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Abstract. We revisit the analysis and design of masked cryptographic
implementations to prevent side-channel attacks. Our starting point is
the (known) observation that proving the security of a higher-order
masked block cipher exhaustively requires unrealistic computing power.
As a result, a natural strategy is to split algorithms in smaller parts (or
gadgets), with as main objectives to enable both simple composition (as
initiated by Barthe et al. at CCS 2016) and efficient implementations.

We argue that existing composition strategies allow either trivial com-
position with significant overheads or optimized composition with more
analysis efforts. As a result, we first introduce a new definition of Probe
Isolating Non-Interference (PINI) that allows both trivial composition
and efficient implementations. We next prove general composition theo-
rems for PINI gadgets that considerably simplify the analysis of complex
masked implementations. We finally design efficient multiplication gad-
gets that satisfy this definition. As additional results, we exhibit a lim-
itation of existing compositional strategies for the analysis of Multiple-
Inputs / Multiple-Outputs (MIMO) gadgets, extend Barthe et al.’s defi-
nition of Strong Non-Interference (SNI) to deal with this context, and de-
scribe an optimization method to design efficient MIMO-SNI (sub)circuits.
Our results allow proving the security of a recent masked AES implemen-
tation by Goudarzi and Rivain (EUROCRYPT 2017). From the imple-
mentation viewpoint, PINI implementations reach the level of perfor-
mance of the best composable masking schemes for the AES Rijndael,
and outperform them by significant factors for lightweight ciphers.

1 Introduction

Side-channel attacks such as the differential power analysis [27] are a signifi-
cant threat to the security devices implementing cryptographic functionalities.
Masking is among the most popular countermeasures to prevent such attacks. Its
working principle is to split each sensitive data x manipulated by an implementa-
tion into a randomized sharing (x0, . . . , xd−1) such that x = x0⊕· · ·⊕xd−1, and
to perform the computations on those shares only [12] by replacing each opera-
tion (e.g. boolean gate) by a gadget that performs the operation over randomized
sharings. Under now well understood (noise and independence) leakage assump-
tions, masking guarantees that the security of a masked implementation against
any side-channel attack grows exponentially in the number of shares [19,20].



State-of-the-art. In the current state-of-the-art, masking schemes usually come
with a security proof in the so-called probing model [25,33]. In its simplest def-
inition, t-probing security requires that the observation of up to t intermediate
computations in the implementation does not reveal anything about the sensitive
variables.1 It has later been shown that while locally sufficient, this definition
does not ensure secure composition [17].

Many solutions have been introduced in order to mitigate this issue, but
none of them is both generic and efficient. Genericity (that we also name trivial
composition) means that a solution can be easily applied to any circuit for any
t using a simple circuit transformation that maps each logic gate to a masked
gadget implementing that kind of gate (independently of the structure of the
circuit). Efficiency is harder to characterize in a binary way, hence we rely on
two criterion’s: the number of shares d should be minimal (i.e. d = t + 1),
and linear operations should be implemented trivially, by implementing these
operations share by share.

Based on this observation, the problem we tackle in this paper is: Can we
define generic composition rules for d = t + 1 masking such that the trivial
implementation of linear functions is directly composable (i.e, does not need to be
refreshed) without causing significant overheads for the non-linear operations?

Contribution. We answer this question positively by introducing a new secu-
rity notion that we denote as Probe Isolating Non-Interference (PINI), which is
satisfied by linear operations and enjoys the useful property that any compo-
sition of PINI gadgets is PINI. In contrast with the (Strong) Non-Interference
(NI/SNI) definitions of Barthe et al. [4] that rely on the the number of probes
in a target implementation, PINI rather relies on their position (i.e., the shares’
indexes). We then show that this approach is applicable by designing multiplica-
tion gadgets that are PINI. As a result, we can trivially analyze complex masked
circuits, where all linear operations are trivially implemented and all non-linear
operations are PINI. We apply our results to analyze the composition strategy of
Goudarzi and Rivain [22], which can be viewed as a trivial composition that uses
as non-linear element a special “double-SNI” multiplication gadget. We prove
that this gadget is PINI, leading to a direct formal proof that the composition
strategy of [22] is secure.

In order to confirm that the trivial PINI composition also leads to efficient
implementations, we next compare the performances of masked block cipher im-
plementations based on PINI with other published solutions. Since it is currently
the most efficient approach for masking, we use bit-level implementations (such
as the software bitslice AES by Goudarzi and Rivain [22]) for this purpose, which
leads us to a couple of additional observations of independent interest.

1 Admittedly, a security proof in the (abstract) probing model is only a first step
in the analysis of a masked implementation. Various physical defaults can contra-
dict probing security, e.g., by re-combining the shares because of glitches [28,30] or
transition-based leakages [14,1]. Yet, it is a necessary first step since an insecurity
in the probing model usually leads to powerful concrete attacks [16,29].
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First, we analyze the limitations of the SNI definition given in [4] for compo-
sition in such bit-level implementations (such limitations apply for any gadget
with multiple inputs and multiple outputs). We define Multiple-Input Multiple-
Output Strong Non-Interference (MIMO-SNI) as the natural extension of SNI
that allows composition in this case. Interestingly, it turns out that such cases
are not problematic in the PINI framework, and we show that any MIMO-SNI
gadget is actually PINI.

Second, the optimized composition of complex circuits such as bit-level AES
S-boxes requires significantly more efforts than its counterpart in F256 studied
by Beläıd et al. [6]. We propose a solution to this problem, by representing
the circuit to mask as a “computation graph”, and describe how to express
the definitions of NI, SNI and MIMO-SNI as graph properties, leading to an
algorithm (implemented as an open-source tool) to minimize the number of SNI
gadgets.

We finally illustrate that PINI gadgets lead to excellent randomness complex-
ities and operation counts that often improve overall performance over state-
of-the-art solutions, by comparing these metrics for implementations of vari-
ous masked masked block ciphers according to the use of only SNI gadgets,
the double-SNI strategy, our MIMO-SNI optimization, the recent Tight Pri-
vate Circuit (TPC) approach [7] and the PINI framework. For this purpose,
we use the standard AES block cipher as well as some lightweight block ciphers
(Noekeon [18], Present [8] and Fantomas [24]). These results allow us to conclude
that our tools enable both trivial composition and efficient masked implemen-
tations. For the AES, the TPC approach and the PINI framework lead to the
best performances. For lightweight ciphers, the PINI approach outperforms all
existing solutions by significant factors (2 to 4), making it a particularly relevant
solution for lightweight ciphers submitted to the ongoing NIST competition.2

This paper is organized as follows. Section 2 recalls the notion of masked
circuit and gadget, along with the relevant security notions. We also explain the
so-called “probe propagation framework” used to build intuition about those
notions. In Section 3, we introduce the PINI definition and its properties. We
instantiate it with two gadgets in Section 4, which completes the main contribu-
tion of this paper. Section 5 details the limitations of SNI, introduces the notion
of MIMO-SNI and covers the design of the optimized MIMO-SNI AES S-box.
Related work is reviewed in Section 6. Finally, Section 7 briefly compares the
performance of various implementation strategies and concludes.

2 Preliminaries

2.1 Masked gadgets

We work with circuits and use the definition of [25]. A deterministic circuit C
is a Directed Acyclic Graph (DAG) whose vertices are gates, inputs or outputs,

2 https://csrc.nist.gov/projects/lightweight-cryptography/

round-1-candidates.
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and whose edges are wires carrying elements of Fq. A randomized circuit is a
circuit augmented with random gates. A random gate is a gate with fan-in 0
that produces a random output, uniformly and independently of everything else
afresh for each invocation of the circuit.

Let x∗ = (xi)i=0,...,d−1 be a d-sharing of a sensitive variable x if x =
∑d−1

i=0 xi.
The index i is named the share index. A set A is a set of share indexes if
A ⊂ {0, . . . , d − 1}, and we denote xA := {xi : i ∈ A}. We say that the sharing
x∗ is fresh if any tuple of at most d− 1 of its shares is distributed uniformly and
independently of any other element under consideration.

