
Tight Private Circuits: Achieving Probing Security with the
Least Refreshing

Sonia Beläıd1, Dahmun Goudarzi1,2, and Matthieu Rivain1

1 CryptoExperts, Paris, France
2 ENS, CNRS, INRIA and PSL Research University, Paris, France

{sonia.belaid,dahmun.goudarzi,matthieu.rivain}@cryptoexperts.com

Abstract. Masking is a common countermeasure to secure implementations against side-channel
attacks. In 2003, Ishai, Sahai, and Wagner introduced a formal security model, named t-probing
model, which is now widely used to theoretically reason on the security of masked implementations.
While many works have provided security proofs for small masked components, called gadgets,
within this model, no formal method allowed to securely compose gadgets with a tight number
of shares (namely, t + 1) until recently. In 2016, Barthe et al. filled this gap with maskComp, a
tool checking the security of masking schemes composed of several gadgets. This tool can achieve
provable security with tight number of shares by inserting mask-refreshing gadgets at carefully
selected locations. However the method is not tight in the sense that there exists some compositions
of gadgets for which it cannot exhibit a flaw nor prove the security. As a result, it is overconservative
and might insert more refresh gadgets than actually needed to ensure t-probing security. In this
paper, we exhibit the first method able to clearly state whether a shared circuit composed of
standard gadgets (addition, multiplication and refresh) is t-probing secure or not. Given such a
composition, our method either produces a probing-security proof (valid at any order) or exhibits
a security flaw that directly imply a probing attack at a given order. Compared to maskComp, our
method can drastically reduce the number of required refresh gadgets to get a probing security
proof, and thus the randomness requirement for some secure shared circuits. We apply our method
to a recent AES implementation secured with higher-order masking in bitslice and we show that
we can save all the refresh gadgets involved in the s-box layer, which results in an significant
performance gain.

Keywords: Side-channel, Masking, Composition, Private Circuits

1 Introduction

Most cryptographic algorithms are assumed to be secure against the so-called black-box attacks, where
the adversary is restricted to the knowledge of inputs and outputs to recover the secret key. However,
the late nineties revealed a new class of attacks, referred to as side-channel attacks, that exploit the
physical leakages (e.g. temperature, power consumption) of components which execute implementations
of cryptographic algorithms. Many implementations of symmetric cryptographic algorithms have been
broken so far [16, 6], raising the need for concrete and efficient protection.

A sound and widely deployed approach to counteract side-channel attacks is the so-called masking
countermeasure that was simultaneously introduced in 1999 by Chari et al. [7] and by Goubin and
Patarin [12]. The idea is to split each key-dependent variable x of the implementation into d shares
(xi)0≤i≤d−1 such that x = x0 ∗ · · · ∗ xd−1 for some law ∗ and any strict subset of shares is uniformly
distributed. The number of degrees-of-freedom d−1 of such a sharing is referred to as the masking order.
When ∗ is the addition on a finite field of characteristic two, the approach is referred to as Boolean
masking, and when d is additionally strictly greater than 2, the approach is referred to as higher-order
Boolean masking. Chari at al. showed that recombining t noisy shares to recover the secret is then
exponentially complex in d which makes the masking order a sound security parameter with respect to
side-channel attacks.

In order to design masking schemes and theoretically reason on their security, the community has
defined several leakage models. In the most realistic one, the noisy leakage model introduced by Rivain
and Prouff [18] as a specialisation of the only computation leaks model [17], the adversary gets a noisy
function of each intermediate variable of the cryptographic computation. Unfortunately, this model is
not very convenient to build security proofs as it requires complex mutual information computations. A
second and widely used leakage model is the t-probing model introduced by Ishai, Sahai, and Wagner [14]

in which the adversary gets the exact values of t chosen intermediate variables. As it manipulates exact
values in a limited quantity, this model is advantageously much more convenient for security proofs. In
order to benefit from the advantages of both models, Duc, Dziembowski, and Faust demonstrated in [11]
a reduction from the noisy leakage model to the t-probing model. In a nutshell, an implementation that
is secure in the t-probing model is also secure in the more realistic noisy leakage model for some level of
noise.

In their seminal work [14], Ishai et al. proposed a t-probing secure masking scheme for any circuit
based on d = 2t + 1 shares. This scheme was extended by Rivain and Prouff in [19] with the aim
to derive a tight t-probing secure implementation of AES, where tightness means that the t-probing
security is obtained with the optimal number of d = t + 1 shares. In particular, they show that the
so-called ISW multiplication gadget actually achieves tight probing security provided that the two input
sharings are mutually independent. In order to obtain tight security for the full AES circuit, Rivain and
Prouff suggested to insert refresh gadgets that renew the randomness of sharings at carefully chosen
locations [19]. But the proposed refresh gadget was shown to introduce a flaw in the composition [9].
In 2016, Barthe et al. introduced new security notions to fill this gap, namely the t-non interference
and the t-strong non interference [2]. When these notions are met by a set of gadgets, one can easily
reason on the probing security of their composition. Informally, a gadget is t-non interfering (or t-NI)
if and only if any set of at most t intermediate variables can be perfectly simulated with at most t
shares of each input. Since t input shares are trivially independent from the input itself as long as
t < d, non-interference trivially implies probing security. While this notion was first defined in [2], it was
actually already met by most existing gadgets. One step further, a gadget is t-strong non interfering (or
t-SNI) if and only if any set of t intermediate variables among which tout are output variables can be
perfectly simulated with tint = t− tout shares of each input sharing. This property makes it possible to
compose any set of SNI gadgets since it stops the propagation of dependencies. A concrete tool to build
probing secure implementations from unprotected implementations is provided [2] which was later called
maskComp. Following this work, numerous examples of globally probing secure schemes were proposed
with a decomposition in identified NI and SNI gadgets [20, 10, 3]. While these schemes achieve their
security goals, each inserted SNI refresh gadget increase the requirement of fresh randomness which is
generally expensive to generate. And up to now, no efficient method exists to check the probing security
of any given composition of gadgets. As a result, existing tools such as maskComp are overconservative
and might insert more refresh gadgets than necessary.

Nevertheless, some formal tools have been recently developed to evaluate the probing security of
implementations at a given masking order. Among the most efficient ones, Barthe et al. developed
maskVerif [1] and Coron developed CheckMasks [8]. Both tools take as input a shared circuit and
return a formal security proof when no attack is found. But here again, this evaluation is not tight and
false negatives may occur and hence imply the addition of unnecessary refresh gadgets. Moreover, while
such tools are very convenient to evaluate the security of concrete implementations, they suffer from an
important limitation which is their exponential complexity in the size of the circuit and consequently in
the masking order. As a result, these tools are impractical beyond a small number of shares (typically
d = 5). In a recent work, Bloem et al. [4] further developed a new tool to verify the security of masked
implementations subject to glitches, which is an important step towards provable and practical security
of hardware implementations. However this tool still suffers from the same efficiency limitations as the
previous ones.

Motivation and Contributions. The method of Barthe et al. [2] allows one to safely compose t-NI
and t-SNI gadgets and get probing security at any order. Nevertheless, it is not tight and makes use of
more refresh gadgets than required. In many contexts, randomness generation is expensive and might
be the bottleneck for masked implementations. For instance, Journault and Standaert describe an AES
encryption shared at the order d = 32 for which up to 92% of the running time is spent on randomness
generation [15]. In such a context, it is fundamental to figure out whether the number of t-SNI refresh
gadgets inserted by Barthe et al.’s tool maskComp is actually minimal to achieve t-probing security. In
this paper, we find out that it is not and we provide a new method which exactly identifies the concrete
probing attacks in a Boolean shared circuit.

Let us take a simple example. We consider the small randomized circuit referred to as Circuit 1 and
illustrated in Figure 1 with [⊕] a t-NI sharewise addition, [⊗] a t-SNI multiplication, and two Boolean
sharings [x1] and [x2]. Applying Barthe et al’s tool maskComp on this circuit automatically inserts a t-SNI

2

refresh gadget in the cycle formed by gates [x1], [⊕], and [⊗] as represented in Figure 2. However, it can
be verified that for any masking order t, the initial circuit is t-probing secure without any additional
refresh gadget. Therefore, in the following, this paper aims to refine the state-of-the-art method [2] to
only insert refresh gadgets when absolutely mandatory for the t-probing security.

[x1] [x2]

[⊕]

[⊗]

Fig. 1. Graph representation of Circuit 1.

[x1] [x2]

[⊕]

R

[⊗]

Fig. 2. Graph representation of Circuit 1 af-
ter maskComp.

More specifically, our contributions can be summarized as follows:

(1.) We introduce formal definitions of the probing, non-interfering, and strong-non-interfering security
notions for shared circuits based on concrete security games. Although these definitions are no more
than a reformulation of existing security notions, we believe that they provide a simple and precise
framework to reason on probing security.

(2.) From the introduced game-based definitions, we provide a reduction of the probing security of a
given standard shared circuit –i.e. a shared circuit composed of ISW multiplication gadgets, sharewise
addition gadgets and SNI refresh gadgets– to the probing security of a simpler circuit of multiplicative
depth 1 and for which the adversary is restricted to probe the multiplication inputs (which are linear
combinations of the circuit inputs).

(3.) We give an algebraic characterization of the final security game, which allows us to express the
probing security of any standard shared circuit in terms of linear algebra.

(4.) We show how to solve the latter problem with a new exact and proven method. Our method takes
the description of any standard shared circuit and either produces a probing-security proof (valid at
any order) or exhibits a probing attack (i.e. a set of t < d probes that reveal information on the
circuit d-shared input for some d). We provide a concrete tool implementing our method in Sage.

(5.) We apply our tool to the efficient implementation of the AES s-box developed by Goudarzi and
Rivain in [13]. Based on the previous state of the art, this s-box was implemented using one SNI
refresh gadget per multiplication gadget (to refresh one of the operand), hence making a total of
32 refresh gadgets (which was later on confirmed by the maskComp tool). Our new method formally
demonstrates that the same d-shared implementation is actually t-probing secure with no refresh
gadget for any d = t + 1. We provide implementation results and a performance analysis: this new
implementation achieves an asymptotic gain up to 43%. The code is provided in the Supplementary
Material.

(6.) We extend our results to larger circuits by establishing new compositional properties on t-probing
secure gadgets. In particular, these new composition properties perfectly apply to the case of SPN-
based block ciphers. We also show that they apply to a wide range of Boolean circuits with common
gadgets and input sets.

Paper Organization. In Section 2, useful notions are introduced, security definitions for composition
are formalized through concrete security games, and some useful security results are provided. Section 3
provides our security reduction for standard shared circuits. Section 4 then details our new method to
exactly determine the probing security of a standard shared circuit. It also gives an upper bound on the
number of required refresh gadgets together with an exhaustive method to make a standard shared circuit
achieve tight probing security. In Section 5, our new method is extended to apply to larger circuits, and
in particular to SPN-based block ciphers, with new compositional properties. Finally, Section 6 describes
the new tool we implemented to experiment our method on concrete circuits.

3

2 Formal Security Notions

2.1 Notations

In this paper, we denote by F2 the finite field with two elements and by Ji, jK the integer interval Z∩ [i, j]
for any two integers i and j. For a finite set X , we denote by |X | the cardinal of X and by x ← X the
action of picking x from X independently and uniformly at random. For some (probabilistic) algorithm
A, we further denote x← A(in) the action of running algorithm A on some inputs in (with fresh uniform
random tape) and setting x to the value returned by A.

2.2 Basic Notions

A Boolean circuit is a directed acyclic graph whose vertices are input gates, output gates, constant gates
of fan-in 0 that output constant values, and operation gates of fan-in at most 2 and fan-out at most 1
and whose edges are wires. In this paper we consider Boolean circuits with two types of operation gates:
addition gates (computing an addition on F2) and multiplication gates (computing a multiplication on
F2). A randomized circuit is a Boolean circuit augmented with random-bit gates of fan-in 0 that outputs
a uniformly random bit.

