
Supersingular Isogeny Oblivious Transfer

Paulo Barreto1, Anderson Nascimento1, Gláucio Oliveira2, and Waldyr Benits3

1 University of Washington, Tacoma, USA
pbarreto@uw.edu, andclay@uw.edu

http://directory.tacoma.uw.edu/employee/pbarreto,
http://directory.tacoma.uw.edu/employee/andclay

2 Institute of Mathematics and Statistics, University of São Paulo, Brazil
glaucioaorj@gmail.com

3 Naval Systems Analysis Center, Brazilian Navy, Brazil
wbenits@yahoo.com.br

Abstract In this paper we present an Oblivious Transfer (OT) protocol
that combines an OT scheme together with the Supersingular Isogeny
Diffie-Hellman (SIDH) primitive. Our proposal is a candidate for post-
quantum secure OT and demonstrates that SIDH naturally supports OT
functionality. We consider the protocol in the simplest configuration of(
2
1

)
-SIOT and analyze the protocol to verify its security.

Keywords: supersingular elliptic curves, isogenies, supersingular isogeny
Diffie-Hellman, oblivious transfer.

1 Introduction

The first notion of Oblivious Transfer (OT) was proposed in [18]. Most, if not
all, of cryptography protocols can be based on the notion of OT, under the
assumption that an efficient OT scheme is available.

Efficient OT protocols are known in a quantum-susceptible scenario [4], where
the underlying security assumption is the hardness of computing discrete loga-
rithms or factoring integers.

Additionally, many papers have introduced OT in the context of quantum
cryptography [3,5,6,16,17,24,29], where the legitimate users manipulate quantum
states. The post-quantum OT research has gradually increased over time. Thus,
some examples could be cited, such as the work done by Raza Kazmi [15] and
Vanessa Vitse [26].

In general, in an
(
2
1

)
-OT protocol, a sender sends two messages, say ma and

mb, and the receiver chooses only one of them (for example, the receiver chooses
ma). At the end of the protocol, the sender does not know which of the messages
was chosen, and also the receiver learns nothing about the other message (in this
case, mb).

Our contribuition. According to [12], OT is one of the most important
structures in cryptography for the construction of secure protocols. In terms of

http://directory.tacoma.uw.edu/employee/pbarreto
http://directory.tacoma.uw.edu/employee/andclay

application, these types of protocols can be used in electronic auctions processes
or even in contract signatures [8] or electronic money transaction schemes [2].
In this work, our main objective was the implementation of

(
2
1

)
-SIOT protocol

using the SIDH primitives from [10] for the purpose of providing privacy be-
tween sender and receiver, at the same time, providing a resistance against the
imminent advent of the quantum computation.

This paper is organized as follows: Section 2 describes our Supersingular
Isogeny Oblivious Transfer protocol. In section 3, We discuss about security
aspects from

(
2
1

)
- SIOT. In section 4, we present a conclusion of the security

analysis of the proposed protocol. An implementation of the proposed protocol
is presented in section 5. In section 6, we present a performance estimate between
some OT protocols. Finally, we conclude this work in section 7. In addition, we
use Appendix A to introduce some crucial background about isogenies of elliptic
curves. A simplified presentation of the Supersingular Isogeny Diffie-Hellman
(SIDH) of [10] is shown in appendix B. Furthermore, in Appendix C, we present
a brief concept of OT protocol and a simplified form of the protocol present in [4].
In Appendix D, we show some definitions about the process that determines
linearly independent points used by our proposed protocol. In Appendix E, there
is the possibility of applying a symmetric pairing in the security analysis of the
SIOT protocol. At last, in Appendix F we will verify that the proposed protocol
is able to share certain points that allow to execute the OT functionality.

2 The
(
2

1

)
- SIOT protocol

In this section, we will see a new scheme called Supersingular Isogeny Oblivious
Transfer (SIOT) protocol. It is fundamentally inspired on schemes described in
[4] and [10]. For readers unfamiliar with issues of isogenies between elliptic curves
and OT protocol, we suggest an initial reading in appendices A, B and C.

2.1 Notations

We use the cryptographic primitives of the Supersingular Isogeny Diffie-Hellman
key exchange protocol (SIDH) from [10]. In this way, the following notations
below will be used.

i. M, K, C → Set of all plaintexts, keys and ciphertexts with binary strings of
fixed length, respectively;

ii. p→ A prime such that p = 3 mod 4;
iii. Fp2 → A quadratic extension of Fp, where Fp2 = Fp[i]/〈i2 + 1〉;
iv. E0[Fp2]→ A supersingular elliptic curve over Fp2 ;
v. Z/`Z→ A field of integers modulo `, where ` is prime and ` - p;
vi. PA, QA → Linearly independent points over the supersingular elliptic curve

E0[`eAA];
vii. PB , QB → Linearly independent points over the supersingular elliptic curve

E0[`eBB];

2

viii. φA, φB → Isogenies between E0 and EA, E0 and EB , respectively;
ix. φ

′

A, φ
′

B → Isogenies between EB and EBA, EA and EAB , respectively;
x. GA, HA → Images of PB and QB under Sender’s private isogeny φA;
xi. GB , HB → Images of PA and QA under Receiver’s private isogeny φB ;
xii. (EAB), (EBA) → − invariants of supersingular elliptic curve EAB and

EBA, respectively;
xiii eA, eB → Positive integers;
xiv. rA, rB → Integers from Z/`eAA Z and Z/`eBB Z , respectively;
xv. f → Small cofactor to ensure a prime p = `eAA `eBB f ± 1;
xvi. H → Hash function such that H = {Hk : k ∈ K}. It is a hash function

family indexed by a finite set K, where each Hk is a function from Fp2 .
xvii. E , D → Encryption and Decryption algorithms, respectively;
xviii. pkA, pkB → Sender’s public key and Receiver’s public key, respectively;
xiv. skA, skB → Sender’s private key and Receiver’s private key, respectively.
xx. O → Special point located at infinity. It acts as a neutral element in the

operation of adding points of an elliptic curve over a finite field;
xxi. ker(φ) → Kernel of an isogeny. In particular, it is a finite subgroup of an

elliptic curve over closed field Fp2 . It can also be denoted by 〈P,Q〉, where
P,Q ∈ E[F̄p2].

2.2 Public parameters

Let E0 be a supersingular elliptic curve defined over Fp2 . For convenience, assume
a prime p of form4 p = `eAA `eBB − 1 with `A = 2 and eA > 4 (and f = 1), or p =
4`eAA `eBB − 1, where both `A and `B are odd primes (and f = 4). Hence, either of
these choices yield p = 3 (mod 4), enabling the representation5 Fp2 = Fp[i]/〈i2+
1〉 and ensuring that the curve E0[Fp2] : y2 = x3 + x is supersingular, with
group order (`eAA `eBB f)2. Additionally, let PA, QA, PB , QB points. Then, E0[`eAA]
and E0[`eBB] are generated by kernel 〈PA, QA〉 and 〈PB , QB〉, respectively. The
appendix D presents some definitions used to compute such linearly dependent
points.