A gadget G with m inputs and n outputs working with d shares implementing
a function f : Fm

q → Fn
q : (x0, . . . , xm−1) 7→ (y0, . . . , yn−1) is a circuit with md

inputs grouped into m d-sharings denoted (x∗,0, . . . , x∗,m−1) and nd outputs
grouped into n sharings denoted (y∗,0, . . . , y∗,n−1). A gadget must be correct.

That is, if xj =
∑d−1

i=0 xi,j for all j, then yj =
∑d−1

i=0 yi,j for all j and for any
value of the outputs of the random gates.

We additionally use the following notations: xi,∗ = {xi,j : 0 ≤ j ≤ m − 1},
xA,∗ = {xi,j : i ∈ A, 0 ≤ j ≤ m − 1} where A is a set of share indexes, and
x∗,∗ = {xi,j : 0 ≤ i ≤ d − 1, 0 ≤ j ≤ m − 1}. When it is not clear from the
context, we explicitly denote the gadget G to which the inputs or the outputs
are related with a superscript as xGi,j , y

G
i,j .

For any linear function f , there is a trivial implementation gadget which
requires no random gates and consists in applying the function independently
to each share: yi,∗ = f(xi,∗) for i = 0, . . . , d− 1.3

In this article, we are primarily interested in composing gadgets, that is,
connecting gadgets together to build more complex gadgets.

Definition 1 (Gadget composition). A gadget composition G over d shares
is a directed acyclic graph (DAG) whose vertices are composing gadgets (which
are gadgets over d shares) or inputs/outputs, and edges are connections between
those gadgets. For each composing gadget, there is a one-to-one mapping between
its m inputs and the incoming edges of the associated vertex. Furthermore, each
outgoing edge is associated to an output of the gadget (there can be multiple edges
associated to the same output). Output vertices (resp., input vertices) have one
(resp., zero) incoming edge and zero (resp., any number of) outgoing edge(s).

A gadget composition can be instantiated by mapping each vertex to the corre-
sponding gadget or d inputs/outputs, and each edge to d wires (which connect
the composing gadgets). The inputs and outputs of the composing gadgets are
erased in the instantiation process. We use the term composite gadget to refer
to the instantiation of a gadget composition.

3 This can easily be adapted to affine functions: f is applied to the first share, and
the linear function f − f(0) is applied to the other shares.
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2.2 Probing model and security definitions

In the t-probing model, an adversary can choose a set P of t probes, which are
wires in the target circuit. It has then access to the values carried by each of
the chosen wires. A gadget G is t-probing secure if the output of any t-probing
adversary is independent of the sensitive variables (x0, . . . , xm−1) when all the
input sharings are fresh. The parameter t is known as the security order. In the
best situation, which is often studied in the literature and which we target, t =
d−1 (e.g., [33,6] in software, [13,23] in hardware), but this is not always the case:
t can also be smaller than d− 1 (e.g., for composability reasons [25], or in order
to mitigate physical defaults such as glitches [30]). The trivial implementation
of any linear function with d shares is always d− 1-probing secure.

On important limitation of t-probing security is that it is not sufficient to en-
sure composability: the connection of t-probing secure gadgets is not necessarily
t-probing secure [17]. This has lead Barthe et al. to introduce stronger notions
of security that enable composability in [4]. In order to define them, we use the
simulability framework put forward by Beläıd et al. in [6], illustrated in Figure 1.
Intuitively, a set of probes is simulatable knowing some of the input shares if
there exists a simulator that (knowing the said input shares) can generate simu-
lated probes that have the same statistical distribution as the true probes. Note
that the notion of (I,O)-Non-Interference introduced in [4] is equivalent.

x

y
z

(a) If all inputs are
deterministic, they
are needed to sim-
ulate the output.

x

$
z

(b) When a fresh
random is XORed,
the output is inde-
pendent of inputs.

x

$
z

(c) Multiplication
with an input is
not bijective, thus
input is needed.

x

$
z1

y
z2

(d) With two
probes, the ran-
dom is not fresh.

Fig. 1: Simulatability examples. All outputs (in red) are probed. Inputs needed
for simulation are circled in blue.

Definition 2 (Simulatability). Let P = {p1, . . . , pl} be a set of l probes of a
gadget C and CP the tuple of values of the probes for an execution of C. Let
I = {(i1, j1), . . . , (ik, jk)} ⊂ {0, . . . , d−1}×{0, . . . ,m−1} be a set of input wires
of C. A simulator is a randomized function S : Fk

q → Fl
q. The set of probes P can

be simulated with the set of input wires I if and only if there exists a simulator S
such that for any inputs x∗,∗, the distributions CP (x∗,∗) and S(xi1,j1 , . . . , xik,jk)
are equal, where the probability is over the random coins in C and S.

We can now define Non-Interfering (NI) gadgets and Strong Non-Interfering
(SNI) gadgets. We note that for now, those notions are limited to gadgets with
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only one output. We take the definitions from [6] and denote probes on shares
of a gadget’s outputs as output probes, and probes on any wire of the gadget
including inputs and outputs as internal probes.

Definition 3. A gadget with one output sharing is t-NI if and only if every set
of t′ ≤ t internal probes can be simulated with at most t′ shares of each input.4

For a gadget with d > t shares, satisfying t-NI is strictly stronger than t-probing
security. Indeed, the inputs required by the simulator are independent of the sen-
sitive variables, which implies that the simulated probes are likewise independent
of the sensitive variables and the adversarial probes have the same distribution
as the simulated probes thanks to indistinguishability. t-NI is however not a nec-
essary condition for probing security, because it requires indistinguishable sim-
ulation for any value of the input shares, not only for any value of the sensitive
variables, which sometimes makes the simulation of probing secure gadgets im-
possible (e.g., in first-order threshold implementations, where non-linear gadgets
leverage the input shares in order to reduce the randomness requirements [30]).
The trivial implementation of any linear function is NI: the simulator can use the
xi,∗ values for all the i’s for which there is a probe in the evaluation of f(xi,∗).

Next, t-SNI gadgets guarantee independence between the input and output
shares, even in presence of a t-probing adversary.

Definition 4. A gadget with one output sharing is t-SNI if and only for if every
set I of t1 internal probes and every set O of t2 output probes such that t1+t2 ≤ t,
the set I ∪ O of probes can be simulated with t1 shares of each input.

There are many designs of gadgets that implement elementary field operations
and are NI or SNI. The most studied ones are NI and SNI field multiplication
and SNI refresh gadgets (which implement the identity function in a SNI fash-
ion) [25,6]. Barthe et al. showed that it is possible to build secure composite
gadgets based on NI and SNI gadgets [4]:

Proposition 1. A composite gadget G is t-NI if all its composing gadgets are
t-NI, and all outputs of composing gadgets (and input vertices) are connected to
at most one edge not connected the the input of a SNI refresh gadget.

This result gives a simple way to securely compose gadgets. However, it usu-
ally requires the use of many (expensive) refresh gadgets [22]. One important
reason of these overheads, which is also the seed of our following investigations,
is that the trivial implementation of a linear function is not SNI. It naturally
suggests the quest for a security definition that allows simple composition, as
Proposition 1, while also leveraging the efficiency and probing security of trivial
implementations for linear functions, as an interesting research challenge.

2.3 Probe propagation framework

In this section, we describe an intuitive interpretation of the simulatability defi-
nition first used in [6], that we next call the probe propagation framework, and
discuss its application to the NI and SNI notions.

4 This definition of NI is equivalent to the definition of tight non-interference in [6].
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1-SNI Mul.

y0

y1

z0
z1

x0x1

(a)

1-SNI Mul.

R

(b)

Fig. 2: Implementation of (x + y)(x + z). The circuit is made of a SNI multi-
plication with linear circuits at its inputs (two trivial implementations of the
addition), masked with d = 2 shares. The circuits illustrate (a) the limitation
of SNI input composability and (b) a simple fix. The arrows indicate the adver-
sarial probes (there is thus one internal probe in the multiplication) and the red
snake wires are the propagated probes. The R box is a SNI refresh.