A d-Boolean sharing of x ∈ F2 is a random tuple (x0, x1, . . . , xd−1) ∈ Fd2 satisfying x =
∑d−1
i=0 xi. The

sharing is said to be uniform if, for a given x, it is uniformly distributed over the subspace of tuples
satisfying x =

∑d−1
i=0 xi. A uniform sharing of x is such that any m-tuple of its shares xi is uniformly

distributed over Fm2 for any m ≤ d − 1. In the following, a d-Boolean sharing of a given variable x is
denoted by [x] when the sharing order d is clear from the context. We further denote by Enc a probabilistic
encoding algorithm that maps x ∈ F2 to a fresh uniform sharing [x].

A d-shared circuit C is a randomized circuit working on d-shared variables. More specifically, a d-
shared circuit takes a set of n input sharings [x1], . . . , [xn] and computes a set of m output sharings [y1],
. . . , [ym] such that (y1, . . . , ym) = f(x1, . . . , xn) for some deterministic function f . A probe on C refers
to a wire index (for some given indexing of C’s wires). An evaluation of C on input [x1], . . . , [xn] under
a set of probes P refers to the distribution of the tuple of wires pointed by the probes in P when the
circuit is evaluated on [x1], . . . , [xn], which is denoted by C([x1], . . . , [xn])P .

We consider a special kind of shared circuits which are composed of gadgets. A gadget is a simple
building block of a shared circuit that performs a given operation on its input sharing(s). For instance,
for some two-input operation ∗, a ∗-gadget takes two input sharings [x1] and [x2] and it outputs a
sharing [y] such that y = x1 ∗ x2. In the paper, we specifically consider three types of gadgets, namely
ISW-multiplication gadgets ([⊗]), ISW-refresh gadgets ([R]) and sharewise addition gadgets ([⊕]). The
ISW-multiplication gadget, introduced in [14], takes two d-sharings [a] and [b] as inputs and computes
the output d-sharing [c] such that c = a · b as follows:

1. for every 0 ≤ i < j ≤ d− 1, pick uniformly at random a value ri,j over F2;
2. for every 0 ≤ i < j ≤ d− 1, compute rj,i ← (ri,j + ai · bj) + aj · bi;
3. for every 0 ≤ i ≤ d− 1, compute ci ← ai · bi +

∑
j 6=i ri,j .

The ISW-refresh gadget is actually the ISW-multiplication gadget in which the second operand [b] is set
to the constant Boolean sharing (1, 0, . . . , 0). The output [c] is thus a fresh independent sharing of a.
Finally, a sharewise addition gadget computes a d-sharing [c] such that c = a+ b by letting ci ← ai + bi
for every 0 ≤ i ≤ d − 1. When called with a second operand equal to the constant Boolean sharing
(1, 0, . . . , 0), such a sharewise addition gadget computes the complementary of its first operand c = a.

Definition 1. A standard shared circuit is a shared circuit exclusively composed of ISW-multiplication
gadgets, ISW-refresh gadgets and sharewise addition gadgets as described above.

2.3 Game-Based Security Definitions

In the following, we recall the probing, non-interfering and strong non-interfering security notions intro-
duced in [14, 2] and we formalize them through concrete security games. Each of these games is defined
for a given n-input d-shared circuit C and it opposes an adversary A, which is a deterministic algorithm
outputting a set of (plain) inputs x1, . . . , xn and a set of probes P, to a simulator S, which aims at
simulating the distribution C([x1], . . . , [xn])P .

4

Probing Security. We first recall the definition from [14]. Our game-based definition is then given with
a proposition to state the equivalence of both notions.

Definition 2 (from [14]). A circuit is t-probing secure if and only if any set of at most t intermediate
variables is independent from the secret.

Probing Security Game. The t-probing security game is built based on two experiments as described in
Figure 3. In both experiments, an adversary A outputs a set of probes P (indices of circuit’s wires) such
that |P| = t and n input values x1, . . . , xn ∈ F2.

In the first (real) experiment, referred to as ExpReal, the chosen input values x1, . . . , xn are mapped
into n sharings [x1], . . . , [xn] with encoding algorithm Enc. The resulting encodings are given as inputs
to the shared circuit C. The real experiment then outputs a random evaluation C([x1], . . . , [xn])P of the
chosen gates through a t-uple (v1, . . . , vt).

In the second experiment, referred to as ExpSim, the probing simulator S takes the (adversary chosen)
set of probes P and outputs a simulation of the evaluation C([x1], . . . , [xn])P , which is returned by the
simulation experiment. The simulator wins the game if and only if the two experiments return identical
distributions.

ExpReal(A, C):

1. (P, x1, . . . , xn)← A()
2. [x1]← Enc(x1), . . . , [xn]← Enc(xn)
3. (v1, . . . , vt)← C([x1], . . . , [xn])P
4. Return (v1, . . . , vt)

ExpSim(A,S, C):

1. (P, x1, . . . , xn)← A()
2. (v1, . . . , vt)← S(P)
3. Return (v1, . . . , vt)

Fig. 3. t-probing security game.

Proposition 1. A shared circuit C is t-probing secure if and only if for every adversary A, there exists
a simulator S that wins the t-probing security game defined in Figure 3, i.e. the random experiments
ExpReal(A, C) and ExpSim(A,S, C) output identical distributions.

Proof. From right to left, if for every adversary A, there exists a simulator S that wins the t-probing
security game defined in Figure 3, then any set of probes is independent from the secret as S has no
knowledge of the secret inputs. Thus C is trivially t-probing secure from Definition 2. From left to right, if
the random experiments ExpReal(A, C) and ExpSim(A,S, C) do not output identical distributions, then
there exists a set of at most t intermediate variables which cannot be perfectly simulated without the
knowledge of the input secrets. As a consequence, the circuit is not t-probing secure from Definition 2.
�

A shared circuit C which is t-probing secure is referred to as a t-private circuit. It is not hard to see
that a d-shared circuit can only achieve t-probing security for d > t. When a d-shared circuit achieves
t-probing security with d = t+ 1, we call it a tight private circuit.

Non-Interfering Security. The non-interfering security notion is a little bit stronger. Compared to
the probing security notion, it additionally benefits from making the security evaluation of composition
of circuits easier. We recall its original definition from [2] before we give an equivalent formal game-based
definition.

Definition 3 (from [2]). A circuit is t-non-interfering (t-NI) if and only if any set of at most t inter-
mediate variables can be perfectly simulated from at most t shares of each input.

Non-Interfering Security Game. The t-non-interfering (t-NI) security game is built based on two exper-
iments as described in Figure 4. In both experiments, an adversary A outputs a set of probes P (indices
of circuit’s wires) such that |P| = t and n input sharings [x1], . . . , [xn] ∈ Fd2.

The first (real) experiment, referred to as ExpReal, simply returns an evaluation of C on input sharings
[x1], . . . , [xn] under the set of probes P.

5

The second experiment, referred to as ExpSim, is defined for a two-round simulator S = (S1,S2). In
the first round, the simulator S1 takes the (adversary chosen) set of probes P and outputs n sets of indices
I1, . . . , In ⊆ {1, . . . , d}, such that |I1| = · · · = |In| = t. In the second round, in addition to the set of
probes P, the simulator S2 receives the (adversary chosen) input sharings restricted to the shares indexed
by the sets I1, . . . , In, denoted [x1]I1 , . . . , [xn]In , and outputs a simulation of C([x1], . . . , [xn])P , which
is returned by the simulation experiment. The simulator wins the game if and only if the two experiments
return identical distributions.

ExpReal(A, C):

1. (P, [x1], . . . , [xn])← A()
2. (v1, . . . , vt)← C([x1], . . . , [xn])P
3. Return (v1, . . . , vt)

ExpSim(A,S, C): ∗

1. (P, [x1], . . . , [xn])← A()
2. I1, . . . , In ← S1(P)
3. (v1, . . . , vt)← S2(P, [x1]I1 , . . . , [xn]In)
4. Return (v1, . . . , vt)

∗ For t-NI: |I1| = · · · = |In| = t.
For t-SNI: |I1| = · · · = |In| = |Pint| ≤ t.

Fig. 4. t-(S)NI security game.

Proposition 2. A shared circuit C is t-non-interfering secure if and only if for every adversary A, there
exists a simulator S that wins the t-non-interfering security game defined in Figure 4, i.e. the random
experiments ExpReal(A, C) and ExpSim(A,S, C) output identical distributions.

Proof. From right to left, if for every adversary A, there exists a simulator S that wins the t-non
interfering security game defined in Figure 3, then any set of probes can be perfectly simulated from sets
of at most t shares of each input. Thus C is trivially t-non-interfering from Definition 3. From left to right,
if the random experiments ExpReal(A, C) and ExpSim(A,S, C) do not output identical distributions, then
there exists a set of at most t intermediate variables which cannot be perfectly simulated from sets Ij of
input shares whose cardinals are less than t. As a consequence, the circuit is not t-non interfering secure
from Definition 3. �

Strong Non-Interfering Security. The strong non-interfering security is a stronger notion than non-
interfering security as it additionally guarantees the independence between input and output sharings.
The latter property is very convenient to securely compose gadgets with related inputs.

Definition 4 (Strong non-interfering security from [2]). A circuit is t-strong non-interfering (t-
SNI) if and only if any set of at most t intermediate variables whose t1 on the internal variables and t2
on output variables can be perfectly simulated from at most t1 shares of each input.

Strong Non-Interfering Security Game. The t-strong-non-interfering (t-SNI) security game is similar to
the t-NI security game depicted in Figure 4. The only difference relies in the fact that the first-round
simulator S1 outputs n sets of indices I1, . . . , In ⊆ {1, . . . , d}, such that |I1| = · · · = |In| = |Pint| ≤ t
where Pint ⊆ P refers to the probes on internal wires, i.e. the probes in P which do not point to outputs
of C.

Proposition 3. A shared circuit C is t-strong-non-interfering secure if and only if for every adversary
A, there exists a simulator S that wins the t-SNI security game defined in Figure 4, i.e. the random
experiments ExpReal(A, C) and ExpSim(A,S, C) output identical distributions.

Proof. From right to left, if for every adversary A, there exists a simulator S that wins the t-non
interfering security game defined in Figure 3, then any set of probes can be perfectly simulated from sets
of at most |Pint| = t1 shares of each input. Thus C is trivially t-strong non-interfering from Definition 4.
From left to right, if the random experiments ExpReal(A, C) and ExpSim(A,S, C) do not output identical
distributions, then there exists a set of at most t intermediate variables which cannot be perfectly
simulated from sets Ij of input shares whose cardinals are less than t1. As a consequence, the circuit is
not t-strong non interfering secure from Definition 4. �

6

2.4 Useful Security Results

This section states a few useful security results. From the above definitions, it is not hard to see that for
any shared circuit C we have the following implications:

C is t-SNI ⇒ C is t-NI ⇒ C is t-probing secure

while the converses are not true. While the ISW-multiplication (and refresh) gadget defined above was
originally shown to achieve probing security, it actually achieves the more general notion of strong non-
interfering security as formally stated in the following theorem:

Theorem 1 ([2]). For any integers d and t such that t < d, the d-shared ISW-multiplication gadget [⊗]
and the d-shared ISW-refresh gadget [R] are both t-SNI.

The next lemma states a simple implication of the t-SNI notion (which up to our knowledge has never
been stated in the literature):

Lemma 1. Let C be a n-input (t+ 1)-shared t-SNI circuit. Then for every (x1, . . . , xn) ∈ Fn2 , an evalu-
ation of C taking n uniform and independent (t+ 1)-Boolean sharings [x1], . . . , [xn] as input produces a
sharing [y] (of some value y ∈ F2 function of x1, . . . , xn) which is uniform and mutually independent of
[x1], . . . , [xn].

Proof of Lemma 1 is available in Section A of the supplementary material.

