
RapidChain: Scaling Blockchain via Full Sharding

Mahdi Zamani
Visa Research
Palo Alto, CA

Mahnush Movahedi†
D�nity

Palo Alto, CA

Mariana Raykova
Yale University
New Haven, CT

Abstract

A major approach to overcoming the performance and scalability limitations of current blockchain protocols is
to use sharding which is to split the overheads of processing transactions among multiple, smaller groups of nodes.
These groups work in parallel to maximize performance while requiring signi�cantly smaller communication, com-
putation, and storage per node, allowing the system to scale to large networks. However, existing sharding-based
blockchain protocols still require a linear amount of communication (in the number of participants) per transaction,
and hence, attain only partially the potential bene�ts of sharding. We show that this introduces a major bottleneck
to the throughput and latency of these protocols. Aside from the limited scalability, these protocols achieve weak
security guarantees due to either a small fault resiliency (e.g., 1/8 and 1/4) or high failure probability, or they rely
on strong assumptions (e.g., trusted setup) that limit their applicability to mainstream payment systems.

We propose RapidChain, the �rst sharding-based public blockchain protocol that is resilient to Byzantine faults
from up to a 1/3 fraction of its participants, and achieves complete sharding of the communication, computation, and
storage overhead of processing transactions without assuming any trusted setup. RapidChain employs an optimal
intra-committee consensus algorithm that can achieve very high throughputs via block pipelining, a novel gossiping
protocol for large blocks, and a provably-secure recon�guration mechanism to ensure robustness. Using an e�cient
cross-shard transaction veri�cation technique, our protocol avoids gossiping transactions to the entire network. Our
empirical evaluations suggest that RapidChain can process (and con�rm) more than 7,300 tx/sec with an expected
con�rmation latency of roughly 8.7 seconds in a network of 4,000 nodes with an overwhelming time-to-failure of
more than 4,500 years.

1 Introduction
Our global �nancial system is highly centralized making it resistant to change, vulnerable to failures and attacks, and
inaccessible to billions of people in need of basic �nancial tools [63, 28]. On the other hand, decentralization poses
new challenges of ensuring a consistent view among a group of mutually-distrusting participants. The permissionless
mode of operation, which allows open membership and entails constant churn (i.e., join/leave) of the participants
of the decentralized system, further complicates this task. Furthermore, any agile �nancial system, including a
decentralized one, should be able to adequately serve realistic market loads. This implies that it should scale easily
to a large number of participants, and it should handle a high throughput of transactions with relatively low delays
in making their outputs available. Achieving these properties together should also not require signi�cant resources
from each of the participants since otherwise, it runs contrary to the idea of constructing a tool easily accessible to
anyone.

Existing solutions currently either fail to solve the above challenges or make security/performance trade-o�s that,
unfortunately, make them no longer truly-decentralized solutions. In particular, traditional Byzantine consensus
mechanisms such as [44, 20, 17] can only work in a closed membership setting, where the set of participants is �xed
and their identities are known to everyone via a trusted third party. If used in an open setting, these protocols can
be easily compromised using Sybil attacks [25], where the adversary repeatedly rejoins malicious parties with fresh
identities to gain signi�cant in�uence on the protocol outcome. Moreover, most traditional schemes assume a static
adversary who can select the set of corrupt parties only at the start of the protocol. Existing protocols that are

∗Email: mzamani@visa.com | mahenush@d�nity.org | mariana.raykova@yale.edu
†This work was done in part while this author was a�liated with Yale University.

1

secure against an adaptive adversary such as [12, 18, 38] either scale poorly with the number of participants or are
ine�cient.

Most cryptocurrencies such as Bitcoin [54] and Ethereum [16] maintain a distributed transaction ledger called
the blockchain over a large peer-to-peer (P2P) network, where every node maintains an updated, full copy of the
entire ledger via a Byzantine consensus protocol, dubbed as the Nakamoto consensus. Unlike traditional consensus
mechanisms, the Nakamoto consensus allows new participants to join the protocol using a proof-of-work (PoW)
process [27], where a node demonstrates that it has done a certain amount of work by presenting a solution to a
computational puzzle. The use of PoW not only allows the consensus protocol to impede Sybil attacks by limiting
the rate of malicious participants joining the system, but also provides a lottery mechanism through which a random
leader is elected in every round to initiate the consensus process.

Unfortunately, it is now well known that Bitcoin’s PoW-based consensus comes with serious drawbacks such
as low transaction throughput, high latency, poor energy e�ciency [46], and mining-pool centralization [34, 1].
Moreover, the protocol cannot scale out its transaction processing capacity with the number of participants joining
the protocol [47, 42]. Another major scalability issue of Bitcoin is that every party needs to initially download the
entire blockchain from the network to independently verify all transactions. The size of the blockchain is currently
about 150 GB and has nearly doubled in the past year [2]. One can expect a larger growth in the size of blockchains
that are updated via higher-throughput consensus protocols than that of Bitcoin.

Recently, several protocols have been proposed to mitigate the performance and scalability issues of Bitcoin’s
blockchain [23, 29, 41, 52, 56, 47, 32, 4, 42] using hybrid architectures that combine the open-membership nature of
Bitcoin with traditional Byzantine fault tolerance [57, 19]. While most of these protocols can reportedly improve
the throughput and latency of Bitcoin, all of them still require the often-overlooked assumption of a trusted setup
to generate an unpredictable initial common randomness in the form of a common genesis block to bootstrap the
blockchain. Similar to Bitcoin, these protocols essentially describe how one can ensure agreement on new blocks
given an initial agreement on some genesis block. Such an assumption plays a crucial role in achieving consistency
among nodes in these protocols, and if compromised, can easily a�ect the security of the entire consensus protocol,
casting a major contradiction to the decentralized nature of cryptocurrencies.

In addition to being partially decentralized, most of these solutions have either large per-node storage require-
ments [23, 29, 41, 52, 56, 47, 4], low fault resiliency [47, 42], incomplete speci�cations [23, 41], or other security
issues [41, 47, 42] (see Section 2.2 for more details). Furthermore, all previous protocols require every participant in
the consensus protocol to broadcast a message to the entire network to either submit their consensus votes [29, 52],
verify transactions [41, 47, 42], and/or update every node’s local blockchain replica [47, 56, 32, 4].

While the large overhead of such a broadcast for every participant is usually reduced from a linear number of
messages (with respect to the number of participants) to nearly a constant using a peer-to-peer gossiping proto-
col [36], the relatively high latency of such a “gossip-to-all” invocation (e.g., 12.6 seconds per block on average [24])
increases the overall latency of the consensus protocol signi�cantly (e.g., the gossip-to-all latency roughly quadru-
ples the consensus time in [42]). Moreover, due to the very high transaction throughput of most scalable blockchain
protocols (e.g., about 3,500 tx/sec in [42]), the bandwidth usage of each node becomes very large (e.g., at least 45Mbps
in [42] – see Section 5 for more details), if all transactions are gossiped to the entire network.

1.1 Our Contributions
We propose RapidChain, a Byzantine-resilient public blockchain protocol that improves upon the scalability and
security limitations of previous work in several ways. At a high level, RapidChain partitions the set of nodes into
multiple smaller groups of nodes called committees that operate in parallel on disjoint blocks of transactions and
maintain disjoint ledgers. Such a partitioning of operations and/or data among multiple groups of nodes is often
referred to as sharding [21] and has been recently studied in the context of blockchain protocols [47, 42]. By enabling
parallelization of the consensus work and storage, sharding-based consensus can scale the throughput of the system
proportional to the number of committees, unlike the basic Nakamoto consensus.

Let n denote the number of participants in the protocol at any given time, and m � n denote the size of each
committee. RapidChain creates k = n/m committees each of size m = c logn nodes, where c is a constant depend-
ing only on the security parameter (in practice, c is roughly 20). In summary, RapidChain provides the following
novelties:

• Sublinear Communication. RapidChain is the �rst sharding-based blockchain protocol that requires only a
sublinear (i.e., o(n)) number of bits exchanged in the network per transaction. In contrast, all previous work

2

Protocol # Nodes Resiliency Complexity1 Throughput Latency Storage2 Shard Size Time to Fail

Elastico [47] n= 1,600 t < n/4 Ω(m2/b+n) 40 tx/sec 800 sec 1x m= 100 1 hour
OmniLedger [42] n= 1,800 t < n/4 Ω(m2/b+n) 500 tx/sec 14 sec 1/3x m= 600 230 years
OmniLedger [42] n= 1,800 t < n/4 Ω(m2/b+n) 3,500 tx/sec 63 sec 1/3x m= 600 230 years
RapidChain n= 1,800 t < n/3 O (m2/b+m logn) 4,220 tx/sec 8.5 sec 1/9x m= 200 1,950 years
RapidChain n= 4,000 t < n/3 O (m2/b+m logn) 7,380 tx/sec 8.7 sec 1/16x m= 250 4,580 years

Table 1: Comparison of RapidChain with state-of-the-art sharding blockchain protocols (b is the block size)

incur an Ω(n) communication overhead per transaction (see Table 1).

• Higher Resiliency. RapidChain is the �rst sharding-based blockchain protocol that can tolerate corruptions
from less than a 1/3 fraction of its nodes (rather than 1/4) while exceeding the throughput and latency of previous
work (e.f., [47, 42]).

• Rapid Committee Consensus. Building on [5, 60], we reduce the communication overhead and latency of P2P
consensus on large blocks gossiped in each committee by roughly 3-10 times compared to previous solutions [47,
32, 4, 42].

• Secure Recon�guration. RapidChain builds on the Cuckoo rule [8, 62] to provably protect against a slowly-
adaptive Byzantine adversary. This is an important property missing in previous sharding-based protocols [47,
42]. RapidChain also allows new nodes to join the protocol in a seamless way without any interruptions or
delays in the protocol execution.

• Fast Cross-Shard Veri�cation. We introduce a novel technique for partitioning the blockchain such that
each node is required to store only a 1/k fraction of the entire blockchain. To verify cross-shard transactions,
RapidChain’s committees discover each other via an e�cient routing mechanism inspired by Kademlia [48] that
incurs only a logarithmic (in number of committees) latency and storage. In contrast, the committee discovery
in existing solutions [47, 42] requires several “gossip-to-all” invocations.

• Decentralized Bootstrapping. RapidChain operates in the permissionless setting that allows open member-
ship, but unlike most previous work [29, 41, 56, 47, 42, 4], does not assume the existence of an initial common
randomness, usually in the form of a common genesis block. While common solutions for generating such a
block require exchanging Ω(n2) messages, RapidChain can bootstrap itself with onlyO (n

√
n) messages without

assuming any initial randomness.

We also implement a prototype of RapidChain to evaluate its performance and compare it with the state-of-the-
art sharding-based protocols. Table 1 shows a high-level comparison between the results. In this table, we assume
512 B/tx, one-day long epochs, 100 ms network latency for all links, and 20 Mbps bandwidth for all nodes in all three
protocols. The choices of 1,600 and 1,800 nodes for [47] and [42] respectively is based on the maximum network
sizes reported in these work. Unfortunately, the time-to-failure of the protocol of [47] decreases rapidly for larger
network sizes. For [42], we expect larger network sizes will, at best, only slightly increase the throughput due to the
large committee sizes (i.e.,m) required.

The latency numbers reported in Table 1 refer to block (or transaction) con�rmation times which is the delay
from the time that a node proposes a block to the network until it can be con�rmed by all honest nodes as a valid
transaction. We refer the reader to Section 2.2 and Section 5 for details of our evaluation and comparison with
previous work.

1.2 Overview of RapidChain

1Total message complexity of consensus per transaction (see Section 6.6).
2Reduction in the amount of storage required for each participant after the same number of transactions are processed (and con�rmed) by

the network.

3

RapidChain proceeds in �xed time periods called epochs. In the �rst epoch, a one-time bootstrapping protocol (de-
scribed in Section 4.6) is executed that allows the participants to agree on a committee of m = O (logn) nodes in a
constant number of rounds. Assuming t < n/3 nodes are controlled by a slowly-adaptive Byzantine adversary, the
committee-election protocol samples a committee from the set of all nodes in a way that the fraction of corrupt
nodes in the sampled set is bounded by 1/2 with high probability. This committee, which we refer to as the reference
committee and denote it by CR , is responsible for driving periodic recon�guration events between epochs. In the
following, we describe an overview of the RapidChain protocol in more details.

Epoch Randomness. At the end of every epoch i , CR generates a fresh randomness, ri+1, referred to as the epoch
randomness for epoch i + 1. This randomness is used by the protocol to (1) sample a set of 1/2-resilient committees,
referred to as the sharding committees, at the end of the �rst epoch, (2) allow every participating node to obtain a
fresh identity in every epoch, and (3) recon�gure the existing committees to prevent adversarial takeover after nodes
join and leave the system at the beginning of every epoch or node corruptions happening at the end of every epoch.

Peer Discovery and Inter-Committee Routing. The nodes belonging to the same sharding committee discover
each other via a peer-discovery algorithm. Each sharding committee is responsible for maintaining a disjoint trans-
action ledger known as a shard, which is stored as a blockchain by every member of the committee. Each transaction
tx is submitted by a user of the system to a small number of arbitrary RapidChain nodes who route tx, via an
inter-committee routing protocol, to a committee responsible for storing tx. We refer to this committee as the output
committee for tx and denote it by Cout. This committee is selected deterministically by hashing the ID of tx to a
number corresponding to Cout. Inspired by Kademlia [48], the verifying committee in RapidChain communicates
with only a logarithmic number of other committees to discover the ones that store the related transactions.

Cross-Shard Veri�cation. The members ofCout batch several transactions into a large block (about 2 MB), and then,
append it to their own ledger. Before the block can be appended, the committee has to verify the validity of every
transaction in the block. In Bitcoin, such a veri�cation usually depends on other (input) transactions that record
some previously-unspent money being spent by the new transaction. Since transactions are stored into disjoint
ledgers, each stored by a di�erent committee, the members of Cout need to communicate with the corresponding
input committees to ensure the input transactions exist in their shards.

