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Abstract

We propose a detailed construction of Collision Resistance Preimage Sampleable Func-

tions (CRPSF) over any cyclotomic field based on NTRU, hence give a provably secure NTRU

Signature scheme (NTRUSign), which is strongly existentially unforgeable under adaptive

chosen-message attacks in the random oracle module. The security of CRPSF (NTRUSign)

is reduced to the corresponding small integer solution problem over rings (Ring-SIS). More

precisely, the security of our scheme is based on the worst-case approximate shortest in-

dependent vectors problem (SIVPγ) over ideal lattices. For any fixed cyclotomic field, we

give a probabilistic polynomial time (PPT) key generation algorithm which shows how to

extend the secret key of NTRUEncrypt to the secret key of NTRUSign. This conversion is

important for constructions of many cryptographic primitives based on NTRU, for example,

CRPSF, NTRUSign, identity-based encryption and identity-based signature.

We also delve back into former construction of NTRUEncrypt and enrich the choices of the

module q. Some useful results about q-ary lattices, regularity and uniformity of distribution

of the public key of NTRUEncrypt are also generalized to more general algebraic field K, as

long as K is Galois over Q.

Keywords: NTRU, Ideal lattice, Canonical embedding, Algebraic fields, CRPSF, Ring-

LWE, Ring-SIS

1 Introduction

Cryptographic primitives based on NTRU can be traced back to 1996, in this year, the

first NTRUEncrypt was devised by Hoffstein, Pipher and Silverman in [22]. NTRUEncrypt is

one of the fastest known lattice-based cryptosystems as testified by its inclusion in the IEEE
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P1363 standard and regarded as an alternative to RSA and ECC, due to its moderate key

sizes, remarkable performance and potential capacity of resistance to quantum computers.

These properties also hold for other NTRU-based cryptographic primitives, such as identity-

based encryption (IBE) [11], fully homomorphic encryption [4, 30], digital signatures [21]

and identity-based signature (IBS) [48]. Meanwhile, a batch of cryptanalysis works were

proposed aiming at NTRU family [1, 7−9, 12, 14, 16, 19, 24, 26, 45].

Like NTRUEncrypt, the security of early NTRU Signature schemes is also heuristic and

lacks a solid mathematical proof. The first construction of NTRU Signature Scheme (NSS)

is [23], but it succumbed to attacks showed in [15, 18]. The commonly used and discussed

NTRU signature scheme is NTRUSign, which was proposed in [21]. Also, it went through

a break-and-repair development history [12, 19, 26, 35, 36]. Provably secure NTRUEncrypt

has a relatively short development history [45−47, 49, 50], and to our knowledge, till now,

the only provably secure NTRU Signature scheme is proposed in [46]. The NTRUSign

constructed by Stehlé and Steinfeld is over power-of-two cyclotomic fields. They improved

their results in [45] and used a novel technique to bound the Dedekind Zeta function over

power-of-two cyclotomic fields. Then they estimated the running time of the traditional key

generation algorithm of NTRUSign by relating it to the Dedekind zeta function. In fact,

they constructed the first CRPSF [17] over power-of-two cyclotomic fields based on NTRU,

then, gave the first provably secure NTRUSign based on CRPSF.

CRPSF is an important cryptographic primitive proposed in [17]. It is a collection of

functions with some special properties. The functions are surjective, many-to-one, one-way

and collision-resistant trapdoor functions with uniform outputs. The trapdoor inversion algo-

rithm samples from among all the preimages of an image under an appropriate distribution.

Meanwhile, for any fixed function f and image y, the conditional probability that sampling

a particular preimage x (given f(x)=y) by some domain sampling algorithm is negligible.

Thanks to these excellent properties, we can design many cryptographic primitives based on

CRPSF, for example, signatures, IBE and IBS.

A natural open problem proposed by Stehlé and Steinfeld is that whether their construc-

tions can be extended to more general algebraic fields. Meanwhile, a theoretical study of

the security of NTRUEncrypt and NTRUSign is meaningful, due to their high efficiency and

industrial standardization. These are the main motivations of our research.

1.1 Our contributions

In this paper, we give concrete constructions of CRPSF and provably secure NTRUSign

over any cyclotomic field.

Our main contributions are summarized as follows.

For any fixed cyclotomic field, we theoretically analyze the key generation algorithm

of NTRUSign and give an absolute lower bound of success probability of this important

algorithm. This algorithm extends a secret key of NTRUEncrypt into a secret key of N-

TRUSign. It is standard for many cryptographic primitive constructions based on NTRU,

such as CRPSF, NTURSign, IBE and IBS.
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Based on this PPT key generation algorithm, we construct a CRPSF over any cyclotomic

field. Hence, by [17], we can construct a provably secure NTRUSign, which is strongly ex-

istentially unforgeable under adaptive chosen-message attacks in the random oracle module.

We also give a detailed construction of claw-free CRPSF as [17].

We revisit [47] and eliminate the requirement of q = 1 mod l for K = Q(ζl) with ζl a

primitive l-th root of unity. Meanwhile, results about q-ary lattices, regularity (a ring-based

leftover hash lemma) and uniformity of the distribution of the public key of NTRUEncrypt

are generalized to any algebraic number field K, as long as K is Galois over Q. These results

are also useful for many cryptographic primitive constructions.

1.2 Technique Overview

In this subsection, we give a technique overview about our results. Although the main

ideas of our NTRUEncrypt, CRPSF and NTRUSign follow Stehlé and Steinfeld’s routes,

there are also many differences. Techniques used in [47] are also vital.

The discussions of q-ary lattices, regularity results and construction of NTRUEncrypt

are essentially the same as [47]. The hardness results of Ring-LWE showed in [42] guarantee

the security of the corresponding modified NTRUEncrypts. The only slight difference is

the requirement of Gaussian parameter σ. The reason why we constrain our NTRUEncrypt

schemes in cyclotomic fields is that we want to use the decoding basis of R∨ (here, R∨ is the

dual lattice of R). These good bases, together with canonical embedding, make it possible

to bound the decryption error by using the same method for any cyclotomic field. We don’t

know if there is such a good basis for general algebraic fields. If a number field K (which is

Galois over Q) admits such a basis for R∨, we can design our NTRUEncrypt in K by using

similar techniques.

For NTRUSign, techniques described in [21] and [46] are vital. They showed how to

extend a secret key of NTRUEncrypt to a secret key of NTRUSign. This conversion forms

the key generation algorithm and is described as follows:

Input: n, q ∈ Z+, σ > 0.

Output: A key pair (sk, pk) ∈ R2×2 ×R×q .

1. Sample f from DR,σ, if (f mod q) /∈ R×q , resample.

2. Sample g from DR,σ, if (g mod q) /∈ R×q , resample.

3. If ||f || ≥
√
nσ or ||g|| ≥

√
nσ, restart.

4. If (f, g) 6= R, restart.

5. Compute Fq, Gq ∈ R such that f ·Gq − g ·Fq = q, e.g., using a Hermite Normal Form

algorithm in [5].

6. Use Babai rounding nearest plane algorithm to approximate (Fq, Gq) in the lattice

spanned by (f, g), let r(f, g) be the output, set (F,G) = (Fq, Gq) − r(f, g) for some

r ∈ R.

7. If ||(F,G)|| > nσ
√
l, restart.
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8. Return secret key sk =

[
f g

F G

]
and public key pk = h = g · f−1 ∈ R×q .

Here, R is the ring of integers of K = Q(ζl), n = ϕ(l) and R×q is the set of invertible elements

of Rq = R/(qR). The elements f and g are the secret key of traditional NTRUEncrypt.

Discrete Gaussian distribution (DR,σ) could insure that elements f and g are short. In fact,

the secret key generated by this algorithm is a short basis of the NTRU lattice Λqh = {(x, y) ∈
R2 : y = hx mod qR}, since Λqh = SpanR{(f, g), (F,G)}. We want to follow the routine

of [17], that is to say, a short enough ‘trapdoor’ basis of Λqh is necessary. This explains the

meaning of Step 5 and 6. Meanwhile, Babai’s algorithm ensures that Step 7 would pass (this

algorithm would not restart in Step 7) with high probability. Gaussian heuristic implies that

try to find the secret key only with h is equivalent to solve the SVPγ problem over Λqh with

γ ≤ Õ(n2), which is a very hard problem. The most annoying part is Step 4. We prove that,

for appropriate choices of parameters, the probability that Step 4 does not cause a restart

is ≈ 1
ζK(2) , where ζK(2) is the Dedekind Zeta function over K. Meanwhile, ζK(2)’s have an

absolute upper bound for all cyclotomic fields. Therefore, the key generation algorithm is a

PPT algorithm, as desired.

The construction of CRPSF is as follows.

1. TrapGen(1n, q, σ): By running the key generation algorithm described above, we get

a public key h = g · f−1 ∈ (Rq)
× and a private key sk =

[
f g

F G

]
. The key h defines

function fh(z) = fh((z1, z2)) = hz1 − z2 ∈ Rq with domain Dn = {z ∈ R2 : ||z|| <
s
√

2n} and range Rn = Rq. The trapdoor string for fh is sk.

2. SampleDom(1n, q, s): Sample z ←↩ DR2,s, if ||z|| ≥ s ·
√

2n, resample.

3. SamplePre(sk, t): To find a preimage in Dn for a target t ∈ Rn = Rq under fh

by using the trapdoor sk, sample z ←↩ DΛqh+c,s with Λqh = {(z1, z2) ∈ R2 : z2 =

hz1 mod qR} and c = (1, h− t). Return z.

Regularity result over any fixed cyclotomic field guarantees the uniformity of outputs of

our CRPSF. Discrete Gaussian sampler [39] makes it possible that we can sample a preimage

of any image with trapdoor basis by using SamplePre algorithm for appropriate parameters.

Meanwhile, note that for any fixed function fh and any image t, the preimages of t form the

set Λqh+c for c = (1, h− t), thus the properties of discrete Gaussian distribution ensure that

our design fulfils the requirement of minimum entropy. The collision resistance follows from

the hardness of corresponding Ring-SIS problem, even with some additional rejection by the

key generation algorithm. Once we get a CRPSF, we can give a provably secure NTRUSign

that is strongly existentially unforgeable under adaptive chosen-message attacks, by using the

constructions in [17] directly. Like NTRUEncrypt, we constrain our construction of CRPSF

(NTRUSign) in cyclotomic fields so that we can use the good basis of R (the powerful basis)

and R∨ (the decoding basis). These good bases and canonical embedding help us to bound

the key generation algorithm (estimate of norms) and get tighter lower bounds of the module

q and security parameter γ (SIVPγ) by using the same method for any cyclotomic field.
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Though it may be a little redundant, we still stress that our CRPSF has two crucial

properties for security in cryptographic applications as stated in [17]. First, the output is

statistically close to uniform over the range. Second, the SamplePre algorithm does not

just find an arbitrary preimage of t, but actually samples from among all its preimages under

a discrete Gaussian over Λqh. These properties imply that there are two (nearly) equivalent

ways of choosing a pair (z, t = fh(z)): either choose z from the input distribution and

compute t = fh(z), or choose t uniformly at random and sample z from f−1
h (t). These

properties make CRPSF ‘as good as’ trapdoor permutations in certain applications.

In our constructions, the module q is Õ(n8) and the security parameter γ is also Õ(n8).

Like provably secure NTRUEncrypt, they are too large for practicability. This is a common

shortcoming for provably secure NTRU families. Though our construction may be less ef-

ficiency, it provides an important support for designing NTRUSign over general cyclotomic

rings with relative small parameters (with no provably secure guarantee, but the key gener-

ation algorithm is PPT by our results) and analyzing the security from the view of attacks.

How to reduce the magnitudes of parameters and improve the efficiency of the schemes are

important and meaningful open problems.

1.3 Organization

In Section 2, we introduce some notations and basic results that will be used in our

discussion. In Section 3, we give a new series of relevant results about some kinds of q-ary

lattices and regularity. These are important for us to analyze the key generation algorithm of

our NTRUEncrypt and to construct the NTRUEncrypt in Section 4. In Section 5, we mainly

analyze the key generation algorithm of CRPSF and NTRUSign. Detailed construction of

CRPSF is put in Section 6. In Section 7, we will discuss the NTRU signature scheme.

2 Preliminaries

In this section, we introduce some background results and notations.

2.1 Notations

Throughout this paper, l and n are positive integers. Set l̂ = l when l is odd and l̂ = l
2

when l is even. Functions ϕ(n) and µ(n) stand for the Euler function and the Möbius

function. We use [n] to denote the set {1, 2, · · · , n}. For p = 1, 2, · · · ,∞, we use || · ||p to

represent the lp norm corresponding to the canonical embedding. When p = 2, we usually

use || · || to represent the l2 norm. For any matrix M ∈ Cn×n, we use λi(M) stand for its

eigenvalues and si(M) stand for its singular values for i ∈ [n]. We arrange eigenvalues and

singular values by their magnitudes, i.e. λ1(M) ≥ · · · ≥ λn(M) and s1(M) ≥ · · · ≥ sn(M).

For two random variables X and Y , ∆(X,Y ) stands for their statistic distance. As usual,

E(X) and V ar(X) stand for the expectation and the variance of a random variable X. When
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we write X ←↩ ξ, we mean that the random variable X obeys to a distribution ξ. Function

rad represents the radical of a positive integer n, i.e. for n = pα1
1 · · · p

αk
k with different primes

pi, rad(n) =
∏k
i=1 pi. If S is a finite set, then |S| is its cardinality and U(S) is the uniform

distribution over S. Symbols Z+ and R+ stand for the sets of positive integers and positive

reals. Symbol log x represents log2 x for x ∈ R+.

2.2 Algebraic Fields, Space H and Geometry

Through out this paper, we consider the algebraic fields. Assume [K : Q] = n := r1 + 2r2

for r1, r2 ∈ Z+, there are n embeddings from K to C, the number of real embeddings is r1 and

the number of complex embeddings is 2r2. We define the canonical embedding σ on K, who

maps x ∈ K to (σ1(x), · · · , σn(x)) ∈ H, where H is a kind of Minkowski space in algebraic

number theory. Here we order the σi and define H = {(x1, · · · , xn) ∈ Rr1 ×C2r2 : xn+1−i =

xr1+i, ∀i ∈ [r2]}. H is isomorphic to Rn as an inner product space via the orthonormal

basis hi∈[n] defined as follows. Assume ej ∈ Cn be the vector with 1 in its j-th coordinate

and 0 elsewhere, i be an imaginary number which satisfies i2 = 1. We then set hj = ej for

1 ≤ j ≤ r1, hr1+j = 1√
2
(er1+j + en+1−j) and hn+1−j = i√

2
(er1+j − en+1−j) for 1 ≤ j ≤ r2.

Moreover, σ(K) ⊆ H ∼= KR := K ⊗Q R.