3 A Security Reduction

This section provides a reduction for the t-probing security of a standard (t + 1)-shared circuit C as
defined in Section 2. Through a sequence of games we obtain a broad simplification of the problem of
verifying whether C is probing secure or not. At each step of our reduction, a new game is introduced
which is shown to be equivalent to the previous one, implying that for any adversary A, there exists
a simulator S that wins the new game if and only if the circuit C is t-probing secure. We get a final
game (see Game 3 hereafter) in which only the inputs of the multiplication gadgets can be probed by
the adversary and the circuit is flattened into an (equivalent) circuit of multiplicative depth one. This
allows us to express the probing security property as a linear algebra problem, which can then be solved
efficiently as we show in Section 4.

In a nutshell, our Game 0 exactly fits the game-based definition of t-probing security given in the
previous section. Then, with Game 1, we prove that verifying the t-probing security of a standard shared
circuit C is exactly equivalent to verifying the t-probing security of the same circuit C where the attacker
A is restricted to probe inputs of refresh gadgets, pairs of inputs of multiplication gadgets, and inputs and
outputs of sharewise additions (i.e., no internal gadgets variables). Game 2 then shows that verifying the
t-probing security of a standard shared circuit C with a restricted attacker A is equivalent to verifying
the t-probing security of a functionally equivalent circuit C ′ of multiplicative depth one where all the
outputs of multiplication and refresh gadgets in C are replaced by fresh input sharings of the same values
in the rest of the circuit. Finally, with Game 3, we show that we can even restrict the adversary to probe
only pairs (xi, yj) where xi (resp. yj) is the ith share of x (resp. the jth share of y) and such that x and
y are operands of the same multiplication in C. These three games are deeply detailed hereafter and
proofs of their consecutive equivalence are provided at each step. An overview is displayed on Figure 5.

Game 1. In a nutshell, our first game transition relies on the fact that each probe in a t-SNI gadget can
be replaced by 1 or 2 probes on the input sharing(s) of the gadget. In particular, one probe on a refresh
gadget is equivalent to revealing one input share, one probe on a multiplication gadget is equivalent
to revealing two input shares (one share per input sharings). Formally, in the random experiments
ExpReal(A, C) and ExpSim(A,S, C), the set of probes P returned by A, noted P ′ in the following, has a
different form explicitly defined below.

Let us associate an index g to each gadget in the standard shared circuit and denote by G the set of
gadget indices. Let us further denote by Gr, Gm and Ga the index sets of refresh gadgets, multiplication
gadgets and addition gadgets, such that G = Gr ∪Gm ∪Ga. Then we can denote by Ig and Jg the indices
of circuit wires which are the shares of the (right and left) input operands of gadget g ∈ G (where Jg = ∅

7

Game 0
t probes on a st.

shared circuit
Game 1 Game 2 Game 3

no probe on
internal variables

equivalent circuit of
multiplicative depth 1

probes only on
multiplications’ inputs

Fig. 5. Overview of the sequence of games.

if gadget g is a refresh). Similarly, we denote by Og the indices of circuit wires which represent the output
of gadget g ∈ G. From these notations, an admissible set of probes P ′ from the adversary in the new
game is of the form

P ′ = P ′r ∪ P ′m ∪ P ′a
where

P ′r ⊆
⋃
g∈Gr

Ig

P ′m ⊆
⋃
g∈Gm

Ig × Jg

P ′a ⊆
⋃
g∈Ga

Ig
⋃
g∈Ga

Jg
⋃
g∈Ga

Og

and |P ′| = t. That is, each of the t elements of P ′ either is a pair of index in Ig ×Jg for a multiplication
gadget g, or a single index in Ig for a refresh gadget g, or a single index in Ig ∪ Jg ∪Og for an addition
gadget. Note that in the latter case, the index can correspond to any wire in the addition gadget (which
is simply composed of t+ 1 addition gates).

Let tm be the number of probes on multiplication gadgets, i.e. tm = |P ′m|, and tar the number
of probes on refresh or addition gadgets, i.e. tar = |P ′a ∪ P ′r|, so that tm + tar = t. The evaluation
C([x1], . . . , [xn])P′ then returns a q-tuple for q = 2tm+ tar, which is composed of the values taken by the
wires of index i ∈ P ′a ∪P ′r, and the values taken by the wires of index i and j with (i, j) ∈ P ′m. The new
experiments ExpReal1(A, C) and ExpSim1(A,S, C), carefully written in Figure 6, each outputs a q-tuple
and, as before, the simulator wins Game 1 if and only if the associated distributions are identical.

ExpReal1(A, C):

1. (P ′, x1, . . . , xn)← A()
2. [x1]← Enc(x1), . . . , [xn]← Enc(xn)
3. (v1, . . . , vq)← C([x1], . . . , [xn])P′

4. Return (v1, . . . , vq)

ExpSim1(A,S, C):

1. (P ′, x1, . . . , xn)← A()
2. (v1, . . . , vq)← S(P ′)
3. Return (v1, . . . , vq)

Fig. 6. Game 1.

Proposition 4. A standard shared circuit C is t-probing secure if and only if for every adversary A,
there exists a simulator S that wins Game 1 defined above, i.e. the random experiments ExpReal1(A, C)
and ExpSim1(A,S, C) output identical distributions.

Proof. Basically, the proof is based on the fact that with the SNI property on the gadgets in our circuit,
each probe in a t-SNI gadget can be replaced by 1 or 2 probes on the input sharing(s) of the gadget.
The complete proof can be found in Section B of the Supplementary Material.

Game 2. Our second game transition consists in replacing the circuit C by a functionally equivalent
circuit C ′ of multiplicative depth one and with an extended input. In a nutshell, each output of a

8

[x1] [x2] [x3]

[⊕] R

[⊗] [⊗]

[⊗] [⊗]

[v1]
[v2]

[v3]
[v4]

[v5] [v6]

Circuit C

[x1] [x2] [x3] [x4] [x5] [x6] [x7] [x8]

[v2]
q

[v3]
q

[v4]
q

[v5]
q

[v6]
q

[⊕] R

[⊗] [⊗][⊗] [⊗]

[v1]

Circuit C′

Fig. 7. Illustration of the Flatten transformation.

multiplication or a refresh gadget in C is replaced by a fresh new input sharing of the same value in
the rest of the circuit. The new circuit hence takes N input sharings [x1], . . . , [xn], [xn+1], . . . , [xN], with
N = n + |Gm| + |Gr|. The two circuits are functionally equivalent in the sense that for every input
(x1, . . . , xn) there exists an extension (xn+1, . . . , xN) such that C([x1], . . . , [xn]) and C ′([x1], . . . , [xN])
have output sharings encoding the same values. This transformation is further referred to as Flatten in
the following, and is illustrated on Figure 7.

The resulting Game 2 is illustrated on Figure 8. Although the additional inputs xn+1, . . . , xN are
deterministic functions of the original inputs x1, . . . , xn, we allow the adversary to select the full extended
input x1, . . . , xN for the sake of simplicity. This slight adversarial power overhead does not affect the
equivalence between the games.

ExpReal2(A, C):

1. C′ ← Flatten(C)
2. (P ′, x1, . . . , xN)← A()
3. [x1]← Enc(x1), . . . , [xN]← Enc(xN)
4. (v1, . . . , vq)← C′([x1], . . . , [xN])P′

5. Return (v1, . . . , vq)

ExpSim2(A,S, C):

1. C′ ← Flatten(C)
2. (P ′, x1, . . . , xN)← A()
3. (v1, . . . , vq)← S(P ′)
4. Return (v1, . . . , vq)

Fig. 8. Game 2.

Proposition 5. A standard shared circuit C is t-probing secure if and only if for every adversary A,
there exists a simulator S that wins Game 2 defined above, i.e. the random experiments ExpReal2(A, C)
and ExpSim2(A,S, C) output identical distributions.

Proof. Basically, the proof is based on the fact that the output encodings of a ISW multiplication are
completly independent of its inputs encodings. The complete proof can be found in Section B of the
Supplementary Material.

Corollary 1. A standard shared circuit C is t-probing secure if and only if the standard shared circuit
Flatten(C) is t-probing secure.

Translation to linear algebra. At this point, the problem of deciding the t-probing security of a
Boolean standard shared circuit C has been equivalently reduced to the problem of deciding the t-
probing security of a circuit C ′ = Flatten(C) when the attacker is restricted to probes on multiplication
and refresh gadgets’ inputs, and intermediate variables of sharewise additions. In order to further reduce
it, we translate the current problem into a linear algebra problem. In the following, we denote by xi,j
the jth share of the ith input sharing [xi] so that

[xi] = (xi,0, xi,1, . . . , xi,t) ,

9

for every i ∈ J1, NK. Moreover, we denote by −→xj ∈ FN2 the vector composed of the jth share of each input
sharing:

−→xj = (x0,j , x1,j , . . . , xN,j) .

As a result of the Flatten transformation, each probed variable in the q-tuple (v1, . . . , vq) = C([x1], . . . ,
[xN])P′ is a linear combination of the input sharings [x1], . . . , [xN]. Moreover, since the addition gadgets
are sharewise, for every k ∈ J1, qK, there is a single share index j such that the probed variable vk only
depends of the jth shares of the input sharings, giving:

vk = −→ak · −→xj , (1)

for some constant coefficient vector −→ak ∈ FN2 . Without loss of generality, we assume that the tuple of
probed variables is ordered w.r.t. the share index j corresponding to each vk (i.e. starting from j = 0 up
to j = t). Specifically, the q-tuple (v1, . . . , vq) is the concatenation of t+ 1 vectors

−→v0 = M0 · −→x0 , −→v1 = M1 · −→x1 , . . . −→vt = Mt · −→xt , (2)

where the matrix Mj is composed of the row coefficient vectors −→ak for the probed variable indices k
corresponding to the share index j.

Lemma 2. For any (x1, . . . , xN) ∈ FN2 , the q-tuple of probed variables (v1, . . . , vq) = C([x1], . . . , [xN])P′

can be perfectly simulated if and only if the Mj matrices satisfy

Im(MT
0) ∩ Im(MT

1) ∩ · · · ∩ Im(MT
t) = ∅ .

Moreover, if the Mj matrices are full-rank (which can be assumed without loss of generality), then the
above equation implies that (v1, . . . , vq) is uniformly distributed.

Proof. Without loss of generality we can assume that the Mj matrices are full-rank since otherwise
the probed variables v1, . . . , vq would be mutually linearly dependent and simulating them would be
equivalent to simulating any subset (vk)k∈K⊆J1,qK defining a free basis of (v1, . . . , vq), and which would
then induce full-rank matrices Mj .

Throughout this proof, we denote −→x = (x1, . . . , xN). We first show that a non-null intersection
implies a non-uniform distribution of (v1, . . . , vq) which is statistically dependent on −→x . Indeed, a non-
null intersection implies that there exist a non-null vector −→w ∈ FN2 satisfying

−→w = −→u0 ·M0 = −→u1 ·M1 = · · · = −→ut ·Mt . (3)

for some (constant) vectors −→u0, . . . , −→ut . It follows that

t∑
j=0

−→uj · −→vj =

t∑
j=0

−→w · −→xj = −→w · −→x ,

which implies that the distribution of the q-tuple (v1, . . . , vq) = (−→v0 ‖ · · · ‖ −→vt) is non-uniform and
dependent on −→x .

We now show that a null intersection implies a uniform distribution (which can then be easily sim-
ulated). The uniformity and mutual independence between the sharings [x1], . . . , [xN] implies that we
can see −→x1, . . . , −→xt as t uniform and independent vectors on FN2 , and −→x0 as

−→x0 = −→x +−→x1 + · · ·+−→xt .