Intra-Committee Consensus. Once all of the transactions in the block are veri�ed, the members ofCout participate
in an intra-committee consensus protocol to append the block to their shard. The consensus protocol proceeds as
follows. First, the members of Cout choose a local leader using the current epoch randomness. Second, the leader
sends the block to all the members of Cout using a fast gossiping protocol that we build based on the information
dispersal algorithm (IDA) of Alon et al. [6, 5] for large blocks.

Third, to ensure the members ofCout agree on the same block, they participate in a Byzantine consensus protocol
that we construct based on the synchronous protocol of Ren et al. [60]. This protocol allows RapidChain to obtain an
intra-committee consensus with the optimal resiliency of 1/2, and thus, achieve a total resiliency of 1/3 with small
committees. While the protocol of Ren et al. requires exchanging O (m2`) bits to broadcast a message of length ` to
m parties, our intra-committee consensus protocol requires O (m2h logm +m`) bits, where h is the length of a hash
that depends only on the security parameter.

Protocol Recon�guration. A consensus decision in RapidChain is made on either a block of transactions or on a
recon�guration block. A recon�guration block is generated periodically at the end of a recon�guration phase that is
executed at the end of every epoch by the members of CR to establish two pieces of information: (1) a fresh epoch
randomness, and (2) a new list of participants and their committee memberships. The recon�guration phase allows
RapidChain to re-organize its committees in response to a slowly-adaptive adversary [56] that can commit join-leave
attacks [25] or corrupt nodes at the end of every epoch. Such an adversary is allowed to corrupt honest nodes (and
hence, take over committees) only at the end of epochs, i.e., the set of committees is �xed during each epoch.

Since re-electing all committees incurs a large communication overhead on the network, RapidChain performs
only a small recon�guration protocol built on the Cuckoo rule [8, 62] at the end of each epoch. Based on this strategy,
only a constant number of nodes are moved between committees while provably guaranteeing security as long as at
most a constant number of nodes (with respect to n) join/leave or are corrupted in each epoch.

During the recon�guration protocol happening at the end of the i-th epoch, CR generates a fresh randomness,
ri+1, for the next epoch and sends ri+1 to all committees. The fresh randomness not only allows the protocol to move
a certain number of nodes between committees in an unpredictable manner, thus hindering malicious committee

4

takeovers, but also allows creation of fresh computational puzzles for nodes who want to participate in the next
epoch (i.e., epoch i + 1).

Any node that wishes to participate in epoch i + 1 (including a node that has already participated in previous
epochs) has to establish an identity (i.e., a public key) by solving a fresh PoW puzzle that is randomized with ri+1.
The node has to submit a valid PoW solution to CR before a “cuto� time” which is roughly 10 minutes after ri+1 is
revealed by CR during the recon�guration phase. Once the cuto� time has passed, the members of CR verify each
solution and, if accepted, add the corresponding node’s identity to the list of valid participants for epoch i + 1. Next,
CR members run the intra-committee consensus protocol to agree on and record the identity list within CR ’s ledger
in a recon�guration block that also includes ri+1 and the new committee memberships. This block is sent to all
committees using the inter-committee routing protocol (see Protocol 1).

Further Remarks. Note that nodes are allowed to reuse their identities (i.e., public keys) across epochs as long as
each of them solves a fresh puzzle per epoch for a PoW that is tied to its identity and the latest epoch randomness.
Also, note that the churn onCR is handled in exactly the same way as it is handled in other committees: ri+1 generated
by the CR members in epoch i determines the new set of CR members for epoch i + 1. Finally, the di�culty of PoW
puzzles used for establishing identities is �xed for all nodes throughout the protocol and is chosen in such a way
that each node can only solve one puzzle during each 10-minute period, assuming without loss of generality, that
each node has exactly one unit of computational power (see Section 3 for more details).

Paper Organization. In Section 2, we review related work and present a background on previous work that Rapid-
Chain builds on. In Section 3, we state our network and threat models and de�ne the general problem we aim to
solve. We present our protocol design in Section 4. We formally analyze the security and performance of RapidChain
in Section 6. Finally, we describe our implementation and evaluation results in Section 5 and conclude in Section 7.

2 Background and Related Work
We review two categories of blockchain consensus protocols: committee-based and sharding-based protocols. We
refer the reader to [9] for a complete survey of previous blockchain consensus protocols. Next, we review recent
progress on synchronous Byzantine consensus and information dispersal algorithms that RapidChain builds on.

2.1 Committee-Based Consensus
The notion of committees in the context of consensus protocols was �rst introduced by Bracha [13] to reduce the
round complexity of Byzantine agreement, which was later improved in, e.g., [55, 61]. The idea of using commit-
tees for scaling the communication and computation overhead of Byzantine agreement dates back to the work of
King et al. [39] and their follow-up work [38], which allow Byzantine agreement in fully-connected networks with
only a sublinear per-node overhead, w.r.t. the number of participants. Unfortunately, both work provide only the-
oretical results and cannot be directly used in the public blockchain setting (i.e., an open-membership peer-to-peer
network).

Decker et al. propose the �rst committee-based consensus protocol, called PeerCensus, in the public blockchain
model. They propose to use PBFT [20] inside a committee to approve transactions. Unfortunately, PeerCensus
does not clearly mention how a committee is formed and maintained to ensure honest majority in the committee
throughout the protocol. Hybrid Consensus [56] proposes to periodically select a committee that runs a Byzantine
consensus protocol assuming a slowly-adaptive adversary that can only corrupt honest nodes in certain periods of
time. ByzCoin [41] proposes to use a multi-signature protocol inside a committee to improve transaction through-
put. Unfortunately, ByzCoin’s speci�cation is incomplete and the protocol is known to be vulnerable to Byzantine
faults [56, 4, 9].

Algorand [32] proposes a committee-based consensus protocol called BA? that uses a veri�able random function
(VRF) [51] to randomly select committee members, weighted by their account balances (i.e., stakes), in a private
and non-interactive way. Therefore, the adversary does not know which node to target until it participates in the
BA? protocol with other committee members. Algorand replaces committee members with new members in every
step of BA? to avoid targeted attacks on the committee members by a fully-adaptive adversary. Unfortunately, the
randomness used in each VRF invocation (i.e., the VRF seed) can be biased by the adversary; the protocol proposes
a look-back mechanism to ensure strong synchrony and hence unbiased seeds, which unfortunately, results in a

5

problematic situation known as the “nothing at stake” problem [32]. To solve the biased coin problem, D�nity[33]
propose a new VRF protocol based on non-interactive threshold signature scheme with uniqueness property.

Assuming a trusted genesis block, Solida [4] elects nodes onto a committee using their solutions to PoWs puzzles
that are revealed in every round via 2t+1 committee member signatures to avoid pre-computation (and withholding)
attacks. To �ll every slot in the ledger, a recon�gurable Byzantine consensus protocol is used, where a consensus
decision is made on either a batch of transactions or a recon�guration event. The latter records membership change
in the committee and allows replacing at most one member in every event by ranking candidates by their PoW
solutions. The protocol allows the winning candidate to lead the recon�guration consensus itself avoiding corrupt
internal leaders to intentionally delay the recon�guration events in order to buy time for other corrupt nodes in the
PoW process.

2.2 Sharding-Based Consensus
Unlike Bitcoin, a sharding-based blockchain protocol can increase its transaction processing power with the number
of participants joining the network by allowing multiple committees of nodes process incoming transactions in par-
allel. Thus, the total number of transaction processed in each consensus round by the entire protocol is multiplied by
the number of committees. While there are multiple exciting, parallel work on sharding-based blockchain protocols
such as [64, 65], we only study results that focus on handling sharding in the Bitcoin transaction model.

2.2.1 RSCoin

Danezis and Meiklejohn [22] propose RSCoin, a sharding-based technique to make centrally-banked cryptocurren-
cies scalable. While RSCoin describes an interesting approach to combine a centralized monetary supply with a
distributed network to introduce transparency and pseudonymity to the traditional banking system, its blockchain
protocol is not decentralized as it relies on a trusted source of randomness for sharding of validator nodes (called
mintettes) and auditing of transactions. Moreover, RSCoin relies on a two-phase commit protocol executed within
each shard which, unfortunately, is not Byzantine fault tolerant and can result in double-spending attacks by a
colluding adversary.

2.2.2 Elastico

Luu et al. [47] propose Elastico, the �rst sharding-based consensus protocol for public blockchains. In every con-
sensus epoch, each participant solves a PoW puzzle based on an epoch randomness obtained from the last state of
the blockchain. The PoW’s least-signi�cant bits are used to determine the committees which coordinate with each
other to process transactions.

While Elastico can improve the throughput and latency of Bitcoin by several orders of magnitude, it still has
several drawbacks: (1) Elastico requires all parties to re-establish their identities (i.e., solve PoWs) and re-build all
committees in “every” epoch. Aside from a relatively large communication overhead, this incurs a signi�cant latency
that scales linearly with the network size as the protocol requires more time to solve enough PoWs to �ll up all
committees. (2) In practice, Elastico requires a small committee size (about 100 parties) to limit the overhead of
running PBFT in each committee. Unfortunately, this increases the failure probability of the protocol signi�cantly
and, using a simple analysis (see [42]), this probability can be as high as 0.97 after only six epochs, rendering the
protocol completely insecure in practice.

(3) The randomness used in each epoch of Elastico can be biased by an adversary, and hence, compromise the
committee selection process and even allow malicious nodes to precompute PoW puzzles. (4) Elastico requires a
trusted setup for generating an initial common randomness that is revealed to all parties at the same time. (5) While
Elastico allows each party to only verify a subset of transactions, it still has to broadcast all blocks to all parties and
requires every party to store the entire ledger. (6) Finally, Elastico can only tolerate up to a 1/4 fraction faulty parties
even with a high failure probability. Elastico requires this low resiliency bound to allow practical committee sizes.

2.2.3 OmniLedger

In a more recent work, Kokoris-Kogias et al. [42] propose OmniLedger, a sharding-based distributed ledger protocol
that attempts to �x some of the issues of Elastico. Assuming a slowly-adaptive adversary that can corrupt up to a

6

1/4 fraction of the nodes at the beginning of each epoch, the protocol runs a global recon�guration protocol at every
epoch (about once a day) to allow new participants to join the protocol.

The protocol generates identities and assigns participants to committees using a slow identity blockchain pro-
tocol that assumes synchronous channels. A fresh randomness is generated in each epoch using a bias-resistant
random generation protocol that relies on a veri�able random function (VRF) [51] for unpredictable leader election
in a way similar to the lottery algorithm of Algorand [50]. The consensus protocol assumes partially-synchronous
channels to achieve fast consensus using a variant of ByzCoin [41], where the epoch randomness is further used
to divide a committee into smaller groups. The ByzCoin’s design is known to have several security/performance
issues [56, 4], notably that it falls back to all-to-all communication in the Byzantine setting. Unfortunately, due to
incomplete (and changing) speci�cation of the new scheme, it is unclear how the new scheme used in OmniLedger
can address these issues.

Furthermore, there are several challenges that OmniLedger leaves unsolved: (1) Similar to Elastico, OmniLedger
can only tolerate t < n/4 corruptions. In fact, the protocol can only achieve low latency (less than 10 seconds)
when t < n/8. (2) OmniLedger’s consensus protocol requires O (n) per-node communication as each committee
has to gossip multiple messages to all n nodes for each block of transaction. (3) OmniLedger requires a trusted
setup to generate an initial unpredictable con�guration to “seed” the VRF in the �rst epoch. Trivial algorithms
for generating such a common seed require Ω(n2) bits of communication. (4) OmniLedger requires the user to
participate actively in cross-shard transactions which is often a strong assumption for typically light-weight users. (5)
Finally, OmniLedger seems vulnerable to denial-of-service (DoS) attacks by a malicious user who can lock arbitrary
transactions leveraging the atomic cross-shard protocol.

When t < n/4, OmniLedger can achieve a high throughput (i.e., more than 500 tx/sec) only when an optimistic
trust-but-verify approach is used to trade-o� between throughput and transaction con�rmation latency. In this
approach, a set of optimistic validators process transactions quickly providing provisional commitments that are later
veri�ed by a set of core validators. While such an approach seems useful for special scenarios such as micropayments
to quickly process low-stake small transactions, it can be considered as a high-risk approach in regular payments,
especially due to the lack of �nancial liability mechanisms in today’s decentralized systems. Nevertheless, any
blockchain protocol (including Bitcoin’s) has a transaction con�rmation latency that has to be considered in practice
to limit the transaction risk.

2.3 Synchronous Consensus
The widely-used Byzantine consensus protocol of Castro and Liskov [20], known as PBFT, can tolerate up to t < n/3
corrupt nodes in the authenticated setting (i.e., using digital signatures) with asynchronous communication channels.
While asynchronous Byzantine consensus requires t < n/3 even with digital signatures [15], synchronous consensus
can be solved with t < n/2 using digital signatures. Recently, Ren et al. [60] propose an expected constant-round
algorithm for Byzantine consensus in a synchronous, authenticated communication network, where up to t < n/2
nodes can be corrupt. While the best known previous result, due to Katz and Koo [37], requires 24 rounds of com-
munication in expectation, the protocol of Ren et al. requires only 8 rounds in expectation.

Assuming a random leader-election protocol exists, the protocol of Ren et al. runs in iterations with a new unique
leader in every iteration. If the leader is honest, then the consensus is guaranteed in that iteration. Otherwise, the
Byzantine leader can prevent progress but cannot violate safety, meaning that some honest nodes might not terminate
at the end of the iteration but all honest nodes who terminate in that iteration will output the same value, called
the safe value. If at least one node can show to the new leader that has decided on a safe value, then the new leader
proposes the same value in the next iteration. Otherwise, the new leader proposes a new value.