We start with the simple circuit example of Figure 2 which performs a mul-
tiplication of dependent values (masked with d = 2 shares). There is one ad-
versarial (internal) probe in the SNI multiplication gadget and we show how to
prove (or to fail to prove) that the probe is not an attack in the 1-probing model
(i.e., that it is independent of any of the sensitive inputs) by demonstrating that
it is possible to simulate it using at most one share of each of the inputs.5

According to the SNI definition, it is possible to perfectly simulate the adver-
sarial probe by knowing one share of each of the inputs of the SNI multiplication.
Let those required shares be the red snake wires in the circuit (the set of wires
shown is an arbitrary example, the shares required by the simulator depend on
the position of the adversarial probe). Those wires are called propagated probes.
The proof then works by observing that if it is possible to simulate the propa-
gated probes, then the adversarial probe can be simulated.

In our example of Figure 2a, we can propagate the probes one step further:
a probe at the output of an addition can be simulated with probes on the two
inputs of the addition. But then, we obtain four propagated probes at the input
of the circuit, which means all the shares of one of the inputs. As a result, we
cannot prove that the circuit is probing secure.

In order to circumvent this impossibility, the circuit of Figure 2b (which has
the same functionality as the circuit of Figure 2a), implements a simple fix: there
is a SNI refresh gadget on one of the inputs of the multiplication gadget. The
propagated probe at the output of the refresh gadget can then be simulated
using no input of the gadget (thanks to the SNI property), which makes the

5 Note that this does not prove that the circuit is 1-probing-secure. Proving the probing
security would require to analyze all the possible sets of probes. More efficient ways
of making such proofs are discussed in the following sections.
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circuit secure against this probe. As a result, this composite gadget is 1-NI (and
thus 1-probing secure) thanks to Proposition 1.

Summarizing, the main idea of the probe propagation framework is to prove
the security of an implementation by replacing the adversarial probes with prop-
agated probes that can be used to simulate the adversarial probes, and by iter-
ating the process until the propagated probes are all at the inputs of the circuit.
The conclusion is then easy. More precisely, the propagation of probes always
happens backwards in the circuit (probes on the outputs of a gadget propagate
to probes on the inputs of the gadget), and the definitions of NI and SNI can be
expressed with the following set of simple rules.

Probe propagation rules:

– For a NI gadget with no probes on its output shares and ni probes inside
the gadget, there are propagated probes on no + ni shares of each input.

– For a SNI gadget with no probes on its output shares and ni probes inside
the gadget, there are propagated probes on ni shares of each input. Hence,
SNI gadgets (and SNI refreshes) stop the propagation of probes.

There are then three probe propagation conditions to verify, in order to guarantee
security against the considered adversarial probes.

Probe propagation security conditions:

1. For some parameter t < d, all the gadgets must satisfy t-NI (or multiple-
output variants discussed later such as PINI or MIMO-SNI).

2. For any connection between gadgets or input sharing (i.e., for any edge in
the gadget composition graph), there cannot be propagated probes on more
than t shares (out of the maximum d).

3. For all SNI gadgets, the following must hold: ni + no ≤ t (ni and no are the
number of internal and output probes, respectively).6

3 Trivial composition & PINI

In this section, we introduce a new definition of Probe Isolating Non-Interference
(PINI) which is directly satisfied by the trivial implementation of any linear
function, and enjoys a simple and practical composition property: any composite
gadget whose composing gadgets are all PINI is itself PINI.

We then show that this new definition allows us to build a trivial masking
compiler that only requires a PINI implementation for each of the non-linear
gates of interest. This compiler instantiates the given PINI non-linear gadgets,
trivial implementations of the linear functions, and then makes the appropriate

6 No such restriction is needed for NI gadget since it is redundant: when this condition
is violated, then the second probe propagation condition is also violated for the inputs
of the gadget (thanks to the probe propagation rule).
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connections. In addition to simplicity, this technique is cost-efficient, since it uses
no refresh gadgets. In particular, for bit-level implementations, this compiler only
needs a PINI multiplication gadget (i.e., an AND gate) for which we provide
efficient instances in the next section. Another interest of the PINI definition is
that it applies (and its properties apply) easily to gadgets with multiple outputs,
which is not the case for NI/SNI, as will be discussed in Section 5.1.

3.1 Intuition and probe propagation framework

The main idea behind the PINI definition is to take into account not the number
of probes (or of required inputs for simulation) as in the NI/SNI definitions, but
instead their position (i.e., the shares’ indexes). The whole circuit can then be cut
into d circuit shares that are not interconnected, except for non-linear gadgets. If
we neglect those gadgets, the circuit is t-probing secure (for t < d): the adversary
can only probe t of the circuit shares, hence it has no information about at least
d − t ≥ 1 circuit shares, which contains at least one share of each input. PINI
gadgets behave in the probing model as if they had no connection between circuit
shares (i.e., they can be simulated as such), which allows to implement non-linear
functions while keeping the previous circuit sharing intuition.7

In the probe propagation framework, probes propagate through PINI gadgets
in a way that respects the isolation of the circuit shares. Output probes propagate
to all input shares with the same share index (i.e., inside the same circuit share).
Internal probes in PINI gadgets are more subtle since they cannot be trivially
associated to a circuit share, because there is no circuit share isolation inside
(non-linear) PINI gadgets (the isolation is only simulated). However, we can
let those probes carry the same intuition as the output probes: each internal
(adversarial) probe gives knowledge of at most one circuit share to the adversary.
This preserves the feature that the adversary has knowledge of at most t of the
d circuit shares, which we formalize with a third probe propagation rule.

– Each output probe on a PINI gadget propagates to all the input shares
that are in the same circuit share as the output probe. Each internal probe
propagates to all the input shares that are in one additional circuit share
(this circuit share may depend on the position of the probes).

No new probe propagation security condition is needed: if there are too many
probes (internal and output), they propagate to the inputs (thanks to the pre-
vious rule), and violate the second security condition.

The way PINI works is illustrated in Figure 3, which takes the case discussed
in the previous section (where a refresh was needed to prove security), and a
new case not handled by (S)NI definitions: a gadget with multiple outputs.

7 To some extent the probe isolation idea can be connected to the Domain-Oriented
Masking described in [23]. However, that approach focuses on the local security
of gadgets without discussing composability. The probe isolation principle is also
implicitly used in the seminal work of Ishai et al. [25], but they use 2d + 1 shares.

9



In Figure 3a, there is one internal probe which propagates to one share of each
input of the multiplication as it is the case for (S)NI multiplications. However,
the propagated probes have the same share index (they are in the same circuit
share), hence probe propagation through the linear operation does not violate
the second probe propagation security condition.

In Figure 3b, the two propagated probes at the output of the S-box have the
same share index, hence they propagate to only one circuit share.

1-PINI non-lin.

(a) Linear operation
at input.

1-PINI non-lin.

(b) Linear operation
at output.

Fig. 3: Examples of PINI circuits masked with d = 2 shares. The rectangle gadget
implements a non-linear function. The arrows indicate the adversarial probes and
the red snake wires are the propagated probes.

3.2 Formalization: definition and properties

We now give the formal definition of PINI, and prove security and composability
properties. For this purpose, we first show the link between the notion of circuit
share and the notations of Section 2. Namely, for a gadget with inputs xi,j and
outputs yi,j , all the inputs and outputs in the circuit share i are xi,∗ and yi,∗.

In the following definition, the set A is the set of share indexes (i.e., the circuit
shares) that are probed through output probes, and B is the set of circuit shares
requested to simulate the internal probes. The set of shares required to simulate
all the probes is thus A ∪B.

Definition 5 (Probe-Isolating Non-Interference). Let G be a gadget over
d shares and P a set of t1 probes on wires of G (called internal probes). Let A
be a set of t2 share indexes. G is t-Probe-Isolating Non-Interfering (t-PINI) iff
for all P and A such that t1 + t2 ≤ t, there exists a set B of at most t1 share
indexes such that probes on the set of wires P ∪ yGA,∗ can be simulated with the

wires xGA∪B,∗.

The following proposition shows that any PINI gadget is probing secure.