For any element x ∈ K, we can define the `p norm of x by ||x||p = ||σ(x)||p for p <∞ and

||x||∞ = maxi∈[n] |σi(x)|. Because multiplication of embedded elements is component-wise,

for any x, y ∈ K, we have ||x · y||p ≤ ||x||∞ · ||y||p for p ∈ {1, · · · ,∞}. The Trace and Norm

of x ∈ K is defined as usual, i.e. Tr(x) := TrK/Q(x) =
∑n
i=1 σi(x) and N(x) := NK/Q(x) =∏n

i=1 σi(x). The Norm is multiplicative: N(x · y) = N(x) · N(y). The Trace is Q-linear:

Tr(x+ y) = Tr(x) + Tr(y) and Tr(c ·x) = c ·Tr(x) for all x, y ∈ K and c ∈ Q. Also note that

Tr(x · y) =
∑n
i=1 σi(x)σi(y) =< σ(x), σ(y) >, so Tr(x · y) is a symmetric bilinear form akin

to the inner product of embeddings of x and y.

The discriminant ∆K of K is a measure of the geometry sparsity of its ring of integers.

Let α1, · · · , αn represent a Z basis of R, we can define ∆K = |(σi(αj))1≤i,j≤n|2, where | · |
represents the determinant of a matrix. In particular, the discriminant of the l-th cyclotomic

number field is

∆K = (−1)
n
2 ·

(
l∏

p|l p
1
p−1

)n
≤ nn,

where p runs over all prime factors of l and n = ϕ(l). An integral ideal I ⊆ R is a usual

ideal defined in the ring R and a fractional ideal J ⊆ K is a set such that dJ ⊆ R is an

integral ideal for some d ∈ R. It is well known that both I and J admit Z-basis and we

can require d ∈ Z. One can regard integral ideals as special cases of fractional ideals. For

any two fractional ideals I and J , the sum I + J is the set of all a+ b for a ∈ I and b ∈ J ,

and the product ideal I · J is the set of all finite sums of terms ab for a ∈ I and b ∈ J .

Multiplication extends to fractional ideals in the obvious way and the set of fractional ideals

forms a group under multiplication. Every fractional ideal can be represented as the quotient

of two coprime integral ideals and has an inverse ideal, written I−1, such that I · I−1 = R.
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The norm of an integral ideal is its index as an additive subgroup of R and the norm of a

fractional ideal J = A/B is defined as N(J) = N(A)
N(B) , where A and B are coprime integral

ideals of R.

Assume K = Q(α), then for any positive prime q, the ideal qR has a prime ideal de-

composition of the form qR =
∏g
i=1 q

ei
i . More precisely, assume that Φ(x) is the minimum

polynomial of α over Q, if q - |R/Z[α]|, Φ(x) =
∏g
i=1 Φeii (x) mod q. Each Φi(x) is a monic

irreducible polynomial in Zq[x] with deg(Φi(x)) = fi. qi = (q,Φi(x))R and the norm of qi is

qfi . We also have
∑g
i=1 eifi = n. When K/Q is a Galois extension, we have e1 = · · · = eg

and fi = · · · = fg, i.e. efg = n.

When K = Q(ζ) is a cyclotomic field, where ζ = ζl is a primitive l-th root of unity with

minimal polynomial Φl(x) =
∏
i|l(x

i−1)µ( li ) of degree n = ϕ(l), we have [K : Q] = n = ϕ(l),

and K ∼= Q[x]/Φl(x). Let q ∈ Z be a prime, then the factorization of the ideal qR is as

follows. Let d ≥ 0 be the largest integer such that qd divides l, let e = ϕ(qd) and let f ≥ 1

be the multiplicative order of q modulo l/qd. Then qR =
∏g
i=1 q

e
i , where qi are g = n/(ef)

different prime ideals, each of norm qf .

2.3 Lattice and Discretization

We define a lattice as a discrete additive subgroup of H and we only deal with full-

rank lattices. Assume B = {b1, · · · , bn} is a basis of a lattice Λ, we have Λ = L(B) =

{
∑n
i=1 zibi : zi ∈ Z}. The determinant of a lattice L(B) is defined as |det(B)|, which is

independent of the choice of basis B. The minimum distance λ1(Λ) of a lattice is the length

of a shortest nonzero lattice vector. We usually use the l2 norm, i.e. λ1(Λ) = min0 6=x∈Λ ||x||.
The dual lattice of Λ ⊆ H is defined as Λ∨ = {y ∈ H : ∀ x ∈ Λ, < x,y >=

∑n
i=1 xiyi ∈ Z}.

This is actually the complex conjugate of the dual lattice as usually defined in Cn. All of

the properties of the dual lattice that we use also hold for the conjugate dual. It is easy

to see that (Λ∨)∨ = Λ. If B = {bi} ⊆ H is a basis of a lattice, its dual basis D = {dj}
is characterized by < bi,dj >= δij , where δij is the Kronecker delta. It is obvious that

L(D) = L(B)∨.

For any fractional ideal I of K, we can represent I as Zβ1 + · · ·+ Zβn for some βi ∈ K,

i = 1, · · · , n. Then σ(I) is a lattice of H, and we call σ(I) an ideal lattice and identify I with

this lattice and associate with I all the usual lattice quantities. We have |∆K | = det(σ(R))2,

the squared determinant of the lattice σ(R). We also have det(σ(I)) = N(I) ·
√
|∆k|. The

following lemma from [27] gives upper and lower bounds on the minimum distance of an

ideal lattice in l2 norm.

Lemma 2.1. For any fractional ideal I in a number field K of degree n,

√
n ·N 1

n (I) ≤ λ1(I) ≤
√
n ·N 1

n (I) · |∆K |
1

2n .

For any fractional ideal I in K, its dual is defined as I∨ = {a ∈ K : Tr(aI) ⊆ Z}. It is

easy to verify (I∨)∨ = I, I∨ is a fractional ideal and I∨ embeds under σ as the dual lattice
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of I as defined before. In fact, an ideal of K and its inverse are related by multiplication

with the dual ideal R∨: I∨ = I−1 ·R∨. The factor R∨ is often called the codifferent, and its

inverse (R∨)−1-the different, which is in fact an ideal in R. For more details, one can refer

to [6].

One of the most famous lattice problems is SVP. Given a lattice basis B, try to find

a shortest vector in Λ\{0}, where Λ = L(B). The relaxed problem SVPγ is asking for a

nonzero lattice vector that is no longer than γ times the length of a solution of SVP. By

restricting SVP to the ideal lattice, we obtain Ideal-SVP. No polynomial quantum algorithm

is known to solve the worst-case SVPγ problem for γ ≤ poly(n) and also no algorithm is

known to perform non-negligibly better for ideal lattices than classic lattices. The (Ideal-

SIVPγ) SIVPγ problem is that given a basis of a lattice Λ of dimension n, try to find n linear

independent vectors x1, · · · , xn ∈ Λ such that max1≤i≤n ||xi|| ≤ γ · λn(Λ).

We now consider the discretization. As in [28], the goal of discretization is to convert a

continuous Gaussian into a Gaussian-like distribution. Given a lattice Λ = L(B), a point

x ∈ H and a point c ∈ H representing a lattice coset Λ+c, we want to discretize x to a point

y ∈ Λ + c, written y = bxeΛ+c. Here b·e denote some kinds of discretization operations. We

hope the length of y−x is not too large. To do this, we can sample a relatively short vector

f from Λ + (c−x), and output y = f +x. We require that the method used to choose f be

efficient and depend only on the desired coset Λ + (c− x). Such a procedure is called valid.

Three easy methods were described in [28]. We describe the formal definition as in [32],

a modified version of [28]. Define dxe to be the smallest integer that is bigger than or equal

to x for any x ∈ R.

Definition 2.2. If Bern denotes the Bernoulli distribution, then the univariate Reduction

distribution Red(a) = Bern(dae−a)−(dae−a) is the discrete probability distribution defined

for parameter a ∈ R as taking the values

• 1 + a− dae with probability dae − a,

• a− dae with probability 1− (dae − a).

A random variable R = (R1, · · · , Rn)T ∈ Rn has a multivariate Reduction distribution

R ∼ Red(a) on Rn for parameter a = (a1, · · · , an)T if its components Rj ∼ Red(aj) for

j = 1, · · · , n are independent univariate Reduction random variables.

We now describe the coordinate-wise rounding discretisation which is easy to use for

our applications. One can check the following definition defines a valid discretisation, more

details are in [32].

Definition 2.3. Suppose Λ = L(B) is a n-dimensional lattice in space H. For c ∈ H,

the coordinate-wise randomized rounding discretisation bXeBΛ+c of random variable X to

the lattice coset Λ + c with respect to the basis B is then defined by the conditional random

variable

(bXeBΛ+c|X = x) = bxeBΛ+c = x+BQx,c,

where Qx,c ∼ Red(B−1(c− x)).
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2.4 Basis for R and R∨

In our application, we hope that the matrices whose columns are consisted of the basis of

R or R∨ have smaller s1 and larger sn. So, we introduce the powerful basis and the decoding

basis as in [28]. We set τ be the automorphism of K that maps ζl to ζ−1
l = ζl−1

l , under the

canonical embedding it corresponds to complex conjugation σ(τ(a)) = σ(a).

Definition 2.4. The Powerful basis ~p of K = Q(ζl) and R = Z[ζl] is defined as follows:

• For a prime power l, define ~p to be the power basis (ζjl )(j∈{0,1,··· ,n−1}), treated as a

vector over R ⊆ K.

• For l having prime-power factorization l =
∏
lk =

∏
pαkk , define ~p = ⊗k ~pk, the tensor

product of the power basis ~pk of each Kk = Q(ζlk).

The Decoding basis of R∨ is ~d = τ(~p)∨, the dual of the conjugate of the powerful basis ~p.

Also note that τ(~p) is a Z-basis of R. Different bases of R (or R∨) are connected by some

unimodular matrice, hence the spectral norm (i.e. the s1) may have different magnitudes.

The following lemma comes from [28], which shows the estimates of s1(σ(~p)) and sn(σ(~p)).

Lemma 2.5. We have s1(σ(~p)) =
√
l̂, sn(σ(~p)) =

√
l

rad(l) , ||σ(~p)i||∞ = 1 and ||σ(~p)i|| =
√
n

for all i = 1, · · · , n.

We also need the estimates of s1(σ(~d)) and sn(σ(~d)). Assume that σ(~p) = T , Lemma

2.5 shows that s1(T ) =
√
l̂ and sn(T ) =

√
l

rad(l) . By the definitions of ~d and the dual

ideal, an easy computation shows that σ(~d) = (T ∗)−1. Hence we have sn(σ(~d)) = 1√
l̂
,

s1(σ(~d)) =
√

rad(l)
l . Moreover, one can similarly deduce that ||σ(~d)i|| ≤

√
rad(l)
l for all

i = 1, 2, · · · , n. The following definition is also useful.

Definition 2.6. Given a basis B of a fractional ideal J , for any x ∈ J with x = x1b1 +

· · · + xnbn, the B-coefficient embedding of x is defined as the vector (x1, · · · , xn) and the

B-coefficient embedding norm of x is defined as ||x||cB = (
∑n
i=1 x

2
i )

1
2 .

If we represent x ∈ R (or R∨) with respect to the powerful basis (or decoding basis), we

have √
l

rad(l)
||x||cσ(~p) ≤ ||σ(x)|| ≤

√
l̂||x||cσ(~p), for x ∈ R, (1)

and

1√
l̂
||x||c

σ(~d)
≤ ||σ(x)|| ≤

√
rad(l)

l
||x||c

σ(~d)
, for x ∈ R∨. (2)

We will omit the subscript σ(~d) of || · ||c
σ(~d)

in the following applications.
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When we write x mod qR∨, we use the representative element of the coset x + qR∨ as∑n
i=1 xi

~di with xi ∈ [− q2 ,
q
2 ). Similarly, for element x ∈ R, if we write x mod qR, we use

the representative element of the coset x + qR as
∑n
i=1 xi~pi with xi ∈ [− q2 ,

q
2 ). Notice that

R ⊆ R∨, any element of R can also be represented as a Z-linear combination of the decoding

basis. From now on, we only use the decoding basis of R∨ and the powerful basis of R.

2.5 Gaussian Distributions

For s > 0, c ∈ H, define the Gaussian function ρs,c : H → (0, 1] as ρs,c(x) = e−π
||x−c||2

s2 .

By normalizing this function we obtain the continuous Gaussian probability distribution

Ds,c of parameter s, whose density is given by s−n · ρs,c(x). We usually omit the subscript

c when it is 0. Let σ = (σ1, · · · , σn) ∈ (R+)
n

be a vector such that σr1+j = σn+1−j for

j ∈ {1, · · · , r2}, we can define the elliptical Gaussian distributions in the basis {hi}i≤n as

follows: a sample from Dr is given by
∑
i∈[n] xihi, where xi are chosen independently from

the Gaussian distribution Dσi over R. Note that, if we define a map ϕ : H → Rn by

ϕ(
∑
i∈[n] xihi) = (x1, · · · , xn), then Dσ is also a (elliptical) Gaussian distribution over Rn.

For a lattice Λ ⊆ H, σ > 0 and c ∈ H, we define the lattice Gaussian distribution of

support Λ, deviation σ and center c by DΛ,σ,c(x) =
ρσ,c(x)
ρσ,c(Λ) , for any x ∈ Λ. For δ > 0, we

define the smoothing parameter ηδ(Λ) as the smallest σ > 0 such that ρ 1
σ

(Λ∨ \0) ≤ δ. For σ

large enough, it is possible to efficiently sample according to a discrete Gaussian distribution.

In [39], an efficient algorithm is proposed to sample an element from DΛ,σ,c. Here we use B̃

to represent the Gram-Schmidt orthogonalization of B and regard the columns of B as a set

of vectors. For B = (b1, · · · , bn), define ||B|| = maxi ||bi||.

Theorem 2.7. There is a probabilistic polynomial time algorithm that, given a basis B of

an n-dimensional lattice Λ = L(B), a standard deviation σ ≥ ||B̃|| ·
√

log n, and a c ∈ H,

outputs a sample whose distribution is DΛ,σ,c.

We will use following lemmas from [33], [38], [3], [17] and [41].

Lemma 2.8. For any full-rank lattice Λ and positive real ε > 0, we have ηε(Λ) ≤
√

ln (2n(1+ 1
ε ))

π ·
λn(Λ).

Lemma 2.9. For any full-rank lattice Λ, c ∈ H, ε ∈ (0, 1) and σ ≥ ηε(Λ), we have

Prb←↩DΛ,σ,c [|| b− c|| ≥ σ
√
n] ≤ 1+ε

1−ε · 2
−n.

Lemma 2.10. For any full-rank lattice Λ and any positive real ε > 0, we have ηε(Λ) ≤√
ln (2n(1+ 1

ε ))

π · 1
λ∞1 (Λ∨) .

10



Lemma 2.11. Let Bn denote the Euclidean unit open ball. Then for any lattice Λ, σ > 0

and c ≥ σ√
2π

, we have

ρσ(Λ\(c
√
nBn)) < (

c

σ
·
√

2πe · e−π
c2

σ2 )n · ρσ(Λ).

Hence, Prx←↩DΛ,σ (||x|| ≥
√
nσ) < 2−2n.