2.4 Information Dispersal Algorithms
Rabin [58] introduces the notion of information dispersal algorithms (IDA) that can split a message (or �le) into
multiple chunks in such a way that a subset of them will be su�cient to reconstruct the message. This is achieved
using erasure codes [11] as a particular case of error-correcting codes (ECC) allowing some of the chunks to be
missing but not modi�ed. Krawczyk [43] extends this to tolerate corrupted (i.e., altered) chunks by computing a
�ngerprint for each chunk and storing the vector of �ngerprints using ECC. Alon et al. [6, 5] describe a more-
e�cient IDA mechanism by computing a Merkle hash tree [49] over encoded chunks in order to verify whether each
of the received chunks is corrupted.

7

In RapidChain, we build on the IDA of Alon et al. [5] to perform e�cient gossips on large blocks within each
committee. Once an ECC-encoded message is dispersed in the network via IDA, honest nodes agree on the root
of the Merkle tree using the intra-committee consensus protocol to ensure consistency. Using the corresponding
authentication path in the Merkle tree sent by the sender, recipients can verify the integrity of all chunks and use a
decoding mechanism to recover the message (see Section 4.2 for more details).

3 Model and Problem De�nition

Network Model. Consider a peer-to-peer network with n nodes who establish identities (i.e., public/private keys)
through a Sybil-resistant identity generation mechanism such as that of [7], which requires every node to solve
a computationally-hard puzzle on their locally-generated identities (i.e., public keys) veri�ed by all other (honest)
nodes without the assumption of a trusted randomness beacon. Without loss of generality and similar to most
hybrid blockchain protocols [23, 56, 47, 42], we assume all participants in our consensus protocol have equivalent
computational resources.

We assume all messages sent in the network are authenticated with the sender’s private key. The messages
are propagated through a synchronous gossip protocol [36] that guarantees a message sent by an honest node will
be delivered to all honest nodes within a known �xed time, ∆, but the order of these messages is not necessarily
preserved. This is the standard synchronous model adopted by most public blockchain protocols [47, 32, 42, 4]. We
require synchronous communication only during our intra-committee consensus. In other parts of our protocol, we
assume partially-synchronous channels [20] between nodes with exponentially-increasing time-outs (similar to [42])
to minimize latency and achieve responsiveness.

Threat Model. We assume nodes may disconnect from the network during an epoch or between two epochs due
to any reason such as internal failure or network jitter. We also consider a probabilistic polynomial-time Byzantine
adversary who corrupts t < n/3 of the nodes at any time. The corrupt nodes not only may collude with each other
but also can deviate from the protocol in any arbitrary manner, e.g., by sending invalid or inconsistent messages, or
remaining silent. Similar to most committee-based protocols [23, 41, 56, 42, 4], we assume the adversary is slowly
adaptive, meaning that it is allowed to select the set of corrupt nodes at the beginning of the protocol and/or between
each epoch but cannot change this set within the epoch.

At the end of each epoch, the adversary is allowed to corrupt a constant (and small) number of uncorrupted nodes
while maintaining their identities. In addition, the adversary can run a join-leave attack [25, 8], where it rejoins a
constant (and small) number of corrupt nodes using fresh identities in order to compromise one or more committees.
However, at any moment, at least a 2/3 fraction of the computational resources belong to uncorrupted participants
that are online (i.e., respond within the network time bound). Finally, we do not rely on any public-key infrastructure
or any secure broadcast channel, but we assume the existence of a cryptographic hash function, which we model as
a random oracle for our security analysis.

Problem De�nition. We assume a set of transactions are sent to our protocol by a set of users that are external
to the protocol. Similar to Bitcoin [54], a transaction consists of a set of inputs and outputs that reference other
transactions, and a signature generated by their issuer to certify its validity. The set of transactions is divided into k
disjoint blocks. Let xi, j represent the j-th transaction in the i-th block. All nodes have access to an external function
д that, given any transaction, outputs 0 or 1 indicating whether the transaction is invalid or not respectively, e.g.,
the sum of all outputs of a transaction is equal to the sum of its inputs. The protocol Π outputs a set X containing k
disjoint subsets or shards Xi = {xi, j }, for every j ∈ {1..|Xi |} such that the following conditions hold:

• Agreement: For every i ∈ {1..k }, Ω(logn) honest nodes agree on Xi with a high probability of at least 1 − 2−λ ,
where λ is the security parameter.

• Validity: For every i ∈ {1..k } and j ∈ {1..|Xi |}, д(xi, j) = 1.

• Scalability: k grows linearly with n.

• E�ciency: The per-node communication and computation complexity is o(n) and the per-node storage complex-
ity is o(s), where s is the total number of transactions.

8

4 Our Protocol
In this section, we present RapidChain in detail. We start by de�ning notations and terms used in the rest of the
paper.

Notation and Terminology. Let n denote the total number of nodes and t < n/3 denote the total number of corrupt
nodes. We say an event occurs with high probability meaning that it occurs with probability 1 − O (1/2λ), where λ
is the security parameter. We refer to any set of m = o(n) nodes as a committee if at least an f < 1/2 fraction of
its members belongs to honest nodes. Let node P be a member of a group C . We refer to other members of C as
the neighbors of P in C . When we say a committee runs a protocol, we mean all honest members of the committee
participate in an execution of the protocol. LetC1,C2 be two committees. When we sayC1 sends a message M toC2,
we mean every honest member of C1 sends M to every member of C2 who he knows. Since each member of C2 may
receive di�erent messages due to malicious behavior, it chooses the message with a frequency of at least 1/2 + 1.

4.1 Design Components
RapidChain consists of three main components: Bootstrap, Consensus, and Recon�guration. The protocol starts
with Bootstrap and then proceeds in epochs, where each epoch consists of multiple iterations of Consensus followed
by a Recon�guration phase. We now explain each component in more details.

Bootstrapping. The initial set of participants start RapidChain by running a committee election protocol, where all
nodes agree on a group of O (

√
n) nodes which we refer to as the root group. The group is responsible for generating

and distributing a sequence of random bits that are used to establish a reference committee of size O (logn). Next,
the reference committee creates k committees {C1, ...,Ck } each of size O (logn). The bootstrap phase runs only once
at the start RapidChain.

Consensus. Once members of each committee are done with the epoch recon�guration, they wait for external
users to submit their transactions. Each user sends its transactions to a subset of nodes (found via a P2P discovery
protocol) who batch and forward the transactions to the corresponding committee responsible for processing them.
The committee runs an intra-committee consensus protocol to approve the transaction and add it to its ledger.

Recon�guration. Recon�guration allows new nodes to establish identities and join the existing committees while
ensuring all the committees maintain their 1/2 resiliency. In Section 4.5, we describe how to achieve this goal using
the Cuckoo rule [62] without regenerating all committees.

In the following, we �rst describe our Consensus component in Section 4.2 assuming a set of committees exists.
Then, we describe how cross-shard transactions can be veri�ed in Section 4.3, and how committees can communi-
cate with each other via an inter-committee routing protocol in Section 4.4. Next, we describe the Recon�guration
component in Section 4.5, and �nally, �nish this section by describing how to bootstrap the committees in Section 4.6.

4.2 Consensus in Committees
Our intra-committee consensus protocol has two main building blocks: (1) A gossiping protocol to propagate the
messages (such as transactions and blocks) within a committee; (2) A synchronous consensus protocol to agree on
the header of the block.

4.2.1 Gossiping Large Messages

Inspired by the IDA protocol of [5], we refer to our gossip protocol for large messages as IDA-Gossip. Let M denote
the message to be gossiped to d neighbors, ϕ denote the fraction of corrupt neighbors, and κ denote the number
of chunks of the large message. First, the sender divides M into (1 − ϕ)κ-equal sized chunks M1,M2, . . . ,M (1−ϕ)κ
and applies an erasure code scheme (e.g., Reed-Solomon erasure codes [59]) to create an additional ϕκ parity chunk
to obtain M1,M2, . . . ,Mκ . Now, if the sender is honest, the original message can be reconstructed from any set of
(1 − ϕ)κ chunks.

Next, the source node computes a Merkle tree with leaves M1, . . .Mκ . The source gossips Mi and its Merkle
proof, for all 1 ≤ i ≤ κ, by sending a unique set of κ/d chunks (assuming κ is divisible by d) to each of its neighbors.
Then, they gossip the chunks to their neighbors and so on. Each node veri�es the message it receives using the

9

Merkle tree information and root. Once a node receives (1 − ϕ)κ valid chunks, it reconstructs the message M , e.g.,
using the decoding algorithm of Berlekamp and Welch [10].

Our IDA-Gossip protocol is not a reliable broadcast protocol as it cannot prevent equivocation by the sender.
Nevertheless, IDA-Gossip requires much less communication and is faster than reliable broadcast protocols (such
as [14]) to propagate large blocks of transactions (about 2 MB in RapidChain). To achieve consistency, we will later
run a consensus protocol only on the root of the Merkle tree after gossiping the block.

Improvement via Sparsi�cation. Let h(Mi) denote the hash of Mi , and h(Mi ,Mj) denote the digest stored at the
�rst common parent of Mi and Mj . Let Sib(Mi) denote all sibling nodes of the nodes on the path from the root
to Mi . Thus, {h(Mi), h(M1,Mκ), Sib(Mi)} is the Merkle proof to verify the validity of Mi . We further optimize the
IDA-Gossip based on the observation that if the source sends Sib(Mi) to Pi for every i , the Merkle hashes near the
root of the tree are sent to almost all the nodes. For example, half of the nodes receive h(M1,Mκ/2). Instead, for any
intermediate digest h(Mi ,Mj), it is su�cient to send it to a smaller subset of the nodes.

In RapidChain, the source chooses a random subset of size d/(1−ϕ) of its neighbors and only sends the digest to
the node in that subset. We refer to this process as sparsi�cation. As a result, a node may receive a message from the
source that does not contain all of the digests needed to verify the validity of the gossiped message. Therefore, the
node may not be able to validate the message immediately. However, since at least one honest node receives each
intermediate digest, it will forward the digest. This guarantees that all the node will have all the correct intermediate
digests.

In Section 6.2, we show that if an honest node starts the IDA-Gossip protocol for message M in a committee,
all honest nodes in that committee will receive M correctly with high probability. We also show that, using spar-
si�cation, it su�ces to send each intermediate digest to a number of node sublinear in the depth of the tree. This
guarantees that all nodes can verify the message with high probability.

4.2.2 Remarks on Synchronous Consensus

In RapidChain, we use a variant of the synchronous consensus protocol of Ren et al. [60] to achieve optimal resiliency
of f < 1/2 in committees and hence, allow smaller committee sizes with higher total resiliency of 1/3 (than previous
work [47, 42]).

Unlike asynchronous protocols such as PBFT [20], the protocol of Ren et al. [60] (similar to most other syn-
chronous protocol) is not responsive [56] meaning that it commits to messages at a �xed rate (usually denoted by ∆)
and thus, its speed is independent of the actual delay of the network. Most committee-based protocols (such as [4])
run a PBFT-based intra-committee consensus protocol, and hence, are responsive within epochs. However, this often
comes at a big cost that almost always results in signi�cantly poor throughput and latency, hindering responsiveness
anyway. Since asynchronous consensus requires t < n/3, one needs to assume a total resiliency of roughly 1/5 or
less to achieve similar committee size and failure probability when sampling a committee with 1/3 resiliency (see
Figure 7). Unfortunately, increasing the total resiliency (e.g., to 1/4) will dramatically increase the committee size
(e.g., 3-4x larger) making intra-committee consensus signi�cantly ine�cient.

In RapidChain, we use our synchronous consensus protocol to agree only on a digest of the block being proposed
by one of the committee members. As a result, the rest of our protocol can be run over partially-synchronous channels
with optimistic timeouts to achieve responsiveness (similar to [42]). In addition, since the synchronous consensus
protocol is run among only a small number of nodes (about 250 nodes), and the size of the message to agree is
small (roughly 80 bytes), the latency of each round of communication is also small in practice (about 500 ms – see
Figure 4–left) resulting in a small ∆ (about 600 ms) and a small epoch latency.

To better alleviate the responsiveness issue of synchronous consensus, RapidChain runs a pre-scheduled consen-
sus among committee members about every week to agree on a new ∆ so that the system adjusts its consensus speed
with the latest average delay of the network. While this does not completely solve the responsiveness problem, it
can make the protocol responsive to long-term, more robust changes of the network as technology advances.

Another challenge in using a synchronous consensus protocol happens in the cross-shard transaction scenario,
where a malicious leader can deceive the input committee with a transaction that has been accepted by some but not
all honest members in the output committee. This can happen because, unlike asynchronous consensus protocols
such as PBFT [20] that proceed in an event-driven manner, synchronous consensus protocols proceed in �xed rounds,
and hence, some honest nodes may terminate before others with a “safe value” that yet needs to be accepted by all
honest nodes in future iterations before a transaction can be considered as committed.

10

4.2.3 Protocol Details

At each iteration i , each committee picks a leader randomly using the epoch randomness. The leader is responsible
for driving the consensus protocol. First, the leader gathers all the transactions it has received (from users or other
committees) in a block Bi . The leader gossips the block using IDA-gossip and creates the block header Hi that
contains the iteration number as well as the root of the Merkle tree from IDA-Gossip. Next, the leader initiates
consensus protocol on Hi . Before describing the consensus protocol, we remark that all the messages that the leader
or other nodes send during the consensus is signed by their public key and thus the sender of the message and its
integrity is veri�ed.

Our consensus protocol consists of four synchronous rounds. First, the leader gossips a messages containing
Hi and a tag in the header of the message that the leader sets it to propose. Second, all other nodes in the network
echo the headers they received from the leader, i.e., they gossip Hi again with the tag echo. This step ensures that all
the honest nodes will see all versions of the header that other honest nodes received in the �rst round. Thus, if the
leader equivocates and gossips more than one version of the message, it will be noticed by the honest nodes. In the
third round, if an honest node receives more than one version of the header for iteration i , it knows that the leader
is corrupt and will gossip H ′i with the tag pending, where H ′i contains a null Merkle root and iteration number i .

