
Characterizing Collision and Second-Preimage Resistance in

Linicrypt

Ian McQuoid∗ Trevor Swope∗ Mike Rosulek∗

May 15, 2018

Abstract

Linicrypt (Carmer & Rosulek, Crypto 2016) refers to the class of algorithms that make calls
to a random oracle and otherwise manipulate values via fixed linear operations. We give a charac-
terization of collision-resistance and second-preimage resistance for a significant class of Linicrypt
programs (specifically, those that achieve domain separation on their random oracle queries via
nonces). Our characterization implies that collision-resistance and second-preimage resistance
are equivalent, in an asymptotic sense, for this class. Furthermore, there is a polynomial-time
procedure for determining whether such a Linicrypt program is collision/second-preimage resis-
tant.

1 Introduction

Collision resistance and second-preimage resistance are fundamental properties of hash functions,
and are the basis of security for hash-based signature schemes [Lam79, Mer88, BC93, EGM90],
which are a promising approach for post-quantum security.

We give a new way to reason about and characterize the collision resistance and second-preimage
resistance of a large, natural class of programs, in the random oracle model. Specifically, we
characterize these properties for the class of Linicrypt programs, introduced by Carmer & Ro-
sulek [CR16]. Roughly speaking, a Linicrypt program is one where all intermediate values are
field elements, and the only operations possible are fixed linear combinations, sampling uniformly
from the field, and calling a random oracle (whose outputs are field elements). Many of the most
practical cryptographic constructions are capture by this model: hash-based signatures and block
cipher modes, to name a few.

Carmer & Rosulek showed that such programs admit an algebraic representations that is
amenable to reasoning about programs’ cryptographic properties. Specifically, they showed a
polynomial-time algorithm for deciding whether two Linicrypt programs induce computationally
indistinguishable distributions. They also demonstrated the feasibility of using a SAT solver to
automatically synthesize Linicrypt programs that satisfy given correctness & security constraints,
by successfully synthesizing secure Linicrypt constructions of garbled circuits.

Our work follows a similar path, showing that collision properties can also be characterized
cleanly in terms of the algebraic representation for Linicrypt programs. Our characterization holds
for programs in which distinct oracle queries have the form H(t1; ·), H(t2; ·), . . . for distinct nonces
ti.

∗Oregon State University, {mcquoidi,swopet,rosulekm}@oregonstate.edu. Authors partially supported by NSF
award #1617197.

1

We introduce an algebraic property of Linicrypt programs called a collision structure, which
completely characterizes both second-preimage resistance and collision resistance. The presence of
a collision structure in a program P can be detected in polynomial time (in the size of P’s algebraic
representation).

Theorem 1 (Main Theorem). Let P be a deterministic Linicrypt program with distinct nonces,
making n oracle queries. Let F be the underlying field (and range of the random oracle). Then the
following are equivalent:

1. There is an adversary A making q oracle queries that finds collisions with probability more
than q2n/|F|.

2. There is an adversary A making q oracle queries that finds second preimages with probability
more than qn/|F|.

3. There is an adversary A making at most 2n oracle queries that finds second preimages with
probability 1.

4. P either has a collision structure or is degenerate. (See main text for definitions)

Our results show that second-preimage resistance and collision resistance are equivalent, in
an asymptotic sense (i.e., considering only whether a quantity is negligible or not). However,
as might be expected, it is quadratically easier to find collisions than second preimages, due to
birthday attacks. Our concrete bounds reflect this. In practice, reducing security to second-
preimage resistance rather than collision resistance can result in constructions with 50% smaller
parameters; e.g., [DOTV08, Hül13, BHH+15].

1.1 Related Work & Comparison

Bellare & Micciancio [BM97] discuss the collision resistance of the function H∗(x1, . . . , xn) =
H(1;x1)⊕· · ·⊕H(n;xn), where H is collision-resistant. Indeed, this function is naturally modeled
in Linicrypt over a field GF (2λ). They show that this function fails to be collision-resistant if n
is allowed to vary with the input (in particular, when n ≥ λ + 1). Our characterization shows
that an adversary making q oracle queries breaks collision resistance with probability bounded by
q2n/2λ since the function lacks a “collision structure.” These two results are not in conflict, since
our bound is meaningless when n ≥ λ+1. In short, the Linicrypt model is best suited for programs
whose only dependence on the security parameter is the choice of field, but where (in particular)
the number of inputs and calls to H are fixed constants.

Another related work is that of Wagner [Wag02], who gives an algorithm for a generalized
birthday problem. The problem (translated to our notation) is to find x1, . . . , xk such that H(x1)⊕
· · · ⊕H(xk) = 0. The case of k = 2 corresponds to the well-known birthday problem. One can see
that by generating a list Li of roughly 2λ/k candidates for each xi (i.e., so |L1 × · · · × Lk| ≥ 2λ),
there is likely to exist some solution to the problem. Wagner’s focus is on the algorithmic aspect
of actually identifying the appropriate candidates. In Linicrypt, all adversaries are considered to
be computationally unbounded but bounded in the number of queries to the random oracle H.
As such, our results do not provide any upper/lower bounds on attack complexity (other than in
random oracle query complexity).

