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Abstract

In this paper, we study the generic hardness of the inversion problem on a ring, which
is a problem to compute the inverse of a given prime c by just using additions, subtractions
and multiplications on the ring. If the characteristic of an underlying ring is public and
coprime to c, then it is easy to compute the inverse of c by using the extended Euclidean
algorithm. On the other hand, if the characteristic is hidden, it seems difficult to compute it.
For discussing the generic hardness of the inversion problem, we first extend existing generic
ring models to capture a ring of an unknown characteristic. Then we prove that there is no
generic algorithm to solve the inversion problem in our model when the underlying ring is
isomorphic to Zp for a randomly chosen prime p assuming the hardness of factorization of
an unbalanced modulus. We also study a relation between the inversion problem on a ring
and a self-bilinear map. Namely, we give a construction of a self-bilinear map based on a
ring on which the inversion problem is hard, and prove that natural complexity assumptions
including the multilinear computational Diffie-Hellman (MCDH) assumption hold w.r.t the
resulting sef-bilinear map.

1 Introduction

1.1 Background

Cyclic groups on which the discrete logarithm (DL) is hard to solve have been widely used in
cryptography. Though the hardness of the DL is a widely used assumption, we still do not know
how to prove that there does not exist a polynomial time algorithm that solves the DL problem.
On the other hand, for reliability of the assumption, we want to argue a lower bound for the
DL problem in some sense. For this purpose, Shoup [Sho97] introduced an idealized model
called the generic group model (GGM) building on an earlier works by Babai and Szemerédi
[BS84] and Nechaev [Nec94]. In the GGM, group elements are represented by a random string,
and group operations are done only through oracle accesses. Intuitively, the GGM captures
adversaries that do not depend on actual representations of group elements. Shoup proved that

1



the DL problem and its related problems are hard to solve with polynomial number of group
operations in the GGM.

Though Shoup’s GGM can capture most DL-related problems, that does not capture the
RSA problem [RSA78], which is another commonly used problem in cryptography. The RSA
problem is the problem to compute g1/c given g ∈ Z∗N and a prime c where N = PQ is a
product of two primes P and Q. It is well-known that the order of Z∗N is hard to compute
as long as one cannot factorize N . On the other hand, Shoup’s GGM model assumes that an
order of a group is public, and this is the reason why his model does not capture the RSA
problem. To address the issue, Damg̊ard and Koprowski [DK02] extended the GGM to capture
unknown order groups. Intuitively, they proved that the RSA problem is hard to solve for
generic algorithms if an entropy of an order of an underlying group is large enough.1

There is another extension of the GGM called the generic ring model (GRM) [LR06, AM09,
JS09, AMS11]. The GRM is defined similarly to the GGM by simply replacing a group with
a ring. The motivation of considering the GRM is more precise validation of the RSA and its
related problems. Specifically, since ZN is a ring, an adversary may utilize additions on ZN in
addition to multiplications. Thus GRM is supposed to capture ZN as an underlying ring for an
RSA modulus N . Here, we remark the characteristic N of a ring ZN is public and known by
an adversary.

While these two types of extensions have been studied, almost no research has been done for
the mix of them, i.e., the GRM in an unknown characteristic setting.2 We suppose that this is
because currently we have no candidate of a ring whose ring operations can be done efficiently
while keeping its characteristic hidden. On the other hand, Kim et al. [KKS15] observed that if
such a ring exists, then we can construct a self-bilinear map [CL09, YYHK17], which is a bilinear
map whose source and target groups are identical. As observed in some works [CL09, YYHK17],
a self-bilinear map is quite a powerful primitive for constructing various cryptographic schemes.
For example, a self-bilinear map gives an unbounded level multilinear map, which immediately
gives an improvement for some multilinear-map-based cryptographic schemes such as multi-
party non-interactive key exchange and broadcast encryption [BS02]. Considering the extreme
usefulness of a self-bilinear map, even with the lack of an instantiation, it is still meaningful to
study more on a ring of unknown characteristic since a candidate of such a ring may be found
in the future.

In addition, though Kim et al. [KKS15] gave an idea to construct a self-bilinear map
based on a ring of an unknown characteristic, they did not give any formal reduction between
assumptions of a resulting self-bilinear map and an underlying ring. For further understanding
ring-based construction of a self-bilinear map, it would be helpful to study their relations more.

1.2 Our Contribution

In this work, we consider the inversion problem on a ring R that is isomorphic to Zp where
p is a “hidden” prime. Namely, we assume that additions, subtractions and multiplications
on R can be done efficiently, and consider if the multiplicative inverse of a public prime c
is efficiently computable. If p is public, then it is easy to compute c−1 mod p by using the
extended Euclidean algorithm. However, if p is unknown, then we do not know how to compute
c−1 mod p and it seems difficult to compute it.

To give a generic lower bound for this problem, we extend the GRM to an unknown char-
acteristic setting. Our model is defined almost similarly to an existing GRM [JS09] except

1In the real world, the order of Z∗N has no entropy given N though that is hard to compute. They consider
an idealized setting where the order has an information theoretical entropy.

2To the best of our knowledge, the only work that is relevant to this setting is the work by Kim et al. [KKS15]
that considered a “restricted” variant of the model. See Sec 1.4 for the details.
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that the ring is chosen according to a certain distribution and its characteristic is hidden to
an adversary. We prove that the inverse of a prime c is hard to compute in our model when p
is randomly chosen from the set of all primes smaller than 2` where ` = Ω(λ) if the factoring
of an unbalanced modulus is hard. Moreover, we give a partial evidence that the factoring
assumption (or some assumption of similar nature) is needed for proving the generic hardness
of the inversion by relating it to straight-line complexity of factorials.

Then we study a relation between an inversion-hard ring and a self-bilinear map. Based
on the idea of Kim et al. [KKS15], we consider a ring-based construction of a self-bilinear
map. We prove that if the c-inversion problem is hard on the underlying ring for some prime
c that is coprime to the characteristic of the ring, then the resulting self-bilinear map satisfies
several natural complexity assumptions including the multilinear computational Diffie-Hellman
(MCDH) assumption. By combining with the generic hardness result for the inversion problem,
we can conclude that these natural complexity assumptions for self-bilinear maps hold against
generic adversaries if the factoring of an unbalanced modulus is hard.

Finally, we show that some existing multilinear-map-based constructions gain some advan-
tages if they are instantiated with an unbounded-level multilinear map obtained from a self-
bilinear map by showing examples of the non-interactive key exchange (NIKE) and broadcast
encryption schemes proposed by Boneh and Silverberg [BS02] and the homomorphic signa-
tures proposed by Catalano et al. [CFW14]. We believe that self-bilinear maps have further
applications.

1.3 Discussion

Candidate instantiation. In this paper, we prove that an inversion-hard ring gives a crypro-
graphically useful self-bilinear map. On the other hand, we are currently unaware of any ring
with efficiently computable group operations that may satisfy the c-inversion assumption. Here,
we discuss a heuristic candidate instantiation of an inversion-hard ring based on an obfuscation
[BGI+01]. Intuitively, an obfuscation is to make a program “unintelligible” while keeping its
functionality. Our idea is to consider an “encrypted ring” where all ring elements are encrypted
and the program that computes ring operations over ciphertexts is obfuscated. Since all ring
elements are encrypted, any algorithm cannot obtain any useful information from the represen-
tation of ring elements. Therefore the ring can be treated as if that is a “generic ring”, and
we can expect that the inversion assumption holds for this ring. Indeed, if we assume that
an underlying obfuscation satisfies the virtual black-box (VBB) security [BGI+01], then the
resulting scheme satisfies the inversion assumption as shown in Appendix A.

One may think that VBB obfuscation is a too strong assumption, and we can trivially obtain
whatever we want based on that. However, we remark that the existence of an inversion-hard
ring is not trivial even if we assume VBB obfuscation. What we can say based on VBB ob-
fuscation is that an “encrypted ring” as described above is as secure as a “generic ring” where
an adversary can perform ring operations only through operation oracles. Therefore if there
exists a generic attack against the c-inversion problem, then the attack also works in the VBB
obfuscation-based instantiation. Thus even if we assume VBB obfuscation, it is unclear if the
above construction gives an inversion-hard ring without additionally assuming the factoring
assumption.

Comparison to existing works. Here, we discuss the relation between our technique and
ones used in works by Altmann et al. [AJR08] and Aggarwal and Maurer [AM09]. Their tech-
niques are similar to ours in the sense that they also related generic hardness of some problems
on a ring to factoring. Namely, Altmann et al. [AJR08] reduced the ring extraction problem
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to factoring, and Aggarwal and Maurer [AM09] reduced the RSA problem to factoring in their
models. However, a significant difference of this work from theirs is that we consider a ring of an
unknown prime characteristic p whereas they consider a ring of a known composite character-
istic N whose factorization is unknown. It looks rather natural that the factoring assumption
appears in their setting because they consider a ring of characteristic N , which is a composite
number to factorize. On the other hand, in our model, we only consider a ring of a prime
characteristic, and no composite number appears in the model. Thus we believe that the rela-
tion between the inversion problem in our model and factoring is quite surprising and interesting.

Brown [Bro16, Appendix B] considered the hardness of computing the inverse of randomly
chosen element x ∈ Zn given an encoding of x, where n is the product of randomly chosen primes
p and q. He proved that this problem is hard to solve by using straight-line programs if the
factorization of n is unknown. Though this seems quite related to our result, there are several
differences. First, they only consider the complexity of algorithms described as a straight-line
program whereas our generic model captures more general algorithms that adaptively performs
ring operations. Second, they consider the problem to compute the inverse of randomly chosen
element x whereas we consider the problem to compute the inverse of a fixed prime c. Thrid,
and most importantly, they consider a setting where the modulus n is public with unknown
factorization whereas we consider a setting where modulus p itself is unknown. By the above
differences, our result is incomparable to his result.
Future direction. An obvious open problem is a construction of an inversion-hard ring, which
implies a self-bilinear map, in the standard model. A possible approach is to use indistinguisha-
bility obfuscation (iO) instead of VBB obfuscation based on a similar idea to the works by
Albrecht et al. [AFH+16] and Farshim et al. [FHHL18], which constructed multilinear maps
and graded encodings based on iO. However, a simple adaptation of their techniques would
not work since we at least need that the uniform factorial conjecture is true as discussed in
Sec. 5.4, whereas iO along with some other assumptions that do not imply the hardness of
factoring seem not to imply that the uniform factorial conjecture is true. Thus, to construct an
inversion-hard ring, it seems that we have to assume hardness of factoring or some assumption
of similar nature in addition to iO, which would require new techniques.

1.4 Related Work

Groups of unknown order. In this paper, we consider a ring of an unknown characteristic.
If we consider an additive group of a ring, then that is a group of unknown order, which have
been studied well. A typical example of an unknown order group is Z∗N for an RSA modulus
N = pq. If we consider a setting where the Diffie-Hellman oracle on Z∗N (with a fixed generator
g ∈ Z∗N ) is available, then that can be seen as a ring of an unknown characteristic, and the
inversion problem roughly corresponds to the RSA problem. We remark that in such a setting,
the characteristic φ(N) of the ring is not prime, and our results cannot be directly applied to
this setting, though we believe that our results also extend to this setting.

Groups of infeasible inversion. Hohenberger [Hoh03] and Molnar [Mol03] considered groups
of infeasible inversion, on which it is hard to compute the inverse of a random group element,
and showed that such a group is useful for constructing directed transitive signature. Irrer et
al. [ILOP04] showed that such a group is also useful for constructing broadcast encryption.
However, there have been no known instantiations for such a group until very recently Altuğ
and Chen [AC18] proposed a candidate instantiation based on a new computational problem
related to isogenies of elliptic curves over unknown characteristic rings.
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A group of infeasible inversion can be seen as a special case of our notion of inversion-hard
ring where we only consider multiplications and do not consider additions.3 There is still no
candidate construction of an inversion-hard ring (except for the obfuscation-based one given in
Appendix A).

“Restricted” GRM in [KKS15]. Sec. 3.3 of Kim et al.’s work [KKS15] can be seen as anal-
yses of certain assumptions in a restricted variant of the GRM of an unknown characteristic.
Here the term “’restricted”’ means that they restrict a degree of the computation on a ring.
More specifically, on a ring Zp, they restrict the degree of allowed computations to be much
smaller than p. This is essential in their analyses because they use the Schwartz-Zippel lemma
to argue that for a function f with n variables of degree d, the probability that f(x1, . . . , xn) = 0
mod p is negligible for randomly chosen x1, . . . , xn ∈ Zp. If d is larger than p, this argument
completely does not work. Thus their result cannot be extended to the case where there is no
restriction for computations on a ring.

Self-bilinear map. The first formal study of self-bilinear maps was done by Cheon and Lee
[CL09]. They showed a strong negative result on the existence of a self-bilinear map of a known
order. Namely, they showed that if there exists an efficiently computable self-bilinear map on
a known order group, then the computational Diffie-Hellman (CDH) assumption does not hold
on the group.

Yamakawa et al. [YYHK17] gave the first positive result on a self-bilinear map. They
defined a weaker variant of a self-bilinear map which they call a self-bilinear map with auxiliary
information. Then they constructed it based on the factoring assumption and the existence of
iO. A self-bilinear map with auxiliary information is defined as a self-bilinear map that can be
computed efficiently when some auxiliary information is given. Unfortunately, a self-bilinear
map with auxiliary information is not as useful as an “ideal” self-bilinear map. For example,
that cannot be used for constructing fully homomorphic signatures as done in this work. This
is becuase the size of auxiliary information grows at least by double whenever we apply a group
operation.

Kim et al. [KKS15] gave a candidate construction of a cryptographic self-bilinear map.
However, it turns out that their construction is not secure [Seo17].

Multilinear map from obfuscation. There are some works that shows the relation between
multilinear maps and iO. Paneth and Sahai [PS15] constructed a polynomial jigsaw puzzle,
which is a variant of a multilinear map, solely based on iO. However, they did not provide any
application of polynomial jigsaw puzzles except iO itself and thus it is unclear how that is useful
in constructions of other cryptographic primitives.

Albrecht et al. [AFH+16] constructed a multilinear map based on iO. The construction
was recently extended to a graded encoding scheme by Farshim et al. [FHHL18]. However, the
levels of multilinearity in their constructions are bounded, and they did not give unbounded-level
multilinear map based on iO.

2 Technical Overview

In this section, we give more detailed overview of our results.

3Actually, there is a slight difference between them that in groups of infeasible inversion, we consider a problem
of computing an encoding of x−1 given an encoding of a randomly chosen element x whereas in inversion-hard
rings, we consider a problem of computing an encoding of c−1 for a fixed and public prime c. However, we can
show that if the latter is hard, then the former is also hard. See Remark 1 for details.
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2.1 Generic Ring with Unknown Characteristic

To formally discuss generic hardness of the inversion problem on rings of unknown characteristic
(specifically, Zp for a hidden prime p), we extend existing GRMs to treat such cases. Our model
is formalized by using a stright-line program (SLP) similarly to the one in [JS09]. Especially,
since we only consider the inversion problem on a ring R in which an adversary is only given a
multiplicative identity [1]R of the ring as an input, we formalize our model by using a no-input
stright-line program (NI-SLP), which is a simpler variant of a SLP that do not take any input
other than [1]R.

No-input straight-line program. An NI-SLP with length L is described by a sequence of
instructions P = (i1, j1, ◦1), . . . , (iL, jL, ◦L) where ik, jk ∈ {0, 1, . . . , k−1} and ◦k ∈ {+,−, ·} for
all k ∈ [L]. On a ring R, a program P does the following recursive computation.