2.3 Premises

1. Let (E ,D) be a symmetric encryption scheme according to definitions 1 and
2 of [4]. The shared symmetric key is the value of the invariant between
two supersingular and isomorphic6 elliptic curves. We will see in figure 1,
that the invariant will be submitted to hash function H = {Hk : k ∈ K}
indexed by a finite set K, where each Hk is a function of Fp2 ;

2. Alice wants to encrypt two messages m0, m1 ∈ M and send them to Bob.
In turn, Bob will decrypt only one of these two messages and Alice will not
be aware of his choice;

4 See [19] that reports a deep research about the choice of SIDH-Friendly Primes.
5 See [13] for more details about this type of representation.
6 See [21], Proposition III.1.4(b).

3

3. Alice and Bob use a coin-flipping protocol from [27] to share a single uniform
random string of w bits. This ensures that neither Alice nor Bob can guess
in advance or control the value of w. Thus, they must use, for instance, a
hash function in this bit string to get the linearly independent points U and
V . Otherwise, they must generate a new string w.

2.4 Protocol

Figure 1 shows an abstraction of the proposed protocol operation in its simplest
form, i.e,

(
2
1

)
- SIOT.

Supersingular Isogeny Oblivious Transfer (SIOT)

Sender Receiver

Input: m0,m1 ∈M Input: σ ∈ {0, 1}
Output: None Output: mσ

rA ← Z/`eAA Z rB ← Z/`eBB Z
φA : E0 → EA φB : E0 → EB

EA ← E0/〈PA + rAQA〉 EB ← E0/〈PB + rBQB〉
GA ← φA(PB);HA ← φA(QB) GB ← φB(PA);HB ← φB(QA)

pkA ← (EA, GA, HA) pkB ← (EB , GB , HB)

pkA If GA, HA /∈ EA[`eBB],

then abort (⊥).

U, V ←$EB [`eAA] then,

ĜB ← (GB − σU)

ĤB ← (HB − σV)

p̂kB ← (EB , ĜB , ĤB)

If ĜB , ĤB /∈ EB [`eAA], p̂kB

then abort (⊥).

∀i ∈ {0, 1} and U, V ←$EB [`eAA] then, φ
′
B : EA → EAB

φ
′
Ai : EB → EBAi

EBAi ← 〈(ĜB + iU) + rA(ĤB + iV)〉 EAB ← EA/〈GA + rBHA〉
k0 = H((EBA0)) kσ = H((EAB))

k1 = H((EBA1))

c0 ← Ek0(m0)

c1 ← Ek1(m1)

mσ ← Dkσ (cσ);

Figure 1.
(
2
1

)
- SIOT protocol.

2.4.1 Generation of key pairs

Setup - Sender

1. Alice secretly chooses a value rA ← Z/`eAA Z;
2. She computes:

4

(a) ker(φA) = 〈PA + rAQA〉;
(b) φA : E0 → EA;
(c) φA(PB) = GA; φA(QB) = HA.

3. Alice creates a pair of keys skA = (φA, rA) and pkA = (EA, GA, HA), i.e, her
private and public keys, respectively;

4. Alice sends to Bob pkA = (EA, GA, HA). He checks if GA, HA ∈ EA[`eBB],
i.e, `eBB GA = `eBB HA = OA ∈ EA, since {PB , QB} ⊂ E0[`eBB]. If this check is
valid then, Bob will accept the public key of Alice. Otherwise, that public
key will be rejected (⊥).

It is denoted EA = E0/〈PA+rAQA〉, where |ker(φA)| = |〈PA+rAQA〉| = `eAA ,
i.e, a separable7 isogeny of degree `eAA .

Setup - Receiver

1. Bob secretly chooses a value rB ← Z/`eBB Z;
2. He computes:

(a) ker(φB) = 〈PB + rBQB〉;
(b) φB : E0 → EB ;
(c) φB(PA) = GB ; φB(QA) = HB ;
(d) For a unique σ ∈ {0, 1}, ĜB = (GB − σU) and ĤB = (HB − σV).

3. Bob creates a key pair skB = (φB , rB) and p̂kB = (EB , ĜB , ĤB), i.e, his
private and public key, respectively;

4. He sends p̂kB to Alice. Then, she performs two checks:
– If ĜB , ĤB ∈ EB [`eAA], i.e, `eAA GB = `eAA HB = OB ∈ EB since {PA, QA} ⊂
E0[`eAA];

– If the points U , V ∈ EB [`eAA]. This ensure that the pair of points (GB +
U,HB +V) and (GB−U,HB−V) are generated by EB [`eAA]. Otherwise,

p̂kB will be rejected (⊥) and the protocol is restarted to execute another
bit string w.

2.4.2 Generation of secret keys

Setup - Sender

1. Alice computes:
(a) ∀i ∈ {0, 1}, ker(φ′Ai) = 〈(ĜB + iU) + rA(ĤB + iV)〉;
(b) φ′Ai : EB → EBAi ;
(c) i ← (EBAi);
(d) ki = H(i).

Setup - Receiver

1. Bob computes:
(a) ker(φ′B) = 〈GA + rBHA〉;
(b) φ′B : EB → EAB ;
(c) σ ← j(EAB);
(d) kσ = H(σ).

7 See [28], Proposition 12.8

5

2.4.3 Encryption and Decryption

1. ∀i ∈ {0, 1}, Alice encrypts mi. Then, ci ← E(ki,mi). After that, she sends
(c0, c1) to Bob;

2. He decrypts and gets mσ ← D(kσ, cσ);

3 Security analysis of the
(
2

1

)
-SIOT protocol

In the next sections, we will present some definitions for security analysis of the
proposed protocol.

3.1 Preliminaries

Definition 1. A function ε(·) is negligible in n, or just negligible, if for every
positive polynomial p(·) and all sufficiently large n it holds that ε(·) < 1/p(·).

Definition 2. A probability ensemble X = {X (n, a)} is an infinite sequence of
random variables indexed by n ∈ N and a ∈ {0, 1}∗. The value n will represent
a security parameter and a will represent the parties’ inputs.

Definition 3. Two distribution ensembles X = {X (n, a)} and Y = {Y(n, a)}
are said to be computationally indistinguishable, denoted by X c≡ Y, if for ev-
ery non-uniform polynomial-time algorithm D there exists a negligible func-
tion ε(·) such that for every n ∈ N and a ∈ {0, 1}∗. Then, |Pr[D(X (n, a)) =
1]− Pr[D(Y(n, a)) = 1]| 6 ε(n).

3.2 Computational problems of isogenies between supersingular
elliptic curves

In this section, we will see some cases of computational problems from supersin-
gular elliptic curves that were adapted from [10]. Therefore, let a supersingular
curve E0 over Fp2 together with independent bases {PA, QA} and {PB , QB} of
E0[`eAA] and E0[`eBB], respectively. Furthermore, recall that p is a prime of the
form defined on section 2.2.