Finally, in the last round, if an honest node receivesmf +1 echoes of the same and the only headerHi for iteration
i , it accepts Hi and gossips Hi with the tag accept along with all the mf + 1 echoes of Hi . The mf + 1 echoes serve
as the proof of why the node accepts Hi . Clearly, it is impossible for any node to create this proof if the leader has
not gossiped Hi to at least one honest node. If an honest node accepts a header, then all other honest nodes either
accept the same header or they reject any header from the leader. In the above scenario, if the leader is corrupt, then
some honest nodes reject the header and tag it as pending.

De�nition 1 (Pending Block). A block is pending at iteration i if it is proposed by a leader at some iteration j before i ,
while there are honest nodes that have not accepted the block header at iteration i .

Since less thanm/2 of the committee members are corrupt, the leader will be corrupt with a probability less than
1/2. Thus, to ensure a block header gets accepted, two leaders have to propose it in expectation. One way to deal
with this issue is to ask the leader of the next iteration to propose the same block again if it is still pending. This,
however, reduces the throughput by roughly half.

4.2.4 Improving Performance via Pipelining

RapidChain allows a new leader to propose a new block while re-proposing the headers of the pending blocks. This
allows RapidChain to pipeline its consensus iterations, maximizing its throughput. Since the consensus is happening
during multiple iterations, we let nodes count votes for the header proposed in each iteration to determine if a block
is pending or accepted. The votes can be permanent or temporary relative to the current iteration. If a node gossips
an accept for header Hj at any iteration i ≥ j, its permanent vote for the header of iteration j is Hj . If the node sends
two accepts for two di�erent headers Hj and H ′j , then the honest nodes will ignore the vote.

If a node sends an echo for Hj at any iteration i ≥ j, its temporary vote is Hj in iteration i . To accept a header, a
node requires at leastmf + 1 votes (permanent or temporary for the current iteration). If a node accepts a header, it
will not gossip more headers since all nodes already know its vote. This will protect honest nodes against denial-of-
service attacks by corrupt leaders attempting to force them echo a large number of non-pending blocks.

It is left to describe how the leader proposes a header for a pending block even if some honest nodes might have
already accepted a value for it. A new proposal is safe if it does not con�ict with any accepted value with a correct
proof, if there is any. Thus, at iteration i , for all pending block headers, the leader proposes a safe value. For a new
block, any value is considered safe while for a pending block of previous iterations, the value is safe if and only if
it has a correct proof of at least mf + 1 votes (permanent or temporary from iteration i − 1). If there is no value
with enough votes, then any value is safe. In Section 6.3, we prove that our consensus protocol achieves safety and
liveness in a committee with honest majority.

4.3 Cross-Shard Transactions
In this section, we describe a mechanism by which RapidChain reduces the communication, computation, and storage
requirement of each node by dividing the blockchain into partitions each stored by one of the committees. While

11

UTXO State

TX1:row2
TX5:row6
TX7:row3
TX8:row2

UTXO State

TX1:row2
TX7:row3
TX9:row1
TX9:row2

Transaction (ID=TX9)
Input Signature
TX5:row6 67a8b7635789
TX8:row2 8774bb84274c

Output
TX9:row1
TX9:row2

Figure 1: UTXO states before and after a transaction

sharding the blockchain can reduce the storage overhead of the blockchain, it makes the veri�cation of transactions
challenging, because the inputs and outputs of each transaction might reside in multiple committees.

Similar to Bitcoin, each transaction in RapidChain has a unique identity, a list of inputs (depicted by their iden-
tities), and a list of outputs that is shown by the transaction ID and their row number (see Figure 1). All inputs to
a transaction must be unspent transaction outputs (UTXOs) which are unused coins from previous transactions. The
outputs of the transaction are new coins generated for the recipients of the exchanged money. After receiving a
transaction, the nodes verify if a transaction is valid by checking (1) if the input is unspent; and (2) if the sum of
outputs is less than the sum of the inputs. The nodes add the valid transaction to the next block they are accepting.
RapidChain partitions the transactions based on their transaction ID among the committees which will be responsi-
ble for storing the transaction outputs in their UTXO databases. Each committee only stores transactions that have
the committee ID as their pre�x in their IDs.

Let tx denote the transaction sent by the user. In the veri�cation process, multiple committees may be involved
to ensure all the input UTXOs to tx are valid. We refer to the committee that stores tx and its possible UTXOs as the
output committee, and denote it by Cout. We refer to the committees that store the input UTXOs to tx as the input
committees, and denoted them by C (1)

in , . . . ,C
(N)
in .

To verify the input UTXOs, OmniLedger [42] proposes that the user obtain a proof-of-acceptance from every
input committee and submit the proof to the output committee for validation. If each input committee commits to
tx (and marks the corresponding input UTXO as "spent") independently from other input committees, then tx may
be committed partially, i.e., some of its inputs UTXOs are spent while the others are not. To avoid this situation and
ensure transaction atomicity, OmniLedger takes a two-phase approach, where each input committee �rst locks the
corresponding input UTXO(s) and issues a proof-of-acceptance, if the UTXO is valid. The user collects responses
from all input committees and issues an “unlock to commit”.

While this allows the output committee to verify tx independently, the transaction has to be gossiped to the entire
network and one proof needs to be generated for every transaction, incurring a large communication overhead.
Another drawback of this scheme is that it depends on the user to retrieve the proof which puts extra burden on
typically lightweight user nodes.

In RapidChain, the user does not attach any proof to tx. Instead, we let the user communicate with any committee
who routes tx to the output committee via the inter-committee routing protocol. Without loss of generality, we
assume tx has two inputs I1, I2 and one output O . If I1, I2 belong to di�erent committees other than Cout, then the
leader of Cout, creates three new transactions: For i ∈ {1, 2}, txi with input Ii and output I ′i , where |I ′i | = |Ii | (i.e.,
the same amounts) and I ′i belongs to Cout. tx3 with inputs I ′1 and I ′2 and output O . The leader sends txi to Ci

in via the
inter-committee routing protocol, and Ci

in adds txi to its ledger. If txi is successful, Ci
in sends I ′i to Cout. Finally, Cout

adds tx3 to its ledger.

Batching Veri�cation Requests. At each round, the output committee combines the transactions that use UTXOs
belonging to the same input committee into batches and sends a single UTXO request to the input committee. The
input committee checks the validity of each UTXO and sends the result of the batch to the output committee. Since
multiple UTXO requests are batched into the same request, a result can be generated for multiple requests at the
input committee.

4.4 Inter-Committee Routing
RapidChain requires a routing scheme that enables the users and committee leaders to quickly locate to which
committees they should send their transactions.

Strawman Scheme. One approach is to require every node to store the network information of all committee mem-

12

20

21

22

20

21

22

C3 C4 C5 C6 C7C2C1C0

0x000 0x001 0x010 0x011 0x100 0x101 0x110 0x111

21
22

C3 C4 C5 C6 C7C2C1C0

0x000 0x001 0x010 0x011 0x100 0x101 0x110 0x111

20

Figure 2: (Left) Each committee in RapidChain maintains a routing table containing logn other committees. (Right)
Committee C0 wants to locate committee C7 (via C4 and C6) responsible for transactions with pre�x 0x111.

bers in the network. This allows every node to quickly locate the IP addresses of members of any committee in
constant time. Then, nodes can create a connection to members of the target committee and gossip among them.
However, this requires every node to store the network information about all committee members that compromise
privacy and simplify the denial of service attack. Moreover, in practice each node should connect to large number
of nodes during his life time which cannot scale for thousands of nodes in the network.

A di�erent solution is to have a dedicated committee (e.g., the reference committee) to be responsible for trans-
action routing. Every user will obtain network information from reference committee. This approach o�ers e�cient
routing, which takes only one communication round. However, reference committee becomes a centralized hub of
the network that needs to handle a large amount of communication and thus will be a likely bottleneck.

Routing Overlay Network. To construct the routing protocol in RapidChain, we use ideas from the design of the
routing algorithm in Kademlia [48]. In Kademlia, each node in the system is assigned an identi�er and there is a metric
of distance between identi�ers (for example, the Hamming distance of the identi�ers). A node stores information
about all nodes which are within a logarithmic distance. When a node wants to send a message to another node in
the system it identi�es the node among its neighbors (which it stores locally) that is closest to the destination node’s
Kademlia ID (or KID) and it asks it to run recursively the discovery mechanism. This enables node discovery and
message routing in logn steps. We refer the reader to Section 2 of [48] for more details about the Kademlia routing
protocol.

We employ the Kademlia routing mechanism in RapidChain at the level of committee-to-committee communica-
tion. Speci�cally, each RapidChain committee maintains a routing table of logn records which point to logn di�erent
committees which are distance 2i for 0 ≤ i ≤ logn − 1 away (see Figure 2 for an example). More speci�cally, each
node stores information about all members of its committee as well as about log log(n) nodes in each of the logn
closest committees to its own committee. Each committee-to-committee message is implemented by having all nodes
in the sender committee send the message to all nodes they know in the receiver committee. Each node who receives
a message invokes the IDA-gossip protocol to sent the message to all other members of its committee.

When a user wants to submit a transaction, it sends the transaction to any arbitrary RapidChain node who will
forward it to the corresponding committee via the Kademlia routing mechanism. We present in Figure 2 an example
of the routing protocol initiated by committee C0 to request information for committee C7.

4.5 Committee Recon�guration
Protocol 1 presents our recon�guration protocol. In the following, we describe the core techniques used in this
protocol.

4.5.1 O�line PoW

RapidChain relies on PoW only to protect against Sybil attacks by requiring every node who wants to join or stay in
the protocol to solve a PoW puzzle. In each epoch, a fresh puzzle is generated based on the epoch randomness so that
the adversary cannot precompute the solutions ahead of the time to compromise the committees. In RapidChain,
all nodes solve a PoW o�ine without making the protocol stop and wait for the solution. Thus, the expensive PoW
calculations are performed o� the critical latency path.

Since the adversary is bounded to a 1/3 fraction of the total computation power during each epoch, the fraction
of total adversarial nodes is strictly less than n/3. In RapidChain, the reference committee (CR) is responsible to
check the PoW solutions of all nodes. At the start of each epoch,CR agrees on a reference block consisting of the list

13

Protocol 1 Epoch Recon�guration

1. Random generation during epoch i − 1

(a) The reference committee (CR) runs the DRG protocol to generate a random string ri for the next epoch.
(b) Members of CR reveal ri at the end of epoch i − 1.

2. Join during epoch i

(a) Invariant: All committees at the start of round i receive the random string ri from CR .
(b) New nodes locally choose a public key PK and contact a random committee C to request a PoW puzzle.
(c) C sends the ri for the current epoch along with a timestamp and 16 random nodes in CR to P .
(d) All the nodes who wish to participate in the next epoch �nd x such thatO = H(timestamp| |PK| |ri | |x) ≤ 2γ−d

and sends x to Cr .
(e) Cr con�rms the solution if it received it before the end of the epoch i .

3. Cuckoo exchange at round i + 1

(a) Invariant: All members of CR participate in the DRG protocol during epoch i and have the value ri+1.
(b) Invariant: During the epoch i , all members of CR receive all the con�rmed transactions for the active nodes

of round i + 1.
(c) Members of Cr will create the list of all active nodes for round i + 1 and also create A, the set of active

committees, and I , the set of inactive committees.
(d) CR uses ri+1 to assign a committees in A for each new node.
(e) For each committeeC ,CR evicts a constant number of nodes inC uniformly at random using ri+1 as the seed.
(f) For all the evicted nodes,CR chooses a committee uniformly at random using ri+1 as the seed and assigns the

node to the committee.
(g) CR adds ri and the new list of all the members and their committees and add it as the �rst block of the epoch

to the CR ’s chain.
(h) CR gossips the �rst block to all the committees in the system using the inter-committee routing protocol.

of all active nodes for that epoch as well as their assigned committees. CR also informs other committees by sending
the reference block to all other committees.

4.5.2 Epoch Randomness Generation

In each epoch, the members of the reference committee run a distributed random generation (DRG) protocol to agree
on an unbiased random value. CR includes the randomness in the reference block so other committees can randomize
their epochs. RapidChain uses a well-known technique based on the veri�able secret sharing (VSS) of Feldman [30]
to generate unbiased randomness within the reference committee.

Let Fp denote a �nite �eld of prime order p, m denote the size of the reference committee, and r denote the
randomness for the current epoch to be generated by the protocol. For all i ∈ [m], node i chooses ρi ∈ Fp uniformly
at random and VSS-shares it to all other node. Next, for all j ∈ [m], let ρ1j , ..., ρmj be the shares node j receives
from the previous step. Node j computes its share of r by calculating

∑m
l=1 ρl j . Finally, nodes exchange their shares

of r and reconstruct the result using the Lagrange interpolation technique [35]. The random generation protocol
consists of two phases: sharing and reconstruction. The sharing phase is more expensive in practice but is executed
in advance before the start of the epoch.

Any new node who wishes to join the system can contact any node in any committees at any time and request
the randomness of this epoch as a fresh PoW puzzle. The nodes who solve the puzzle will send a transaction with
their solution and public key to the reference committee. If the solution is received by the reference committee before
the end of the current epoch, the solution is accepted and the reference committee adds the node to the list of active
nodes for the next epoch.

14

4.5.3 Committee Recon�guration

Partitioning the nodes into committees for scalability introduces a new challenge when dealing with churn. Corrupt
nodes could strategically leave and rejoin the network, so that eventually they can take over one of the committees
and break the security guarantees of the protocol. Moreover, the adversary can actively corrupt a constant number
of uncorrupted nodes in every epoch even if no nodes join/rejoin.

One approach to prevent this attack is to re-elect all committees periodically faster than the adversary’s ability to
generate churn. However, there are two drawbacks to this solution. First, re-generating all of the committees is very
expensive due to the large overhead of the bootstrapping protocol (see Section 5). Second, maintaining a separate
ledger for each committee is challenging when several committee members may be replaced in every epoch.

