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Abstract

In (STOC, 2008), Gentry, Peikert, and Vaikuntanathan proposed the first identity-based
encryption (GPV-IBE) scheme based on a post-quantum assumption, namely, the learning
with errors (LWE) assumption. Since their proof was only made in the random oracle model
(ROM) instead of the quantum random oracle model (QROM), it remained unclear whether
the scheme was truly post-quantum or not. In (CRYPTO, 2012), Zhandry developed new
techniques to be used in the QROM and proved security of GPV-IBE in the QROM, hence
answering in the affirmative that GPV-IBE is indeed post-quantum. However, since the general
technique developed by Zhandry incurred a large reduction loss, there was a wide gap between
the concrete efficiency and security level provided by GPV-IBE in the ROM and QROM.
Furthermore, regardless of being in the ROM or QROM, GPV-IBE is not known to have a
tight reduction in the multi-challenge setting. Considering that in the real-world an adversary
can obtain many ciphertexts, it is desirable to have a security proof that does not degrade
with the number of challenge ciphertext.

In this paper, we provide a much tighter proof for the GPV-IBE in the QROM in the
single-challenge setting. In addition, we also show that a slight variant of the GPV-IBE
has an almost tight reduction in the multi-challenge setting both in the ROM and QROM,
where the reduction loss is independent of the number of challenge ciphertext. Our proof
departs from the traditional partitioning technique and resembles the approach used in the
public key encryption scheme of Cramer and Shoup (CRYPTO, 1998). Our proof strategy
allows the reduction algorithm to program the random oracle the same way for all identities
and naturally fits the QROM setting where an adversary may query a superposition of all
identities in one random oracle query. Notably, our proofs are much simpler than the one by
Zhandry and conceptually much easier to follow for cryptographers not familiar with quantum
computation. Although at a high level, the techniques used for the single and multi-challenge
setting are similar, the technical details are quite different. For the multi-challenge setting,
we rely on the Katz-Wang technique (CCS, 2003) to overcome some obstacles regarding the
leftover hash lemma.

Keywords. Identity-based encryption, quantum random oracle models, LWE assumption,
tight security reduction, multi-challenge security.
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1 Introduction

1.1 Background

Shor [Sho94] in his breakthrough result showed that if a quantum computer is realized, then almost
all cryptosystems used in the real world will be broken. Since then, a significant amount of studies
have been done in the area of post-quantum cryptography, whose motivation is constructing
cryptosystems secure against quantum adversaries. Recently in 2016, the National Institute of
Standards and Technology (NIST) initiated the Post-Quantum Cryptography Standardization,
and since then post-quantum cryptography has been gathering increasingly more attention.

Random Oracles in Quantum World. In general, security proofs of practical cryptographic
schemes are given in the random oracle model (ROM) [BR93], which is an idealized model where
a hash function is modeled as a publicly accessible oracle that computes a random function.
Boneh et al. [BDF+11] pointed out that the ROM as in the classical setting is not reasonable
when considering security against quantum adversaries, since quantum adversaries may compute
hash functions over quantum superpositions of many inputs. Considering this fact, as a reasonable
model against quantum adversaries, they proposed a new model called the quantum random oracle
model (QROM), where a hash function is modeled as a quantumly accessible random oracle. As
discussed in [BDF+11], many commonly-used proof techniques in the ROM do not work in the
QROM. Therefore even if we have a security proof in the ROM, we often require new techniques
to obtain similar results in the QROM.

Identity-based Encryption in QROM. Identity-Based Encryption (IBE) is a generalization
of a public key encryption scheme where the public key of a user can be any arbitrary string
such as an e-mail address. The first IBE scheme based on a post-quantum assumption is the
one proposed by Gentry, Peikert and Vaikuntanathan (GPV-IBE) [GPV08], which is based on
the learning with errors (LWE) assumption [Reg05]. To this date, GPV-IBE is still arguably the
most efficient IBE scheme that is based on a hardness assumption that resists quantum attacks.
However, since their original security proof was made in the ROM instead of the QROM, it was
unclear if we could say the scheme is truly post-quantum. Zhandry [Zha12b] answered this in
the affirmative by proving that the GPV-IBE is indeed secure in the QROM under the LWE
assumption, hence truly post-quantum, by developing new techniques in the QROM.

Tight Security of GPV-IBE. However, if we consider the tightness of the reduction, the
security proof of the GPV-IBE by Zhandry [Zha12b] does not provide a satisfactory security.
Specifically, GPV-IBE may be efficient in the ROM, but it is no longer efficient in the QROM. In
general, a cryptographic scheme is said to be tightly secure under some assumption if breaking
the security of the scheme is as hard as solving the assumption. More precisely, suppose that
we proved that if there exists an adversary breaking the security of the scheme with advantage
ϵ and running time T , we can break the underlying assumption with advantage ϵ′ and running
time T ′. We say that the scheme is tightly-secure if we have ϵ′/T ′ ≈ ϵ/T . By using this notation,
Zhandry gave a reduction from the security of GPV-IBE to the LWE assumption with ϵ′ ≈
ϵ2/(QH+QID)

4 and T ′ ≈ T +(QH+QID)
2 ·poly(λ) where QH denotes the number of hash queries,

QID denotes the number of secret key queries, λ denotes the security parameter, and poly denotes
some fixed polynomial. Though the reduction is theoretically interesting, the meaning of the
resulting security bound in a realistic setting is unclear. For example, if we want to obtain 128-bit
security for the resulting IBE, and say we had ϵ = 2−128, QH = 2100, QID = 220, then even if we
ignore the blowup for the running time, we would have to start from at least a 656-bit secure
LWE assumption, which incurs a significant blowup of the parameters. Indeed, Zhandry left it as
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an open problem to give a tighter reduction for the GPV-IBE.

Multi-Challenge Tightness. The standard security notion of IBE considers the setting where
an adversary obtains only one challenge ciphertext. This is because security against adversaries
obtaining many challenge ciphertexts can be reduced to the security in the above simplified setting.
However, as pointed out by Hofheinz and Jager [HJ12], tightness is not preserved in the above
reduction since the security degrades by the number of ciphertexts. Therefore tightly secure IBE
in the single-challenge setting does not imply tightly secure IBE in the multi-challenge setting.
On the other hand, in the real world, it is natural to assume that an adversary obtains many
ciphertexts, and thus tight security in the multi-challenge setting is desirable. However, there is
no known security proof for the GPV-IBE or its variant that does not degrade with the number
of challenge ciphertexts even in the classical setting.

1.2 Our Contribution

We provide much tighter security proofs for the GPV-IBE in the QROM in the single-challenge
setting. Furthermore, we provide a multi-challenge tight variant of GPV-IBE that is secure both
in the ROM and QROM. In the following, we describe the tightness of our security proofs by
using the same notation as in the previous section.

• In the single-challenge setting, we give a reduction from the security of GPV-IBE to the
LWE assumption with ϵ′ ≈ ϵ and T ′ = T + (QH + QID)

2 · poly(λ). If we additionally
assume quantumly secure pseudorandom functions (PRFs), then we further obtain a tighter
reduction, which gives ϵ′ ≈ ϵ and T ′ = T + (QH + QID) · poly(λ). This is the first security
proof for GPV-IBE whose security bound does not degrade with QH or QID even in the
classical setting. We note that the same security bound can be achieved without assuming
PRFs in the classical ROM.

• We give a slight variant of GPV-IBE scheme whose multi-challenge security is reduced to
the LWE assumption with ϵ′ = ϵ/poly(λ) and T ′ ≈ T + (QH +QID +Qch)

2 · poly(λ) where
Qch denotes the number of challenge queries. If we additionally assume quantumly secure
PRFs, then we further obtain a tighter reduction. Namely, ϵ′ is the same as the above, and
T ′ = T +(QH+QID+Qch) ·poly(λ). This is the first variant of the GPV-IBE scheme whose
security bound does not degrade with Qch even in the classical setting. We note that the
same security bound can be achieved without assuming PRFs in the classical ROM.

Moreover, our security proofs are much simpler than the one by Zhandry [Zha12b]. In his work, he
introduced new techniques regarding indistinguishability of oracles against quantum adversaries.
Though his techniques are general and also useful in other settings (e.g., [Zha12a]), it involves
some arguments on quantum computation, and they are hard to follow for cryptographers who
are not familiar with quantum computation. On the other hand, our proofs involve a minimal
amount of discussions about quantum computation, and our proofs are done almost similar to
the counterparts in the classical ROM.

1.3 Technical Overview

GPV-IBE. First, we briefly describe the GPV-IBE [GPV08], which is the main target of this
paper. A master public key is a matrix A ∈ Zn×m

q and a master secret key is its trapdoor
TA ∈ Zm×m, which enables one to compute a short vector e ∈ Zm

q such that Ae = u given an
arbitrary vector u ∈ Zn

q . A private key skID for an identity ID ∈ ID is a short vector e ∈ Zm
q
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such that Ae = uID where uID = H(ID) for a hash function H : ID → Zn
q , which is modeled as

a random oracle. A ciphertext for a message M ∈ {0, 1} consists of c0 = u⊤IDs + x+M⌊q/2⌉ and
c1 = A⊤s + x. Here s is a uniformly random vector over Zn

q and x,x are small “noise” terms
where each entries are sampled from some specific Gaussian distribution χ. Decryption can be
done by computing w = c0 − c⊤1 eID ∈ Zq and deciding if w is closer to 0 or to ⌊q/2⌉ modulo q.

Security Proof in Classical ROM. The above IBE relies its security on the LWE assumption,

which informally states the following: given a uniformly random matrix [A|u] ← Zn×(m+1)
q and

some vector b ∈ Zm+1
q , there is no PPT algorithm that can decide with non-negligible probability

whether b is of the form [A|u]⊤s + x′ for some s ← Zn
q and x′ ← χm+1, or a uniformly random

vector over Zm+1
q , i.e., b ← Zm+1

q . Below, we briefly recall the original security proof in the
classical ROM given by Gentry et al. [GPV08] and see how the random oracle is used by the
reduction algorithm. The proof relies on a key lemma which states that we can set H(ID) and e in
the “reverse order” from the real scheme. That is, we can first sample e from some distribution
and program H(ID) := Ae so that their distributions are close to uniformly random as in the real
scheme. In the security proof, a reduction algorithm guesses i ∈ [Q] such that the adversary’s i-th
hash query is the challenge identity ID∗ where Q denotes the number of hash queries made by the
adversary. Then for all but the i-th hash query, the reduction algorithm programs H(ID) in the
above manner, and for the i-th query, it programs the output of H(ID∗) to be the vector u contained
in the LWE instance that is given as the challenge. Specifically, the reduction algorithm sets the
challenge user’s identity vector uID∗ as the random vector u contained in the LWE instance. If
the guess is correct, then it can embed the LWE instance into the challenge ciphertexts c∗0 and c∗1;
in case it is a valid LWE instance, then (c∗0, c

∗
1) is properly set to (u⊤ID∗s+ x+M⌊q/2⌉,A⊤s+ x)

as in the real scheme. Therefore, the challenge ciphertext can be switched to random due to the
LWE assumption. After this switch, M is perfectly hidden and thus the security of GPV-IBE
is reduced to the LWE assumption. Since the reduction algorithm programs the random oracle
in the same way except for the challenge identity, this type of proof methodology is often times
referred to as the “all-but-one programming”.

Security Proof in QROM in [Zha12b]. Unfortunately, the above proof cannot be simply
extended to a proof in the QROM. The reason is that in the QROM, even a single hash query
can be a superposition of all the identities. In such a case, to proceed with the above all-but-
one programming approach, the reduction algorithm would have to guess a single identity out
of all the possible identities which he hopes that would be used as the challenge identity ID∗ by
the adversary. Obviously, the probability of the reduction algorithm being right is negligible,
since the number of possible identities is exponentially large. This is in sharp contrast with the
ROM setting, where the reduction algorithm was allowed to guess the single identity out of the
polynomially many (classical) random oracle queries made by the adversary. Therefore, the all-
but-one programming as in the classical case cannot be used in the quantum case. To overcome this
barrier, Zhandry [Zha12b] introduced a useful lemma regarding what he calls the semi-constant
distribution. The semi-constant distribution with parameter 0 < p < 1 is a distribution over
functions from X to Y such that a function chosen according to the distribution gives the same
fixed value for random p-fraction of all inputs, and behaves as a random function for the rest of
the inputs. He proved that a function according to the semi-constant distribution with parameter
p and a random function cannot be distinguished by an adversary that makes Q oracle queries
with advantage greater than 8

3Q
4p2. In the security proof, the reduction algorithm partitions the

set of identities into controlled and uncontrolled sets. The uncontrolled set consists of randomly
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chosen p-fraction of all identities, and the controlled set is the complement of it. The reduction
algorithm embeds an LWE instance into the uncontrolled set, and programs the hash values for
the controlled set so that the decryption keys for identities in the controlled set can be extracted
efficiently. Then the reduction algorithm works as long as the challenge identity falls inside the
uncontrolled set and all identities for secret key queries fall inside the controlled set (otherwise
it aborts). By appropriately setting p, we can argue that the probability that the reduction
algorithm does not abort is non-negligible, and thus the security proof is completed. Though this
technique is very general and useful, a huge reduction loss is inherent as longs as we take the
above strategy because the reduction algorithm has to abort with high probability. It may be
useful to point out for readers who are familiar with IBE schemes in the standard model that the
above technique is conceptually very similar to the partitioning technique which is often used in
the context of adaptively secure IBE scheme in the standard model [Wat05, ABB10, CHKP10].
The reason why we cannot make the proof tight is exactly the same as that for the counterparts
in the standard model.

Our Tight Security Proof in QROM. As discussed above, we cannot obtain a tight reduction
as long as we use a partitioning-like technique. Therefore we take a completely different approach,
which is rather similar to that used in the public key encryption scheme of Cramer and Shoup
[CS98], which has also been applied to the pairing-based IBE construction of Gentry [Gen06].
The idea is that we simulate in a way so that we can create exactly one valid secret key for every
identity. Note that this is opposed to the partitioning technique (and the all-but-one programming
technique) where the simulator cannot create a secret key for an identity in the uncontrolled set.
To create the challenge ciphertext, we use the one secret key we know for that challenge identity.
If the adversary can not tell which secret key the ciphertext was created from and if there are
potentially many candidates for the secret key, we can take advantage of the entropy of the secret
key to statistically hide the message.