Black, Rogaway, and Shrimpton [BRS02] categorize 64 ways to construct a compression function
(suitable for Merkle-Damg̊ard hashing) from an ideal cipher, building on prior work by Preneel,
Govaerts, and Vandewalle [PGV94]. These constructions can be thought of as GF (2λ)-Linicrypt

2

programs that use only XOR (e.g., linear combinations with coefficients of 0 or 1 only). However,
the reasoning is tied to the ideal cipher model rather than the random oracle model, as in Linicrypt.
We leave it as interesting future work to extend results in Linicrypt to the ideal cipher model, and
potentially re-derive the characterization of BRS from a linear-algebraic perspective.

2 Preliminaries

We write scalar field elements as lowercase non-bold letters (e.g., v ∈ F). We write vectors as
lowercase bold letters (e.g., q ∈ Fn). We write matrices as uppercase bold letters (e.g., M ∈ Fn×m).
We write vector inner product as q · v, and matrix-vector multiplication as M × v or Mv.

2.1 Linicrypt

The Linicrypt model was introduced in [CR16]. We present a brief summary of the model and its
important properties.

A Linicrypt program (over field F) is one in which every intermediate value is an element of F,
and the program is a fixed, straight-line sequence of the following kind of operations:

• Call a random oracle (whose inputs/outputs are field elements).

• Sample a random field element.

• Combinine existing values using a fixed linear combination.

The sequence of operations (including choice of arguments to the oracle, coefficients of linear com-
binations, etc) is entirely fixed. In particular, these cannot depend on intermediate values in the
computation.

The only source of cryptographic power in Linicrypt is the random oracle, whose outputs are F-
elements. We therefore require the size of the field |F| to be exponential in the security parameter
λ. Since the field depends on the security parameter, we sometimes write F = Fλ to make the
association explicit.

If the field depends on the security parameter, then the program does too (since it is parameter-
ized by specific coefficients of linear combinations). One can either consider a Linicrypt program to
be a non-uniform family of programs (one for each choice of field / security parameter), or one can
fix all coefficients in the program from F̃ which is a subfield of every Fλ (for example, a program
that uses only {0, 1} coefficients can be instantiated over any field GF (2λ)). Our treatment of
security is concrete (not asymptotic), so these distinctions are not important in this work.

We can reason about Linicrypt programs in the following algebraic way. Let P be such a
program, and let v1, . . . , vn denote all of its intermediate variables. Say the first k of them are
P’s input and the last l of them are P’s output. We say that vi is a base variable if vi is either
an input variable, the result of a call to the oracle, or the result of sampling a field element. All
variables can therefore be expressed as a fixed linear combination of base variables.

Let vbase denote the vector of all base variables. For each variable vi, let ri denote the vector
such that vi = ri ·vbase. For example, for base variables, ri is a canonical basis vector (0s everywhere
except 1 in one component).

Suppose the output of P consists of vn−l+1, . . . , vn. Then the output matrix of P is defined
as:

M
def
=

rn−l+1
...
rn

3

This matrix captures the fact that P’s output can be expressed as M × vbase.
Each oracle query in P is of the form “vi := H(t; vi1 , . . . , vim),” where t is a string (e.g., nonce)

and i1, . . . , im < i are indices, all fixed as part of P. For each such query we define an associated
oracle constraint

c =

t,
ri1...
rim

 , ri

In other words, an oracle constraint (t,Q,a) captures the fact that if the oracle is queried as
H(t;Q × vbase), then the response is a · vbase. When t is the empty string, we often omit it from
our notation and simply write H(·) instead of H(ε; ·).

The algebraic representation of P is P = (M , C), where M is the output matrix of P and C
is the set of all oracle constraints. Indeed, these two pieces of information completely characterize
the behavior of P (as established in [CR16]).

Example. In this work we focus on deterministic Linicrypt programs. One such example is given
below. Its base variables are (v1, . . . , v5, v7).

PH(v1, v2, v3):

v4 := H(foo; v1)
v5 := H(bar; v3)
v6 := v4 + v5 + v2
v7 := H(foo; v6)
v8 := v7 + v1
return (v8, v5)

⇒

v1
v2
v3
v4
v5
v6
v7
v8

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 1

v1
v2
v3
v4
v5
v7

Hence, the algebraic representation of P is:

M =

[
1 0 0 0 0 1
0 0 0 0 1 0

]
; C =

(
foo, [1 0 0 0 0 0], [0 0 0 1 0 0]

)
,(

bar, [0 0 1 0 0 0], [0 0 0 0 1 0]
)
,(

foo, [0 1 0 1 1 0], [0 0 0 0 0 1]
)

2.2 Security Definitions

The Linicrypt model is meant to capture a special class of construction, but not adversaries. In
this work we characterize standard security definitions, against arbitrary (i.e., not necessarily
Linicrypt) adversaries. As in Impagliazzo’s “Minicrypt” [Imp95] we consider computationally un-
bounded adversaries that are bounded-query: they make only at most p(λ) queries to the random
oracle, for some polynomial p.