Proposition 2. Any t-PINI gadget (with a number of shares d > t) is t-probing
secure.
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Proof. Any set of at most t probes can be simulated with at most t shares of
each input. Thanks to the independent input encodings, this set of input shares
is independent from all the sensitive input values. ut

We now look at composability properties for PINI gadgets.

Proposition 3 (PINI composability). Any composite gadget made of t-PINI
composing gadgets is t-PINI.

Proof. We build a PINI simulator that takes as input a set of probes P and a
set of share indexes of probed output shares A. Without loss of generality, we
assume that there is not probe on wires connecting composing gadgets (hence
there are only output probes and probes inside composing gadgets), since such
probes can be considered to be inside one of the gadgets connected to the wire.

Let us order gadgets from output to input (in reverse topological sort order for
the gadget composition DAG) and denote them G1, . . . , Gl. We build iteratively
the sets Ai which are sets of circuit shares needed to simulate probes inside
gadgets G1, . . . , Gi−1 and output probes.

Let Pi be the set of probes inside the gadget Gi. Let A1 = A be the set of
share indexes of the output probes. By induction, let Ai+1 = Ai ∪ Bi, where
Bi is obtained by running the PINI simulator for gadget Gi, with set of probes
Pi and output share indexes set Ai (this is possible since |Pi| + |Ai| ≤ t). Let
B = Al+1\A be the set of input share indexes required to the oracle for the
simulation (in addition to the shares with indexes in A, always given). Simulation
is performed from Gl to G1: the PINI simulator for Gi simulates yGiAi,∗ and has

access to xGiAi+1,∗ (obtained from oracle and/or other PINI simulators). We now
have to show that the simulator respects the cardinality constraints of PINI,
that is: |B| ≤ t1 =

∑l
i=1 |Pi|. This is obtained by induction on the inequality

|Ai+1| ≤ |Ai|+ |Bi| ≤ |Ai|+ |Pi| and by the observation that A ⊂ Al+1. ut

We finally prove that the trivial implementations of linear gadgets are PINI.

Proposition 4. The trivial implementation of a linear function is t-PINI for
any t.

Proof. The simulator requires access to inputs from all the circuit shares in which
there is a probe. Simulation is then trivial. ut

4 PINI multiplication gadgets

Given the results in the previous section, the main remaining challenge to lever-
age the trivial composition of PINI gadgets is to instantiate PINI field multipli-
cations. We next propose two solutions for this purpose. The first one is based on
the composition of existing (SNI) gadgets while the second one is a new design.
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4.1 Goudarzi and Rivain’s double-SNI gadget

This gadget is based on an implementation strategy used in [22], where only
SNI multiplications are used, and one input of every multiplication gadget is
refreshed in a SNI manner. Goudarzi and Rivain claim (without proof) that
linear operations can then be implemented in the trivial way, leading to a trivial
composition using double-SNI multiplications (Algorithm 1) for every non-linear
gadget. We next show that the AES implementation using this strategy is secure
by showing that the double-SNI multiplication gadget is PINI.

Algorithm 1 Double-SNI multiplication gadget over d shares. Rd and Muld are
SNI t-refresh and t-SNI multiplication gadgets over d shares, respectively.

Require: Shared factors (ai)i , (bi)i ∈ Fd
q such that

∑
i ai = a and

∑
i bi = b.

Ensure: Output (ci)i ∈ Fd
q such that

∑
i ci = a · b.

(xi)i ← Rd

(
(ai)i

)
;

(ci)i ← Muld
(
(xi)i , (bi)i

)
;

Intuitively, this result comes from the fact that each probe inside the gadget
of Algorithm 1 propagates to at most one share of one of the inputs, and output
probes do not propagate, which implies PINI.8

Proposition 5. Any double-t-SNI multiplication gadget is t-PINI.

Proof. Let us assume that there is a set P1 of probes on the output of the gadget
(i.e., probes on (ci)i), a set P2 of probes inside the SNI multiplication gadget and
a set P3 of probes inside the SNI refresh gadget, such that |P1|+ |P2|+ |P3| ≤ t.
Any probe on (xi)i is counted as a probe inside the SNI multiplication gadget.

Using the simulator for the SNI multiplication gadget, we can simulate the
sets of probes P1 and P2 using a set P4 of shares of (xi)i and a set P5 of shares
of (bi)i, such that |P4| ≤ |P2| and |P5| ≤ |P2|. Then, using the simulator for the
SNI refresh gadget, we can simulate the sets of probes P3 and P4 using a set P6

of shares of (ai)i such that |P6| ≤ |P3| (since |P3| + |P4| ≤ t). Overall, we can
simulate all the adversarial probes using the sets of input shares P5 and P6.

Since |P2|+ |P3| is the number of internal probes and |P5|+ |P6| ≤ |P2|+ |P3|,
the PINI simulator can request knowledge of all the input shares whose index
is the one of a share in P5 or P6. Hence, the PINI simulator knows the values
of the shares in P5 and P6 and can use the two SNI simulators to complete the
simulation. ut

4.2 PINI1: a more efficient field multiplication

We next introduce in Algorithm 2 a new PINI multiplication gadget for d shares.
It is a variation of the ISW multiplication [25] and has the same randomness

8 Actually, the double-SNI multiplication enjoys the stronger MIMO-SNI property
defined in Section 5.1 (or, equivalently for single-output gadgets, MI-SNI).

12



requirement (i.e., d(d− 1)/2 field elements). Compared to the double-SNI mul-
tiplication gadget, it is thus more efficient.

We defer the proof that this algorithm is d− 1-PINI to Appendix A, but we
give here the intuition behind it. The only probes that violate the PINI definition
(i.e., probes that require knowledge of inputs from more than one circuit share
to be simulated) in the ISW multiplication are partial products aibj , which are
intermediate values of the computation of zij = rij+aibj . This issue can be solved
by using a fresh random element r′ij and computing the same result as zij =
(rij + air

′
ij) + ai(r

′
ij + bj). None of the intermediate values in this computation

require the knowledge of both ai and bj to be simulated. Such a technique
requires more random field elements, but it can be optimized by using only the
rij ’s and not fresh r′ij ’s, since the computation zij = (1 + ai)rij + ai(rij + bj)
enjoys the same security and correctness as the previous expression.

Algorithm 2 PINI1 multiplication gadget over d shares

Require: Factors a, b ∈ Fd
q such that

∑
i ai = a and

∑
i bi = b

Ensure: Output (ci)i ∈ Fd
q such that

∑
i ci = a · b.

for i = 0 to d− 1 do
for j = i + 1 to d− 1 do

rij
$←− Fq;

rji ← rij ;
for i = 0 to d− 1 do

for j = 0 to d− 1 do
if i 6= j then

sij ← bj + rij ;
p0ij ← (ai + 1) · rij ;
p1ij ← ai · sij ;
zij ← p0ij + p1ij ;

Ensure: zij = rij + ai · bj
for i = 0 to d− 1 do

ci ← ai · bi +
∑d−1

j=0,j 6=i zij ;

This algorithm can be adapted to require only linear memory by re-ordering
the operations: for each generated rij , compute directly zij and zji, and update
ci and cj . The intermediate values depending on rij can then be dropped. This
does not change the set of possible probes, hence the security proof is still valid.

5 Composition of larger gadgets

In this section, we aim to study a representative example of larger gadget to
estimate the cost of using our trivial composition for small (PINI) gadgets com-
pared to other state-of-the-art solutions. We take the bit-level (i.e., manipulated
elements are in F2, not F256) S-box of Boyar, Matthews and Peralta [9] that is
used in [22] for this purpose. In order to obtain fair comparisons, we then follow
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the optimized approach to composition introduced by Beläıd et al. [6], which has
been shown to provide better performances than the straightforward application
of Proposition 1. Doing so, we face two additional challenges.

First, in order to exploit optimized S-boxes, we ideally need that such S-
boxes lead to a secure circuit when composed with the trivial implementation
of the AES linear layer. We observe that the SNI definition is not sufficient to
reach this goal, and we introduce a natural extension of SNI that allows such a
composition. It essentially extends SNI to a multiple-input and multiple-output
setting (hence the name MIMO-SNI for the proposed extension).