Lemma 2.12. Let Λ
′ ⊆ Λ be full-rank lattices. For any c ∈ H, ε ∈ (0, 1/2) and σ ≥ ηε(Λ

′
),

we have ∆(DΛ,σ,c mod Λ
′
, U(Λ/Λ

′
)) ≤ 2ε.

Lemma 2.13. For any full-rank lattice Λ ⊆ H, c ∈ H, δ ∈ (0, 1), σ ≥ 2ηδ(Λ) and b ∈ Λ,

we have DΛ,σ,c(b) ≤ 1+δ
1−δ · 2

−n.

We also need the following adapted result on one-dimensional projections of discrete

Gaussians, which is proposed in [46]. It is helpful for us to estimate the norm of x−1 with

x←↩ DR,σ.

Lemma 2.14. For any full-rank lattice Λ ⊆ H (or Rn), c ∈ H (or Rn), δ ∈ (0, 1), t ≥
√

2π,

unit vector u ∈ H (or Rn) and σ ≥ t√
2π
· ηδ(Λ), we have

Prx←↩DΛ,σ,c(| < x− c,u > | ≤ σ

t
) ≤ 1 + δ

1− δ
·
√

2π

t
· e

1
2−

π
t2 ≤ 1 + δ

1− δ
·
√

2πe

t
.

Similarly, if σ ≥ ηδ(Λ), we have

Prx←↩DΛ,σ,c(| < x− c,u > | ≥ tσ) ≤ 1 + δ

1− δ
· t ·
√

2πe · e−πt
2

.

Now we can give a lower bound of ||x−1|| for x←↩ DR,σ with R the ring of integers of a

cyclotomic field K. It is an adapted version of Lemma 4.1 in [46].

Lemma 2.15. Let K be a cyclotomic field, R = OK , δ ∈ (0, 1), t ≥
√

2π and σ ≥ t√
2π
·ηδ(R),

we have

Prx←↩DR,σ (||x−1|| ≥
√

2t

σ
) ≤ 1 + δ

1− δ
· n ·
√

2πe

t
.

Proof. For any x ←↩ DR,σ, assume x = x1α1 + · · · + xnαn, where α1, · · · , αn ∈ I are

the power basis of R and xi ∈ Z for i ∈ [n]. For any k ∈ [n], we have Re(σk(x)) =∑n
j=1 xjRe(σk(αj)) and Im(σk(x)) =

∑n
j=1 xjIm(σk(αj)). Let Re2 =

∑n
j=1 Re(αj)

2 and

Im2 =
∑n
j=1 Im(αj)

2. By using Lemma 2.14 twice, setting c = σ(x) − (x1, · · · , xn)T ∈ H,

u = ( (Re(σk(α1))
Re , · · · , Re(σk(αn))

Re )T or u = ( Im(σk(α1))
Im , · · · , Im(σk(αn))

Im )T correspondingly, we

obtain Pr(
∣∣∣Re(σk(x))

Re

∣∣∣ ≤ σ
t ) ≤ 1+δ

1−δ ·
√

2πe
t and Pr(

∣∣∣ Im(σk(x))
Im

∣∣∣ ≤ σ
t ) ≤ 1+δ

1−δ ·
√

2πe
t . Noticing that

Re2 + Im2 = n, which implies that max (Re, Im) ≥
√

n
2 . Without loss of generality, assume

Re ≥ Im, we have

Pr(|Re(σk(x))| ≤ σ

t
·
√
n

2
) ≤ Pr(|Re(σk(x))| ≤ σ

t
· Re) ≤ 1 + δ

1− δ
·
√

2πe

t
,
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Therefore, we get

Pr(|σk(x)| ≤
σ ·
√

n
2

t
) ≤ Pr(|Re(σk(x))| ≤ σ

t
·
√
n

2
) ≤ 1 + δ

1− δ
·
√

2πe

t
.

This is equivalent to

Pr(|σk(x−1)| ≥ t

σ ·
√

n
2

) ≤ 1 + δ

1− δ
·
√

2πe

t
.

Hence, the union bound gives us the estimation that

Pr(||x−1|| ≥
√

2t

σ
) ≤ 1 + δ

1− δ
· n ·
√

2πe

t
,

as we desired.

2.6 Ring-SIS and Ring-LWE Problems

In this subsection, we state some hard lattice problems we need. We first introduce the

small integer solution problem over algebraic number fields. The definitions are as follows.

Definition 2.16. Let R be the ring of integers of K, q,m be positive integers and β be a

real number.

• The ring small integer solution problem (R-SISq,m,β) is: given a1, · · · , am ∈ Rq chosen

independently from the uniform distribution, find z = (z1, · · · , zm) ∈ Rm such that∑m
i=1 aizi = 0 mod qR and 0 < ||z|| ≤ β.

• The ring inhomogeneous small integer solution problem (R-ISISq,m,β) is: given ai ←↩
U(Rq) for i = 1, · · · ,m and u ←↩ U(Rq), find z = (z1, · · · , zm) ∈ Rm such that∑m
i=1 aizi = u mod qR and ||z|| ≤ β.

For appropriate parameters, the following theorem shows that the Ring-SIS problem is

hard [29].

Theorem 2.17. For ε = ε(n) = n−ω(1) ∈ (0, 1), there is a probabilistic polynomial time

reduction from solving Ideal-SIVP
γ·

√
ln(2n(1+ 1

ε
))

π

with high probability in polynomial time in

the worst case to solving R-SISq,m,β with non-negligible probability in polynomial time, for

any m, q, β, γ such that γ ≥ β
√
n · ω(

√
log n), q ≥ β

√
n · ω(log n) and m,β, log q ≤ poly(n).

We also need to introduce the Ring-LWE problem. Let T = KR/R
∨.

Definition 2.18. For s ∈ R∨q and an error distribution ψ over KR, the Ring-LWE distribu-

tion As,ψ over Rq×T is sampled by independently choosing a uniformly random a←↩ U(Rq)

and an error term e←↩ ψ, and outputting (a, b = a·s
q + e mod R∨).

12



Definition 2.19. Let Ψ be a family of distributions over KR.

• The average-case Ring-LWE search problem, denoted R-LWEq,Ψ, is given access to

arbitrarily many independent samples from As,ψ for some arbitrary s ∈ R∨q and ψ ∈ Ψ,

find s.

• The average-case Ring-LWE decision problem, denoted R-DLWEq,Ψ, is to distinguish

(with non-negligible advantage) between independent samples from As,ψ for a random

choice of (s, ψ) ←↩ U(R∨q ) × Ψ, and the same number of uniformly random and inde-

pendent samples from Rq × T.

There is a large disparity between known hardness theorems for search and decision

Ring-LWE. From [27] and [29], the reduction from worst-case ideal lattice problems (such

as SIVPγ) to search Ring-LWE problem is tenable in any algebraic number field and any

modulus for approximate parameter choices. While the hardness of decision Ring-LWE is

reduced to search Ring-LWE and the search-to-decision reduction works only for cyclotomic

fields and requires that the module q ‘split’ well. Usually, we require q = 1 mod n for a

n-dimension extension of field. In [42], a reduction from SIVPγ to decision Ring-LWE over

any algebraic number field is given. Also, the requirement of q is eliminated.

Theorem 2.20. Let K be an algebraic number field and R = OK , [K : Q] = n. Assume

α ∈ (0, 1) such that α ≤
√

logn
n , and let q ≥ 2 be an integer such that αq ≥ ω(1). Then

there is a polynomial time quantum reduction from Ideal-SIVPγ to R-DLWEq,Dξ , where

ξ = α( nk
log(nk) )

1
4 with k the number of samples to be used and γ = ω(

√
n·logn
α ).

We can modify the sample (a, b) of Ring-LWE distribution to the set Rq × R∨q as in

[47]. We scale the b component by a factor of q, so that it is an element of KR/(qR
∨).

The corresponding error distribution is Dqξ with ξ = α · ( nk
log (nk) ) and k the number of

samples. Then we discretize the error, by taking e ←↩ bDqξe. The decision version of Ring-

LWE becomes to distinguish between the modified distribution of As,bDqξe and the uniform

samples from Rq × R∨q . Notice that by using the same method proposed in [28], we can

change the secret s to obey the error’s distribution, i.e. s ←↩ bDqξe. At last, if we restrict

a ∈ R×q , the difficult of this problem does not decrease. We use symbol A×s,Dqξ to denote

the distribution of (a, b) obtained by choosing a ←↩ U(R×q ), s ←↩ bDqξe, e ←↩ bDqξe and

b = a · s+ e. We will use the symbol R-DLWE×q,Dqξ to denote the problem of distinguish the

samples from A×s,Dqξ and U(R×q ×R∨q ).

3 Analysis of q-Ary Lattices and Improved Results of

Regularity

In this section, we shall prove some useful results. We assume that K = Q(α) is an

algebraic field which is a Galois extension over Q, [K : Q] = n and R = OK . Let Φ(x)
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be the minimum polynomial of α over Q, q is a prime such that q - |R/Z[α]| and q - ∆K .

Meanwhile, assume that the prime ideal decomposition of qR is known. All the proofs in

this section are essentially the same as those in [47], so we put them in Appendix A.

We first describe an isomorphism theorem which is helpful for us to analyse the q-ary

lattices we need. In some textbooks, it is called the fourth isomorphism theorem or lattice

isomorphism theorem. We only describe its ring’s version. In the cases of groups and

modules, the results are almost the same.

Proposition 3.1. Let R be a ring and B an ideal of R. Then every subring of R/B is of

the form A/B, for some subring A of R such that B ⊆ A ⊆ R, the corresponding relation is

1-1. In particular, every ideal of R/B is of the form A/B, for some ideal A of R such that

B ⊆ A ⊆ R.

We know that Rq = Zq[x]/Φ(x) and Zq[x] is a principal ideal domain, hence Rq is a

principal ideal ring. Recall that for any fixed prime q - |R/Z[α]| and q - ∆K , Φ(x) =

Φ1(x) · · ·Φg(x) mod q with deg(Φi(x)) = f for i ∈ [g]. Meanwhile, qR = q1 · · · qg with

qi = (q,Φi(x))R and N(qi) = qf for i = 1, · · · , g.

For any proper ideal I ∈ Rq, we can write I = (f(x))Rq, where f(x) contains at least

one polynomials of Φi(x), i.e. f(x) =
∏
i∈S Φi(x) for some non-empty S ⊆ {1, 2, · · · , g}. We

will use IS to represent the ideal
∏
i∈S Φi(x)Rq of Rq.

3.1 q-Ary Lattices

We first introduce a simple relation. Let I be a proper ideal of Rq, by Proposition 3.1,

there is an ideal J of R such that qR ⊆ J ⊆ R and I = J/qR. Considering the relation qJ ⊆
qR ⊆ J ⊆ R, we get R∨ ⊆ J∨ ⊆ (qR)∨ ⊆ (qJ)∨, which implies R∨ ⊆ J∨ ⊆ 1

q (R)∨ ⊆ 1
q (J)∨.

Thus we get an R module inclusion relations

qR∨ ⊆ qJ∨ ⊆ R∨ ⊆ J∨. (3)

Moreover, R∨/qJ∨ is an R submodule of J∨/qJ∨. Notice that for IS =
∏
i∈S Φi(x)Rq, we

have JS =
∏
i∈S qi.

Now, we define the q-ary lattices we need for our analysis of public key distribution in

Section 4. Let a ∈ (Rq)
m, the definitions of the q-ary lattices are as followings:

a⊥(I) = {(t1, · · · , tm) ∈ Jm :

m∑
i=1

tiai = 0 mod qR},

L(a, I) = {(t1, · · · , tm) ∈ (R∨)m : ∃ s ∈ R∨, ∀i, ti = ai · s mod qJ∨} = R∨ · a+ qJ∨.

Here, R∨ ·a = {t ·a = (ta1, · · · , tam) : t ∈ R∨}. It is easy to see that both a⊥(I) and L(a, I)

are well-defined and are R modules, hence the value s can take over all elements in R∨. We

also define a⊥ and L(a) as a⊥(Rq) and L(a, Rq). The dual M∨ of a lattice M ⊆ Km is
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defined as the set of all x ∈ Km such that Tr(a · v) :=
∑m
j=1 Tr(xj · vj) ∈ Z for all v ∈ M .

The following lemma shows the dual relations between a⊥(I) and L(a, I).

Lemma 3.2. Let a⊥(I) and L(a, I) be defined above, then we have a⊥(I) = q(L(a, I))∨

and L(a, I) = q(a⊥(I))∨.

3.2 Lower Bound of λ∞1 in L(a, I)

Let IS =
∏
i∈S Φi(x)Rq ⊆ Rq and JS =

∏
i∈S qi ⊆ R for S ⊆ {1, 2, · · · , g}. We have

qR ⊆ JS ⊆ R and IS = JS/qR. Further, J−1
S =

∏
i∈S q

−1
i and J∨S =

∏
i∈S q

−1
i R∨.

Now we can give a lemma which shows that for a ←↩ U((R×q )m), the lattice L(a, IS) is

extremely unlikely to contain unusually short vectors for the infinity norm.

Lemma 3.3. Let m ≥ 2 and ε > 0, assume Φ(x) =
∏g
i=1 Φi(x) and IS =

∏
i∈S Φi(x)Rq for

any S ⊆ [g], then we have λ∞1 (L(a, IS)) ≥ B with B = qβ

|∆K |
1
n

, where β = (1− 1
m )(1− |S|g )−ε,

except with probability p ≤ 22m(n+g)q−εmn over the uniformly random choice of a ∈ (R×q )m.

Remark 3.4. When K = Q(ζl) is a cyclotomic field and q = 1 mod l, this lemma is

essentially the same with Lemma 3.4 in [47]. When g = n, we have the exception of a

is less than 2(3m+1)nq−εmn.

Remark 3.5. This lemma can be regarded as a special case of Lemma 5.2 in [43]. So is the

following theorem of the regularity results in Subsection 3.3.

3.3 Improved Results on Regularity

In this subsection, we discuss the regularity results.

The following result is a direct consequence of Lemmata 2.10, 2.12, 3.2 and 3.3. By

Lemma 3.3 and 3.2, we have λ∞1 ((a⊥(IS))∨) = 1
qλ
∞
1 (L(a, IS)) ≥ |∆K |−

1
n q
|S|
mg−

|S|
g −

1
m−ε

except with a fraction of 22m(n+g)q−εmn of a ∈ (R×q )m for S ⊆ [g] and m ≥ 2. Then

Lemma 2.10 tells us that ηδ((a
⊥(IS))∨) ≤ |∆K |

1
n

√
ln(2mn(1+ 1

δ ))

π ·q
|S|
g + 1

m−
|S|
mg+ε for any δ > 0.

Therefore, Lemma 2.12 gives us the following lemma.

