockchain technologies reduces the monetary costs associated with collaborative decision making.

Critics of collaborative decision-making argue that, perhaps, consensus kills innovation, creativity and uniqueness. They suggest that individuals that participate in the process tend to abandon their decisions, so as to align with the rest of the group. However, this is not necessarily true considering the negotiation (debates) and interaction that takes place before compromises are made or decisions are reached. Consensus empowers the individual through social activity and interaction, rather than suppress the individual [22].

One of the goals of collaborative decision-making (community-inclusive participation) is improved community relations, and research evidence shows that engaged citizenry/community is better than a passive one [23]. As a result, citizens become willing evaluators of decisions and policies, which results in improved community-wide support for decisions reached. Thus, making governance, which is particularly important to blockchain systems, easy.

Agreement, perhaps, is the single most popular criterion for evaluating consensus. Typically in the literature, consensus is analysed in terms of agreement, and is not $Majority\ Rule$. Consensus involves the evaluation of the agreement among a set of parties on a set of alternative solutions [24] in a multi-party col-

laborative decision-making process (e.g., the treasury system decision-making process). Classical definitions of consensus imply absolute agreement among all parties as a condition for consensus. This type of (full) consensus is quite feasible within small teams or organisations with members having relevant information needed for decision-making. However, the extremely low possibility of achieving this, makes this definition problematic and less useful. By extension, this definition would equate the utility of decisions with "almost unanimous" (i.e., very high but not perfect) agreement to those with complete disagreement - as both not being useful.

Nonetheless, in real-world scenarios multi-party decisions need not be unanimous or in absolute agreement (full consensus) for decisions to be useful. Therefore, in order to accommodate the spectrum of consensus between full/unanimous agreement and total disagreement, [24] defined soft agreement as an iterative dynamic process that evaluates the agreement between all participants, and the agreement between the individual participant's preference and the group solution. Typically, two related measures, *Consensus measure* (measure of agreement among all participants) and *Proximity measure* (measure of agreement between individual solutions and collective solution) [24,21] are used to evaluate consensus.

Regardless of the quality of agreement achieved/reached, the outcome of a flawed *process* lacks credibility, is less likely to receive widespread support and would likely result in more tensions among member stakeholders. Well designed consensus processes that involves every stakeholder, regardless of the amount of stake they hold, is likely to produce fair outcomes [21] and receive community-wide acceptance.

In line with the aim of collaborative decision-making, we note that our key goal of evaluating consensus is not to produce "winners and losers", rather, the goal is to forge, enhance and encourage community-wide participation and acceptance (sense of responsibility and belonging) and ownership of the growth, changes and developments of the underlying blockchain system. Therefore, feedback is a key component of consensus evaluation. Information obtained from proximity measure is useful for influencing discussion and minimising disagreement among stakeholders [24].

Evidently, developments or changes with greater consensus are more durable and sustainable because high consensus implies a higher agreement (support) among the stakeholders of the decision making process. Furthermore, agreements of this nature tend to be of very high quality because they take into consideration the knowledge (rather than interest alone) offered by each stakeholder [21].

With the help of an illustrative example of a treasury period, we now present an evaluation of consensus of the treasury system decision-making process.

7.1 Example treasury consensus evaluation

Typically, consensus is measured through the use of some dissimilarity function e.g., cosine of angles, Euclidean distance, etc. between corresponding individual preferences/solutions (proximity measure) and group solution, as well as

the evaluation of agreement among all participants on the final/group solution (consensus measure).

For the purpose of consensus measurement in our treasury system decision-making, we propose an adaptation of the approach in [25] which is itself is an adaptation of [24] in order to accommodate nuances peculiar to blockchain systems (or cryptocurrencies), e.g., cryptocurrency stake distribution. Specifically, for treasury system consensus measurement, we identify the following key elements:

- Proposals (or alternative solutions)
- Stake holders in the system (or participants in the decision-making process)
- Treasury funds (or available resources)
- The decision-making process (or voting scheme)
- Outcomes of the decision-making process (or solution set)
- Agreement among all participants (or consensus measure)
- Agreement between individual solutions and the treasury outcome/solution (or proximity measure)

Additionally, we highlight the processes for consensus evaluation in the treasury system collaborative decision-making scheme:

- Preference specification
- Collective solution calculation
- Distance measure
- Distance aggregation
- Consensus measure and
- Proximity measure

We now present each of the various stages involved in the consensus evaluation process.