Next, we observe that the optimization of a complex circuit such as the
bit-level S-box in [9] is computationally intensive, and cannot be exhaustively
analyzed like the F256 S-box investigated in [6]. So we propose an automated
heuristic based on linear programming to mitigate this limitation.

5.1 Multiple-Input-Multiple-Output SNI

Multiple-Output SNI (MO-SNI). A first issue with the SNI definition is its spe-
cialization to single-output gadgets (whereas a bit-level AES S-box has eight
output bits). Therefore, we need to extend this definition to multiple-output
gadgets. Two natural extensions can be considered for this purpose: (i) the gad-
get tolerates at most a total of t probes for all the outputs, or (ii) it tolerates up
to t probes for each of the outputs.

The next example shows that the first option is not sufficient to ensure com-
posability with linear layers. In order to simplify the discussion, we take a simple
case of 2-bit non-linear functions (i.e., each gadget has two inputs and two out-
puts) masked at order t = 1 (i.e., d = 2), but our reasoning applies to any gadget
(e.g., the 8-bit S-boxes of the AES) and any order.

Non-lin.

(a) Possibility (i)

Non-lin.

(b) Possibility (ii)

Fig. 4: Two definitions for SNI with multiple output gadgets: only one composes
well with a linear layer. Example for d = 2 and 2 bit gadget.

We consider a linear operation between two outputs of a non-linear gadget
(depicted in Figure 4). The adversary has t probes on one output of the linear
operation. The probes propagate to 2t probes on the output of the non-linear
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gadget. Hence, the extension (i) of the SNI definition is thus not sufficient, and
we prefer extension (ii), which we next call MO-SNI.

Multiple-Input SNI (MI-SNI). A already discussed in Section 2.3, in general a
non-linear SNI gadget cannot have a linear layer at its input without refreshing
some of these inputs. Therefore, we introduce a stronger definition of MI-SNI:
the simulator must be able to simulate the probes using one input share per
probe, while it is one input share per input and per probe for (S)NI.

Multiple-Input-Multiple-Output SNI (MIMO-SNI). The combination of those
two definitions gives the MIMO-SNI notion, that we first introduce in the probe
propagation framework, and then define formally. There is a new probe propa-
gation rule for MIMO-SNI gadgets (to cover the MI-SNI part of the definition):

– For a MIMO-SNI gadget with at most no probes on each output and ni
internal probes, there is a total of ni propagated probes on the input shares.

There is then a fourth probe propagation security condition, which is the con-
dition for SNI gadgets adapted to MO-SNI:

4. For any MIMO-SNI gadget with at most no probes on each output and ni
internal probes, the following must hold: ni + no ≤ t.

Definition 6 (MIMO-SNI). Let Oi be a set of share indices for i = 0, . . . , n−
1. A gadget is t-MIMO-SNI if and only if for any set I of t1 internal probes and
any sets Oi such that there exists a t2 that satisfies t1 + t2 ≤ t and |Oi| ≤ t2 for
i = 0, . . . , n − 1, the set of probes I ∪ yO0,0 ∪ · · · ∪ yOn−1,n−1 can be simulated
with at most t1 input shares.

This definition is very strong, in fact it is strictly stronger than PINI.

Proposition 6. Any t-MIMO-SNI gadget is t-PINI.

Proof. The MIMO-SNI simulator can be used as a PINI simulator, with the set
of share indices B sent to the PINI oracle being made of the indices of the t1
input shares required by the MIMO-SNI simulator. ut

This Proposition shows that MIMO-SNI benefits from the same composability
properties as PINI: a MIMO-SNI S-box can thus be trivially composed with
linear layers. Despite it is stronger than PINI (which is already sufficient to
compose securely), an interesting feature of MIMO-SNI is that this notion can
be obtained by combining NI and SNI elementary gadgets in an optimized com-
position similar to the one proposed in [6] (see next).

Additional remark. The previous definitions are quite connected to the recent
work of Beläıd et al. on Tight Private Circuits (TPC) [7], in which the AES
S-box is probing secure and its outputs are all outputs of SNI gadgets. This
property is similar to MO-SNI: it guarantees independence between outputs,
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and between outputs and inputs; but it is weaker than MO-SNI: it does not
require simulatability. The authors show that despite the weaker definition, it
can be securely composed with linear layers to build a t-probing secure circuit.
This weaker requirement enables more efficient implementations than [22]: S-
boxes only requires 32 SNI multiplication gadgets, and no refresh gadgets in this
case. However, it does not enable trivial composition. First, this composability
result is limited to full linear layers (which results in a need to refresh the key
scheduling even if it is linear). Second, the analysis of the S-box itself is not
trivial (it requires circuit-specific analyzes to prove its security).

5.2 Building large MIMO-SNI gadgets from small (S)NI gadgets

In order to fairly assess the interest of the PINI framework with respect to
state-of-the-art solutions, and to allow sound performance comparisons in the
next section, we now tackle the problem of building a large MIMO-SNI gadget
by composition of smaller (S)NI gadgets. For a given functionality, we try to
minimize the amount of SNI gadgets in the implementation in order to reduce its
complexity. In other words, we investigate the optimized composition approach
mentioned in introduction as a natural competitor to the trivial one.

For this purpose, we first show how to express this optimization based on the
properties of a graph describing the computations to perform. We then apply
this optimization to the AES S-box in F256 (confirming the results in [6]) and to
the bit-level AES S-box of Boyar, Matthews and Peralta [9], bringing significant
improvements over the double-SNI strategy in [22].

Connecting composability to computation graph properties We intro-
duce a new computation graph model based on the gadget composition DAG in
order to explicitly put into evidence the cases where a sharing is used multiple
times. The computation graph restricts the gadget composition DAG by forbid-
ding the connection of more than one edge to an output of a gadget or an input
gate. To handle the forbidden cases, we add a new Splitn gadget which has one
input, n identical outputs and performs no operations (it only connects input
to outputs). For simplicity, we assume that all the composing gadget are NI
operation gadgets with one output (in practice mostly additions and multiplica-
tions), SNI refresh gadgets (with one input and one output) or Splitn gadgets.
SNI gadgets are thus modeled as NI ones followed by a SNI refresh. Given a
computation graph resulting from our optimization, an implementer can then
replace NI multiplications followed by a SNI refresh by (sometimes more effi-
cient) SNI multiplications. This modeling is without loss of generality since it
is equivalent from the probing model viewpoint and the respective costs of the
different gadgets of a private circuit are parameters of the optimizations.

Using the link between computation graph and the probe propagation frame-
work and capitalizing on the fact that SNI refresh gadgets stop the propagation
of probes, we can simply remove them (and their incident edges) from the graph
to build a simplified graph. The probes inside the refresh gadgets can be reported
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to gadgets connected to their input, hence the simplified graph is equivalent to
the original graph regarding security in the probing model.

Definition 7 (Simplified computation graph). The simplification of the
computation graph G is the graph that is obtained from G by removing all SNI
refresh vertices and their incident edges.

Let us now analyze under which condition a simplified computation graph
represents a NI composite gadget, leveraging the probe propagation framework.
Since we only have NI gadgets in a simplified computation graph, the only case
where the probe propagation security conditions are not respected is when there
are more than t propagated probes on one share. Since there are at most t
adversarial probes, violation of the security condition means that a single ad-
versarial probe is duplicated, that is, it propagates to the same share through
to different paths. We can thus derive a sufficient NI condition for simplified
computation graphs: no probe should propagate backwards from a node to an-
other one through two different paths. In other words, for any pair of vertices
there should be at most one (directed) path between them. It can be seen that
this condition cannot be made weaker while guaranteeing security for any NI
composing gadgets: if probes can propagate backwards through two paths from
a node A to a node B and if the adversary has t probes on the output of A, up
to 2t shares of the output of B could be required to simulate.

We now formalize this security condition with the following propositions
(which generalize the proof that the AES inversion is t-SNI in [6]). For this
purpose, we first define a property for composite gadgets and their simplified
computation graph, which specifies the NI condition of the previous paragraphs.