To handle this problem, RapidChain uses a modi�ed version of the Cuckoo rule [8, 62], which we refer to as the
bounded Cuckoo rule, to re-organize only a subset of committee members during the recon�guration event at the
beginning of each epoch. This modi�cation is to ensure that committees are balanced with respect to their sizes
as nodes join or leave the network. In the following, we �rst describe the basic Cuckoo rule algorithm and then,
proceed to the bounded cuckoo rule.

Cuckoo Rule. To map the nodes to committees, we �rst map each node to a random position in [0, 1) using a hash
function. Then, the range [0, 1) is partitioned into k regions of size k/n, and a committee is de�ned as the group of
nodes that are assigned to O (logn) regions, for some constants k . Awerbuch and Scheideler [8] propose the Cuckoo
rule as a technique to ensure the set of committees created in the range [0, 1) remain robust to join-leave attacks.
Based on this rule, when a node wants to join the network, it is placed at a random position x ∈ [0, 1), while all nodes
in a constant-sized interval surrounding x are moved (or cuckoo’ed) to new random positions in (0, 1]. Awerbuch
and Scheideler prove that given ϵ < 1/2−1/k in a steady state, all regions of sizeO (logn)/n haveO (logn) nodes (i.e.,
they are balanced) of which less than 1/3 are faulty (i.e., they are correct), with high probability, for any polynomial
number of rounds.

A node is called new while it is in the committee where it was assigned when it joined the system. At any time
after that, we call it an old node even if it changes its committee. We de�ne the age of a k-region as the amount of
time that has passed after a new node is placed in that k-region. We de�ne the age of a committee as the sum of the
ages of its k-regions.

Bounded Cuckoo Rule. At the start of each epoch, once the set of active nodes who remain in the protocol for the
new epoch is de�ned, the reference committee, CR , de�nes the set of the largest m/2 committees (who have more
active members) as the active committee set, which we denote by A. We refer to the remainingm/2 committees with
smaller sizes as the inactive committee set, denoted by I. Active committees accept new nodes that have joined the
network in the previous epoch, as new members of the committee. However, inactive committees only accept the
members who were part of the network before, to join them. Both active and inactive committees ful�ll any other
responsibilities they have in the protocol (such as consensus on blocks and routing transaction) indi�erently. For
each new node, the reference committee,CR , chooses a random committeeCa from the set A and adds the new node
to Ca . Next, CR evicts (cuckoos) a constant number of members from every committee (including Ca) and assigns
them to other committees chosen uniformly at random from I.

In Section 6.5, we show two invariant properties which are maintained for each committee during the recon�g-
uration protocol: At any moment, the committees are balanced and honesty. The �rst property ensures a bounded
deviation in the sizes of the committees. The second property ensures that each committee maintains its honest
majority.

4.5.4 Node Initialization and Storage

Once a node joins a committee, it needs to download and store the state of the new committee. We refer to this
as the node initialization process. Moreover, as transactions are processed by the committee, new data has to be
stored by the committee members to ensure future transactions can be veri�ed. While RapidChain shards the global
ledger into smaller ones each maintained by one committee, the initialization and storage overhead can be large and
problematic in practice due to the high throughput of the system. One can employ a ledger pruning/checkpointing
mechanism, such as those described in [45, 42], to signi�cantly reduce this overhead. For example, a large percentage
of storage is usually used to store transactions that are already spent.

In Bitcoin, new nodes download and verify the entire history of transactions in order to �nd/verify the longest

15

(i.e., the most di�cult) chain1. In contrast, RapidChain is a BFT-based consensus protocol, where the blockchain
maintained by each committee grows based on member votes rather than the longest chain principle [31]. Therefore,
a new RapidChain node initially downloads only the set of unspent transactions (i.e., UTXOs) from a su�cient
number of committee members in order to verify future transactions. To ensure the integrity of the UTXO set
received by the new node, the members of each committee in RapidChain record the hash of the current UTXO set
in every block added to the committee’s blockchain.

4.6 Decentralized Bootstrapping
Inspired by [40], we �rst construct a deterministic random graph called the sampler graph which allows sampling a
number of groups such that the distribution of corrupt nodes in the majority of the groups is within a δ fraction of
the number of corrupt nodes in the initial set. At the bootstrapping phase of RapidChain, a sampler graph is created
locally by every participant of the bootstrapping protocol using a hard-coded seed and the initial network size which
is known to all nodes since we assume the initial set of nodes have already established identities.

Sampler Graph. Let G (L,R) be a random bipartite graph, where the degree of every node in R is dR = O (
√
n). For

each node in R, its neighbors in L are selected independently and uniformly at random without replacement. The
vertices in L represent the network nodes and the vertices in R represent the groups. A node is a member of a group
if they are connected in graphG. LetT ⊆ L be the largest coalition of faulty nodes and S ⊆ R be any subset of groups.
Let E(T , S) denote the event that every group in S has more than a |T |

|L | + δ fraction of its edges incident to nodes in
T . Intuitively, E captures the event that all groups in S are “bad”, i.e., more than a |T |

|L | + δ fraction of their parties are
faulty.

In Section 6.4, we prove that the probability of E(T , S) is less than 2e (|L |+ |R |) ln 2−δ 2dR |S |/2. We choose practical
values for |R | and dR such that the failure probability of our bootstrap phase, i.e., the probability of E(T , S), is mini-
mized. For example, for 4,000 nodes (i.e., |L| = 4,000), we set dR = 828 (i.e., a group size of 828 nodes) and |R | = 642
to get a failure probability of 2−26.36. In Section 6.1, we use this probability to bound the probability that each epoch
of RapidChain fails.

Once the groups of nodes are formed using the sampler graph, they participate in a randomized election proce-
dure. Before describing the procedure, we describe how a group of nodes can agree on an unbiased random number
in a decentralized fashion.

Subgroup Election. During the election, members of each group run the DRG protocol to generate a random string
s and use it to elect the parties associated with the next level groups: Each node with identi�cation ID computes
h = H (s | |ID) and will announces itself elected if h <= 2256−e , where H is a hash function modeled as a random
oracle. All nodes sign the (ID, s) of the e elected nodes who have the smallest h and gossip their signatures in the
group as a proof of election for the elected node. In practice, we set e = 2.

Subgroup Peer Discovery. After each subgroup election, all nodes must learn the identities of the elected nodes
from each group. The elected nodes will gossip this information and a proof, that consists ofdR/2 signature on (ID, s)
from di�erent members of the group, to all the nodes. If more than e nodes from the group correctly announce they
got elected, the group is dishonest and all honest parties will not accept any message from any elected members of
that group.

Committee Formation. The result of executing the above election protocol is a group with honest majority whom
we call root group. Root group selects the members of the �rst shard, reference shard. The reference committee
partitions the set of all nodes at random into sharding committees which are guaranteed to have 1/2 honest nodes,
and which store the shards as discussed in Section 4.3.

Election Network. The election network is constructed by chaining ` sampler graphs {G (L1,R1), ...,G (L`,R`)} to-
gether. All sampler graphs de�nitions are included in the protocol speci�cation. Initially, the n nodes are in L1.
Based on the edges in the graph, every node is assigned to a set of groups in R1. Then, each group runs a subgroup
election protocol (described below) to elect a random subset of its members. The elected members will then serve as
the nodes in L2 of G (L2,R2). This process continues to the last sampler graph G (L`,R`) at which point only a single

1Bitcoin nodes can, in fact, verify the longest chain by only downloading the sequence of block headers via a method called simpli�ed
payment veri�cation described by Nakamoto [54].

16

Level 0

Level 1

Level 2

Level 3

Subgroup

Group

Nodes

Election Network

Root group

Figure 3: The election network

group is formed. We call the last group, the leader group and we construct the election network such that the leader
group has honest majority with high probability.

To construct the election network, we set

|Li | =
⌈
|Li−1 |

αi+βiγi
⌉
, |Ri | =

⌈
|Li |

αi ⌉ , (1)

where |L1 | = n, |R1 | = nαi , 0 < αi , βi ,γi < 1, and i = {2, ..., `}. It can be easily shown that for some constant `,
|R` | = 1. From Equation 3, we can bound the error probability for every level i of the election network denoted by
pi , where

pi ≤ 2e |Li |+ |Ri |−δ
2dRi |Si |/2. (2)

In Section 6.4, we discuss how the parameters α , β and γ are chosen to instantiate such an election graph and
present a novel analysis that allows us to obtain better bounds for their sizes.

5 Evaluation

Experimental Setup. We implement a prototype of RapidChain in Go1 to evaluate its performance and compare
it with previous work. We simulate networks of up to 4,000 nodes by oversubscribing a set of 32 machines each
running up to 125 RapidChain instances. Each machine has a 64-core Intel Xeon Phi 7210 @ 1.3GHz processor and
a 10-Gbps communication link. To simulate geographically-distributed nodes, we consider a latency of 100 ms for
every message and a bandwidth of 20 Mbps for each node. Similar to Bitcoin Core, we assume each node in the global
P2P network can accept up to 8 outgoing connections and up to 125 incoming connections. The global P2P overlay
is only used during our bootstrapping phase. During consensus epoch, nodes communicate through much smaller
P2P overlays created within every committee, where each node accepts up to 16 outgoing connections and up to 125
incoming connections.

Unless otherwise mentioned, all numbers reported in this section refer to the expected behavior of the system
when less than half of all nodes are corrupted. In particular, in our implementation of the intra-consensus protocol
of Section 4.2, the leader gossips two di�erent messages in the same iteration with probability 0.49. Also, in our
inter-committee routing protocol, 49% of the nodes do not participate in the gossip protocol (i.e., remain silent).

To obtain synchronous rounds for our intra-committee consensus, we set ∆ (see Section 3 for de�nition) conser-
vatively to 600 ms based on the maximum time to gossip an 80-byte digest to all nodes in a P2P network of 250 nodes
(our largest committee size) as shown in Figure 4 (left). Recall that synchronous rounds are required only during
the consensus protocol of Ren et al. [60] to agree on a hash of the block resulting in messages of up to 80 bytes size
including signatures and control bits.

1https://golang.org

17

275

325

375

425

475

525

100 125 150 175 200 225 250

La
ten

cy
 (m

s)

Committee Size

Maximum
Average
Median

7384

8.84

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

128 256 512 1024 2048 4096 8192

La
ten

cy
 (s

ec
)

Tr
an

sa
cti

on
s

pe
r S

ec
on

d

Block Size (KB)

Throughput
Latency

Figure 4: Latency of gossiping an 80-byte message for di�erent committee sizes (left); Impact of block size on through-
put and latency (right)

We assume each block of transaction consist of 4,096 transactions, where each transaction consists of 512 bytes
resulting in a block size of 2 MB. To implement our IDA-based gossiping protocol to gossip 2-MB blocks within
committees, we split each block into 128 chunks and use the Jerasure library [3] to encode messages using erasure
codes based on Reed-Solomon codes [59] with the decoding algorithm of Berlekamp and Welch [10].

Choice of Block Size. To determine a reasonable block size, we measure the throughput and latency of RapidChain
with various block sizes between 512 KB and 8,192 KB for our target network size of 4,000 nodes. As shown in
Figure 4 (right), larger block sizes generally result in higher throughput but also in higher con�rmation latency. To
obtain a latency of less than 10 seconds common in most mainstream payment systems while obtaining the highest
possible throughput, we set our block size to 2,048 KB, which results in a throughput of more than 7,000 tx/sec and
a latency of roughly 8.7 seconds.

Throughput Scalability. To evaluate the impact of sharding, we measure the number of transactions processed per
second by RapidChain as we increase the network size from 500 nodes to 4,000 nodes for variable committee sizes
such that the failure probability of each epoch remains smaller than 2 · 10−6 (i.e., protocol fails after more than 1,300
years). For our target network size of 4,000, we consider a committee size of 250 which results in an epoch failure
probability of less than 6 · 10−7 (i.e., time-to-failure of more than 4,580 years). As shown in Figure 5 (left), doubling
the network size increases the capacity of RapidChain by 1.5-1.7 times. This is an important measure of how well
the system can scale up its processing capacity with its main resource, i.e., the number of nodes.

We also evaluate the impact of our pipelining technique for intra-committee consensus (as described in Sec-
tion 4.2) by comparing the throughput with pipelining (i.e., 7,384 tx/sec) with the throughput without pipelining
(i.e., 5,287 tx/sec) for n = 4, 000, showing an improvement of about 1.4x.

Transaction Latency. We measure the latency of processing a transaction in RapidChain using two metrics: con-
�rmation latency and user-perceived latency. The former measures the delay between the time that a transaction is
included in a block by a consensus participant until the block is added to a ledger and its inclusion can be con�rmed
by any (honest) participant. In contrast, user-perceived latency measures the delay between the time that a user
sends a transaction, tx, to the network until the time that tx can be con�rmed by any (honest) node in the system.

Figure 5 (right) shows both latency values measured for various network sizes. While the client-perceived latency
is roughly 8 times more than the con�rmation latency, both latencies remain about the same for networks larger than
1,000 nodes. In comparison, Elastico [47] and OmniLedger [42] report con�rmation latencies of roughly 800 seconds
and 63 seconds for network sizes of 1,600 and 1,800 nodes respectively.