List of titles of proposals requesting funds

- Proposal 1: Purchase and Installation of ATMs for the cryptocurrency
- Proposal 2: Facilitation of listing of cryptocurrency on major cryptocurrency exchanges
- Proposal 3 : Cryptocurrency awareness and advertisement campaigns boost cryptocurrency exchange rate
- Proposal 4: Creation of online educational resources such as YouTube videos, and general training for cryptocurrency trading
- Proposal 5 : Construction of cryptocurrency international headquarters and liaison office on every continent
- Proposal 6: Development of third-party software and tools to support cryptocurrency, e.g., establishment of a new peer-to-peer mining pool software
- Proposal 7: Establishment of a cryptocurrency legal team
- **Proposal 8:** Organisation of a cryptocurrency conference
- **Proposal 9:** Analysis of cryptocurrency protocol security and proofs
- Proposal 10: Organisation of an annual dinner party and award night for community members

Participation information. We assume 5 people (2 experts and 3 voters) are involved in the current treasury voting process. For simplicity, without the loss of generality, we also assume a flat model of stake distribution in this illustrative treasury period. That is, we assume that all participants (expert/voter) have equal stake in the system (e.g., 1 cryptocoin).

Preference specification. Each participant respectively specify his preferences based on his assessment of the individual proposals, using criteria/guidelines such as: usefulness of proposal, timeliness, cost-benefit impact of proposal, profile of proposer, relevance of project, urgency of proposal, amount of funds requested, duration of project, team in charge of project, quality of proposal, etc. However, users are free to further evaluate proposals as they deem fit (or based on their personal judgment).

Particularly, users vote YES, NO, ABSTAIN for proposals either directly or indirectly by delegating their voting power to experts in that particular area. We encode a YES, NO, or ABSTAIN votes as 1,0, or \bot respectively. We remark that the ballots of users who vote \bot for any proposal are treated as being the same as the treasury outcome for that proposal. Hence, for consensus evaluation, they are considered as being in agreement with whatever the outcome of the affected proposal is.

Collective solution calculation. For voting on the treasury, the group solution is obtained through the application of the voting rule (e.g., majority voting, fuzzy threshold voting) on the ballot casted by the experts and voters. Specifically, for our treasury system, where the voting rule is Fuzzy Threshold Voting, this corresponds to ranking of the alternative proposals based on the number of votes for minus the number of votes against, and checking that the remainder is at least 10% of all votes recorded. Thereafter, winning votes are determined as those that receive funding from the (ranked) list of all "qualified" proposals. Therefore, proposals that meet the minimum threshold but do not receive funding because of the limitation of available funds (and their relatively low overall position in the ranked list) are not considered members of the set of "winning proposals". The set of "winning projects" are those who will receive funding according to the decision reached on the treasury system (voting result). Table 1 provides information on how participants casted their ballots.

(Normalised) distance measure. For each participant, we calculate distance measure (DM) of every vote/ballot for each project by comparing the participant's choice with the treasury system funding decision. We apply the dissimilarity function below:

$$DM_{i,j} = |PP_{i,j} - TS_j|$$

$$NDM_{i,j} = \frac{DM_{i,j}}{|PS|}$$

CD 11	-	TT	c	
Table	١.	cor	prefere	nco

					I					
	Prj 1	Prj 2	2 Prj	3 Prj	4 Prj 🤄	5 Prj 6	Prj 7	Prj 8	Prj 9	Prj 10
User 1	1	В	1	В	1	В	A	A	В	Ι.
User 2	\perp	1	1	\perp	0	1	1	0	\perp	1
User 3 / Expert A	1	1	1	0	0	1	0	0	1	0
User 4 / Expert B	1	1	0	1	0	1	0	1	1	0
User 5	0	1	A	1	\perp	A	1	\perp	A	1
Total	3	5	4	3	1	5	2	1	4	2
Treasury Decision	0	1	1	0	0	1	0	0	1	0

where $DM_{i,j}$ (respectively, $NDM_{i,j}$) is the distance (respectively, normalised distance) between the i^{th} participant's choice for project j and the treasury solution for project j is TS_j . $PP_{i,j}$ is the i^{th} participant's preference/choice for project j and PS is the preference size of voter's choice. In the case of our treasury system PS = 2, for YES and No, because ABSTAIN is handled differently. As earlier explained, for consensus evaluation, the choice of voters/experts who vote ABSTAIN i.e. \bot are considered as being the same as treasury funding decision for any particular project. Hence, a distance measure of zero(0) is assigned for a participant who votes ABSTAIN for any project proposal. The distance measure for the treasury system decision making is presented in Table 2.

Table 2: Distance specification

	Prj 1	Prj	2 Prj	3 Prj	4 Prj	5 Prj	6 Prj	7 Prj	8 Prj	9 Prj 10
User 1	1	0	0	1	1	0	0	0	0	0
User 2	0	0	0	0	0	0	1	0	0	1
User 3 / Expert A	1	0	0	0	0	0	0	0	0	0
User 4 / Expert B	1	0	1	1	0	0	0	1	0	0
User 5	0	0	0	1	0	0	1	0	0	1

Distance aggregation and consensus degree on projects. Using the normalised distance measure, NDM, we calculate the degree of consensus among all participants (voters and experts) on each project as follows:

$$CD_j = 1 - \sum_{i=1}^{p} \frac{NDM_{i,j}}{p}$$

where CD_j is the consensus degree for project j, and p is the size/number of participants.