The joint distribution of −→v1 , . . . , −→vt is hence clearly uniform. Then each coordinate of −→v0 is the result of
the inner product −→r · −→x0 where −→r is a row of M0. By assumption, there exists at least one matrix Mj

such that −→r /∈ Im(MT
j). It results that −→r · −→xj is a uniform random variable independent of −→v1 , . . . , −→vt

and the other coordinates of −→v0 (since M0 is full-rank). Since the latter holds for all the coordinates of
−→x0 we get overall uniformity of (−→v0 ‖ · · · ‖ −→vt) which concludes the proof. �

Lemma 2 allows us to reduce the t-probing security of a standard shared circuit to a linear alge-
bra problem. If an adversary exists that can choose the set of probes P ′ such that the tranposes of
induced matrices M1, . . . , Mt have intersecting images, then the distribution of (v1, . . . , vq) depends on
(x1, . . . , xN) and a perfect simulation is impossible (which means that the circuit is not probing secure).
Otherwise, the tuple (v1, . . . , vq) can always be simulated by a uniform distribution and the circuit is
probing secure. This statement is the basis of our verification method depicted in the next section. But
before introducing our verification method, we can still simplify the probing security game as shown
hereafter by using Lemma 2.

10

Game 3. In this last game, the adversary is restricted to probe the multiplication gadgets only. Formally,
A returns a set of probes P ′ = P ′r ∪ P ′m ∪ P ′a such that P ′r = ∅ and P ′a = ∅. Such a set, denoted P ′′
is hence composed of t pairs of inputs from

⋃
g∈Gm Ig × Jg. The evaluation C([x1], . . . , [xn])P′′ then

returns a q-tuple for q = 2t. The new experiments ExpReal3(A, C) and ExpSim3(A,S, C), displayed in
Figure 6, each outputs a q-tuple and, as before, the simulator wins Game 3 if and only if the associated
distributions are identical.

ExpReal3(A, C):

1. C′ ← Flatten(C)
2. (P ′′, x1, . . . , xN)← A()
3. [x1]← Enc(x1), . . . , [xN]← Enc(xN)
4. (v1, . . . , vq)← C′([x1], . . . , [xN])P′′

5. Return (v1, . . . , vq)

ExpSim3(A,S, C):

1. C′ ← Flatten(C)
2. (P ′′, x1, . . . , xN)← A()
3. (v1, . . . , vq)← S(P ′′)
4. Return (v1, . . . , vq)

Fig. 9. Game 3.

Proposition 6. A standard shared circuit C is t-probing secure if and only if for every adversary A,
there exists a simulator S that wins Game 3 defined above, i.e. the random experiments ExpReal3(A, C)
and ExpSim3(A,S, C) output identical distributions.

Proof. Basically, the proof is based on the fact that probing a cross products ai · bj allows you to
gain informations on the two shares ai and bj . The complete proof can be found in Section B of the
Supplementary Material.

4 Probing-Security Verification for Standard Shared Circuits

In this section, we describe a formal verification method that checks whether a standard (t+ 1)-shared
circuit C achieves t-probing security for every t ∈ N. Specifically, our tool either provides a formal proof
that C is t-probing secure for every t ∈ N (where C is a standard shared circuit with sharing order t+1),
or it exhibits a probing attack against C for a given t, namely it finds a set of probes P (indices of wires)
in the (t+ 1)-shared instance of C, such that |P| = t, for which the evaluation C([x1], . . . , [xn])P cannot
be simulated without some knowledge on the plain input (x1, . . . , xn).

4.1 Linear Algebra Formulation

As demonstrated in the previous section, the t-probing security game for a standard (t+1)-shared circuit
C can be reduced to a game where an adversary selects a set of probes P ′′ solely pointing to input shares
of the multiplication gadgets of a flattened circuit C ′. In the following, we will denote by m the number
of multiplication gadgets in C (or equivalently in C ′) and by g ∈ J1,mK the index of a multiplication
gadget of C. We will further denote by [ag] and [bg] the input sharings of the g-th multiplication gadget
so that we have

[ag] = (−→ag · −→x0, . . . ,−→ag · −→xt) and [bg] = (
−→
bg · −→x0, . . . ,

−→
bg · −→xt) , (4)

for some constant coefficient vectors −→ag,
−→
bg ∈ FN2 , recalling that −→xj denotes the vector with the jth share

of each input sharing [x1], . . . , [xN]. In the following, the vectors {−→ag,
−→
bg}g are called the operand vectors.

In Game 3, the adversary chooses t pairs of probes such that each pair points to one share of [ag]
and one share of [bg] for a multiplication gadget g. Without loss of generality, the set of pairs output
by the adversary can be relabelled as a set of triplet P = {(g, j1, j2)} where g ∈ J1,mK is the index of
a multiplication gadget, j1 and j2 are share indices. For any triplet (g, j1, j2) ∈ P the two input shares
−→ag · −→xj1 and

−→
bg · −→xj2 are added to the (2t)-tuple of probed variables to be simulated. This set of triplets

exactly defines a sequence of t+ 1 matrices M1, . . . , Mt, defined iteratevely by adding −→ag to the rows of

Mj1 and
−→
bg to the rows of Mj2 for each (g, j1, j2) ∈ P. Equivalently, the matrix Mj is defined as

Mj = rows({−→ag ; (g, j, ∗) ∈ P} ∪ {
−→
bg ; (g, ∗, j) ∈ P}) , (5)

for every j ∈ J0, tK where rows maps a set of vectors to the matrix with rows from this set.

11

Lemma 2 then implies that a probing attack on C consists of a set of probes P = {(g, j1, j2)} such
that the transposes of the induced Mj have intersecting images. Moreover, since the total number of rows
in these matrices is 2t, at least one of them has a single row −→w . In particular, the image intersection can
only be the span of this vector (which must match the row of all single-row matrices) and this vector

belongs to the set of operand vectors {−→ag,
−→
bg}g. In other words, there exists a probing attack on C if and

only if a choice of probes P = {(g, j1, j2)} implies

Im(MT
0) ∩ Im(MT

1) ∩ · · · ∩ Im(MT
t) = 〈−→w 〉 . (6)

for some vector −→w ∈ {−→ag,
−→
bg}g. In that case we further say that there is a probing attack on the operand

vector −→w .

In the rest of this section, we describe an efficient method that given a set of vector operands {−→ag,
−→
bg}g

(directly defined from a target circuit C) determines whether there exists a parameter t and a set
P = {(g, j1, j2)} (of cardinality t) for which (6) can be satisfied. We prove that (1) if such sets P exist,
our method returns one of these sets, (2) if not sets is returned by our method then the underlying circuit
is t-probing secure for any sharing order (t+ 1).

4.2 Method Description

The proposed method loops over all the vector operands −→w ∈ {−→ag,
−→
bg}g and checks whether there exists

a probing attack on −→w (i.e. whether a set P can be constructed that satisfies (6)).

For each −→w ∈ {−→ag,
−→
bg}g the verification method is iterative. It starts from a set G1 ⊆ J1,mK defined

as

G1 = {g ; −→ag = −→w } ∪ {g ;
−→
bg = −→w } . (7)

Namely G1 contains the indices of all the multiplication gadgets that have −→w as vector operand. Then
the set of free vector operands O1 is defined as

O1 = {
−→
bg ; −→ag = −→w } ∪ {−→ag ;

−→
bg = −→w } . (8)

The terminology of free vector operand comes from the following intuition: if a probing adversary spends
one probe on gadget g ∈ G1 such that −→ag = −→w to add −→w to a matrix Mj (or equivalently to get the

share −→w · −→xj), then she can also add
−→
bg to another matrix Mj′ (or equivalently get the share

−→
bg · −→xj′) for

free. The adversary can then combine several free vector operands to make −→w ∈ Im(MT
j′) occur without

directly adding −→w to Mj′ (or equivalently without directly probing −→w · −→xj′). This is possible if and only
if −→w ∈ 〈O1〉.

The free vector operands can also be combined with the operands of further multiplications to generate
a probing attack on −→w . To capture such higher-degree combinations, we define the sequences of sets (Gi)i
and (Oi)i as follows:

Gi+1 = {g ; −→ag ∈ −→w + 〈Oi〉} ∪ {g ;
−→
bg ∈ −→w + 〈Oi〉} , (9)

and

Oi+1 = {
−→
bg ; −→ag ∈ −→w + 〈Oi〉} ∪ {−→ag ;

−→
bg ∈ −→w + 〈Oi〉} . (10)

for every i ≥ 1. The rough idea of this iterative construction is the following: if at step i + 1 a probing
adversary spends one probe on gadget g ∈ Gi+1 such that −→ag ∈ −→w + 〈Oi〉, then she can add −→ag together
with some free vector operands of previous steps to Mj in order to get −→w ∈ Im(MT

j). Then she can also

add
−→
bg to another matrix Mj′ , making

−→
bg a new free vector operand of step i+ 1.

Based on these definitions, our method iterates the construction of the sets Gi and Oi. At setp i, two
possible stop conditions are tested:

1. if Gi = Gi−1, then there is no probing attack on −→w , the method stops the iteration on −→w and continues
with the next element in the set of vector operands;

2. if −→w ∈ 〈Oi〉, then there is a probing attack on −→w , the method stops and returns True (with −→w and
the sequence of sets (Gi,Oi)i as proof);

12

The method returns True if there exists a concrete probing attack on a vector −→w ∈ {−→ag,
−→
bg}g for a

certain sharing order t+ 1. Otherwise, it will eventually stops with vector operand −→w since the number
of multiplications is finite and since Gi ⊆ Gi+1 for every i ≥ 1. When all the possible vector operands
have been tested without finding a probing attack, the method returns False. Algorithm 1 hereafter
gives a pseudocode of our method where NextSets denotes the procedure that computes (Gi+1,Oi+1)
from (Gi,Oi).

Algorithm 1 Search probing attack

Input: A set of vector operands {−→ag,
−→
bg}g

Output: True if there is probing attack on some −→w ∈ {−→ag,
−→
bg}g and False otherwise

1. for all −→w ∈ {−→ag,
−→
bg}g do

2. (G1,O1)← NextSets(∅, ∅, {−→ag,
−→
bg}g,−→w)

3. if −→w ∈ 〈O1〉 then return True

4. for i = 1 to m do
5. (Gi+1,Oi+1)← NextSets(Gi,Oi, {−→ag,

−→
bg}g,−→w)

6. if Gi+1 = Gi then break
7. if −→w ∈ 〈Oi〉 then return True

8. end for
9. end for

10. return False

In the rest of the section we first give some toy examples to illustrate our methods and then provides
a proof of its correctness.

4.3 Toy Examples

Two examples are provided hereafter to illustrate our iterative method in the absence then in the presence
of a probing attack.

In the very simple example of Figure 1, two variables are manipulated in multiplications in the circuit
C: −→w 1 = −→x1 and −→w 2 = −→x1 +−→x2. The set of multiplications G is of cardinal one since it only contains one
multiplication (−→w 1,

−→w 2). Following the number of variables, the method proceeds at most in two steps:

1. As depicted in Algorithm 1, the method first determines whether there exists a probing attack on
−→w 1. In this purpose, a first set G1 is built, such that G1 = (−→w 1,

−→w 2) and O1 = −→w 2. Since G1 6= ∅ and
−→w 1 6= −→w 2, then a second set must be built. However, there is no multiplication left, that is G2 = G1
and so there is no attack on −→w 1.

2. The method then focuses on −→w 2. In this purpose, a dedicated set G1 is built, such that G1 = (−→w 2,
−→w 1)

and O1 = −→w 1. Since G1 6= ∅ and −→w 2 6= −→w 1, then a second set must be built. However, there is no
multiplication left, that is G2 = G1 and so there is no attack on −→w 2 either. Since there is no input
variable left, the method returns False, which means that there is no possible probing attack on this
circuit.