Problem 1 (Decisional Supersingular Isogeny (DSSI) problem). Let EA[Fp2] be
another supersingular curve. Decide whether EA is `eAA -isogenous to E0.

Problem 2 (Computational Supersingular Isogeny (CSSI) problem). Let φA :
E0 → EA be an isogeny whose kernel is RA = 〈[mA]PA + [rA]QA〉 for some
mA, rA ∈ Z/`eAA Z. Given the public key (EA, GA, HA). Determine RA.

Problem 3 (Supersingular Computational Diffie-Helmann (SSCDH) problem).
Let φA : E0 → EA be an isogeny whose kernel is RA = 〈[mA]PA + [rA]QA〉
for some mA, rA ∈ Z/`eAA Z and let φB : E0 → EB be an isogeny whose
kernel is RB = 〈[mB]PB + [rB]QB〉 for some mB , rB ∈ Z/`eBB Z. Given the
public keys (EA, GA, HA) and (EB , GB , HB). Determine the − invariant of
E0/〈[mA]PA + [rA]QA, [mB]PB + [rB]QB〉

6

Problem 4 (Supersingular Decision Diffie-Hellman (SSDDH) problem). Given a
tuple sampled with probability 1/2 from one of the following two distributions:

1. (EA, EB , GA, HA, GB , HB , EAB) where EA, EB , GA, HA, GB andHB are as
in the SSCDH problem (Problem 3) then,

EAB ' E0/〈[mA]PA + [rA]QA, [mB]PB + [rB]QB〉,

2. (EA, EB , GA, HA, GB , HB , EC) where EA, EB , GA, HA, GB andHB are as in
the SSCDH problem (Problem 3) then,

EC ' E0/〈[m̂A]PA + [r̂A]QA, [m̂B]PB + [r̂B]QB〉

Let mA, rA, m̂A, r̂A ∈ Z/`eAA Z and mB , rB , m̂B , r̂B ∈ Z/`eBB Z. Determine
from which distribution the tuple is sample.

Remark 1. Each sample has a probability 1/2. Thus, for definition 3, we have
that:

{EA, EB , GA, HA, GB , HB , EAB}
c≡ {EA, EB , GA, HA, GB , HB , EC}

3.3 Notations for security analysis

In the security analysis of the proposed protocol, the followings notations will
be used:

i. Application of the V élu′s8 formula→ V élu′s formula{ker(φ), E};
ii. According to [14] in an OT protocol, the replacement of either m0 or m1

by another message m must go unnoticed by the receiver. Let τ ∈ M and
σ ∈ {0, 1}. Then, Alice’s view in executing an OT protocol is denoted by
{ΩAlice(Alice(1n, τ), Bob(1n, σ))}, where a security parameter is defined by
1n. Similarly, we denote Bob’s view for {ΩBob(Alice(1n, τ), Bob(1n, σ))};

iii. When Alice or Bob acts like a dishonest user, we denote them by Alice*
and Bob*, respectively.

3.4 Some requirements for security analysis

A priori, any secure protocols should resist to any adversarial attack. Thus,
to prove that an OT protocol is secure, [12] state that the most important
requirements in any security protocol are correctness and privacy.

8 See [11], Corollary 25.1.7.

7

3.4.1 Correctness
Suppose that both Alice and Bob are honest parties taking the

(
2
1

)
-SIOT

protocol. Let σ, i ∈ {0, 1} such that σ = i. Thus, the correctness follows the
identities below.

(EBAi) '(EB/〈(GB − σ · U + i · U) + rA · (HB − σ · V + i · V)〉)
'(φB(E0)/〈(φB(PA)− σ · U + i · U) + rA(φB(QA)− σ · V + i · V)〉)
'(φB(E0)/〈φB(PA) + rA · φB(QA)〉)
'(φB(E0)/〈φB(PA + rA ·QA)〉)
'(φ′Ai(φB(E0))) ' (φA(E0)/〈φA(PB + rB ·QB)〉)
'(φ′Ai(φB(E0))) ' (EB/〈φA(PB) + rB · φB(QB)〉)
'(φ′Ai(φB(E0))) ' (EB/〈GA + rB ·HA〉) ' (φ′B(φA(E0))) ' (EAB).

3.4.2 Privacy
In the

(
2
1

)
-SIOT protocol, Bob’s choice should not be known to Alice. More-

over, at the end of the protocol execution, Bob will not be able to gain any
knowledge about the message that he did not decrypt. It should be noted that
this privacy stems from the difficulty of solving the computational problems
seen in section 3.2. Finally, to complement the security proof of the proposed
protocol, Theorem 1 was elaborated as follows:

Theorem 1. Assume that CSSI, SSCDH, SSDDH problems are hard in a group
E(Fp2). Then,

(
2
1

)
-SIOT protocol ensures privacy between two parties.

Proof. The proof is to adapt definition 2.6.1 of [12] to
(
2
1

)
-SIOT protocol for

compatibility with the computational problems mentioned in section 3.2. Let two
messages, m0 and m1, between two parts (Alice and Bob). An OT protocol is
private if the following requirements are valid:

i. Non-triviality: If Alice and Bob follow the protocol correctly then, after an
execution in which Alice has for input any m0, m1 ∈ M and Bob has input
bit σ ∈ {0, 1}, the output of Bob is mσ. In other words, Bob receives pkA
and the pair (c0, c1) from Alice. Recalling that pkA ← (EA, GA, HA) and
cσ ← E(kσ,mσ) are well defined. Thus, non-triviality follows from the fact
that

V élu′s formula{〈GA + rBHA〉, EA} ⇒ EAB ∴
H((EAB)) ⇒ kσ.

Therefore, Bob recovers kσ implying mσ ← D(kσ, cσ) such that σ is a unique
binary value secretly chosen by him. Furthermore, upon receiving pkA, Bob
will not be able to compute Alice’s private key, i.e, skA = (φA, rA). If that
could be possible, there would be a violation of the CSSI problem difficult
hypothesis.

8

ii. Privacy in the case of a dishonest Bob: Let p̂kB ← (EB , ĜB , ĤB)
denotes Bob’s public key sent to Alice. Recall that ĜB ← GB, ĤB ← HB, if
σ = 0 and ĜB ← (GB − U), ĤB ← (HB − V), if σ = 1. In addition, there
is Alice’s public key pkA := (EA, GA, HA) sent to Bob and a unique value of
− invariant σ = (V élu′s formula{〈GA + rBHA〉, EA}) computed by Bob
upon receiving Alice’s well-defined public key pkA. After that, ∀i ∈ {0, 1},
Alice will compute i = (V élu′s formula{〈(ĜB+iU)+rA(ĤB+iV)〉, EB}),
i.e, 0 and 1. Moreover, Alice will share a unique secret key with Bob. Thus,
Alice’s privacy is based on the following fact: Bob cannot compute both values
of the invariants 0 and 1 (0 6= 1), if the hypothesis of the SSCDH problem
is difficult. In other words, Bob will be able to compute a unique invariant
σ.
Let σ ∈ {0, 1} an auxiliary input and another input with tuple m0, m1,
m ∈ M. Thus, another way to view the Alice’s privacy is that Bob’s first
message, denoted by Bob* (1n, σ), determines whether it should receive m0

or m1. For example, if it determines that it should receive m0, then its view
when Alice’s input is (m0,m1) is indistinguishable from its view when Alice’s
input is (m0,m). Evidently, this implies that Bob cannot learn anything about
m1 when it receives m0 and vice versa. Hence,