Recon�guration Latency. Figure 6 (left) shows the latency overhead of epoch recon�guration which, similar
to [42], happens once a day. We measure this latency in three di�erent scenarios, where 1, 5, or 10 nodes join Rapid-
Chain for various network sizes and variable committee sizes (as in Figure 5 (left)). The recon�guration latency
measured in Figure 6 (left) includes the delay of three tasks that have to be done sequentially during any recon�g-
uration event: (1) Generating epoch randomness by the reference committee; (2) Consensus on a new con�guration
block proposed by the reference committee; and (3) Assigning new nodes to existing committee and redistributing
a certain number of the existing members in the a�ected committees. For example, in our target network of 4, 000

18

1750
2744

3726
4676 5177

6180
7031 7384

0
1000
2000
3000
4000
5000
6000
7000
8000

500
[145]

1000
[175]

1500
[190]

2000
[200]

2500
[225]

3000
[225]

3500
[230]

4000
[250]

Tr
an

sa
cti

on
s

pe
r S

ec
on

d

Number of Nodes
[Committee Size]

32.2

67.9 69.1 69.8 70.0 70.4 70.6 70.7

8.04

8.49
8.64 8.72 8.75 8.80 8.83 8.84

7.8

8.1

8.4

8.7

9.0

9.3

9.6

9.9

0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500 3000 3500 4000

Co
nf

irm
ati

on
 L

ate
nc

y
(se

c)

Us
er

-P
er

ce
ive

d
La

ten
cy

 (s
ec

)

Number of Nodes

User-Perceived Latency
Confirmation Latency

Figure 5: Throughput scalability of RapidChain (left); Transaction latency (right)

nodes, out of roughly 372 seconds for the event, the �rst task takes about 4.2 seconds (1%), the second task takes 71
seconds (19%), and the third task takes 297 seconds (80%). For other network sizes, roughly the same percentages
are measured.

As shown in Figure 6 (left), the recon�guration latency increases roughly 1.5 times if 10 nodes join the system
rather than one node. This is because when more nodes join the system, more nodes are cuckooed (i.e., redistributed)
among other committees consequently. Since the churn of di�erent nodes in di�erent committees happen in parallel,
the latency does not increase signi�cantly with more joins. Moreover, the network size impacts the recon�guration
latency only slightly because churn mostly a�ects the committees involved in the recon�guration process. In con-
trast, Elastico [47] cannot handle churn in an incremental manner and requires re-initialization of all committees.
For a network of 1,800 nodes, epoch transition in OmniLedger [42] takes more than 1,000 seconds while it takes
less than 380 second for RapidChain. In practice, OmniLegder’s epoch transition takes more than 3 hours since the
distributed random generation protocol used has to be repeated at least 10 times to succeed with high probability.
Finally, it is unclear how this latency will be a�ected by the number of nodes joining (and hence redistributing node
between committees) in OmniLedger.

Impact of Cross-Shard Batching. One of the important features of RapidChain is that it allows batching cross-
shard veri�cation requests in order to limit the amount of inter-committee communications to verify transactions.
This is especially crucial when the number of shards is large because, as we show in Section 6.7, in our target network
size of 4,000 nodes with 16 committees, roughly 99.98% of all transactions are expected to be cross-shard, meaning
that at least one of every transaction’s input UTXOs is expected to be located in a shard other than the one that will
store the transaction itself. Since transactions are assigned to committees based on their randomly-generated IDs,
transactions are expected to be distributed uniformly among committees. As a result, the size of a batch of cross-shard
transactions for each committee for processing every block of size 2 MB is expected to be equal to 2 MB/16 = 128 KB.
Figure 6 (right) shows the impact of batching cross-shard veri�cations on the throughput of RapidChain for various
network sizes.

Storage Overhead. We measure the amount of data stored by each node after 1,250 blocks (about 5 million transac-
tions) are processed by RapidChain. To compare with previous work, we estimate the storage required by each node
in Elastico and OmniLedger based on their reported throughput and number of shards for similar network sizes as
shown in Table 2.

Protocol Network Size Storage
Elastico [47] 1,600 nodes 2,400 MB (estimated)
OmniLedger [42] 1,800 nodes 750 MB (estimated)
RapidChain 1,800 nodes 267 MB
RapidChain 4,000 nodes 154 MB

Table 2: Storage required per node after processing 5 M transactions without ledger pruning

19

0
50

100
150
200
250
300
350
400

500 1000 1500 2000 2500 3000 3500 4000

La
ten

cy
 (s

ec
)

Number of Nodes

1 node 5 nodes 10 nodes

1.6x

2.5x
3.3x

4.2x
4.6x

5.5x
6.3x 6.6x

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

500 1000 1500 2000 2500 3000 3500 4000

In
cr

ea
se

 in
 Th

ro
ug

hp
ut

Number of Nodes

Figure 6: Recon�guration latency when 1, 5, or 10 nodes join each committee (left); Impact of batching cross-shard
veri�cations (right)

Overhead of Bootstrapping. We measure the overheads of our bootstrapping protocol to setup committees for
the �rst time in two di�erent experiments with 500 and 4,000 nodes. The measured latencies are 2.7 hours and 18.5
hours for each experiment respectively. Each participant in these two experiments consumes a bandwidth of roughly
29.8 GB and 86.5 GB respectively. Although these latency and bandwidth overheads are substantial, we note that the
bootstrapping protocol is executed only once, and therefore, its overhead can be amortized over several epochs.
Elastico and OmniLedger assume a trusted setup for generating an initial randomness, and therefore, do not report
any measurements for such a setup.

6 Security and Performance Analysis

6.1 Epoch Security
We use the hypergeometric distribution to calculate the failure probability of each epoch. The cumulative hyperge-
ometric distribution function allows us to calculate the probability of obtaining no less than x corrupt nodes when
randomly selecting a committee of m nodes without replacement from a population of n nodes containing at most
t corrupt nodes. Let X denote the random variable corresponding to the number of corrupt nodes in the sampled
committee. The failure probability for one committee is at most

Pr
[
X ≥ bm/2c

]
=

m∑
x= bm/2c

(
t
x

) (
n−t
m−x

)(
n
m

) .

Note that one can sample a committee with or without replacement from the total population of nodes. If the
sampling is done with replacement (i.e., committees can overlap), then the failure probability for one committee can
be calculated from the cumulative binomial distribution function,

Pr
[
X ≥ bm/2c

]
=

m∑
x=0

(
m

x

)
f x (1 − f)m−x ,

which calculates the probability that no less than x nodes are corrupt in a committee of n nodes sampled from
an in�nite pool of nodes, where the probability of each node being corrupt is f = t/n. If the sampling is done
without replacement (as in RapidChain), then the binomial distribution can still be used to approximate (and bound)
the failure probability for one committee. However, when the committee size gets larger relative to the population
size, the hypergeometric distribution yields a better approximation (e.g., roughly 3x smaller failure probability for
n = 2, 000,m = 200, t < n/3).

Unlike the binomial distribution, the hypergeometric distribution depends directly on the total population size
(i.e., n). Since n can change over time in an open-membership network, the failure probability might be a�ected

20

1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00

0 20 40 60 80 100 120 140 160 180 200 220 240
Fa

ilu
re

Pr
ob

ab
ilit

y
Committee Size

1/3 to 1/2 (RapidChain)
1/4 to 1/3 (Previous work)
1/5 to 1/3

Figure 7: Log-scale plot of the probability of failure to sample one committee from a population of 2,000 nodes in
RapidChain and previous work [47, 42] using the hypergeometric distribution.

consequently. To maintain the desired failure probability, each committee in RapidChain runs a consensus in pre-
determined intervals, e.g., once a week, to agree on a new committee size, based on which, the committee will accept
more nodes to join the committee in future epochs.

Figure 7 shows the probability of failure calculated using the hypergeometric distribution to sample a committee
(with various sizes) from a population of 2,000 nodes for two scenarios: (1) n/3 total resiliency and n/2 committee
resiliency (as in RapidChain); and (2) n/4 total resiliency and n/3 committee resiliency (as in previous work [47, 42]).
As shown in the �gure, the failure probability decreases much faster with the committee size in the RapidChain
scenario.

To bound the failure probability of each epoch, we calculate the union bound over k = n/m committees, where
each can fail with the probabilitypcommittee calculated previously. In the �rst epoch, the committee election procedure
(from the bootstrapping protocol) can fail with probability pbootstrap ≤ 2−26.36. The random generation protocol
executed by the reference committee at the beginning of each epoch is guaranteed to generate an unbiased coin with
probability one, and the consensus protocol executed by each committee is guaranteed to terminate with probability
one. By setting n = 4, 000,m = 250, and t < n/3, we have pcommittee < 3.7 · 10−8. Therefore, the failure probability of
each epoch is

pepoch < pbootstrap + k · pcommittee < 6 · 10−7.

Ideally, we would hope that the probability that the adversary taking t faction of blocks in the epoch, and an
honest miner takes 1 − t fraction of the blocks. However, it is not the case for committee-based sharding protocols
such as RapidChain. The increase in the adversary’s e�ective power comes from the fact that the upper-bound on
the fraction of adversarial ids will increase inside each shard comparing to the whole system. Thus, we de�ne and
calculate the e�ective power of the adversary.

De�nition 2. Adversarial e�ective power. The ratio of the blocks that is created by the adversary and is added to the
chain to the total number of blocks.

Theorem 1. The e�ective power of the adversary is 1/2; i.e., the adversary can create half of the blocks in the system.

The proof of this lemma follows from the choices of the target failure probability and committee sizes which we
discussed in this section.

6.2 Gossiping Guarantees
RapidChain creates a well-connected random graph for gossiping between nodes on a committee. This guarantees
that a message gossiped by any honest node will eventually reach all other honest nodes and the gossiping delay,
∆, can be bounded. In the following, we show that splitting a message into chunks, as described in Section 4.2, does
not violate the above gossiping guarantee with high probability.

Lemma 1. The probability that a message is not delivered to all honest nodes after it is gossiped using IDA-Gossip
without sparsi�cation is at most 0.1.

21

Proof. Let d denote the degree of every committee member, i.e., the number of neighbors that are chosen uniformly
at random. Using the hypergeometric distribution, we �nd a threshold ζ such that the probability of having more
than ζ fraction corrupt neighbors is at most 0.1. For example, form = 200 and f < 1/2, we set ζ = 0.63. The sender
splits the message into κ chunks and gives a unique set of size κ/d chunks to each of its neighbors so they can gossip
the chunks on its behalf. Thus, at the end of the gossiping protocol, each honest node will receive at least (1 − ζ)κ
correct chunks. Finally, an error-correction coding scheme can be used at the receiver to correct up to a ζ fraction
corrupted chunks and reconstruct the message.

Next, we show that the process of sparsi�cation is not going to change the correctness and security of the
gossiping protocol and it increases the probability of failure slightly.

Lemma 2. Assume the gossiper sparis�es all the Merkle tree nodes up to some level i . The probability that the message
is not received correctly after the gossiping of a big message with speci�cation with parameter s is at most 0.1+2−(s−i−1) ,
where s is the size of the subset of nodes whom gossiper sends each sparsi�ed node and can be set based on the the desired
failure probability (as a function of the importance of the message).

Proof. The reconstruction stage fails if there is a node in the tree for which the hash at that node is distributed to
only corrupt nodes. We will call a tree node sparsi�ed if the hash T (Mi ,Mj) at the node is not sent along with all
of the leaves that require that hash for veri�cation of the block. We will sparisfy all nodes up to some level i . The
sender can calculate s , which is the size of the subset of nodes whom he sends each sparsi�ed node to guarantee that
with probability at least 2−c , the node is sent to at least one honest node. Let l (x) count the number of leaf nodes in
the sub-tree rooted at node x , and u (x) count the number of corrupt nodes in the sub-tree rooted at node x .

If a node is distributed to s nodes at random, the probability that only corrupt nodes receive the node is at most
f s . Therefore, taking the union bound over all 2i+1 − 1 nodes and by setting f < 1/2,

(2i+1 − 1) f s < 2i+1 f s < 2i+1−s .

The di�erence between sparsi�cation and non-sparsi�cation is that by sparsi�cation, the gossiper decrease his
chance of a successful gossip slightly but in return puts less communication burden on the nodes and network. Since
the gossip of the blocks are crucial to the system, we do not use sparsi�cation for them. However, users can use
sparsi�cation for their large transactions if the transaction is not time-sensitive. In case the transaction fails to be
gossiped correctly due to sparsi�cation, the user can re-send the Merkle tree nodes later which will happen with
small probability.
6.3 Security of Intra-Committee Consensus
Recall that honest nodes always collectively control at least n − t of all identities at any given epoch. We �rst prove
safety assuming all the ids are �xed during one epoch and the epoch randomness is unbiased.

Theorem 2. The protocol achieves safety if the committee has no more than f < 1/2 fraction of corrupt nodes.

Proof. We prove safety for a speci�c block header proposed by the leader at iteration i . Suppose node P is the �rst
honest node to accept a header Hi for i . Thus, it echoes Hi before accepting it at some iteration j ≥ i . If another
honest replica accepts H ′i , there must be a valid accept message with a proof certi�cate on H ′i at some block iteration
j ′ ≥ i . However, in all the rounds of iteration i or all iterations after i , no leader can construct a safe proposal for
a di�erent header other than Hi since he cannot obtain enough votes from honest nodes on a value that is not safe
and thus create amf + 1 proof. Finlay, note that due to correctness of the IDA-Gossiping, it is impossible to �nalized
a Merkle root of a block that is associates with two di�erent blocks.

We de�ne liveness in our setting as �nality for one block, i.e., the protocol achieves liveness if it can accepts all
the proposed blocks within a bounded time.

Theorem 3. The protocol achieves liveness if the committee has less thanmf corrupt nodes.

Proof. First note that all the messages in the system are unforgeable using digital signatures. We �rst show that all
the honest nodes will accept all the pending blocks, or they have accepted them with the safe value before, as soon
as the leader for the current block height is honest. Since, the leaders are chosen randomly and the randomness is
unbiased, each committee will have an honest leader every two rounds in expectation. The honest leader will send

22

valid proposals for all the pending blocks to all nodes that is safe to propose and has a valid proof. Thus, all honest
replicas have either have already accepted the same value or they will accept it since it is safe (see the theorem for
safety). Thus, all honest nodes will vote for the proposed header for all the pending blocks, subsequently the will
receive mf + 1 votes for them since we have mf + 1 honest nodes. Therefore, all honest nodes have �nalized the
block at the end of this iteration.