Figure 10 provides a second Boolean circuit. It manipulates five variables −→w i as operands of multipli-
cation gadgets: −→w 1 = −→x1, −→w 2 = −→x2, −→w 3 = −→x3, −→w 4 = −→x1+−→x2, and −→w 5 = −→x2+−→x3. The set of multiplications
G is of cardinal three with (−→w 1,

−→w 2), (−→w 4,
−→w 5), and (−→w 3,

−→w 4). Following the number of variables, the
method proceeds at most in five steps:

1. The method first determines whether there exists a probing attack on −→w 1. In this purpose, a first
set G1 is built, such that G1 = (−→w 1,

−→w 2) and O1 = −→w 2. Since G1 6= ∅ and −→w 1 6= −→w 2, then a second
set must be built. G2 = G1 ∪ {(−→w 4,

−→w 5), (−→w 4,
−→w 3)} since −→w 4 = −→w 1 + −→w 2. However, −→w 1 /∈ O2(=<

−→w 2,
−→w 3,
−→w 5 >), so a third set must be built. Since there is no multiplication left, that is G3 = G2,

there is no attack on −→w 1.
2. The method then focuses on −→w 2. In this purpose, a dedicated set G1 is built, such that G1 =

(−→w 2,
−→w 1) and O1 = −→w 1. Since G1 6= ∅ and −→w 2 6= −→w 1, then a second set must be built. G2 =

G1 ∪ {(−→w 4,
−→w 5), (−→w 4,

−→w 3)} since −→w 4 = −→w 2 + −→w 1. And in that case, −→w 2 ∈ O2(=< −→w 1,
−→w 3,
−→w 5 >)

since −→w 2 = −→w 3 + −→w 5. Thus the method returns True and there exists an attack on −→w 2 = −→x2 for
some masking order t.

13

[x1] = −→w 1 [x2] = −→w 2 [x3] = −→w 3

[⊕]
−→w 4

[⊕]

−→w 5

[⊗] [⊗] [⊗]

Fig. 10. Graph representation of a second Boolean circuit.

4.4 Proof of Correctness

This section provides a proof of correctness of the method. This proof is organized in two propositions
which are based on some invariants in Algorithm 1. The first proposition shows that if the method returns
True for some operand vector −→w and corresponding sets (Gi,Oi) then there exists a probing attack on
−→w (i.e. a set P can be constructed that satisfies (6)). The second proposition shows that if the method
returns False then there exists no probing attack for any −→w , namely the underlying circuit is probing
secure for any masking order.

Proposition 7. For every i ∈ N, if −→w ∈ 〈Oi〉 then there exists t ∈ N and P = {(g, j1, j2)} with |P| = t
implying

⋂t
j=0 Im(MT

j) = −→w .

Proposition 8. Let i > 1 such that G1 ⊂ · · · ⊂ Gi−1 = Gi and −→w /∈ 〈Oi〉. Then for any t ∈ N and
P = {(g, j1, j2)} with |P| = t we have −→w /∈

⋂t
j=0 Im(MT

j).

Proofs of Propositions 7 and 8 are available in Section C of the supplementary material.

4.5 Towards Efficient Construction of Tight t-Private Circuits

Our formal verification method exactly reveals all the t-probing attacks on standard shared circuits. A
sound countermeasure to counteract these attacks is the use of refresh gadgets. We discuss here how to
transform a flawed standard shared circuit into a t-private circuit with exactly the minimum number of
refresh gadgets.

In a first attempt, we easily show that refreshing the left operands of each multiplication in C is
enough to provide t-probing security.

Proposition 9. A standard shared circuit C augmented with t-SNI refresh gadgets operating on the left
operand of each multiplication gadget is t-probing secure.

In a second attempt, we need to slightly modify Algorithm 1 so that it conducts an analysis on all the
possible operands in order to return a complete list of the flawed ones. So far, it stops at the first flaw.
With such a list for a standard shared circuit, we can show that refreshing only the flawed operands is
enough to provide t-probing security.

Proposition 10. A standard shared circuit C augmented with t-SNI refresh gadgets operating on each
flawed operand, as revealed by our method, of its multiplication gadgets is t-probing secure.

Proofs of these propositions are available in Section C of the supplementary material.

Propositions 9 and 10 provide an upper bound of the required number of refresh gadgets in a standard
shared circuit to achieve probing security at any order t. If we denote by m the number of multiplications
in a standard shared circuit C and by o the number of flawed operands returned by our method, then
C is to be augmented of at most r = min(m, o) refresh gadgets to achieve probing security at any order
t. Given this upper bound, an iterative number of refresh gadgets from 1 to r can be inserted at each
location in C in order to exhibit a tight private circuit with a minimum number of refresh gadgets.

5 Further Steps

Now that we are able to exactly determine the t-probing security of standard shared circuits, a natural
follow-up consists in studying the t-probing security of their composition. In a first part, we establish
several compositional properties, and then we show how they apply to the widely deployed SPN-based
block ciphers. We eventually discuss the extension of our results to generic shared circuits.

14

5.1 Generic Composition

This section is dedicated to the statement of new compositional properties on tight private circuits. In
a first attempt, we show that the composition of a t-private circuit whose outputs coincide with the
outputs of t-SNI gadgets with another t-private circuit is still a t-private circuit.

Proposition 11. Let us consider a standard shared circuit C composed of two sequential circuits:

– a t-probing secure circuit C1 whose outputs are all outputs of t-SNI gadgets,
– a t-probing secure circuit C2 whose inputs are C1’s outputs.

Then, C = C2 ◦ C1 is t-probing secure.

Proof. As the outputs of the first circuit C1 are the outputs t-SNI gadgets, we get from Lemma 1 that
the input encodings of C1 and the input encodings of C2 are independent and uniformly distributed.
Then, the proof is straightforward from Proposition 5. Basically, the analysis of C’s t-probing security
can be equivalently reduced to the analysis of the t-probing security of C ′ = Flatten(C) in which each
output of a t-SNI gadget is replaced by a fresh new input sharing of the corresponding value in the rest
of the circuit, i.e. C2. As a consequence, C is t-probing secure if and only if both C1 and C2 are t-probing
secure, which is correct by assumption. �

In a second attempt, we establish the secure composition of a standard shared circuit that implements
a (shared) linear surjective transformation through several sharewise addition gadgets, that we refer to
as a t-linear surjective circuit, and a standard t-probing circuit.

Proposition 12. Let us consider a standard shared circuit C composed of two sequential circuits:

– a t-linear surjective circuit C1, exclusively composed of sharewise additions,
– a t-probing secure circuit C2 whose inputs are C1’s outputs.

Then, C = C2 ◦ C1 is t-probing secure.

Proof. We consider a standard shared circuit C with input −→x = (x1, . . . , xn) composed of a t-linear
surjective circuit C1 as input to a t-probing secure circuit C2. We denote by −→y = (y1, . . . , yn′) the set of
C1’s outputs, or equivalently the set of C2’s inputs. From Proposition 6, the t-probing security of C can
be reduced to the t-probing security of circuit C ′ = Flatten(C) for probes restricted to the multiplications’
operands. In our context, C1 is exclusively composed of sharewise additions, so the probes are restricted
to C2. From Lemma 2, any set of probed variables on C2’s multiplications operands (v1, . . . , vq) can be
written as the concatenation of the t+ 1 vectors

−→v0 = M0 · −→y0 , −→v1 = M1 · −→y1 , . . . −→vt = Mt · −→yt ,

where
Im(MT

0) ∩ Im(MT
1) ∩ · · · ∩ Im(MT

t) = ∅ . (11)

To achieve global t-probing security for C, we need to achieve a null intersection for matrices that apply
on C’s inputs instead of C2’s inputs. As C1 implements a linear surjective transformation f , there exists
a matrix Mf of rank n′ such that

∀ 0 ≤ i ≤ t, −→yi = Mf · −→xi .

As a consequence, any set of probes (v1, . . . , vq) in C ′ as defined in Game 3 can equivalently be rewritten
as the concatenation of the t+ 1 vectors

−→v0 = M0 ·Mf · −→x0 , −→v1 = M1 ·Mf · −→x1 , . . . −→vt = Mt ·Mf · −→xt .

By contradiction, let us assume that

Im(MT
f ·MT

0) ∩ Im(MT
f ·MT

1) ∩ · · · ∩ Im(MT
f ·MT

t) 6= ∅,

that is, there exists a non-null vector −→w such that

−→w ∈ Im(MT
f ·MT

0) ∩ Im(MT
f ·MT

1) ∩ · · · ∩ Im(MT
f ·MT

t).

Equivalently, there exists −→z0 ,−→z1 , . . . ,−→zt such that

−→w = MT
f ·MT

0 · −→z0 = MT
f ·MT

1 · −→z1 = . . . = MT
f ·MT

1 · −→zt .

15

From Equation (11), there exists at least two distinct indices i and j in {0, . . . , t}, such that

MT
i · −→zi 6= MT

j · −→zj .

As −→w = MT
f ·MT

i ·
−→zi = MT

f ·MT
j ·
−→zj , the difference MT

i ·
−→zi −MT

j ·
−→zj belongs to MT

f ’s kernel. But

from the surjective property of Mf , MT
f has full column rank n′, and thus a null kernel:

dim(Ker(MT
f)) = n′ − dim(Im(MT

f)) = 0.

As a consequence, MT
i ·
−→zi −MT

j ·
−→zj = 0 and since MT

i ·
−→zi 6= MT

j ·
−→zj we have a contradiction which

completes the proof. �

Eventually, we claim that two t-private circuits on independent encodings form a t-private circuit as
well.

Proposition 13. Let us consider a standard shared circuit C composed of two parallel t-probing secure
circuits which operate on independent input sharings. Then, C = C1‖C2 is t-probing secure.

Proof. As the input sharings are independent, the result is straightforward from Lemma 2. �

5.2 Application to SPN-Based Block Ciphers

A SPN-based block cipher is a permutation which takes as inputs a key k in {0, 1}κ and a plaintext p in
{0, 1}n and outputs a ciphertext c in {0, 1}n, where n and κ are integers. As illustrated in Figure 14 in
Appendix D, it is defined by successive calls to a round function and by an optional expansion algorithm
KS. The round function is a combination of a non linear permutation S and a linear permutation L.

Proposition 14. Let C be a standard shared circuit implementing an SPN block cipher as pictured in
Figure 14. And let CS and CKS be the standard shared (sub-)circuits implementing S and KS respectively.
If both conditions

1. CS’s and CKS’s outputs are t-SNI gadgets’ outputs,
2. CS and CKS are t-probing secure (for any sharing order t+ 1),

are fulfilled, then C is also t-probing secure.

Note that if S’s and KS’s outputs are not t-SNI gadgets’ outputs, then the linear surjective circuit
can be extended to the last t-SNI gadgets’ outputs of these circuits without loss of generality.

Proof. As S and KS are t-probing secure, it follows from Proposition 13, that when implemented in
parallel on independent input encodings, their composition is t-probing secure as well. Then, as the output
of their composition matches the outputs of t-SNI gadgets, then they can be sequentially composed with
a t-probing secure circuit from Proposition 11. Finally, the composition of linear surjective circuits with
t-probing secure circuits is ensured by Proposition 12, which completes the proof.

5.3 Extension to Generic Shared Circuits

We discuss hereafter two straightforward extensions of our work. Namely some constraints on gadgets
that compose the standard shared circuits can be relaxed, and the considered circuit can easily be
extended to work on larger finite fields.