Table 3: Consensus degree

Table 9. Consensus degree											
	Prj 1	Prj 2	Prj 3	Prj 4	Prj 5	Prj 6	Prj 7	Prj 8	Prj 9	Prj 10	
User 1	0.5	0	0	0.5	0.5	0	0	0	0	0	
User 2	0	0	0	0	0	0	0.5	0	0	0.5	
User 3 / Expert A	0.5	0	0	0	0	0	0	0	0	0	
User 4 / Expert B	0.5	0	0.5	0.5	0	0	0	0.5	0	0	
User 5	0	0	0	0.5	0	0	0.5	0	0	0.5	
Total	1.5	0	0.5	1.5	0.5	0	1.0	0.5	0	1.0	
Consensus degree	0.7	1.0	0.9	0.7	0.9	1.0	0.8	0.9	1.0	0.8	

 $\frac{\text{Table 4: Consensus measure for various values of }\beta}{\beta\quad 0.0\quad 0.1\quad 0.2\quad 0.3\quad 0.4\quad 0.5\quad 0.6\quad 0.7\quad 0.8\quad 0.9\quad 1.0}\\CM\ 0.87\ 0.881\ 0.891\ 0.902\ 0.912\ 0.923\ 0.933\ 0.944\ 0.954\ 0.964\ 0.975}$

Consensus measure. We now proceed to calculate overall consensus among all participants (for our example treasury period decision under review) through an aggregation of the consensus degrees, CD. The consensus measure, CM, is calculated through the aggregation procedure of [26], which utilises Ordered Weighted Average (OWA). The goal of the aggregation operator is to enable the consensus degrees on the "winning projects" have more importance or weight [24] in the aggregation procedure. The expression for CM is as follows:

$$CM = (1 - \beta) \cdot \sum_{i=1}^{n} \frac{CD_i}{n} + \beta \cdot \sum_{s=1}^{t} \frac{CDW_s}{t}$$

where CDW is the set of consensus degrees for "winning projects", t is its cardinality, n is the total number of projects, and $\beta \in [0,1]$ is used to control the influence of consensus degree of the winning projects on the overall consensus measure in the treasury system. Clearly, higher values of β causes consensus degree of the winning projects to highly influence the overall consensus measure. Typical values of β recommended in the literature are 0.7, 0.8, and 0.9 [24,25]. We use a β value of 0.8 in our treasury system to emphasize the importance of consensus degree among the participants on the winning projects. Table 4 shows the consensus measure for different values of β .

Table 5: Proximity measure for $\beta=0.8$

	Prj. 1	Prj.	2 Prj. 3	Prj. 4	Prj. 5	Prj.	6 Prj. 7	Prj. 8	3 Prj. 9	Prj. 10) Avg.	PM_i	$PM_i(\beta = 0.8)$
U1	0.5	1	1	0.5	0.5	1	1	1	1	1	0.85	$(1 - \beta)0.85 + \beta$	0.97
U2	1	1	1	1	1	1	0.5	1	1	0.5	0.9	$(1 - \beta)0.9 + \beta$	0.98
U3/E.A	0.5	1	1	1	1	1	1	1	1	1	0.95	$(1 - \beta)0.95 + \beta$	0.99
U4/E.B	0.5	1	0.5	0.5	1	1	1	0.5	1	1	0.8	$(1 - \beta)0.8 + 0.875\beta$	0.86
U5	1	1	1	0.5	1	1	0.5	1	1	0.5	0.85	$(1 - \beta)0.85 + \beta$	0.97

Proximity measure of each participant. Here, we evaluate the proximity measure of each participant's voting preference to the collective treasury (funding) decision by aggregating each participant's distance measure across all the projects. Similar to the calculation of the consensus measure, we utilise OWA aggregation operator as follows:

$$PM_{i} = (1 - \beta) \frac{\sum_{j=1}^{p} (1 - NDM_{i,j})}{p} + \beta \left(1 - \frac{\sum_{k=1}^{t} NDMW_{i,k}}{t}\right)$$

where $NDM_{i,j}$ is the distance measure between participant i's preference for project j and the treasury (collective) decision for project j. For participant i, $NDMW_{i,k}$ is a special normalised distance measure between the collective decision for project k in the "set of winning projects" and the corresponding participant i's preference for that project. That is, NDMW only considers normalised distance measures for projects that receive funding a.k.a winning projects.

As earlier explained, we assign a value of 0.8 to β and present the proximity measure between each participant's preference and the treasury funding decision in Table 5.