Lemma 3.6. Let K = Q(α) be an algebraic field which is Galois over Q, R = OK , m ≥ 2,

q is a positive prime such that q - ∆K and q - |R/Z[α]|, and the prime ideal decomposition

of qR in R is qR = P1 · · ·Pg, δ ∈ (0, 1
2 ), ε > 0, S ⊆ [g], c ∈ Rm and t ←↩ DRm,σ,c, where

σ ≥ |∆K |
1
n

√
ln(2mn(1+ 1

δ ))

π · q
|S|
g + 1

m−
|S|
mg+ε. Then for all except a fraction of 22m(n+g)q−εmn

of a ∈ (R×q )m, we have

∆
(
t mod a⊥(IS); U(Rm/a⊥(IS))

)
≤ 2δ.
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Let χ be a distribution over Rq and denote Dχ the distribution of such tuple (a1, · · · , am,∑m
i=1 tiai) ∈ (R×q )m × Rq, where ai ←↩ U(R×q ) are chosen independently and ti ←↩ χ for all

i = 1, 2, · · · ,m. The regularity of the generalized knapsack function (t1, · · · , tm)→
∑m
i=1 tiai

is the statistical distance between Dχ and U((R×q )m ×Rq).

In [31], Micciancio discussed the regularity over general rings and used it to design one-

way functions. Some improved regularity results are given in [46], [49], [50] and [47]. Here,

we can also give an improved result of regularity for any algebraic field which is Galois over

Q. Note that for each a←↩ U((R×q )m), the map t 7→
∑m
i=1 aiti induces an isomorphism from

the quotient Rm/a⊥ to its range. The latter is Rq, thanks to the invertibility of ai’s. By

taking S = φ and c = 0 in Lemma 3.6, we deduce the following result.

Theorem 3.7. Let K = Q(α) be an algebraic field which is Galois over Q, R = OK , m ≥ 2,

q is a positive prime such that q - ∆K and q - |R/Z[α]|, δ ∈ (0, 1
2 ), and the prime ideal

decomposition of qR in R is qR = P1 · · ·Pg, ε > 0 and ai ←↩ U(R×q ) for all i ∈ [m]. Assume

t←↩ DRm,σ with σ ≥ |∆K |
1
n

√
ln(2mn(1+ 1

δ ))

π · q 1
m+ε. Then we have

∆

(
(a1, · · · , am,

m∑
i=1

tiai); U((R×q )m ×Rq)

)
≤ 2δ + 22m(n+g)q−εmn.

4 Improved NTRUEncrypt

With the results of Section 3, we can give a construction of NTRUEncrypt over any

cyclotomic field. Let R = OK . The construction is essentially the same as that in [47]. So

are the proofs and we put them in Appendix B.

4.1 Key Generation Algorithm

In this subsection, we set K = Q(α) to be an algebraic number field which is Galois

over Q. Assume n = [K : Q] and q is a positive prime such that q - ∆K and q - |R/Z[α]|.
Moreover, assume that qR =

∏g
i=1 qi with qi the prime ideal of R, the norm of qi is qf with

f = n
g .

We first give a key generation algorithm for our NTRUEncrypts and analyze the algorithm

in details. The key generation algorithm of the NTRUEncrypts is as follows.

Input: n, q ∈ Z+, p ∈ R×q , σ ∈ R+.

Output: A key pair (sk, pk) ∈ R×q ×R×q .

• Sample f
′

from DR,σ; let f = p · f ′ + 1; if (f mod qR) /∈ R×q , resample.

• Sample g from DR,σ; if (g mod qR) /∈ R×q , resample.

• Return secret key sk = f and public key pk = h = pg/f ∈ R×q .
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Notice that as long as σ ≥ ||B̃|| ·
√

log n for any basis B of R, we can sample an element in

polynomial time to obey the distribution DR,σ by using Theorem 2.7. The following lemma

shows that the key generation algorithm can terminate with executing only several times.

Lemma 4.1. Let K and q satisfy the conditions at the beginning of this subsection, set

σ ≥ |∆K |−
1

2n ·
√
n ·
√

ln (2n(1+ 1
ε ))

π · q
f
n for an arbitrary ε ∈ (0, 1

2 ). Let a ∈ R and p ∈ R×q .

Then

Prf ′←↩DR,σ [(p · f
′
+ a mod qR) /∈ R×q ] ≤ g(

1

qf
+ 2ε) ≤ n(

1

q
+ 2ε).

Next, we show that the generated secret key by the key generation algorithm is short.

This lemma is very useful for us to analyze the decryption error.

Lemma 4.2. Let K and q satisfy the conditions at the beginning of this subsection, set

σ ≥
√

2 ln (6n)
π · |∆K |−

1
2n ·
√
n · q

f
n . Then with probability ≥ 1 − 23−n, the secret key f, g

satisfy ||f || ≤ 2
√
nσ||p||∞ and ||g|| ≤

√
nσ.

The last lemma of this subsection estimates the statistic distance between the distribution

of public key and the uniform distribution on R×q . We denote by D×σ,z the discrete Gaussian

DR,σ restricted to R×q + z.

Lemma 4.3. Let 0 < ε, n ≥ 5, q ≥ 8n and σ ≥ |∆K |
1
n ·
√
n ·
√

ln (8nq) · q 1
2 +(1+ f

2 )ε. Let

p ∈ R×q , yi ∈ Rq and zi = −yip−1 mod qR for i ∈ {1, 2}. Then

∆

[
y1 + p ·D×σ,z1
y2 + p ·D×σ,z2

mod qR, U(R×q )

]
≤ 29n

qbεnc
.

Remark 4.4. In the case K = Q(ζl) and q = 1 mod l, this lemma is equivalent to Lemma

4.3 in [47].

4.2 Construction of NTRUEncrypts

In this subsection, we require K = Q(ζl) to be a cyclotomic field, R = OK and q is a

positive prime such that q - ∆K . The construction of NTRUEncrypt is the same as [47] and

the difference is that we do not need to require q = 1 mod l. Recall that in the construction

of [47], the analysis of decryption error depends on the decoding basis of R∨. It is uncertain

that if there exists such a good basis for general algebraic number field. We also set the

plaintext message space to be P = R∨/pR∨. Denote χ = bDξ·qeR∨ with ξ = α · ( nk
log (nk) )

1
4 ,

where k = O(1) is a positive integer. We will use the decoding basis for element x ∈ R ⊆ R∨.

One should note that f = 1 mod pR implies f = 1 mod pR∨. The NTRUEncrpyt scheme is

as follows.

Key generation: Use the algorithm describe in Subsection 4.1, return sk = f ∈ R×q with

f = 1 mod pR∨, and pk = h = pg · f−1 ∈ R×q .
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Encryption: Given message m ∈ P, sample s, e←↩ χ and return c = hs+ pe+m ∈ R∨q .

Decryption: Given ciphertext c and secret key f , compute c1 = fc. Then return m =

(c1 mod qR∨) mod pR∨.

The analysis of decryption process and the security reduction are standard. The only

difference is that we use the result of Ring-LWE in [42] to eliminate the requirement q =

1 mod l. We only state the results. For more details, one can refer to [47].

Theorem 4.5. Let l be a positive integer, n = ϕ(l) ≥ 5, and K = Q(ζl). Let q ≥ 8n

be a positive prime of size poly(n) such that q - ∆K and the prime ideal decomposition of

qR in R is qR = P1 · · ·Pg with fg = n. Assume that α ∈ (0, 1) satisfies αq ≥ ω(1) and

α ≤
√

logn
n . Let ξ = α · ( nk

log (nk) )
1
4 with k = O(1), ε ∈ (0, 1

2 ) and p ∈ R×q . Moreover,

let σ ≥ n
3
2 ·
√

ln (8nq) · q 1
2 +(1+ f

2 )ε and ω(n
3
2

√
log n log log n · α2 · q2) · σ · ||p||2∞ < q

2 . Then

if there exists an IND-CPA attack against NTRUEncrypt(n, q, p, σ, ξ) that runs in time

poly(n) with advantage 1
poly(n) , there exists a poly(n)-time algorithm solving γ-Ideal-SIVP

on any ideal lattice of K with γ = Õ(
√
n
α ). Moreover, the decryption algorithm succeeds to

regain the correct message with probability 1−n−ω(
√
n logn) over the choice of the encryption

randomness.

Remark 4.6. We can modify the NTRUEncrypt to work over an integral ideal I = l̂R∨ ⊆ R,

and by using the results of [43], we can also design an NTRUEncrypt over R, as stated in

[47].

5 A Useful Key Generation Algorithm

In this section, we introduce a useful key generation algorithm as in [46] and give a detailed

analysis. In fact, this is a method about how to convert a secret key of NTRUEncrypt to a

secret key of NTRUSign. This key generation algorithm is standard in the construction of

many cryptographic primitives based on NTRU. For example, Collision Resistance Preimage

Sampleable Functions and NTRU signatures [46], identity-based encryptions [11], identity-

based signatures [48] and so on. We assume K/Q is a Galois extension with K an algebraic

field such that [K : Q] = n.

5.1 Useful Lemmas for Dedekind Zeta Function

In this subsection, we introduce some lemmas we need to analyze the key generation

algorithm of CRPSF.

For any ideal I ∈ R, we assume that it has the prime ideal decomposition of the form

(P1 · · ·Pg)
e with Pi having norm N(Pi) = pf for all i = 1, · · · , g. Here, one also have
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efg = n. The Möbius funciton of I is defined as following:

µ(I) =


1, if I = R,

(−1)g, if I = P1 · · ·Pg,

0, otherwise.

The Dedekind zeta function of the ring R is defined by ζK(s) =
∑
I⊆R

1
Ns(I) for any complex

number s, where I runs over all non-zero integral ideals of R. For Re(s) > 1, it is convergent

and we have

ζK(s) =
∑
I⊆R

N(I)−s =
∏
P

(1−N(P)−s)−1,

where P runs over all prime ideals of R. Moreover,

ζ−1
K (s) =

∏
P

(1−N(P)−s) =
∑
I⊆R

µ(I) ·N(I)−s.

Recall that, for any prime number p ∈ Z, the ideal pR ramifies in K if and only if

p|∆K . For a fixed p with prime ideal decomposition of the form (P1 · · ·Pg)
e, we know that

N(Pi) = pf for all i = 1, 2, · · · , g. Here, g is the number of different prime ideals that divides

pR, it is also the number of distinct irreducible factors of Φ(x) (the minimum polynomial of

α over Q, K = Q(α)) over Zp[x]. Therefore, we have g ≤ min (p, n) and f = n
e·g . Moreover,

e, f, g depend only on p and K. When p - ∆K , we have e = 1, g = n
f .

The following lemma shows an estimate of ζK(s). In order to prove this lemma, we need

some results about the sum
∑
p≤x

1
p for x ≥ 2 and prime p. In [40], an accurate estimation

is given, which states that for x ≥ 2, one has∑
p≤x

1

p
= ln lnx+A+ r(x).

Here, |r(x)| < 2(5 ln 2 + 3) · (lnx)−1 and A = γ +
∑
p{ln (1− 1

p ) + 1
p} = 0.26149721 · · · with

γ the Euler constant.

Lemma 5.1. Let [K : Q] = n ≥ 200 with |∆K | = pα1
1 · · · p

αt
t , assume L(s) =

∏t
i=1(1 −

p
−sn
ei·gi
i )−gi for s > 1. Then we have ζK(1 + ε) ≤ L(1 + ε) · e

2
ε(1−ε) ·n

1−ε
, for any ε ∈ (0, 1), and

ζK(2) ≤ L(2) · e6.1.

Proof. Notice that
∏
p|∆K

∏
P|p(1 − N(P)−s)−1 =

∏t
i=1(1 − p

−sn
ei·gi
i )−gi = L(s). By the

definition of Dedekind Zeta function, we have

ζK(s) =
∏
P

(1− 1

N(P)s
)−1 =

∏
p

∏
P|p

(1− 1

N(P)s
)−1 = L(s) ·

∏
p-∆K

∏
P|p

(1− 1

N(P)s
)−1.

For any prime p - ∆K and s > 1, we have∏
P|p

(1− 1

N(P)s
)−1 = (1− p−

ns
g )−g ≤ (1− p−

ns
min (n, p) )−min (n, p).
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Hence, we get

ζK(s) ≤ L(s) ·
∏

p≤n,p-∆K

(1− p−
ns
p )−p ·

∏
p>n,p-∆K

(1− p−s)−n.

We first deal with the case s = 2, where we have

ζK(2) ≤ L(2) ·
∏

p≤n,p-∆K

(1− p−
2n
p )−p ·

∏
p>n,p-∆K

(1− p−2)−n.

By using the inequality ln(1− x) ≥ −x− x2 for x ∈ [0, 1
2 ], we get

ζK(2) ≤ L(2) ·
∏

p≤n,p-∆K

(1− p−
2n
p )−p ·

∏
p>n,p-∆K

(1− p−2)−n

= L(2) · exp(−p
∑

p-∆K ,2≤p≤n2

ln(1− p−4)− p
∑

p-∆K ,
n
2<p≤n

ln(1− p−2)

− n
∑

p-∆K ,p>n

ln(1− p−2))

≤ L(2) · exp(
∑

p-∆K ,2≤p≤n2

(p−3 + p−7) +
∑

p-∆K ,
n
2<p≤n

(p−1 + p−3)

+ n
∑

p-∆K ,p>n

(p−2 + p−4)).

We now estimate these sums. One can easily compute that
∑
p-∆K ,p>n

p−4 ≤
∫∞
n
x−4dx =

1
3n3 ,

∑
p-∆K ,p>n

p−2 ≤
∫∞
n
x−2dx = 1

n ,
∑
p-∆K ,2≤p≤n2

p−7 ≤
∫ n

2

1
x−7dx ≤ 1

6 and
∑
p-∆K ,p≤n p

−3 ≤∫ n
1
x−3dx ≤ 1

2 . To estimate the sum
∑
p-∆K ,

n
2<p≤n

1
p , we have∑

p-∆K ,
n
2<p≤n

1

p
≤

∑
n
2<p≤n

1

p
=
∑
p≤n

1

p
−
∑
p≤n2

1

p

= ln lnn− ln ln
n

2
+ r(n)− r(n

2
)

= ln (1 +
ln 2

lnn− ln 2
) + r(n)− r(n

2
) < 5.4,

where we have used the facts that ln (1 + ln 2
lnn−ln 2 ) < 0.15 and |r(n) − r(n2 )| < 2(5 ln 2 +

3)( 1
lnn + 1

lnn−ln 2 ) < 5.25 for n ≥ 200. Hence, we get ζK(2) ≤ L(2) · e6.1.

Now we consider the case s = 1 + ε for ε ∈ (0, 1). Similarly, we have

ζK(1 + ε) ≤ L(1 + ε) ·
∏

p-∆K ,2≤p≤n

(1− p−
(1+ε)n
p )−p ·

∏
p>n,p-∆K

(1− p−(1+ε))−n

≤ L(1 + ε) · exp(
∑

p-∆K ,2≤p≤n

(p1− (1+ε)n
p + p1− 2(1+ε)n

p )

+ n ·
∑

p>n,p-∆K

(p−(1+ε) + p−2(1+ε))).