In more detail, the main observation is that the secret key e, i.e. a short vector e such that
Ae = u, retains plenty of entropy even after fixing the public values A and u. Therefore, by
programming the hash value u of an identity, we can easily create a situation where the simulator
knows exactly one secret key out of the many possible candidates. Furthermore, the simulator
knowing a secret key eID∗ such that AeID∗ = uID∗ , can simulate the challenge ciphertext by
creating c∗0 = e⊤ID∗c∗1 + M⌊q/2⌉ and c∗1 = A⊤s + x. Here, the key observation is that we no
longer require the LWE instance (uID∗ ,u⊤ID∗s + x) to simulate the challenge ciphertext. Though
the distribution of c∗0 simulated as above is slightly different from that of the real ciphertext due
to the difference in the noise distributions, we ignore it in this overview. In the real proof, we
overcome this problem by using the noise rerandomization technique by Katsumata and Yamada
[KY16]. Then we use the LWE assumption to switch c∗1 to random. Finally, we argue that
e⊤ID∗c∗1 is almost uniform if the min-entropy of eID∗ is high and c∗1 is uniformly random due to the
leftover hash lemma. Therefore, all information of the message M is hidden and thus the proof is
completed.

Finally, we observe that the above proof naturally fits in the QROM setting. The crucial
difference from the partitioning technique is that in our security proof we program the random
oracle in the same way for all identities. Therefore even if an adversary queries a superposition
of all identities, the simulator can simply quantumly perform the programming procedure for the
superposition. Thus the proof in the classical ROM can be almost automatically converted into
the one in the QROM in this case.

Tight Security in Multi-Challenge Setting. Unfortunately, the above idea does not extend
naturally to the tightly-secure multi-challenge setting. One can always prove security in the multi-

6



challenge setting starting from a scheme that is single-challenge secure via a hybrid argument,
however, as mentioned by Hofheinz and Jager [HJ12], this type of reduction does not preserve
tightness. A careful reader may think that the above programming technique can be extended
to the multi-challenge setting, hence bypassing the hybrid argument. We briefly explain why
this is not the case. Informally, in the above proof, the reduction algorithm embeds its given
LWE instance (A,A⊤s+x) into the challenge ciphertext by creating (c∗0 = e⊤ID∗c∗1+M⌊q/2⌉, c∗1 =
A⊤s+x), where eID∗ is the secret key of the challenge user uID∗ . Therefore, since the c∗1 component
of every ciphertext is an LWE instance for the same public matrixA, to simulate multiple challenge
ciphertexts in the above manner, the reduction algorithm must be able to prepare a special type of
LWE instance (A, {A⊤s(k)+x(k)}k∈[N ]), where N = poly(λ) is the number of challenge ciphertext
queried by the adversary. It can be easily seen that this construction is tightly-secure in the multi-
challenge setting with the same efficiency as the single-challenge setting, if we assume that this
special type of LWE problem is provided to the reduction algorithm as the challenge. However,
unfortunately, we still end up losing a factor of N in the reduction when reducing the standard
LWE problem to this special LWE problem. In particular, we only shifted the burden of having
to go through the N hybrid arguments to the assumption rather than to the scheme. As one may
have noticed, there is a way to bypass the problem of going through the N hybrid arguments
by using conventional techniques (See [Reg05, Reg10]) of constructing an unlimited number of
fresh LWE instances given a fixed number of LWE instances. However, this techniques requires
the noise of the newly created LWE instances to grow proportionally to the number of created
instances. In particular, to create the above special LWE instance from a standard LWE instance,
we require the size of the noise x(k) to grow polynomially with N , where recall that N can be
an arbitrary polynomial. Hence, although we can show a tightly secure reduction in the multi-
challenge setting, for the concrete parameters of the scheme to be independent of N , we need to
assume the super-polynomial LWE assumption to cope with the super-polynomial noise blow up.
This is far more inefficient than in the single-challenge setting where we only require a polynomial
LWE assumption.

To overcome this problem, we use the “lossy mode” of the LWE problem. It is well known
that the secret vector s is uniquely defined given an LWE instance (A,A⊤s+x) for large enough
samples. A series of works, e.g., [GKPV10, BKPW12, AKPW13, LSSS17] have observed that if
we instead sample A from a special distribution that is computationally indistinguishable from
the uniform distribution, then (A,A⊤s + x) leaks almost no information of the secret s, hence
the term “lossy mode”. This idea can be leveraged to prove (almost) tight security of the above
single-challenge construction, where the reduction loss is independent of the number of challenge
ciphertext. A first attempt of using this idea is as follows: During the security proof of the GPV-
IBE, we first change the public matrix A to a lossy matrix Ã and generate the secret keys and
program the random oracle in the same way as before. To create the challenge ciphertexts, the
reduction algorithm honestly samples s(k), x(k), x(k) and sets (c∗0 = u⊤ID∗s(k)+x(k)+M(k)⌊q/2⌉, c∗1 =
A⊤s(k)+x(k)). Now, it may seem that owing to the lossy mode of LWE, we can rely on the entropy
of the secret vector s(k) to argue that c∗0 is distributed uniformly random via the leftover hash
lemma. The main difference between the previous single-challenge setting is that we can rely on
the entropy of the secret vector s(k) rather than on the entropy of the secret key eID∗ . Since each
challenge ciphertext is injected with fresh entropy and we can argue statistically that a single
challenge ciphertext is not leaking any information on the message, the reduction loss will be
independent of the number of challenge ciphertext query N .

Although the above argument may seem correct at first glance, it incurs a subtle but a fatal
flaw, thus bringing us to our proposed construction. The problem of the above argument is how
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we use the leftover hash lemma. To use the lemma correctly, the vector uID∗ viewed as a hash
function is required to be universal. This is true in case uID∗ is set as AeID∗ , where A ← Zn×m

q

and eID∗ is sampled from some appropriate distribution. However, this is not true anymore once
we change A to a lossy matrix Ã, since Ã now lives in an exponentially small subset of Zn×m

q ,

hence, we can no longer rely on the entropy of s(k) to statistically hide the message. To overcome
this problem, our final idea is to use the Katz-Wang [KW03] technique. Specifically, we slightly
alter the encryption algorithm of GPV-IBE to output the following instead:

c0 = u⊤ID||0s+ x0 +M⌊q/2⌉, c1 = u⊤ID||1s+ x1 +M⌊q/2⌉, and c2 = A⊤s+ x,

where uID||b = H(ID||b) for b ∈ {0, 1}. During the security proof, the reduction algorithm sets
uID||0 and uID||1 so that one of them is uniformly random over Zn

q and the other is constructed
as AeID. Then, for the ciphertext cb corresponding to the uniformly random vector uID||b, we
can correctly use the leftover hash lemma to argue that cb statistically hides the message M. By
going through one more hybrid argument, we can change both c0, c1 into random values that are
independent of the message M. Note that instead of naively using the Katz-Wang technique, by
reusing the c2 component, the above GPV-IBE variant only requires one additional element in Zq

compared to the original GPV-IBE. Furthermore, in the actual construction, we do not require
the noise terms x0, x1 in c0, c1 since we no longer rely on the LWE assumption to change c0, c1
into random values. Our construction and security reduction does not depend on the number
of challenge ciphertext query N and in particular, can be proven under the polynomial LWE
assumption, which is only slightly worse than the single-challenge construction. In addition, due
to the same reason as the single-challenge setting, our classical ROM proof can be naturally
converted to a QROM proof.

1.4 Discussion.

Similar Techniques in Other Works. The idea to simulate GPV-IBE in a way so that we
can create exactly one valid secret key for every secret key query is not new. We are aware of
few works that are based on this idea. Gentry, Peikert, and Vaikuntanathan [GPV08] mentioned
that by using this technique, they can prove the security of the GPV-IBE in the standard model
based on a non-standard interactive variant of the LWE assumption. However, they only gave
a sketch of the proof and did not give a formal proof. Alwen et al. [ADN+10] use the idea to
construct an identity-based hash proof system (IB-HPS) based on the mechanism of GPV-IBE.
We note that they assume the modulus q to be super-polynomial. Outside the context of identity-
based primitives, Applebaum et al. [ACPS09] and Bourse [BDPMW16] provide an analysis of
rerandomizing LWE samples which can be seen as a refinement of the idea mentioned in [GPV08].
[ACPS09] constructs a KDM-secure cryptosystem based on the LWE problem and [BDPMW16]
shows a simple method for constructing circuit private fully homomorphic encryption schemes
(FHE) based on the lattice-based FHE scheme of Gentry et al. [GSW13]. Both of their analysis
only requires the modulus q to be polynomial. In summary, though similar ideas have been used,
all of the previous works are irrelevant to tight security or the security in the QROM.

On Running Time of Reductions. In the above overview, we ignore the running time of
reductions. Though it seems that the above described reductions run in almost the same time as
that of the adversaries, there is a significant blowup by the square of the number of queries due
to a subtle problem of simulating random oracles against quantum adversaries. In the classical
ROM, when we simulate a random oracle in security proofs, we usually sample a random function
in a lazy manner. That is, whenever an adversary queries a point that has not been queried before,
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a reduction algorithm samples a fresh randomness and assigns it as a hash value for that point.
However, this cannot be done in the QROM because an adversary may query a superposition of
all the inputs in a single query. Therefore a reduction algorithm has to somehow commit to the
hash values of all inputs at the beginning of the simulation.

Zhandry [Zha12b] proved that an adversary that makes Q queries cannot distinguish a random
function and a 2Q-wise independent hash function via quantum oracle accesses. Therefore we can
use a 2Q-wise independent hash to simulate a random oracle. However, if we take this method,
the simulator has to evaluate a 2Q-wise independent hash function for each hash query, and this
is the reason why the running time blowups by Ω(Q2).

One possible way to avoid this huge blowup is to simulate a random oracle by a PRF secure
against quantum accessible adversaries. Since the time needed to evaluate a PRF is some fixed
polynomial in the security parameter, the blowup for the running time can be made Q · poly(λ)
which is significantly better than Ω(Q2). However, in order to use this method, we have to
additionally assume the existence of quantumly secure PRFs. Such PRFs can be constructed based
on any quantumly-secure one-way function [Zha12a], and thus they exist if the LWE assumption
holds against quantum adversaries. However, the reduction for such PRFs are non-tight and thus
we cannot rely on them in the context of tight security. Our suggestion is to use a real hash
function to implement PRFs and to assume that it is a quantumly secure PRF. We believe this
to be a natural assumption if we are willing to idealize a hash function as a random oracle. (See
also the discussion in Sec. 2.2.)

1.5 Related Work

Schemes in QROM. Boneh et al. [BDF+11] introduced the QROM, and gave security proofs
for the GPV-signature [GPV08] and a hybrid variant of the Bellare-Rogaway encryption [BR93] in
the QROM. We note that their security proof for the GPV-signature is tight. Zhandry [Zha12b]
proved that GPV-IBE and full-domain hash signatures are secure in the QROM. Targhi and
Unruh [TU16] proposed variants of Fujisaki-Okamoto transformation and OAEP that are secure
in the QROM. Some researchers studied the security of the Fiat-Shamir transform in the QROM
[ARU14, Unr15, Unr17]. Unruh [Unr14b] proposed a revocable quantum timed-release encryption
scheme in the QROM. Unruh [Unr14a] proposed a position verification scheme in the QROM.
Recently, some researchers studied tight securities in the QROM. Alkim et al. [ABB+17] proved
that the signature scheme known as TESLA [BG14] is tightly secure under the LWE assumption.
Saito et al. [SXY18] proposed a tightly CCA secure variant of the Bellare-Rogaway encryption.
Kiltz et al. [KLS18] gave a tight reduction for the Fiat-Shamir transform in the QROM.
Tightly Secure IBEs. The first tightly secure IBE scheme from lattices in the single challenge
setting and in the standard model was proposed by Boyen and Li [BL16]. While the construction
is theoretically interesting and elegant, it is very inefficient and requires LWE assumption with
super-polynomial approximation factors. As for the construction from bilinear maps, the first
tightly secure IBE from standard assumptions in the single challenge setting and in the random
oracle model was proposed by Katz and Wang [KW03]. Coron [Cor09] gave a tight reduction for
a variant of the original Boneh-Franklin IBE [BF01]. Later, the first realization in the standard
model was proposed by Chen and Wee [CW13]. In the subsequent works, it is further extended
to the multi-challenge setting [HKS15, AHY15, GDCC16]. They are efficient but are not secure
against quantum computers.
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2 Preliminaries

Notations. For n ∈ N, denote [n] as the set {1, · · · , n}. For a finite set S, we let U(S) denote the
uniform distribution over S. For a distributionD and integer k > 0, define (D)k as the distribution∏

i∈[k]D. For a distribution or random variable X we write x ← X to denote the operation of
sampling a random x according to X. For a set S, we write s← S as a shorthand for s← U(S).
Let X and Y be two random variables over some finite set SX , SY , respectively. The statistical
distance ∆(X,Y ) between X and Y is defined as ∆(X,Y ) = 1

2Σs∈SX∪SY
|Pr[X = s]− Pr[Y = s]|.

The min-entropy of a random variable X is defined as H∞(X) = − log(maxx Pr[X = x]), where
the base of the logarithm is taken to be 2 throughout the paper. For a bit b ∈ {0, 1}, b̄ denotes
1 − b. For sets X and Y, Func(X ,Y) denotes the set of all functions from X to Y. For a vector
v ∈ Rn, denote ∥v∥ as the standard Euclidean norm. For a matrix R ∈ Rn×n, denote ∥R∥ as the
longest column and ∥R∥GS as the longest column of the Gram-Schmidt orthogonalization of R.