{ΩBob∗(Alice(1n, (m0,m1));Bob∗(1n, σ))}n∈N
c≡ {ΩBob∗(Alice(1n, (m0,m));Bob∗(1n, σ))}n∈N

or

{ΩBob∗(Alice(1n, (m0,m1));Bob∗(1n, σ))}n∈N
c≡ {ΩBob∗(Alice(1n, (m,m1));Bob∗(1n, σ))}n∈N

iii. Privacy in the case of a dishonest Alice: Note that this requirement
shows that Alice cannot distinguish Bob’s possible secret choices, i.e, when
bit σ is set to 0 or 1. In other words, she simply visualizes a pkB public key.
Then, the receive’s privacy will be checked by following Lemma:

Lemma 1. Alice by inputting p̂kB cannot guess σ with probability greater
than 1/2 + ε(n), for some negligible function ε(n) and ∀ n ∈ N

Proof. We can assume that by receiving p̂kB and not knowing the value of
Bob’s bit σ, Alice cannot distinguish the pairs of tuples {(EB , GB , HB)}
and {(EB , (GB − U), (HB − V)}, i.e, for some ĜB , ĤB ∈ EB [`eAA] such

that Pr[(EB , GB , HB) = (EB , ĜB , ĤB)] = Pr[(EB , GB − U,HB − V) =
(EB , ĜB , ĤB))] which is independent of σ . Thus, the difficulty of this in-
distinguishability between these tuples is based on SSDDH problem. We have
that:

{(EB , GB , HB)} c≡ {EB , (GB − U), (HB − V)}

According to [20], a distinguisher is a probabilistic algorithm that describes
the advantages of an adversary’s advantage. Then, suppose that, by contra-
diction, there is a probabilistic distinguisher Θ of polynomial time and a
non-negligible function ε such that ∀n ∈ N,

9

|Pr[Θ(EB , GB , HB) = 1]− Pr[Θ(EB , (GB − U), (HB − V)}) = 1]| > ε(n),

Then, by subtracting and adding the following term,

Pr[Θ(EB , (GB − U −R), (HB − V − S)) = 1]9

We have that
|Pr[Θ(EB , GB , HB) = 1]−Pr[Θ((EB , (GB−U), (HB−V)) = 1]| 6 |Pr[Θ(EB ,
GB , HB) = 1]−Pr[Θ(EB , (GB−U−R), (HB−V−S)) = 1]|+|Pr[Θ(EB , (GB−
U −R), (HB − V − S)) = 1]− Pr[Θ(EB , (GB − U), (HB − V)) = 1]|

By contradiction, We suppose that

|Pr[Θ(EB , GB , HB) = 1]− Pr[Θ(EB , (GB − U −R), (HB − V − S)) = 1]| > ε(n)

2
(3.1)

or

|Pr[Θ(EB , (GB − U −R), (HB − V − S)) = 1]− Pr[Θ(EB , (GB − U), (HB − V)) = 1]| > ε(n)

2
(3.2)

Suppose that (3.1) holds. Thus, we can construct a distinguisher θ̃ for the
SSDDH problem that works as follow: Upon input p̂kB ← {(EB , (GB −
U), (HB − V))}, the distinguisher Θ̃ randomly chooses the pair of points
R,S. Hence, p̂k′B ← {(EB , (GB − U − R), (HB − V − S))}. On the other
hand, if p̂kB ← {(EB , GB , HB)} then, p̂k′B ← {EB , (GB − R), (HB − S)}.
Note that the pairs of points U and V are not used in the last tuple p̂k′B.
However, these points as points R and S from to the same group EB [`eAA]

and could also be randomly chosen by Θ̃, say points U and V . Thus, we can
have that p̂k′B ← {(EB , GB , HB)} and

|Pr[Θ̃(EB , GB , HB) = 1]−Pr[Θ̃(EB , (GB−U), (HB−V)) = 1]| = |Pr[Θ(EB ,

GB , HB) = 1]− Pr[Θ(EB , (GB − U −R), (HB − V − S)) = 1]| > ε(n)

2
,

in contradiction to the SSDDH problem. An analogous analysis follows in
the case where (3.2) holds. The proof of Bob’s privacy is concluded by noting
that {(EB , GB , HB)}, {(EB , (GB − U), (HB − V))}, regardless of the value
of σ, are indistinguishable in Alice’s view. In other words, let τ ∈ {0, 1}∗ be
an auxiliary input. Thus,

{ΩAlice∗(Alice∗(1n, τ), Bob(1n, 0))} c≡ {ΩAlice∗(Alice∗(1n, τ), Bob(1n, 1))}.

According to Lemma 1, the privacy of Bob follows from SSDDH problem over
the group EB [`eAA]. ut

Therefore, the above requirements are related to the computacional problems
of isogenies in supersingular elliptic curves and they ensure the privacy of the(
2
1

)
-SIOT protocol ut

9 R,S ∈ EB [`eAA].

10

3.5 Algebraic security analysis of the
(2
1

)
-SIOT protocol

Considering the case of a dishonest Alice, she will use a Weil pairing-based
distinguisher for trying to find out the secret value σ from honest Bob. In the
second situation, the roles will be inverted, i.e, Alice will be considered an honest
sender and Bob a dishonest receiver. Thus, an analysis is performed in such a
way that some algebraic conditions must be obeyed so that Bob is not able to
decipher both of Alice’s messages.

3.5.1 Preventing a Weil pairing-based distinguisher from a possible
Alice’s dishonesty

Considering the situation where Alice* (the dishonest sender) receiving the
information (EB , ĜB , ĤB) from Bob, a priori, does not know whether to receive
(EB , GB , HB) or (EB , GB − U,HB − V). Alice might consider using the Weil
pairing to distinguish between these two values.