We can estimate these sums by using similar method, i.e.
∑
p-∆K ,2≤p≤n(p1− (1+ε)n

p +p1− 2(1+ε)n
p ) ≤

2
∫ n

2
x−εdx ≤ 2

1−εn
1−ε and n ·

∑
p>n,p-∆K

(p−(1+ε) + p−2(1+ε)) ≤ 2n ·
∫∞
n
x−1−εdx ≤ 2

εn
1−ε.

This gives the claimed bound on ζK(1 + ε).
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Remark 5.2. We can release the condition of n to n ≥ 3. In this situation, we have∑
p-∆K ,

n
2<p≤n

1
p < 45 and ζK(2) ≤ L(2) · e47. In the cases n = 256, n = 512 and n = 1024,

we have ζK(2) ≤ L(2) · e5.81, ζK(2) ≤ L(2) · e5.2 and ζK(2) ≤ L(2) · e4.8.

Remark 5.3. The value of L(2) depends on the field discriminant ∆K . A trivial bound

for L(s) is ( |∆K |
ϕ(|∆K |) )n. In the case of cyclotomic field K = Q(ζl), the bound of L(s) is

( l
ϕ(l) )ϕ(l) ≈ (log log l)l for sufficient large l. This upper bound is pretty bad, but it is enough

for us to deduce Lemma 5.6. In our application, we hope there is an absolute upper bound

for L(2). In fact, in the case of cyclotomic fields, we can give an absolute upper bound for

L(2). See Appendix C.

Next, we shall give an upper bound of the number of integral ideals whose norms are no

more than N .

Lemma 5.4. Let N ≥ 1, ε ∈ (0, 1) and L(s) defined as in Lemma 5.1. The number H(N)

of ideals I ⊆ R satisfying N(I) ≤ N is bounded as H(N) ≤ L(1 + ε) · e
2

ε(1−ε) ·n
1−ε
·N1+ε.

Proof. For k ≥ 1, let M(k) denote the number of ideals of R of norm exactly k. Then for

s > 1, we have ζK(s) =
∑
I⊆R N(I)−s =

∑
k≥1M(k)k−s ≥

∑
k≤N M(k)k−s. Note that∑

k≤N M(k)k−s ≥
∑
k≤N M(k)N−s = H(N)N−s, we obtain that H(N) ≤ ζK(s) · Ns. By

Lemma 5.1, we get the result we need.

We want to bound the probability that two elements f and g of R chosen from discrete

Gaussian distribution are co-prime, i.e. (f, g) = R. The argument follows the strategy of

[46], which is an adapted version of [44]. The following lemma states a fact proved in the

proof of Lemma 4.4 in [33].

Lemma 5.5. For any full-rank lattice Λ ⊆ H, c ∈ H, δ ∈ (0, 1) and σ ≥ ηδ(Λ), we have

ρσ,c(Λ) = σn

det(Λ) (1 + ε) with |ε| ≤ δ. As a consequence, we have
ρσ,c(Λ)
ρσ(Λ) ∈

[
1−δ
1+δ , 1

]
.

Lemma 5.6. Assume that K is a cyclotomic field with R = OK , σ ≥ 64n5.7 log n, and

δ ∈ (0, 1
2 ). Then we have

Pr
f,g←↩DR,σ

[(f, g) 6= R] ≤ 1− 1− 2−n

ζK(2)
+ 2−n

for n ≥ 500.

Proof. For f, g ←↩ DR,σ, we have

Pr[(f, g) 6= R] ≤ Pr[(f, g) 6= R and ||f ||, ||g|| 6= 0] + Pr[||f || = 0 or ||g|| = 0].

By Lemma 5.5, for any σ ≥ ηδ(R), we have that ρσ(R) = σn√
|∆K |

· (1 + ε) with |ε| ≤ δ.

Taking δ = 2−2n, we have DR,σ(0) = 1
ρσ(R) ∈ [

√
|∆K |

σn(1+2−2n) ,

√
|∆K |

σn(1−2−2n) ], since σ ≥ η2−2n(R).

Therefore,

Pr[(f, g) 6= R] ≤ Pr[(f, g) 6= R and ||f ||, ||g|| 6= 0] + 2−3n logn.
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Let A denote the event {||f || 6= 0, ||g|| 6= 0 and (f, g) 6= R} and B denote the event that

occurs with probability

p = DT
R2,σ(R2 \

⋃
prime I⊆R

I × I),

where DT
R,σ(J) = DR,σ(J)−DR,σ(0) for any J ⊆ K, and the distribution DR2,σ denote the

pair (f, g) ∈ R2, where f and g are sampled from DR,σ independently. Notice that (f, g) 6= R

implies that there is a prime ideal I of R such that fR ⊆ I and gR ⊆ I, since R is a Dedekind

domain. By the inclusion-exclusion principle, we have Pr[(f, g) 6= R and ||f ||, ||g|| 6= 0] ≤ 1−p
and p =

∑
I⊆R µ(I) ·DT

R,σ(I × I).

Therefore, we have

|p− ζK(2)−1| = |
∑
I⊆R

µ(I) ·DT
R,σ(I)2 −

∑
I⊆R

µ(I) · 1

N(I)2
|

≤
∑
I⊆R

|DT
R,σ(I)2 − 1

N(I)2
|

=
∑
I⊆R

|(DR,σ(I)−DR,σ(0))2 − 1

N(I)2
|.

Recall that for any ideal I, λn(I) = λ1(I) ≤ n ·N 1
n (I). By Lemma 2.8, we have ηδ(I) ≤

n ·
√

ln (2n(1+ 1
δ ))

π ·N 1
n (I) := Bδ ·N

1
n (I). We split the above sum into three parts, depending

on the magnitude of N(I). We shall take δ = 2−2n.

Case 1: Assume σ ≥ Bδ · N
1
n (I), this is equivalent to N(I) ≤ ( σ

Bδ
)n := C1. Then Lemma

5.5 implies that DR,σ(I) = 1
N(I) ·

1+ε1
1+ε2

for |ε1|, |ε2| ≤ 2−2n. This is equivalent to say

1

N2(I)
· (1− 2−2n

1 + 2−2n
)2 ≤ D2

R,σ(I) ≤ 1

N2(I)
· (1 + 2−2n

1− 2−2n
)2.

This, together with DR,σ(0) ∈ [

√
|∆K |

σn(1+2−2n) ,

√
|∆K |

σn(1−2−2n) ], means that

|(DR,σ(I)−DR,σ(0))2 − 1

N2(I)
| ≤ |D2

R,σ(I)− 1

N2(I)
|+ 2 ·DR,σ(I) ·DR,σ(0) +D2

R,σ(0)

≤ 1

N2(I)
· 23−2n

1− 2−2n
+

2
√
|∆K |

N(I) · σn
· 1 + 2−2n

(1− 2−2n)2

+
|∆K |
σ2n

· 1

(1− 2−2n)2
.

Note that σn ≥ N(I) ·Bn2−2n ≥ N(I) · (n
√

n
4 )n, we have

1

N2(I)
· 23−2n

1− 2−2n
+

2
√
|∆K |

N(I) · σn
· 1 + 2−2n

(1− 2−2n)2
≤ 2−n

N2(I)

for n ≥ 5. Therefore,∑
I⊆R

N(I)≤C1

|(DT
R,σ(I))2 − 1

N2(I)
| ≤

∑
I⊆R

N(I)≤C1

(
2−n

N2(I)
+
|∆K |
σ2n

· 1

(1− 2−2n)2
)

≤ 2−n
1

ζK(2)
+H(C1) · |∆K |

σ2n
· 1

(1− 2−2n)2
.
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Taking ε = 0.1 in Lemma 5.4, we have
∑

I⊆R
N(I)≤C1

|(DT
R,σ(I))2 − 1

N2(I) | ≤ 2−8n + 2−n 1
ζK(2) for

n ≥ 500.

Case 2: Assume N(I) ≥ (σ
√
n)n := C2. Notice that λ1(I) ≥

√
nN

1
n (I) for any fractional

ideal I, then ρσ(I\{0}) = ρσ(I\
√
n ·N 1

n (I)Bn). Hence Lemma 2.11 implies that

DI,σ(I\{0}) =
ρσ(I\{0})
ρσ(I)

≤ (
N

1
n (I)

σ
·
√

2πe · e−π
N

2
n (I)

σ2 )n.

Therefore, we get DT
R,σ(I) = ρσ(I\{0})

ρσ(R) = ρσ(I\{0})
ρσ(I) · ρσ(I)

ρσ(R) ≤ (N
1
n (I)
σ ·

√
2πe · e−π

N
2
n (I)

σ2 )n. One

can check that the condition N(I) ≥ (σ
√
n)n insures (N

1
n (I)
σ ·

√
2πe · e−π

N
2
n (I)

σ2 )n ≤
√

2
N(I) for

n ≥ 500. Overall, we have∑
I⊆R

N(I)≥C2

|(DT
R,σ(I))2 − 1

N2(I)
| ≤

∑
I⊆R

N(I)≥C2

1

N2(I)

≤
∑

k>bC2c

H(k)−H(k − 1)

k2

=
∑

k>bC2c

H(k)

k2
−

∑
k≥bC2c

H(k)

(k + 1)2

≤
∑

k>bC2c

H(k)(
1

k2
− 1

(k + 1)2
).

We use Lemma 5.4 by taking ε = 0.1 and have H(k) ≤ L(1.1) ·e 200
9 ·n

0.9 ·k1.1 ≤ L(1.1) ·217.3n ·
k1.1 for n ≥ 500. Therefore, we get∑

I⊆R
N(I)≥C2

|(DT
R,σ(I))2 − 1

N2(I)
| ≤ L(1.1) · 217.3n

∑
k≥C2

2k + 1

k0.9(k + 1)2
.

Since 2k+1
k0.9(k+1)2 ≤ 2

k1.9 , we have
∑
k≥C2

2k+1
k0.9(k+1)2 ≤ 20

9 C
−0.9
2 . Overall, we deduce that

∑
I⊆R

N(I)≥C2

|(DT
R,σ(I))2 − 1

N2(I)
| ≤ 20

9
L(1.1) · 217.3n · 1

(σ
√
n)0.9n

≤ 2−10n.

for n ≥ 500.

Case 3: Assume now ( σ
Bδ

)n < N(I) < (σ
√
n)n. Let k = dN(I)

1
n

σ/Bδ
e ≥ 1, then we have I ⊆ 1

k I,

DT
R,σ(I) ≤ DT

R,σ( 1
k I ∩R) and ηδ(

1
k I) = 1

kηδ(I) ≤ σ. Hence, we get

DT
R,σ(I) ≤ DT

R,σ(
1

k
I ∩R) ≤ DR,σ(

1

k
I)

=
ρσ( 1

k I)

ρσ(R)
≤ kn

N(I)
· 1 + 2−2n

1− 2−2n

by Lemma 5.5. Notice that Bδ
σ ·N(I)

1
n ≤ k ≤ 2Bδ

σ ·N(I)
1
n , we deduce that

−(
Bδ
σ

)2n ≤ DT
R,σ(I)2 − 1

N(I)2
≤ (

2Bδ
σ

)2n · (1 + 2−2n

1− 2−2n
)2 − 1

N(I)2
.
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Therefore, we get |DT
R,σ(I)2 − 1

N(I)2 | ≤ ( 2Bδ
σ )2n · ( 1+2−2n

1−2−2n )2. Overall, we have

∑
C1<N(I)<C2

|DT
R,σ(I)2 − 1

N(I)2
| ≤

∑
C1<N(I)<C2

(
2Bδ
σ

)2n · (1 + 2−2n

1− 2−2n
)2

≤ H((σ
√
n)n) · (2Bδ

σ
)2n · (1 + 2−2n

1− 2−2n
)2.

We still take ε = 0.1 in Lemma 5.4 and get∑
C1<N(I)<C2

|DT
R,σ(I)2 − 1

N(I)2
| ≤ L(1.1) · 217.3n · (σ

√
n)1.1n · (2Bδ

σ
)2n · (1 + 2−2n

1− 2−2n
)2.

Since Bδ ≤ n1.5
√

2
and σ ≥ 64n5.7 log n, we have

∑
C1<N(I)<C2

|DT
R,σ(I)2 − 1

N(I)2 | ≤ 2−1.2n for

n ≥ 500.

In a summary, we have deduce that |p − ζK(2)−1| ≤ 2−n

ζK(2) + 2−n. We get the claimed

result.

Remark 5.7. The value of σ in this lemma seems a little large. It is essentially decided by the

limitation in Case 3. For n ≥ 1000, one can release the condition of σ to σ ≥ 64n5 log n. In

fact, if we discuss this problem in the sense that n goes to infinity, we can set σ ≥ 8n3.6 log n

and take ε = ln lnn
lnn in the discuss of Case 3. Then, we have

∑
C1<N(I)<C2

|DT
R,σ(I)2− 1

N(I)2 | ≤
1

2ζK(2) for sufficient large n. Therefore, we have Prf,g←↩DR,σ [(f, g) 6= R] ≤ 1− 1
2ζK(2) + 2−n

as in [46].

Remark 5.8. When K/Q is a Galois extension of a number field K over Q. The same

procedure may also work as long as the discriminant of K, i.e. |∆K | is not too large. When

|∆K | ≤ nn for [K : Q] = n, the proof is the same as the case of cyclotomic fields.

Remark 5.9. In [1], a sample experiment has been tested in the field Q(ζ2k). Their result

shows that in applications, the probability of (f, g) = R for f, g ←↩ DR,σ is far more larger

than the estimate we get. More preciously, they numerically approximated ζ−1
K (2) for K =

Q[x]/(xn + 1) for n = 128 and n = 256 by computing the first 222 terms of the Dirichlet

series of the Dedekind Zeta function for K and then evaluated the truncated series at 2. In

both cases they get a density ≈ 0.75. Though the elements are sampled a little different from

the uniform distribution, their experiments indicate that 3
4 is a good approximation of the

actual probability of coprimality.

5.2 NTRU Lattice

Now, let us describe some properties of the NTRU lattice over cyclotomic fields. To avoid

confusion, we shall speak of the rank of R-modules and of K-vector spaces when K 6= Q and

restrict the term of dimension to Z-modules and Q-vector spaces as in [1]. We are interested

in the R modules in K2. The dimension of a lattice Λ is the dimension over Q of the Q vector

space it spans. The rank of an R module M ⊆ K2 is defined as the rank over K of the K
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vector space it spans. It is obvious that the rank of an R module M is not necessarily equal

to the size of a minimal set of R generators of M . The inner product of K can be extend in

a coefficient-wise manner to vectors of K2: < (x1, y1), (x2, y2) >=< x1, x2 > + < y1 + y2 >.

Therefore, we can view any discrete R module M ⊆ K2 as a lattice.

The NTRU lattice is defined as Λqh = {(x, y) ∈ R2 : y = hx mod qR}, where h =

g · f−1 mod qR and f, g ←↩ DR,σ for some σ > 0. We require f, g ∈ R×q for convenience.