Definition 8 (Single-Path-NI-Built gadget). A composite gadget G is Single-
Path-NI-Built (SP-NIB) if it is implemented with only NI gadgets and SNI re-
freshes, and if for any pair of vertices u, v in the corresponding simplified com-
putation graph there exists at most one path from u to v.

Proposition 7. Let G be a composite gadget. If G is SP-NIB (as per Defini-
tion 8), then it is t-NI.

Proof. For each edge i in the computation graph, there is a number of adversarial
probes ai, a number of propagated probes pi and a total number of probes si.
The sum of the ai’s is at most t. For all i, si = ai+pi. For each edge, the number

of propagated probes is:

– 0 if the node at the end of the edge is a refresh or an output gate;
– the sum of the total number of probes of the outgoing edges of the vertex at

the end of the edge otherwise (i.e., for split or NI gadgets).

The probes inside a NI gadget are not considered since they can equivalently be
replaced with probes on output shares of the gadget. Furthermore, the probes
on output gates are modeled as adversarial probes on the edges connected to
those gates.
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If for each input edge i (i.e., an edge connected to an input gate), a simulator
knows si well-chosen shares, then it can simulate all the probes of the adversary
by using the simulator for each gadget in order to get the required intermediate
values.

We now prove that the SP-NIB hypothesis implies that for all input edges i,
si ≤ t. This proves that the gadget is NI thanks to the previous observation.

We use a small lemma for this purpose: for all edges i, pi =
∑

j αijaj where
αij is the number of paths from the output node of i to the input node of j in
the simplified computation graph. This can be proven by backwards induction
on the graph: if all the outgoing edges of a node satisfy this property, it is also
satisfied for all the incoming edges to this node if the node is a refresh, split
or NI operation. As a base case, this is trivially satisfied for output edges (i.e.,
edges connected to an output gate).

To conclude the main proof, we observe that the main hypothesis implies
that αij ≤ 1 for all pairs of edges (i, j), hence si ≤

∑
j aj ≤ t. ut

We now give similar computation graph properties that guarantee SNI and
MIMO-SNI. Intuitively, a composite gadget is SNI if no probes can propagate
from any output to any input (i.e., there must be no path from an input to an
output).

Proposition 8. Let G be a composite gadget. If the gadget is SP-NIB and if for
any input node u and any output node v, there is no path from u to v, then the
gadget is t-SNI.

Proof. Looking at the proof of Proposition 7, we observe that, under the current
stronger hypothesis, αij = 0 for all input edges i and output edges j. Hence for
all input edges i, si ≤ t1 where t1 is the number of internal probes. ut

For MIMO-SNI, we additionally require that no probe can propagate to two
inputs simultaneously (otherwise, t internal probes could propagate into strictly
more than t input probes). Furthermore, there must be no composing gadget
to which probes could propagate from two different outputs: otherwise, up to
t probes could propagate from each output, resulting into up to 2t propagated
probes on the output of the composing gadget.

Proposition 9. A composite gadget G is t-MIMO-SNI if it satisfies the three
following conditions. (i) G is SP-NIB. (ii) For any pair of output nodes u1, u2
there is no node v such that there is a path from v to u1 and a path from v to
u2. (iii) For any pair of input nodes u1, u2 there is no node v such that there is
a path from u1 to v and a path from u2 to v.

Proof. We first have to prove that for all edges i, si ≤ t. Under the current
hypothesis, the lemma from the proof of Proposition 7 is strengthened: for any
edge i,

∑
j∈Oe αij ≤ 1 where Oe is the set of output edges. Furthermore, for any

i, j, αij ≤ 1. This implies that si ≤ t1 + t2 ≤ t, taking the definitions of t1 and
t2 from the MIMO-SNI definition.
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Second, we have to prove that
∑

i∈Ie si ≤ t1 where Ie is the set of input edges.
We know that for all j,

∑
i∈Ie αij ≤ 1 and for output edges j,

∑
i∈Ie αij = 0.

Hence
∑

i∈Ie si ≤
∑

j 6∈Oe aj = t1. ut

Optimizing the AES S-box in F256 Using the previous graph formalization,
we built a tool9 that checks if a circuit is (MIMO-)(S)NI. If we want to build a
SNI S-box with the multiplication chain from [6], there are 16 wires on which we
could insert a refresh. This number is sufficiently small to make an exhaustive
search, which confirms the result of [6] and shows that it is the only solution
with only three refresh elements (up to the permutation of refresh gadgets with
the (·)2α power gadgets): two refresh gadgets and one SNI multiplication.10 It
also shows that two refresh gadgets is the minimum possible, even with all mul-
tiplications implemented as SNI gadgets.

Optimizing the bit-level AES S-box of Boyar et al. We now optimize the
implementation of a bit-level AES S-box. We take the logic circuit by Boyar et
al. in [9] and search, starting from an implementation with NI gadgets, where it
is required to add SNI refresh elements to get a MIMO-SNI implementation.

Due to the large size of the non-linear part of the AES S-Box (more than
124 wires), it is not possible to apply exhaustive search as done for the S-Box
in F256. We instead re-write this problem as a mixed integer linear optimization
problem, for which there exists solvers with efficient heuristics. The formulation
of the optimization problem is explained in Appendix B.

We ran the optimization with a uniform cost for all edges, which is sound if
we assume that the cost of replacing a NI operation with a SNI one is the same
as adding a SNI refresh. This assumption is valid for state-of-the-art gadgets at
very high order (as confirmed Section 7). The optimization solver gave a solution
with 41 SNI elements and a lower bound of 34 SNI elements (after two hours
of running time). In comparison, the implementation of Goudarzi and Rivain
in [22] uses two SNI elements per AND gate, totaling 64 SNI elements.

The same technique can be applied to other S-boxes, which gives 7 SNI
elements for the Noekeon S-box (4 bit), 8 SNI elements for the Present S-box
(4 bit) and 17 SNI elements for the Fantomas S-box (8 bit). Thanks to the lower
gate count of those S-boxes, the solver is able to find an optimal solution.

6 Related work

In this section, we compare our new composition strategies to other strategies
from the literature.

First of all, the seminal masking transformation of Ishai et al. [25] is com-
posable. The composition proof is based on the observation that if a share index

9 The checking and optimization tools will be open-sourced before publication.
10 [6] actually mentions two SNI multiplications are needed, but it was observed by

Jean-Sébastien Coron that one is enough during Adrian Thillard’s PhD defense.
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i belongs to the set of shares I required for simulation (for both inputs of a
multiplication gadget), then the output with share index i can be simulated.
This constraint also appears in the PINI definition. However, Ishai et al. require
a number of shares at least d = 2t + 1 (for security at order t). The additional
requirements in the PINI definition improve this bound to d = t+ 1.

All the composition schemes we discuss next use d = t + 1 masking. The
strategy of Goudarzi and Rivain [22], for instance, is based on trivial compo-
sition but uses a more complex multiplication gadget, namely the double-SNI
construction, where both the multiplication and the refresh are based on the ISW
multiplication gadget. However, they do not prove that the composite circuit is
probing secure (see Section 4.1).

A more formal and generic composition framework has been put forward by
Barthe et al. in [4] through the NI and SNI definitions. Their main composition
result (Proposition 1) is simple, but leads to poor performance (see Section 7): it
requires refresh gadgets to protect linear operations. The NI and SNI definitions
are used by Beläıd et al. [6] as the basis for building a more efficient F256 AES S-
box circuit. This approach is the basis for the techniques developed in Section 5.

Recently, Beläıd et al. [7] introduced the Tight Private Circuit (TPC) compo-
sition strategy. It is based on the use of SNI multiplication gadgets and a careful
analysis of the structure of non-linear layers, in order to insert SNI refresh gad-
gets where needed. This approach allows to greatly reduce the number of refresh
gadgets needed for masking the AES compared to previous approaches. It ex-
ploits the circuit shares isolation property of the linear operations, as well as the
bijectivity of the XOR operations with respect to one of its inputs. One (slight)
downside of the TPC strategy is that it is specialized to block ciphers with a given
(admittedly very usual) structure. More importantly, it requires some specific
optimizations leading to better or worse performances depending on the cipher
to protect (see the next section). It also requires to add some refresh gadgets in
linear key schedulings (as frequently used in lightweight cryptography).