Definition 2. Let P be a Linicrypt program over a family of fields F = (Fλ)λ. Then P is
collision-resistant (in the random oracle model) if for all bounded-query adversaries A,
Pr[ColGame(P,A, λ) = 1] is negligible in λ, where:

ColGame(P,A, λ):

instantiate a random oracle H : {0, 1}∗ × (Fλ)∗ → Fλ
(x,x′)← AH(λ)
return (x 6= x′) ∧ (PH(x) = PH(x′))

4

Definition 3. Let P be as above (with k inputs). P is 2nd-preimage-resistant (in the random
oracle model) if for all bounded-query adversaries A, Pr[2PIGame(P,A, λ) = 1] is negligible in λ,
where:

2PIGame(P,A, λ):

instantiate a random oracle H : {0, 1}∗ × (Fλ)∗ → Fλ
x← (Fλ)k

x′ ← AH(λ,x)
return (x 6= x′) ∧ (PH(x) = PH(x′))

3 Characterizing Collision-Resistance in Linicrypt

We now present our main technical result, which is a characterization of collision-resistance for
Linicrypt programs.

In order to simplify the notation, we present the results for the special case of Linicrypt
programs that make 1-ary calls to H. That is, every call to H is of the form H(t; v) for a single
v ∈ F (note that Linicrypt supports more general calls of the form H(t; v1, . . . , vk)). With this
simplification, every oracle constraint has the form (t, q,a) where q is a simple vector (rather than
a matrix as in the most general form).

This special case simplifies the notation required to express our theorems/proofs, but does
not gloss over any meaningful complexity. Later in Section 4 we discuss what minor changes are
necessary to extend these results to the unrestricted general case.

3.1 Easy Case: Degeneracy

Some Linicrypt programs allow easy collisions. Consider the program PH(x, y) = H(x + y). An
obvious collision in P is PH(x, y) = PH(x + z, y − z) for any z 6= 0. What makes this program
particularly easy to attack is that not only do the two computations give the same output, but they
query H on exactly the same points. In other words, the input of P is not uniquely determined by
its sequence of oracle queries along with its outputs.

Definition 4. Let P = (M , C) be a Linicrypt program with k inputs. In the algebraic representa-
tion, P’s inputs are associated with canonical basis vectors e1, . . . , ek (ei has 0s everywhere except
a 1 in the ith component). We say that P is degenerate if

span(e1, . . . , ek) 6⊆ span
(
{q | (t, q,a) ∈ C} ∪ rows(M)

)
Lemma 5. If P is degenerate, then second preimages can be found with probability 1.

Proof. Given an input x for P in the second preimage game, compute the base variables v in the
computation of PH(x). If P is degenerate, there must exist two (actually, at least |Fλ|) solutions
for the input x′ that are consistent with {q · v | (t, q,a) ∈ C} ∪ {r · v | r ∈ rows(M)}. Such a x′

will clearly lead PH to make the same oracle queries and give the same output.

3.2 Running Example: An Interesting Second-Preimage Attack

Consider the example program below. In fact, it is the example from Section 2.1 but with the
nonces omitted and most intermediate variables unnamed:

PH(x, y, z):

w := H(x) +H(z) + y
return

(
H(w) + x, H(z)

)
5

The only intermediate value that we have named is w, for reasons that will become clear soon.
Suppose we are given x, y, z and are asked to find a second preimage x′, y′, z′ with PH(x, y, z) =

PH(x′, y′, z′). Here is how to do it:

1. The second component of P’s output is H(z). Since we cannot hope to find a second preimage
directly in H, we must set z′ = z.

2. The key insight is to now set w′ 6= w arbitrarily. We make a promise to choose x′, y′ so that
w′ = H(x′) +H(z′) + y′.

3. To have a collision, we must have H(w′)+x′ = H(w)+x. Importantly, x′ is the only unknown
value in this expression, and it is possible to simply solve for x′.

4. It is time to fulfill the promise that w′ = H(x′) +H(z′) + y′. Since w′, x′, z′ are already fixed,
we can solve for y′.

Note that we are guaranteed that (x, y, z) 6= (x′, y′, z′) since the two computations of P lead to
different intermediate values w 6= w′ (and P is deterministic).

Perspective. This example is representative of how second preimages can be computed in arbi-
trary Linicrypt programs. Given an input x for PH , we compute a second preimage x′ by focusing
on the oracle queries that PH(x) and PH(x′) will make:

1. Designate some of the oracle queries to take the same values in both PH(x) and PH(x′).
In our example, we decided that the oracle query H(z) would take the same values in both
computations.

2. Identify the first query that we will assign different values in the two computations. Set the
input to this query arbitrarily in PH(x′). In our example, we identify the H(w) query to take
on different values and set w′ 6= w arbitarily.

3. Repeatedly make followup oracle queries as they become possible, while using linear algebra
to solve for other intermediate values. In our example, we call H(w′), which allows us to solve
for x′, which allows us to call H(x′), which allows us to solve for y′.

3.3 Collision Structures for Finding Second Preimages

We have given a rough outline of how (we claim) Linicrypt second preimages must be found. The
next step is to formalize what is required of P in terms of its algebraic representation.

In step 2 above, we identify a query whose input will be chosen arbitrarily. Suppose that query
corresponds to constraint (t, q,a). Since this is the first value that is fixed differently in PH(x)
and PH(x′), we must have q linearly independent of the vectors that are already fixed by step 1.
Otherwise it would not be possible to find two consistent values for this query.