1. Let x0 := [1]R.

2. For 1 ≤ k ≤ L, let xk := xik ◦k xjk .

3. Output xL.

We denote the output of P on a ring R by P(R). That is, an NI-SLP expresses a computation
on a ring that consists of additions, subtractions and multiplications starting from the multi-
plicative identity [1]R. This is essentially the same as an arithmetic circuit with fixed input
[1]R. We use the notion of NI-SLP because this is suitable for stating our model.

Our generic ring model. Here, we explain our extended GRM that captures an unknown
characteristic setting. Our model is similarly defined to the GRM given by Jager and Schwenk
[JS09] except that we consider a certain distribution DR of a ring instead of considering a fixed
ring. To clarify the distribution explicitly, we often denote our model by DR-GRM. In the
DR-GRM, a ring R is chosen according to the distribution DR, whose description (especially,
its characteristic) is not given to an adversary. Let NI-SLP P be an SLP that is initialized to
be an empty sequence (which implicitly sets x0 := [1]R). Then a generic algorithm A in the
model can make the following two types of queries: operation and equal queries.

operation query: When A makes an operation query (i, j, ◦) ∈ {0, . . . , |P|} × {0, . . . , |P|} ×
{+,−, ·}, then Oring append (i, j, ◦) to P.

equal query: When A makes an equal query (i, j) ∈ {0, . . . , |P|} × {0, . . . , |P|}, then O returns
true if Pi(R) = Pj(R) and false otherwise.

That is, A makes an operation query (i, j, ◦) to compute xi ◦xj and append the value to the
sequence x0, ..., x|P| of ring elements, and it makes an equal query (i, j) to check the equality of
xi and xj . Intuitively, this captures everything one can generically perform on a ring. Finally, A
outputs an index i∗, which is interpreted to output xi∗ . In this model, for a prime c, we say that
the c-inversion assumption holds, if for any PPT algorithm A, the probability that A outputs
[c]−1
R (i.e., xi∗ = [c]−1

R ) is negligible where [c]R denotes c · [1]R and −1 denotes a multiplicative
inverse.

2.2 Generic Hardness of Inversion

Here, we describe how we give a lower bound for the c-inversion problem on the DR-GRM in
the case where DR is Zp for randomly chosen `-bit prime p. For obtaining the lower bound,
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we introduce two assumptions on NI-SLPs. Interestingly, both of these assumptions can be
reduced to the factoring assumption w.r.t. unvalanced moduli, which is seemingly unrelevant
to NI-SLPs. Finally, we give a partial evidence that the factoring assumption is necessary to
prove the generic hardness of the c-inversion problem.

New assumptions on NI-SLP. Here, we describe our new assumptions on NI-SLPs, which
we call the SLP assumption 1 and 2, respectively. We prove that they hold under the factoring
assumption w.r.t. unbalanced moduli. These assumptions are defined as follows, where P`
denotes the set of all primes smaller than 2`.

SLP assumption 1: We say that the SLP assumption 1 holds if for any PPT algorithm A,
AdvSLP-1

A (λ) := Pr[P← A(1λ), p
$← Pλ; P(Z) 6= 0 ∧ P(Zp) = 0] is negligible.

SLP assumption 2: We say that the SLP assumption 2 holds if for any PPT algorithm A,

AdvSLP-2
A (λ) := Pr[P← A(1λ), p1, p2

$← Pλ; (P(Zp1)
?
= 0) 6= (P(Zp2)

?
= 0)] is negligible.

Intuitively, the SLP assumption 1 claims that for any efficiently generated NI-SLP P, if P(Z) 6=
0, then we also have P(Zp) 6= 0 with overwhelming probability when p

$← P` where P` denotes
the set of all primes smaller than 2`, and the SLP assumption 2 claims that for any efficiently

generated NI-SLP P, we have (P(Zp1)
?
= 0) = (P(Zp2)

?
= 0) with overwhelming probability

where p1, p2
$← P` and (P(Zpi)

?
= 0) is a variable in {0, 1} that is 1 if and only if P(Zpi) = 0

holds for i = 1, 2.
First, it is easy to see that the SLP assumption 2 is implied by the SLP assumption 1 because

P(Zp1) 6= 0 or P(Zp2) 6= 0 implies P(Z) 6= 0. Moreover, we prove that the SLP assumption 1
holds assuming the hardness of factorizing an unbalanced modulus, i.e., N = pq for primes p
and q such that q is much larger than p. The proof outline is as follows. Suppose that there
exists an adversary A that breaks the SLP assumption 1. Based on A, we construct an algo-
rithm B that factorizes an unbalanced modulus N as follows. B, given N = pq, runs A(1λ) to
obtain P. Since A breaks the SLP assumption 1, the probability that P(Z) 6= 0 and P(Zp) = 0
hold is non-negligible. We can show that if q is chosen from a large enough set of primes, then
P(Z) 6= 0 implies P(Zq) 6= 0 with overwhelming probability. (See Lemma 2 for details.) In
this case, we have gcd(P(ZN ), N) = p since P(Zp) = 0 implies p|P(ZN ) and P(Zq) 6= 0 implies
q 6 |P(ZN ). Thus B can factorize N by computing gcd(P(ZN ), N).

Generic hardness of inversion. Our main result can be stated as follows.

Theorem 1. Let DR be the distribution of Zp for a randomly chosen prime p from P`. If the
SLP assumption 1 holds, then the c-inversion assumption holds in the DR-GRM. Especially, if
the factoring assumption w.r.t. unbalanced moduli holds, then the c-inversion assumption holds
in the DR-GRM.

In the following we give a proof sketch for the theorem. We consdier the following game
hops.

Game 1 : This game is the original game that defines the c-inversion assumption. At the begin-
ning of the game, a prime p

$← P` is chosen and P is initialized to be an empty sequence.
When A makes an operation query (i, j, ◦), then (i, j, ◦) is appended to P. When A makes
an equal query (i, j), then the oracle returns true if Pi(Zp) = Pj(Zp) and false otherwise.
When A outputs i∗, we say that A wins if Pi∗(Zp) = [c]−1

Zp holds.

Game 2: This game is the same as the above game except that the equality oracle uses a
independently random prime pk instead of p for the k-th equal query for each k. That
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is, when A makes the k-th equal query (i, j), the oracle picks an independently random

prime pk
$← P` and returns true if Pi(Zpk) = Pj(Zpk) and false otherwise. We note that

the winning condition of A remains unchanged, and it is decided by using p.

What we want to prove is that the A’s winning probability in Game 1 is negligible. First, we
show that the difference between its winning probabilities in Game 1 and Game 2 is negligi-
ble. In Game 2, responses by the oracle do not differ from the original game unless we have

(P(Zp1)
?
= 0) 6= (P(Zp2)

?
= 0). The probability that such an event occurs is negligible under the

SLP assumption 2, which can be reduced to the SLP assumption 1 as mentioned in the previ-
ous paragraph. Thus this modification causes a negligible difference on A’s winning probability.
Next, we move on to proving A’s winning probability in Game 2 is negligible. In Game 2, a
prime p is not used at all except for deciding if A wins the game (i.e., Pi∗(Zp) = [c]−1

R ). If we
let P′ := c · Pi∗ − 1 where c · Pi∗ − 1 denotes the NI-SLP that computes c · Pi∗(R) − [1]R on
any ring R, then the winning condition is equivalent to P′(Zp) = 0. Here, it is easy to see that
P′(Z) 6= 0 holds since 1 is not a multiple of c. Therefore under the SLP assumption 1, A’s win-
ning probability (i.e., Pr[P′(Zp) = 0]) is negligible. Thus, the c-inversion assumption holds in
the DR-GRM. Finally, since the SLP assumptions 1 and 2 hold under the factoring assumption
w.r.t. unbalanced moduli as mentioned in the previous paragraph, the generic hardness of the
c-inversion problem is proven under the same assumption.

Is factoring assumption necessary? For proving the generic hardness of the c-inversion
assumption, we assumed the factoring assumption (or the SLP assumption 1, which is implied by
the factoring assumption). One may wonder if this can be done without assuming any unproven
assumption. We give a partial evidence that the factoring assumption (or some assumption of
similar nature) is necessary. Specifically, we relate the hardness of the problem to the straight-
line complexity [SS95] of factorials. For an integer N , the straight-line complexity τ(N) of N
is defined as the minimum length of a NI-SLP P such that P(Z) = N . That is, the straight-line
complexity is the smallest number of additions or multiplications to compute N starting from
1. Though it is conjectured that τ(n!) is super polynomial in log(n) [SS95, Che04, Mar13], that
has been open for a long time. Here, we consider the uniform version of this conjecture.

Uniform Factorial Conjecture. . There does not exist a PPT algorithm A that is given n
as input and outputs an NI-SLP Pn such that Pn(Z) = n! for all n ∈ N.

Though this conjecture is plausible, it still seems difficult to prove that this conjecture is true
since this is just a uniform variant of the above mentioned long standing open problem. If the
uniform factorial conjecture is false, then we can compute the characteristic char(R) of any ring
R as long as char(R) is a prime by a simple binary search algorithm (See 5.4 for the detail). If
char(R) is known, then the c-inversion assumption is trivially broken by the extended Eucledian
algorithm. Therefore to prove the generic hardness of the c-inversion problem or even ensuring
that hardness of computing a characteristic of a ring of a prime characteristic, we have to assume
at least that the uniforml factorial conjecture is true, which seems difficult to unconditionally
prove.

It has been widely recognized that there is a close relationship between the complexity of
computing factorials and interger factorization (e.g., [Sha79, Che04]). Indeed, the uniform fac-
torial conjecture can be easily proven true under the factoring assumption by a binary search
algorithm similar to the one described above. On the other hand, we are unaware of any other
standard assumption that would imply the uniform factorial conjecture. For example, even
if we assume the existence of iO, it is not clear if the uniform factorial conjecture is true or
not. Thus, if we want to reduce the generic hardness of the c-inversion problem to a standard
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assumption, it is somehow unavoidable to assume the factoring assumption (unless we find any
other standard assumption that implies the uniform factorial conjecture).

2.3 Self-Bilinear Map from Inversion-Hard Ring

Here, we explain how to obtain a self-bilinear map based on an inversion-hard ring. Concep-
tually, the idea is quite simple: we consider the multiplication on the underlying ring to be a
self-bilinear map. Actually, this idea was already presented by Kim et al. [KKS15], but they did
not give a specific condition for a ring so that natural complexity assumptions for a resulting
self-bilinear map hold. In this paper, we prove that the hardness of c-inversion problem for a
prime c is sufficient to obtain useful assumptions for a resulting self-bilinear map. Specifically,
we prove that several complexity assumptions for self-bilinear maps including the MCDH as-
sumption hold if the c-inversion problem for some prime c is hard on an underlying ring. The
proof is based on the very similar idea to classical results that reduce the CDH assumption to
the factoring assumption [Shm85, McC88] and its extensions [HK09, Seu13, YYHK17]. We give
a rough sketch of our construction and proof below.

We first describe the construction of a group G with a self-bilinear map e based on a ring
R and prepare some notations. We let a group G be an additive subgroup of R generated
by [1]R and set the generator [1]G to be [c]R. Then we define e by e(X,Y ) := X · Y where ·
denotes the multiplication on R. For an integer n ≥ 2, we let en denote a n-multilinear map
obtained from a self-bilinear map e. Namely, en is defined by e2 := e and ek(X1, . . . , Xk) :=
e(ek−1(X1, . . . , Xk−1), Xk) for k ≥ 3. For x ∈ Z, we let [x]G := x · [1]G and for x ∈ Z and k ∈ N,
[x]k denotes x · ek([1]G, . . . , [1]G). (If k = 1, then [x]1 denotes [x]G.) By using this notation, we
have e([x]G, [y]G) = [cxy]G, [x]k = [ckx]R, [x]k + [y]k = [x+ y]k and e([x]k1 , [x]k2) = [x · y]k1+k2

for any x, y ∈ Z and k, k1, k2 ∈ N.
For n ∈ N, we say that the n-MCDH assumption holds if any PPT adversary given

[x1]1, . . . , [xn+1]1 cannot compute [
∏n+1
i=1 xi]n with non-negligible probability where x1, . . . , xn+1

$←
[2`+λ] and 2` is an upper bound of ord(G) 4. Then we prove the following theorem.

Theorem 2. If the c-inversion assumption holds for the underlying ring R ,then for any integer
n ≥ 2, the n-MCDH assumption holds for (G, e).

In this overview, we give a proof sketch for the case of n = 2 since the basic idea is the same
for the general case. Suppose that there exists a PPT algorithm A that breaks the 2-MCDH
assumption. Then we construct a PPT algorithm B that solves the c-inversion assumption. B
is given [1]R and its goal is to compute [c]−1

R . B sets [1]G := [c]R, picks x′i
$← [2`+λ] and sets

[xi]G := [cx′i + 1]R for i = 1, 2, 3 where ` is an integer such that ord(G) < 2`. This implicitly
defines xi = x′i + c−1 mod ord(G) for i = 1, 2, 3. Since (x′i mod ord(G)) is distributed almost
uniformly and we have gcd(c, ord(G)) = 1, (x′i mod ord(G)) is also almost uniformly distributed
for i = 1, 2, 3. Thus if B gives ([1]G, [x1]G, [x2]G, [x3]G) generated as above to A as input, then
A outputs T = [x1x2x3]2 with non-negligible probability. Here, we have

T = [x1x2x3]2

= [c2(x′1 + c−1)(x′2 + c−1)(x′3 + c−1)]R

= [c2x′1x
′
2x
′
3 + c(x′1x

′
2 + x′2x

′
3 + x′3x

′
1) + (x′1 + x′2 + x′3) + c−1]R.

Therefore if B subtracts [c2x′1x
′
2x
′
3 + c(x′1x

′
2 + x′2x

′
3 + x′3x

′
1) + (x′1 + x′2 + x′3)]R from T , then it

obtains [c−1]R and succeeds in solving the c-inversion problem. Thus the 2-MCDH assumption

4In our definition of the MCDH assumption, x1, . . . , xn+1 are chosen from [2`+λ] instead of [ord(G)] because
ord(G) is unknown in our setting. However, this causes a negligible difference (See Remark 4)
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holds under the c-inversion assumption. In Sec. 6 we show that we can apply the similar
technique for more general assumptions.

2.4 Applications of Self-Bilinear Maps

Here, we give some applications of self-bilinear maps. As already observed in previous works
[CL09, YYHK17], self-bilinear maps imply multilinear maps (or more generally, graded en-
codings [GGH13]) with unbounded multilinearity. By this feature, if we instantiate existing
multi-linear map-based scheme by using self-bilinear maps, then the resulting scheme gains
certain advantages. Here we give example of multiparty non-interactive key exchange (NIKE),
broadcast encryption, and homomorphic signatures. We believe that self-bilinear maps have
further applications.