Evidently, participants with high proximity measures contribute positively towards the treasury system consensus while proximity measures close to zero signify negative contribution towards overall treasury system consensus. Additionally, it can be observed that User 1 and User 5 both have the same proximity measure of 0.97, despite having different voting preferences. However, this is so because the two users voted exactly the same way for projects in the "winning set", and the "winning set" or collective decision highly influenced our aggregated measures due to the high value of β used.

8 Related work

The Dash governance system (DGS) [1] also referred to as Dash governance by blockchain (DGBB) is the pioneer treasury implementation for cryptocurrency development funding on any real-world cryptocurrency. The DGS allows regular users on the Dash network to participate in the development process of the Dash cryptocurrency by allowing them submit project proposals (for advancing the cryptocurrency) to the network. A subset of users known as Masternodes then vote to decide what proposals from the submitted proposals get funding. Every voting cycle (approximately one month), winning proposals are voted for and funded from the accrued resources in the blockchain treasury. 10% of all block rewards within each monthly voting period is contributed towards the blockchain treasury, from which proposals are then funded. Although the DGS works in practice, there are open questions to it. For instance, voting on the DGS is not private, thereby leaving nodes susceptible to coercion.

Beyond voting, the Dash Governance System (DGS) [1,2], is the first self-sustenance/funding mechanism in any cryptocurrency or blockchain system. However, the DGS does not support delegative voting and ballot privacy.

A second system is the ZenCash (now - Horizen) multi-stakeholder governance model. By design, it adopts a flexible multi-stakeholder governance model [27]. The core idea is to remove centralisation which entrusts enormous powers with a minority. Participation is voluntary and decision-making powers cuts across all categories of stakeholders proportional to their resources(stake).

Initially, the Horizen (ZenCash) system has a Core Team (inclusive of founders of Zen) and a DAO (consisting of industry leaders) that controls 3.5% of block mining rewards and 5% of rewards respectively. The plan is to evolve, develop and adopt a hybrid voting mechanism that enables all stakeholders to influence decisions and resource allocations on the blockchain. This evolution would result in a system of DAOs, with competing DAOs responsible for working on different problems. Collectively, the DAOs will be responsible for activities (building, maintaining, improving software, legal, marketing, and advertising) that will ensure the long-term sustainability of Zen.

Community members/stakeholders are allowed to participate in the development of Zen via project proposals which are funded by the DAOs through the 5% block mining reward allocation they receive. We remark that proposals are only to be funded subject to successful voting. Although, at launch, only one DAO "staffed with respected professionals" exists. The staff strength of each DAO is between 3-5 members and could potentially be increased to any number. A dispute resolution mechanism is to be provided for solving issues among DAO members. Delegative voting is not supported and the system uses fixed amount of voting tokens.

Liquid democracy (also known as delegative democracy [3]) as an hybrid of direct democracy and representative democracy provides the benefits of both system (whilst doing away with their drawbacks) by enabling organisations to take advantage of the experts in a voting process and also gives every member the opportunity to vote [28,29]. Although the advantages of liquid democracy has been widely discussed in the literature [30,31,32,33,34], there are few provably secure construction of liquid democracy voting.

Most real-world implementations of liquid democracy only focus on the functionality aspect of their schemes. For instance, Google Vote [35] is an internal Google experiment on liquid democracy over the social media, Google+, which does not consider voter privacy. Similarly, systems such as proxyfor.me [36], LiquidFeedback [37], Adhocracy [38], GetOpinionated,[39] also offer poor privacy guarantees. It is worth mentioning that Sovereign [40] is a blockchain-based voting protocol for liquid democracy; therefore, its privacy is inherited from the underlying blockchain, which provides pseudonymity-based privacy. Wasa2il [41] is able to achieve end-to-end verifiability because this foils privacy. The best known liquid democracy and proxy democracy voting schemes are nVotes [42] and Statement Voting [28,29]. However, those systems require mix-nets as their underlying primitive. This makes them less compatible to the blockchain setting due to the heavy work load of the mixing servers.

There are a few blockchain based e-voting schemes in the literature, but most of them, e.g., Agora [43], only use the blockchain as a realization of the bulletin

board. The actual e-voting schemes are not integrated with the blockchain. [44] is a proposed blockchain-based voting solution that heavily relies on an external "trusted third party" between users and the election authority/authentication authority, in order to ensure anonymity/privacy of voters. Each candidate is voted for by having transactions sent to them. Nonetheless, privacy or anonymity of voters can be broken by collusion between the authentication organisation and the trusted third party. [45] proposes an end-to-end voting system based on Bitcoin that utilises a Kerberos-based protocol to achieved voter identity anonymisation. Voting takes place via sending of tokens from voters to address (public key) of candidates. However, voting is not private and other voters can be influenced by the trend or likelihood of the overall results (before voting is concluded). Furthermore, the scheme is susceptible to coercion.