In steps 2 and 3 above, we repeatedly query H, and we have written the attack outline to
suggest we never get “stuck.” One way we could get stuck is to make some query H(x′) for the
first time, when we have already fixed (either directly or indirectly) what H(x′) must be. If this
is the case, then we cannot succeed with probability better than 1/|Fλ|. To avoid this case, every
query we make in steps 2 & 3 of the outline must correspond to a constraint (t, q,a) where a is
linearly independent of the values that have already been fixed.

The following definition formalizes these algebraic intuitions:

6

Definition 6. Let P = (M , C) be a Linicrypt program. A collision structure for P is a tuple
(i∗; c1, . . . , cn), where:

1. c1, . . . , cn is an ordering of C, and we write ci = (ti, qi,ai).

2. qi∗ 6∈ span
(
{q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M)

)
3. For j ≥ i∗: aj 6∈ span

(
{q1, . . . , qj} ∪ {a1, . . . ,aj−1} ∪ rows(M)

)
Connecting to the previous intuition, a collision-finding attack will let oracle queries c1, . . . , ci∗−1

be the same in both executions PH(x) and PH(x′). Then ci∗ is the first oracle query that the attack
fixes differently for the two executions. Property (2) of the definition ensures that it is possible to
find 2 query values that are consistent with the previously fixed values. Property (3) captures the
fact that from this point forward, no query should be forced to result in an output value that has
already been fixed.

Running example. We now revisit the running example from before, to illustrate a collision
structure for it. The base variables of this program are x, y, z, H(x), H(z), H(w). Below is the
algebraic representation of this program, with the oracle constraints arranged to show a collision
structure (we do not write the empty nonces of the oracle constraints):

x y z H(x) H(z) H(w)

M =
[1 0 0 0 0 1]

0 0 0 0 1 0
q1 = [0 0 1 0 0 0]

H(z)
a1 = [0 0 0 0 1 0]

qi∗ = q2 = [0 1 0 1 1 0]
H(w) = H(y +H(x) +H(z))

ai∗ = a2 = [0 0 0 0 0 1]
q3 = [1 0 0 0 0 0]

H(x)
a3 = [0 0 0 1 0 0]

This ordering of queries is indeed a collision structure since:

• q2 is linearly independent of all vectors above it in this diagram.

• a2 is linearly independent of all vectors above it in this diagram.

• a3 is linearly independent of all vectors above it in this diagram.

Second-preimage-finding algorithm. In Figure 1 we give an algorithm that finds second
preimages by following the intuitive strategy above, from a given collision structure.

Lemma 7. If a collision structure (i∗; c1, . . . , cn) exists for P, and P is not degenerate, then the
second-preimage resistance of P is comprehensively broken. Specifically, let A refer to
FindSecondPreimage(P, (i∗; c1, . . . , cn), ·). Then:

Pr
[
2PIGame(P,A, λ) = 1

]
= 1

7

FindSecondPreimage
(
P = (M , C), (i∗; c1, . . . , cn),x

)
:

compute v, the set of base variables in computation PH(x)
initialize an empty set of linear constraints on unknowns v′

add constraint Mv = Mv′

for i = 1 to i∗ − 1:
add constraints qi · v = qi · v′ and ai · v = ai · v′

choose a value v∗ ∈ Fλ arbitrarily, with v∗ 6= qi∗ · v
add constraint v∗ = qi∗ · v′

for i = i∗ to n:
if qi · v′ is not already uniquely determined by current constraints:

choose r ∈ Fλ arbitrarily and add constraint r = qi · v′
call s := H(ti, qi · v′) // qi · v′ guaranteed to be uniquely determined here
add constraint s = ai · v′

return (e1 · v′, . . . , ek · v′)

Figure 1: Method for computing second preimages

Proof. Given x, the goal is to compute a second preimage x′. The computation of PH(x′) has a
certain set of base variables v′, and it suffices to compute those instead since x′ = (e1 ·v′, . . . , ek ·v′).
The attack FindSecondPreimage fixes one linear constraint of v′ at a time, until v′ is completely
determined.

It suffices to show the following about the behavior of FindSecondPreimage:

1. It computes a different set of base variables v′ than those of PH(x).

2. It never adds incompatible (unsatisfiable) linear constraints on v′.

3. Values v′ are consistent with H. Namely, if (t, q,a) ∈ C, then H(t; q · v′) = a · v′.

4. By the end of the computation, enough constraints have been added to completely determine
v′.

Property 1 holds since qi∗ · v 6= qi∗ · v′ by design. Regarding property 2:

• The constraints on v′ that are added for M and in the first for-loop are self-consistent — by
construction they already have a valid solution in v.

• The constraint involving qi∗ is compatible with the previous constraints since qi∗ is linearly
independent of the previous constraint vectors {q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M),
by the collision structure property.

• Similarly, a constraint involving qi for i ≥ i∗ (if-statement within last for-loop) is only added
in the case that qi is linearly independent of the previous constraint vectors.

• The constraint involving ai in the second for-loop is consistent since ai is linearly independent
of existing constraint vectors, again by the collision structure property.