2.1 Quantum Computation

We briefly give some backgrounds on quantum computation. We refer to [NC00] for more details.
A state |ψ⟩ of n qubits is expressed as

∑
x∈{0,1}n αx |x⟩ ∈ C2n where {αx}x∈{0,1}n is a set of

complex numbers such that
∑

x∈{0,1}n |αx|2 = 1 and {|x⟩}x∈{0,1}n is an orthonormal basis on C2n

(which is called a computational basis). If we measure |ψ⟩ in the computational basis, then the
outcome is a classical bit string x ∈ {0, 1}n with probability |αx|2, and the state becomes |x⟩.
An evolution of quantum state can be described by a unitary matrix U , which transforms |x⟩ to
U |x⟩. A quantum algorithm is composed of quantum evolutions described by unitary matrices
and measurements. We also consider a quantum oracle algorithm, which can quantumly access
to certain oracles. The running time Time(A) of a quantum algorithm A is defined to be the
number of universal gates (e.g., Hadamard, phase, CNOT, and π/8 gates) and measurements
required for running A. (An oracle query is counted as a unit time if A is an oracle algorithm.)
Any efficient classical computation can be realized by a quantum computation efficiently. That
is, for any function f that is classically computable, there exists a unitary matrix Uf such that
Uf |x, y⟩ = |x, f(x)⊕ y⟩, and the number of universal gates to express Uf is linear in the size of
a classical circuit that computes f .

Quantum random oracle model. Boneh et al. [BDF+11] introduced the quantum random
oracle model (QROM), which is an extension of the usual random oracle model to the quantum
setting. Roughly speaking, the QROM is an idealized model where a hash function is idealized
to be a quantumly accessible oracle that simulates a random function. More precisely, in security
proofs in the QROM, a random function H : X → Y is uniformly chosen at the beginning of
the experiment, and every entity involved in the system is allowed to access to an oracle that
is given

∑
x,y αx,y |x, y⟩ and returns

∑
x,y αx,y |x,H(x)⊕ y⟩. We denote a quantum algorithm A

that accesses to the oracle defined as above by A|H⟩. In the QROM, one query to the random
oracle is counted as one unit time. As in the classical case, we can implement two random oracles
H0 and H1 from one random oracle H by defining H0(x) := H(0||x) and H1(x) := H(1||x). More
generally, we can implement n random oracles from one random oracle by using ⌊log n⌋-bit prefix
of an input as index of random oracles.

As shown by Zhandry [Zha12b], a quantum random oracle can be simulated by a family of
2Q-wise independent hash functions against an adversary that quantumly accesses to the oracle
at most Q times. As a result, he obtained the following lemma.

Lemma 1. ([Zha12b, Thereom 6.1].) Any quantum algorithm A making quantum queries to
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random oracles can be efficiently simulated by a quantum algorithm B, which has the same output
distribution, but makes no queries. Especially, if A makes at most Q queries to a random oracle
H : {0, 1}a → {0, 1}b, then Time(B) ≈ Time(A) +Q · T 2Q-wise

a,b where T 2Q-wise
a,b denotes the time to

evaluate a 2Q-wise independent hash function from {0, 1}a to {0, 1}b.

The following lemma was shown by Boneh et al. [BDF+11]. Roughly speaking, this lemma
states that if an oracle outputs independent and almost uniform value for all inputs, then it is
indistinguishable from a random oracle even with quantum oracle accesses.

Lemma 2. ([BDF+11, Lem. 3].) Let A be a quantum algorithm that makes at most Q oracle
queries, and X and Y be arrbitrary sets. Let H be a distribution over Func(X ,Y) such that when

we take H
$← H, for each x ∈ X , H(x) is identically and independently distributed according to a

distribution D whose statistical distance is within ϵ from uniform. Then for any input z. we have

∆(A|RF⟩(z),A|H⟩(z)) ≤ 4Q2√ϵ

where RF← Func(X ,Y) and H← H.

2.2 Pseudorandom Function.

We review the definition of quantum-accessible pseudorandom functions (PRFs) [BDF+11].

Definition 1 (Quantum-accessible PRF). We say that a function F : K×X → Y is a quantum-
accessible pseudorandom function if for all PPT adversaries A, its advantage defined below is
negligible:

AdvPRFA,F (λ) :=
∣∣∣Pr [A|RF⟩(1λ) = 1

]
− Pr

[
A|F (K,·)⟩(1λ) = 1

]∣∣∣
where RF← Func(X ,Y) and K ← K.

Zhandry [Zha12a] proved that some known constructions of classical PRFs including the tree-
based construction [GGM86] and lattice-based construction [BPR12] are also quantum-accessible
PRFs. However, these reductions are non-tight, and thus we cannot rely on these results when
aiming for tight security. Fortunately, we can use the following lemma which states that we can
use a quantum random oracle as a PRF similarly to the classical case.

Lemma 3. ([SXY18, Lem. 2.2]) Let ℓ be an integer. Let H : {0, 1}ℓ×X → Y and H′ : X → Y be
two independent random functions. If an unbounded time quantum adversary A makes a query
to H at most QH times, then we have∣∣∣Pr[A|H⟩,|H(K,·)⟩(1λ) = 1 | K ← {0, 1}ℓ]− Pr[A|H⟩,|H′⟩(1λ) = 1]

∣∣∣ ≤ QH · 2
−ℓ+1

2 .

2.3 Identity-Based Encryption

Syntax. We use the standard syntax of IBE [BF01]. Let ID be the ID space of the scheme. If a
collision resistant hash function CRH : {0, 1}∗ → ID is available, one can use an arbitrary string
as an identity. An IBE scheme is defined by the following four algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes as input a security parameter 1λ and outputs
a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, ID)→ skID: The key generation algorithm takes as input the master public key
mpk, the master secret key msk, and an identity ID ∈ ID. It outputs a private key skID. We
assume that ID is implicitly included in skID.
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Encrypt(mpk, ID,M)→ C: The encryption algorithm takes as input a master public key mpk, an
identity ID ∈ ID, and a message M. It outputs a ciphertext C.

Decrypt(mpk, skID, C)→ M or ⊥: The decryption algorithm takes as input the master public key
mpk, a private key skID, and a ciphertext C. It outputs the message M or ⊥, which means
that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all λ, all ID ∈ ID, and all M in
the specified message space,

Pr[Decrypt(mpk, skID,Encrypt(mpk, ID,M)) = M] = 1− negl(λ)

holds, where the probability is taken over the randomness used in (mpk,msk) ← Setup(1λ),
skID ← KeyGen(mpk,msk, ID), and Encrypt(mpk, ID,M).

Security. We now define the security for an IBE scheme Π. This security notion is defined by the
following game between a challenger and an adversary A. Let CTSam(·) be a sampling algorithm
that takes as input a master public key of the scheme and outputs an element in the ciphertext
space.

- Setup. At the outset of the game, the challenger runs Setup(1λ) → (mpk,msk) and gives mpk
to A. The challenger also picks a random coin coin ← {0, 1} and keeps it secretly. After given
mpk, A can adaptively make the following two types of queries to the challenger. These queries
can be made in any order and arbitrarily many times.

Secret Key Queries. If A submits ID ∈ ID to the challenger, the challenger returns skID ←
KeyGen(mpk,msk, ID).

Challenge Queries. If A submits a message M∗ and an identity ID∗ ∈ ID to the challenger,
the challenger proceeds as follows. If coin = 0, it runs Encrypt(mpk, ID∗,M∗) → C∗ and gives
the challenge ciphertext C∗ to A. If coin = 1, it chooses the challenge ciphertext C∗ from the
distribution CTSam(mpk) as C∗

$← CTSam(mpk) at random and gives it to A.
We prohibit A from making a challenge query for an identity ID∗ such that it has already

made a secret key query for the same ID = ID∗ and vice versa.

- Guess. Finally, A outputs a guess ĉoin for coin. The advantage of A is defined as

AdvIBEA,Π(λ) =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ .
We say that Π is adaptively-anonymous secure, if there exists efficiently sampleable distribution
CTSam(mpk) and the advantage of any PPT A is negligible in the above game. The term anony-
mous captures the fact that the ciphertext does not reveal the identity for which it was sent to.
(Observe that CTSam(mpk) depends on neither of C∗ nor M∗.)

Single Challenge Security. We can also consider a variant of the above security definition
where we restrict the adversary to make the challenge query only once during the game. We
call this security notion “single challenge adaptive anonymity”, and call the notion without the
restriction “multi challenge security”. By a simple hybrid argument, we can show that these
definitions are in fact equivalent in the sense that one implies another. However, the proof that
the former implies the latter incurs a huge security reduction loss that is linear in the number
of challenge queries. Since the focus of this paper is on tight security reductions, we typically
differentiate these two notions.
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Remark 1. We say that an IBE scheme is stateful if the key generation algorithm has to record
all previously issued secret keys, and always outputs the same secret key for the same identity. By
the technique by Goldreich [Gol86], a stateful scheme can be converted to a stateless one (in which
the key generation algorithm need not remember previous executions) by using PRFs. Since PRFs
exist in the QROM without assuming any computational assumption as shown in Lem. 3, if we
make the key size of PRFs sufficiently large, this conversion hardly affects the tightness. Therefore
in this paper, we concentrate on constructing tightly secure stateful IBE scheme for simplicity.

2.4 Background on Lattices

A (full-rank-integer) m-dimensional lattice Λ in Zm is a set of the form {
∑

i∈[m] xibi|xi ∈ Z},
where B = {b1, · · · ,bm} are m linearly independent vectors in Zm. We call B the basis of the
lattice Λ. For any positive integers n,m and q ≥ 2, a matrix A ∈ Zn×m

q and a vector u ∈ Zn
q , we

define Λ⊥(A) = {z ∈ Zm|Az = 0 mod q}, and Λ⊥u (A) = {z ∈ Zm|Az = u mod q}.
Gaussian Measures. For an m-dimensional lattice Λ, the discrete Gaussian distribution over Λ
with center c and parameter σ is defined asDΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ) for all x ∈ Λ, where ρσ,c(x)
is a Gaussian function defined as exp(−π∥x−c∥2/σ2) and ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). Further for an

m-dimensional shifted lattice Λ + t, we define the Gaussian distribution DΛ+t,σ with parameter
σ as the process of adding the vector t to a sample from DΛ,σ,−t. Finally, we call D a B-bounded
distribution, if all the elements in the support of D have absolute value smaller than B.

Discrete Gaussian Lemmas. The following lemmas are used to manipulate and obtain mean-
ingful bounds on discrete Gaussian vectors.

Lemma 4 (Adopted from [GPV08], Lem. 5.2). Let n,m, q be positive integers such that m ≥
2n log q and q a prime. Let σ be any positive real such that σ ≥

√
n+ logm. Then for all but

2−Ω(n) fraction of A ∈ Zn×m
q , we have that the distribution of u = Ae mod q for e ← DZm,σ is

2−Ω(n)-close to uniform distribution over Zn
q . Furthermore, for a fixed u ∈ Zn

q , the conditional
distribution of e← DZm,σ, given Ae = u mod q is DΛ⊥

u (A),σ.

The following lemma is obtained by combining Lem. 4.4 in [MR07] and Lem. 5.3 in [GPV08].

Lemma 5 ([MR07], [GPV08]). Let σ > 16
√

log 2m/π and u be any vector in Zn
q . Then, for all

but q−n fraction of A ∈ Zn×m
q , we have that

Pr
x←D

Λ⊥
u ,σ

(A)
[∥x∥ > σ

√
m] < 2−(m−1).

The following lemma can be obtained by a straightforward combination of Lem. 2.6, Lem. 2.10,
and Lem. 5.3 in [GPV08] (See also [PR06, Pei07]).

Lemma 6 ([PR06, Pei07, GPV08]). Let σ > 16
√

log 2m/π and u be any vector in Zn
q . Then, for

all but q−n fraction of A ∈ Zn×m
q , we have

H∞(DΛ⊥
u (A),σ) ≥ m− 1.

The following is a useful lemma used during the security proof. It allows the simulator to
create new LWE samples from a given set of LWE samples (i.e., the LWE challenge provided to
the simulator) for which it does not know the associating secret vector.1 We would like to note

1 Compared to [KY16] our choice of parameter is more conservative since we consider 2−Ω(n) statistical distance
rather than 2−ω(logn).
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that the following lemma is built on top of many previous results [Reg05, Pei10, BLP+13] and is
formatted in a specific way to be useful in the security proof for LWE-based cryptosystems.

Lemma 7 (Noise Rerandomization, [KY16], Lem. 1). Let q, ℓ,m be positive integers and r a
positive real satisfying r > Ω(

√
n). Let b ∈ Zm

q be arbitrary and z chosen from DZm,r. Then there

exists a PPT algorithm ReRand such that for any V ∈ Zm×ℓ and positive real σ > s1(V), the
output of ReRand(V,b+ z, r, σ) is distributed as b′ = V⊤b+ z′ ∈ Zℓ

q where the distribution of z′

is within 2−Ω(n) statistical distance of DZℓ,2rσ.

Sampling Algorithms. The following lemma states useful algorithms for sampling short vec-
tors from lattices. In particular, the second preimage sampler is the exact gaussian sampler of
[BLP+13], Lem. 2.3.

Lemma 8. ([GPV08, MP12, BLP+13]) Let n,m, q > 0 be integers with m > 3n⌈log q⌉.

− TrapGen(1n, 1m, q) → (A,TA): a randomized algorithm that outputs a matrix A ∈ Zn×m
q and

a full-rank matrix TA ∈ Zm×m, where TA is a basis for Λ⊥(A), the distribution of A is
2−Ω(n)-close to uniform and ∥TA∥GS = O(

√
n log q).

− SamplePre(A,TA,u, σ) : a randomized algorithm that, given a matrix A ∈ Zn×m
q , a basis TA ∈

Zm×m for Λ⊥(A), a vector u ∈ Zn
q and a Gaussian parameter σ > ∥TA∥GS ·

√
log(2m+ 4)/π,

outputs a vector e ∈ Zm sampled from a distribution 2−Ω(n)-close to DΛ⊥
u (A),σ.

− SampleZ(σ) : a randomized algorithm that, given a Gaussian parameter σ > 16(
√

log 2m/π),
outputs a vector e ∈ Zm sampled from a distribution 2−Ω(n)-close to DZm,σ.