Our work differs from these earlier works because it not only supports liquid democracy whilst preserving privacy of the voters and delegates, it is also practical in the sense that it considers real-life concerns (e.g., monthly duration of treasury epoch) associated with a treasury system for blockchains.

9 Conclusion

In this work, we initiated the study of blockchain treasury systems for the community to collaboratively collect and distribute funds in a decentralised manner. We note that the voting scheme used in the treasury system can be further improved with game-theoretic approaches to enable better collaborative decision making. The proposed system can also be extended to serve blockchain self-governance. Our treasury system is planned for practical deployment in cryptocurrencies in 2019. In particular, the treasury model is in the roadmap of Cardano [46], to be a part of the Voltaire release [47]. Horizen (former ZenCash) also implements DAO Treasury Protocol-level Voting System [48] based on our scheme.

Acknowledgment

This work is partially supported by EPSRC grant EP/P034578/1, PETRAS PRF, and IOHK Ltd. We thank Dmytro Kaidalov and Andrii Nastenko from IOHK for the prototype implementation and benchmarks.

References

- 1. Evan Duffield, Daniel Diaz, "Dash: A payments-focused cryptocurrency," 2018.
- 2. D. Kaidalov, A. Nastenko, et al., "Dash governance system: Analysis and suggestions for improvements."
- 3. B. Ford, "Delegative democracy," Manuscript, 2002.
- 4. D. Kaidalov, L. Kovalchuk, et al., "A proposal for an ethereum classic treasury system."
- R. Canetti, "Universally composable security: A new paradigm for cryptographic protocols." Cryptology ePrint Archive, Report 2000/067, 2000. https://eprint.iacr. org/2000/067.
- D. Chaum and T. P. Pedersen, "Wallet databases with observers," in CRYPTO '92, vol. 740, pp. 89–105, 1993.
- 7. "Treasury prototype implementation."
- 8. D. Wikström, "Universally composable DKG with linear number of exponentiations," in SCN 2004, pp. 263–277, 2004.
- 9. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, "Secure distributed key generation for discrete-log based cryptosystems," in *EUROCRYPT '99*, pp. 295–310, Springer Berlin Heidelberg, 1999.
- C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas, "Bitcoin as a transaction ledger: A composable treatment," in CRYPTO 2017, vol. 10401, pp. 324–356, Springer, 2017.
- 11. A. Chepurnoy, T. Duong, L. Fan, and H. Zhou, "Twinscoin: A cryptocurrency via proof-of-work and proof-of-stake," *IACR Cryptology ePrint Archive*, vol. 2017, p. 232, 2017.
- J. A. Garay, A. Kiayias, and N. Leonardos, "The bitcoin backbone protocol: Analysis and applications," in *EUROCRYPT 2015*, vol. 9057, pp. 281–310, Springer, 2015
- 13. M. Bellare and P. Rogaway, "Random oracles are practical: A paradigm for designing efficient protocols," in CCS '93, pp. 62–73, 1993.
- 14. A. Fiat and A. Shamir, "How to prove yourself: Practical solutions to identification and signature problems," in *CRYPTO'* 86, pp. 186–194, 1986.
- 15. J. T. Schwartz, "Fast probabilistic algorithms for verification of polynomial identities," *J. ACM*, vol. 27, pp. 701–717, Oct. 1980.
- 16. J. Groth and M. Kohlweiss, One-Out-of-Many Proofs: Or How to Leak a Secret and Spend a Coin, pp. 253–280. Springer, 2015.
- 17. "Scorex 2 the modular blockchain framework."
- 18. A. Back et al., "Enabling blockchain innovations with pegged sidechains," 2014.
- P. Gaži, A. Kiayias, and D. Zindros, "Proof-of-stake sidechains," in *IEEE Symposium on Security & Privacy*, 2019.
- A. Kiayias and D. Zindros, "Proof-of-work sidechains." Cryptology ePrint Archive, Report 2018/1048, 2018.
- 21. J. E. Innes and D. E. Booher, "Consensus building and complex adaptive systems," Journal of the American Planning Association, vol. 65, no. 4, pp. 412–423, 1999.
- 22. J. Trimbur, "Consensus and difference in collaborative learning," *College English*, vol. 51, no. 6, p. 602, 1989.
- 23. R. A. Irvin and J. Stansbury, "Citizen participation in decision making: Is it worth the effort?," *Public Administration Review*, vol. 64, pp. 55–65, January 2004.
- 24. E. Herrera-Viedma, F. Herrera, and F. Chiclana, "A consensus model for multiperson decision making with different preference structures," *Trans. Sys. Man Cyber. Part A*, vol. 32, pp. 394–402, May 2002.