8

FindColStruct(P = (M , C)):
LEFT := C
RIGHT := empty stack
V := {q | (t, q,a) ∈ C} ∪ {a | (t, q,a) ∈ C} ∪ rows(M), as a multi-set

// below: “V \ {a}” means “V with multiplicity of a reduced by 1”
while ∃(t, q,a) ∈ LEFT such that a 6∈ span(V \ {a}):

remove (t, q,a) from LEFT
push (t, q,a) to RIGHT
reduce multiplicity of q,a in V by 1

while ∃(t, q,a) ∈ RIGHT such that q ∈ span(V):
remove (t, q,a) from RIGHT
add (t, q,a) to LEFT
increase multiplicity of q,a in V by 1

if RIGHT is nonempty:
set i∗ := |LEFT|+ 1
write LEFT = (c1, . . . , ci∗−1), where order doesn’t matter
write RIGHT = (ci∗ , . . . , cn) in reverse order of insertion
return (i∗; c1, . . . , cn)

else: return ⊥

Figure 2: Method for finding collision structures in a Linicrypt program.

Regarding property 3: for oracle constraints ci with i < i∗, consistency with H is ensured by
agreeing with the existing values v. For constraints ci with i ≥ i∗, consistency is guaranteed since
the second for-loop actually calls H to determine the consistent way to constrain ai · v′.

Property 4 follows from the fact that P is not degenerate. We can see that M × v′ and q · v′
are fixed/determined by the end of the computation, for all (t, q,a) ∈ C. Non-degeneracy implies
that the input of P (and hence all base variables) is uniquely determined.

3.4 Efficiently Finding Collision Structures

In this section we show that it is possible to efficiently determine whether a Linicrypt program has
a collision structure, by analyzing its algebraic representation. The algorithm for finding a collision
structure is given in Figure 2.

Lemma 8. FindColStruct(P) (Figure 2) outputs a collision structure for P if and only if one
exists. Furthermore, the running time of FindColStruct is polynomial (in the size of P’s algebraic
representation).

Proof. Some useful invariants in FindColStruct are that at any time, LEFT ∪ RIGHT = C and V is
a multiset of the vectors appearing in rows(M) and LEFT. Note that FindColStruct works in two
phases: it starts with all oracle queries in LEFT and in the first phase moves some to RIGHT. In
the second phase, it moves some of the oracle queries back into LEFT.

(⇒) First, we argue that if FindColStruct(P) = (i∗; c1, . . . , cn) 6= ⊥, then this output is indeed
a collision structure. Write each oracle constraint ci as ci = (ti, qi,ai).

• At the time the second while-loop terminates, we must have qi∗ 6∈ span(V) since otherwise

9

ci∗ would have been moved to LEFT. But V = {q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M),
so this establishes one of the required properties of a collision structure.

• For j ≥ i∗, consider the time at which cj is about to be added to RIGHT in the first while-loop
(i.e., the point that the while loop body is entered). At that point, LEFT = {c1, . . . , cj}, so
V contains {q1, . . . , qj} ∪ {a1, . . . ,aj} ∪ rows(M). Since the while-loop condition is fulfilled,
we have

aj 6∈ span(V \ {aj}) = span
(
{q1, . . . , qj} ∪ {a1, . . . ,aj−1} ∪ rows(M)

)
which is the other condition required for a collision structure.

(⇐) For the other direction, suppose (i∗, c1, . . . , cn) is some collision structure for P. We will
show that the algorithm adds ci∗ , . . . , cn to RIGHT in the first phase, but does not move ci∗ back
to LEFT in the second phase. This implies that the algorithm terminates with |RIGHT| 6= ∅, so by
the previous reasoning it outputs some valid collision structure (perhaps different than the collision
structure we are assuming exists).

The fact that ci∗ , . . . , cn are added to RIGHT in the first phase is essentially the converse of what

was shown above. For example, the collision structure property is that an 6∈ span
(
{q1, . . . , qn} ∪

{a1, . . . ,an−1} ∪ rows(M)
)

, implying that cn can trigger the while-loop and be added to RIGHT

immediately. Note that even if other constraints are added to RIGHT in this phase, it only makes
V smaller, so only causes the condition to check a smaller span than in the collision-property
definition. A simple inductive argument establishes that ci∗ , . . . , cn are eventually added to RIGHT.

Since {ci∗ , . . . , cn} ⊆ RIGHT after the first phase, we must have LEFT ⊆ {c1, . . . , ci∗−1} after the
first phase. We want to show that ci∗ is never placed back into LEFT. For the sake of contradiction,
suppose not. Define S to be a set of indices such that LEFT = {ci | i ∈ S} at the time ci∗ is about
to be moved into LEFT. Then qi∗ ∈ span(rows(M) ∪ {qi,ai | i ∈ S}). We can then write:

qi∗ =
∑
j∈S

αjqj +
∑
j∈S

βjaj + γM

For j > i∗, the constraint cj was previously in RIGHT and was moved back into LEFT. The only
way to be moved back into LEFT is for qj to be in the span of other vectors already in LEFT (and
hence already on the right-hand side of this expression). Hence, without loss of generality we can
remove the terms involving qj for j > i∗, to obtain:

qi∗ =
∑

j∈S\{i∗,...,n}

α′jqj +
∑
j∈S

β′jaj + γ ′M

Let j∗ be the highest j ∈ S for which β′j 6= 0. There are two cases.
Case j∗ < i∗: Then all of the nonzero terms qj ,aj on the right-hand side have subscript less

than i∗. This contradicts the fact (from the original collision structure) that qi∗ 6∈ span(rows(M)∪
{qj ,aj | j < i∗}).