Usually, the NTRU problem over R is finding out a nonzero vector (x, y) such that ||(x, y)|| ≤
τ for some target norm τ . In many cases, solving the NTRU problem for some τ > σ is

enough to break NTRU-like cryptosystems. The NTRU lattice has dimension 2n, rank 2

and volume qn · Vol2(R) = qn · |∆K |. In fact, if α1, · · · , αn is a Z basis of R, one can check

that the set {(α1, h · α1), · · · , (αn, h · αn); (0, q · α1), · · · , (0, q · αn)} is a Z basis of Λqh and

the set {(1, h), (0, q)} is a set of R generators of Λqh. Lemma 4.3 shows that for approximate

parameters, h ≈ U(R×q ). Thus the gaussian heuristic predicts the shortest vectors of Λqh
have norm |∆K |

1
2n ·

√
nq
eπ , which implies that whenever σ < |∆K |

1
2n ·

√
q

2eπ , the lattice Λqh
admits a unusually short vector.

In our applications, the following lemma is also useful.

Lemma 5.10. Let f, g ∈ R×q such that (f, g) = R. Assume fGq − gFq = q for Fq, Gq ∈ R,

then we have

Λqh = SpanR{(f, g), (Fq, Gq)}.

Proof. Note that Λqh = SpanR{(1, h), (0, q)} and by coprimality, such Fq, Gq exist. Assume

that M = SpanR{(f, g), (Fq, Gq)}, we shall prove this lemma by showing Λqh ⊆ M and

M ⊆ Λqh.

For any (x, y) ∈ M , ∃r1, r2 ∈ R such that (x, y) = (r1f + r2Fq, r1g + r2Gq). Since

gFq = fGq mod qR, we have Gq = hFq mod qR. Hence, r1g+r2Gq = h(r1f+r2Fq) mod qR.

Therefore, M ⊆ Λqh.

On the other hand, f(Fq, Gq)−Fq(f, g) = (0, q) ∈M and g(Fq, Gq)−Gq(f, g) = (−q, 0) ∈
M imply qR2 ⊆M . Meanwhile, note that f−1(f, g) = (1, h) mod q for f · f−1 = 1 mod qR,

we have Λqh ⊆M . The proof is finished.

5.3 The Key Generation Algorithm

In this subsection, we assume K = Q(ζl) is a cyclotomic field with R = OK and n = ϕ(l).

Now we propose the key generation algorithm as in [46] and give a detailed analysis. The

key generation algorithm is as follows:

Input: n, q ∈ Z+, σ > 0.

Output: A key pair (sk, pk) ∈ R2×2 ×R×q .

1. Sample f from DR,σ, if (f mod q) /∈ R×q , resample.

2. Sample g from DR,σ, if (g mod q) /∈ R×q , resample.
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3. If ||f || ≥
√
nσ or ||g|| ≥

√
nσ, restart.

4. If (f, g) 6= R, restart.

5. Compute Fq, Gq ∈ R such that f ·Gq − g · Fq = q, e.g., using a Hermite Normal Form

algorithm in [5].

6. Use Babai rounding nearest plane algorithm to approximate (Fq, Gq) in the lattice

spanned by(f, g), let r(f, g) be the output, set (F,G) = (Fq, Gq) − r(f, g) for some

r ∈ R.

7. If ||(F,G)|| > nσ
√
l, restart.

8. Return secret key sk =

[
f g

F G

]
and public key pk = h = g · f−1 ∈ R×q .

It is easy to check that Λqh = SpanR{(f, g), (F,G)} and the lattice Λ = SpanR{(f, g)} is

a sublattice of Λqh. We assume that (α1, · · · , αn) is the powerful basis of R. Now we give a

lemma which is helpful to bound the rejection probability of Step 7 in this key generation

algorithm.

Lemma 5.11. Let σ ≥ 8n3.6 log n. Then, as n grows to infinity,

Prf,g←↩DR,σ (||(F,G)||2 > n2lσ2

2
+
q2ω(n2)

σ2
|(f, g) = R) = o(1),

where (F,G) is obtained as in Step 5 and 6.

Proof. Let (Fq, Gq) = (Fq, Gq)
∗ + (Fq, Gq)

pro, here (Fq, Gq)
∗ denotes the projection of

(Fq, Gq) orthogonally to the plain SpanK{(f, g)} = SpanQ{(fα1, gα1), · · · , (fαn, gαn)} and

(Fq, Gq)
pro denotes the projection of (Fq, Gq) into SpanK{(f, g)}. Then, (F,G) = (Fq, Gq)−

r(f, g) := (Fq, Gq)
∗ + (ef , eg) for some r ∈ R and ||(Fq, Gq)||2 = ||(Fq, Gq)∗||2 + ||(ef , eg)||2.

We first bound ||(Fq, Gq)∗||. Note that ||(Fq, Gq)∗|| ≤ minr∈K ||(Fq, Gq)−r(f, g)||, taking

r = f−1Fq (here f−1 is the inverse of f in K) shows that ||(Fq, Gq)∗|| ≤ ||(0, qf−1)|| =

q||f−1||. Here, we have used the fact Gq = qf−1 + g(f−1Fq). By using Lemma 2.15 with

t = ω(n)√
2

, we have

Prf←↩DR,σ (||f−1|| ≥ ω(n)

σ
) ≤ o(1).

This remains the case when conditioning on (f, g) = R, since the probability that (f, g) = R

is bounded from below by a constant. Overall, we have ||(Fq, Gq)∗|| ≤ q·ω(n)
σ holds except

with probability ≤ o(1).

To bound ||(ef , eg)||, note that ||(ef , eg)|| ≤
√
nl
2 · ||(f, g)||. By using Lemma 2.9, we

have Prf,g←↩DR,σ (||(f, g)|| ≤
√

2nσ) ≥ 1− 22−n. For the same reason as above, this remains

the case when conditioning on (f, g) = R. Overall, we get ||(ef , eg)|| ≤ n
√
l√

2
σ except with

probability ≤ o(1). The proof is finished.

We can now analyze the rejection probability of the key generation algorithm.
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Lemma 5.12. Let q ≥ 64nζK(2) be a prime such that q - ∆K and the prime ideal decomposi-

tion of qR in R is qR = P1 · · ·Pg. Assume σ ≥ max{8n3.6 lnn, ω(n ln0.5 n) · q
1
g , ω(q

1
2 l−

1
4 )},

then the key generation algorithm terminates in polynomial time for sufficient large n.

Proof. We only need to bound the rejection probability of the algorithm by 1 − c for an

absolute constant c for sufficient large n. For i ∈ {3, 4, 7}, we use pi to represent the

rejection probability in Step i, i.e.

• p3 is the probability that ||f || ≥
√
nσ or ||g|| ≥

√
nσ with f, g ←↩ D×R,σ.

• p4 is the probability that (f, g) 6= R and ||f ||, ||g|| <
√
nσ with f, g ←↩ D×R,σ.

• p7 is the probability that ||(F,G)|| > nσ
√
l, (f, g) = R and ||f ||, ||g|| <

√
nσ with

f, g ←↩ D×R,σ.

For i ∈ {3, 4, 7}, we define p′i as pi except that f and g are independently sampled from

DR,σ rather than D×R,σ. Let p denote the rejeciton probability in Step 1, then, by the union

bound, we have the rejection probability of Step 1 and 2 is ≤ 2p. Hence, for i ∈ {3, 4, 7}, we

have pi ≤ p′i
1−2p .

By Lemma 4.1 and the choice of σ, we have p ≤ 1
32ζk(2) for sufficient large n. Lemma 2.11

imply that p′3 ≤ 21−2n. The choice of σ and Lemma 5.6 shows that p′4 ≤ 1− 1
2ζK(2) + o(1).

Finally, Lemma 5.11 implies p′7 = o(1). Therefore, for sufficient large n, we have p′3+p′4+p′7 ≤
1− 1

4ζK(2) . The total rejection probability satisfies p3 + p4 + p7 ≤ p′3+p′4+p′7
1−2p ≤ 1− 1

8ζK(2) , as

required.

Finally, we conclude the following theorem.

Theorem 5.13. Let K be a cyclotomic field, R = OK , q ≥ 64nζK(2) be a prime such

that q - ∆K and the prime ideal decomposition of qR in R is qR = P1 · · ·Pg such that

fg = n, ε > 0 be an arbitrary positive number. Assume that σ ≥ max{8n3.6 lnn, ω(n ln0.5 n) ·
q

1
g , ω(q0.5l−0.25)}. Then the key generation algorithm proposed in this subsection terminates

in polynomial time, and the output matrix

[
f g

F G

]
is an R basis of Λqh for h = gf−1 mod qR.

Meanwhile, if σ ≥ n
3
2

√
ln (8nq) · q 1

2 +(1+ f
2 )ε, the distribution of h is rejected with probability

c < 1 for some absolute constant c from a distribution whose statistical distance from U(R×q )

is ≤ 29n

qbεnc
.

6 Collision Resistance Preimage Sampleable Functions

In [17], a general cryptographic primitive called Collision Resistance Preimage Sampleable

Functions is introduced. In this section, we shall give a detailed construction of CRPSF over

cyclotomic fields based on the strategy of [46].
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6.1 Basic Definitions

First, we recall the definition of CRPSF.

Definition 6.1. A collection of collision-resistant preimage sampleable functions, when given

a security parameter n, is specified by three PPT algorithms (TrapGen, SampleDom,

SamplePre) such that

1. Generating a function with trapdoor: TrapGen(1n) outputs (a, t), where a is the de-

scription of an efficiently-computable function fa : Dn 7→ Rn (for some efficiently-

recognizable domain Dn and range Rn depending on n), and t is some trapdoor in-

formation for fa. In the following, we fix some pair (a, t) returned by TrapGen(1n).

Note that the following properties need only hold for a probability negligibly closed to 1

over the choice of (a, t) outputted by TrapGen(1n).

2. Domain sampling with uniform outputs: SampleDom(1n) samples an x from some

(possibly nonuniform) distribution over Dn for which the distribution of fa(x) is uni-

form over Rn.

3. Preimage sampling with trapdoor: for every y ∈ Rn, SamplePre(t, y) samples from

the conditional distribution of x←↩ SampleDom(1n), given fa(x) = y.

4. One-wayness without trapdoor: for any PPT adversary A, the probability A(1n, a, y) ∈
f−1
a (y) ⊆ Dn is negligible, where the probability is taken over the choice of a, the target

value y ←↩ U(Rn) and the random coins of A.

5. Preimage min-entropy: for any y ∈ Rn, the conditional min-entropy of x←↩ SampleDom

(1n) given fa(x) = y is at least ω(log n).

6. Collision resistance without trapdoor: for any probabilistic polynomial time adversary

A, the probability that A(1n, y) outputs distinct x1, x2 such that fa(x1) = fa(x2) is

negligible, where the probability is taken over the choice of a and A’s random coins.

When a collection of functions (TrapGen, SampleDom, SamplePre) satisfies the

properties of 1-4 Definition 6.1, we call it one-way preimage sampleable functions (PSFs).

In fact, as pointed in [17], properties 5 and 6 of Definition 6.1 implies property 4.

For if not, then given a function fa, one can find a collision as follows: choose an x ←
SampleDom(1n), and obtain a preimage x′ of fa(x) from the adversarial inverter. Then

because x has large min-entropy given fa(x), we have x 6= x′ with overwhelming probability,

so x and x′ form a collision. Therefore, in constructions, we only need to prove a scheme

satisfy the properties 1, 2, 3, 5, 6 of Definition 6.1.

6.2 Detailed Constructions of CRPSF over Cyclotomic Fields

In this subsection, we give a concrete construction of CRPSF. It is essentially the same

with the construction proposed in [46]. We use NTRUCRPSR(n, q, σ, s) to represent the

corresponding CRPSF. The detailed construction is as follows.
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1. TrapGen(1n, q, σ): By running the key generation algorithm in Subsection 5.3, we get

a public key h = g · f−1 ∈ (Rq)
× and a private key sk =

[
f g

F G

]
. The key h defines

function fh(z) = fh((z1, z2)) = hz1 − z2 ∈ Rq with domain Dn = {z ∈ R2 : ||z|| <
s
√

2n} and range Rn = Rq. The trapdoor string for fh is sk.

2. SampleDom(1n, q, s): Sample z ←↩ DR2,s, if ||z|| ≥ s ·
√

2n, resample.

3. SamplePre(sk, t): To find a preimage in Dn for a target t ∈ Rn = Rq under fh

by using the trapdoor sk, sample z ←↩ DΛqh+c,s with Λqh = {(z1, z2) ∈ R2 : z2 =

hz1 mod qR} and c = (1, h− t). Return z.

Notice that for approximate σ and s, Theorem 5.13 shows that TrapGen is a PPT algo-

rithm, Theorem 2.7 implies that SampleDom and SamplePre are also PPT algorithms.

The following theorem shows that for approximate parameters, the three algorithms form a

valid CRPSF.

Theorem 6.2. Assume σ ≥ max{8n3.6 lnn, ω(n ln0.5 n) · q
1
g , ω(q0.5l−0.25), n

3
2

√
ln(8nq) ·

q
1
2 +ε} for some ε ∈ (0, 1

2 ) and s ≥ n
3
2 · σ · ω(log n). Then the NTRUCRPSF(n, q, σ, s) is a

CRPSF as defined in Definition 6.1 against ploy(n) time adversaries, assuming the hardness

of the worst-case Ideal-SIVPγ over K against poly(n) time adversaries, with γ = Õ(n · s).

Proof. The sets Dn and Rn are obviously recognizable. Note that η2−2n(R2) ≤
√

ln(4n(1+22n))
π ·

λn(R2) and λn(R2) = λ1(R2) ≤
√

2n · det
1

2n (R2) =
√

2n · (|∆K |)
1

2n ≤
√

2 · n, we have

s ≥ η2−2n(R2) and Theorem 2.7 implies that such a z can be efficiently sampled in Sam-

pleDom. Further, Lemma 2.11 shows that ||z|| < s ·
√

2n with probability 1− 2−4n.

To show property 2 of Definition 6.1, we apply Theorem 3.7 with δ = n−ω(1) to con-

clude that except for a fraction ≤ 27n · q−2nε of (a1, a2) ←↩ U((R×q )2), we have ∆(a1z1 −
a2z2;U(Rq)) ≤ 2δ with (z1, z2) ←↩ DR2,s. Since the map f : x 7→ a−1

2 x is a bijection

of Rq to itself, we have ∆(a1a
−1
2 z1 − z2;U(Rq)) = ∆(a1z1 − a2z2;U(Rq)) ≤ 2δ. More-

over, when a1, a2 ←↩ U(R×q ) are chosen independently, h = a−1
2 a1 ←↩ U(R×q ). We have

∆(hz1 − z2;U(Rq)) ≤ 2δ with (z1, z2) ←↩ DR2,s, except for a fraction of ≤ 27n · q−2εn of

h ∈ R×q . Finally, by Theorem 5.13, the h generated by TrapGen is obtained by rejec-

tion with constant rejection probability c < 1 from a distribution within statistical distance

29nq−bεnc of U(R×q ). It follows that ∆(hz1 − z2;U(Rq)) ≤ 2δ with (z1, z2) ←↩ DR2,a except

with probability ≤ 1
1−c · (2

7nq−2εn + 29nq−bεnc) = q−Ω(n) over the choice of the public key

h, as required.