- 25. S. Boroushaki and J. Malczewski, "Measuring consensus for collaborative decision-making: A gis-based approach," *Computers, Environment and Urban Systems*, vol. 34, no. 4, pp. 322 332, 2010. Geospatial Cyberinfrastructure.
- R. R. YAGER and D. P. FILEV, "Parameterized and-uke and or-like owa operators," *International Journal of General Systems*, vol. 22, no. 3, pp. 297–316, 1994
- 27. R. Viglione, R. Versluis, and J. Lippencott, "Zen white paper," 2017.
- 28. B. Zhang and H. Zhou, "Brief announcement: Statement voting and liquid democracy," in *PODC 2017*, pp. 359–361, 2017.
- 29. B. Zhang and H.-S. Zhou, "Statement voting," in FC '19, 2019.
- 30. D. Lomax, "Beyond politics, an introduction," January 1, 2003. Online; date last accessed: 2017-10-21.
- 31. P. Boldi, F. Bonchi, C. Castillo, and S. Vigna, "Voting in social networks," in *Proceedings of the 18th ACM conference on Information and knowledge management*, pp. 777–786, ACM, 2009.
- 32. M. Nordfors, "Democracy 2.1: How to make a bunch of lazy and selfish people work together," 2003. Online; date last accessed: 2017-10-21.
- 33. J. Green-Armytage, "Direct voting and proxy voting," Constitutional Political Economy, vol. 26, no. 2, pp. 190–220, 2015.
- 34. J. Ito, "Emergent democracy," arXiv:1807.06953, vol. 17, 2018.
- 35. S. Hardt and L. C. Lopes, "Google votes: A liquid democracy experiment on a corporate social network," 2015.
- 36. Proxy.me, "Voteflow," 2015. Online; date last accessed: 2017-10-21.
- 37. LiquidFeedback, "LiquidFeedback official website." Online; date last accessed: 2017-10-21.
- 38. Adhocracy, "Adhocracy official website." Online; date last accessed: 2017-10-21.
- 39. J. Degrave, "Getopinionated." GitHub repository; date last accessed: 2017-10-21.
- 40. Democracy Earth, "The social smart contract. an open source white paper.," September 1, 2017. Online; date last accessed: 2017-10-21.
- 41. S. McCarthy, "Wasa2il," 2016. GitHub repository; date last accessed: 2017-10-21.
- 42. nVotes, "3 crypto schemes for liquid democracy (iii)," July 19 2017. Online; date last accessed: 2017-10-21.
- 43. Agora, "Bringing our voting systems into the 21st century, version 0.2," 2018.
- 44. K. Lee, J. James, T. Ejeta, and H. Kim, "Electronic voting service using block-chain," *Journal of Digital Forensics, Security and Law*, 2016.
- 45. S. Bistarelli, M. Mantilacci, P. Santancini, and F. Santini, "An end-to-end voting-system based on bitcoin," in SAC '17, pp. 1836–1841, 2017.
- 46. "Cardano monetary policy. treasury and fees," 2018.
- 47. "Cardano roadmap. voltaire," 2018.
- 48. "Horizen roadmap. dao treasury protocol-level voting system," 2018.

A Our Treasury System DKG Protocol

Distributed key generation (DKG) is a fundamental building block of the voting process in our proposed treasury system. To ensure robustness, distributed key generation protocol needs to be employed. Ideally, the protocol termination should be guaranteed when up to $t = \lceil \frac{n}{2} \rceil - 1$ out of n committee members are corrupted. A naive way of achieving threshold distributed key generation is as follows. Each of the voting committee members C_i first generates a public/private key pair $(\mathsf{pk}_i, \mathsf{sk}_i) \leftarrow \mathsf{KeyGen}^\mathsf{E}(\mathsf{param})$. Each C_i then posts pk_i to the blockchain and use (t+1, n)-threshold verifiable secret sharing (VSS) to share sk_i to all the other committee members. The combined voting public key can then be defined as $\mathsf{pk} := \prod_{i=1}^n \mathsf{pk}_i$.

However, this approach is problematic in the sense that the adversary can influence the distribution of the final voting public key by letting the corrupted committee members abort selectively. See more in [9]. Alternatively, we will adopt the distributed key generation protocol proposed by Gennaro $et\ al.$ [9]. In a nutshell, the protocol lets the committee members C_i first posts a "commitment" of pk_i . After sharing the corresponding sk_i via (t+1,n)-threshold VSS, the committee members C_i then reveals pk_i . We will use the blockchain to realises the broadcast channel and peer-to-peer channels. We give a full description of our distributed key generation protocol. It is adapted from the DKG proposed by Gennaro $et\ al.$ which allows us to accommodate up to t< n/2 malicious players in the protocol. That is, guaranteeing that with $\lfloor \frac{n}{2} \rfloor + 1$ honest players, all the players should be able to agree on a uniformly random public key pk such that no malicious players can influence the distribution of the generated public key. The corresponding secret key is shared among all the players.