Case j∗ > i∗: We can solve for aj∗ in the above expression, yielding:

aj∗ = − 1

β′j∗

 ∑
j∈S\{i∗,...,n}

α′jqj − qi∗ +
∑

j∈S\{j∗}

β′jaj + γ ′M

10

But now all nonzero qj and aj terms on the right-hand side have subscript less than j∗. This
contradicts the fact (from the original collision structure) that aj∗ 6∈ span({qj | j < j∗} ∪ {aj | j <
j∗} ∪ rows(M)).

In either case we have a contradiction to the claim that ci∗ is moved back into LEFT. Since the
algorithm terminates with at least ci∗ ∈ RIGHT, it outputs some valid collision structure.

3.5 Breaking Collision Resistance implies Collision Structure

So far our discussion has centered around the relationship between collision structures and second-
preimage resistance. We now show that if P fails to be even collision resistant (in the random
oracle model), then it has a collision structure. The main approach is to observe the oracle queries
made by an arbitrary attacker (who computes a collision), and “extract” a collision structure from
these queries.

The results in this subsection hold only for the following subclass of Linicrypt programs. In
Section 5 we discus specifically why the results are restricted to this subclass.

Definition 9. Let P = (M , C) be a Linicrypt program, with C = {(t1, q1,a1), . . . ,
(tn, qn,an)}. If all of {t1, . . . , tn} are distinct then we say that P has distinct nonces.

Lemma 10. Let P be a deterministic Linicrypt program with distinct nonces that makes n oracle
queries. Let A be an oracle program that makes at most N oracle queries. If

Pr[ColGame(P,A, λ) = 1] > N2n/|Fλ|
or if Pr[2PIGame(P,A, λ) = 1] > Nn/|Fλ|

then P either has a collision structure or is degenerate.

Proof. Without loss of generality, we can assume the following about A:

• Let (x,x′) be the two preimages from the games (in 2PIGame A gets x as input and gives x′

as output; in ColGame A outputs both x and x′). We assume that AH has made the oracle
queries that PH(x) and PH(x′) will make. In ColGame this can be achieved by modifying A
to run these two computations as its last action. In 2PIGame this can be achieved by having
A run PH(x) as its first action and PH(x′) as its last action.

• A never repeats a query to H. This can be achieved by simple memoization. Note that when
A runs, say, PH(x′) as its last action, some of those oracle queries may have been made
previously.

• AH can actually output (v,v′), where v is the set of base variables in the computation of
PH(x), and v′ the base variables in PH(x′). This is because the base variables are computed
during the process of running PH(x) and PH(x′).

Note that the base variables have the following property. Let c = (t, q,a) be one of the oracle
constraints of P. Then the computation PH(x) (and hence AH as well) at some point makes an
oracle query H(t, q · v) and gets a response a · v.

From these assumptions, whenever A outputs a successful collision there exist well-defined
mappings T, T ′ : C → N such that:

• For every constraint c = (t, q,a) ∈ C, the T (c)th query made by AH is the one corresponding
to oracle constraint c in the computation of PH(x). In other words, it is the query in which
AH “decided” what q · v should be (and learned what a · v was as a result of the query).

11

• Similarly, the T ′(c)th query made by AH is the one corresponding to oracle constraint c in
the computation of PH(x′). This is the query in which q · v′ was determined.

Since A makes at most N oracle queries and P makes n, the number of possible (T, T ′) pairs is at
most N2n. However, in the 2PIGame, the mapping T is completely fixed, as we assume A performs
the computation PH(x) as its first action. In that case, there are only Nn choices of the mapping
T ′. Applying the pigeonhole principle and uniting both cases (collision game and second preimage
game), there is a specific (T, T ′) such that:

Pr[AH outputs a valid collision while using mappings (T, T ′)] > 1/|Fλ|

For the rest of the proof, we condition on the event that A computes a collision while using this
specific mapping (T, T ′). This is without loss of generality by making A, as its final action, output
⊥ if it observes that some different mapping is used. Hence we can view the association between
oracle calls of P and A as fixed a priori. That is, we can know in advance that a particular oracle
call of A will determine the value of q · v (or q · v′) for a specific q.

For some c ∈ C, if T (c) = T ′(c), then we call c convergent. In this case, PH(x) and PH(x′)
make the same c-query and receive the same output. In other words, under such a mapping T, T ′,
adversary AH will choose that q · v = q · v′. If T (c) 6= T ′(c), we call c divergent — PH(x) and
PH(x′) make different c-queries, i.e., q · v 6= q · v′.

If all c ∈ C are convergent, then two distinct inputs x and x′ cause P to make identical oracle
queries and give identical output. Hence P is degenerate, and we are done. We continue assuming
that some query is divergent, and will conclude that P has a collision structure.

Define finish(c) = max{T (c), T ′(c)}. Note that since P has distinct nonces, an oracle query
made by A cannot be associated with more than one c ∈ C. Hence finish is an injective function.