On Standard Shared Circuits. The method presented in this paper through Sections 3 and 4 aims
to accurately establish the t-probing security of a standard shared circuit for any sharing order t + 1.
Namely, it is restricted to Boolean shared circuits exclusively composed of ISW-multiplication gadgets,
ISW-refresh gadgets, and sharewise addition gadgets. While the assumption on addition gadgets is quite
natural, the restrictions made on the multiplication and refresh gadgets can be relaxed. The reduction
demonstrated in Section 3 only expects the refresh gadgets to be t-SNI secure to ensure the equivalence
between Game 1 and the initial t-probing security game. Afterwards, t-probing security is equivalently
evaluated on a corresponding flattened circuit with probes on multiplications’ operands only. Therefore,
there is no restriction on the choice of refresh gadgets but their t-SNI security. While multiplication
gadgets are also expected to be t-SNI secure for the equivalence between Game 1 and the initial t-probing

16

security game to hold, this feature is not enough. To prove this equivalence, multiplication gadgets are also
expected to compute intermediate products between every share of their first operand and every share of
their second operand. Otherwise, our method could still establish the probing security of a circuit, but
not in a tight manner, meaning that security under Game 3 would imply probing security but insecurity
under Game 3 would not imply insecurity w.r.t. the original probing insecurity notion. Our method
would hence allowed false negatives, as state-of-the-art methods currently do. Beyond the advantages of
providing an exact method, this restriction is not very constraining since not only the widely deployed
ISW-multiplication gadgets but also the large majority of existing multiplication gadgets achieve this
property.

On Circuits on Larger Fields. Since ISW-multiplication gadgets and ISW-refresh gadgets can
straightforwardly be extended to larger fields our reduction and verification method could easily be
extended to circuits working on larger fields.

6 Application

Following the results presented in previous sections, we developed a tool in sage that takes as input a
standard shared circuit and determines whether or not it is t-probing secure with Algorithm 1. Specif-
ically, the standard shared circuit given as input to the tool is expressed as a set of instructions (XOR,
AND, NOT, REFRESH) with operands as indices of either shared input values or shared outputs of previous
instructions. Namely, the XOR instructions are interpreted as sharewise addition gadgets of fan-in 2, the
NOT instructions as sharewise addition gadgets of fan-in 1 with the constant shared input (1, 0, . . . , 0), the
AND instructions as ISW-multiplication gadgets of fan-in 2, and the REFRESH instructions as ISW-refresh
gadgets of fan-in 1. As an application, we experimented our tool on several standard shared circuits.
First, we analyzed the t-probing security of the small examples of Section 4 as a sanity check. Then, we
investigated the t-probing security of the AES s-box circuit from [5] and compared the result with what
the maskComp tool produces. Additionally, we studied the impact of our tool to practical implementations
(for both the randomness usage and the performance implications).

6.1 Application to Section 4 Examples

In order to have some sanity checks of our new method on simple standard shared circuits, we applied
our tool to the examples given in Section 4, namely the standard shared circuits depicted in Figure 1
and Figure 10. Specifically, we first translated the two standard shared circuits into a list of instructions
that is given to our tool. For each circuit, the first instruction gives the number of shared inputs. Then,
each of the following instruction matches one of the four possible operations among XOR, AND, NOT, and
REFRESH together with the indices of the corresponding one or two operands. The output of each such
operation is then represented by the first unused index. At the end, from the generated list of instructions
the tool derives a list of pairs of operands, namely the inputs to the multiplications in the circuit. Finally,
Algorithm 1 is evaluated on the obtained list of operands.

[x1] [x2]

[⊕]

[⊗]

→
;; 2

XOR 1 2

AND 1 3
→

list_comb = [1,3]

comb = 1

=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]

O: [[3], []]

comb = 3

=> NO ATTACK (G2 = G1)

G: [[(1 ,3)], []]

O: [[1], []]

(’No attack found ’)

Fig. 11. New method applied on example 1.

The first example is based on a standard shared circuit that takes 2 shared inputs and then performs
two operations, namely a sharewise addition (XOR) and an ISW-multiplication (AND). The AND instruction

17

takes two inputs, namely the output of the XOR and one of the two inputs of the circuit, which means
that there is only two possible target vectors for an attack to be mounted. They are displayed in the
list list comb. For both these two vectors successively displayed with variable comb, the tool generates
their respective sets G1 and O1, as defined in Section 4. Then since G2 is equal to G1 for both vectors, the
tool outputs that no attack could be found. The circuit is thus t-probing secure. The complete process
is described in Figure 11.

The second example is based on a standard shared circuit that takes 3 shared inputs and then
performs 5 operations, namely 2 sharewise additions (XOR) and 3 ISW-multiplications (AND). The three
AND instructions take five distinct inputs, which means that there are five possible target vectors for an
attack to be mounted. For the two first target vectors, no attack could be found as the tool expressed
all the multiplications in the circuit with two sets G1 and G2 without finding any attack. For the third
target vector, after the construction of G2 an attack was found as the target vector belonged to the span
of the set O2. The complete process is described in Figure 12. Moreover, we verified that by adding a
refresh gadget on the operand on which our tool find an attack prior to the multiplication where it is
used, the tool is not able any more to find an attack on the new circuit for this example. The results can
be find in Figure 15 of Appendix E.

[x1] [x2] [x3]

[⊕] [⊕]

[⊗] [⊗] [⊗]

→

;; 3

XOR 1 2

XOR 2 3

AND 1 2

AND 4 5

AND 4 3

→

list_comb = [1,3,2,4,6]

comb = 1

=> NO ATTACK (G3 = G2)

G: [[(1 ,2)], [(3,6) ,(3,4)], []]

O: [[2], [6, 4], []]

comb = 3

=> NO ATTACK (G3 = G2)

G: [[(3 ,6) ,(3,4)], [(1,2)], []]

O: [[6, 4], [2], []]

comb = 2

=> ATTACK

G: [[(1 ,2)], [(3,6) ,(3,4)]]

O: [[1], [6, 4]]

(’Attack found: 2 in span [1,6,4]’)

Fig. 12. New method applied on example 2.

6.2 Application to AES s-box

At Eurocrypt 2017, Goudarzi and Rivain [13] proposed an efficient software implementation of the s-box of
the AES for higher-order masking. Based on the Boolean circuit of Boyer et al. [5], their implementation
evaluates the s-box on a state under bitslice representation with only 32 AND gates. In order to be t-
probing secure without doubling the number of shares in the encoding of sensitive variables, a conservative
choice was made to add a refresh gadget prior to each multiplication. As explained in Section 1, a major
drawback of such conservative approach is the performance overhead induced by the number of calls to
refresh gadgets due to the randomness usage.

In order to obtain efficient implementations of the AES s-box and to be tight on the number of
randomness requirement, we have applied our tool to the circuit of the s-box reordered by Goudarzi and
Rivain without any refreshing gadget. Interestingly, we obtained that no attack can be found for any
masking order. More precisely, the tool first identified 36 distinct target vectors out of the 64 possible
operands of multiplication gadgets (it can be easily checked on the circuit found in Section 6 of [13]).
For each of the 36 target vectors, the corresponding set G1 is constructed. Then, for every variable the
algorithm stops as the respective sets G2 are always equal to the respective sets G1. The complete report
of the tool results can be found in Table 2 of Appendix F. In the first and third columns of Table 2, the
expressions of the target vectors as linear combinations of input variables or multiplications input are
given and in the second and fourth columns, the corresponding sets G1 are displayed, all in hexadecimal
form.

To prove the security of the AES s-box circuit, our tool took only 427 ms. This speed is mainly due
to the fact that for each possible target variable, only the set G1 is computed. For comparison, we looked

18

at the time taken by the maskVerif tool of [1]. For a masking order t = 2, maskVerif found no attack
in 35.9 sec and for t = 3 in approximately 10 hours.

2 4 6 8 10

0.5

1

1.5

·105

t

cl
o
ck

cy
cl

es

[13] with TRNG-1

[13] withTRNG-2

Our implementation with TRNG-1

Our implementation with TRNG-2

Fig. 13. Timings of a t-probing secure AES s-box implementation.

For the sake of comparison, we also applied the maskComp tool on the same circuit. We obtained that
maskComp adds refresh gadgets prior to each multiplication in the circuit, transforming it into a new t-NI
secure circuit. Since our tool has shown that the circuit is t-probing secure with no refresh gadgets, adding
those refresh gadgets implies an overhead in the t-probing security that can lead to less efficient practical
implementations. As an illustration, we have implemented the AES s-box circuit in bitslice for a generic
masking order to see the impact in performances between a full refresh approach (i.e. the conservative
choice of Goudarzi and Rivain and the result of maskComp) and a no refresh approach (our new tool).
Each of this two approaches produces a circuit that is at least t-probing secure for any masking order t
and that is securely composable with other circuits (since maskComp produce a t-NI circuit and from the
result of Section 5. To be consistent with the state of the art, the randomness in our implementations
can be obtained from a TRNG with two different settings: a first setting with a free TRNG that outputs
fresh randomness every 10 clock cycles (as in [13]) and a second setting with a constrained TRNG that
outputs fresh randomness every 80 clock cycles (as in [15]). The performance results can be found in
Table 1. For both approaches, the number of refresh gadgets used and the number of randomness needed
are displayed. Then, the timing in clock cycles for both settings are shown. We can see that our tool
allows to divide by 2 the number of required randomness and benefits from an asymptotic gain of up to
43% in speed. The comparison of the timings for several masking orders are depicted in Figure 13.

Nb. of Refresh Nb. of Random Timing (Set. 1) Timing (Set. 2)

[13] 32 32 t(t− 1) 408 t2 + 928 t + 1262 1864 t2 − 528 t + 1262

this paper 0 16 t(t− 1) 295.5 t2 + 905.5 t + 872 1069 t2 + 132 t + 872

Table 1. Performance results of the implementation AES s-box depending on the number of refresh gadgets.

Acknowledgments

We would like to thank François-Xavier Standaert and Gaëtan Cassiers for their in-depth review and
helpful comments.

19

References

1. G. Barthe, S. Beläıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y. Strub. Verified proofs of higher-
order masking. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 457–485. Springer, Heidelberg, Apr. 2015.

2. G. Barthe, S. Beläıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini. Strong non-
interference and type-directed higher-order masking. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, editors, ACM CCS 16, pages 116–129. ACM Press, Oct. 2016.

3. G. Barthe, S. Beläıd, T. Espitau, P. Fouque, B. Grégoire, M. Rossi, and M. Tibouchi. Masking the GLP
lattice-based signature scheme at any order. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April
29 - May 3, 2018 Proceedings, Part II, pages 354–384, 2018.

4. R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. Formal verification of masked
hardware implementations in the presence of glitches. In Advances in Cryptology - EUROCRYPT 2018 -
37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 321–353, 2018.

5. J. Boyar, P. Matthews, and R. Peralta. Logic minimization techniques with applications to cryptology.
Journal of Cryptology, 26(2):280–312, Apr. 2013.

6. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage model. In M. Joye and J.-J.
Quisquater, editors, CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, Heidelberg, Aug. 2004.

7. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power-analysis
attacks. In M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer, Heidelberg,
Aug. 1999.

8. J.-S. Coron. Formal verification of side-channel countermeasures via elementary circuit transformations.
Cryptology ePrint Archive, Report 2017/879, 2017. http://eprint.iacr.org/2017/879.

9. J.-S. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security and mask refreshing. In
S. Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 410–424. Springer, Heidelberg, Mar. 2014.

10. J.-S. Coron, F. Rondepierre, and R. Zeitoun. High order masking of look-up tables with common shares.
Cryptology ePrint Archive, Report 2017/271, 2017. http://eprint.iacr.org/2017/271.

11. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing attacks to noisy leakage. In
P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 423–440. Springer,
Heidelberg, May 2014.

12. L. Goubin and J. Patarin. DES and differential power analysis (the “duplication” method). In Çetin
Kaya. Koç and C. Paar, editors, CHES’99, volume 1717 of LNCS, pages 158–172. Springer, Heidelberg, Aug.
1999.

13. D. Goudarzi and M. Rivain. How fast can higher-order masking be in software? In J. Coron and J. B.
Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 567–597. Springer, Heidelberg,
May 2017.

14. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. In D. Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, Aug. 2003.

15. A. Journault and F.-X. Standaert. Very high order masking: Efficient implementation and security evalua-
tion. In W. Fischer and N. Homma, editors, CHES 2017, volume 10529 of LNCS, pages 623–643. Springer,
Heidelberg, Sept. 2017.