Multiparty NIKE and broadcast encryption. Boneh and Silverberg [BS02] gave con-
structions of non-interactive key exchange (NIKE) and broadcast encryption schemes based on
a multilinear map. If we instantiate these schemes by self-bilinear maps, the resulting schemes
gain the following two advantages. First, we need not bound the maximum number of users at
the setup phase. Second, the public key size of each user does not depend on the number of
users. Boneh and Silverberg [BS02] also gave a construction of a multilinear-map-based broad-
cast encryption scheme based on the similar idea to their NIKE scheme. Similarly to NIKE, if
we replace a multilinear map with a self-bilinear map in their construction, we obtain a broad-
cast encryption such that we need not bound the maximum number of users at the setup phase,
and the sizes of ciphertext and public key of each user does not depend on the number of users.
The formal descriptions of our schemes are given in Sec 7.1 and 7.2.
Homomorphic signatures. Here, we give a construction of homomorphic signatures based
on a self-bilinear map. Our construction is based on the scheme proposed by Catalano et al.
[CFW14] based on a multilinear map. Their scheme supports any polynomial of degree p(λ) for
a priori fixed polynomial p, and the security is proven under the 2p(λ)-APMDH assumption.
Our idea is to replace a multilinear map with a self-bilinear map. The reason the scheme in
[CFW14] only supports polynomials of bounded polynomial degree is that existing multilinear
maps only have a polynomially bounded level of multilinearity. On the other hand, a self-bilinear
map gives an exponentially unbounded level multilinear map. Therefore if we instantiate the
scheme in [CFW14] with such a multilinear map, the resulting scheme supports polynomials of
exponentially unbounded degree, which is equivalent to polynomial size circuits of unbounded
depth. As a result, we obtain fully homomorphic signatures that supports all polynomial size
circuits of unbounded depth based on a self-bilinear map. We prove that our scheme is selectively
secure under the `-APMDH assumption for all ` such that log(`) = poly(λ). Since we give a
candidate construction of a self-bilinear map that satisfies the above assumption in Sec. 6, we
can instantiate our scheme with our self-bilinear map. To the best of our knowledge, this is
the first construction of a fully homomorphic signatures for unbounded depth circuits without
relying on succinct non-interactive argument of knowledge SNARK [BCCT12]. The definition
of fully homomorphic signatures and the full description of our scheme can be found in Sec 7.3.

3 Preliminaries

3.1 Notations

For any natural number n, [n] denotes the set {1, . . . , n}. x $← S denotes x is randomly chosen

from a finite set S, and x
$← A(y) denotes that x is an output of a randomized algorithm A
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with input y. We say that a function f(·) : N→ [0, 1] is negligible if for all positive polynomials
p(·) and all sufficiently large λ ∈ N, we have f(λ) < 1/p(λ). We say that an algorithm A is
probabilistic polynomial time (PPT) if there exists a polynomial p such that a running time of
A with input length λ is less than p(λ). We often use poly to denote an unspecified polynomial.
For a polynomial p, deg(p) denotes the degree of p. P` denotes the set of all primes smaller
than 2`. For a ring R, [1]R denotes its multiplicative identity, for any integer n, [n]R denotes
n · [1]R, and char(R) denotes the characteristic of R, i.e., the smallest positive integer n such
that [n]R = [0]R. We often denote [0]R by 0. Similarly, for an additive cyclic group G with a
generator [1]G, for any integer n, [n]G denotes n · [1]G, and ord(G) denotes the order of G, i.e.,
the smallest positive integer n such that [n]G = 0. We often denote [0]G by 0. We note that
this bracket notation for G depends on the value of [1]G, and thus it is well-defined only when
[1]G is fixed.

3.2 Factoring Assumption

Here we define the factoring assumption. In this paper, unlike common style of the factoring
assumption in cryptography, we assume the hardness of the factoring w.r.t. unbalanced moduli,
which is written as N = pq for primes p and q such that p is much smaller than q. We note
that the similar assumption was used in [Lip94]. The formal definition of our assumption is as
follows.

Definition 1. We say that the factoring assumption w.r.t. unbalanced moduli holds if for any
PPT algorithm A and any polynomial poly,

Pr[p
$← Pλ, q $← Ppoly(λ); p← A(λ, pq)]

is negligible.

The best known factoring algorithm for RSA moduli of the form N = pq where p is much
smaller than q is the elliptic curve method [Len87], which works in sub-exponential time in
log p ≈ λ. Therefore the above assumption is plausible.

3.3 Self-bilinear Map

Here, we define a self-bilinear map. We note that we use the additive notation rather than the
multiplicative notation as in [CL09] for compatibility with a ring. Looking ahead, we construct
a group with a self-bilinear map based on a ring and the group operation of the group is defined
as the addition of the underlying ring.

Definition 2. (Self-bilinear Map [CL09]) For a cyclic additive group G, a self-bilinear map
e : G×G→ G has the following properties.

• For all X,Y ∈ G and α ∈ Z, it holds that

e(α ·X,Y ) = e(X,α · Y ) = α · e(X,Y ).

• The map e is non-degenerate, i.e, if X,Y ∈ G are generators of G, then e(X,Y ) is also
a generator of G.

A self bilinear map naturally extends to an n-multilinear map for any integer n ≥ 2. This is
done in the following recursive way: suppose that an n-multilinear map en can be constructed
from a self-bilinear map e, then we can construct an (n+ 1)-multilinear map en+1 by defining

en+1(X1, . . . , Xn, Xn+1) := e(en(X1, . . . , Xn), Xn+1).

11



We note that for any X ∈ G and n ∈ Z, en(X, . . . ,X) can be computed by O(log(n)) times
evaluations of e in the similar way to the square-and-multiply algorithm for exponentiations.
Especially, even if n = 2poly(λ), en(X, . . . ,X) can be computed in polynomial time in λ as long
as e is computable in polynomial time in λ. Let [1]G be a generator of G. For x ∈ Z and k ∈ N,
[x]k denotes x · ek([1]G, . . . , [1]G). (If k = 1, then [x]1 denotes [x]G = x · [1]G.) By using this
notation, for any x, y ∈ Z and k, k1, k2 ∈ N, we have

[x]k + [y]k = [x+ y]k

and
e([x]k1 , [y]k2) = [x · y]k1+k2 .

In this way, a self-bilinear map can be seen as a graded encoding system [GGH13] with unique
encodings and unbounded levels. We note that values in a bracket can be reduced modulo
ord(G), i.e., for any x ∈ Z and k ∈ N, we have [x]k = [x mod ord(G)]k. We remark that this
bracket notation depends on a generator [1]G. Therefore when we consider a self-bilinear map
on a group, we always clarify which element is set to be [1]G as a part of public parameters.
In the above way, a self-bilinear map can be seen as a graded encoding system [GGH13] with
unique encodings and exponentially unbounded levels.

4 Straight-line Program

Here, we define a straight-line program (SLP) which is a computation model over ring. Actually,
we define a simplified variant of an SLP which we call a no-input SLP (NI-SLP). We define
two complexity assumptions about NI-SLPs. We prove that these assumptions hold under the
factoring assumption.

4.1 Definition

Here, we define an NI-SLP. An NI-SLP is defined as a usual SLP except that no ring element
is given to a program as input. Actually, for an NI-SLP, a ring on which the computation is
done itself is considered to be an “input” of the program. The following definition of an NI-SLP
is the same as the definition of an SLP in [Bro16] except that no ring element is given to the
program as input.

Definition 3. (straight-line program with no-input) A no-input straight-line program (NI-SLP)
P of length L is written as a sequence of instructions P = (i1, j1, ◦1), . . . , (iL, jL, ◦L) where
ik, jk ∈ {0, 1, . . . , k− 1} and ◦k ∈ {+,−, ·} for all k ∈ [L]. On a ring R, P computes as follows.

1. Let x0 := [1]R.

2. For 1 ≤ k ≤ L, let xk := xik ◦k xjk .

3. Output xL.

We denote the output of P on a ring R by P(R).

Notations. For an NI-SLP P, |P| denotes the length of P, and Pk denotes the NI-SLP given by
the sequence of the first k instructions of P. For any NI-SLPs P1,P2 and ◦ ∈ {+,−, ·}, P1 ◦P2

denotes an NI-SLP that computes P1(R) ◦ P2(R) over any ring R. For any NI-SLP P and an
integer z ∈ Z, z · P denotes an NI-SLP that computes [z]R ◦ P(R) for any ring R. It is easy to
see that we can define them so that we have |P1 ◦P2| = |P1|+ |P2|+1 and |z ·P| ≤ 2 log(z)+ |P|
for any NI-SLPs P1,P2,P and integer z.
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4.2 Complexity Assumptions

Here, we define complexity assumptions about an NI-SLP, which is used in the proof of our
result in Sec. 5. Then we prove that these assumptions hold under the factoring assumption
w.r.t. unbalanced moduli.

Intuitively, the first assumption claims that for any efficiently generated NI-SLP P, if P(Z) 6=
0, then P(Zp) 6= 0 also holds with overwhelming probability when p is uniformly chosen from
Pλ.

Definition 4. We say that the SLP assumption 1 holds if for any PPT algorithm A, AdvSLP-1A (λ) :=

Pr[P← A(1λ), p
$← Pλ; P(Z) 6= 0 ∧ P(Zp) = 0] is negligible.

The second assumption claims that for any efficiently generated NI-SLP P, we have (P(Zp1)
?
=

0) = (P(Zp2)
?
= 0) with overwhelming probability where p1 and p2 are uniformly chosen from

Pλ.

Definition 5. We say that the SLP assumption 2 holds if for any PPT algorithm A, AdvSLP-2A (λ) :=

Pr[P← A(1λ), p1, p2
$← Pλ; (P(Zp1)

?
= 0) 6= (P(Zp2)

?
= 0)] is negligible.

We prove that the above assumptions hold under the factoring assumption w.r.t. unbalanced
moduli.

Theorem 3. If the factoring assumption w.r.t. unbalanced moduli holds, then the SLP assump-
tion 1 and 2 hold.

Before proving the above theorem, we prepare some lemmas.

Lemma 1. For any NI-SLP P of length L, we have |P(Z)| ≤ 22L−1
.

Proof. We prove the lemma by the induction. When L = 1 clearly we have P(Z) ≤ 2. (The

equation holds when P = (1, 1,+).) We assume that |P(Z)| ≤ 22L−1
holds for all NI-SLP P

of length smaller than L. Suppose that P is written as P = (i1, j1, ◦1), . . . , (iL+1, jL+1, ◦L+1).
Then we let P1 = (i1, j1, ◦1), . . . , (iiL+1 , jiL+1 , ◦iL+1) and P2 = (i1, j1, ◦1), . . . , (ijL+1 , jjL+1 , ◦jL+1).

Then clearly we have P(Z) = P1(Z)◦L+1 P2(Z). By the assumption, we have |Pi(Z)| ≤ 22L−1
for

i = 1, 2. Therefore we have |P(Z)| = |P1(Z)| ◦L+1 |P2(Z)| ≤ 22L−1 ◦L+1 22L−1 ≤ 22L . Therefore
the lemma also holds for an NI-SLP with length L+ 1 and thus the lemma is proven. ut

ut

Lemma 2. For any NI-SLP P of length L, Pr[q
$← P2L; P(Z) 6= 0 ∧ P(Zq) = 0] is negligible in

L.

Proof. By Lemma 1, we have P(Z) ≤ 22L−1
. Therefore the number of primes that divides P(Z)

is at most 2L−1. On the other hand, by the prime number theorem, the number of primes
smaller than 22L is Ω(22L/L). Therefore when q is uniformly chosen from primes smaller than
22L, the probability that q divides P(Z) is O(L/2L), which is negligible. Clearly, q|P(Z) and
P(Zq) = 0 are equivalent, and thus the probability that P(Zq) = 0 holds is negligible. ut

ut

Lemma 3. If the SLP assumption 1 holds, then the SLP assumption 2 holds.
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Proof. Let A be any algorithm. Then we have

AdvSLP-2
A (λ)

= Pr[P← A(1λ), p1, p2
$← Pλ; (P(Zp1)

?
= 0) 6= (P(Zp2)

?
= 0)]

= Pr[P← A(1λ), p1, p2
$← Pλ; (P(Zp1) = 0 ∧ P(Zp2) 6= 0) ∨ (P(Zp1) 6= 0 ∧ P(Zp2) = 0)]

≤ Pr[P← A(1λ), p1, p2
$← Pλ; (P(Zp1) = 0 ∧ P(Zp2) 6= 0)]

+ Pr[P← A(1λ), p1, p2
$← Pλ; (P(Zp1) 6= 0 ∧ P(Zp2) = 0)]

= 2 · Pr[P← A(1λ), p1, p2
$← Pλ; P(Zp1) = 0 ∧ P(Zp2) 6= 0]

≤ 2 · Pr[P← A(1λ), p1, p2
$← Pλ; P(Zp1) = 0 ∧ P(Z) 6= 0]

= 2 · AdvSLP-1
A (λ).

Therefore if the SLP assumption 1 holds, then the SLP assumption 2 holds. ut

Then we prove Theorem 3.

Proof. (of Theorem 3.) By Lemma 3, what we have to prove is that the SLP assumption 1
holds under the factoring assumption w.r.t. unbalanced moduli. Let A be a PPT adversary
that breaks the SLP assumption 1 whose running time is at most T (λ). Then we construct

an algorithm B that factorizes N = pq where p
$← Pλ and q

$← Ppoly(λ) for poly = 2T . The
description of B is as follows.

B(`,N): It computes P← A(1`) and s = P(ZN ), and output gcd(s,N).

We show the correctness of the above algorithm. First, we have

Pr[P(Zp) = 0 ∧ P(Zq) 6= 0]

= Pr[P(Zp) = 0 ∧ P(Z) 6= 0]− Pr[P(Zp) = 0 ∧ P(Zq) = 0 ∧ P(Z) 6= 0]

> AdvSLP-1
A (λ)− Pr[P(Zq) = 0 ∧ P(Z) 6= 0].

Since P is generated by A whose running time is at most T (λ), the length of P is at most T (λ).
Therefore by Lemma 2, Pr[P(Zq) = 0∧P(Z) 6= 0] is negligible. Therefore, if AdvSLP-1

A (λ) is non-
negligible, then Pr[P(Zp) = 0∧P(Zq) 6= 0] is also non-negligible. Therefore with non-negligible
probability, we have gcd(s,N) = p, and B succeeds in factoring N . ut

5 Inversion-hard Ring

In this section, we first formalize a ring with efficient operations as a ring scheme, and for any
prime c, define the c-inversion assumption for it. Next, we define the GRM that can capture
unknown characteristic rings. Then we prove that for any prime c, the c-inversion assumption
holds in the GRM under the factoring assumption for a certain ring distribution. Finally, we
show an evidence that a certain complexity assumption is necessary for proving the generic
hardness of the c-inversion assumption.

5.1 Ring Scheme

Here, we define a ring scheme and the c-inversion assumption for it. A ring scheme consists of
PPT algorithms (RGen,Add,Sub,Mult).
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RGen(1λ)→ PP : This algorithm takes the security parameter 1λ as input and outputs the
public parameter PP , which specifies a ring R whose characteristic is at most 2` and its
multiplicative identity [1]R. We assume that [1]R can be computed efficiently from PP .
Though PP is input to all other algorithms, we omit them for simplicity.

Add(X,Y )→ X + Y : This algorithm takes two elements X,Y ∈ R as input and outputs X +
Y ∈ R.

Sub(X,Y )→ X − Y : This algorithm takes two elementsX,Y ∈ R as input and outputsX−Y ∈
R.

Mult(X,Y )→ X · Y : This algorithm takes two elements X,Y ∈ R as input and outputs X ·Y ∈
R.

c-inversion assumption. Here, for a prime c, we define the c-inversion assumption for a ring
scheme. We say that the c-inversion assumption holds for a ring scheme if no PPT algorithm
can compute [c]−1

R where −1 denotes the multiplicative inverse.

Definition 6. Let c be a prime (that may depend on λ). The c-inversion assumption holds for
a ring scheme (RGen,Add,Sub,Mult) if for any PPT algorithm A,

AdvinvA,c(λ) := Pr[PP
$← GGen(1λ) : [c]−1

R
$← A(PP, c)]

is negligible where R denotes the ring specified by PP .