Hardness Assumptions. We define the Learning with Errors (LWE) problem introduced by
Regev [Reg05].

Definition 2 (Learning with Errors). For integers n = n(λ),m = m(n), a prime q = q(n) > 2, an
error distribution over χ = χ(n) over Z, and a PPT algorithm A, the advantage for the learning
with errors problem LWEn,m,q,χ of A is defined as follows:

Adv
LWEn,m,q,χ

A =
∣∣∣Pr [A(A,A⊤s+ z

)
= 1

]
− Pr

[
A
(
A,w + z

)
= 1

]∣∣∣
where A ← Zn×m

q , s ← Zn
q , w ← Zm

q , z ← χm. We say that the LWE assumption holds if

Adv
LWEn,m,q,χ

A is negligible for all PPT A.

The (decisional) LWEn,m,q,DZ,αq
for αq > 2

√
n has been shown by Regev [Reg05] to be as hard

as approximating the worst-case SIVP and GapSVP problems to within Õ(n/α) factors in the
ℓ2-norm in the worst case. In the subsequent works, (partial) dequantumization of the reduction
were achieved [Pei09, BLP+13].

We also define the LWE assumption against adversaries that can access to a quantum random
oracle as is done by Boneh et al. [BDF+11].

Definition 3 (Learning with Errors relative to Quantum Random Oracle). Let n, m, q and χ be
the same as in Def. 2, and a, b be some positive integers. For a PPT algorithm A, the advantage
for the learning with errors problem LWEn,m,q,χ of A relative to a quantum random oracle is
defined as follows:

Adv
LWEn,m,q,χ

A,QROa,b
(λ) =

∣∣∣Pr [A|H⟩(A,A⊤s+ z
)
= 1

]
− Pr

[
A|H⟩

(
A,w + z

)
= 1

]∣∣∣
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where A← Zn×m
q , s← Zn

q , w ← Zm
q , z← χm, H

$← Func({0, 1}a, {0, 1}b). We say that the LWE

assumption relative to an (a, b)-quantum random oracle holds if Adv
LWEn,m,q,χ

A,QROa,b
(λ) is negligible for

all PPT A.

It is easy to see that the LWE assumption relative to a quantum random oracle can be reduced
to the LWE assumption with a certain loss of the time for the reduction by Lem. 1. Alternatively,
if we assume the existence of a quantumly-accessible PRF, then the reduction loss can be made
smaller. Namely, we have the following lemmas.

Lemma 9. For any n, m, q, χ, a, b, and an algorithm A making at most Q oracle queries, there
exists an algorithm B such that

Adv
LWEn,m,q,χ

A,QROa,b
(λ) = Adv

LWEn,m,q,χ

B (λ)

and Time(B) ≈ Time(A) + Q · T 2Q-wise
a,b where T 2Q-wise

a,b denotes the time to evaluate a 2Q-wise

independent hash function from {0, 1}a to {0, 1}b.

Lemma 10. Let F : K × {0, 1}a → {0, 1}b be a quantumly-accessible PRF. For any n, m, q, χ,
a, b and an algorithm A making at most Q oracle queries, there exist algorithms B and C such
that

Adv
LWEn,m,q,χ

A,QROa,b
(λ) ≤ Adv

LWEn,m,q,χ

B (λ) + AdvPRFC,F (λ)

and Time(B) ≈ Time(A) +Q · TF and Time(C) ≈ Time(A) where TF denotes the time to evaluate
F .

In this paper, we give reductions from the security of IBE schemes to the LWE assumption
relative to a quantrum random oracle. Given such reductions, we can also reduce them to the
LWE assumption or to the LWE assumption plus the security of quantumly-accessible PRFs by
Lem. 9 or 10, respectively. The latter is tighter than the former at the cost of assuming the
existence of quantumly-accessible PRFs.

Remark 2. A keen reader may wonder why we have to require the extra assumption on the ex-
istence of PRFs when we’re working in the QROM, since as we mentioned earlier in Sec. 2.2, it
seems that we can use a QRO as a PRF. The point here is that during the security reduction, the
simulator (which is given the classical LWE instance) must simulate the QRO query to the adver-
sary against the LWE problem relative to a quantum random oracle query, hence, the simulator
is not in possession of the QRO. Note that the reason why we are able to use the QRO as a PRF
as mentioned in Rem. 1 is because the simulator is aiming to reduce the LWE problem relative to
a quantum random oracle query to the IBE scheme. Specifically, in this case the simulator can
use the QRO provided by its challenge to simulate a PRF.

3 Tightly Secure Single Challenge GPV-IBE

In this section, we show that we can give a tight security proof for the original GPV-IBE [GPV08]
in the single-challenge setting if we set the parameters appropriately. Such proofs can be given in
both the classical ROM and QROM settings.
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3.1 Construction

Let the identity space ID of the scheme be ID = {0, 1}ℓID , where ℓID(λ) denotes the identity-
length. Let also H : {0, 1}ℓID → Zn

q be a hash function treated as a random oracle during security
analysis. The IBE scheme GPV is given as follows. For simplicity, we describe the scheme as a
stateful one. As remarked in Rem. 1, we can make the scheme stateless without any additional
assumption in the QROM.

Setup(1λ): On input 1λ, it first chooses a prime q, positive integers n,m, and Gaussian parameters
α′, σ, where all these values are implicitly a function of the security parameter λ. The
precise parameter selection is specified in the following section. It then runs (A,TA) ←
TrapGen(1n, 1m, q) to generate a matrix A ∈ Zn×m

q with a trapdoor TA ∈ Zm×m such that
∥TA∥GS ≤ O(n log q). Then it outputs

mpk = A and msk = TA

KeyGen(mpk,msk, ID): If skID is already generated, then this algorithm returns it. Otherwise it
computes uID = H(ID) and samples eID ∈ Zm such that

AeID = uID mod q

using eID ← SamplePre(A,TA,uID, σ). It returns skID = eID as the secret key.

Enc(mpk, ID,M): To encrypt a message M ∈ {0, 1}, it first samples s ← Zn
q , x ← DZm,α′q and

x← DZ,α′q. Then it sets uID = H(ID) and computes

c0 = u⊤IDs+ x+M⌊q/2⌉, c1 = A⊤s+ x.

Finally, it outputs the ciphertext C = (c0, c1) ∈ Zq × Zm
q .

Dec(mpk, skID, C): To decrypt a ciphertext C = (c0, c1) with a secret key skID, it computes
w = c0 − c⊤1 eID ∈ Zq and outputs 0 if w is closer to 0 than to ⌊q/2⌉ modulo q. Otherwise it
outputs 1.

3.2 Correctness and Prameter Selection

The following shows correctness of the above IBE scheme.

Lemma 11 (Correctness). Suppose the parameters q, σ, and α′ are such that

σ > ∥TA∥GS ·
√

log(2m+ 4)/π, α′ < 1/8σm.

Let eID ← KeyGen(A,TA, ID), C ← Enc(A, ID′,M ∈ {0, 1}) and M′ ← Dec(A, eID, C). If ID = ID′,
then with overwhelming probability we have M′ = M.

Proof. When the Dec algorithm operates as specified, we have

w = c0 − e⊤IDc1 = M⌊q/2⌉+ x+ e⊤IDx︸ ︷︷ ︸
error term

.

By Lem. 8 and the condition posed on the choice of σ, we have that the distribution of eID
is 2−Ω(n) close to DΛ⊥

u (A),σ. Therefore, by Lem. 5, we have x ≤ α′q
√
m, ∥x∥ ≤ α′q

√
m, and

∥eID∥ ≤ σ ·
√
m except for 2−Ω(n) probability. Then, the error term is bounded by

|h⊤x− e⊤IDx| ≤ x+ |e⊤IDx| ≤ 2α′qσm.
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Hence, for the error term to have absolute value less than q/4, it suffices to choose q and α′ as in
the statement of the lemma.

Parameter Selection. For the system to satisfy correctness and make the security proof work,
we need the following restrictions. Note that we will prove the security of the scheme under the
LWE assumption whose noise rate is α, which is lower than α′ that is used in the encryption
algorithm.

- The error term is less than q/4 (i.e., α′ < 1/8mσ by Lem. 11)

- TrapGen operates properly (i.e., m > 3n log q by Lem. 8)

- Samplable from DΛ⊥
u (A),σ (i.e., σ > ∥TA∥GS ·

√
log(2m+ 4)/π = O(

√
n logm log q) by Lem. 8),

- σ is sufficiently large so that we can apply Lem. 4 and 6 (i.e., σ >
√
n+ logm, 16

√
log 2m/π),

- We can apply Lem. 7 (i.e., α′/2α >
√
n(σ2m+ 1)),

- LWEn,m,q,DZ,αq
is hard (i.e., αq > 2

√
n).

To satisfy these requirements, for example, we can set the parameters m, q, σ, α, α′ as follows:

m = n1+κ, q = 10n3.5+4κ, σ = n0.5+κ,

α′q = n2+2κ, αq = 2
√
n,

where κ > 0 is a constant that can be set arbitrarily small. To withstand attacks running in
time 2λ, we may set n = Ω̃(λ). In the above, we round up m to the nearest integer and q to
the nearest largest prime. We remark that though the above parameter is worse compared to the
original GPV-IBE scheme, this is due to our conservative choice of making the statistical error
terms appearing in the reduction cost 2−Ω(n) rather than the standard negligible notion 2−ω(log λ).
The latter choice of parameters will lead to better parameters, which may be as efficient as the
original GPV-IBE.

3.3 Security Proof in ROM

The following theorem addresses the security of GPV in the classical ROM setting. Our analysis
departs from the original one [GPV08] and as a consequence much tighter.

Theorem 1. The IBE scheme GPV is adaptively-anonymous single-challenge secure in the ran-
dom oracle model assuming the hardness of LWEn,m,q,DZ,αq

. Namely, for any classical adversary
A making at most QH random oracle queries to H and QID secret key queries, there exists an
algorithm B such that

AdvIBEA,GPV(λ) ≤ Adv
LWEn,m,q,DZ,αq

B (λ) + (QH +QID) · 2−Ω(n)

and
Time(B) = Time(A) + (QH +QID) · poly(λ).
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Proof of Theorem 1. Let CTSam(mpk) be an algorithm that outputs a random element from Zq×
Zm
q and A be a classical PPT adversary that attacks the adaptively-anonymous security of the

IBE scheme. Without loss of generality, we make some simplifying assumptions on A. First, we
assume that whenever A queries a secret key or asks for a challenge ciphertext, the corresponding
ID has already been queried to the random oracle H. Second, we assume that A makes the same
query for the same random oracle at most once. Third, we assume that A does not repeat secret
key queries for the same identity more than once. We show the security of the scheme via the
following games. In each game, we define Xi as the event that the adversary A wins in Gamei.

Game0 : This is the real security game. At the beginning of the game, (A,TA)
$← TrapGen(1n, 1m, q)

is run and the adversary A is given A. The challenger then samples coin
$← {0, 1} and keeps it

secret. During the game, A may make random oracle queries, secret key queries, and the challenge
query. These queries are handled as follows:

• When A makes a random oracle query to H on ID, the challenger chooses a random vector
uID ← Zn

q and locally stores the tuple (ID,uID,⊥), and returns uID to A.

• When the adversaryA queries a secret key for ID, the challenger computes eID = SamplePre(A,TA,uID, σ)
and returns eID to A.

• When the adversary makes the challenge query for ID∗ and a message M∗, the challenger
returns (c0, c1)

$← Encrypt(mpk, ID,M) if coin = 0 and (c0, c1)
$← CTSam(mpk) if coin = 1.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger outputs ĉoin. By
definition, we have

∣∣Pr[X0]− 1
2

∣∣ = ∣∣Pr[ĉoin− coin]− 1
2

∣∣ = AdvIBEA,GPV(λ).

Game1 : In this game, we change the way the random oracle queries to H are answered. When
A queries the random oracle H on ID, the challenger generates a pair (uID, eID) by first sampling
eID ← DZm,σ and setting uID = AeID. Then it locally stores the tuple (ID,uID,⊥), and returns uID

to A. Here, we remark that when A makes a secret key query for ID, the challenger returns e′ID
$←

SamplePre(A,TA,uID, σ), which is independent from eID that was generated in the simulation of
the random oracle H on input ID. Note that in this game, we only change the distribution of uID

for each identity. Due to Lem. 4, the distribution of uID in Game2 is 2−Ω(n)-close to that of Game1
except for 2−Ω(n) fraction of A since we choose σ >

√
n+ logm. Therefore, the statistical distance

between the view of A in Game1 and Game2 is 2−Ω(n) +QH · 2−Ω(n) < QH · 2−Ω(n). Therefore, we
have

∣∣Pr[X1]− Pr[X2]
∣∣ = QH · 2−Ω(n).

Game2 : In this game, we change the way secret key queries are answered. By the end of this
game, the challenger will no longer require the trapdoor TA to generate the secret keys. When A
queries the random oracle on ID, the challenger generates a pair (uID, eID) as in the previous game.
Then it locally stores the tuple (ID,uID, eID) and returns uID to A. When A queries a secret key
for ID, the challenger retrieves the unique tuple (ID,uID, eID) from local storage and returns eID.

For any fixed uID ∈ Zn
q , let e

(1)
ID,uID

and e
(2)
ID,uID

be random variables that are distributed according
to the distributions of skID conditioning on H(ID) = uID in Game1 and Game2, respectively.

Due to Lem. 8, we have ∆(e
(1)
ID,uID

, DΛ⊥
u (A),σ) ≤ 2−Ω(n). On the other hand, due to Lem. 4, we

have ∆(e
(2)
ID,uID

, DΛ⊥
u (A),σ) ≤ 2−Ω(n). Since A obtains at most QID user secret keys skID, we have∣∣Pr[X1]− Pr[X2]

∣∣ = QID · 2−Ω(n).

Game3 : In this game, we change the way the matrix A is generated. Concretely, the challenger
chooses A← Zn×m

q without generating the associated trapdoor TA. By Lem. 8, this makes only
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2−Ω(n)-statistical difference. Since the challenger can answer all the secret key queries without
the trapdoor due to the change we made in the previous game, the view of A is altered only
negligibly. Therefore, we have

∣∣Pr[X2]− Pr[X3]
∣∣ = 2−Ω(n).