We note that a completely different approach for composing masked gadget
is based direct verification of t-probing security of the composite circuit using
automated tools [3]. Circuit verification is a computationally expensive problem,
hence those tools are limited in circuit size and masking order.

The main features of these compositional strategies are summarized in Table 1 .

7 Performance comparison

We conclude the paper by briefly discussing the performance aspects of various
compositional strategies introduced in the literature (including ours).

For this purpose, we consider state-of-the art gadgets at each order (order-
specific and generic constructions) for each property needed: SNI refresh, NI mul-
tiplication, SNI multiplication and PINI multiplication (whose costs are given
in Appendix C). Namely, the refresh gadgets are taken from [2], the NI mul-
tiplications and SNI multiplication come from [25,6,5], and the PINI1 multipli-
cation comes from this work (Algorithm 2), while the PINI2 multiplication was
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Any circ. Simplicity d = t + 1 Triv. Lin. Op.

Verification tool 7 7 3 (3)
ISW [25] 3 3 7 3

Only SNI [4] 3 3 3 7

MIMO-SNI (this work) 3 7 3 3

TPC [7] 3 7 3 3

Double-SNI [22] 3 3 3 3

PINI (this work) 3 3 3 3

Table 1: Characteristics of masking strategies:

– Any circuit: the method works for complex circuits (e.g. by enabling com-
position of smaller gadgets) and any masking order.

– Simplicity: the masking transformation is a straightforward gate-to-gadget
translation without more global analysis.

– d = t+ 1: the number of shares is minimal.
– Trivial linear operations: no refresh gadget inside linear layers.

introduced in a follow-up work by Cassiers and Standaert (PINI2) [11]. For the
construction of a SNI multiplication, we observe that for sufficiently high orders
(d ≥ 12), the multiplication of Beläıd et al. followed by a SNI refresh has a
lower cost than the multiplication of Ishai, Sahai and Wagner, which justifies
the assumptions made for the optimization in Section 5.2.11

Next, we analyze the strategies on various block ciphers. We take the AES
with the bit-level implementation of Boyar, Matthews and Peralta masked at
various orders as a first realistic case study (since it is the basis for the best-
reported masked software performances in [22]). We also consider lightweight
block ciphers, which are arguably more relevant for embedded devices where
masking is needed and when performance is a constraint: Present (with 80 bit
key) and Noekeon (with 4 bit S-boxes), and Fantomas (8 bit S-boxes).

A synthetic evaluation is shown for each compositional strategy and each
block cipher in Figures 5, 6, 7 and 8. For this purpose, we use a simple cost
model assuming that the generation of one random bit has the same cost as 80
Boolean gate evaluations. This model is admittedly abstract and based on the
PRNG performances mentioned in [26]. We note that our conclusions are stable
for a wide range of PRNG costs, and refer to follow-up [11] for more empirical
confirmations of these comparisons.

The implementations considered use the following approaches: using only SNI
gadgets (SNI multiplications and SNI refresh after each linear operation, Propo-
sition 1); Tight Private Circuits (TPC) strategy from [7]; optimized MIMO-SNI
S-boxes (see Section 5.2); trivial composition using Double-SNI multiplication

11 Our optimization can be adapted to take into account the actual costs at lower orders,
but since the relative costs differ for every order, finding the optimal implementation
would require re-running the optimization at each order.
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Fig. 5: Cost estimates for various AES 128 bit encryption implementation.
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Fig. 6: Cost estimates for various Noekeon encryption implementation.
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Fig. 7: Cost estimates for various Present encryption implementation (80 bit key).
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Fig. 8: Cost estimates for various Fantomas encryption implementation.

gadgets [22]; and trivial composition using PINI gadgets. For the PINI strate-
gies, we included an implementation with the PINI1 multiplication gadget and
another one with the PINI2 gadget, which performs better at high orders.

For lightweight ciphers, the PINI strategy performs best (by taking the best
amongst PINI1 and PINI2), reducing cost by a factor of roughly 2 compared to
the Double-SNI strategy, which comes second in performance.12

The AES case is particular: it is a sweet spot for the TPC strategy which
then reaches performance similar to PINI. This is due to the large number of
AND gates in the AES S-box13 (32, whereas Fantomas, Noekeon and Present
have respectively 11, 4 and 4). This reduces the relative cost of the refreshing of
the key schedule (needed for TPC and not for competing strategies). Moreover,
contrary to lightweight ciphers, the non-linear part of the AES S-box ends with
a full layer of AND gates, avoiding the need of additional refreshing for the TPC
strategy (for which the S-boxes must end with a full SNI layer).

These results confirm that PINI is a good strategy to build masked circuits.
First, it enjoys the trivial composition property, which leads to simplicity (such
as dealing with only one kind of gadget, while e.g., other strategies need rules to
decide whether to use NI/SNI multiplications and SNI refresh gadgets). Second,
PINI leads to high-performance implementations that reduce by 2 the cost of
lightweight block cipher implementations. We believe those results are timely for
enabling the comparison of side-channel resistant implementations in the ongoing
NIST competition in lightweight cryptography, and are in general relevant to the
security and efficiency of any embedded cryptographic implementation, which
are important building blocks of many secure systems.

12 For asymptotic d, the PINI gadgets are worse than Double-SNI or TPC since they
require more arithmetic operations (overhead scaling as d2), which makes the cost of
refresh gadgets (d log d) asymptotically negligible. However, this has no significant
impact at practical masking orders for bit-level masking. Performance evaluations
in larger fields (e.g. F256) where multiplication cost is larger is left to future work.

13 We use the bit-level implementation from [10], which is the basis for the best-
reported masked software performances [22].
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Finally, we recall that such performance comparisons (e.g., between the
MIMO-SNI, TPC and PINI approaches) are dependent on the cost of the (state-
of-the-art) gadgets used. Hence, the search of more optimized such gadgets is
an interesting scope for further research, to further refine our understanding of
cost-optimized masked implementations.

Acknowledgments. Gaëtan Cassiers and François-Xavier Standaert are resp.
Research Fellow and and Senior Associate Researcher of the Belgian Fund for
Scientific Research (FNRS-F.R.S.). This work has been funded in part by the
ERC project 724725.

References

1. Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the cost of lazy engineering for masked software implemen-
tations. In Marc Joye and Amir Moradi, editors, Smart Card Research and Ad-
vanced Applications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in
Computer Science, pages 64–81. Springer, 2014.
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3. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
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9. Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques
with applications to cryptology. J. Cryptology, 26(2):280–312, 2013.
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14. Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of security proofs from
one leakage model to another: A new issue. In Werner Schindler and Sorin A. Huss,
editors, Constructive Side-Channel Analysis and Secure Design - Third Interna-
tional Workshop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceed-
ings, volume 7275 of Lecture Notes in Computer Science, pages 69–81. Springer,
2012.
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A PINI1 security proof

Proposition 10. The multiplication gadget of Algorithm 2 is d− 1-PINI.

Proof. We prove that the values assigned to the probes by the simulator de-
scribed in Algorithm 4 are indistinguishable from the multiplication gadget
probes.

This behavior of the simulator is identical to the behavior of the gadget,
except for values zij , sij and p1ij for which i 6∈ X (X is generated by Algorithm 4).

In these cases, if zij or a sum in which it appears is probed, then there is no
probe on zji (or their intermediate values, or a sum in which it appears) or on in-
termediate values of the computation of zij , hence rij is only observable through
the probe zij . This means that zij is behaves like a uniform random variable
independent from all other variables, which is what the simulator generates.

For probes on sij , the same argument applies: if the behavior of the simulator
is not identical to the one of the gadget, then rij is only observable through sij ,
hence sij behaves as a uniform independent random variable. To simulate p1ij ,
the simulator simulates sij as previously (and the same argument applies), then
computes p1ij in the same manner as Algorithm 2. ut

B MIMO-SNI S-box optimization problem

The AES S-Box of is made of three parts: a top linear transformation, a middle
non-linear transformation and a bottom linear transformation. Since our goal is
to have a probing secure implementation of the AES, we do not need to have a
full MIMO-SNI S-box. Having only the middle non-linear transformation MIMO-
SNI is enough since the top and bottom linear transformations can be considered
as combined with the other linear operations of the AES (i.e., ShiftRow, Mix-
Columns and AddRoundKey) when applying MIMO-SNI composability.