In what follows, all pairings have order `eAA . After all, the correct points GB =

φB(PA) and HB = φB(QA) are known to satisfy e(GB , HB) = e(PA, QA)`
eA
A : if

this relation does not hold for both of (ĜB , ĤB) or (ĜB +U, ĤB + V), it would
reveal which key Bob has chosen. More generally, because Alice can add any
multiple of (U, V) to (ĜB , ĤB) and look for such a mismatch, one must have

e(ĜB +λU, ĤB +λV) = e(GB , HB) = e(PA, QA)`
eA
A for any λ ∈ Z/`eAA Z. Recall-

ing that U, V,GB , HB ∈ EB [`eAA] then, they can be wrote as a linear combination,
i.e, U = αGB +βHB , V = γGB + δHB such that α, β, γ, δ ∈ Z/`eAA Z. Thus, this
condition means that:

e(GB + λU,HB + λV) = e(GB + λαGB + λβHB , HB + λγGB + λδHB)

= e((1 + λα)GB + λβHB , λγGB + (1 + λδ)HB)

= e((1 + λα)GB , λγGB)

· e((1 + λα)GB , (1 + λδ)HB)

· e(λβHB , λγGB)

· e(λβHB , (1 + λδ)HB)

= 1

· e(GB , HB)(1+λα)(1+λδ)

· e(HB , GB)λβλγ

· 1

= e(GB , HB)(1+λα)(1+λδ)−λ
2βγ

= e(GB , HB),

hence it is necessary that (1+λα)(1+λδ)−λ2βγ = 1 (mod `eAA), or equivalently
λ(α + δ) + λ2(αδ − βγ) = 0 (mod `eAA). This must hold for any choice of λ,
in particular those that are invertible mod `eAA , and hence it must hold that
λ(αδ − βγ) = −(α + δ) (mod `eAA). Once more, this can only hold for any λ

11

if αδ − βγ = 0 (mod `eAA) and α + δ = 0 (mod `eAA), or equivalently, δ = −α
(mod `eAA) and α2 + βγ = 0 (mod `eAA). Therefore, in principle, such conditions
should be obeyed to avoid Alice to find out Bob’s choice. ut

3.5.2 Possible decryptions from a possible dishonest Bob
Recalling U, V ∈ EB [`eAA] are linearly independent points, and write U =

αGB +βHB , V = γGB + δHB . Suppose Alice receives an information (EB , ĜB ,
ĤB) from Bob*. Then, Alice will compute actually the degree-`eAA isogeny φ′A0

:
EB → EBA0 whose kernel is ker(φ′A0

) = 〈GB + rAHB〉 and φ′A1
: EB → EAB1

whose kernel is ker(φA1) = 〈(GB +U)+ rA(HB +V)〉. It should be noted10 that
if ker(φ′A0

) j ker(φA1
) then, EBA0

is isomorphic to EBA1
i.e., EBA0

∼= EBA1
.

Moreover, if φA1
is separable then there is a unique isogeny φ̂A : EBA0

→ EBA1
.

Now (GB +U) + rA(HB +V) = (GB +αGB +βHB) + rA(HB + γGB + δHB) =
(1 +α+ γrA)GB + (rA + β+ δrA)HB . Hence, by inspection, this point can only
be in 〈GB + rAHB〉 with the following conditions:

1. (1 + α+ γrA) is invertible mod `eAA (i.e. if `A - 1 + α+ γrA);
2. (rA + β + δrA)/(1 + α + γrA) = rA (mod `eAA), which means γr2A + (α +
δ)rA−β = 0 (mod `eAA) and hence γr2A+(α−δ)rA−β = 0 (mod `A). Thus,
a simple constraint on the coefficients ensures that the last equation has no
solution then, just force `A | γ and `A | (α− δ), but `A - β.

Therefore, it is important that this equation has no solution because, oth-
erwise, if Alice and Bob* cannot control the coefficients α, β, γ, δ apart from
ensuring conditions as above, Bob* could be able to decrypt both messages from
Alice. ut

3.5.3 Wrapping up the conditions
In this section we will consider the three conditions on α, β, γ, and δ based on

the equations obtained in sections 3.5.1 and 3.5.2 to ensure
(
2
1

)
-SIOT protocol

security in a scenario where Alice and Bob are dishonest parties. Thus, conditions
on α, β, γ, and δ are obtained that guarantee that Alice will not be able to get
the secret choice of Bob’s bit b and he will not be able to decipher both pairs
c0 and c1 sent by Alice. Combining these relations yields γ = −α2/β (mod `eAA)
since β is certainly invertible mod `eAA . In particular, this means V = −(α/β)U .

Additionally, in appendix E we will see the application of a symmetric pairing
to analyze other possible conditions relative to the coefficients of points U and
V . Moreover, appendix F shows the process of sharing of these points.

4 Conclusion of the security of the
(
2

1

)
-SIOT protocol

The security proof of the SIOT protocol is based on three parts, namely:

10 See Theorem 9.6.18 from [11] and Proposition 12.12 from [28].

12

i. The inherent security characteristics of [10], that is, the computational pro-
blems mentioned in section 3.2;

ii. The privacy between a sender and receiver in a communication channel by
means of Theorem 1;

iii. An algebraic analysis that used Weil ’s pairing that defined some conditions
necessary for a dishonest sender to does not cheat the security against an
honest receive and vice versa.

5 Implementation of the
(
2

1

)
-SIOT protocol

The
(
2
1

)
-SIOT protocol was implement in the phyton language, using a Mac-

Book Air with a 1.6 GHz Intel Core i.5 processor, 4GB, 1.600MHz and DDR3
memory. Table 1 shows the values of the prime numbers p that were used in the
implementation of the proposed protocol.

Table 1. Values used for p in the
(
2
1

)
-SIOT protocol.

p = `eAA `eBB f ± 1 Value Size (bits)

(34 · 53 · 4)− 1 40.499 16
(36 · 53 · 4)− 1 364.499 19
(37 · 54 · 4)− 1 5.467.499 23
(311 · 56 · 4)− 1 11.071.687.499 34

In this work, it was only possible to use a maximum value of p corresponding
the size of 34 bits. Evidently, such p values are insufficient to guarantee the
security of the proposed protocol because [19] and [10] consider that the size of
the p − value for the security of a post-quantum cryptographic protocol based
on isogenies of elliptic curves is at least equal to 512 bits. However, this does not
invalidate the proof of concept of

(
2
1

)
-SIOT.

6 Performance estimate between some OT protocols

In table 2 and figure 6, the number of types of operations by sender and receiver
was verified in

(
2
1

)
-SIOT and both protocols SIDH-OT and WSW-OT from [26].

Thus, multiplications with scalar and point additions are denoted by Multi and
Add, respectively. Furthermore, calculations for isogenies and pairing are denoted
by Iso and Png, respectively. Therefore, we estimate that the

(
2
1

)
-SIOT protocol

has slightly better performance than other two protocols.

13

Table 2. Performance estimation.

Protocol
Sender Receiver

Png
Mult Add Iso Mult Add Iso

SIDH-OT 8 4 4 2 2 2 2

WSW-OT 3 3 5 2 1 2 4

SIOT 3 5 3 2 4 2 -

SIOT SIDH-OT WSW-OT

0

5

10

5

10

5

9

6

4
5

6
7

0

2

4

#
T

o
ta

l
O

p
er

a
ti

o
n
s

Multiplications Additions Isogenies Pairings

Figure 2. Performance estimation.

7 Conclusion

In this paper, a proposal for a post quantum protocol called SIOT is presented.
Its security is based on the difficulty of an opponent to calculate isogenies be-
tween supersingular elliptic curves and the inspiration of the relative simplicity
of the OT protocol of [4] to ensure privacy between the sender and the receiver.
With respect to this privacy, it was important to elaborate a theorem, match-
ing a privacy definition of [12] with the computational problems of isogenies
of [10], considering a hypothetical scenario between a dishonest sender and an
honest receiver and vice versa. Finally, an algebraic analysis with Weil pairing
defined certain necessary conditions so that there were not security and privacy
violations in the proposed protocol.