Game4 : In this game, we change the way the challenge ciphertext is created when coin = 0. Recall
in the previous games when coin = 0, the challenger created a valid challenge ciphertext as in
the real scheme. In this game, to create the challenge ciphertext for identity ID∗ and message bit
M∗, the challenger first retrieves the unique tuple (ID∗,uID∗ , eID∗) from local storage. Then the
challenger picks s← Zn

q , x̄← DZm,αq and computes v = A⊤s+ x̄ ∈ Zm
q . It then runs

ReRand([eID∗ |Im],v, αq,
α′

2α
)→ c′ ∈ Zm+1

q

from Lem. 7, where Im is the identity matrix with size m. Let c′0 ∈ Zq denote the first entry of
c′ and c1 ∈ Zm

q denote the remaining entries of c′. Finally, the challenger outputs the challenge
ciphertext as

C∗ = (c0 = c′0 +M∗⌊q/2⌉, c1). (1)

We now proceed to bound |Pr[X3]−Pr[X4]|. We apply the noise rerandomization lemma (Lem. 7)
with V = [eID∗ |Im], b = A⊤s and z = x̄ to see that the distribution of c′ is negligibly close to
the following:

c′ = V⊤b+ x′ =
(
A · [eID∗ |Im]

)⊤
s+ x′ = [uID∗ |A]⊤s+ x′

where the distribution of x′ is 2−Ω(n)-close to DZm+1,α′q. Here, the last equality follows from
AeID∗ = uID∗ and we can appropriately apply the noise rerandomization lemma since we have the
following for our parameter selection:

α′/2α >
√
n(σ2m+ 1) ≥

√
n(∥eID∗∥2 + 1) ≥

√
n · s1([eID∗ |Im]),

where the second inequality holds with 1 − 2−Ω(n) probability. It can be seen that the challenge
ciphertext is distributed statistically close to that in Game3. Therefore, we may conclude that∣∣Pr[X3]− Pr[X4]

∣∣ = 2−Ω(n).

Game5 : In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, to create the challenge ciphertext the challenger first picks b ← Zm

q , x̄ ← DZm,αq

and computes v = b+ x̄ ∈ Zm
q . It then sets V = [eID∗ |Im] and runs the ReRand algorithm as in

Game3. Finally, it sets the challenge ciphertext as in Eq. (1). We claim that
∣∣Pr[X4] − Pr[X5]

∣∣
is negligible assuming the hardness of the LWEn,m,q,DZ,αq

problem. To show this, we use A to
construct an LWE adversary B as follows:

B is given a problem instance of LWE as (A,v = b + x̄) ∈ Zn×m
q × Zm

q where x̄ ← DZm,αq.

The task of B is to distinguish whether b = A⊤s for some s← Zn
q or b← Zm

q . B sets the master
public key mpk to be the LWE matrix A. Note that unlike the real IBE scheme, B does not
require the master secret key TA due to the modification we made in Game3. To generate the
challenge ciphertext, B first picks coin← {0, 1}. If coin = 0, it generates the challenge ciphertext
as in Eq. (1) using v, and returns it to A. We emphasize that all B needs to do to generate the
ciphertext is to run the ReRand algorithm, which it can do without the knowledge of the secret
randomness s and x̄. If coin = 1, B returns a random ciphertext using CTSam(mpk). At the end
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of the game, A outputs ĉoin. Finally, B outputs 1 if ĉoin = coin and 0 otherwise. It can be seen
that if A,v is a valid LWE sample (i.e., v = A⊤s), the view of the adversary corresponds to
Game4. Otherwise (i.e., v← Zm

q ), it corresponds to Game5. We therefore conclude that assuming
the hardness of LWEn,m,q,DZ,αq

problem we have
∣∣Pr[X4]− Pr[X5]

∣∣ = negl.

Game6 : In this game, we change the way the challenge ciphertext is created once more. If coin = 0,
to create the challenge ciphertext the challenger first picks b← Zm

q , x̄′ ← DZm,α′q and computes

c′ = [eID∗ |Im]⊤b+ x′.

It then parses c′ into c′0 and c1 (as in Game4) and sets the challenge ciphertext as Eq. (1). Similarly
to the change from Game3 to Game4, we have

∣∣Pr[X5]− Pr[X6]
∣∣ = 2−Ω(n) by Lem. 7.

It remains to show that no adversary has negligible chance in winning Game6. Notice that
when coin = 0, the challenge ciphertext can be written as

c0 = e⊤ID∗b+ x′0 +M⌊q/2⌉, c1 = b+ x′1,

where x′0 is the first entry of x′ and x′1 is the remaining entries. It suffices to show that the joint
distribution of (b, e⊤ID∗b) is negligibly close to the uniform distribution over Zm

q ×Zq, conditioned
on uID∗ . From the view of A, eID∗ is distribute as DΛ⊥

uID∗ (A),σ. By Lem. 6, we have

H∞(eID∗) ≥ m− 1

for all but 2−Ω(n) fraction of A. Now we can apply the leftover hash lemma since b is distributed
uniformly at random over Zm

q and conclude that (b, e⊤ID∗b) is
√
q/2m−1-close to the uniform

distribution. Hence, we have Pr[X6] ≤ 2−Ω(n) +
√
q/2m−1 < 2−Ω(n).

Therefore, combining everything together, the theorem is proven.

3.4 Security Proof in QROM

As we explained in the introduction, our analysis in the ROM can be easily be extended to the
QROM setting. We can prove the following theorem that addresses the security of the GPV-IBE
scheme in the QROM setting. The analysis here is different from that by Zhandry [Zha12b], who
gave the first security proof for the GPV-IBE scheme in the QROM setting and our analysis here
is much tighter.

Theorem 2. The IBE scheme GPV is adaptively-anonymous single-challenge secure assuming
the hardness of LWEn,m,q,DZ,αq

in the quantum random oracle model. Namely, for any quantum
adversary A making at most QH queries to |H⟩ and QID secret key queries, there exists a quantum
algorithm B making QH +QID quantum random oracle queries such that

AdvIBEA,GPV(λ) ≤ Adv
LWEn,m,q,DZ,αq

B,QROℓID,ℓr
(λ) + (Q2

H +QID) · 2−Ω(n)

and
Time(B) = Time(A) + (QH +QID) · poly(λ)

where ℓr denotes the length of the randomness for SampleZ.
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Proof of Theorem 2. Let CTSam(mpk) be an algorithm that outputs a random element from Zq×
Zm
q and A be a quantum adversary that attacks the adaptively-anonymous security of the IBE

scheme. Without loss of generality, we can assume that A makes secret key queries on the same
identity at most once. We show the security of the scheme via the following games. In each game,
we define Xi as the event that the adversary A wins in Gamei.

Game0 : This is the real security game for the adaptively-anonymous security. At the beginning
of the game, the challenger chooses a random function H : {0, 1}ℓID → Zn

q . Then it generates

(A,TA)
$← TrapGen(1n, 1m, q) and gives A to A. Then it samples coin

$← {0, 1} and keeps it
secret. During the game, A may make (quantum) random oracle queries, secret key queries, and
a challenge query. These queries are handled as follows:

• When A makes a random oracle query on a quantum state
∑

ID,y αID,y |ID⟩ |y⟩, the challenger
returns

∑
ID,y αID,y |ID⟩ |H(ID)⊕ y⟩.

• WhenAmakes a secret key query on ID, the challenger samples eID = SamplePre(A,TA,uID, σ)
and returns eID to A.

• When Amakes a challenge query for ID∗ and a messageM∗, the challenger returns (c0, c1)
$←

Encrypt(mpk, ID,M) if coin = 0 and (c0, c1)
$← CTSam(mpk) if coin = 1.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger outputs ĉoin. By
definition, we have

∣∣Pr[X0]− 1
2

∣∣ = ∣∣Pr[ĉoin− coin]− 1
2

∣∣ = AdvIBEA,GPV(λ).

Game1 : In this game, we change the way the random oracle H is simulated. Namely, the challenger
first chooses another random function Ĥ

$← Func({0, 1}ℓID , {0, 1}ℓr). Then we define H(ID) := AeID
where eID := SampleZ(σ; Ĥ(ID)), and use this H throughout the game. For any fixed ID, the
distribution of H(ID) is identical and its statistical distance from the uniform distribution is 2−Ω(n)

for all but 2−Ω(n) fraction of A due to Lem. 4 since we choose σ >
√
n+ logm . Note that in this

game, we only change the distribution of uID for each identity, and the way we create secret keys are
unchanged. Then due to Lem. 2, we have

∣∣Pr[X0]−Pr[X1]
∣∣ = 2−Ω(n)+4Q2

H

√
2−Ω(n) = Q2

H ·2−Ω(n).

Game2 : In this game, we change the way secret key queries are answered. By the end of this
game, the challenger will no longer require the trapdoor TA to generate the secret keys. When
A queries a secret key for ID, the challenger returns eID := SampleZ(σ; Ĥ(ID)). For any fixed

uID ∈ Zn
q , let e

(1)
ID,uID

and e
(2)
ID,uID

be random variables that are distributed according to the
distributions of eID conditioning on H(ID) = uID in Game1 and Game2, respectively. Due to

Lem. 8, we have ∆(e
(1)
ID,uID

, DΛ⊥
uID

(A),σ) ≤ 2−Ω(n). On the other hand, due to Lem. 4, we have

∆(e
(2)
ID,uID

, DΛ⊥
uID

(A),σ) ≤ 2−Ω(n). Since A obtains at most QID user secret keys eID, we have∣∣Pr[X1]− Pr[X2]
∣∣ = QID · 2−Ω(n).

Game3 : In this game, we change the way the matrix A is generated. Concretely, the challenger
chooses A← Zn×m

q without generating the associated trapdoor TA. By Lem. 8, the distribution

of A differs at most by 2−Ω(n). Since the challenger can answer all the secret key queries without
the trapdoor due to the change we made in the previous game, the view of A is altered only by
2−Ω(n). Therefore, we have

∣∣Pr[X2]− Pr[X3]
∣∣ = 2−Ω(n).

Game4 : In this game, we change the way the challenge ciphertext is created when coin = 0. Recall
in the previous games when coin = 0, the challenger created a valid challenge ciphertext as in the
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real scheme. In this game, to create the challenge ciphertext for identity ID∗ and message bit M∗,
the challenger first computes eID∗ := SampleZ(σ; Ĥ(ID∗)) and uID∗ := AeID∗ . Then the challenger
picks s← Zn

q , x̄← DZm,αq and computes v = A⊤s+ x̄ ∈ Zm
q . It then runs

ReRand([eID∗ |Im],v, αq,
α′

2α
)→ c′ ∈ Zm+1

q

from Lem. 7, where Im is the identity matrix with size m. Let c′0 ∈ Zq denote the first entry of
c′ and c1 ∈ Zm

q denote the remaining entries of c′. Finally, the challenger outputs the challenge
ciphertext as

C∗ = (c0 = c′0 +M∗⌊q/2⌉, c1). (2)

We now proceed to bound |Pr[X3]−Pr[X4]|. We apply the noise rerandomization lemma (Lem. 7)
with V = [eID∗ |Im], b = A⊤s and z = x̄ to see that the following equation holds:

c′ = V⊤b+ x′ =
(
A · [eID∗ |Im]

)⊤
s+ x′ = [uID∗ |A]⊤s+ x′

where x′ is distributed according to a distribution whose statistical distance is at most 2−Ω(n)

from DZm+1,α′q. Here, the last equality follows from AeID∗ = uID∗ and we can appropriately apply
the noise rerandomization lemma since we have the following for our parameter selection:

α′/2α >
√
n(σ2m+ 1) ≥

√
n(∥eID∗∥2 + 1) ≥

√
n · s1([eID∗ |Im]),

where the second inequality holds with 1 − 2−Ω(n) probability. It therefore follows that the
statistical distance between the distributions of the challenge ciphertext in Game3 and Game4 is
at most 2−Ω(n). Therefore, we may conclude that

∣∣Pr[X3]− Pr[X4]
∣∣ = 2−Ω(n).

Game5 : In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, to create the challenge ciphertext the challenger first picks b ← Zm

q , x̄ ← DZm,αq

and computes v = b + x̄ ∈ Zm
q . It then runs the ReRand algorithm as in Game4. Finally, it sets

the challenge ciphertext as in Eq. (2). We claim that
∣∣Pr[X4] − Pr[X5]

∣∣ is negligible assuming

the hardness of the LWEn,m,q,DZ,αq
problem relative to a quantum random oracle |Ĥ⟩ : {0, 1}ℓID →

{0, 1}ℓr . To show this, we use A to construct an adversary B that breaks the LWE assumption
relative to |Ĥ⟩.
B is given a problem instance of LWE as (A,v = b+ x̄) ∈ Zn×m

q ×Zm
q where x̄← DZm,αq. The

task of B is to distinguish whether b = A⊤s for some s← Zn
q or b← Zm

q . First, we remark that

B can simulate the quantum random oracle |H⟩ for A by using its own random oracle |Ĥ⟩ because
H is programmed as H(ID) := AeID where eID := SampleZ(σ; Ĥ(ID)) by the modification we made
in Game1. B sets the master public key mpk to be the LWE matrix A. Note that unlike the real
IBE scheme, B does not require the master secret key TA due to the modification we made in
Game3. Namely, when A queries ID for the key oracle, B just returns eID := SampleZ(σ; Ĥ(ID)).
To generate the challenge ciphertext, B first picks coin ← {0, 1}. If coin = 0, it generates the
challenge ciphertext as in Eq. (2) using v, and returns it to A. We emphasize that all B needs
to do to generate the ciphertext is to run the ReRand algorithm, which it can do without the
knowledge of the secret randomness s and x̄. If coin = 1, B returns a random ciphertext using
CTSam(mpk). At the end of the game, A outputs ĉoin. Finally, B outputs 1 if ĉoin = coin and 0
otherwise.