Remark 1. We can also define a problem to compute [x]−1
R given [x]R for a randomly chosen

ring element x similarly to the case for groups with infeasible inversion [Hoh03, Mol03, ILOP04,
AC18] (We call the problem random-inversion problem.) Actually, if c is coprime to the char-
acteristic of R and almost all elements of R is invertible, then the c-inversion assumption on
the ring implies that the random-inversion problem is hard. We briefly describe the reduction
below. A reduction algorithm randomly chooses [x′]R

$← R, set [x]R := [c]R · [x′]R and gives
[x]R to an algorithm that solves the random-inversion assumption with non-negligible probabil-
ity. Since we assume that c is coprime to the characteristic of R and almost all elements of R
are invertible, the distribution of [x]R is almost uniform on R, and thus the algorithm returns
[x]−1

R = [c]−1
R · [x′]

−1
R with non-negligible probability. Then the reduction algorithm multiply this

by [x′]R to obtain [c−1]R, and breaks the c-inversion assumption. This completes the reduction.

5.2 Generic Ring Model

Here, we extend the GRM to capture rings of unknown characteristics. Our GRM is defined by
modifying the model given by Jager and Schwenk [JS09] in the following three aspects. First,
our model is parametrized by a distribution DR of a ring, and ring is chosen according to DR
whereas a ring is fixed in the model in [JS09]. Second, while their model allowed a generic al-
gorithm to compute a multiplicative inverse, our model does not allow this because that cannot
be computed on a ring of unknown characteristic. Third, while a random ring element is chosen
as a “secret value” at the beginning of the game in their model, there is no secret value in our
model. This is because the only problem we consider in our model is the c-inversion problem
that does not have any secret value. (In our setting, the secret is a ring itself.) The formal
definition of our generic ring model is as follows.

Definition of DR-generic ring model. Let DR = {DR(λ)}λ∈N be a sequence of a distribution
DR(λ) of a ring R. In the DR-generic ring model, a generic algorithm A is given 1λ as input
and given access to an oracle Oring described below.
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Oring picks a ring R according to the distribution DR(λ). It maintains an NI-SLP P, which
is set to be empty sequence at the beginning. A is allowed to make the following two kinds of
query, the operation and equal queries.

operation query: When A makes an operation query (i, j, ◦) ∈ {0, . . . , |P|} × {0, . . . , |P|} ×
{+,−, ·}, then Oring append (i, j, ◦) to P.

equal query: When A makes an equal query (i, j) ∈ {0, . . . , |P|} × {0, . . . , |P|}, then O returns
true if Pi(R) = Pj(R) and false otherwise.

We define the c-inversion assumption in this model.

Definition 7. We say that the c-inversion assumption holds in the DR-generic model if for any
PPT generic algorithm A,

Advgen-invA,DR,c(λ) := Pr[i∗
$← AOring(1λ, c) : Pi∗(R) = [c]−1

R ]

is negligible where Oring denotes the oracle in the DR-generic model, R denotes a ring chosen
by Oring and P denotes an NI-SLP maintained by Oring at the end of the game.

5.3 Generic Hardness of the c-inversion Assumption

Here, we prove that the c-inversion assumption holds for any prime c in the DR-generic ring
model if the factoring assumption holds where DR is the distribution of R = Zp for randomly

chosen prime p
$← P`.

Theorem 4. (Parametrized version of Theorem 1.) Let DR be the distribution of R = Zp for

randomly chosen prime p
$← P`. Then for any prime c and PPT generic algorithm A, there

exist PPT algorithms B and C such that the following holds:

Advgen−invA,DR,c (λ) ≤ Q · AdvSLP-2B (`) + AdvSLP-1C (`)

where Q is the maximum number of A’s equal query. Especially, if ` = Ω(λ) and the factoring
assumption w.r.t. unbalanced moduli holds, then the c-inversion assumption holds in the DR-
generic ring model.

Remark 2. In an asymptotic sense, we can set ` = λ. However, since we only give reductions
for SLP assumptions 1 and 2 from the factoring, for which there exists a sub-exponential time
attack, there may exist sub-exponential attack against these assumptions. In that case, we have
to set ` larger than λ (say, λ3) for obtaining λ-bit security.

Proof. (of Theorem 4.) The latter part easily follows from the former part and Theorem 3. We
prove the former part by considering the following sequence of games for a generic algorithm A.

Game 1: This game is the original game that defines the c-inversion assumption as described
in Sec. 5.2. For clarity, we describe the game again. In this game, Oring picks p

$← P`
and initialize P to be an empty sequence. When A makes an operation query (i, j, ◦),
then Oring append (i, j, ◦) to P. When A makes an equal query (i, j), then Oring returns
true if Pi(Zp) = Pj(Zp) and false otherwise. When A outputs i∗, we say that A wins if
Pi∗(Zp) = [c]−1

Zp holds.

Game 2: This game is the same as the above game except that Oring uses a independently
random prime pk instead of p for the k-th equal query for each k. That is, when A makes
the k-th equal query (i, j), the oracle Oring picks an independently random prime pk

$← P`
and returns true if Pi(Zpk) = Pj(Zpk) and false otherwise. We note that the winning
condition of A remains unchanged, and it is decided by using p.
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Let Tk be the event that A wins in Game k for k = 1, 2. Clearly, we have Advgen−invA,DR,c (λ) =
Pr[T1]. We prove that Pr[T1] is negligible by the following lemmas. Let Q be the maximum
number of A’s equal query.

Lemma 4. There exists a PPT algorithm B such that |Pr[T2]−Pr[T1]| ≤ Q ·AdvSLP-2B (`) holds.

Proof. For 0 ≤ k ≤ Q, we consider hybrids Hk. where the oracle Oring works as in Game 2 until
the k-th query, and as in Game 1 from the (k+1)-th query. Then it is clear that H0 is equivalent
to Game 1 and HQ is equivalent to Game 2. Let Sk be the event that A wins in Hk. By the

triangle inequality, we have |Pr[T2]− Pr[T1]| ≤
∑Q

k=1 |Pr[Sk]− Pr[Sk−1]|. In the following, we
prove that for any 1 ≤ k ≤ Q, |Pr[Sk]− Pr[Sk−1]| ≤ AdvSLP-2

B holds. To do so, we construct an
adversary B against the SLP assumption 2 by using A. The description of B is as follows.

B(1λ): B gives 1λ to A as input. Then it simulates the oracle Oring in Hk−1 and Hk until
A makes k-th equal query (i, j) without choosing p. (We note that Hk−1 and Hk are
identical until this point. We also note that p is not needed until this point, and thus
B can simulate it without choosing p.) Let P be an NI-SLP maintained by Oring at this
point. B appends (i, j,−) to P to generate P′ and outputs P′.

Then we prove that B works correctly. Let pk be a prime randomly chosen from P` that is
supposed to be chosen by Oring when responding the k-th equal query in Hk. We remark that
B halts before simulating the oracle for the k-th equal query, and thus it works independently
of pk. Let Fk be the event that (Pi(Zp) = Pj(Zp) ∧ Pi(Zpk) 6= Pj(Zpk)) or (Pi(Zp) 6= Pj(Zp) ∧
Pi(Zpk) = Pj(Zpk)) holds where P denotes an NI-SLP maintained by Oring at the point of
A’s k-th equal query. Hk−1 and Hk are completely the same unless Fk occurs. Therefore we
have |Pr[Sk] − Pr[Sk−1]| ≤ Pr[Fk]. If Fk occurs, then we have (P′(Zp) = 0 ∧ P′(Zpk) 6= 0) or
(P′(Zp) 6= 0 ∧ P′(Zpk) = 0). By the definition, the probability this event occurs is AdvSLP-2

B (`).
(We remark again that B works independently of p and pk.) Then we have |Pr[Sk]−Pr[Sk−1]| ≤
Pr[Fk] ≤ AdvSLP-2

B (`) and thus the lemma follows. ut
ut

Lemma 5. There exists a PPT algorithm C such that Pr[T2] ≤ AdvSLP-1C (`) holds.

Proof. We construct an adversary C against the SLP assumption 1 by using A. the description
of C is as follows.

C(1λ): C simulates Game 2 for A until A outputs i∗ without choosing p. (We note that Game 2
can be simulated without using p until deciding ifA wins.) Let P be an NI-SLP maintained
by Oring at this point. B sets P′ := c · Pi∗ − 1 and outputs P′.

We prove that C works correctly. If A wins in Game 2, Pi∗(Zp) = [c]−1
Zp holds, and equivalently,

P′(Zp) = 0 holds for P′ output by C. By the definition of P′, we have P′(Z) 6= 0. Therefore, the
probability that P′(Zp) = 0 holds is AdvSLP-2

C (`). (We remark that C works independently of p.)
Thus the lemma follows. ut

ut

The theorem is proven by combining the above lemmas. ut
ut

Remark 3. We can also rule out generic ring algorithms based on essentially the same proof
that compute b · [c−1]R for integers b, c adaptively chosen by the algorithm such that c does not
divide b. We gave the proof for the simpler case where b = 1 and c is a fixed prime because this
is sufficient for the application for self-bilinear maps given in Sec. 6.
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5.4 Is Factoring Assumption Necessary?

For proving the generic hardness of the c-inversion assumption, we assume the factoring assump-
tion. One may wonder if this can be done without assuming any unproven assumption. Here,
we give a partial evidence that the factoring assumption (or some assumption of similar nature)
is needed. Specifically, we relate the hardness of the problem to the straight-line complexity
[SS95] of factorials. For an integer N , the straight-line complexity τ(N) of N is defined as the
minimum length of a NI-SLP P such that P(Z) = N . That is, the straight-line complexity is
the smallest number of additions or multiplications to compute N starting from 1. Though it is
conjectured that τ(n!) is super polynomial in log(n) [SS95, Che04, Mar13], this has been open
for a long time. Here, we consider the uniform version of this conjecture 5.

Uniform Factorial Conjecture. . There does not exist a PPT algorithm A that is given n
as input and outputs an NI-SLP Pn such that Pn(Z) = n! for all n ∈ N.

Though this conjecture is plausible, it still seems difficult to prove that this conjecture is
unconditionally true since this is just a uniform variant of the above mentioned long standing
open problem . Here, we prove that if the above conjecture is false, i.e., if there exists a PPT
algorithm A that is given n as input and outputs an NI-SLP Pn such that Pn(Z) = n! for all
n ∈ N, then we can compute the characteristic char(R) of any ring R in polynomial time in
log(char(R)) as long as char(R) is a prime. If char(R) is known, then the c-inversion assumption
is trivially broken by the extended Eucledian algorithm. The algorithm to compute char(R)
is given as follows. For any integer n, let Pn be an NI-SLP that computes n! on Z such that
|Pn| = poly(log n). Let R be a ring whose characteristic is a prime smaller than 2`. First, we
consider the following recursively defined procedure.

procedure(A,B): If A = B, it outputs A. Else it computes C := A+B
2 and PC

$← A(C). If
PC(R) = 0, then do procedure(A,C). Else do procedure(C,B).

By using this procedure, char(R) can be computed by executing procedure(0, 2`). This can be
seen by the fact that PC(R) = 0 if and only if C ≥ char(R) and thus this algorithm gives the
binary search for char(R). Next, we verify that this algorithm runs in polynomial time in `. It
is easy to see that the recursion depth of procedure is `. In each execution of procedure, PC(R)
is computed once for some 0 ≤ C ≤ 2`. Since we have |PC | = poly(log(C)) ≤ poly(`) by the
assumption, the whole algorithm runs in polynomial time in `.

Therefore to prove the generic hardness of the c-inversion problem or even ensuring that
hardness of computing a characteristic of a ring of a prime characteristic, we have to assume
at least that the uniform factorial conjecture is true, which seems difficult to unconditionally
prove.

It has been widely recognized that there is a close relationship between the complexity of
computing factorials and interger factorization (e.g., [Sha79, Che04]). Indeed, the uniform fac-
torial conjecture can be easily reduced to the factoring assumption by a binary search algorithm
similar to the one described above. On the other hand, we are unaware of any other standard
assumption that would imply the uniform factorial conjecture. For example, even if we assume
the existence of iO, it is not clear if the uniform factorial conjecture is true or not. Thus, if we
want to reduce the generic hardness of the c-inversion problem to a standard assumption, it is
somehow unavoidable to assume the factoring assumption (unless we find any other standard
assumption that implies the uniform factorial conjecture).

5A related discussion can be found in [Che04, Sec. 5]
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6 Self-bilinear Map

In this section, we formalize a group with efficiently computable self-bilinear map as a self-
bilinear group scheme. We define several complexity assumptions including the MCDH as-
sumption for a self-bilinear map group scheme. We construct a self-bilinear group scheme that
satisfies those assumptions based on a ring scheme that satisfies the c-inversion assumption for
a prime c. We also give a definition of the generic self-bilinear map model (GSBM). By com-
bining with the result in Sec. 5, we show that several assumptions holds in the model under
the factoring assumption w.r.t. unbalanced moduli.

6.1 Self-bilinear group scheme.

Here, define a self-bilinear group scheme. A self-bilinear map group scheme consists of PPT
algorithms (GGen,Add, Sub,Map).

GGen(1λ)→ PP : This algorithm takes the security parameter 1λ as input and outputs public
parameters PP which specifies a cyclic group G whose order is at most 2`, a generator
[1]1 of G and a self-bilinear map e on G. e is required to satisfy the properties given in
Def. 2. PP is input to all other algorithms below, but we omit them for simplicity.

Add(X,Y )→ X + Y : This algorithm takes X,Y ∈ G as input and outputs X+Y . Equivalently,
if X = [x]k and [y]k for x, y, k ∈ Z, then it outputs [x+ y]k.

Sub(X,Y )→ −X: This algorithm takes two elements X,Y ∈ G as input and outputs X + Y .
Equivalently, if X = [x]k and [y]k for x, y, k ∈ Z, then it outputs [x− y]k.

Map(X,Y )→ e(X,Y ): This algorithm takes two elements X,Y ∈ G as input and outputs
e(X,Y ). Equivalently, if X = [x]k1 and [y]k2 for x, y, k1, k2 ∈ Z, then it outputs [x·y]k1+k2 .

Hardness assumptions. Here, we define hardness assumptions for a self-bilinear group. First,
we define the multilinear computational Diffie-Hellman (MCDH) assumption, which was origi-
nally defined for multilinear maps [GGH13]. We extend the definition to the one for self-blinear
maps.

Definition 8. n-MCDH assumption. For n ∈ N, we say that the n-multilinear computational
Diffie-Hellman (n-MCDH) assumption holds if for any PPT adversary A,

Pr

[
[

n+1∏
i=1

xi]n ← A(PP, {[xi]1}i∈[n+1])

]

is negligible where PP ← GGen(1λ) and x1, . . . , xn+1
$← [2`+λ].

Remark 4. The assumption is equivalent if we choose x1, . . . , xn+1
$← [ord[G]] since the statis-

tical distance of these distributions are negligible. Since we cannot compute ord(G) efficiently
from PP , we adopt this definition. The same remark is applied to the all other assumptions
w.r.t. self-bilinear maps defined in this paper.

Next, we define the augmented power multilinear Diffie-Hellman (APMDH) assumption,
which was originally defined for multilinear maps [CFW14]. We extend the definition to the
one for self-blinear maps.
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Definition 9. `-APMDH assumption. For ` ∈ N, we say that the `-augmented power multilinear
Diffie-Hellman (`-APMDH) assumption holds if for any PPT adversary A,

Pr[[x`−1
1 (x2x3)`]`

$← A(PP, [x1]1, [x2]1, [x3]1, [x1x2]1, [x1x3]1, [x1x2x3]1)]

is negligible where PP ← GGen(1λ) and x1, x2, x3
$← [2`+λ].