Protocol description. Given (g,h) as the Common Reference String (CRS), Let $C := \{C_1, C_2, ..., C_k\}$ be the set of election committee members, and let pk_i be the public key associated with $C_i, i \in [k]$ and the adversary is able to corrupt up to t < k/2 committee members. Each committee member C_i picks a random $a_{i,0}, ..., a_{i,t}$ and random $a'_{i,0}, ..., a'_{i,t}$ where t is maximum number of members that can be corrupted. Each member then define two polynomials of degree t of the form:

$$f_i(x) = a_{i,0} + a_{i,1}x + \dots + a_{i,t}x^t$$

and

$$f_i'(x) = a_{i,0}' + a_{i,1}'x + \dots + a_{i,t}'x^t$$

Therefore, each committee member C_i contributes $x_i = a_{i,0} = f(0)$ to the combined secret x. Furthermore, to confirm the correctness of commitments, each member C_i posts a corresponding commitment $E_{i,l} = g^{a_{i,l}}h^{a'_{i,l}}$ on the blockchain. For every other member of the election committee, each C_i computes $s_{i,j} = f_i(j)$ and $s'_{i,j} = f'_i(j)$ and posts to the blockchain, the encryption of $s_{i,j}$ and $s'_{i,j}$ under the public key of j (note: $j \neq i$). That is, each member posts $e_{i,j} \leftarrow \mathsf{Enc}_{pk_j}(s_{i,j})$ and $e'_{i,j} \leftarrow \mathsf{Enc}_{pk_j}(s'_{i,j})$. Note that

only C_j can decrypt these commitments. This signifies the end of the first round.

In the second round, each committee member C_j fetch all $e_{i,j}$ and $e'_{i,j}$ encrypted under their public key from the blockchain and decrypt them using their private key sk_i to obtain their corresponding shares $s_{i,j}$ and $s'_{i,j}$. In order to verify that the shares they have received are valid or not in error, each committee member checks if: $g^{s_{i,j}}h^{s'_{i,j}} = \prod_{l=0}^t (E_{i,l})^{i^l}$ for $i \in [k], i \neq j$. Where this check fails, C_j posts a complain against C_i by revealing the evidence: $(s_{i,j},s'_{i,j})$ and $\pi \leftarrow \mathsf{NIZK}\{(s_{j,i},s'_{j,i},\mathsf{pk}_i,e_{j,i},e'_{j,i}),(\mathsf{sk}_i):s_{j,i}=\mathsf{Dec}_{\mathsf{sk}_i}(e_{j,i}) \land (\mathsf{pk}_i,\mathsf{sk}_i) \in \mathcal{R}_{\mathsf{PKE}}\}$. Members with one valid complain against them are disqualified from participating in the key generation process.

In the third round, following the disqualification of no member of some members, each qualified committee member C_i posts $A_{i,l} := g^{a_{i,l}}$ for $\ell \in [\mathcal{J}]$ to the blockchain. Each committee member also return its secret key share as $\overline{\mathsf{sk}}_i := \sum_{i \in [\mathcal{J}]} \gamma_i \cdot s_{i,i}$, where $\gamma_i := \prod_{\ell \in \mathcal{J} \setminus \{i\}} \frac{\ell}{\ell - i}$.

 $\overline{\operatorname{sk}}_i := \sum_{j \in [\mathcal{J}]} \gamma_i \cdot s_{j,i}, \text{ where } \gamma_i := \prod_{\ell \in \mathcal{J} \setminus \{i\}} \frac{\ell}{\ell - i}.$ In the fourth round, each qualified committee member C_i checks if : $g^{s_{j,i}} = \prod_{\ell = 0}^t (A_{j,\ell})^{i^\ell}$ for $j \in \mathcal{J}, j \neq i$. Where the check fails, C_i posts complain against C_j together with the evidence $(s_{j,i}, s'_{j,i})$ on the blockchain. Such that $g^{s_{j,i}}h^{s'_{j,i}} = \prod_{\ell = 0}^t (E_{j,\ell})^{i^\ell}$ and $g^{s_{j,i}} \neq \prod_{\ell = 0}^t (A_{j,\ell})^{i^\ell}$.