Security of Cross-Shard Veri�cation.Without loss of generality, we assume tx has two inputs I1, I2 and one output
O . If the user provides valid inputs, both input committees successfully verify their transactions and send the new
UTXOs to the output committee. Thus, tx3 will be successful. If both inputs are invalid, both input committees will
not send I ′i , and as a result tx3 will not be accepted. If I1 is valid but I2 is invalid, then C1

in successfully transfers I ′1
butC2

in will not send I ′2. Thus, tx3 will not be accepted inCout. However, I ′1 is a valid UTXO in the output committee
and the user can spend it later. The output committee can send the resulting UTXO to the user.

6.4 Security of Bootstrapping
Theorem 4. Suppose there are n nodes and a constant fraction, 1/3 of these nodes are corrupt. At the end of the
RapidChain bootstrapping protocol from Section 4.6, almost all (99 percentile) of the uncorrupted nodes agree on the
random string r0 and consequently on all the sharding committees with constant probability greater than 0.

Proof. In Lemmas 3 and 4, we present analysis for the the probability of error in the bootstrapping protocol. The
�rst lemma follows from previous work but we provide it from completeness. Then, we present a tighter analysis
for the protocol in the second lemma that improves the concrete parameters we need to use for our implementation
which give over 20% for large number of parties.

Original Analysis. Recall that L represents the set of parties and R represents the set of groups selected based on
the edges incident to the node from L.

Lemma 3. In a sampler graph with a random assignment of honest parties and adversarial assignment of dishonest
parties, the probability that all the formed groups in any subset of size |S | being corrupted is less than 2e (|L |+ |R |−δ 2dR |S |/2.

Consider two �xed subsets of nodes T ⊆ L and S ⊆ R. Let N denote the number of edges between T and S . One
can imagine T represents the largest coalition of faulty parties and S represents any subset of groups. Let E(T , S)
denote the event that every node in S has more than a |T |

|L | +δ fraction of its edges incident to nodes inT . The number
of edges incident to S is equal to dR |S |. By linearity of expectation, E[N] = |T |

|L |dR |S |. Suppose that we add the edges
to S one-by-one. Let {Xi } denote a sequence of random variables such that Xi = 1 if and only if the i-th edge is
incident to T . The sequence {Zi = E[N |X0, ...,Xi]} de�nes a Doob martingale [26, Chapter 5], where Z0 = E[N]. If
any of the trials is altered, N changes by at most one. For some positive δ , the failure event E happens whenever

N >

(
|T |

|L|
+ δ

)
dR |S | = E[N] + δdR |S |.

By Azuma’s inequality,
Pr

(
E(T , S)

)
= Pr

(
N − E[N] > δdR |S |

)
≤ 2e−δ

2dR |S |/2.

By union bound over all possible subsets T and S ,

Pr *.
,

⋃
T ⊆L,S ⊆R

+/
-
≤ 2 |L |2 |R |2e−δ

2dR |S |/2 ≤ 2e (|L |+ |R |−δ
2dR |S |/2. (3)

Tighter Analysis. We now obtain a tighter bound on the failure probability.

Lemma 4. In a sampler graph with a random assignment of honest parties and adversarial assignment of dis-
honest parties, the probability that all the formed groups in any subset of size |R′ | being corrupted is less than
β2 |L |2 |R | (e−µb (eµb/x)x + e−µд (eµд/(2x))2x) |R

′ | .

23

Proof. The sampler graph selection process can be seen as the classic balls-and-bins process: |L|dL balls (parties) are
thrown independently and uniformly at random into |R | bins (groups). Without loss of generality we can assume we
�rst through all dishonest parties (bad balls) then all the honest parties (good balls).

For a �x committee C , let Xд be a random variable representing the maximum number of dishonest parties
assigned to C , Xb be a random variable representing the minimum number of honest parties assigned to C , µд and
µb be the expected number of honest and dishonest parties per group respectively.

It is well known that the distribution of the number of (good/bad) balls in a bin is approximately Poisson with
mean µb = dL |L|/4 and µд = 3dL |L|/4 [53, Chapter 5]. let X̃ and be the Poisson random variable approximating
X . We have µ = E[X] = E[X̃]. We use the following Cherno� bounds from [53, Chapter 5] for Poisson random
variables:

Pr(X̃ ≥ x) ≤ e−µ (eµ/x)x , when x > µ, (4)

Pr(X̃ ≤ x) ≤ e−µ (eµ/x)x , when x < µ . (5)

We consider a group to be good ifXд > x andXb < x . This is to make sure a good group has honest majority. Note
that this de�nition is an under-estimation and we do not count some of the good groups. Based on this de�nition, a
group is bad if Xд ≤ x or Xb ≥ x .

The the probability that a �xed committee being bad is:

e−µb (eµb/x)
x + e−µд (eµд/x)

x . (6)

Now, consider a subset of groups of size |R′ |, the probability that all of them being bad is, (e−µb (eµb/x)x +
e−µд (eµд/x)

x) |R
′ | .

Since the adversary can choose the bad parties and the bad groups, we use union bound over all the possible
adversarial choices to �nd the probability that all the groups in any subset of size |R′ | being corrupted:

Pr *.
,

⋃
T ⊆L,S ⊆R

+/
-
≤ 2 |L |2 |R | (e−µb (eµb/x)x + e−µд (eµд/x)x) |R

′ | . (7)

Tighter Bound. Not all the choices of the adversary gives him the same probability of success. Thus, we can
consider strategies that are strictly worst than another strategy and remove them from the union bound since it is
not bene�cial for the adversary to choose such strategies. We consider the following random process:

1. All good parties are assigned randomly to groups.

2. The adversary assign α fraction of all its bad parties to the groups such that the assignment corrupts maximum
number of groups.

3. The adversary assigns remaining 1 − α bad parties such that each party assigned to at least one good group.

We claim that any strategy who does not follow the previous process i.e. it assigns a bad party to all bad com-
mittees at step (3) is a strictly worst since assigning bad parties to the groups that are already bad will not increase
the chance of adversary to corrupt a new group.

Similar to the previous analysis, we can calculate the probability that a set of size |R′ | has only bad committees
in it after throwing all good parties and α fraction of the bad parties that is,

(e−µαb (eµαb/x)
x + e−µд (eµд/x)

x) |R
′ | . (8)

Now, we can calculate the fraction of strategies that the adversary ignores due to the step three rule,

β =
|R′ |!(|R′ | − logn)!
|R |!(|R | − logn)

. (9)

Thus, in our union bound, we can ignore this fraction,

Pr *.
,

⋃
T ⊆L,S ⊆R

+/
-
≤ β2 |L |2 |R | (e−µb (eµb/x)x + e−µд (eµд/x)x) |R

′ | .

24

Protocol ID Genera-
tion

Bootstrap Consensus Storage per Node

Elastico [47] O (n2) Ω(n2) O (m2/b + n) O (|B |)

OmniLedger [42] O (n2) Ω(n2) Ω(m2/b + n) O (m · |B |/n)

RapidChain O (n2) O (n
√
n) O (m2/b +m logn) O (m · |B |/n)

Table 3: Complexities of previous sharding-based blockchain protocols

6.5 Security of Recon�guration
We now prove that the recon�guration protocol that we use maintains the balancing and honesty properties of the
committees. The proof is an extension of the proof in [8]. We �rst de�ne two conditions for a committee.

De�nition 3 (Honesty). A committee satis�es the honesty condition if the fraction of corrupt nodes in the committee
is strictly less than 1/2.

De�nition 4 (Balancing). A committee satis�es the balancing condition if the number of nodes in the committee is
bounded by O (logn).

In the following, we let nodes join and leave one-by-one in each round. Moreover, we assume that at any time
during the protocol, the fraction of corrupt nodes to honest nodes is ϵ . We also assume the protocol starts from a
stable state with n nodes partitioned intom committees which satis�es the balancing and honesty conditions. Recall
that we de�ned the set of active committees as them/2 committees with highest number of nodes in them.

Lemma 5. For any �xed active committeeC and at any time, the age of any active committeeC is within (1±δ) nc logn2k ,
with high probability.

Proof. We de�ne yi as the age of k-region called Ri and Y =
∑i=c logn

i=1 yi as the age of C . At any point during the
protocol, half of the committees are active so we choose the region for the new node from half of the k regions. Thus,
Pr [yi = t] = 2k

n (1 − 2k
n)t−1 is geometrically distributed with probability 2k

n . Thus, E[yi] = n
2k and E[Y] = nc

2k c logn.
It is easy to show that Y is concentrated around E[Y], meaning that Y is between (1± δ)E[Y] and we omit the proof
here.

Lemma 6. Any k-region in active committees has age at most λ(n/2k) logn.

Proof. The probability that a k-region Ri is evicted at any round is 2k/n since at any round we have m/2 active
committees and as a result half of the k-regions will accept a new join. Conditioned on the event that the committee
does not get inactive during this time, we can assume this probability is independent of other rounds. Note that this
condition considers the worst case scenario since otherwise the committee gets inactive during this time. Hence, the
probability that Ri has age at least λ(n/2k) logn is (1 − 2k/n)λ (n/k) logn ≤ e−2k/nλ (n/2k) logn = n−λ .

Lemma 7. Any �xed node v in an active committee, it gets replaced at most (1 + δ)λ logn times within λ(n/2k) logn
rounds.

Proof. We prove this lemma conditioned on the fact that the node is placed in an active committee with probability
1/2, i.e., half of the committees get to be active after one node joins them. This condition is considers the worst case
scenario in which we assume that half of the inactive committees have numbers of nodes very close to being active in
the next round. Let the indicator random variable zt = 1 if nodep is replaced in t , otherwise it is 0. Pr [zt = 1] = 1/2 2k

n

since at any time we randomly choose a region to evict from all active regions. Let Z =
∑t=λ (n/2k) logn

t=0 zt . We can
compute E[Z] = λ(n/2k)

(
k
n

)
logn = 1/2λ logn. Using the Cherno� bound, we can show that Z < (1 + δ)E[Z] with

high probability.

We state the following lemma from [8] (Lemma 2.8), which we use directly since our construction will not change
the fraction of honest and corrupt nodes in any way from their construction.

25

Lemma 8. Let t be the maximum number of corrupt nodes at any point in the system. At any time, a �xed committee
has within (1 − t/n) (1 ± δ)c lognk/2 old honest and t

n−t (1 ± δ)c lognk/2 old corrupt nodes with high probability.

The balancing and honesty properties follow but we omit the details here due to space limitations.

Proof. The proof is similar to the proof of Lemma 2.8 from [8] with di�erent parameters based on Lemmas 5, 6,
and 7.

Theorem 5. At any time during the protocol, all committees satisfy the balancing and honesty conditions.

Proof. To prove the theorem, it is enough to prove the balancing and honesty properties for any committee. First
note that the number of new nodes in each committee is at most c logn. We also calculated the number of old nodes
in Lemma 8.

• Balancing: The maximum number of nodes in each committee is c logn + c/2(1 + δ)
(
3 − t

n +
t

n−t k
)
logn and

the minimum load is c/2(1 − δ) logn.
• Honesty. Choosing k such that t

n−t < 1 − 1/k , any committee has (1 − t/n) (1 − δ)c lognk/2 honest and t
n−t (1 +

δ)c lognk/2 corrupt nodes with high probability. Note that this values are calculated for the worst case scenario
when the adversary targeted the committee of size (c logn)k/n.

6.6 Performance Analysis
We summarize the theoretical analysis of the performance of RapidChain in Table 3.

Complexity of Consensus. Without loss of generality, we calculate the complexity of consensus per transaction.
Let tx denote a transaction that belongs to a committee C with size m. First, the user sends tx to a constant number
of RapidChain nodes who route it to C . This imposes a communication and computation overhead ofm log(n/m) =

O (m logn). Next, a leader inC drives an intra-committee consensus, which requiresO (m
2

b) communication amortized
on the block size, b. Moreover, with probability 96.3% (see Section 6.7) tx is a cross-shard transaction, and the leader
requires to requests a veri�cation proof from a constant number of committees assuming tx has constant number of
inputs and outputs. The cost of routing the requests and their responses is O (m logn), and the cost of consensus on
the request and response isO (m2/b) (amortized on the block size due to batching) which happens in every input and
output committee. Thus, the total per-transaction communication and complexity of a consensus iteration is equal
to O (m2/b +m logn).

Complexity of Bootstrap Protocol. Assuming a group size of O (
√
n) and O (

√
n) groups, we count the total com-

munication complexity of our bootstrap protocol as follows. Each group runs the DRG protocol that requires O (n)
communication. Since each group has O (

√
n) nodes, the total complexity is O (n

√
n). After DRG, a constant number

of members from each group will gossip the result incurring a O (n
√
n) overhead, where O (n) is the cost of each

gossip. Since the number of nodes in the root group is alsoO (
√
n), its message complexity to generate a randomness

and to gossip it to all of its members for electing a reference committee is O (n).

Storage Complexity. Let |B | denote the size of the blockchain. We divide the ledger among n/m shards, thus each
node storesO (m · |B |/n) amount of data. Note that we store a reference block at the start of each epoch that contains
the list of all of the nodes and their corresponding committees. This cost is asymptotically negligible in the size of
the ledger that each node has to store as long as n = o(|B |).

6.7 Probability of Cross-Shard Transactions
In this section, we calculate the probability that a transaction is cross-shard, meaning that at least one of its input
UTXOs is located in a shard other than the one that will store the transaction itself.1 Let tx denote the transaction
to verify, k denote the number of committees, u > 0 denote the total number of input and output UTXOs in tx, and

1A similar calculation is done in [42] but the presented formula is, unfortunately, incorrect.

26

v > 0 denote the number of committees that stores at least one of the input UTXOs of tx. The probability that tx is
cross-shard is equal to 1 − F (u,v,k), where

F (u,v,k) =

1, if u = v = 1

(1/k)u , if v = 1
k−v
k · F (u − 1,v − 1,k), if u = v

k−v
k · F (u − 1,v − 1,k)+

v
k · F (u − 1,v,k), otherwise.