To show properties 3 and 5 of Definition 6.1, we first observe that, for any fixed t ∈ Rq,
the conditional distribution of z ←↩ DR2,s, given fh(z) = hz1 − z2 = t ∈ Rq, is exactly
ρs(z)

ρs(Λ
q
h+c)

= DΛqh+c,s(z) with c = (1, h−t). Second, sample a vector z ←↩ DΛqh+c,s is equivalent

to sample a vector z′ ←↩ DΛqh,s,−c and add a vector c. We only need to analyze DΛqh,s,−c.

Recall that Λqh = R(f, g) + R(F,G). Assume (α1, · · · , αn) is the powerful basis of R, then

(f, g)α1, · · · , (f, g)αn; (F,G)α1, · · · , (F,G)αn are a Z-basis of Λqh. Moreover, since for any

i ∈ [n], we have ||αi||∞ = 1, ||(f, g)αi|| ≤ ||αi||∞ · ||(f, g)|| <
√

2n ·σ and ||(F,G)αi|| ≤ nσ
√
l.
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Theorem 2.7 implies we can efficiently get a sample from DΛqh,s,c
for any s ≥ n 3

2 ·σ ·ω(log n).

This proved the property 3. Note that η2−2n(Λqh) ≤
√

ln(2n(1+22n))
π ·

√
2n · det

1
2n (Λqh) ≤

n1.5 · q 1
2 · ln0.5 n ≤ s for n ≥ 500. Lemma 2.13 indicates that DΛqh,s,−c(x) ≤ 1+2−2n

1−2−2n · 2−2n

for any x ∈ Λqh. Property 5 is also satisfied except with probability q−Ω(n) over the choice

of the public key h by Theorem 5.13 and the proof of property 2.

At the end, we show property 6 of Definition 6.1. Let A be a collision-finding algorithm

for NTRUCRPSF with running time poly(n) and has advantage δ = 1
poly(n) over the choice of

the public key h and the randomness of A. By Theorem 5.13, the success probability of A over

the the choice of h←↩ U(R×q ) and the randomness of A is at least δ′ = (1−c)δ−29nq−bεnc =
1

poly(n) . We construct an algorithm for R-SISq,2,β with β = 2
√

2n · s. It works as follows:

on input (a1, a2) ←↩ U(R2
q), if (a1, a2) /∈ (R×q )2, aborts. Otherwise, B calls A on input

h = a−1
2 a1. If A succeeds, it outputs (z1, z2) 6= (z′1, z

′
2) with ||(z1, z2)||, ||(z′1, z′2)|| <

√
2n · s

such that a1(z1−z′1)+a2(z′2−z2) = 0 mod qR. Then B outputs w = (z1−z′1, z′2−z2). Note

that w is a valid solution of R-SISq,2,β . Condition on (a1, a2) ∈ (R×q )2, the distribution of h

given to A is U(R×q ) and thus A succeeds with probability ≥ δ′. Since (a1, a2) ∈ (R×q )2 with

probability ≥ 1− 2n
q , it follows that B succeeds with probability ≥ (1− 2n

q )δ′ = 1
poly(n) .

6.3 Claw-free CRPSF

We can also define and construct a kind of claw-free pairs of trapdoor functions as in

[17]. A collection of claw-free pairs of one-way/collision-resistent PSFs is defined similar to

Definition 6.1, but with the following differences: TrapGen outputs a pair a, a′ describing

functions fa, fa′ : Dn 7→ Rn (respectively), and their respective trapdoors t, t′. The preimage

sampler works the same way for both fa (given t) and fa′ (given t′). Then the hardness

condition is that no PPT adversary A, given a, a′, can find a pair x, x′ ∈ Dn such that

fa(x) = fa′(x
′). Each function fa, fa′ may itself also be collision-resistant in the usually

way.

Constructing a collection of claw-free pairs of trapdoor functions is very similar. For

simplicity, we only describe the differences. The TrapGen algorithm produces (h, sk) as

above, as well as a uniform w ←↩ U(Rq). It outputs a pair of functions fh(z) = hz1 −
z2 mod qR and fh,w(z) = hz1 − z2 + w mod qR. The domain, range and the SampleDom

algorithm are the same as above. The SamplePre algorithm for fh(SamplePrefh) is

also as above, but the SamplePre algorithm for fh,w(SamplePrefh,w) is that for a target

t ∈ Rq, set t′ = t − w ∈ Rq, then run SamplePrefh for target t′. The output z of

SamplePrefh(sk, t′) is the required output of SamplePrefh,w(sk, t).

It is easy to check that the constructed Claw-free CRPSF satisfies the requirements

1, 2, 3, 5, 6 of Definition 6.1 by using the same proof procedure of Theorem 6.2. Claw-freeness

is based on the average-case hardness of R-ISISq,2,2
√

2n·s. Suppose that an adversary A can

find a claw (z, z′) ∈ D2
n for fh and fh,w efficiently, we can construct a PPT algorithm to

solve R-ISISq,2,β for β = 2
√

2n · s. For an R-ISIS instance (a1, a2, u), if (a1, a2) /∈ (R×q )2,

abort. Otherwise, we set h = a−1
2 a1 ∈ R×q and w = a−1

2 u mod qR. Then we call A to get a
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claw (z, z′) ∈ D2
n for fh and fh,w. Note that we get hz1− z2 = hz′1− z′2 +w mod qR, hence,

a1(z1 − z′1) + a2(z′2 − z2) = u mod qR. Meanwhile, ||(z1 − z′1, z′2 − z2)|| ≤ 2
√

2n · s, it is a

valid solution for R-ISISq,2,β .

There is a trivial reduction from R-SISq,m,β+
√
mn·s to R-ISISq,m,β for β ≥

√
mn · s,

by using Theorem 3.7. Suppose that we have an R-ISISq,m,β oracle O, the reduction is as

follows. For an R-SISq,m,β instance (a1, · · · , am), if (a1, · · · , am) /∈ (R×q )m, abort. Otherwise,

we choose u ←↩ U(Rq) send (a1, · · · , am;u) to the oracle O. Theorem 3.7 implies that

∆((a1, · · · , αm;
∑m
i=1 ai · ti), U((R×q )m × Rq)) ≤ 2δ + 24mnq−εmn for t ←↩ DRm,s, where

s ≥ n ·
√

ln (2mn(1+ 1
δ ))

π ·q 1
m+ε for some δ ∈ (0, 1

2 ) and ε > 0. Thus for appropriate parameters,

O output a valid solution z to R-ISISq,m,β for some β that admits solutions. Moreover, since

the solutions of
∑m
i=1 ai · xi = u mod qR make up the set z + a⊥, we can sample a vector

x←↩ Dz+a⊥,s and we claim that x− z is a valid solution to R-SISq,m,β . Note that sample a

vector x←↩ Dz+a⊥,s is equivalent to sample a vector x′ ←↩ Da⊥,s,−z and then add z. Lemma

2.13 shows that for β ≥
√
mn · s, the probability that x = z is negligible. Meanwhile, by

Lemma 2.9, ||x− z|| ≤ ||x||+ ||z|| ≤ β +
√
mn · s with overwhelming probability. We have

proved the claim.

Overall, combing Theorem 2.7 and Theorem 6.2, we get the following theorem.

Theorem 6.3. Assume σ ≥ max{8n3.6 lnn, ω(n ln0.5 n) · q
1
g , ω(q0.5l−0.25), n

3
2

√
ln(8nq) ·

q
1
2 +ε} for some ε ∈ (0, 1

2 ) and s ≥ n
3
2 · σ · ω(log n). Then the constructed Claw-free

NTRUCRPSF(n, q, σ, s) is a Claw-free CRPSF as defined against ploy(n) time adversaries,

assuming the hardness of the worst-case Ideal-SIVPγ over K against poly(n) time adver-

saries, with γ = Õ(n · s).

Remark 6.4. In Theorem 6.2 and Theorem 6.3, we both have s = Õ(n7), q = Õ(n8) and

γ = Õ(n8).

7 NTRU Signatures over Cyclotomic Fields

In this section, we describe the NTRU signatures over any cyclotomic field.

In [17], a method of constructing signature schemes through the collision-resistant preim-

age sampleable functions is proposed. Moreover, the constructed signature scheme is strongly

existentially unforgeable under adaptive chosen-message attacks. We shall use the Proba-

bilistic Full-Domain Hash scheme constructed in [17]. The parameter k is the randomizer

length, we can set k = n for simplicity. In fact, any k = ω(log n) will suffice for asymptotic

security. In this section, H : {0, 1}∗ 7→ Rn is a random oracle. Given a CRPSF(TrapGen,

SampleDom, SamplePre), the detailed construction of signature schemes is as follows.

• SigKeyGen(1n): let (a, t)←TrapGen(1n). The verification key is a and the signing

key is t.

• Sign(t,m): choose r ←↩ U({0, 1}k), let σ =SamplePre(t,H(m||r)) and output (r, σ).
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• Verity(a,m, (r, σ)): if σ ∈ Dn, r ∈ {0, 1}k and fa(σ) = H(m||r), accept. Else, reject.

Proposition 7.1. The signature scheme above is strongly existentially unforgeable under

adaptive chosen-message attack.

Since we have constructed the NTRUCRPSF, we can use the NTRUCRPSF to design

a NTRU signature over any cyclotomic field. Note that applying the construction above

directly to our NTRUCRPSF, the signature of a message m is (σ1, σ2) ∈ R2 and a randomizer

r ∈ {0, 1}k satisfying hσ1 − σ2 = H(m||r). As observed in [46], we can reduce the signature

length by eliminating the σ2 from the signature, since it can be easily recovered from the

remaining information. Given a NTRUCRPSF(TrapGen, SampleDom, SamplePre), the

NTRUSign(n, q, σ, s, k) is as follows.

• SigKeyGen(1n, q, σ, k): run TrapGen(1n, q, σ) of NTRUCRPSF(n, q, σ, s) to get a

verification key h ∈ R×q and a signing key sk for the function fh : Dn 7→ Rn. Here,

Dn = {(z1, z2) ∈ R2 : ||(z1, z2)|| <
√

2n · s}, Rn = Rq and fh((z1, z2)) = hz1 −
z2 mod qR. Return the secret sk and public key pk = h.

• Sign(sk,m): choose r ←↩ U({0, 1}k), let (σ1, σ2) ←SamplePre(sk,H(m, r)). Return

(r, σ1).

• Verify(pk,m, (r, σ1)): Compute t = H(m, r) and σ2 = hσ1 − t mod qR. If (σ1, σ2) ∈
Dn and r ∈ {0, 1}k, accept. Otherwise, reject.

Theorem 7.2. Let ε, n, q, σ and s satisfy the condition in Theorem 6.2 and k = ω(log n).

Then, under the random oracle model and the hardness assumption of the worst-case Ideal-

SIVPγ over K with γ = Õ(n · s), the NTRUSign(n, q, σ, s, k) defined above is strongly exis-

tentially unforgeable against adaptive chosen message attack.
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A Missing proofs in Section 3

Proof of Lemma 3.2: We only need to prove a⊥(I) = q(L(a, I))∨, since the other equality

can be easily deduced by taking dual in both side of a⊥(I) = q(L(a, I))∨.

We start with showing that a⊥(I) ⊆ q(L(a, I))∨. For any t ∈ a⊥(I) and z ∈ L(a, I), we

only need to show
∑m
i=1 Tr(ti · zi) = 0 mod qZ. Note that zi = ai · s+ q · z′i for some z

′

i ∈ J∨,

we have
m∑
i=1

Tr(ti · zi) = Tr(s ·
m∑
i=1

ti · ai) + q ·
m∑
i=1

Tr(ti · z
′

i).

By the definition,
∑m
i=1 ti · ai = q · r for some r ∈ R. Thus

∑m
i=1 Tr(ti · zi) ∈ qZ.

To complete the proof, we will show q(L(a, I))∨ ⊆ a⊥(I). For any x ∈ (L(a, I))∨, we

need to show q · xi ∈ J for all i ∈ [m] and
∑m
i=1 qxi · ai ∈ qR. Note that q(J∨)m ⊆ L(a, I),

we can take v(i) be the vectors in L(a, I) such that the i-th coordinate is q · s′ with s
′ ∈ J∨

and 0 elsewhere. We have Tr(x · v(i)) = Tr(xi · q · s
′
) ∈ Z, hence q · xi ∈ J . Note that ∀

t ∈ L(a, I),
∑m
i=1 Tr(xi · ti) ∈ Z. We write ti as ai · s+ q · t′i with t

′

i ∈ J∨, then

m∑
i=1

Tr(xi · ti) = Tr(s ·
m∑
i=1

ai · xi) +

m∑
i=1

Tr(qxi · t
′

i),

the latter sum is in Z, hence Tr(s ·
∑m
i=1 ai · xi) ∈ Z and we get

∑m
i=1 ai · xi ∈ R. Therefore

we have proved a⊥(I) = q(L(a, I))∨. We finish the proof.
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Proof of Lemma 3.3: Let p denote the probability, over the randomness of a, that L(a, IS)

contains a non-zero vector t of infinity norm < B = qβ

n . Recall that, t ∈ L(a, IS) if and

only if there is an s ∈ R∨ such that ti = ai · s mod qJ∨S for all i ∈ [m]. Meanwhile, for any

s ∈ R∨, all the elements of the coset s + qJ∨S satisfy the equation ti = ai · s mod qJ∨S for

the same ti. We give an upper bound of p by the union bound, summing the probabilities

p(t, s) = Pra[ ti = ai · s mod qJ∨S , ∀i ∈ [m]] over all possible values of t of infinity norm

< B and s ∈ R∨/(qJ∨S ). Since the {ai}mi=1 are independent, we have p(t, s) =
∏
i≤m pi(ti, s),

where pi(ti, s) = Prai [ti = ai · s mod qJ∨S ]. So, we have

p ≤
∑

t ∈ (J∨S )m

∀i, 0 < ||ti||∞ < B

∑
s∈R∨/qJ∨S

m∏
i=1

Prai [ti = ai · s mod qJ∨S ].

Note that qJ∨S = q
∏
i∈S q

−1
i R∨ = q ·

∏
i∈S q

−1
i · R · R∨ =

∏
i∈S′ qi · R∨, where S

′
= [g] \ S.

We have an isomorphism between J∨S /qJ
∨
S and J∨S /(qi1R

∨)⊕ · · · ⊕ J∨S /(qi|S′ |R
∨).

We claim that for the case pi(ai, s) 6= 0, there must be a set S′′ ⊆ S′ such that s, ti ∈∏
i∈S′′ qiR

∨ and s, ti /∈ qjR
∨ for all j ∈ S′ \ S′′. Otherwise, there are some j ∈ S′ such

that either s = 0 mod qjR
∨ and ti 6= 0 mod qjR

∨, or s 6= 0 mod qjR
∨ and ti = 0 mod qjR

∨.