22



It can be seen that if A,v is a valid LWE sample (i.e., v = A⊤s), the view of the adversary
corresponds to Game4. Otherwise (i.e., v ← Zm

q ), it corresponds to Game5. Therefore we have∣∣Pr[X4]−Pr[X5]
∣∣ = Adv

LWEn,m,q,DZ,αq

B,QROℓID,ℓr
(λ). As for the running time, we have Time(B) = Time(A)+

(QH + QID) · poly(λ) since all B has to do is to run A once plus to compute some additional
computations that can be done in a fixed polynomial time whenever A makes a quantum random
oracle or secret key query.

Game6 : In this game, we further change the way the challenge ciphertext is created. If coin = 0,
to create the challenge ciphertext the challenger first picks b← Zm

q , x′ ← DZm,α′q and computes

c′ = [eID∗ |Im]⊤b+ x′.

It then parses c′ into c′0 and c1 (as in Game4) and sets the challenge ciphertext as Eq. (2). Similarly
to the change from Game3 to Game4, we have

∣∣Pr[X5]− Pr[X6]
∣∣ = 2−Ω(n) by Lem. 7.

It remains to show that no adversary has non-negligible chance in winning Game6. Notice that
when coin = 0, the challenge ciphertext can be written as

c0 = e⊤ID∗b+ x′0 +M⌊q/2⌉, c1 = b+ x′1,

where x′0 is the first entry of x′ and x′1 is the remaining entries. It suffices to show that the joint
distribution of (b, e⊤ID∗b) is statistically close to the uniform distribution over Zm

q ×Zq, conditioned
on uID∗ . From the view of A, eID∗ is distribute as DΛ⊥

u(ID∗)(A),σ because all information of eID∗

revealed to A is H(ID∗) = AeID∗ where eID∗ = SampleZ(σ; Ĥ(ID∗)) and Ĥ(ID∗) is completely
random from the view of A. (Remark that Ĥ(ID∗) is used in the game only when A queries ID∗ to
the key generation oracle, which is prohibited in the adaptively-anonymous security game.) By
Lem. 6, we have

H∞(eID∗) ≥ m− 1

for all but 2−Ω(n) fraction of A. Now we can apply the leftover hash lemma since b is distributed
uniformly at random over Zm

q and conclude that (b, e⊤ID∗b) is
√
q/2m−1-close to the uniform

distribution by the leftover hash lemma. Hence, we have Pr[X6] ≤ 2−Ω(n) +
√
q/2m−1 < 2−Ω(n).

Therefore, combining everything together, the theorem is proven.

4 (Almost) Tightly Secure Multi-Challenge IBE

In this section, we propose an IBE scheme that is (almost) tightly secure in the multi-challenge
setting. The security of the scheme is proven both in the classical ROM and QROM settings. Our
construction is obtained by applying the Katz-Wang [KW03] technique to the original GPV-IBE
scheme. Since the proofs require some previous results on random extractions and lossy mode
LWE, we first review them below.

4.1 Randomness Extraction

We recap some definitions and results on randomness extraction. As we have already intro-
duced in the preliminaries, the min-entropy of a random variable X was defined as H∞(X) =
− log(maxx Pr[X = x]). A similar notion called the average min-entropy, as introduced by Dodis
et al. [DORS04], is defined as follows:

H̃∞(X|I) = − log(Ei←I [2
−H∞(X|I=i)]).
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The average min-entropy corresponds to the optimal probability of guessingX, given knowledge of
I. Min-entropy is a rather fragile notion, since a single high-probability element can ruin the min-
entropy of an otherwise good distribution. Therefore, it is often more beneficial to work with the
ϵ-smooth min-entropy introduced by Renner and Wolf [RW04], which considers all distributions
that are ϵ-close to X, but which has higher entropy:

Hϵ
∞(X) = max

Y : ∆(X,Y )≤ϵ
H∞(Y ).

Similarly, a smooth version of average min-entropy can be defined as follows:

H̃ϵ
∞(X|I) = max

(Y,J): ∆((X,I),(Y,J))≤ϵ
H̃∞(Y |J).

We recall the definition of universal hash functions and provide an elementary construction of
them that will be used in our construction of multi-insatnce secure IBE schemes.

Definition 4 (Universal Hash Functions). A family of functions H = {h : X → D}h is called
a family of universal hash functions, if for all x, x′ ∈ X with x ̸= x′, we have Prh←H[h(x) =
h(x′)] ≤ 1

|D| .

Fact 1. Let q > 2. Let H = {u : Zn
q → Zq}u∈Zn

q
be a family of hash functions, where u(s) is

defined as u(s) = u⊤s mod q. Then, H is a family of universal hash functions.

The following lemma gives a lower bound for the smooth average min-entropy of some random
variable when partial related information is leaked.

Lemma 12 ([AKPW13], Lem. 2.4). Let X, Y , and Z be correlated random variables and Z
be some set such that Pr[Z ∈ Z] ≤ ϵ and |Z| ≤ 2z. Then, for any ϵ′ > 0, H̃ϵ+ϵ′

∞ (X|(Y, Z)) ≥
H̃ϵ′
∞(X|Y )− z.

The following is a generalization of the leftover hash lemma due to [DORS04]. Here, we
provide the smoothed-variant of the lemma. Roughly, this relates to the number of extractable
bits that look nearly uniform to the adversary who knows some value that is ϵ-close to the random
variable I.

Lemma 13 (Generalized Leftover Hash Lemma). Let H = {h : X → D} be a family of universal
hash functions. Let X be an independent random variable with values in X , let I be any random
variable. Then, for any ϵ ≥ 0, we have

∆
(
(h, h(X), I), (h,U(D), I

)
≤ 2ϵ+

1

2
·
√

2−H̃ϵ
∞(X|I) · |D|.

Proof. Let (Y, J) be random variables such that

(Y, J) = arg max
(Y,J): ∆((X,I),(Y,J))≤ϵ

H̃∞(Y |J).

Here, note that we have ∆(I, J) ≤ ϵ. Then,

∆
(
(h, h(X), I), (h,U(D), I

)
≤∆

(
(h, h(X), I), (h, h(Y ), J)

)
+∆

(
(h, h(Y ), J), (h,U(D), J)

)
+∆

(
(h,U(D), J), (h,U(D), I)

)
≤2ϵ+ 1

2
·
√

2−H̃∞(Y |J) · |D| (3)

In the above derivation, Eq. (3) follows from the standard generalized leftover hash lemma of
[DORS04] and the definition of smooth average min-entropy. This completes the proof.

24



Lossy Mode for LWE. It is well known that the secret vector s ∈ Zn
q is uniquely defined (with all

but negligible probability) given an LWE instance (A,A⊤s+x) ∈ Zn×m
q ×Zm

q when A is uniformly
chosen from Zn×m

q for sufficiently large m. On the other hand, if we sample A from a special
distribution which is computationally indistinguishable from the uniform distribution over Zn×m

q ,

then the pair (A,A⊤s+ x) leaks almost no information of the secret s. Since the LWE problem
of this version does not reveal much information about the secret s, this instance is often referred
to as the “lossy mode”. A series of works, e.g., [GKPV10, BKPW12, AKPW13, LSSS17] have
investigated the lossy nature of the problem. We first formally describe the procedure SampleLossy
to sample A in the lossy mode. Let n, m, ℓ be positive integers, and χ be a distribution over Zq.

SampleLossy(n,m, ℓ, χ) : It samples C
$← U(Zn×ℓ

q ), B
$← U(Zℓ×m

q ), and F
$← χn×m, and outputs

A = CB+ F.

It is easy to see that A in the lossy mode is indistinguishable from random under the LWE
assumption by a standard hybrid argument.

Lemma 14. For any PPT algorithm A, there exists a PPT algorithm B such that∣∣Pr[A(A0) = 1]− Pr[A(A1) = 1]
∣∣ ≤ n · AdvLWEℓ,m,q,χm

B (λ)

and Time(B) ≈ Time(A) where A0
$← Zn×m

q and A1
$← SampleLossy(n,m, ℓ, χ). If A has access

to a quantum random oracle from {0, 1}a to {0, 1}b, then the right hand side is replaced by n ·
Adv

LWEℓ,n,q,χ

B,QROa,b
(λ), and the number of quantum random oracle queries by A and B are the same.

We will be using the following lemma slightly adapted from the works of [AKPW13]. In
particular, we consider the smooth average min-entropy rather than the smooth min-entropy.

Lemma 15 (Adapted from [AKPW13], Lem. B.4). Let n, ℓ,m, q, β be positive integer parameters,
α, β be some Gaussian parameters, and χ be a distribution (all parameterized by the security
parameter λ, such that Prx←χ[|x| ≥ βq] ≤ negl(λ) and α ≥ βγnm. Let s and e be random
variables distributed according to U([−γ, γ]n) and DZm,αq, respectively. Furthermore, let A be a
matrix sampled by SampleLossy(n,m, ℓ, χ). Then, for any ϵ ≥ 2−λ, we have the following:.

H̃ϵ
∞(s|A,A⊤s+ e) ≥ H∞(s)− (ℓ+ 2λ) log q − negl(λ).

Remark 3. In [AKPW13], they do not consider the average over (A,A⊤s + e), i.e., they only
prove the above lemma for Hϵ

∞(s|A,A⊤s + e). However, their proof actually works for the
above statement as well. This change will be useful during the security proof when we apply
the (smoothed) generalized leftover hash lemma, which works for smooth-average min-entropies.

4.2 Construction

Let the identity space ID of the scheme be ID = {0, 1}ℓID , where ℓID(λ) denotes the identity-
length. Let also H : {0, 1}ℓID+1 → Zn

q be a hash function treated as a random oracle during
the security analysis where ℓID denotes the identity-length. The IBE scheme GPVmult is given as
follows. For simplicity, we describe the scheme as a stateful one. As remarked in Rem. 1, we can
make the scheme stateless without any additional assumption in the QROM.
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Setup(1λ): On input 1λ, it first chooses a prime q, positive integers n,m, γ, and Gaussian
parameters α, σ, where all these values are implicitly a function of the security param-
eter λ. The precise parameter selection is specified in the following section. It then runs
(A,TA)← TrapGen(1n, 1m, q) to generate a matrix A ∈ Zn×m

q with a trapdoor TA ∈ Zm×m

such that ∥TA∥GS ≤ O(n log q). Then it outputs

mpk = A and msk = TA

KeyGen(mpk,msk, ID): If skID is already generated, then this algorithm returns it. Otherwise it

picks bID
$← {0, 1}, computes uID∥bID = H(ID∥bID), and samples eID∥bID ∈ Zm such that

AeID∥bID = uID∥bID mod q

as eID∥bID ← SamplePre(A,TA,uID∥bID , σ). It returns skID = (bID, eID∥bID) as the secret key.

Enc(mpk, ID,M): To encrypt a message M ∈ {0, 1}, it first samples s
$← U([−γ, γ]), x← DZm,αq.

Then it computes uID∥0 = H(ID∥0) and uID∥1 = H(ID∥1) and sets the ciphertext as

c0 = u⊤ID∥0s+M⌊q/2⌉, c1 = u⊤ID∥1s+M⌊q/2⌉, c2 = A⊤s+ x.

Finally, it outputs the ciphertext C = (c0, c1, c2) ∈ Zq × Zq × Zm
q .

Dec(mpk, skID, C): To decrypt a ciphertext C = (c0, c1, c2) with a secret key skID, it computes
w = cbID−c⊤2 eID∥bID ∈ Zq and outputs 0 if w is closer to 0 than to ⌊q/2⌉ modulo q. Otherwise
it outputs 1.

4.3 Correctness and Prameter Selection

The following shows correctness of the above IBE scheme.

Lemma 16 (Correctness). Suppose the parameters q, σ, and α are such that

σ > ∥TA∥GS ·
√

log(2m+ 4)/π, α < 1/4σm.

Let eID∥bID ← KeyGen(A,TA, ID), C ← Enc(A, ID′,M ∈ {0, 1}) and M′ ← Dec(A, eID∥bID , C). If
ID = ID′, then with overwhelming probability we have M′ = M.

Proof. When the Dec algorithm operates as specified, we have

w = cbID − e⊤ID∥bIDc2 = M⌊q/2⌉+ e⊤ID∥bIDx︸ ︷︷ ︸
error term

.

By Lem. 8 and the condition posed on the choice of σ, we have that the distribution of eID∥bID is

2−Ω(n) close to DΛ⊥
uID∥bID

(A),σ. Therefore, by Lem. 5, we have ∥x∥ ≤ αq
√
m, and ∥eID∥bID∥ ≤ σ ·

√
m

except for 2−Ω(n) probability. Then, the error term is bounded by

|h⊤x− e⊤IDx| ≤ |e⊤IDx| ≤ αqσm.

Hence, for the error term to have absolute value less than q/4, it suffices to choose q and α as in
the statement of the lemma.

Parameter Selection. For the system to satisfy correctness and make the security proof work,
we need the following restrictions. Note that we will prove the security of the scheme under
LWEℓ,m,q,χm , where ℓ is specified in the following.
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- The error term is less than q/4 (i.e., α < 1/4mσ by Lem. 16)

- TrapGen operates properly (i.e., m > 3n log q by Lem. 8)

- Samplable from DΛ⊥
uID∥bID

(A),σ (i.e., σ > ∥TA∥GS ·
√

log(2m+ 4)/π = O(
√
n logm log q) by

Lem. 8),

- LWEℓ,n,q,χ is hard so that we can use the lossy mode in the proof by Lem. 14 (i.e., χ = DZ,2
√
ℓ),

- σ is sufficiently large so that we can apply Lem. 4 (i.e., σ >
√
n+ logm),

- we can apply to Lem. 15 in the proof (i.e., α > βγnm for β such that Prx←χ[|x| ≥ βq] ≤ negl(λ)),

- we can apply the generalized leftover hash lemma (Lem. 13) in the proof (i.e., n log(2γ)− (ℓ+
3λ) log q ≥ log q +Ω(n)).