16. T. S. Messerges. Using second-order power analysis to attack DPA resistant software. In Çetin Kaya. Koç
and C. Paar, editors, CHES 2000, volume 1965 of LNCS, pages 238–251. Springer, Heidelberg, Aug. 2000.

17. S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In M. Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 278–296. Springer, Heidelberg, Feb. 2004.

18. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security proof. In T. Johansson
and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer, Heidelberg,
May 2013.

19. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In S. Mangard and F.-X. Standaert,
editors, CHES 2010, volume 6225 of LNCS, pages 413–427. Springer, Heidelberg, Aug. 2010.

20. R. Zhang, S. Qiu, and Y. Zhou. Further improving efficiency of higher order masking schemes by decreasing
randomness complexity. IEEE Trans. Information Forensics and Security, 12(11):2590–2598, 2017.

20

Supplementary material

A Proof of Lemma 1

Proof. Let I ⊆ {0, 1, . . . , t} such that |I| = t. From Definition 3, consider an adversary A which outputs
a set of probes P matching the output shares [y]I . The t-SNI property implies that there exists an
algorithm S performing a perfect simulation of [y]I independently of [x1], . . . , [xn], that is

P([x1], . . . , [xn], [y]I) = P([x1], . . . , [xn]) · P([y]I) . (12)

Moreover, since for a given y = f(x1, . . . , xn), the sharing [y] is perfectly defined by [y]I , the above
rewrites

P([x1], . . . , [xn], [y]) = P([x1], . . . , [xn]) · P([y]) , (13)

which implies the mutual independence between [y] and [x1], . . . , [xn].
Let us now show that [y] is a uniform sharing i.e. the t-tuple [y]I is uniformly distributed over Ft2, for

any I ⊆ {0, 1, . . . , t} such that |I| = t. We proceed by contradiction: we assume that [y] is not a uniform
sharing and then show that C cannot be t-SNI. If [y] is not a uniform sharing, then the t-tuple [y]I is
not uniformly distributed over Ft2. This implies that there exists a set J ⊆ I with J 6= ∅ such that the
sum

∑
i∈J yi is not uniformly distributed over F2. Then for any y ∈ F2, we have∑

i∈J0,tK\J

yi +
∑
i∈J

yi = y , (14)

which implies that both [y]J and [y]J0,tK\J are not uniformly distributed and statistically dependent on
y. This implies that the tuple [y]J cannot be perfectly simulated independently of y which contradicts
the t-SNI property. �

22

B Proof of Section 3

B.1 Proof of the reduction from Game 0 to Game 1

We first show:

∀A1, ∃S1 wins Game 1⇒ ∀A0, ∃S0 wins the t-probing security game (15)

Let us consider an adversary A0 that outputs some values x1, . . . , xn ∈ F2 and a set of probes P. By
definition, P can be partitioned into three subsets of probes, i.e. P = Pa ∪Pr ∪Pm, where Pa represents
the probes on addition gadgets, Pr the probes on refresh gadgets, and Pm the probes on multiplication

gadgets. Let us denote by P(g)
r ⊆ Pr (resp. P(g)

m ⊆ Pm) the set of probes that point to the wires of the
refresh gadget of index g ∈ Gr (resp. the multiplication gadget of index g ∈ Gm). The t-SNI property of
the refresh and multiplication gadgets (see Definition 3) implies that:

– For every g ∈ Gr, there exists a simulator S(g)SNI that given the set of probes P(g)
r (on the internal

wires of gadget g), outputs a set of probes P ′r
(g) ⊆ Ig (on the input shares of gadget g) such that

|P ′r
(g)| = |P(g)

r |, and given the input shares pointed by P ′r
(g)

, outputs a perfect simulation of the

internal wires pointed by P(g)
r ;

– For every g ∈ Gm, there exists a simulator S(g)SNI that given the set of probes P(g)
m (on the internal wires

of gadget g), outputs a set of pairs of probes P ′m
(g) ⊆ Ig×Jg (on the input shares of each operand of

gadget g) such that |P ′m
(g)| = |P(g)

m |, and given the input shares pointed by P ′m
(g)

, outputs a perfect

simulation of the internal wires pointed by P(g)
m ;

We define A1 as the adversary that returns the same values x1, . . . , xn ∈ F2 as A0 and the set of
probes P ′ = P ′a ∪ P ′r ∪ P ′m defined from P as:

P ′r =
⋃
g∈Gr

P ′r
(g)

, P ′m =
⋃
g∈Gm

P ′m
(g)

, P ′a = Pa

where, P ′r
(g)

and P ′m
(g)

denote the sets of probes defined by the simulators S(g)SNI on input P(g)
r and P(g)

m

respectively. From the left side of implication (15), there exists a simulator S1 that wins Game 1 for the
inputs (x1, . . . , xn) and the built set of probes P ′. We define the simulator S0 as the simulator that com-
putes P ′ from P as explained above and then call S1 to get a perfect simulation of C([x1], . . . , [xn])P′ .

Then S0 applies the simulator S(g)SNI to get a perfect simulation of the internal wires pointed by P(g)
r

(resp. P(g)
m) from the input shares pointed by P ′r

(g)
(resp. P ′m

(g)
) which are obtained from the evalu-

ation C([x1], . . . , [xn])P′ . This way S0 obtains (and returns) a perfect simulation of C([x1], . . . , [xn])P
and the two experiments ExpReal(A0, C) and ExpSim(A0,S0, C) output identical distributions, which
demonstrates the implication (15).

Let us now show:

∀A0, ∃S0 wins the t-probing security game⇒ ∀A1, ∃S1 wins Game 1 (16)

By contraposition, we can equivalently show that

∃A1, ∀S1, S1 fails in Game 1

⇒ ∃A0, ∀S0, S0 fails in the t-probing security game (17)

Let us thus assume that an adversary A1 exists which outputs some values x1, . . . xn and a set of probes
P ′ = P ′a ∪P ′r ∪P ′m such that no algorithm S1 can output a perfect simulation of C([x1], . . . , [xn])P′ . We
show that we can then define an adversary A0 for which no simulator S0 can win the t-probing security
game. The adversary A0 outputs the same values x1, . . . xn as A1 and the set of probes P = Pa∪Pr∪Pm
such that

Pa = P ′a and Pr = P ′r (18)

We show in the following how to construct Pm so that no simulator S0 can output a perfect simulation
of C([x1], . . . , [xn])P .

23

If P ′m = ∅ then we have P = P ′ and the statement directly holds. Let us now consider P ′m = {(i, j)}.
From the left-side implication of 17, we get that no simulator S1 can perform a perfect simulation of

(v1, . . . , vq) = C([x1], . . . , [xn])P′ , (19)

where q = t+1. Without loss of generality we assume that v1 and v2 are the wires pointed by the indices
i and j. We can assume that there exists a simulator S0 computing a perfect simulation of (v3, . . . , vq),
i.e. the wires pointed by P ′a ∪ P ′r. (Otherwise we can simply define A0 as returning the set of probes
P ′a∪P ′r and (17) directly holds). We deduce that no simulator can achieve a perfect simulation of (v1, v2)
given (v3, . . . , vq). In a standard shared circuit, the shares in input of a multiplication gadget are linear
combinations of the input shares [x1], . . . , [xN] in input of the circuit or the shares in output of refresh
or multiplication gadgets. We hence get that v1 and v2 can be expressed as

v1 = f1(x1, . . . , xN) + g1(v3, . . . , vq) + r1

v2 = f2(x1, . . . , xN) + g2(v3, . . . , vq) + r2

for some deterministic function f1, f2, g1, g2 and where

(r1, r2) ∈ {(0, 0), (0, r), (r, 0), (r, r)}

for some uniform random r over F2. (Note that r1 and r2 cannot be uniform independent random elements
of F2 otherwise the (v1, v2) could be straightforwardly simulated). We then have four cases:

– For (r1, r2) = (0, 0), we have either f1 or f2 non constant (otherwise (v1, v2) could be simulated). If
f1 (resp. f2) is non constant, then v1 (resp. v2) cannot be simulated given (v3, . . . , vq) and we define
Pm = {i} (resp. Pm = {j}).

– For (r1, r2) = (0, r), we have f1 non constant (otherwise (v1, v2) could be simulated). Then v1 cannot
be simulated given (v3, . . . , vq) and we define Pm = {i}.

– For (r1, r2) = (r, 0), we have f2 non constant (otherwise (v1, v2) could be simulated). Then v2 cannot
be simulated given (v3, . . . , vq) and we define Pm = {j}.

– For (r1, r2) = (r, r), we have f1 + f2 non constant (otherwise (v1, v2) could be simulated).3 Then the
product v1 · v2 satisfies

v1 · v2 =
(
[f1 + f2](x1, . . . , xN) + δ + r′

)
· r′

where δ = [g1 +g2](v3, . . . , vq) is a constant given (v3, . . . , vq) and where r′ = v2 is a uniform random
element of F2. It is not hard to see that the distribution of v1 · v2 cannot be simulated without
knowing [f1 + f2](x1, . . . , xN). We then define Pm = {ψ(i, j)} where ψ(i, j) denotes the index of the
cross-product wi · wj computed in the target ISW-multiplication gadget, with wi and wj denoting
the wires indexed by i and j.

For the general case where P ′m contains more than one pair, we can proceed as above to show that
no S0 can simulate C([x1], . . . , [xn])P(1) where P(1) is obtained by replacing one pair (i, j) from P ′ by
a single index i, j or ψ(i, j) as described above. Then we reiterate the same principle to show that no
S0 can simulate C([x1], . . . , [xn])P(2) where P(2) is obtained from P(1) by replacing one more pair (i, j)
by a single index. And so on until the set of probes has no more pairs but only t wire indices as in the
original probing security game. �

B.2 Proof of the reduction from Game 1 to Game 2

Without loss of generality, we assume that the Flatten transformation does not change the gadget index-
ing. We first show:

∀A2, ∃S2 wins Game 2⇒ ∀A1, ∃S1 wins Game 1 (⇔ C t-probing secure) (20)

For each adversary A1 returning (x1, . . . , xn) and P ′, we define A2 as the adversary that returns the
same choice of probes P ′ and the extended input (x1, . . . , xN) such that the n first elements matches
the choice of A1 and the N − n matches the decoded outputs of the corresponding multiplication and
refresh gadgets. Then, by Lemma 1, the t-SNI property of multiplication and refresh gadgets implies
that each sharing in output of these gadgets is independent of the input sharings. Since all the probes in

3 Indeed if f1 = f2 then (v1, v2) can be simulated by (g1(· · ·) + r′, g2(· · ·) + r′) for some uniform random r′.

24

P ′ on multiplication and refresh gadgets points to input shares only, the output of each such gadget can
be replaced by a fresh uniform sharing of the underlying plain value (which deterministically depends
on x1, . . . , xn) without modifying the evaluation. We hence get that C([x1], . . . , [xn])P′ in Game 1
and C ′([x1], . . . , [xN])P′ in Game 2 output identical distributions. We can then simply define S1 as the
simulator S2 winning against the defined adversary A2. We thus get a simulator that outputs the same
distribution as ExpReal1 from which we get (20). Let us now show:

∀A1, ∃S1 wins Game 1 (⇔ C t-probing secure)⇒ ∀A2, ∃S2 wins Game 2 (21)

For each adversary A2 returning (x1, . . . , xN) and P ′, we define A1 as the adversary that returns the
same choice of probes P ′ and the truncated input with the n first elements of (x1, . . . , xn). For the
same reason as above, the evaluations C([x1], . . . , [xn])P′ in Game 1 and C ′([x1], . . . , [xN])P′ in Game
2 then output identical distributions and we can simply define S2 as the simulator S1 winning against
the defined adversary A1. We thus get a simulator that outputs the same distribution as ExpReal2 from
which we get (21). �

B.3 Proof of the reduction from Game 2 to Game 3

We first show:

∀A2, ∃S2 wins Game 2⇒ ∀A3, ∃S3 wins Game 3 (⇔ C t-probing secure) (22)

For each adversary A3 that returns a set of inputs (x1, . . . , xN) and a set probes P ′′, we define an
adversary A2 that outputs the same set of inputs and the same set of probes P ′′. By assumption,
there exists S2 that can perfectly simulate C ′([x1], . . . , [xN])P′′ and win Game 2. As a consequence, the
simulator S3 = S2 wins Game 3 as well. We now show:

∀A3, ∃S3 wins Game 3⇒ ∀A2, ∃S2 wins Game 2 (⇔ C t-probing secure) (23)

which is equivalent to show the contrapositive statement:

∃A2, ∀S2 fails Game 2⇒ ∃A3, ∀S3 fails Game 3 (⇔ C t-probing secure) (24)

We denote by (x1, . . . , xN) the set of inputs and by P ′ the set of probes returned by A2. As previously,
we denote P ′ = P ′a ∪P ′r ∪P ′m such that P ′a are the probes on addition gadgets, P ′r are probes on refresh
gadgets inputs, and P ′m are probes on pairs of inputs of multiplication gadgets. We further denote by
M0, . . . , Mt the induced matrices from the probes P ′ as defined in Lemma 2. By assumption of the
contrapositive statement (24), we have

Im(M0) ∩ Im(M1) ∩ · · · ∩ Im(Mt) 6= ∅ .