Next, we define more general parametrized assumption which we call the multilinear gen-
eralized Diffie-Hellman (MGDH) assumption. This can be seen as a family of Diffie-Hellman
type computational assumptions including the MCDH and APMDH assumptions. This is an
analogue of the multilinear generalized Diffie-Hellman with auxiliary information (AI-MGDH)
assumption defined for self-bilinear maps with auxiliary information [YHK16].

Definition 10. (F , f∗, `∗)-MGDH assumption. Let F be a set of monic monomials with n
variables, f∗ be a monic monomial with n variables, and `∗ be a natural number. We say that
the (F , f∗, `∗)-multilinear generalized Diffie-Hellman ((F , f∗, `∗)-MGDH) assumption holds if
for any PPT adversary A,

Pr[[f∗(x1, . . . , xn)]`∗
$← AOF (PP )]

is negligible where PP ← GGen(1λ), x1, . . . , xn
$← [2`+λ] and OF is an oracle which is given

f ∈ F and returns [f(x1, . . . , xn)]1.

6.2 Construction based on Inversion-hard Ring.

Here, we give a construction of a self-bilinear group scheme based on a ring scheme. Then
we show that if the c-inversion assumption for the underlying ring scheme holds, then various
hardness assumptions including the MCDH assumption and APMDH assumption hold for the
resulting self-bilinear group scheme.

Let (RGenring,Addring,Subring,Multring) be a ring scheme and c be a prime such that gcd(c, char(R)) =

1 with overwhelming probability where R is a ring specified by PP
$← RGenring(1λ). The con-

struction is as follows.

GGensbm(1λ): This algorithm computes PP
$← RGenring(1λ) and simply outputs PP . Let R and

[1]R be the ring and the multiplicative identity specified by PP . As public parameters of
self-bilinear group scheme, PP specifies a group G, a generator [1]G ∈ G and a self-bilinear
map e as follows. G is defined as the additive subgroup of R generated by [1]R and let
[1]G := [c]R. The self-bilinear map e is defined by e(X,Y ) = X · Y where · denotes the
multiplication on R. It is easy to verify that e is actually a self-bilinear map on G.

Addsbm(X,Y ) : This algorithm computes Addring(X,Y ) and outputs its output.

Subsbm(X,Y ): This algorithm computes Subring(X,Y ) and outputs its output.

Mapsbm(X,Y ): This algorithm computes Multring(X,Y ) and outputs its output.

The scheme is correct if the underlying ring scheme is correct. For a self-bilinear map e
defined as above, we have e([x]1, [y]1) = [cxy]1 because we have e([x]1, [y]1) = e([cx]R, [cy]R) =
[cx]R · [cy]R = [c2xy]R = [cxy]1. We remark that we have [x]n = [cnx]R because we have
[x]n = x · en([1]1, . . . , [1]1) = x · [cn−1]1 = x · [cn]R = [cnx]R.

Hardness assumptions. Here, we prove that the complexity assumptions defined in Sec 6.1
hold for the above scheme if the c-inversion assumption holds for the underlying ring scheme.
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Specifically, for any integers n, `, we prove that the n-MCDH holds under the c-inversion as-
sumption and the `-APMDH assumption holds under the c-inversion assumption. As an ex-
tension of these results, we give a sufficient condition of parameters (F , f∗, `∗) for which the
(F , f∗, `∗)-MGDH assumption holds under the c-inversion assumption.

First, we prove that the MCDH assumptions holds under the c-inversion assumption.

Theorem 5. (Formal version of Theorem 2.) If the c-inversion assumption holds for the
underlying ring scheme, then for any integer n, the n-MCDH assumption holds for the above
self-bilinear group scheme.

Proof. We assume that there exists a PPT adversary A that breaks the n-MCDH assumption
and construct a PPT adversary B that breaks the c-inversion assumption. The description of
B is as follows.

B(PP ): B picks x′1, . . . , x
′
n+1

$← [2`+λ] and sets [xi]1 := [cx′i + 1]R for i ∈ [n + 1]. Then B
runs A with an input (PP, {[xi]1}i∈[n+1]) to obtain T , and computes A :=

∏n
i=1(cx′i + 1)

and S := T − [x′n+1 · A]R − [c−1 · (A − 1)]R. Here, we remark that since A ≡ 1 mod c,
c−1 · (A− 1) is an integer and thus B can compute [c−1 · (A− 1)]R. Then it outputs S.

We show that B works correctly. First, we remark that in the simulation by B, for i ∈ [n+ 1],
xi is defined as xi = x′i + c−1 mod ord(G) since it sets [xi]1 := [cx′n+1 + 1]R and we defined
[1]1 = [c]R. Since (x′i mod ord(G)) is distributed almost uniformly on Zord(G) and c is coprime
to ord(G), (xi mod ord(G)) is also distributed almost uniformly on Zord(G) and especially [xi]1 is
almost uniformly distributed on G as in a problem instance of the MCDH assumption. Thus if A
breaks the n-MCDH assumption, then A outputs [

∏n+1
i=1 xi]n with non-negligible probability also

in the simulation by B. If T = [
∏n+1
i=1 xi]n, then we have T = [

∏n+1
i=1 xi]n = [

∏n+1
i=1 (x′i + c−1)]n =

[cn
∏n+1
i=1 (x′i + c−1)]R = [(

∏n
i=1(cx′i + 1))(x′n+1 + c−1)]R = [x′n+1 ·A+ c−1 · (A− 1) + c−1]R. Thus

we have S = T −x′n+1 ·A− c−1 · (A− 1) = [c−1]R and thus B succeeds in solving the c-inversion
problem. ut

The following theorem state that the APMDH assumption holds under the c-inversion as-
sumption.

Theorem 6. If the c-inversion assumption holds for the underlying ring scheme, then for any
integer ` such that log ` = poly(λ), the `-APMDH assumption holds for the above self-bilinear
group scheme.

We omit the proof because this theorem follows as a corollary of Theorem 7. (See Example
1).

Next, we prove a more general theorem which gives a sufficient condition of parameters
(F , f∗, `∗) such that the (F , f∗, `∗)-MGDH assumption holds under the c-inversion assumption.
Before stating our theorem, we prepare some definitions.

Definition 11. For a monic monomial f defined by f(x1, . . . , xn) =
∏n
i=1 x

ei
i , we define its

corresponding polynomial f̄ by f̄(x1, . . . , xn) :=
∑n

i=1 ei · xi.

Definition 12. For a family F of monic monomials with n variables, a monic monomial f∗

with n variables and an integer `∗, we say that (F , f∗, `∗) is MGDH-compatible if we have
n = poly(λ), log(deg(f)) = poly(λ) for all f ∈ F , log(deg(f∗)) = poly(λ) and log `∗ = poly(λ),
and there exists a tuple of constant (a1, . . . , an) ∈ Zn (that does not depend on λ) such that
f̄(a1 . . . , an) + 1 ≥ 0 for all f ∈ F , f̄∗(a1, . . . , an) + `∗ + 1 ≤ 0.

Then our theorem is stated as follows. Actually, a similar theorem for a self-bilinear map
with auxiliary information was given in [YHK16].
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Theorem 7. If the c-inversion assumption holds for the underlying ring scheme and (F , f∗, `∗)
is MGDH-compatible, then the (F , f∗, `∗)-MGDH assumption holds for the above self-bilinear
group scheme.

Proof. We assume that there exists an adversary A that breaks the (F , f∗, `∗)-MGDH assump-
tion. We construct an adversary B that breaks the c-inversion assumption based on A. Let
(a1, . . . , an) ∈ Zn be a tuple of integers such that f̄(a1 . . . , an) + 1 ≥ 0 holds for all f ∈ F
and f̄∗(a1, . . . , an) + `∗ + 1 ≤ 0. (Such a tuple exists because we assume that (F , f∗, `∗) is
MGDH-compatible.) The description of B is as follows.

B(PP ): B picks x′1, . . . , x
′
n

$← [2`+λ] and gives PP to A. For each A’s query f ∈ F defined

by f(x1 . . . xn) =
∏n
i=1 x

ei
i , B computes [c(f̄(a1,...,an)+1)

∏n
i=1(cx′i + 1)ei ]R and returns it

to A. (Here, x1, . . . , xn are implicitly defined by xi := cai(cx′i + 1) mod ord(G).) Let

T be A’s output. Suppose that f∗ is defined by f∗(x1, . . . , xn) =
∏n
i=1 x

e∗i
i . It computes

S := [
∏n
i=1(cx′i+1)e

∗
i −1

c ]R. Here, we remark that it is non-trivial for B to compute S because
a ring scheme only provides addition, subtraction and multiplication algorithms and does
not provide a division algorithm. However, in fact, S can be computed in polynomial time
without using a division. We prove it later. Then B computes T ′ := c−(f∗(a1,...,an)+`∗+1) ·
T − S and outputs T ′.

The above completes the description of B. We show that B works correctly. First, we
remark that in the simulation by B, for i ∈ [n], xi is defined as xi = cai(cx′i + 1) mod ord(G).
Since (x′i mod ord(G)) is distributed almost uniformly on Zord(G) and c is coprime to ord(G),
(xi mod ord(G)) is also almost uniformly distributed on Zord(G) as in the problem instance
of the MGDH assumption. Then we show that B simulates the oracle OF correctly for A.
When A queries f ∈ F defined by f(x1 . . . xn) =

∏n
i=1 x

ei
i , the oracle is supposed to return

[f(x1, . . . , xn)]1. Here, we have

[f(x1, . . . , xn)]1 = [c ·
n∏
i=1

(cai(cx′i + 1))ei ]R

= [c(f̄(a1,...,an)+1)
n∏
i=1

(cx′i + 1)ei ]R.

Therefore the simulation by B is correct. Hence if A breaks the MGDH assumption, then it
outputs T = [f∗(x1, . . . , xn)]`∗ with non-negligible probability in the simulation by B. Then we
have

T = [f∗(x1, . . . , xn)]`∗

= [c`
∗ ·

n∏
i=1

x
e∗i
i ]R

= [c`
∗ ·

n∏
i=1

(cai(cx′i + 1))e
∗
i ]R

= [cf̄
∗(a1,...,an)+`∗ ·

n∏
i=1

(cx′i + 1)e
∗
i ]R

= cf̄
∗(a1,...,an)+`∗+1 · (S + [c−1]R)
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Therefore we have T ′ := c−(f∗(a1,...,an)+`∗+1) · T − S = [c−1]R. Therefore B succeeds in breaking
the c-inversion assumption.

What is left is to prove that S = [
∏n
i=1(cx′i+1)e

∗
i −1

c ]R can be computed in polynomial time by
B. We fix x1, . . . , xn and define a function g : Zn → R as

g(e1, . . . , en) :=

[∏n
i=1(cxi + 1)ei − 1

c

]
R

.

Then it is easy to see that we have

g(e1, . . . , ek, 0, . . . , 0) = (cxk + 2) · g(e1, . . . , ek − 1, 0, . . . , 0)

−(cxk + 1) · g(e1, . . . , ek − 2, 0, . . . , 0)

for any k ∈ [n], e1, . . . , ek−1 ∈ Z≥0 and ek ∈ Z≥2. We also have

g(e1, . . . , ek−1, 1, 0, . . . , 0) = (cxk + 1) · g(e1, . . . , ek−1, 0, 0, . . . , 0) + [xk]R

Therefore if we let

A =

(
[cxi + 2]R [−(cxi + 1)]R

[1]R [0]R

)
then we have (

g(e1, . . . , ek−1, ek, 0, . . . , 0)
g(e1, . . . , ek−1, ek − 1, 0, . . . , 0)

)
= A

(
g(e1, . . . , ek−1, ek − 1, 0, . . . , 0)
g(e1, . . . , ek−1, ek − 2, 0, . . . , 0)

)
= Aek−1

(
g(e1, . . . , ek−1, 1, 0, . . . , 0)
g(e1, . . . , ek−1, 0, 0, . . . , 0)

)
= Aek−1

(
(cxk + 1) · g(e1, . . . , ek−1, 0, 0, . . . , 0) + [xk]R
g(e1, . . . , ek−1, 0, 0, . . . , 0)

)
By using the standard square-and-multiply algorithm, Aek−1 can be computed by O(log(ek))
matrix multiplications, each of which can be computed by constant number of additions and mul-
tiplications onR. Therefore if g(e1, . . . , ek−1, 0, 0, . . . , 0) is given, then g(e1, . . . , ek−1, ek, 0, . . . , 0)
can be computed by polynomial number of additions and multiplications if log c, log x1,. . . ,
log xn and log e1, . . . , log en are polynomial in λ. Since we have g(0, . . . , 0) = [0]R, one can
compute S = g(e∗1, . . . , e

∗
n) in polynomial time by computing g(e∗1, 0, . . . , 0), g(e∗1, e

∗
2, 0, . . . , 0),

. . . , g(e∗1, . . . , e
∗
n) in order by using the above algorithm. ut

We give an example of implication of the above theorem. Namely, we show that Theorem 6
can be reduced to Theorem 7.

Example 1. If we set n = 3, F = {f1, f2, f3, f4, f5, f6} and f∗(x1, x2, x3) := x`−1
1 (x2x3)`

where f1(x1, x2, x3) := x1, f2(x1, x2, x3) := x2, f3(x1, x2, x3) := x3, f4(x1, x2, x3) := x1x2,
f5(x1, x2, x3) := x1x3, and f6(x1, x2, x3) := x1x2x3, then the (F , f∗, `)-MGDH assumption is
equivalent to the `-APMDH assumption. If we set a1 = 1, a2 = −1 and a3 = −1, then we
have f̄1(a1, a2, a3) + 1 = 2, f̄2(a1, a2, a3) + 1 = 0, f̄3(a1, a2, a3) + 1 = 0, f̄4(a1, a2, a3) + 1 = 1,
f̄1(a1, a2, a3)+1 = 1, f̄1(a1, a2, a3)+1 = 0, and f̄∗(a1, a2, a3)+`+1 = (`−1)−`−`+`+1 = 0.
Therefore (F , f∗, `) is MGDH-compatible, and thus the the `-APMDH assumption holds under
the generalized c-inversion assumption.
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6.3 Generic Self-bilinear Map Model

Here, we introduce the generic self-bilinear map model (GSBM) where an algorithm is only
allowed to compute group operations and evaluations of a self-bilinear map independently of
actual representations of group elements. We remark that as shown in [CL09], if an order of a
group with efficiently computable self-bilinear map is known, then even the CDH assumption
does not hold on the group. Therefore in our model, a group is chosen from a distribution
DSB and a generic algorithm cannot know which group was chosen. Actually, our GSBM is
very similar to the GRM defined in Sec 5.2. We just replace additions and multiplications in
the generic ring model by additions on a group and evaluations of a self-bilinear map respectively.

Straight-line Program on Self-bilinear Group. Before describing our model, we define a
straight-line program (SLP) on a self-bilinear map group. Intuitively, that is defined similarly
to an SLP on a ring except that multiplications are replaced by evaluations of a self-bilinear
map. The formal definition is as follows.

Definition 13. (straight-line program for self-bilinear group) A straight-line program (SLP) P
of length L with n inputs is written as a sequence

P = (i1, j1, ◦1), . . . , (iL, jL, ◦L)

where ik, jk ∈ {in1, . . . , inn, 0, 1, . . . , k − 1} and ◦k ∈ {+,−, ·} for all k ∈ [L]. For (G, [1]G, e)
where G is an additive cyclic group, [1]G is a generator of G and e is a self-bilinear map on G,
P computes as follows.