(10)

For our target network of 4,000 nodes where we create k = 16 committees almost all transactions are expected to
be cross-shard because 1 − F (3, 1, 16) = 99.98%. In comparison, for a smaller network of 500 nodes where we create
only 3 committees, this probability is equal to 1 − F (3, 1, 3) = 96.3%.

6.8 Estimating Unreported Overheads
We estimate the bandwidth overhead of an epoch of OmniLedger using the numbers reported in [42]: a total of
1,800 nodes, transaction size of 500 B, throughput of 3,500 tx/sec, and a probability of 3.7% for a transaction to be
intra-shard. OmniLedger requires at least three gossip-to-all invocations per cross-shard transaction. Therefore, the
bandwidth required by each node is at least 3,500 tx/sec · 0.967 · 500 B · 3 ≈ 45 Mbps.

To estimate the throughput of Elastico, we use the reported transaction con�rmation latency of 800 seconds for
n =1,600, m =16, and 1 MB blocks. Assuming 500 B/tx, the throughput of Elastico can be calculated as 16 · 2,000 /
800 = 40 tx/sec.

7 Conclusion
We present RapidChain, the �rst 1/3-resilient sharding-based blockchain protocol that is highly scalable to large net-
works. RapidChain uses a distributed ledger design that partitions the blockchain across several committees along
with several key improvements that result in signi�cantly-higher transaction throughput and lower latency. Rapid-
Chain handles seamlessly churn introducing minimum changes across committee membership without a�ecting
transaction latency. Our system also features several improved protocols for fast gossip of large messages and inter-
committee routing. Finally, our empirical evaluation demonstrates that RapidChain scales smoothly to network sizes
of up to 4,000 nodes showing better performance than previous work.

8 Acknowledgment
The authors would like to acknowledge support from NSF grants CNS-1633282, 1562888, 1565208, and DARPA Safe-
Ware W911NF-15-C-0236 and W911NF-16-1-0389. We are also grateful for kind help from Loi Luu (NUS) and Aditya
Sinha (Yale), and invaluable comments from Dominic Williams (D�nity), Timo Hanke (D�nity), Abhinav Aggarwal
(UNM), Bryan Ford (EPFL), and Eleftherios Kokoris Kogias (EPFL).

References
[1] Blockchain charts: Bitcoin’s hashrate distribution, March 2017. Available at https://blockchain.info/

pools.

[2] Blockchain charts: Bitcoin’s blockchain size, July 2018. Available at https://blockchain.info/charts/
blocks-size.

[3] Jerasure: Erasure coding library, May 2018. Available at http://jerasure.org.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solida: A blockchain proto-
col based on recon�gurable byzantine consensus. In Proceedings of the 21st International Conference on Principles
of Distributed Systems, OPODIS ’17, Lisboa, Portugal, 2017.

27

https://blockchain.info/pools
https://blockchain.info/pools
https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/blocks-size
http://jerasure.org

[5] Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and JP Stern. Addendum to scalable secure
storage when half the system is faulty. Information and Computation, 2004.

[6] Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and Julien Stern. Scalable secure storage when
half the system is faulty. In Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, 2000.

[7] Marcin Andrychowicz and Stefan Dziembowski. PoW-Based Distributed Cryptography with No Trusted Setup,
pages 379–399. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[8] Baruch Awerbuch and Christian Scheideler. Towards a scalable and robust DHT. In Proceedings of the Eighteenth
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’06, pages 318–327, New York,
NY, USA, 2006. ACM.

[9] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn, and
George Danezis. Consensus in the age of blockchains. CoRR, abs/1711.03936, 2017.

[10] Elwyn Berlekamp and Lloyd R. Welch. Error correction for algebraic block codes, US Patent 4,633,470, December
1986.

[11] Richard E Blahut. Theory and practice of error control codes, volume 126. Addison-Wesley Reading (Ma) etc.,
1983.

[12] Gabriel Bracha. An asynchronous [(n − 1)/3]-resilient consensus protocol. In Proceedings of the Third Annual
ACM Symposium on Principles of Distributed Computing, PODC ’84, pages 154–162, New York, NY, USA, 1984.
ACM.

[13] Gabriel Bracha. An o(logn) expected rounds randomized byzantine generals protocol. In Proceedings of the
Seventeenth Annual ACM Symposium on Theory of Computing, STOC ’85, pages 316–326, New York, NY, USA,
1985. ACM.

[14] Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation, 75(2):130–143,
November 1987.

[15] Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceedings of the Second Annual ACM Sym-
posium on Principles of Distributed Computing, PODC ’83, pages 12–26, New York, NY, USA, 1983. ACM.

[16] Vitalik Buterin. Ethereum’s white paper. https://github.com/ethereum/wiki/wiki/White-Paper, 2014.

[17] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical asynchronous
Byzantine agreement using cryptography. In Proceedings of the 19th ACM Symposium on Principles of Distributed
Computing (PODC), pages 123–132, 2000.

[18] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In Proceedings of
the Twenty-�fth Annual ACM Symposium on Theory of Computing, STOC ’93, pages 42–51, New York, NY, USA,
1993. ACM.

[19] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM Transactions on
Computer Systems (TOCS), 20(4):398–461, 2002.

[20] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third Symposium
on Operating Systems Design and Implementation, OSDI ’99, pages 173–186, 1999.

[21] James C. Corbett, Je�rey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghe-
mawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Ko-
gan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lind-
say Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:
Google’s globally-distributed database. pages 251–264, 2012.

28

https://github.com/ethereum/wiki/wiki/White-Paper

[22] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies. In 23rd Annual Network and Dis-
tributed System Security Symposium, NDSS, 2016.

[23] Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consistency. In Proceedings of
the 17th International Conference on Distributed Computing and Networking, ICDCN ’16, pages 13:1–13:10, New
York, NY, USA, 2016. ACM.

[24] Christian Decker and Roger Wattenhofer. Information propagation in the Bitcoin network. In P2P, pages 1–10.
IEEE, 2013.

[25] John R Douceur. The sybil attack. In International Workshop on Peer-to-Peer Systems, pages 251–260. Springer,
2002.

[26] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algo-
rithms. Cambridge University Press, New York, NY, USA, 2009.

[27] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Advances in Cryptology
— CRYPTO’ 92: 12th Annual International Cryptology Conference Santa Barbara, California, USA August 16–20,
1992 Proceedings, pages 139–147, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[28] David S. Evans. Economic aspects of Bitcoin and other decentralized public-ledger currency platforms. In
Coase-Sandor Working Paper Series in Law and Economics, No. 685. The University of Chicago Law School, 2014.

[29] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-NG: A scalable blockchain
protocol. In Proceedings of the 13th Usenix Conference onNetworked SystemsDesign and Implementation, NSDI’16,
pages 45–59, Berkeley, CA, USA, 2016. USENIX Association.

[30] Paul Feldman. A practical scheme for non-interactive veri�able secret sharing. In Proceedings of the 28th
Annual Symposium on Foundations of Computer Science, SFCS ’87, pages 427–438, Washington, DC, USA, 1987.
IEEE Computer Society.

[31] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 281–310.
Springer, 2015.

[32] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling byzantine
agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17, pages 51–68, New York, NY, USA, 2017. ACM.

[33] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview series, consensus
system. CoRR, abs/1805.04548, 2018.

[34] Egor Homakov. Stop. calling. bitcoin. decentralized. https://medium.com/@homakov/
stop-calling-bitcoin-decentralized-cb703d69dc27, 2017.

[35] Min Huang and Vernon J. Rego. Polynomial evaluation in secret sharing schemes, 2010. URL: http://csdata.
cs.purdue.edu/research/PaCS/polyeval.pdf.

[36] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, FOCS ’00, pages 565–, Washington, DC, USA, 2000.
IEEE Computer Society.

[37] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for Byzantine agreement. InAdvances
in Cryptology - CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 445–462. Springer Berlin
Heidelberg, 2006.

[38] Valerie King and Jared Saia. Breaking the o(n2) bit barrier: Scalable byzantine agreement with an adaptive
adversary. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
PODC ’10, pages 420–429, New York, NY, USA, 2010. ACM.

29

https://medium.com/@homakov/stop-calling-bitcoin-decentralized-cb703d69dc27
https://medium.com/@homakov/stop-calling-bitcoin-decentralized-cb703d69dc27
http://csdata.cs.purdue.edu/research/PaCS/polyeval.pdf
http://csdata.cs.purdue.edu/research/PaCS/polyeval.pdf

[39] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, pages 990–999, Philadelphia, PA, USA,
2006.

[40] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable computation in peer-to-
peer networks. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS
’06, pages 87–98, Washington, DC, USA, 2006. IEEE Computer Society.

[41] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Kho�, Linus Gasser, and Bryan Ford. En-
hancing bitcoin security and performance with strong consistency via collective signing. In 25th USENIX Secu-
rity Symposium, USENIX Security ’16, pages 279–296, 2016.

[42] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niLedger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE Symposium on Security and Privacy
(S&P), pages 19–34, 2018.

[43] Hugo Krawczyk. Distributed �ngerprints and secure information dispersal. In Proceedings of the Twelfth Annual
ACM Symposium on Principles of Distributed Computing, PODC ’93, pages 207–218, New York, NY, USA, 1993.
ACM.

[44] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998.

[45] Derek Leung, Adam Suhl, Yossi Gilad, and Nickolai Zeldovich. Vault: Fast bootstrapping for cryptocurrencies.
Cryptology ePrint Archive, Report 2018/269, 2018. https://eprint.iacr.org/2018/269.

[46] Eric Limer. The world’s most powerful computer network is being wasted on Bitcoin. May 2013. Available at
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726.

[47] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 17–30, New York, NY, USA, 2016. ACM.

[48] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information system based on the xor metric.
In Revised Papers from the First International Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London,
UK, UK, 2002. Springer-Verlag.

[49] Ralph C. Merkle. A digital signature based on a conventional encryption function. In A Conference on the
Theory and Applications of Cryptographic Techniques on Advances in Cryptology, CRYPTO ’87, pages 369–378,
London, UK, UK, 1988. Springer-Verlag.

[50] Silvio Micali. ALGORAND: the e�cient and democratic ledger. CoRR, abs/1607.01341, 2016.

[51] Silvio Micali, Salil Vadhan, and Michael Rabin. Veri�able random functions. In Proceedings of the 40th An-
nual Symposium on Foundations of Computer Science, FOCS ’99, pages 120–, Washington, DC, USA, 1999. IEEE
Computer Society.

[52] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, pages
31–42, New York, NY, USA, 2016. ACM.

[53] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[54] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Available at https://bitcoin.org/
bitcoin.pdf.

[55] Rafail Ostrovsky, Sridhar Rajagopalan, and Umesh Vazirani. Simple and e�cient leader election in the full
information model. 1994.

30

https://eprint.iacr.org/2018/269
http://gizmodo.com/the-worlds-most-powerful-computer-network-is-being-was-504503726
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[56] Rafael Pass and Elaine Shi. Hybrid consensus: E�cient consensus in the permissionless model. Cryptology
ePrint Archive, Report 2016/917, 2016. http://eprint.iacr.org/2016/917.

[57] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults. Journal of
the ACM (JACM), 27(2):228–234, 1980.

[58] Michael O. Rabin. E�cient dispersal of information for security, load balancing, and fault tolerance. J. ACM,
36(2):335–348, April 1989.

[59] Irving Reed and Gustave Solomon. Polynomial codes over certain �nite �elds. Journal of the Society for Industrial
and Applied Mathematics (SIAM), pages 300–304, 1960.

[60] Ling Ren, Kartik Nayak, Ittai Abraham, and Srinivas Devadas. Practical synchronous byzantine consensus.
CoRR, abs/1704.02397, 2017.

[61] Alexander Russell and David Zuckerman. Perfect information leader election in log∗ N + o(1) rounds. In Pro-
ceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, pages 576–, Washington,
DC, USA, 1998. IEEE Computer Society.

[62] Siddhartha Sen and Michael J. Freedman. Commensal cuckoo: secure group partitioning for large-scale services.
ACM SIGOPS Operating Systems Review, 46(1):33–39, 2012.

[63] Alex Tapscott and Don Tapscott. How blockchain is changing �nance. Harvard Business Review, March 2017.
Available at https://hbr.org/2017/03/how-blockchain-is-changing-finance.

[64] The Zilliqa Team. The zilliqa technical whitepaper. https://docs.zilliqa.com/whitepaper.pdf, August
2017.

[65] Hsiao-Wei Wang. Ethereum sharding: Overview and �nality. https://medium.com/@icebearhww/
ethereum-sharding-and-finality-65248951f649, 2017.

31

http://eprint.iacr.org/2016/917
https://hbr.org/2017/03/how-blockchain-is-changing-finance
https://docs.zilliqa.com/whitepaper.pdf
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649

	Introduction
	Our Contributions
	Overview of RapidChain

	Background and Related Work
	Committee-Based Consensus
	Sharding-Based Consensus
	RSCoin
	Elastico
	OmniLedger

	Synchronous Consensus
	Information Dispersal Algorithms

	Model and Problem Definition
	Our Protocol
	Design Components
	Consensus in Committees
	Gossiping Large Messages
	Remarks on Synchronous Consensus
	Protocol Details
	Improving Performance via Pipelining

	Cross-Shard Transactions
	Inter-Committee Routing
	Committee Reconfiguration
	Offline PoW
	Epoch Randomness Generation
	Committee Reconfiguration
	Node Initialization and Storage

	Decentralized Bootstrapping

	Evaluation
	Security and Performance Analysis
	Epoch Security
	Gossiping Guarantees
	Security of Intra-Committee Consensus
	Security of Bootstrapping
	Security of Reconfiguration
	Performance Analysis
	Probability of Cross-Shard Transactions
	Estimating Unreported Overheads

	Conclusion
	Acknowledgment