To satisfy these requirements, for example, we can set the parameters ℓ, n,m, q, σ, α, β, γ as follows:

n = 25ℓ, m = n1+κ, σ = n0.5+κ, q = 5n5.5+3κ,

αq = n4+κ, βq = n, γ = n,

where κ > 0 is a constant that can be set arbitrarily small. To withstand attacks running in time
2λ, we may set ℓ = Ω̃(λ). In the above, we round up m to the nearest integer and q to the nearest
largest prime. As the case with the single-challenge setting, if we make the more aggressive choice
of using the negligible notion 2−ω(log λ), we will be able to obtain better parameter selections.

4.4 Security Proof in ROM

We can (almost) tightly prove the security of our IBE scheme GPVmult both in the classical ROM
and QROM settings. The following theorem addresses the security of GPVmult in the classical
ROM setting.

Theorem 3. The IBE scheme GPVmult is adaptively-anonymous multi-challenge secure assuming
the hardness of LWEℓ,m,q,χ in the random oracle model, where χ = DZ,αq. Namely, for any classical
adversary A making at most QH queries to H, Qch challenge queries, and QID secret key queries,
there exists an algorithm B such that

AdvIBEA,GPVmult
(λ) ≤ 3n · Adv

LWEℓ,m,q,DZ,αq

B (λ) + (QH +QID +Qch) · 2−Ω(n)

and
Time(B) = Time(A) + (QH +QID +Qch) · poly(λ).

Proof of Theorem 3. Let CTSam(mpk) be an algorithm that outputs (c0, c1, c2) such that c0
$← Zq,

c1
$← Zq, and c2 = A⊤s+ x for s

$← U([−γ, γ]) and x ← DZm,αq. Let also A be a classical PPT
adversary that attacks the (multi-challenge) adaptively-anonymous security of the IBE scheme.
Without loss of generality, we make some simplifying assumptions on A. First, we assume that
whenever A queries a secret key or asks for a challenge ciphertext, ID∥0 and ID∥1 for the corre-
sponding ID has already been queried to the random oracle H. We also assume that whenever A
queries H on input ID∥b, it also queries H on input ID∥b̄ as well. Furthermore, we assume that
A makes the same query for the random oracle or secret key oracle at most once. We show the
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security of the scheme via the following games. In each game, we define Xi as the event that the
adversary A wins in Gamei.

Game0 : This is the real security game. At the beginning of the game, (A,TA)
$← TrapGen(1n, 1m, q)

is run and the adversary A is given A. The challenger then samples coin
$← {0, 1} and keeps it

secret. During the game, A may make random oracle queries, secret key queries, and a challenge
query. These queries are handled as follows:

• When A queries the random oracle H on ID∥0 and ID∥1, the challenger samples uID∥0
$← Zn

q

and uID∥1
$← Zn

q and returns uID∥0 and uID∥1.

• When A queries a secret key for ID, the challenger first computes bID
$← {0, 1} and returns

eID∥bID = SamplePre(A,TA,uID∥bID , σ) to A where uID∥bID is the vector chosen during the
simulation of the random oracle.

• When the adversary makes the challenge query for ID∗ and a message M∗, the challenger
returns (c0, c1, c2)

$← Encrypt(mpk, ID∗,M) if coin = 0 and (c0, c1, c2)
$← CTSam(mpk) if

coin = 1. It then returns C∗ = (c0, c1, c2) to A.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger outputs ĉoin. By
definition, we have

∣∣Pr[X0]− 1
2

∣∣ = ∣∣Pr[ĉoin− coin]− 1
2

∣∣ = AdvIBEA,GPVmult
(λ).

Game1 : In this game, we change the game so that bID is chosen when A queries the random oracle
H on input ID∥0 and ID∥1 rather than when A queries a secret key for ID. It is clear that this is
only a conceptual change and we have Pr[X0] = Pr[X1].

Game2 : In this game, we change the way the random oracle queries to H are answered. When
A queries H on inputs ID∥0 and ID∥1, the challenger first samples bID

$← {0, 1} as specified
in the previous game. Then, it generates a pair (uID∥bID , eID∥bID) by first sampling eID∥bID ←
DZm,σ and setting uID∥bID = AeID∥bID . It also samples uID∥b̄ID

$← Zn
q . Then it locally stores

the tuples (ID∥bID,uID∥bID ,⊥) and (ID∥b̄ID,uID∥b̄ID ,⊥), and returns uID∥0 and uID∥1 to A. Here,

we remark that when A makes a secret key query for ID, the challenger returns e′ID∥bID
$←

SamplePre(A,TA,uID∥bID , σ), which is independent from eID∥bID that was generated in the sim-
ulation of the random oracle H on input ID∥0 and ID∥1. Note that in this game, we only
change the distribution of uID∥bID for each identity. Due to Lem. 4, the distribution of uID∥bID
in Game2 is 2−Ω(n)-close to that of Game1 except for 2−Ω(n) fraction of A since we choose
σ >

√
n+ logm. Therefore, the statistical distance between the view of A in Game1 and Game2

is 2−Ω(n) +QH · 2−Ω(n) < QH · 2−Ω(n). Therefore, we have
∣∣Pr[X1]− Pr[X2]

∣∣ = QH · 2−Ω(n).

Game3 : In this game, we change the way secret key queries are answered. By the end of this game,
the challenger will no longer require the trapdoor TA to generate the secret keys. When A queries
H on ID∥0 and ID∥1, the challenger generates a pair (uID∥bID , eID∥bID) as in the previous game. Then
it locally stores the tuple (ID∥bID,uID∥bID , eID∥bID) and returns uID∥bID toA. WhenA queries a secret
key for ID, the challenger retrieves the unique tuple (ID∥bID,uID∥bID , eID∥bID) from the local storage

and returns eID∥bID . For any fixed uID∥bID ∈ Zn
q , let e

(2)
ID∥bID and e

(3)
ID∥bID be random variables that are

distributed according to the distributions of skID∥bID conditioning on H(ID) = uID∥bID in Game2 and

Game3, respectively. Due to Lem. 8, we have ∆(e
(2)
ID∥bID , DΛ⊥

uID∥bID
(A),σ) ≤ 2−Ω(n). On the other
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hand, due to Lem. 4, we have ∆(e
(3)
ID∥bID , DΛ⊥

uID∥bID
(A),σ) ≤ 2−Ω(n). Since A obtains at most QID

user secret keys, we have
∣∣Pr[X2]− Pr[X3]

∣∣ = QID · 2−Ω(n).

Game4 : In this game, we change the way the matrix A is generated. Concretely, the challenger
chooses A← Zn×m

q without generating the associated trapdoor TA. By Lem. 8, this makes only

2−Ω(n)-statistical difference. Since the challenger can answer all the secret key queries without
the trapdoor due to the change we made in the previous game, the view of A is altered only
negligibly. Therefore, we have

∣∣Pr[X3]− Pr[X4]
∣∣ = 2−Ω(n).

Game5 : In this game, we change A to lossy mode (See Lem. 15). We claim that
∣∣Pr[X4]−Pr[X5]

∣∣
is negligible assuming the hardness of the LWEℓ,m,q,DZ,αq

problem. To show this, we use A to
construct an adversary B′ that distinguishes random A from that in lossy mode. This can be
done by a straightforward reduction since B′ does not require the master secret key TA to simulate
the game due to the modification we made in Game3. We therefore by Lem. 14 conclude that

there exists B such that we have
∣∣Pr[X4]− Pr[X5]

∣∣ = n · Adv
LWEℓ,m,q,DZ,αq

B (λ).

Game6 : In this game, we change the way the challenge ciphertexts are generated. Recall that
by our assumption, A makes queries for H on inputs ID∗∥0 and ID∗∥1 before making a challenge
query for identity ID∗. When A makes a challenge query for (ID∗,M∗) it samples a ciphertext as

C∗
$← CTSam(mpk) and returns C∗ to A if coin = 1. If coin = 0, it generates the ciphertext as

cbID∗ = u⊤ID∗∥bID∗ s+M∗⌊q/2⌉, cb̄ID∗
$← Zq, c2 = A⊤s+ x.

for s
$← U([−γ, γ]), where bID∗ is generated when the hash queries for ID∗∥0 and ID∗∥1 were made.

It then rearranges the terms if necessary and returns (c0, c1, c2) to A.
We argue that the view of A is statistically close to that in the previous game. To prove, we

do a hybrid argument over all the challenge ciphertexts and change cb̄ID∗ to be random one-by-one

(when coin = 0). To conclude, it suffices to show that cb̄ID∗ is distributed 2−Ω(n) close to the

uniform distribution over Zq. For each ciphertext, for any ϵ′ = 2−λ, we have

H̃ϵ′
∞(s|A, cbID∗ , c2) ≥ H̃ϵ′

∞(s|A, c2)− log q

≥ H∞(s)− (ℓ+ 2λ+ 1) log q − negl(λ)

= n log(2γ)− (ℓ+ 3λ) log q

≥ log q +Ω(n)

where the first inequality follows by applying Lem. 12 with Z = Zq and ϵ = 0, the second
inequality follows from Lem. 15, and the last inequality follows from our parameter choice. This
implies that ∆(uID∗∥b̄ID∗ ,u

⊤
ID∗∥b̄ID∗

s, |A, cbID∗ , c2) ≤ 2−Ω(n) for uID∗∥b̄ID∗ ← Zn
q by Lem. 13 together

with Fact 1. Therefore, we have
∣∣Pr[X5]− Pr[X6]

∣∣ = Qch · 2−Ω(n).

From Game7 to Game10 in the following, we undo the changes we added from Game2 to Game5.

Game7 : In this game, A is sampled as A ← Zn×m
q . Similarly to the change from Game 4 to

Game 5, there exists B such that we have
∣∣Pr[X6]− Pr[X7]

∣∣ = n · Adv
LWEℓ,m,q,DZ,αq

B (λ).

Game8 : In this game, A is sampled with a trapdoor as (A,TA)← TrapGen(1n, 1m, q). Similarly
to the change from Game 3 to Game 4, we have

∣∣Pr[X7]− Pr[X8]
∣∣ = 2−Ω(n).

Game9 : In this game, we change the way secret key queries are answered. When A makes a secret
key query for ID, the challenger returns e′ID∥bID

$← SamplePre(A,TA,uID∥bID , σ), where bID and uID
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are chosen when random oracle queries on ID∥0 and ID∥1 are made. Similarly to the change from
Game 2 to Game 3, we have

∣∣Pr[X8]− Pr[X9]
∣∣ = QH · 2−Ω(n).

Game10 : In this game, we change the way the random oracle queries to H are answered. When A
queries the random oracle on ID∥0 and ID∥1, the challenger samples uID∥0,uID∥1

$← Zn
q and locally

stores the tuples (ID∥0,uID∥0,⊥) and (ID∥1,uID∥1,⊥), and returns uID∥0 and uID∥1 to A. These
uID∥0 and uID∥1 are also used when answering the secret key queries. Similarly to the change from

Game 1 to Game 2, we have
∣∣Pr[X10]− Pr[X9]

∣∣ = QH · 2−Ω(n).

Because of the changes we introduced in Game7 to Game10, we can add the following change.

Game11 : In this game, we change the way the challenge ciphertexts are generated. When A
makes a challenge query for (ID∗,M∗), it returns a random ciphertext if coin = 1. If coin = 0, it
generates the ciphertext as

cbID∗
$← Zq, cb̄ID∗ = u⊤ID∗∥bID∗ s+M∗⌊q/2⌉, c2 = A⊤s+ x.

for s
$← Zn

q , where bID∗ is generated when the hash queries for ID∗∥0 and ID∗∥1 were made. It
then rearranges the terms if necessary and returns (c0, c1, c2) to A. We claim that this change is
only conceptual. Note that the distribution of the ciphertexts in this game corresponds to that
in previous game, if we flip the value of bID∗ for every challenge identity ID∗. However, since A
never makes the secret key query for ID∗ and uID∗∥0 and uID∗∥1 are sampled from exactly the same
distribution, the value of bID∗ is information theoretically hidden from A. This implies that the
distributions are the same in this and the previous game. Therefore, we have Pr[X11] = Pr[X10].

Game12 : In this game, we further change the way the challenge ciphertexts are generated. When
A makes a challenge query for (ID∗,M∗), it returns a ciphertext sampled from CTSam(mpk) if
coin = 1. If coin = 0, it generates the ciphertext as

cbID∗
$← Zq, cb̄ID∗

$← Zq, c2 = A⊤s+ x.

for s
$← Zn

q and x ← DZm,αq. It then returns (c0, c1, c2) to A. We claim that the change is
unnoticed by A assuming the LWE assumption. This can be shown by adding changes to Game11
that are almost the same as those we introduced from Game2 to Game6. The only difference is
that cbID∗ is always sampled as cbID∗

$← Zq here. By the similar analysis, there exists B such that

we have |Pr[X11]− Pr[X12]| ≤ n · Adv
LWEℓ,m,q,DZ,αq

B′ (λ) + (QH +QID +Qch) · 2−n.

Finally, we observe that the challenge ciphertexts are sampled from CTSam(mpk) regardless
of whether coin = 0 or 1. Therefore, we have Pr[X12] = 1/2. Putting things together, the theorem
readily follows.

4.5 Security Proof in QROM

As we explained in the introduction, our analysis in the ROM can be easily extended to the
QROM setting. We can prove the following theorem that addresses the security of GPVmult in the
QROM.

Theorem 4. The IBE scheme GPVmult is adaptively-anonymous multi-challenge secure assuming
the hardness of LWEℓ,m,q,χ in the quantum random oracle model, where χ = DZ,αq. Namely,
for any classical adversary A making at most QH quantum random oracle queries, Qch challenge
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queries, and QID secret key queries, there exists an algorithm B making at most 3QH+2QID+6Qch

quantum random oracle queries such that

AdvIBEA,GPVmult
(λ) ≤ 3n · Adv

LWEℓ,m,q,DZ,αq

B,QROℓID+2,max{ℓr,(⌊log q⌋+2λ)×n}
(λ) + (QH +QID +Qch) · 2−Ω(n)

and
Time(B) = Time(A) + (QH +QID +Qch) · poly(λ)

where ℓr denotes the length of the randomness for SampleZ.