The non-linear transformation is made of 30 XOR gates and 32 AND gates,
hence it contains more than 2 · (30 + 32) = 124 wires. This means that it is
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Algorithm 3 Input shares chooser for the simulator of PINI1 multiplication

Require: Set of probes yG
A,∗ ∪ P

X ← ∅;
for i = 0 to d− 1 do

if ai, ai + 1, bi, ai · bi or ci is probed then
X ← X ∪ {i};

else if there exists k such that
∑k

j=1 zij is probed then
X ← X ∪ {i};

for j = 0 to d− 1 do
if there are at least two probes on intermediate values of computation of zij
(these values are rij , p

k
ij , s

k
ij and zij) then

X ← X ∪ {i, j};
else if there is one probe on an intermediate value of the computation of zij
then

if i ∈ X or j ∈ X then
X ← X ∪ {i, j};

else
X ← X ∪ {i};

B ← X \A;
Ensure: |B| ≤ |P |

impossible to apply the exhaustive search used for the S-Box in F256. We there-
fore reformulate our graph optimization problem into a integer linear program-
ming problem, for which there exists numerous solvers. This does not guarantee
that we can find an optimal solution with a reasonable amount of resources, but
solvers have efficient heuristics to find good solutions and can prove lower bounds
for the solution. Since we take care that our representation as an optimization
problem admits as acceptable solutions all the possible implementations of the
considered logic circuit, we are able to provide upper and lower bounds on the
cost of the optimal implementation.

We write the linear optimization problem in the following way. A binary
variable ei is associated to each edge i of the graph, indicating if it is cut (i.e., if
a refresh is inserted). All the paths in the graph are then computed and a binary
variable pj is assigned to each path j, again indicating if it is cut. A path is cut
if any edge in the path is cut. It implies a first general constraint pj ≤

∑
i ei

(the sum is over the edges in the path).

We can then add the various constraints related to Non-Interference proper-
ties. First, to enforce NI, for each pair of vertices (u, v) all but one paths from u
to v must be cut. Let J be the set of paths from u to v,

∑
j∈J pj ≥ |J |−1. Next,

to enforce SNI, when u is an input node and v an output node, the constraint
becomes

∑
j∈J pj ≥ |J |. For the MI part we need: for any node u, let J be the

set of paths from any input node to u,
∑

j∈J pj ≥ |J | − 1. Finally, for the MO
part we need: for any node u, let J be the set of paths from u to any output
node,

∑
j∈J pj ≥ |J | − 1.
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Algorithm 4 Simulator of probes for the PINI1 multiplication (Algorithm 2)

Require: Set of probes yG
A,∗ ∪ P

Run Algorithm 3 and get X and B.
Require: Knowledge of input shares xG

A∪B,∗ = xG
X,∗.

for 0 ≤ i ≤ d− 1 do
for 0 ≤ j ≤ d− 1 do

if i ∈ X and j ∈ X then
Compute wk

ij , s
k
ij and zij as specified by the algorithm of the multiplication

gadget;
else if i 6∈ X then

Leave zij and its intermediate values unassigned as they are not involved in
any probe;

else
Ensure: i ∈ X and j 6∈ X.
Ensure: Only one intermediate value from the computation of zij is probed,

or a sum in which zij appears.
Ensure: zji or its intermediate values do not appear in any probe.

if zij or a sum in which zij appears is probed then

zij
$←− Fq;

else if sij is probed then

sij
$←− Fq;

else if p0ij is probed then

rij
$←− Fq;

p0ij ← (ai + 1) · rij ;
else if p1ij is probed then

sij
$←− Fq;

p1ij ← ai · sij ;
Compute (partial) sums of assigned zij , products aibi and associated ci.

Ensure: All the probed values are now assigned.
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The objective function to be minimized is a weighted sum of the ei variables.
The weigh associated to each variable is the cost of adding a refresh on the
corresponding edge. This cost can be any metric, such as the amount of random
bits required, the computation time, etc. Since each edge has a distinct associated
cost parameter, this is the point where we can take into account that the cost of
adding a SNI refresh gadget may not be the same as replacing a NI multiplication
with a SNI multiplication.

This simple way of writing our problem has two limitations. First, there are
many paths in the computation graph (in the order of magnitude of 105 for
the AES S-box) which leads to many variables and constraints in the optimiza-
tion problem. This can be mitigated by grouping paths into clusters that share
common parts and associating them to a single variable.

The second issue is related to split nodes: there are multiple trees of binary
split nodes that represent the split of a value in more than two parts, and all these
representations do not give equivalent possibilities for inserting refresh elements.
Furthermore, no tree can provide all the optimization degrees of freedom. Since
it would be impractical to run the optimization for all the possible trees, we
instead modified the optimization problem. Each split node is replaced by a set
of split nodes that form a fully connected DAG and constraints are set to ensure
that a constant number of added edges is cut, which ensures that the added
edges do not distort the objective function.

The tool used for translating a boolean circuit into the corresponding opti-
mization problem is available as supplementary material and will be published.

C Cost of masked gadgets

The randomness and field operations cost for SNI refresh, NI & SNI multiplica-
tion, and PINI multiplication gadgets are given in Table 2 for some small orders.
The cost formula for any order are given next:

– Randomness (the formula for RSNI
ref (d) is O(d log d)):

RSNI
ref (d) = 2 bd/2c+RSNI

ref (bd/2c) +RSNI
ref (dd/2e)

RNI
mul(d) =

⌊
(d− 1)2/4

⌋
+ d− 1

RSNI
mul (d) = min

(
d(d− 1)/2,RNI

mul(d) +RSNI
ref (d)

)
RPINI

mul1 (d) = d(d− 1)/2

RPINI
mul2 (d) =

⌊
(d− 1)2/4

⌋
+ 2d− 1

30



d SNI refresh NI mul. SNI mul. PINI1 mul. PINI2 mul.

R
a
n
d
o
m

el
em

en
ts

2 1 1 1 1 3
3 3 2 3 3 6
4 4 4 6 6 9
5 8 5 10 10 13
6 12 11 15 15 17
7 13 15 21 21 22
8 16 19 24 28 27

16 32 71 103 120 87
32 96 271 367 496 303
d RSNI

ref RNI
mul RSNI

mul RPINI
mul1 RPINI

mul2

A
d
d
it

io
n
s

2 2 4 4 8 14
3 6 10 12 21 36
4 8 20 24 40 66
5 16 30 40 65 106
6 24 52 60 96 154
7 26 72 84 133 212
8 32 94 104 176 278

16 64 382 446 736 1134
32 192 1534 1726 3008 4574
d ASNI

ref ANI
mul ASNI

mul APINI
mul1 APINI

mul2

M
u
lt

ip
li
ca

ti
o
n
s

2 0 4 4 6 6
3 0 9 9 15 15
4 0 16 16 28 28
5 0 25 25 45 45
6 0 36 36 66 66
7 0 49 49 91 91
8 0 64 64 120 120

16 0 256 256 496 496
32 0 1024 1024 2016 2016
d MSNI

ref MNI
mul MSNI

mul MPINI
mul1 MPINI

mul2

Table 2: Randomness and field operations cost of known gadgets.
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– Additions:

ASNI
ref (d) = 2RSNI

ref (d)

ANI
mul(d) = 2RNI

mul(d) + d(d− 1)

ASNI
mul (d) = 2RSNI

mul (d) + d(d− 1)

APINI
mul1 (d) = 2RPINI

mul1 (d) + 2d(d− 1) + d

APINI
mul2 (d) = 2RPINI

mul2 (d) + 4d(d− 1)

– Multiplications:

MSNI
ref = 0

MNI
mul = d2

MSNI
mul = d2

MPINI
mul1 = d(2d− 1) + d

MPINI
mul2 = d(2d− 1) + d
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