1. Let x0 := [1]R.

2. For 1 ≤ k ≤ n let xink := inputk.

3. For 1 ≤ k ≤ L, let

xk :=

{
xik ◦k xjk if ◦k ∈ {+,−}
e(xik , xjk) if ◦k = ·

4. Output xL.

We denote the output of P with input (input1, . . . , inputn) on a self-bilinear group (G, [1]G, e)
by P(input1, . . . , inputn; (G, [1]G, e)). For an NI-SLP P, |P| denotes the length of P, and Pk
denotes the NI-SLP given by the sequence of the first k elements of P.

Generic self-bilinear map model. The definition of our GSBM is as follows.
Let DSB = {DSB(λ)}λ∈N be a sequence of a distribution DSB(λ) of (G, [1]G, e) where G is

an additive cyclic group such that |G| ≤ 2`, [1]G is a generator of G and e is a self-bilinear map
on G. In the DSB-GSBM, a generic algorithm A is given 1λ as input and allowed to access an
oracle Osbm described below.
Osbm picks a ring R according to the distribution DSB, and chooses secret values X1, . . . , Xn

according to a certain distribution, which depends on a problem to consider. It maintains an
SLP P, which is set to be empty sequence at the beginning. A is allowed to make the following
two kinds of query, the operation and equal queries.

operation query: WhenAmakes an operation query (i, j, ◦) ∈ {in1, . . . , inn, 0, . . . , |P |}×{in1, . . . , inn, 0, . . . , |P |}×
{+,−, ·}, then Osbm append (i, j, ◦) to P.
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equal query: WhenAmakes an equal query (i, j) ∈ {in1, . . . , inn, 0, . . . , |P |}×{in1, . . . , inn, 0, . . . , |P |},
then Osbm returns true if Pi(X1, . . . , Xn; (G, [1]G, e)) = Pj(X1, . . . , Xn; (G, [1]G, e)) and
false otherwise.

Complexity assumptions. Then we define complexity assumptions in this model.

Definition 14. We say that n-MCDH assumption holds in the DSB-GSBM if for any PPT
generic algorithm A in the model,

Pr

[
i∗ ← AOsbm(1λ); Pi∗(X1, . . . , Xn+1; (G, [1]G, e)) = [

n+1∏
i=1

xi]n

]

is negligible where the secret values are chosen as Xi := [xi]1 for xi
$← [2`+λ] for i ∈ [n+ 1].

Definition 15. We say that `-APMDH assumption holds in the DSB-GSBM if for any PPT
generic algorithm A in the model,

Pr[i∗ ← AOsbm(1λ); Pi∗(X1, . . . , X6; (G, [1]G, e)) = [x`−1
1 (x2x3)`]`]

is negligible where the secret values are chosen as X1 := [x1]1, X2 := [x2]1, X3 := [x3]1,

X4 := [x1x2]1, X5 := [x1x3]1 and X6 := [x1x2x3]1 for x1, . . . , x3
$← [2`+λ].

Definition 16. For a set F := {f1, . . . , fm} of monic monomials of n-input, a monic monomial
f∗ of n-input and an integer `∗, we say that the (F , f∗, `∗)-MGDH assumption holds in the DSB-
GSBM if for any PPT generic algorithm A in the model,

Pr[i∗ ← AOsbm(1λ); Pi∗(X1, . . . , Xn; (G, [1]G, e)) = [f∗(x1, . . . , xn)]`

is negligible where the secret values are chosen as Xj := [fj(x1, . . . , xn)]1 for j ∈ [m] where

xi
$← [2`+λ] for i ∈ [n].

Generic hardness of complexity assumptions. In the following, we let DSB be a distribu-
tion of (G, [1]G, e) where G is a additive group Zp, [1]G := c, and a self-bilinear map e is defined
by e([x]G, [y]G) = [cxy]G for a prime number c ≥ 2` where p is uniformly chosen from P`.

We can reduce the MCDH, APMDH and MGDH assumptions in DSB-generic self-bilinear
group model to the c-inversion assumption in the DR-generic ring model based on similar argu-
ments to proofs of Theorem 5, 6 and 7 where DR is a distribution of R = Zp for p

$← P`. Since
the c-inversion assumption holds in the DR-generic ring model under the factoring assumption
w.r.t. unbalanced moduli as shown in Theorem 4, the above assumptions also hold under the
same assumption. Therefore we obtain the following theorems.

Theorem 8. If the factoring assumption w.r.t. unbalanced moduli holds, then for any natural
number n, then the n-MCDH assumption holds in the DSB-GSBM.

Theorem 9. If the factoring assumption w.r.t. unbalanced moduli holds, then for any natural
number `, the `-APMDH assumption holds in the DSB-GSBM.

Theorem 10. If the factoring assumption w.r.t. unbalanced moduli holds and (F , f∗, `∗) is
MGDH-compatible, then (F , f∗, `∗)-MGDH assumption holds in the DSB-GSBM.
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7 Applications of Self-bilinear Map

Here we discuss applications of a self-bilinear map.

7.1 Multiparty NIKE

Here, we give a definition of a multiparty NIKE. Then we give a construction of a multiparty
NIKE scheme based on a self-bilinear map that satisfies the MCDH assumption. The construc-
tion can be seen as an instantiation of the scheme proposed by Boneh and Silverberg [BS02]
with an unbounded level multilinear map obtained by a self-bilinear map.

Definition. First, we formally define multiparty non-interactive key exchange (NIKE) and its
security following [BZ14]. A multiparty NIKE scheme consists of three algorithms (Setup,Publish,KeyGen).

Setup(1λ): This algorithm takes a security parameter 1λ as input6. It outputs public parameters
params.

Publish(params): This algorithm takes public parameters params as input. It outputs a public
key pk and a secret key sk.

KeyGen(params, sk, pk1, . . . , pkn−1): This algorithm takes public parameter params, a secret key
sk and public keys pk1, . . . , pkn−1. It outputs a shared key k.

As correctness, we require that for any n, params← Setup(1λ), (pki, ski)← Publish(params)
for i ∈ [n], for any i1, i2 ∈ [n], we have

KeyGen(params, ski1 , pk1, . . . , pki1−1, pki1+1, . . . pkn)

= KeyGen(params, ski2 , pk1, . . . , pki2−1, pki2+1, . . . pkn).

We define the security notion for NIKE. In this paper, we consider the minimum security
notion against a passive adversary.

We say that a multiparty NIKE scheme is statically secure if for any integer n which is poly-
nomial in the security parameter, for any efficient adversaryA, |Pr[b

$← A(params, pk1, . . . , pkn,Kb)]−
1/2| is negligible, where params ← Setup(1λ), (pki, ski) ← Publish(params) for i = 1, . . . , n,

K1 := KeyGen(params, sk1, pk2, . . . , pkn), K0
$← {0, 1}`K and b

$← {0, 1}.

Remark 5. In some existing works [BZ14, KRS15], they consider stronger security notion
that considers adversaries actively generate malformed public keys. In this paper, we do not
consider such an adversary, and we assume that an adversary only observe honestly generated
public keys.

Construction. We describe the construction of multiparty NIKE scheme based on a self-
bilinear map. Let (GGen,Add,Sub,Map) be a self-bilinear group scheme. Let ` be the maximum
size of a representation of an element of a group generated by GGen. For r ∈ {0, 1}` GLr :
{0, 1}` → {0, 1} denotes the Goldreich-Levin hardcore bit function [GL89], i.e., for x ∈ {0, 1}`,
GLr(x) =

⊕`
i=1(xi · ri) where xi and ri denotes i-th bit of x and r respectively. The description

of our scheme is as follows.
6In our definition, the setup algorithm does not take the number of maximum users as input. This means

that our scheme admits unbounded number of users.
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Setup(1λ): This algorithm computes PP
$← GGen(1λ), picks r

$← {0, 1}` and outputs params =
(PP, r). We let (G, [1]G, e) be a group, generator and self-bilinear map specified by PP .

Publish(params): This algorithm randomly picks x
$← [2`+λ], computes [x]G, sets sk := x and

pk := [x]G and outputs (pk, sk).

KeyGen(params = (PP, r), sk, pk1, . . . , pkn−1): This algorithm computesK := GLr(sk·en−1(pk1, . . . , pkn−1))
and outputs K.

For any n, params ← Setup(1λ), (pkj = [xj ]G, skj = xj) ← Publish(params) for j ∈ [n], for any
i ∈ [n], we have KeyGen(params, ski, pk1, . . . , pki−1, pki+1, . . . pkn) = GLr([

∏n
i=1 xi]n−1). There-

fore the correctness follows.

Security. The security of the above scheme can be stated as follows.

Theorem 11. If the n-MCDH assumption holds for all n ∈ N for (GGen,Add,Sub,Map), then
the above scheme is statically secure.

Proof. (sketch) If the (n − 1)-MCDH assumption holds, any PPT algorithm given [x1]G,. . . ,

[xn]G cannot compute [
∏n
i=1 xi]n−1 with non-negligible probability where x1, . . . , xn

$← [2`+λ].
Therefore by using the Goldreich-Levin theorem [GL89], any PPT algorithm given [x1]G,. . . ,

[xn]G cannot distinguish GLr([
∏n
i=1 xi]n−1) from random bit for r

$← {0, 1}`. ut

7.2 Broadcast Encryption

Here, we define broadcast encryption. Actually, we define distributed broadcast encryption
[BZ14] in which any users can join a system without any secret information. Then we show
that a distributed encryption scheme can be obtained by any multiparty NIKE scheme. The
conversion is similar to the one presented in [BZ14]. As a result, we obtain a distributed broad-
cast encryption based on a self-bilinear map secure under the MCDH assumption.

Definition. A distributed broadcast encryption scheme consists of four algorithms (Setup, Join,Enc,Dec).

Setup(1λ): It takes the security parameter 1λ as input and outputs public parameters PP .

Join(PP ): It takes public parameters PP as input and outputs a public key pk and a secret
key sk.

Enc(PP, pk1, . . . , pkn,msg): It takes public parameters PP , a message msg, and a public keys
pk1, . . . , pkn of designated receivers and outputs a ciphertext CT .

Dec(PP, sk, pk1, . . . , pkn, CT ): It takes public parameters PP , a secret key sk, public keys of
designated receivers and a ciphertext CT and outputs a message msg.

As correctness, we require that for any security parameter λ, an integer n and a messagemsg,
we have Dec(PP, sk, pk1, . . . , pkn, CT ) = msg, where PP ← Setup(1λ), (pk1, sk1), . . . , (pkn, skn)←
Join(PP ), CT ← Enc(PP, pk1, . . . , pkn,msg).

We define the security notion. We consider the following experiment. A challenger runs
Setup(1λ) to generate public parameters PP and runs Join(PP ) n times to generate (pk1, sk1), . . . , (pkn, skn).
It gives (PP, pk1, . . . , pkn) to A. A chooses two messages msg0 and msg1 to submit them to C.
C uniformly choose b

$← {0, 1} and runs Enc(PP, pk1, . . . , pkn,msgb) to generate CT , and gives
CT to A. Finally A outputs b′. We say that A wins if b = b′ holds.

We say that a distributed broadcast encryption scheme is statically secure if for any n
(polynomially bounded in λ) and any PPT adversary A, |Pr[A wins]− 1/2| is negligible.
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Remark 6. At first glance, the above security notion seems weaker than the usual static security
of broadcast encryption because we do not allow an adversary to corrupt receivers who are out
of the target set. However, in distributed setting, secret and public keys of such receivers can be
simulated efficiently by using the public parameters. Therefore we still capture the setting where
the adversary may corrupt some receivers (as long as the set of corrupted users is determined
at the beginning of the experiment).

Remark 7. There is stronger security notion for broadcast encryption called adaptive security,
where an adversary can determine which receiver to corrupt adaptively. In this paper we only
consider the static security and does not consider the adaptive security.

Construction. Here, we give a construction of distributed broadcast encryption scheme based
on a multiparty NIKE scheme. This is based on the conversion proposed in [BZ14]. Let
(SetupNIKE,PublishNIKE,KeyGenNIKE) be a multiparty NIKE scheme. Then we construct a dis-
tributed broadcast encryption scheme (SetupBE,JoinBE,EncBE,DecBE) as follows.

SetupBE(1λ): It runs SetupNIKE(1λ) to obtain public parameters PP and outputs PP as its own
public parameters.

JoinBE(PP ): It runs PublishNIKE(PP ) to obtain a public key pk and a secret key sk, and outputs
(pk, sk).

Enc(PP, pk1, . . . , pkn,msg): It runs PublishNIKE(PP ) to obtain (pk∗, sk∗). Then it runs KeyGenNIKE(PP, sk∗, {pkj}j=1,...,n)
to obtain K. It computes Ψ := K ⊕M and outputs a ciphertext CT = (pk∗,Ψ).

Dec(PP, sk, pk1, . . . , pkn, CT ): It parses CT as pk∗,Ψ. It finds i such that sk is a corre-
sponding secret key of pki. Then it runs K ← KeyGenNIKE(PP, sk, pk∗, pk1, . . . , pki−1,
pki+1, . . . , pkn) and outputs M := K ⊕Ψ.

The security of the above scheme is immediate from the security of the underlying multiparty
NIKE scheme.

Theorem 12. If the multiparty NIKE scheme (SetupNIKE,PublishNIKE is statically secure, then
the distributed broadcast encryption scheme (SetupBE,JoinBE,EncBE,DecBE) is statically secure.

7.3 Fully Homomorphic Signatures

Here, we construct a selectively secure fully homomorphic signatures based on a self-bilinear
map that satisfies the `-APMDH assumption for all ` such that log ` = poly(λ). Our scheme
can be seen as an instantiation of the scheme proposed by Catalano et al. [CFW14] with an
unbounded level multilinear map obtained by a self-bilinear map. To the best of our knowledge,
this is the first fully homomorphic signatures for unbounded depth circuits without relying on
SNARKs [BCCT12].

Definition. Here, we only consider the single-data case because there is a generic conver-
sion from single-data homomorphic signatures to multi-data homomorphic signatures [GVW15].
Moreover, we let the message space to be {0, 1}. We note that this does not lose generality
because if one wants to sign a longer message, one can simply sign bitwise. A single-data fully
homomorphic signature scheme consists of PPT algorithms (KeyGen, Sign,Verify,Eval).
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KeyGen(1λ, 1n)→ (vk, sk): This algorithm takes the security parameter 1λ and a data size 1n,
and outputs a pair (vk.sk) of a verification key and a signing key.

Sign(sk, i,m)→ σ: This algorithm takes a signing key sk, an index i ∈ [n] and a message
m ∈ {0, 1}, and outputs a signature σ.

Eval(f, (m1, σ1), . . . , (mn, σn))→ σ∗: This algorithm takes a function f (described by a poly-
nomial size circuit) and pairs (m1, σ1), . . . , (mn, σn) of a message and a signature, and
outputs a signature σ∗ for the message f(m1, . . . ,mn).

Verify(vk, f,m, σ)→ 1/0: This algorithm takes a verification key vk, a function f , a message
m and a signature σ, and outputs 1 if accepts and 0 else

Remark 8. In the above, we only consider the verification of evaluated signature output by
Eval, but one can also verify “fresh” signatures generated by Sign by setting f to be the identity
function.

We require a fully homomorphic signature scheme to satisfy the following properties.