Moreover, we have q ≤ 2t implying that at least one Mj matrix has a single row and consequently the
above intersection is of dimension one i.e. it is defined as the span of a single vector −→w ∈ FN2 :

Im(M0) ∩ Im(M1) ∩ · · · ∩ Im(Mt) = 〈−→w 〉 . (25)

Since −→w is the single row of at least one Mj matrix we have that −→w is directly induced by a probed
variable vk. In other words, a sharing (−→w · −→x0, . . . ,−→w · −→xt) appears in the circuit (either as input of
some gadget, or as output of an addition gadget). We now argue that this sharing must appear in input
of a multiplication gadget. Assume by contradiction that this sharing does not appear in input of a
multiplication gadget, then it appears in a refresh or an addition gadget. Let us then denote by tar
the number of matrices Mj that have −→w as row (i.e. the jth share of the considered sharing has been
probed). The remaining t − tar matrices Mj have at least 2 rows (since otherwise their image does not
include −→w). We deduce that q ≥ tar + 2(t − tar) = 2t + tar which is impossible since q ≤ 2t. We hence
obtain that −→w must be induced by a sharing (−→w · −→x0, . . . ,−→w · −→xt) in input of a multiplication gadget.

We can then define A3 as the adversary that outputs the same set of inputs than A2 and a set of
probes P ′′ defined according to P ′ as follows:

– for every pair (i1, i2) ∈ P ′m, include (i1, i2) to P ′′,
– for every probe i ∈ P ′a ∪ P ′r, let j be the share index corresponding to the wire indexed by i, then

include the wire index of the multiplication input share −→w · −→xj .

It is not hard to see that the Mj matrices induced by the new set of probes P ′′ still satisfies (25)
which implies that no simulator S3 can produce a perfect simulation of C ′([x1], . . . , [xN])P′′ . In other
words, our contrapositive statement (24) holds which concludes the proof. �

25

C Proof of Propositions 7, 8, 9, and 10

Proof (Proposition 7). To prove this proposition, we demonstrate by induction the following invariant:

Invariant: ∀s ∈ N, ∃ t ∈ N such that with t carefully chosen probes on multiplications from Gi, we are
able to get:

– r matrices Mj such that −→w ∈ Im(Mj), 0 ≤ j ≤ r − 1, where r = t+ 1− s;
– s matrices Mj such that 〈Oi〉 ⊆ Im(Mj), r ≤ j ≤ t.

We show that the invariant holds for i = 1. Let s ∈ N and let `1 = |O1|. If we place s probes on
each multiplication gadget g ∈ G1, we can have r = s · `1 matrices Mj = rows(−→w), and s matrices
Mj = rows(O1). We thus get the desired invariant with t = r + s− 1 = s(`1 + 1)− 1.

We now show that the invariant holds for i + 1 if it holds for i. Let s ∈ N and let `i+1 = |Oi+1|.
By assumption, for s′ = s · (`i+1 + 1), there exists t′ such that with t′ carefully chosen probes on
multiplications from Gi, we are able to get:

– r′ matrices Mj such that −→w ∈ Im(Mj), 0 ≤ j ≤ r′ − 1, where r′ = t′ + 1− s′;
– s′ matrices Mj such that 〈Oi〉 ⊆ Im(Mj), r

′ ≤ j ≤ t′.

In what follows, the s′ last matrices are called the unfinished matrices. If we place s probes on each
multiplication gadget g ∈ Gi+1, we can add a vector operand from −→w +〈Oi+1〉 to s ·`i+1 of the unfinished
matrices. We thus obtain s · `i+1 more matrices Mj such that −→w ∈ Im(Mj). We can further add all the
`i+1 operands from Oi+1 to the s remaining unfinished matrices. We then get s matrices Mj such that
〈Oi+1〉 ⊆ Im(Mj), which show the inductive statement.

From the above invariant, we can easily demonstrate the proposition statement. Indeed if we have
−→w ∈ 〈Oi〉 for some i ∈ N then the invariant implies that for s = 1, there exists t ∈ N and P = {(g, j1, j2)}
such that −→w ∈ Im(Mj) for 0 ≤ j ≤ t and 〈Oi〉 ⊆ Im(Mt), implying −→w ∈ Im(Mt) as well. We then get⋂t
j=0 Im(Mj) = −→w . �

Proof (Proposition 8). Let us denote P = P1 ∪ P2 such that

P1 = {(g, j1, j2) ; g ∈ Gi} and P2 = {(g, j1, j2) ; g /∈ Gi}

with |P1| = t1 and |P2| = t2, with t1 + t2 = t. The set P1 provides at most t1 matrices Mj such that
−→w ∈ Im(Mj) plus t1 operand vectors from Oi to be distributed among the remaining matrices. Then

the set P2 provides 2t2 additional vectors from {−→ag,
−→
bg ; g /∈ Gi} to be distributed among the remaining

matrices. However none of these additional vectors is included −→w + 〈Oi〉 which implies that at least two
of them are necessary to produce one additional matrix Mj such that −→w ∈ Im(Mj). We conclude that

we can get at most t1 + t2 = t matrices Mj such that −→w ∈ Im(Mj) which implies −→w /∈
⋂t
j=0 Im(Mj). �

Proof (Proof of Proposition 9). Let C be a standard shared circuit augmented with t-SNI refresh gadgets
operating on the left operand of each multiplication gadget. From Corollary 1, the analysis of the t-
probing security of C can be reduced to the analysis of the t-probing security of Flatten(C). In the latter,
each multiplication takes as its left operand a new fresh encoding. Now let us assume that there exists a
probing attack on C. We know from the linear algebra formulation above that this attack is characterized
by a vector −→w and a set of t+ 1 matrices such that

Im(M0) ∩ Im(M1) ∩ · · · ∩ Im(Mt) = 〈−→w 〉 . (26)

We also know that there exists at least one index 0 ≤ i ≤ t, such that matrix Mi is completely defined by
the row vector −→w . Now let us assume that −→w represents a probe on the left operand of a multiplication.
Since this operand is a new fresh encoding that is used nowhere else, then it cannot be recovered from
the linear combination of other operands. As a consequence, all the matrices must be defined by the
same row vector −→w . But at most t probes are available to target this last operand which is not enough to
feed the t+ 1 matrices and consequently leads to a contradiction. Let us now assume that −→w represents
a probe on the right operand of a multiplication. In that case, probes on right operands (including probe
−→w) can feed up to t matrices in order to fulfill Equation (26). Without loss of generality, we assume
these matrices to be M0, . . .Mt−1. The last matrix Mt is then necessarily built from probes on left
operands. Since all of them are fresh encodings, then Im(Mt) cannot include −→w , which gives the second
contradiction and completes the proof. �

26

Proof (Proposition 10). Let us consider a standard shared circuit C augmented with t-SNI refresh gadgets
operating on each one of its α flawed operands. For each of these α flawed operands represented by the
vector −→w , there are a certain number β of sets of probes associated to sets of matrices (M j

i)0≤i≤t for
(1 ≤ j ≤ β) whose intersecting images are equal to −→w . In each of these β sets of matrices, at least one
matrix is exactly equal to−→w . Refreshing the corresponding operand each time it is used in a multiplication
makes it impossible to get a matrix equal to −→w anymore in any of the β sets. As a consequence, all these
sets of probes do not lead to a probing attack anymore. Furthermore, since we only turned operands into
fresh encodings that are not reused, then this transformation do not lead to new probing attacks.

27

D SPN-based Block Ciphers

p

⊕
t-linear surjective circuit

S

L

⊕
t-linear surjective circuit

S

L

⊕

k

KS

KS

KS

.

c

t-linear surjective circuit

Fig. 14. Structure of an SPN-Based Block Cipher.

28

E Example 2 circuit with a refresh

[x1] [x2] [x3]

[⊕] [⊕]R

[⊗] [⊗] [⊗]

→

;; 3

XOR 1 2

XOR 2 3

REF 2

AND 1 6

AND 4 5

AND 4 3

→

list_comb = [3, 8, 6, 1, 4]

comb = 3

=> NO ATTACK (G3 = G2)

G: [[(3 ,6) ,(3,4)], [(1,8)], []]

O: [[6, 4], [8], []]

comb = 8

=> NO ATTACK (G2 = G1)

G: [[(1 ,8)], []]

O: [[1], []]

comb = 6

=> NO ATTACK (G2 = G1)

G: [[(3 ,6)], []]

O: [[3], []]

comb = 1

=> NO ATTACK (G2 = G1)

G: [[(1 ,8)], []]

O: [[8], []]

comb = 4

=> NO ATTACK (G2 = G1)

G: [[(3 ,4)], []]

O: [[3], []]

(’No attack found ’)

Fig. 15. New method applied on example 2 augmented with a refresh.

29

F Results for AES s-box

Table 2. Results for AES s-box circuit.

Target G1 Target G1
8E {(8E, 80), (96875, 8E)} C6 {(C6, 86), (418605, C6)}
72 {(9, 72), (C2D0B, 72)} 29B040 {(29B040, D9), (29B040, E7)}

3457E {(3457E, 1B040)} 21 {(21, 5F), (683645, 21)}
16875 {(16875, A0000)} 96875 {(96875, 8E), (96875, 80)}
C37B {(C37B, D835)} 44C37B {(44C37B, 41), (44C37B, 74)}
18605 {(18605, 36875)} 236875 {(5457E, 236875)}
D9 {(E7, D9), (29B040, D9)} 5F {(21, 5F), (683645, 5F)}

683645 {(683645, 5F), (683645, 21)} 5457E {(5457E, 87), (5457E, 236875), (5457E, F2)}
E7 {(E7, D9), (29B040, E7)} 86 {(C6, 86), (418605, 86)}

C2D0B {(C2D0B, 72), (C2D0B, 9)} 418605 {(418605, 86), (418605, C6)}
74 {(41, 74), (44C37B, 74)} D835 {(C37B, D835)}

A0000 {(16875, A0000)} 641B4E {(641B4E, 2D), (641B4E, 28)}
20D835 {(20D835, 59), (20D835, 69)} 28 {(28, 2D), (641B4E, 28)}
F2 {(87, F2), (5457E, F2)} 87 {(87, F2), (5457E, 87)}
69 {(69, 59), (20D835, 69)} 1B040 {(3457E, 1B040)}
9 {(9, 72), (C2D0B, 9)} 59 {(69, 59), (20D835, 59)}
2D {(28, 2D), (641B4E, 2D)} 80 {(8E, 80), (96875, 80)}
41 {(41, 74), (44C37B, 41)} 36875 {(18605, 36875)}

30