In both cases, we have pi(ai, s) = 0, since ai ∈ R×q . Then, for j ∈ S′′, we have ti =

ai · s = 0 mod qjR
∨, regardless of the value of ai ∈ R×q . For any j ∈ S′ \ S′′, we have

ti = ai · s 6= 0 mod qjR
∨, the value of ai is unique, since s 6= 0 mod qjR

∨ and ai ∈ R×q .

For j ∈ [n] \ S′, the value of ai can be arbitrary. Hence, overall, if we set |S′′ | = d, we

get pi(ti, s) = (qf−1)g−|S
′|·(qf−1)d

(qf−1)g
= (qf − 1)d−|S

′
|. Therefore, we can rewrite the sum’s

conditions by

p ≤
∑

0≤d≤|S′ |

∑
S
′′
⊆ S
′

|S
′′
| = d

h :=
∏
i∈S′′

qiR
∨

∑
s ∈ R∨/(qJ∨S )

s ∈ h

∑
t ∈ (J∨S )m

∀i, 0 < ||ti||∞ < B

ti ∈ h

m∏
i=1

(qf − 1)d−|S
′
|.

Set h =
∏
i∈S′′ qiR

∨, with S
′′ ⊆ S

′
and |S′′ | = d. Let N(B, d) denote the number of

t ∈ J∨S such that ||t||∞ < B and t ∈ h. We consider two cases for N(B, d) depending on the

magnitudes of d.

Case 1: Suppose that d ≥ β·n
f . Since t ∈ h =

∏
i∈S′′ qiR

∨, h is a fractional ideal, we have

(t) = tR∨ ⊆ h and (t) is a full-rank R-submodule of h. Hence, N(t) = N((t)) ≥ N(h) ≥
N(
∏
i∈S′′ qi ·R∨) = (

∏
i∈S′′ N(qi))N(R∨) = qdf ·∆−1

K . Thus N(t) ≥ qdf

|∆K | . We conclude that

||t||∞ ≥ 1√
n
||t|| ≥ N

1
n (t) ≥ q

df
n

|∆K |
1
n
≥ qβ

|∆K |
1
n

= B.

Case 2: Suppose now that d < β·n
f . Define B(l, c) = {x ∈ H : ||x − c||∞ < l}. Note

that σ(h) is a lattice of H, we get N(B, d) is at most the number of points of σ(h) in

the region B(B, 0). Let λ =
λ∞1 (h)

2 , then for any two elements v1 and v2 ∈ h, we have

B(λ,v1) ∩ B(λ,v2) = φ. For any v ∈ B(B, 0), we also have B(λ,v) ⊆ B(B + λ, 0).

Therefore, N(B, d) ≤ vol(B(B+λ,0))
vol(B(λ,0)) = (Bλ +1)n ≤ (2qβ−

df
n +1)n ≤ 22nqnβ−df , where we have

used the fact that λ∞1 (h) ≥ q
df
n

|∆K |
1
n

.
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We claim that the number of s ∈ R∨/(qJ∨S ) and s ∈ h is q(|S
′
|−d)f . In fact, if s satisfies

the above conditions, s ∈ h/(qJ∨S ). Using a kind of isomorphism relation which states that

for any fractional ideals a, b and integral ideal c with b ⊆ a, ac/bc ∼= a/b, we have

h/(qJ∨S ) =
∏
i∈S′′

qiR
∨/(

∏
i∈S′

qiR
∨) ∼=

∏
i∈S′′

qi/(
∏
i∈S′

qi) ∼= R/(
∏

i∈(S′\S′′ )

qi).

Hence, we have |h/(qJ∨S )| = |R/(
∏
i∈(S′\S′′ ) qi)| = q(|S

′
|−d)f . Using the above N(B, d)-

bounds and the fact that the number of subsets of S
′

of cardinality d is ≤ 2d, setting

P =
∏m
i=1(qf − 1)d−|S

′
|, we can rewrite the inequality of p as

p ≤

 ∑
0≤d< β·n

f

+
∑

β·n
f ≤d≤|S

′ |

 ∑
S
′′
⊆ S
′

|S
′′
| = d

h =
∏
i∈S′′

qiR
∨

∑
s ∈ R∨/(qJ∨S )

s ∈ h

∑
t ∈ (J∨S )m

∀i, 0 < ||ti||∞ < B

ti ∈ h

P

Therefore, we have

p ≤
∑

0≤d< β·n
f

∑
S
′′
⊆ S
′

|S
′′
| = d

h =
∏
i∈S′′

qiR
∨

∑
s ∈ R∨/(qJ∨S )

s ∈ h

∑
t ∈ (J∨S )m

∀i, 0 < ||ti||∞ < B

ti ∈ h

P

≤ 2|S
′
| max
d<β·n

qf(|S
′
|−d)Nm(B, d)

(qf − 1)m(|S′ |−d)

= 2|S
′
| max
d<β·n

(1 +
1

qf − 1
)(|S

′
|−d) Nm(B, d)

(qf − 1)(m−1)(|S′ |−d)

≤ max
d<β·n

2|S
′
|+2mn(1 +

1

qf − 1
)(|S

′
|−d)qmnβ+f |S

′
|−mf |S

′
|−df · 2(m−1)(|S

′
|−d)

≤ 2|S
′
|(1+m)+2mn · qmnβ+f |S

′
|−mf |S

′
| ≤ 22m(n+g) · q−εmn.

We finish the proof.

B Missing proofs in Section 4

Proof of Lemma 4.1: Thanks to the Chinese Remainder Theorem, we only need to bound

the probability that p · f ′ + a ∈ qi is no more than 1
qf

+ 2ε, for any i ≤ g. By Lemma 2.1

and the properties of ideal lattices, we have λ1(qi) = λn(qi) ≤
√
nN(qi)

1
n (
√
|∆K |)

1
n . By

Lemma 2.8 and 2.12, we know that f
′

mod qi is within distance 2ε to uniformity on R/qi,

so we have f
′

= −a/p mod qi with probability ≤ 1
qf

+ 2ε as we need.

Proof of Lemma 4.2: Set ε = 1
3n−1 . Note that λn(R) = λ1(R) ≤

√
n · (

√
|∆K |)

1
n . By

Lemma 2.8, we have ηε(R) ≤
√

2 ln (6n)
π ·

√
n · |∆K |−

1
2n . Hence, Prx←↩DR,σ,c(||x|| ≥

√
nσ) ≤
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3n
3n−22−n. Meanwhile, σ satisfies the condition in Lemma 4.1, so we get

Prg←↩DR,σ (||g|| ≥
√
nσ | g ∈ R×q ) =

Prg←↩DR,σ (||g|| ≥
√
nσ and g ∈ R×q )

Prg←↩DR,σ (g ∈ R×q )

≤
Prg←↩DR,σ (||g|| ≥

√
nσ)

Prg←↩DR,σ (g ∈ R×q )

≤ 3n

3n− 2
· 2−n · 1

1− n( 1
q + 2ε)

≤ 23−n.

Hence, we have ||f ′ ||, ||g|| ≤
√
nσ with probability ≥ 1 − 23−n. Then we can estimate

||f || ≤ 1 + ||p||∞ · ||f
′ || ≤ 2

√
nσ||p||∞.

Proof of Lemma 4.3: For a ∈ R×q , we define Pra = Prf1,f2
[(y1 + pf1)/(y2 + pf2) = a],

where fi ←↩ D×σ,zi . It is suffice to show that |Pra− (qf −1)−g| ≤ 22n+5q−bεnc · (q−1)−g =: ε
′

except a fraction ≤ 28nq−2nε of a ∈ R×q . Note that a1f1 + a2f2 = a1z1 + a2z2 is equivalent

to (y1 + pf1)/(y2 + pf2) = −a2/a1 in R×q and −a2/a1 ←↩ U(R×q ) when a←↩ U(R×q )2, we get

Pra := Prf1,f2 [a1f1 + a2f2 = a1z1 + a2z2] = Pr−a2/a1
for a ∈ (R×q )2.

The set of solutions (f1, f2) ∈ R2, fi ←↩ D×σ,zi , to the equation a1f1 + a2f2 = a1z1 +

a2z2 mod qR is z + a⊥×, where z = (z1, z2) and a⊥× = a⊥ ∩ (R×q + qR)2. Therefore

Pra =
DR2,σ(z + a⊥×)

DR,σ(z1 +R×q + qR) ·DR,σ(z2 +R×q + qR)
.

Note that a ∈ (R×q )2, we know for any t ∈ a⊥, t2 = −t1 a1

a2
, so t1 and t2 are in the same ideal

I of Rq. It follows that a⊥× = a⊥ \ (∪I⊆Rqa⊥(I)) = a⊥ \ (∪S⊆[g],S 6=φa
⊥(IS)). Similarly, we

have R×q + qR = R \ (∪S⊆[g],S 6=φ(IS + qR)). Using the inclusion-exclusion principal, we get

DR2,σ(z + a⊥×) =
∑
S⊆[g]

(−1)|S| ·DR2,σ(z + a⊥(IS)), (4)

DR,σ(zi +R×q + qR) =
∑
S⊆[g]

(−1)|S| ·DR,σ(zi + IS + qR), ∀ i ∈ {1, 2}. (5)

In the rest of the proof, we show that, except for a fraction ≤ 28nq−2nε of a ∈ (R×q )2:

DR2,σ(z + a⊥×) = (1 + δ0) · (qf − 1)g

q2n
,

DR,σ(zi +R×q + qR) = (1 + δi) ·
(qf − 1)g

qn
, ∀ i ∈ {1, 2},

where |δi| ≤ 22n+2q−bεnc for i ∈ {0, 1, 2}. These imply that |Pra − (qf − 1)−g| ≤ ε′ .
Handling (4): When |S| ≤ εn, we apply Lemma 3.6 with m = 2 and δ = q−n−fbεnc. Note

that qR2 ⊆ a⊥(IS) ⊆ R2, we have |R2/a⊥(IS)| = |R2/(qR2)|
|a⊥(IS)/(qR2)| . Meanwhile, |R2/(qR2)| =

q2n and |a⊥(IS)/(qR2)| = |IS | = qn−f |S|, since |Rq|/|IS | = |Rq/IS | = qf |S|. Therefore for

all except a fraction ≤ 27n

q2nε of a ∈ (R×q )2,∣∣∣DR2,σ(z + a⊥(IS))− q−n−f |S|
∣∣∣ = |DR2,σ,−z(a⊥(IS))− q−n−f |S|| ≤ 2δ.
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When |S| > εn, we can choose S
′ ⊆ S with |S′ | = bεnc. Then we have a⊥(IS) ⊆

a⊥(IS′ ) and hence DR2,σ,−z(a⊥(IS)) ≤ DR2,σ,−z(a⊥(IS′ )). Using the result proven above,

we conclude that DR2,σ,−z(a⊥(IS)) ≤ 2δ + q−n−fbεnc. Overall, we get∣∣∣∣DR2,σ(z + a⊥×)− (qf − 1)g

q2n

∣∣∣∣ =

∣∣∣∣∣DR2,σ(z + a⊥×)−
g∑
k=0

(−1)k
(
g
k

)
q−n−fk

∣∣∣∣∣
≤ 2g+1δ + 2

g∑
k=dεne

(
g
k

)
q−n−fbεnc

≤ 2g+1(δ + q−n−fbεnc)

for all except a fraction ≤ 28n

q2nε of a ∈ (R×q )2, since the are 2g choices of S. The δ0 satisfies

|δ0| ≤ q2n

(qf−1)g
2g+1(δ + q−n−fbεnc) = ( qf

qf−1
)g · 2g+2 · q−fbεnc ≤ 22g+2q−fbεnc ≤ 22n+2q−bεnc

as required.

Handling (5): Note that for any S ∈ [g], det(IS + qR) = |R/JS | ·
√
|∆K | = qf |S| ·

√
|∆K |,

where JS is the ideal of R such that JS/(qR) = IS . By Minkowski’s Theorem, we have

λ1(IS+qR) = λn(IS+qR) ≤ |∆K |
1

2n ·
√
n ·q

f|S|
n . Lemma 2.8 implies that σ > ηδ(IS+qR) for

any |S| ≤ g
2 with δ = q−

n
2 . Therefore, Lemma 2.12 shows that |DR,σ,−zi(IS+qR)−q−f |S|| ≤

2δ. For the case |S| > g
2 , we can choose S

′ ⊆ S with |S| ≤ g
2 . Using the same argument

above, we get DR,σ,−zi(I
′

S + qR) ≤ DR,σ,−zi(IS + qR) ≤ 2δ + q−
fg
2 . Therefore,∣∣∣∣DR,σ(zi +R×q + qR)− (qf − 1)g

qn

∣∣∣∣ =

∣∣∣∣∣DR,σ(zi +R×q + qR)−
g∑
k=0

(−1)k
(
g
k

)
q−fk

∣∣∣∣∣
≤ 2g+1δ + 2

g∑
k= g

2

(
g
k

)
q−fk

≤ 2g+1(δ + q−
n
2 )

which leads to the desired bound on δi, i = 1, 2.

C Absolute Upper bound of L(2) over Cyclotomic Fields

For cyclotomic field K = Q(ζl) with l = pk, we have L(2) = p2

p2−1 < 2. For general

cyclotomic fields K = Q(ζl) with l = pα1
1 · · · p

αt
t and n = ϕ(l), assume p1 < · · · < pt,

then L(2) =
∏t
i=1(1 − p−2·fi

i )−gi , where fi is the order of pi mod l/pαii and gi =
ϕ(l/p

αi
i )

fi
.

Meanwhile, ei · fi · gi = n, where ei = ϕ(pαii ).

Case 1: (fi ≥ 2 for all i = 1, · · · , t). Note that gi ≤ min{pi, n}, we have

L(2) =

t∏
i=1

(1− p−2·fi
i )−gi = exp(−gi

t∑
i=1

ln(1− p−2·fi
i ))

≤ exp(−pi
t∑
i=1

ln(1− p−4
i ))

≤ exp(

t∑
i=1

(p−3
i + p−7

i )) ≤ e 1
2 + 1

6 .
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That is to say, in this case, there is an absolute upper bound e
1
2 + 1

6 for L(2).

Case 2: (There are some i such that fi = 1). In fact, in this annoying case, there is

exactly one i ∈ [t] such that fi = 1. It is t. Then, we have

L(2) ≤ e 1
2 + 1

6 · (1 +
1

p2
t − 1

)gt ,

where gt = ϕ(pα1
1 · · · p

αt−1

t−1 ). The term (1 + 1
p2
t−1

)gt = (1 + 1
p2
t−1

)
n

p
αt−1
t (pt−1) . Note that, in

this case, pt = 1 mod pα1
1 · · · p

αt−1

t−1 . Therefore, pt >
√
l and (1 + 1

p2
t−1

)gt ≤ (1 + 1
l−1 )gt ≤

(1 + 1
l−1 )l−1 < e, where we have used that the function (1 + 1

x )x is a monotone increasing

function and limx→∞(1 + 1
x )x = e. Hence, in this case, an absolute upper bound for L(2) is

e1+ 1
2 + 1

6 .
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