Correctness For any (vk, sk)
$← KeyGen(1λ, 1n), (m1, . . . ,mn) ∈ {0, 1}N and a function f

(described by a polynomial size circuit), if we let σi ← Sign(sk, i,mi), m
∗ := f(m1, . . . ,mn),

and σ∗ := Eval(f, (m1, σ1), . . . , (mn, σn)), then we have Verify(vk, f,m∗, σ∗) = 1.

Security. In this paper, we only consider the selective security. To define the selective security,
we consider the following game between an adversary A and a challenger.
A sends (m1, . . . ,mn) ∈ {0, 1}n to the challenger. The challenger generates (vk, sk) ←

KeyGen(1λ, 1n), computes σi ← Sign(sk, i,mi) for i ∈ [n] and gives vk, σ1, . . . , σn to A. A out-
puts (f∗,m∗, σ∗). We say that A wins if Verify(vk, f∗,m∗, σ∗) and m∗ 6= f∗(m1, . . . ,mn) hold.
We say that the a homomorphic signature scheme is selectively secure if for any n = poly(λ)
and any PPT algorithm A, the probability that A wins in the above game is negligible.

Construction. Here, we construct a selectively secure single data fully homomorphic signa-
ture scheme. Our scheme is based on the idea of [CFW14]. Namely, our scheme is almost
automatically obtained by replacing a multilinear map by a self-bilinear map in the scheme of
[CFW14].

Before giving our construction, we prepare some notations and remarks on (arithmetic)
circuits. We can convert any boolean circuit f : {0, 1}n → {0, 1} to an equivalent arithmetic
circuit f ′ : Zn → Z such that f(x1, . . . , xn) = f ′(x1, . . . , xn) for any (x1, . . . , xn) ∈ {0, 1}n. For
an arithmetic circuit f and a wire w of f , fw denotes an arithmetic circuit that outputs the
value assigned to w. More precisely, if w is an input gate corresponding to i-th input, we define
fw(x1, . . . , xn) := xi and if w is an output gate of the gate that computes ◦ ∈ {+,−, ·} for input
wires w1 and w2, we define fw(x1, . . . , xn) := fw1(x1 . . . , xn) ◦ fw2(x1, . . . xn). We define w’s
degree as the degree of fw. As discussed in [CFW14], without loss of generality, we can assume
that incoming wires of an addition gate is the same degree. Therefore in our construction, we
assume that f is given as an arithmetic circuit with this property.

The construction of our scheme is as follows. We let message space to be {0, 1}.

KeyGen(1λ, 1n)→ (vk, sk): This algorithm generates PP
$← GGen(1λ), chooses ri

$← [2`+λ]

(i = 1, . . . , n) and x, y, z
$← [2`+λ], and sets Ri := [ri]1 (i = 1, . . . , n), X := [x]1,

Y := [y]1, Z = [z]1, S := [xy]1 T := [yz]1 and U := [xyz]1. Then it sets vk :=
(PP, {Ri}i∈[n+1], X, Y, Z, S, T, U), sk := (x, y, vk)
and outputs (vk.sk).
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Sign(sk, i,m)→ σ : This algorithm computes Λ := y · (Ri −m · Z), Γ := x · Λ, and outputs
σ := (Λ,Γ).

Eval(pk, f, (m1, σ1), . . . , (mn, σn))→ σ∗: Parse as (Λi,Γi) ← σi for all i ∈ [n]. For all wires w
of f , this algorithm computes Λw and Γw as follows. If w is an input wire of the circuit
corresponding to i-th input, then it sets Λw := Λi and Γw := Γi. Then it computes as
follows gate by gate.

Addition Gate: Let w be an output wire of an addition gate whose input gates are w1

and w2. It computes

Λw := Λw1 + Λw2 , Γw := Γw1 + Γw2 .

Multiplication Gate: Let w be an output wire of an addition gate whose input gates
are w1 and w2. Let d1, d2, d be degrees of w1, w2, w respectively. (Then we have
d = d1 + d2 by the definition of degree.) It computes

Λw := e(Λw1 ,Γw2) + e(Λw1 , fw2(m) · Ud2) + e(fw1(m) · Ud1 ,Λw2),

Γw := e(Γw1 ,Γw2) + e(Γw1 , fw2(m) · Ud2) + e(fw1(m) · Ud1 ,Γw2)

where Udi denotes edi(U, . . . , U) and fwi(m) denotes fwi(m1, . . . ,mn) for i = 1, 2.

Let wout be the output wire of f . Then it outputs σ∗ = (Λwout ,Γwout).

Verify(pk, f,m, σ)→ 1/0: Parse (Λ,Γ) ← σ. Let d be the degree of f . It computes R =
[f(r1, . . . , rn)]d, Zd = ed(Z, . . . , Z) and Wd = [xd−1yd]d = e(ed(S, . . . , S), X). We remark
that though this algorithm does not take r1, . . . , rn as input, R can be computed efficiently
by “evaluating f on R1, . . . , Rn” where an addition gate is interpreted as an addition on
G and a multiplication gate is interpreted as an evaluation of e. If

e(R−m · Zd,Wd) = e(Λ, [1]d)

and
e(Γ, [1]1) = e(Λ, X)

hold, then it outputs 1 and otherwise outputs 0.

This complete the description of the scheme.
We check the correctness of the scheme. In the following for any wire w, we denote

fw(r1, . . . , rn) and fw(m1, . . . ,mn) by fw(r) and fw(m) respectively for simplicity. For proving
the correctness, we show the following claim.

Claim 1. Let σi = (Λi,Γi) be a signature generated by Sign(sk, i,mi). Then in the computation
of Eval(pk, f, {(miσi)}i∈[n]), for any wire w of f with degree d, we have

Λw = [xd−1yd(fw(r)− fw(m)zd)]d

and
Γw = [xdyd(fw(r)− fw(m)zd)]d.
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Proof. (of Claim 1.) We prove this claim by induction. First, for an input wire w, the claim
holds since if w is an output wire of the i-th input gate, then we have [x0y1(fw(r)−fw(m)z1)]1 =
y[ri−miz]1 = y ·(R−mi ·Z) and [x1y1(fw(r)−fw(m)z1)]1 = xy ·(R−mi ·Z). We assume that the
claim holds for all wires whose depth is smaller than k and prove that the claim holds for any wire
w with depth k+1. Let w1 and w2 be incoming wires of the gate from which w comes, and d1 and
d2 be degrees of w1 and w2 respectively. Then we have Λwi = [xdi−1ydi(fwi(r) − fwi(m)zdi)]di
and Γwi = [xdiydi(fwi(r) − fwi(m)zdi)]di . We consider the following cases depending on the
type of the gate.

Addition: This is the case that w is an output of an addition gate. In this case, we have

Λw = Λw1 + Λw2 = [xd−1yd(fw(r)− fw(m)zd)]d

and
Γw = Λw1 + Λw2 = [xdyd(fw(r)− fw(m)zd)]d

where we used fw1(r) + fw2(r) = fw(r), fw1(m) + fw2(m) = fw(m) and d1 = d2 = d.

Multiplication: This is the case that w is an output of a multiplication gate. Let w1 and w2

be incoming wires to the gate, and d1 and d2 be degrees of w1 and w2 respectively. Then
we have

Λw = e(Λw1 ,Γw2) + e(Λw1 , fw2(m) · Ud2) + e(fw1(m) · Ud1 ,Λw2)

= [xd1+d2−1yd1+d2(fw1(r)fw2(r)− zd2fw1(r)fw2(m)

− zd1fw2(r)fw1(m) + fw1(m)fw2(m)zd1+d2)]d1+d2

+[xd1+d2−1yd1+d2zd2(fw1(r)fw2(m)− fw1(m)fw2(m)zd1)]d1+d2

+[xd1+d2−1yd1+d2zd1(fw2(r)fw1(m)− fw1(m)fw2(m)zd2)]d1+d2

= [xd−1yd(fw(r)− fw(m)zd)]d

and

Γw = e(Γw1 ,Γw2) + e(Γw1 , fw2(m) · Ud2) + e(fw1(m) · Ud1 ,Γw2)

= x · Λw
= [xdyd(fw(r)− fw(m)zd)]d

where we used fw1(r)fw2(r) = fw(r), fw1(m)fw2(m) = fw(m) and d = d1 + d2.

Therefore, in any case, the claim also holds for w. Therefore the claim holds. ut
ut

By the claim, if we let (Λ,Γ)
$← Eval(pk, f, {(mi, σi)}i∈[n]), then we have

Λ = [xd−1yd(f(r)− f(m)zd)]d

and
Γ = [xdyd(f(r)− f(m)zd)]d.

where f(r) and f(m) denotes f(r1, . . . , rn) and f(m1, . . . ,mn) respectively and d is the degree
of f . If m∗ = f(m), then we have

e(R−m∗ · Zd,Wd) = e([f(r)− f(m) · zd]d, [xd−1yd]d) = e(Λ, [1]d)

and
e(Γ, [1]1) = e(x · Λ, [1]1) = e(Λ, X).

Therefore the correctness holds.
The security of the scheme can be stated as follows.
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Theorem 13. If the `-APSBDH assumption holds for all ` such that log(`) = poly(λ) for the
underlying self-bilinear map, then the above scheme is selectively secure.

Proof. We assume that there exists an adversary A that breaks the selective security of the
scheme. Let dmax be the maximum degree of f output by A as a part of a forgery. Then we
construct an algorithm B that breaks the dmax-APMDH assumption by using A.

B(PP, [x1]1, [x2]1, [x3]1, [x1x2]1, [x1x3]1, [x1x2x3]1): First, runs A to obtain a signature query

(m1, . . . ,mn). Then B chooses yi
$← [2`+λ] and sets Ri := [yi]1 + mi · [x3]1 for i ∈ [n].

It sets X := [x1]1, Y := [x2]1, Z := [x3]1, S := [x1x2]1, T := [x1x3]1, U := [x1x2x3]1
and pk := (PP, {Ri}i∈[n], X, Y, Z, S, T, U). For i = 1, 2, . . . , n it sets Λi := yi · [x2]1,
Γi := yi · [x1x2]1 and σi := (Λi,Γi). Then B gives pk and {σi}i∈[n] to A. Let (f∗,m∗, σ∗ =
(Λ∗,Γ∗)) be the forgery output by A. Let d∗ be the degree of f∗. Then B computes

σ′ = (Λ′,Γ′)
$← Eval(pk, f∗, {(mi, σi)}i∈[n]), α := (f∗(m1, . . . ,mn) − m∗)(Λ∗ − Λ′) and

outputs e(α,Udmax−d∗) where Udmax−d∗ denotes edmax−d∗(U, . . . , U). (If dmax = d∗, then it
outputs α.)

We show that B works correctly. It is easy to verify that the statistical distance between pk
simulated by B and pk in the real scheme is negligible. We note that x, y and z are implicitly
set to be x1, x2 and x3 respectively and ri is set to be y1 + mi · x3 for i ∈ [n]. We have
x2 · (Ri−mi ·Z) = x2 · [yi]1 = yi · [x2]1 and x1x2 · (Ri−mi ·Z) = yi · [x1x2]1. Therefore signatures
for mi are simulated correctly. Therefore if A breaks the selective security of the scheme, then
it outputs (f∗,m∗, σ∗ = (Λ∗,Γ∗)) such that

e(R−m∗ · Zd∗ ,Wd∗) = e(Λ∗, [1]d∗),

e(Γ, [1]1) = e(Λ∗, X)

andm∗ 6= f∗(m1, . . . ,mn) hold with non-negligible probability where we haveR = [f(r1, . . . , rn)]d∗ ,
Zd = [x3]d∗ and Wd = [xd

∗−1
1 xd

∗
2 ]d∗ . On the other hand, by the correctness of the scheme, we

have
e(R− f∗(m1, . . . ,mn) · Zd∗ ,Wd∗) = e(Λ′, [1]d∗),

e(Γ′, [1]1) = e(Λ′, X).

Therefore we have

e((f∗(m1, . . . ,mn)−m∗) · Zd∗ ,Wd∗) = e(Λ∗ − Λ′, [1]d∗).

This is equivalent to Λ∗−Λ′ = (f∗(m1, . . . ,mn)−m∗)·[xd∗−1
1 (x2x3)d

∗
]d∗ . Since f∗(m1, . . . ,mn)−

m∗ ∈ {1,−1}, we have α = (f∗(m1, . . . ,mn) − m∗) · (Λ∗ − Λ′) = (f∗(m1, . . . ,mn) − m∗)2 ·
[xd
∗−1

1 (x2x3)d
∗
]d = [xd

∗−1
1 (x2x3)d

∗
]d∗ and thus e(α,Udmax−d∗) = [xdmax−1

1 (x2x3)dmax ]dmax . There-
fore B succeeds in breaking the dmax-APMDH assumption.

ut
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A Instantiation of Inversion-hard Ring via VBB Obfuscation

Here, we give a concrete instantiation of a ring scheme that satisfies the c-inversion assumption
based on a VBB obfuscation. Since it is known that there does not exist a VBB obfuscation,
we consider our construction just as a proof of concept.

A.1 Definitions

Here, we give definitions needed for stating our construction.

Pseudorandom permutation. Here, we define a pseudorandom permutation (PRP). A pseu-
dorandom permutation on {0, 1}` consists of PPT algorithms (PRPGen,PRP,PRP−1).

PRPGen(1λ)→ K: This algorithm takes the security parameter 1λ as input and output a key
K.

PRP(K,x)→ y: This algorithm takes a key K and x ∈ {0, 1}` as input, and outputs y ∈ {0, 1}`.

PRP(K, y)→ x: This algorithm takes a key K and y ∈ {0, 1}` as input and outputs x ∈ {0, 1}`

As correctness we require that for every λ ∈ N, every K
$← KeyGen(1λ) and every x ∈ {0, 1}`,

we have PRP−1(K,PRP(K,x)) = x.
As security, we require the following. For any PPT distinguisher D,

Pr[1
$← DPRP(K,·),PRP−1(K,·)]− Pr[1

$← Dσ(·),σ−1(·)]

is negligible where K
$← PRPGen(1λ) and σ is chosen from the set of all permutations over

{0, 1}`. It is known that there exists a PRP if there exists a one-way function [LR88, GGM86,
HILL99].

Virtual black-box obfuscation We define a virtual black-box (VBB) obfuscation.

Definition 17. (Virtual black-box obfuscation [BGI+01].) For a circuit class {Cλ}λ∈N, we say
that a PPT oracle machine O is a virtual black-box (VBB) obfuscator if the following conditions
are satisfied.

Functionality: For every λ ∈ N, every C ∈ Cλ and every input x to C, there exists a negligible
function negl such that

Pr[O(C)(x) 6= C(x)] ≤ negl(|C|)
where the probability is over the coins of O.

Virtual black-box: For every PPT adversary A, there exists a PPT simulator S and a neg-
ligible function µ such that for every λ ∈ N and every C ∈ Cλ,

|Pr[1
$← A(O(C))]− Pr[1

$← SC(1|C|)]| ≤ µ(|C|)

where the probabilities are over the coins of D, A, S and O.

Definition 18. (VBB obfuscation for P/poly.) We say that O is a VBB obfuscator for P/poly
if for every circuit class C = {Cλ}λ∈N such that every circuit in Cλ is of size poly(λ), O is a
VBB obfuscator for C.