We obtain a collision structure for P as follows. Order the oracle constraints in C as (c1, . . . , cn),
where all of the convergent queries come first, followed by the divergent queries ordered by increasing
finish time. Let i∗ be the index of the divergent query with earliest finish time. Then:

• i∗ ≤ i ⇔ ci is divergent

• i∗ ≤ i < j ⇔ finish(i) < finish(j)

Claim 11. (i∗; c1, . . . , cn) is a collision structure for P.

In the following, we write each oracle constraint ci as ci = (ti, qi,ai).
For j < i∗, the query cj is convergent so we have qj · v = qj · v′ and aj · v = aj · v′. Since

the outputs of the two executions of P are also identical, we also have Mv = Mv′. Since ci∗ is
divergent, we have qi∗ · v 6= qi∗ · v′. From this we conclude that:

qi∗ 6∈ span
(
{q1, . . . , qi∗−1} ∪ {a1, . . . ,ai∗−1} ∪ rows(M)

)
.

This is the first property required of a collision structure.
It remains to show that for all i > i∗,

ai 6∈ span
(
{q1, . . . , qi} ∪ {a1, . . . ,ai−1} ∪ rows(M)

)
.

Suppose for contradiction that the above is false, and that we actually have:

ai =
∑
j≤i

αjqj +
∑
j<i

βjaj + γM

12

Focus on the moment when A has asked its finish(ci)th query and is awaiting the response from
H. By symmetry, suppose finish(ci) = T ′(ci), so that this query is on qi ·v′; the result of the query
will be assigned to ai · v′. At this moment:

• All queries cj for i∗ ≤ j < i are finished. This means that the oracle queries of AH have
already determined qj · v, aj · v, qj · v′, and aj · v′. Further, the queries (but not responses)
of oracle constraint ci have been fixed as well — these values are qi · v and qi · v′.

• ai · v has already been fixed, since this happened at time T (ci) < T ′(ci). But ai · v′ is about
to be chosen as a uniform field element.

Now consider the expression ai · (v′ − v):

ai · (v′ − v) =
∑
j≤i

αjqj · (v′ − v) +
∑
j<i

βjaj · (v′ − v) + γM(v′ − v)

For j < i∗ we know that query cj is convergent. This implies that qj ·(v′−v) = 0 and aj ·(v′−v) = 0.

We also know thatM(v′−v) = 0, in the case thatAH is successful generating a collision. Cancelling
these terms gives:

ai · (v′ − v) =
i∑

j=i∗

αjqj · (v′ − v) +
i−1∑
j=i∗

βjaj · (v′ − v)

Isolating ai · v′ gives:

ai · v′ = −ai · v +
i∑

j=i∗

αjqj · (v′ − v) +
i−1∑
j=i∗

βjaj · (v′ − v)

But all terms on the right-hand side have already been fixed, while the term on the left is chosen
uniformly in F. So equality holds with probability 1/|Fλ|. This contradicts the assumption that A
succeeds with strictly greater probability.

3.6 Putting Everything Together

Our main characterization shows that second-preimage resistance and collision resistance coincide
for this class of Linicrypt programs, in a very strong sense:

Theorem 12. Let P be a deterministic Linicrypt program with distinct nonces, making n oracle
queries. Then the following are equivalent:

1. There is an adversary A making N oracle queries such that

Pr[ColGame(P,A, λ) = 1] > N2n/|Fλ|.

2. There is an adversary A making N oracle queries such that

Pr[2PI(P,A, λ) = 1] > Nn/|Fλ|.

3. There is an adversary A making at most 2n oracle queries such that

Pr[2PIGame(P,A, λ) = 1] = 1.

13

4. P either has a collision structure or is degenerate

Corollary 13. The collision resistance (equivalently, second-preimage resistance) of deterministic,
distinct-nonce Linicrypt programs P can be decided in polynomial time (in the size of P’s algebraic
representation).

Proof. Using standard linear algebraic operations (e.g., Gaussian elimination), one can check P for
degeneracy or for the existence of a collision structure in polynomial time.

4 Generalizing to Higher Arity

For simplicity our results were proven for Linicrypt programs in which all oracle calls have arity 1.
That is, H : {0, 1}∗ × F → F, and all oracle constraints have the form (t, q,a) where q is a single
row.

More generally, Linicrypt allows calls to H with multiple field elements as arguments. This
leads to oracle constraints of the form (t,Q,a) where Q is now a matrix. We briefly discuss the
changes necessary to support such programs. Basically, whenever the definitions (of degeneracy &
collision structure) or algorithms (to find a second preimage or to find a collision structure) refer
to q, the analogous condition should hold with respect to all rows of Q.

The generalized definition of degeneracy (Definition 4) is that:

span(e1, . . . , ek) 6⊆ span
(⋃

(t,Q,a)∈C

rows(Q) ∪ rows(M)
)

The generalized definition of collision structure (Definition 6) requires the following change:

2. rows(Qi∗) 6⊆ span
(

rows(Q1) ∪ · · · ∪ rows(Qi∗−1) ∪ {a1, . . . ,ai∗−1} ∪ rows(M)
)

3. For j ≥ i∗: aj 6∈ span
(

rows(Q1) ∪ · · · ∪ rows(Qj) ∪ {a1, . . . ,aj−1} ∪ rows(M)
)

Specifically, for item (2) it is enough if any row of Qi∗ is not in the given span.
In the FindSecondPreimage algorithm (Figure 1), there are times when the algorithm chooses

qj ·v′ arbitrarily. This happens when such a constraint would be linearly independent of the existing
constraints on v′. In the analogous generalized case, we might have only some of the rows of Qj

linearly independent of the existing constraints. In that case, some of the components of Qj × v′
are already fixed. We obviously cannot choose these arbitrarily — only the unconstrained positions
in Qj × v′ are fixed arbitrarily. One can verify that the algorithm only attempts to arbitrarily fix
some values if there is some row of Qj linearly independent with existing constraints on v′.