References

1. A.Rostovtsev and A.Stolbunov. Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145., 2006.

14

2. Boaz Barak. Oblivious transfer and private informa-
tion retrieval. Technical report, Princenton University,
https://www.cs.princeton.edu/courses/archive/fall07cos433/lec19.pdf, 2007.

3. Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Marie-Hélène Sku-
biszewska. Practical quantum oblivious transfer. In Joan Feigenbaum, editor,
Advances in Cryptology — CRYPTO ’91: Proceedings, pages 351–366, Berlin, Hei-
delberg, 1992. Springer Berlin Heidelberg.

4. Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer.
In Kristin Lauter and Francisco Rodŕıguez-Henŕıquez, editors, Progress in Cryp-
tology – LATINCRYPT 2015: 4th International Conference on Cryptology and
Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015,
Proceedings, pages 40–58, Cham, 2015. Springer International Publishing.

5. C. Crepeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In [Proceedings 1988] 29th Annual Symposium on Foundations of
Computer Science, pages 42–52, Oct 1988.

6. Ivan Damg̊ard, Serge Fehr, Carolin Lunemann, Louis Salvail, and Christian
Schaffner. Improving the security of quantum protocols via commit-and-open.
In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009: 29th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009.
Proceedings, pages 408–427, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

7. A.M.Childs. D.Jao and V. Soukharev. Constructing elliptic curve isogenies in
quantum subexponential time., 2014.

8. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, June 1985.

9. Luca De Feo. Algorithmes Rapides pour les Tours de Corps Finis et les Isogénies.
PhD thesis, Ecole Polytechnique X, December 2010.

10. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptol-
ogy, 8(3):209–247, 2014.

11. Steven D. Galbraith. Mathematics of public key cryptography. Cambridge Univer-
sity Press, Cambridge, 2012.

12. Carmit Hazay and Yehuda Lindell. Efficient Secure Two - Party Protocols - Tech-
niques and Constructions. Springer Berlin Heidelberg, 2010.

13. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An introduction to mathe-
matical cryptography. Undergraduate Texts in Mathematics. Springer, New York,
second edition, 2014.

14. Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer.
EUROCRYPT, 2005.

15. Raza Ali Kazmi. Cryptography from post-quantum assumptions. Cryptology
ePrint Archive, Report 2015/376, 2015. http://eprint.iacr.org/2015/376.

16. D. Mayers and L. Salvail. Quantum oblivious transfer is secure against all individ-
ual measurements. In Physics and Computation, 1994. PhysComp ’94, Proceed-
ings., Workshop on, pages 69–77, Nov 1994.

17. Dominic Mayers. Quantum key distribution and string oblivious transfer in noisy
channels. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO ’96: 16th
Annual International Cryptology Conference Santa Barbara, California, USA Au-
gust 18–22, 1996 Proceedings, pages 343–357, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg.

18. Michael O. Rabin. How to exchange secrets with oblivious transfer, 2005. Harvard
University Technical Report 81 talr@watson.ibm.com 12955 received 21 Jun 2005.

15

http://eprint.iacr.org/2015/376

19. Amir Jalali Mehran Mozaffari Kermani Reza Azarderakhsh, Brian Koziel and
David Jao. Neon-sidh: Efficient implementation of supersingular isogeny diffe-
hellman key exchange protocol on arm. Cryptology ePrint Archive, Report
2016/669., 2016.

20. Phillip Rogaway. On the role of definitions in and beyond cryptography.

21. Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate
Texts in Mathematics. Springer, Dordrecht, second edition, 2009.

22. Anton Stolbunov. Cryptography Shemes based on Isogenies. PhD thesis, Norwegian
University of Science and Technology., 2012.

23. John Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math.,
2:134–144, 1966.

24. Dominique Unruh. Universally composable quantum multi-party computation. In
Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010: 29th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, French Riviera, May 30 – June 3, 2010. Proceedings, pages 486–505, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

25. Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B,
273:A238–A241, 1971.

26. Vanessa Vitse. Simple oblivious transfer protocols compatible with kummer and
supersingular isogenies. Archives-Ouvertes. hal-01981552, 2019.

27. David Wagner. Technical perspective: Fairness and the coin flip. Communications
of the ACM., 59(4):75, April 2016.

28. Lawrence C. Washington. Elliptic curves - Number Theory and Cryptography.
Taylor & Francis Group. LLC, second edition. edition, 2008.

29. Andrew Chi-Chih Yao. Security of quantum protocols against coherent measure-
ments. In Proceedings of the Twenty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’95, pages 67–75, New York, NY, USA, 1995. ACM.

A Isogenies

In short, isogeny-based cryptography utilizes unique algebraic maps between
elliptic curves that satisfy group homomorphism. This original idea introduced
by [22] detailed a Diffie-Hellman cryptosystem based on the hardness of com-
puting isogenies between ordinary elliptic curves. Nevertheless, [7] developed a
quantum algorithm that could compute isogenies between ordinary curves in
subexponential time. This algorithm uses the fact that the structure of the ellip-
tical group is commutative. Thus, [10] adapted the isogeny-based key exchange
protocol to be based on the difficulty of computing isogenies between supersin-
gular elliptic curves, which does not have commutative endomorphism ring.

Definition 4. Let E1 and E2 be elliptic curves over Fp. An isogeny over Fp is
a morphism φ : E1 → E2 over Fp such that φ(OE1) = OE2 is a group homomor-
phism. The zero isogeny is the constant map φ : E1 → E2 given by φ(P) = OE2

for all P ∈ E(F̄p). If there is an isogeny between two elliptic curves E1 and E2

then:

i. E1 and E2 are isogenous;

16

ii. #E1(Fp) = #E2(Fp)11;
iii. E1 and E2 have the same − invariant if and only if E1 w E2 over F̄p (i.e.

exists an isomorfism from E1 to E2)12.

Definition 5. Let E1 and E2 be elliptic curves over Fp and φ : E1 → E2 over
Fp. The degree of a non-zero isogeny is the degree of the morphism. The degree
of the zero isogeny is 0. If there is an isogeny of degree ` between elliptic curves
E1 and E2 then, they are `-isogenous.

Definition 6. Let E1 and E2 be elliptic curves over Fp and φ : E1 → E2 an
isogeny. Then, the kernel of an isogeny is ker(φ) = {P ∈ E1(F̄p) : φ(P) = OE2

}.

Remark 2. We can denote E2 = E1/ker(φ).

Definition 7. A non-zero isogeny separable φ : E1 → E2 over Fp of ` - degree
has #ker(φ) = `.

Definition 8. Let φ : E1 → E2 and φ̂ : E2 → E3 be two isogenies with `-degree
and ˆ̀-degree, respectively. Then, their composition is an isogeny φ̂(φ) : E1 → E3

with (` · ˆ̀)-degree.