Proof of Theorem 4. Let CTSam(mpk) be an algorithm that outputs (c0, c1, c2) such that c0
$← Zq,

c1
$← Zq, and c2 = A⊤s + x for s

$← U([−γ, γ]) and x ← DZm,αq. Let also A be a quantum
adversary that attacks the (multi-challenge) adaptively-anonymous security of the IBE scheme.
Without loss of generality, we can assume that A makes secret key queries on the same identity
at most once.

Game0 : This is the real security game. At the beginning of the game, the challenger chooses
random functions H

$← Func({0, 1}ℓID+1,Zn
q ), which is used to simulate the random oracle. The

challenger generates (A,TA)
$← TrapGen(1n, 1m, q) and the adversary A is given A. The chal-

lenger then samples coin
$← {0, 1} and keeps it secret. During the game, A may make (quantum)

random oracle queries, secret key queries, and challenge queries. These queries are handled as
follows:

• When A makes a random oracle query on a quantum state
∑

ID,b,y αID,b,y |ID∥b⟩ |y⟩, then the
challenger returns

∑
ID,b,y αID,b,y |ID∥b⟩ |H(ID∥b)⊕ y⟩.

• When A makes a secret key query on ID, the challenger first chooses bID
$← {0, 1}, computes

uID∥bID = H(ID∥bID), and returns eID∥bID = SamplePre(A,TA,uID∥bID , σ) to A.

• When A makes the challenge query for ID∗ and a message M∗, the challenger returns
(c0, c1, c2)

$← Encrypt(mpk, ID∗,M) if coin = 0 and (c0, c1, c2)
$← CTSam(mpk) if coin = 1. It

then returns C∗ = (c0, c1, c2) to A.

At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger outputs ĉoin. By
definition, we have

∣∣Pr[X0]− 1
2

∣∣ = ∣∣Pr[ĉoin− coin]− 1
2

∣∣ = AdvIBEA,GPVmult
(λ).

Game1 : In this game, we change the way bID is chosen in simulations of secret key queries. Namely,
in this game, the challenger first picks a random function H′

$← Func({0, 1}ℓID , {0, 1}). When A
makes a secret key query ID, the challenger uses bID = H′(ID) instead of randomly choosing it.
We remark that an oracle access to H′ is not given to A. Since H′(ID) is an independently and
uniformly random bit for all ID, we have Pr[X0] = Pr[X1].

Game2 : In this game, we change the way the random oracle H is simulated. Namely, the
challenger first chooses additional random functions Ĥ0

$← Func({0, 1}ℓID , {0, 1}ℓr) and Ĥ1
$←

Func({0, 1}ℓID , {0, 1}(⌊log q⌋+2n)×n). Let ι : {0, 1}(⌊log q⌋+2n)×n → Zn
q denote a natural embedding

function. More precisely, it is given (a1, ..., an) ∈ {0, 1}(⌊log q⌋+2n)×n as an input, and outputs
(ã1 mod q, ..., ãn mod q)T where ãi denotes a positive integer whose binary representation is ai.

It is easy to see that if we sample (a1, ..., an)
$← {0, 1}(⌊log q⌋+2n)×n, then the statistical distance
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between the distribution of ι(a1, ..., an) and the uniform distribution over Zn
q is 2−Ω(n). Then the

challenger defines H as follows:

H(ID∥b) :=

{
AeID∥b If b = H′(ID)

ι(Ĥ1(ID)) Otherwise
(4)

where eID∥b := SampleZ(σ; Ĥ0(ID)). We remark that oracle accesses to Ĥ0 and Ĥ1 are not given
to A. For any fixed ID, for the case of b ̸= H′(ID), the distribution of H(ID∥b) is identical for all
ID and its statistical distance from the uniform distribution is 2−Ω(n) as remarked above. For the
case of b = H′(ID), the distribution of H(ID∥b) is identical for all ID and its statistical distance
from the uniform distribution is 2−Ω(n) for all but 2−Ω(n) fraction of A due to Lem. 4 since we
choose σ >

√
n+ logm. Then due to Lem. 2, we have

∣∣Pr[X1]−Pr[X2]
∣∣ = 2−Ω(n)+4Q2

H

√
2−Ω(n)+

4Q2
H

√
2−Ω(n) = Q2

H · 2−Ω(n).

Game3 : In this game, we change the way secret key queries are answered. By the end of this
game, the challenger will no longer require the trapdoor TA to generate the secret keys. When
A queries a secret key for ID, the challenger returns (bID, eID) where bID = H′(ID) and eID∥bID :=

SampleZ(σ; Ĥ0(ID)). Since bID is unchanged from the previous game, we only have to prove
that the distribution of eID∥bID differs negligibly from that in the previous game. For any fixed

uID∥bID ∈ Zn
q , let e

(2)
ID∥bID and e

(3)
ID∥bID be random variables that are distributed according to the

distributions of eID∥bID conditioning on H(ID∥bID) = uID∥bID in Game2 and Game3, respectively.

Due to Lem. 8, we have ∆(e
(2)
ID∥bID , DΛ⊥

uID∥bID
(A),σ) ≤ 2−Ω(n). On the other hand, due to Lem. 4,

we have ∆(e
(3)
ID∥bID , DΛ⊥

uID∥bID
(A),σ) ≤ 2−Ω(n). Since A obtains at most QID user secret keys eID, we

have
∣∣Pr[X2]− Pr[X3]

∣∣ = QID · 2−Ω(n).

Game4 : In this game, we change the way the matrix A is generated. Concretely, the challenger
chooses A← Zn×m

q without generating the associated trapdoor TA. By Lem. 8, the distribution

of A differs at most by 2−Ω(n). Since the challenger can answer all the secret key queries without
the trapdoor due to the change we made in the previous game, the view of A is altered only by
2−Ω(n). Therefore, we have

∣∣Pr[X3]− Pr[X4]
∣∣ = 2−Ω(n).

Game5 : In this game, we change A to the lossy mode (See Lem. 15). We claim that
∣∣Pr[X4] −

Pr[X5]
∣∣ is negligible assuming the hardness of the LWEℓ,n,q,DZ,αq

problem relative to a quantum

random oracle |H̃⟩ : {0, 1}ℓID+2 → {0, 1}max{ℓr,(⌊log q⌋+2λ)×n}. For this purpose, we construct an
algorithm B′ that distinguishes uniform A and that in the lossy mode relative to |H̃⟩. As remarked
in Sec. 2.1, we can implement three independent quantum random oracles |H′⟩ : {0, 1}ℓID → {0, 1},
|Ĥ0⟩ : {0, 1}ℓID → {0, 1}ℓr , and |Ĥ1⟩ : {0, 1}ℓID → {0, 1}(⌊log q⌋+2λ)×n by using |H̃⟩. Therefore we
assume that B′ can access to three random oracles |H′⟩, |Ĥ0⟩ and |Ĥ1⟩.
B′ is given a matrixA, and its task is to distinguish whetherA

$← Zn
q orA

$← SampleLossy(n,m, ℓ, χ).
First, we remark that B′ can simulate the quantum random oracle |H⟩ by using its own random
oracles |H′⟩, |Ĥ0⟩ and |Ĥ1⟩ because |H⟩ is programmed based on these three oracles by the modifi-
cation made in Game2. B′ sets the master public key to be the LWE matrix A. Note that unlike
the real IBE scheme, B′ does not require the master secret key TA due to the modification we
made in Game4. Namely, when A queries ID for the secret key oracle, B′ just returns (bID, eID∥bID)
where bID = H′(ID) and eID∥bID := SampleZ(σ; Ĥ0(ID)). When A makes a challenge query for
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(ID∗,M∗), it samples a ciphertext as C∗
$← CTSam(mpk) if coin = 1, and honestly generates a

ciphertext as C∗
$← Encrypt(mpk, ID∗,M∗) if coin = 0, and returns C∗ to A. At the end of the

game, A outputs ĉoin. Finally, B outputs 1 if ĉoin = coin and 0 otherwise.
It can be seen that if A

$← Zn×m
q the view of the adversary corresponds to Game5, and if

A
$← SampleLossy(n,m, ℓ, χ) the view of the adversary corresponds to Game6. Therefore we can

bound
∣∣Pr[X5] − Pr[X6]

∣∣ by the distinguishing advantage of B′, which makes at most 3QH +
2QID + 6Qch quantum random oracle queries. As for the running time, we have Time(B′) =
Time(A) + (QH + QID + Qch) · poly(λ) since all B′ has to do is to run A once plus to compute
some additional computations that can be done in a fixed polynomial time whenever A makes any
query. Then by Lem. 14 we conclude that there exists B such that we have

∣∣Pr[X4]− Pr[X5]
∣∣ =

n ·Adv
LWEℓ,m,q,DZ,αq

B,QROℓID+2,max{ℓr,(⌊log q⌋+2λ)×n}
(λ) and the running time of B is almost the same as that of B′.

Game6 : In this game, we change the way the challenge ciphertexts are generated. When A makes
a challenge query for (ID∗,M∗), it samples a ciphertext as C∗

$← CTSam(mpk) and returns C∗ to
A if coin = 1. If coin = 0, it generates the ciphertext as

cbID∗ = u⊤ID∗∥bID∗ s+M∗⌊q/2⌉, cb̄ID∗
$← Zq, c2 = A⊤s+ x.

for s
$← U([−γ, γ]), where bID∗ = H′(ID∗). It then rearranges the terms if necessary and returns

(c0, c1, c2) to A.
We argue that the view of A is statistically close to that in the previous game. To prove, we

do a hybrid argument over all the challenge ciphertexts and change cb̄ID∗ to be random one-by-one

(when coin = 0). To conclude, it suffices to show that cb̄ID∗ is distributed 2−Ω(n) close to the

uniform distribution over Zq. For each ciphertext, for any ϵ′ = 2−λ, we have

H̃ϵ′
∞(s|A, cbID∗ , c2) ≥ H̃ϵ′

∞(s|A, c2)− log q

≥ H∞(s)− (ℓ+ 2λ+ 1) log q − negl(λ)

= n log(2γ)− (ℓ+ 3λ) log q

≥ log q +Ω(n)

where the first inequality follows by applying Lem. 12 with Z = Zq and ϵ = 0, the second
inequality follows from Lem. 15, and the last inequality follows from our parameter choice. This
implies that ∆(uID∗∥b̄ID∗ ,u

⊤
ID∗∥b̄ID∗

s, |A, cbID∗ , c2) ≤ 2−Ω(n) for uID∗∥b̄ID∗ ← Zn
q by Lem. 13 together

with Fact 1. Therefore, we have
∣∣Pr[X5]− Pr[X6]

∣∣ = Qch · 2−Ω(n).

From Game7 to Game10 in the following, we undo the changes we added from Game2 to Game5.

Game7 : In this game, A is sampled asA← Zn×m
q . Similarly to the change from Game 4 to Game 5,

there exists B′ such that we have
∣∣Pr[X6]− Pr[X7]

∣∣ = n · Adv
LWEℓ,m,q,DZ,αq

B′,QROℓID+2,max{ℓr,(⌊log q⌋+2λ)×n}
(λ).

Game8 : In this game, A is sampled with a trapdoor as (A,TA)← TrapGen(1n, 1m, q). Similarly
to the change from Game 3 to Game 4, we have

∣∣Pr[X7]− Pr[X8]
∣∣ = 2−Ω(n).

Game9 : In this game, we change the way secret key queries are answered. When A makes
a secret key query for ID, the challenger returns e′ID∥bID

$← SamplePre(A,TA,uID∥bID , σ), where

bID = H′(ID), eID∥bID = SampleZ(σ; Ĥ0(ID)) and uID = AeID∥bID . Similarly to the change from

Game 2 to Game 3, we have
∣∣Pr[X8]− Pr[X9]

∣∣ = QH · 2−Ω(n).
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Game10 : In this game, we change the way the random oracle queries to H are answered. Namely,
the challenger simply uses random function H : {0, 1}ℓID+1 → Zn

q to simulate |H⟩ instead of
programming it as in Eq. 4. Similarly to the change from Game 1 to Game 2, we have

∣∣Pr[X10]−
Pr[X9]

∣∣ = QH · 2−Ω(n).

Because of the changes we introduced in Game7 to Game10, we can add the following change.

Game11 : In this game, we change the way the challenge ciphertexts are generated. When A makes
a challenge query for (ID∗,M∗), it returns a ciphertext sampled from CTSam(mpk) if coin = 1. If
coin = 0, it generates the ciphertext as

cbID∗
$← Zq, cb̄ID∗ = u⊤ID∗∥bID∗ s+M⌊q/2⌉, c2 = A⊤s+ x.

for s
$← Zn

q , where bID∗ = H′(ID∗). It then rearranges the terms if necessary and returns (c0, c1, c2)
to A. We claim that this change is only conceptual. Note that the distribution of the ciphertexts
in this game corresponds to that in the previous game if we flip the value of H′(ID∗) for all
challenge identities ID∗. Since A never makes a secret key query for ID∗, the value of H′(ID∗) is
information theoretically hidden from A. This implies that even if we flip values of H′(ID∗) for all
challenge identities ID∗, A cannot notice it at all. Therefore, we have Pr[X11] = Pr[X10].

Game12 : In this game, we further change the way the challenge ciphertexts are generated. WhenA
makes a challenge query for (ID∗,M∗), it returns a random ciphertext sampled from CTSam(mpk)
if coin = 1. If coin = 0, it generates the ciphertext as

cbID∗
$← Zq, cb̄ID∗

$← Zq, c2 = A⊤s+ x.

for s
$← Zn

q . It then returns (c0, c1, c2) to A. We claim that the change is unnoticed by A
assuming the LWE assumption. This can be shown by adding changes to Game11 that are almost
the same as those we introduced from Game2 to Game6. The only difference is that cbID∗ is

always sampled as cbID∗
$← Zq here. By the similar analysis, there exists B such that we have

|Pr[X11]− Pr[X12]| ≤ n · Adv
LWEℓ,m,q,DZ,αq

B,QROℓID+2,max{ℓr,(⌊log q⌋+2λ)×n}
(λ) + (QH +QID +Qch) · 2−n.

Finally, we observe that the challenge ciphertexts are sampled from CTSam(mpk) regardless
of whether coin = 0 or 1. Therefore, we have Pr[X12] = 1/2. Putting things together, the theorem
readily follows.
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