In the FindColStruct algorithm (Figure 2) we let V now contain Q-matrices as well as simple
a-vectors. Then we overload notation so that span(V) considers the span of all of the rows of all
matrices/vectors in V . The second “while” condition is modified as follows:

while ∃(t,Q,a) ∈ RIGHT such that rows(Q) ⊆ span(V)

In other words, (t,Q,a) is moved from LEFTto RIGHTif all rows of Q are spanned by V .
With these modifications, all proofs in Section 3 go through with straight-forward modifica-

tions.

14

5 Why the Restriction to Distinct Nonces?

The main characterization holds for Linicrypt programs with distinct nonces. It is instructive to
understand why the results are limited in this way. Specifically, where do we use the property of
distinct nonces?

Suppose A breaks the collision-resistance of P. We observe the oracle queries made by A and
obtain a mapping between these queries and the ones made in PH(x) and PH(x′). When the
nonces are distinct, a query made by A can only be associated with a unique oracle constraint
c ∈ C. When the nonces are not distinct, a single query of A can serve double-duty and correspond
to two oracle constraints of P. This indeed causes the argument to break down.

We illustrate with the two example Linicrypt programs:

PH1 (x, y) = H(2, H(1, x))−H(3, y)

PH2 (x, y) = H(H(x))−H(y)

The first has distinct nonces and is indeed collision resistant (it has no collision structure). The
second program is not collision-resistant, because PH2 (x,H(x)) = 0 for all x. In other words,
(x,H(x)) and (x′, H(x′)) constitute a collision.

When given inputs of this form, P2 makes duplicate queries — both H(H(x)) (the outermost H-
call) and H(y) receive the same argument. In our previous proofs, we would observe the adversary
making such a query, which would have to be associated with two distinct oracle constraints.

Another way of seeing what happens is that in the algebraic representation of P2, the base
variables H(x) and y correspond to independent vectors. In this case, the adversary’s choice of
inputs causes these vectors to coincide, and this has the effect of “collapsing” two oracle queries.

Interestingly, it is possible to give an ad-hoc argument that P2 is second-preimage resistant.
When x and y are chosen uniformly, this has the effect of keeping the vectors (in the algebraic
representation) corresponding to H(x) and y independent. We can then argue that the adversary
doesn’t make any oracle query that is associated with two distinct queries of P2, so the reasoning of
our main theorem also applies in this case. Hence, P2 demonstrates that our main characterization
is different for Linicrypt programs with non-distinct nonces.

References

[BC93] Jurjen N. Bos and David Chaum. Provably unforgeable signatures. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 1–14. Springer, Heidelberg, August
1993.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederha-
gen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-
O’Hearn. SPHINCS: Practical stateless hash-based signatures. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
368–397. Springer, Heidelberg, April 2015.

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing: In-
crementality at reduced cost. In Walter Fumy, editor, EUROCRYPT’97, volume 1233
of LNCS, pages 163–192. Springer, Heidelberg, May 1997.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from PGV. In Moti Yung, editor,

15

CRYPTO 2002, volume 2442 of LNCS, pages 320–335. Springer, Heidelberg, August
2002.

[CR16] Brent Carmer and Mike Rosulek. Linicrypt: A model for practical cryptography. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816
of LNCS, pages 416–445. Springer, Heidelberg, August 2016.

[DOTV08] Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuillaume. Digital
signatures out of second-preimage resistant hash functions. PQCrypto, 5299:109–123,
2008.

[EGM90] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital schemes. In
Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 263–275. Springer,
Heidelberg, August 1990.

[Hül13] Andreas Hülsing. W-OTS+ - shorter signatures for hash-based signature schemes.
In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien, editors,
AFRICACRYPT 13, volume 7918 of LNCS, pages 173–188. Springer, Heidelberg, June
2013.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the
Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota,
USA, June 19-22, 1995, pages 134–147. IEEE Computer Society, 1995.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer,
Heidelberg, August 1988.

[PGV94] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block
ciphers: A synthetic approach. In Douglas R. Stinson, editor, CRYPTO’93, volume
773 of LNCS, pages 368–378. Springer, Heidelberg, August 1994.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 288–303. Springer, Heidelberg, August 2002.

16

	Introduction
	Related Work & Comparison

	Preliminaries
	Linicrypt
	Security Definitions

	Characterizing Collision-Resistance in Linicrypt
	Easy Case: Degeneracy
	Running Example: An Interesting Second-Preimage Attack
	Collision Structures for Finding Second Preimages
	Efficiently Finding Collision Structures
	Breaking Collision Resistance implies Collision Structure
	Putting Everything Together

	Generalizing to Higher Arity
	Why the Restriction to Distinct Nonces?