Proposition 1. Let E1 be an elliptic curve over Fp and G a finite subgroup of
E1(F̄p) that is defined over Fp. Then, there is an unique elliptic curve EG and
a separable isogeny φ : E1 → EG = E1/G such that ker(φ) = G.

Proof. See Theorem 25.1.6 and Corollary 25.1.7 from [11]. ut

B SIDH key exchange

For a better understanding, see the first diagram in figure 3. The sender
and the receiver choose randomly two secret integers rA ← Z/`eAA Z and rB ←
Z/`eBB Z, respectively. Thus, the kernel 〈PA + rAQA〉 from sender has order `eAA
and its secret key is computed as the degree `eAA isogeny φA : E0 → EA, and its
pkA is the isogenous curve EA together with images GA ← φA(PB) and HA ←
φA(QB).

Similarly, the kernel 〈PB + rBQB〉 from receiver has order `eBB and its secret
key is computed as the degree `eBB isogeny φB : E0 → EB , and its pkB is the
isogenous curve EB together with images GB ← φB(PA) and HB ← φB(QA).
In short, there is a public key exchange, say pkA and pkB .

To compute the shared secret k, sender uses its secret integers and receiver’s
public key to compute the degree `A isogeny φ

′

A : EB → EBA whose kernel is
the point φB(PA) + rAφB(QA) = φB(PA + rAQA). In the same way, receiver
uses its secret integers and sender’s public key to compute the degree `B isogeny
φ
′

B : EA → EAB whose kernel is the point φA(PB) + rBφA(QB) = φA(PB +

11 See [23].
12 See Theorem 9.3.6 from [11].

17

rBQB). It happens that EBA and EAB are isomorphic. Hence, both sender and
receiver can compute a shared secret k, that is, there is the common -invariant
(EBA) = (EAB).

Therefore, H((EBA)) = H((EAB)) = k. After that, the sender computes
c← Ek(m) and sends it to the receiver that computes m← Dk(c). More details,
see [10]

Supersingular Isogeny Diffie-Hellman (SIDH)

Sender Receiver

Input: m ∈M Input: none

Output: none Output: m

rA ← Z/`eAA Z rB ← Z/`eBB Z
φA : E0 → EA φB : E0 → EB

EA ← E0/〈PA + rAQA〉 EB ← E0/〈PB + rBQB〉
GA ← φA(PB);HA ← φA(QB) GB ← φB(PA);HB ← φB(QA)

pkA ← (EA, GA, HA) pkB ← (EB , GB , HB)

pkA φ
′
B : EA → EAB

φ
′
A : EB → EBA

pkB

EBA ← EB/〈GB + rAHB〉 EAB ← EA/〈GA + rBHA〉
k = H((EBA)) k = H((EAB))

c← Ek(m)

m = Dk(c)

Figure 3. SIDH protocol.

C Oblivious Transfer protocol

Oblivious Transfer (OT) is a protocol in which a sender transfers one of many
pieces of information to a receiver, but remains oblivious as to what piece has
been transferred. The original notion of OT was first proposed by Michael Rabin
in 1981 [18] in which a sender sends an encrypted message to a receiver and this
one could decrypt such message with probability 1/2. After this, [8] presented
a general form of OT, named 1-out-of-2 OT,

(
2
1

)
- OT for short, i.e, where a

sender sends two encrypted messages to a receiver being able to decrypt only
one of them.

Many authors have generalized this to
(
n
1

)
- OT where the receiver chooses

one message out of n and
(
k
n

)
-OT in which the receiver chooses a subset of size

k from among n messages. In this work, we will be focused only on
(
2
1

)
- OT.

C.1 Protocol
(2
1

)
- OT Chou-Orlandi

In this appendix, we see the simplified scheme of the random OT proposed
in [4].

18

Premises

1. The scheme from [4] works in a primitive additive group (G, B,Fp,+) of
prime order p, generated by base point B;

2. Let s be a safety parameter and ∈ {0, 1}. Thus, the hash function H :
(G×G)×G→ {0, 1}s is used to generate a cryptographic key k for use in
a symmetric cipher defined by the functions E (encryption) and D (decryp-
tion), i.e, c0 = E(k0,m0) and c1 = E(k1,m1).

3. Abstract view of information exchange from protocol
(
2
1

)
- OT Chou-Orlandi.

Sender S Receiver

Sender R Receiver

Sender (c0, c1) Receiver

Sender and Receiver

Setup - Sender

1. Sender secretly chooses a value y ∈ Fp;
2. Sender computes:

S = yB (1)

T = yS; (2)

3. Sender sends S to Receiver which refuses if S /∈ G.

Setup - Receiver

1. Receiver secretly chooses a value x ∈ Fp;
2. Receiver computes:

R = b.S + x.B (3), where b ∈ {0, 1} is chosen by Receiver;

3. Receiver sends R to Sender which refuses if R /∈ G.

Generation of cryptographic keys k, ∈ {0, 1}.

1. Sender computes k = H(S,R)(yR− T); (4)
2. Receiver computes kb = H(S,R)(bS + xB). (5)

19

Encryption and Decryption

1. Sender encrypts and sends c = (c0, c1) to Receiver. Recalling c0 = E(k0,M0)
and c1 = E(k1,M1);

2. Receiver decrypts and gets Mb = D(kb, c), ∈ {0, 1}.

Remark 3. It is verified that a key k, j ∈ {0, 1}, is computed by H(S,R)[xyB +
(b−j)T]. Hence, at the end of the protocol if both parts are honest then we have
that kb = k. In other words, if = 0 then c = c0 = 0 and k0 = kb = H(S,R)(xyB).
Otherwise, if = 1 then c = c1 = 1 and k1 = kb = H(S,R)(xyB).

k = yR− T ;

= y(bS + xB)− T ; fromequation (3)

= byS + xyB − T ;

= bT + xyB − T ; fromequations (1) and (2)

= xyB + (b−)T.

Therefore, we can conclude that if the Receiver chooses b /∈ , he will not
share the secret (cryptographic key) with the Sender.

D Linearly independent points

In this appendix, we present definitions for the understanding of the process
that determines the choice of linearly independent points PA, QA, PB and QB in
the proposed protocol.

Definition 9 (Frobenius). Let E(Fq) be an ellipic curve, and let E(Fqk) be its
Fqk -rational extension. The Frobenius map is the function Φ : E(Fqk)→ E(Fqk)
defined by Φ(x, y) = (xq, yq) for any (x, y) ∈ E(Fqk). Φi denotes its i-th self-
composition, i.e. for any P ∈ E(Fqk), Φi(P) := P for i = 0, and Φi(P) =
Φ(Φi−1(P)) for i > 0.

Definition 10 (Trace). Let E(Fq) be an ellipic curve, and let E(Fqk) be its
Fqk -rational extension. The trace map is the function tr : E(Fqk) → E(Fqk)

defined by tr(P) = (1/k)
∑k−1
i=0 Φ

i(P) where 1/k denotes the inverse of k mod the
order of E(Fqk). In particular, k = 2 for a supersingular curve in characteristic
p > 3, and tr(P) = (1/2)(P + Φ(P)).