In the fifth and final round, each qualified committee member C_i checks if complaints raised against qualified committee members in the fourth round are valid. For all members against whom valid complaints were raised, other qualified committee members posts the shares $s_{j,i}$ they received from the members who have complaints against them. Therefore, allowing everyone can reconstruct the secret share of the erring qualified committee members as: $\overline{\mathsf{sk}}_j := \sum_{i \in [\mathcal{J}]} \gamma_j \cdot s_{i,j}$ and re-define $A_{j,0} := g^{\overline{\mathsf{sk}}_j}$, where $\gamma_j := \prod_{\ell \in \mathcal{J} \setminus \{j\}} \frac{\ell}{\ell - j}$. Finally, the election public key is, $\overline{\mathsf{pk}} := \prod_{j \in [\mathcal{J}]} A_{j,0}$.

Distributed key generation Π_{DKG}

Round 1: Each committee member C_i do the following:

- Pick random $a_{i,0}, a_{i,1}, \ldots, a_{i,t}, b_{i,0}, b_{i,1}, \ldots, b_{i,t} \leftarrow \mathbb{Z}_p$. Define two polynomials $f_i(x) := \sum_{\ell=0}^t a_{i,\ell} x^\ell$ and $f_i'(x) := \sum_{\ell=0}^t b_{i,\ell} x^\ell$. For $\ell \in [t]$, post $E_{i,\ell} := g^{a_{i,\ell}} h^{b_{i,\ell}}$ on the blockchain.
- For every other C_j , $j \in [k], j \neq i$, compute $s_{i,j} := f_i(j)$ and $s'_{i,j} := f'_i(j)$ and post $e_{i,j} \leftarrow \mathsf{Enc}_{\mathsf{pk}_j}(s_{i,j})$ and $e'_{i,j} \leftarrow \mathsf{Enc}_{\mathsf{pk}_j}(s'_{i,j})$ on the blockchain. (Only C_j can decrypt them.)

Round 2: Each committee member C_i do the following:

- Fetch $\{(e_{j,i},e'_{j,i})\}_{j\in[k],j\neq i}$ from the blockchain, and use pk_i to decrypt them, obtaining the corresponding shares $\{(s_{j,i}, s'_{j,i})\}_{j \in [k], j \neq i}$.
- For $j \in [k], j \neq i$, check if $g^{s_{j,i}}h^{s'_{j,i}} = \prod_{\ell=0}^t (E_{j,\ell})^{i^{\ell}}$. If not, post complain against C_j by revealing the evidence: $(s_{j,i},s'_{j,i})$ and

$$\pi \leftarrow \mathsf{NIZK} \left\{ \begin{cases} (s_{j,i}, s'_{j,i}, \mathsf{pk}_i, e_{j,i}, e'_{j,i}), (\mathsf{sk}_i) : \\ s_{j,i} = \mathsf{Dec}_{\mathsf{sk}_i}(e_{j,i}) \ \land \ s'_{j,i} = \mathsf{Dec}_{\mathsf{sk}_i}(e'_{j,i}) \ \land \ (\mathsf{pk}_i, \mathsf{sk}_i) \in \mathcal{R}_{\mathsf{PKE}} \end{cases} \right\}$$

- (One valid complain against C_j , $j \in [k]$ will disqualify C_j .)

Round 3: Define the indices of the qualified set of committee members as \mathcal{J} . Each committee member C_i do the following:

- For $\ell \in [t]$, post $A_{i,\ell} := g^{a_{i,\ell}}$ to the blockchain.
- Return its secret key share as $\overline{\mathsf{sk}}_i := \sum_{j \in [\mathcal{J}]} \gamma_i \cdot s_{j,i}$, where $\gamma_i := \prod_{\ell \in \mathcal{J} \setminus \{i\}} \frac{\ell}{\ell - i}.$

Round 4: Each committee member C_i do the following:

– For $j \in \mathcal{J}, j \neq i$, check if $g^{s_{j,i}} = \prod_{\ell=0}^t (A_{j,\ell})^{i^\ell}$. If not, post complain against C_j together with the evidence $(s_{j,i},s'_{j,i})$ on the blockchain. Such that $g^{s_{j,i}}h^{s'_{j,i}} = \prod_{\ell=0}^t (E_{j,\ell})^{i^\ell}$ and $g^{s_{j,i}} \neq \prod_{\ell=0}^t (A_{j,\ell})^{i^\ell}$.

Round 5: Each committee member C_i do the following:

- If there is a valid complain against C_j , $j \in \mathcal{J}$, then post the share $s_{j,i}$ on the blockchain. (Everyone can reconstruct $\overline{\mathsf{sk}}_j := \sum_{i \in [\mathcal{I}]} \gamma_j \cdot s_{i,j}$ and re-define $A_{j,0}:=g^{\overline{\mathsf{sk}}_j},$ where $\gamma_j:=\prod_{\ell\in\mathcal{J}\backslash\{j\}}\frac{\ell}{\ell-j}.)$
- Return the election public key as $\overline{\mathsf{pk}} := \prod_{i \in [\mathcal{I}]} A_{j,0}$.

Fig. 17: Distributed key generation Π_{DKG}