Hence, the trace map is important in that its eigenspaces, if nontrivial, form
two linearly independent groups that can be used to sample points PA, QA, PB ,
QB efficiently. Moreover, the trace definition assumes that gcd(k,#E(Fqk)) = 1,
which may not be the case, especially in the important setting where `A = 2.
Thus, for this scenario we also define the quasi− trace map:

Definition 11 (Quasi-trace). Let E(Fq) be an ellipic curve, and let E(Fqk)
be its Fqk -rational extension. The quasi-trace map is the function tr : E(Fqk)→
E(Fqk) defined by tr(P) =

∑k−1
i=0 Φ

i(P). In particular, k = 2 for a supersingular
curve in characteristic p > 3, and tr(P) = P + Φ(P).

20

E Possibility of symmetric pairings in the SIOT

Under certain circumstances, it is possible to define a symmetric pairing
ê : EB [`eAA]→ Fp2 . We now analyze the condition under which this can happen.
In what follows, recall that a distortion map is a linear transformation that maps
a curve point to a linearly independent point.

The embedding degree for EB [`eAA] is only 1, not 2 as it is for E0, because
EB is defined over Fq with q := p2, and since p = (`eAA `eBB f)2 − 1, it follows
that #EB [`eAA] = (`eAA)2 | q − 1. Hence a distortion map ψ must map a point
P ∈ E[`eAA](Fq) to a point Q ∈ E[`eAA](Fq) that is linearly independent from P ,
in which case ψ linearly maps a basis (GB , HB) to another basis (G′B , H

′
B).

In particular, all coefficients of ψ in basis (GB , HB) must be integers mod `eAA .
For such a map to be a distortion map, it must have no eigenvectors (otherwise it
would fail to map those points to linearly independent points), so we can simply
require the characteristic polynomial to have no roots mod `eAA .

In that case, the map ψ(uGB + vHB) := vGB − uHB could be a suitable
distortion map. Its characteristic polynomial is λ2 + 1 which has no roots mod
`eAA for a careful choice of `A (e.g. `A = 3). Now define the modified pairing
ê(P,Q) := e(P,ψ(Q)) where e(·) is the Weil pairing. Then:

ê(aGB + bHB , cGB + dHB) = e(aGB + bHB , dGB − cHB)

= e(aGB ,−cHB) · e(bHB , dGB)

= e(GB , HB)−ac−bd,

ê(cGB + dHB , aGB + bHB) = e(cGB + dHB , bGB − aHB)

= e(cGB ,−aHB) · e(dHB , bGB)

= e(GB , HB)−ac−bd,

so this modified pairing is symmetric.
It remains to determine if it is isogeny-equivariant. If it is, a further constraint

exists for the coefficients of U and V , namely:

ê(GB + λU,HB + λV) = ê(GB , HB)(1+λα)(1+λδ)

· ê(HB , GB)λβλγ

= ê(GB , HB)(1+λα)(1+λδ)+λ
2βγ

= e(GB , HB),

so we also need (1 + λα)(1 + λδ) + λ2βγ = 1 (mod `eAA). ut

E.1 Taking symmetric pairings into account

Coupling the above constraints γ = −α2/β (mod `eAA) and δ = −α (mod `eAA)
with the additional condition (1 + λα)(1 + λδ) + λ2βγ = 1 (mod `eAA), we have
(1 + λα)(1 − λα) − λ2βα2/β = 1 − 2λ2α2 = 1 (mod `eAA) for any λ, or simply
2α2 = 0 (mod `eAA), which has the solution α = α0 · 2beA/2c for `A = 2 and any

0 6 α0 < 2deA/2e, or α = α0 · `deA/2eA for `A 6= 2 and any 0 6 α0 < `
beA/2c
A . ut

21

F Validating the process of sharing points (U, V)

Now, we are going to verify the sharing of points U and V between Bob and
Alice. This is important from the point of view of the correct functionality of the(
2
1

)
-SIOT protocol with regard to the oblivious characteristic, i.e, in practical

terms, points U and V provide the sender to generate two secret keys. Thus, Bob
defines points U and V as mentioned in section 2.3. Recall that these points can
be written as a linear combination. After that, he sends to Alice one of the pairs
(GB , HB) or (GB − U,HB − V). Obviously, Alice doesn’t distinguish13 which
pair of points she received. Thus, upon receipt of ĜB and ĤB points from Bob’s
public key, say p̂kB = (EB , ĜB , ĤB), Alice defines Û and V̂ yielding Û = U and
V̂ = V . In other words, Alice and Bob have the assurance that points U and V
are being correctly shared between the parties.

Proof.

1. In a first assumption, Alice receives points ĜB = (GB − U) and ĤB =
(HB −V) from Bob. Evidently, she has not any knowledge about points GB
and HB . Thus, she performs the algebraic development below.

Û = α · ĜB + β · ĤB ;

Û = α · (GB − U) + β · (HB − V);

Û = α ·GB − α · U + β ·HB − β · V ;

Û = α ·GB + β ·HB︸ ︷︷ ︸
U

−(α · U + β · V);

Û = U − (α · U + β · V);

Û = U − [α · U + β · (−α
β
· U)]︸ ︷︷ ︸

0

;

Û = U.

If Û = U and V = −(α/β)U , then V̂ = V . ut

2. In this second assumption, Alice receives ĜB = GB e ĤB = HB points from
Bob. Similarly,

13 See Subsection 3.4, Lemma 1.

22

Û = α · ĜB + β · ĤB ;

Û = α ·GB + β ·HB ;

Û = α ·GB + β ·HB︸ ︷︷ ︸
U

;

Û = U.

Evidently, in this case, If Û = U then, V̂ = V ut
.

23

	Supersingular Isogeny Oblivious Transfer
	Introduction
	The -1 ()21 - SIOT protocol
	Notations
	Public parameters
	Premises
	Protocol
	Generation of key pairs
	Generation of secret keys
	Encryption and Decryption

	Security analysis of the -1 ()21-SIOT protocol
	Preliminaries
	Computational problems of isogenies between supersingular elliptic curves
	Notations for security analysis
	Some requirements for security analysis
	Correctness
	Privacy

	Algebraic security analysis of the -1 ()21-SIOT protocol
	Preventing a Weil pairing-based distinguisher from a possible Alice's dishonesty
	Possible decryptions from a possible dishonest Bob
	Wrapping up the conditions

	Conclusion of the security of the -1 ()21-SIOT protocol
	Implementation of the -1 ()21-SIOT protocol
	Performance estimate between some OT protocols
	Conclusion
	Isogenies
	SIDH key exchange
	Oblivious Transfer protocol
	Protocol -1 ()21- OT Chou-Orlandi

	 Linearly independent points
	Possibility of symmetric pairings in the SIOT
	Taking symmetric pairings into account

	Validating the process of sharing points (U, V)