Barak et al. proved that a VBB obfuscator for P/poly does not exist in the standard model.
On the other hand, Garg et al. [GMM+16] proved that there exists a VBB obfuscator for
P/poly in the weak multilinear map model [MSZ16] if there exists a pseudorandom function
(PRF) computable in NC1.
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Circuit Cring[p,K](mode, in):
If mode = identity

Output PRP(K, 1)
If mode = operation

Parse (Enc1,Enc2, ◦)← in
X1 ← PRP−1(K,Enc1)

X2 ← PRP−1(K,Enc2)
If X1 /∈ Zp or X2 /∈ Zp

Output ⊥
Else
X ′ := X1 ◦X2 mod p
Enc′ ← PRP(K,X ′)
Output Enc′

If mode = test
Parse (P̄,Enc∗)← in
X∗ ← PRP−1(K,Enc∗)
If X∗ /∈ Zp

Output ⊥
Else

If X∗ = [c]−1Zp
· P̄(Zp) and P̄(Zc) 6= 0

Output 1
Else

Output 0

Circuit C ′ring[p,K](mode, in):

If mode = identity
Output PRP(K, 1)

If mode = operation
Parse (Enc1,Enc2, ◦)← in
X1 ← PRP−1(K,Enc1)

X2 ← PRP−1(K,Enc2)
If X1 /∈ Zp or X2 /∈ Zp

Output ⊥
Else
X ′ := X1 ◦X2 mod p
Enc′ ← PRP(K,X ′)
Output Enc′

If mode = test
Output ⊥

Figure 1: Description of circuits Cring[p,K] and C ′ring[p,K].

A.2 Construction

Construction. We construct a ring scheme based on a pseudorandom permutation (PRP)
(PRPGen,PRP,PRP−1) on 2`

′
where we assume `′ ≥ `+λ and a VBB obfuscator O in the weak

multilinear map model. The definition of a PRP is given in Appendix A.1. For any prime c,
we construct a ring scheme as follows.

GGen(1λ)→ PP : This algorithm generates p
$← P` and K ← KGen(1λ), and computes C̃ring

$←
O(Cring) where the description of Cring is given in Fig. 1. This specifies a ring R :=
{PRP(K,X) : X ∈ Zp} whose multiplicative identity is [1]R := PRP(K, 1) and whose
ring operations are defined by PRP(K,X) ◦ PRP(K,Y ) := PRP(K, (X ◦ Y mod p)) for
X,Y ∈ Zp and ◦ ∈ {+,−, ·}. Intuitively, the circuit Cring makes it possible to compute
operations on this ring efficiently. More precisely, it has three modes that are identity,
operation and test modes depending on the first component of an input. In the identity
mode, it outputs the multiplicative identity of a ring, in the operation mode, it simulates a
ring operation and in the test mode, the circuit tests whether the c-inversion assumption
was broken or not. It outputs PP := C̃ring.

Add(Enc1,Enc2)→ Enc′: This algorithm computes Enc′ ← C̃ring(Enc1,Enc2,+) and output
Enc′.

Sub(Enc1,Enc2)→ Enc′: This algorithm computes Enc′ ← C̃ring(Enc1,Enc2,−) and outputs
Enc′.

Mult(Enc1,Enc2)→ Enc′: This algorithm computes Enc′ ← C̃ring(Enc1,Enc2, ·) and outputs
Enc′.
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Remark 9. The test mode of Cring[p,K] is not necessary for the correctness of the scheme.
This mode is used only in the security proof.

We prove that the c-inversion assumption holds for the above ring scheme under the factoring
assumption w.r.t. unbalanced moduli.

Theorem 14. If the factoring assumption w.r.t. unbalanced moduli holds, then the c-inversion
assumption holds for the above ring scheme.

Proof. Let C ′ring[p,K] be a circuit that works similarly to Cring[p,K] except that it always
outputs ⊥ when mode = test. (The full description is given in Fig. 1.) Let A be a PPT
algorithm against the c-inversion assumption for the scheme. Then we consider another PPT
algorithm B that distinguish obfuscations of Cring[p,K] and C ′ring[p,K]. The description of B is
as follows.

B(C̃) B is given an obfuscated circuit C̃ as input and runs (P̄,Enc∗)
$← A(C̃). It outputs as

C̃(test, (P̄,Enc∗)) outputs.

If C̃ is an obfuscation of Cring[p,K], B outputs 1 in the test mode if and only if A succeeds in
breaking the c-inversion assumption, and if C̃ is an obfuscation of Cring[p,K], B never outputs
1. Therefore we have

Advgen-inv
A (λ) = Pr[1

$← B(C̃) : C̃
$← O(Cring[p,K])]

and

0 = Pr[1
$← B(C̃) : C̃

$← O(C ′ring[p,K])]

where p
$← P` and K

$← KGen(1λ).
On the other hand, by the property of a VBB obfuscation, there exists a PPT algorithm S

such that
|Pr[1

$← B(C̃) : C̃
$← O(Cring[p,K])]− Pr[1

$← SCring[p,K](1M )]|

and
|Pr[1

$← B(C̃) : C̃
$← O(C ′ring[p,K])]− Pr[1

$← SC
′
ring[p,K](1M )]|

are negligible where p
$← P` and K

$← KGen(1λ) and M denotes the maximum size of Cring[p,K]
and C ′ring[p,K].

Therefore we have

Advgen-inv
A (λ) ≤ |Pr[1

$← SCring[p,K](1λ, 1M )]− Pr[1
$← SC

′
ring[p,K](1λ, 1M )]|+ negl(λ)

where negl is a negligible function, p
$← P` and K

$← KGen(1λ). Here, we prove the following
lemma.

Lemma 6. |Pr[1
$← SCring[p,K](1λ, 1M )]−Pr[1

$← SC
′
ring[p,K](1λ, 1M )]| is negligible where p

$← P`
and K

$← KGen(1λ).

It is clear that Theorem 14 is proven if the above lemma is proven. Intuitively, Lemma 6
can be reduced to the c-inversion assumption in the DR-generic ring model because S is only
allowed to compute ring operations in a black-box manner through its oracle, and unless S
queries the witness that it breaks the c-inversion assumption in the test mode, Cring[p,K] and
C ′ring[p,K] works completely the same. The full proof of Lemma 6 is given below. ut
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Oracle O(1)
ring[p, σ](mode, in):

If mode = identity
Return σ(1)

If mode = operation
Parse (Enc1,Enc2, ◦)← in
X1 ← σ−1(Enc1), X2 ← σ−1(Enc2)
If X1 /∈ Zp or X2 /∈ Zp

Return ⊥
Else
X ′ := X1 ◦X2 mod p
Enc′ ← σ(X ′)
Return Enc′

If mode = test
Parse Enc∗ ← in
X∗ ← σ−1(Enc∗)
If X∗ /∈ Zp

Return ⊥
Else

If X∗ = [c]−1Zp

Return true
Else

Return ⊥

Oracle O(2)
ring[p, σ](mode, in):

If mode = identity
Return σ(1)

If mode = operation
Parse (Enc1,Enc2, ◦)← in
If Enc1 /∈ L or Enc2 /∈ L

Return ⊥
Else
X1 ← σ−1(Enc1), X2 ← σ−1(Enc2)
X ′ := X1 ◦X2 mod p
Enc′ ← σ(X ′)
L← L ∪ {Enc′}
Return Enc′

If mode = test
Parse Enc∗ ← in
If Enc∗ /∈ L

Return ⊥
Else
X∗ ← σ−1(Enc∗)
If X∗ = [c]−1Zp

Return true
Else

Return ⊥

Figure 2: Description of oracles O(1)
ring[p, σ] and O(2)

ring[p, σ].

Proof. (of Lemma 6) We prove it by considering the following sequence of games.

Game 0: In this game, S̄ is given 1M as input and allowed to access the oracle Cring[p,K]

described in Fig 1 where p
$← P` and K

$← KeyGen(1λ).

Game 1: In this game, the oracle is replaced by O(1)
ring[p, σ] described in Fig. 2 where p

$← P`
and σ is a random permutation on {0, 1}`′ . O(1)

ring[p, σ] works similarly to Cring[p,K] except

that PRP(K, ·) and PRP−1(K, ·) are replaced by σ and σ−1 respectively.

Game 2: In this game, the oracle is replaced by O(2)
ring[p, σ] described in Fig. 2 where p

$← P`,
σ is a random permutation on {0, 1}`′ , and a set L ⊂ {0, 1}`′ is initialized to be {σ(1)}
at the beginning of the game. Intuitively, L records ciphertexts issued by the oracle, and

O(2)
ring[p, σ] works similarly to O(1)

ring[p, σ] except that it returns ⊥ if an operation or test
query contains a ciphertext outside of L.

Game 3: In this game, the oracle is replaced by O(3)
ring[p,Enc0] described in Fig. 4 where p

$← P`,
Enc0

$← {0, 1}`′ , a set L′ ⊂ Zp × {0, 1}`
′

is initialized to be {(1,Enc0)} at the beginning
of the game and L′2 denotes the set of all Enc ∈ {0, 1}`′ such that (X,Enc) ∈ L′ for some
X ∈ Zp. We note that if there exists X,Y such that (X,Enc), (Y,Enc) ∈ L′, then we
always have X = Y , and thus the step to find X1, X2 such that (X1,Enc1), (X2,Enc2) ∈ L′

is well-defined. O(3)
ring[p,Enc0] works similarly to O(2)

ring[p, σ] except that instead of choosing

σ at the beginning of the game, the oracle O(3)
ring[p,Enc0] simulates σ by a “lazy sampling”

[BCLO09] where a value of σ is assigned whenever that is needed in the game. Intuitively,
(X,Enc) ∈ L means that Enc is assigned to be σ(X).
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Oracle O(3)
ring[p,Enc0](mode, in):

If mode = identity
Return Enc0

If mode = operation
Parse (Enc1,Enc2, ◦)← in
If Enc1 /∈ L′2 or Enc2 /∈ L′2

Return ⊥
Else

Find X1, X2

s.t. (X1,Enc1), (X2,Enc2) ∈ L′
X ′ := X1 ◦X2 mod p
If ∃ Enc such that (X,Enc) ∈ L′

Enc′ ← Enc
Else

Enc′
$← {0, 1}`′ \ |L′2|

L′ ← L′ ∪ {(X ′,Enc′)}
Return Enc′

If mode = test
Parse Enc∗ ← in
If Enc∗ /∈ L′2

Return ⊥
Else

Find X∗ s.t. (X∗,Enc∗) ∈ L′
If X∗ = [c]−1Zp

Return true
Else

Return ⊥

Oracle O(4)
ring[p,Enc0](mode, in):

If mode = identity
Return Enc0

If mode = operation
Parse (Enc1,Enc2, ◦)← in
If Enc1 /∈ L′′2 or Enc2 /∈ L2

Return ⊥
Else

Find i1, i2
s.t. (i1,Enc1), (i2,Enc2) ∈ L′′
P← P||(i1, i2, ◦)
If ∃i s.t. (i,Enc) ∈ L′′ and Pi(Zp) = P(Zp)

Enc′ ← Enc
Else

Enc′
$← {0, 1}`′ \ |L′′2 |

L′′ ← L′′ ∪ {(|P|,Enc′)}
Return Enc′

If mode = test
Parse Enc∗ ← in
If Enc∗ /∈ L′′2

Return ⊥
Else

Find X∗ s.t. (X∗,Enc∗) ∈ L′′
If X∗ = [c]−1Zp

Return true
Else

Return ⊥

Figure 3: Description of oracles O(3)
ring[p,Enc0] and O(4)

ring[p,Enc0].

Game 4: In this game, the oracle is replaced by O(4)
ring[p,Enc0] described in Fig. 4 where p

$← P`,
Enc0

$← {0, 1}`′ , a set L′′ ⊂ Z × {0, 1}`′ is initialized to be {(0,Enc0)}, an NI-SLP P is
initialized to be an empty string at the beginning of the game, and L′′2 denotes the set
of all Enc ∈ {0, 1}`′ such that (i,Enc) ∈ L′′ for some i ∈ Z. In the step to find i1, i2
such that (i1,Enc1), (i2,Enc2) ∈ L′′, if there exist multiple such i1, i2, the oracle picks the

smallest one. P||(i1, i2, ◦) means to append (i1, i2, ◦) to P. O(4)
ring[p,Enc0] works similarly

to O(3)
ring[p, σ] except that it maintains assigned values of σ in another way by using L′′ and

P. Intuitively, (i,Enc) ∈ L′′ means that Enc is assigned to be σ(Pi(Zp)).

Game 5: In this game, the oracle is replaced by O(5)
ring[p,Enc0] described in Fig. 3 where p

$←
P`, Enc0

$← {0, 1}`′ , L′′ ⊂ Z × {0, 1}`′ is initialized to be {(0,Enc0)}, an NI-SLP P is
initialized to be an empty string at the beginning of the game, and L′′2 denotes the set of

all Enc ∈ {0, 1}`′ such that (i,Enc) ∈ L′′ for some i ∈ Z. We note that O(5)
ring[p,Enc0] is

the same as O(4)
ring[p,Enc0] except that it always returns ⊥ if mode = test.

Game 6: In this game, the oracle is replaced by O(6)
ring[p,Enc0] described in Fig. 3 where p

$← P`,
Enc0

$← {0, 1}`′ , a set L′ ⊂ Zp × {0, 1}`
′

is initialized to be {(1,Enc0)} at the beginning
of the game and L′2 denotes the set of all Enc ∈ {0, 1}`′ such that (X,Enc) ∈ L′ for some

X ∈ Zp. We note that O(6)
ring[p,Enc0] is the same as O(3)

ring[p,Enc0] except that it always
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Oracle O(5)
ring[p,Enc0](mode, in):

If mode = identity
Return Enc0

If mode = operation
Parse (Enc1,Enc2, ◦)← in
If Enc1 /∈ L′′2 or Enc2 /∈ L2

Return ⊥
Else

Find i1, i2
s.t. (i1,Enc1), (i2,Enc2) ∈ L′′
P← P||(i1, i2, ◦)
If ∃i s.t. (i,Enc) ∈ L′′ and Pi(Zp) = P(Zp)

Enc′ ← Enc
Else

Enc′
$← {0, 1}`′ \ |L′′2 |

L′′ ← L′′ ∪ {(|P|,Enc′)}
Return Enc′

If mode = test
Return ⊥

Oracle O(6)
ring[p,Enc0](mode, in):

If mode = identity
Return Enc0

If mode = operation
Parse (Enc1,Enc2, ◦)← in
If Enc1 /∈ L′2 or Enc2 /∈ L′2

Return ⊥
Else

Find X1, X2

s.t. (X1,Enc1), (X2,Enc2) ∈ L′
X ′ := X1 ◦X2 mod p
If ∃ Enc such that (X,Enc) ∈ L′

Enc′ ← Enc
Else

Enc′
$← {0, 1}`′ \ |L′2|

L′ ← L′ ∪ {(X ′,Enc′)}
Return Enc′

If mode = test
Return ⊥

Figure 4: Description of oracles O(5)
ring[p,Enc0] and O(6)

ring[p,Enc0].

returns ⊥ if mode = test.

Game 7: In this game, the oracle is replaced by O(7)
ring[p, σ] described in Fig. 5 where p

$← P`, σ
is a random permutation on {0, 1}`′ , and a set L ⊂ {0, 1}`′ is initialized to be {σ(1)} at

the beginning of the game. We note that O(7)
ring[p, σ] is the same as O(2)

ring[p, σ] except that
it always returns ⊥ if mode = test.

Game 8: In this game, the oracle is replaced by O(8)
ring[p, σ] described in Fig. 5 where p

$← P` and

σ is a random permutation on {0, 1}`′ . We note that O(8)
ring[p, σ] is the same as O(1)

ring[p, σ]
except that it always returns ⊥ if mode = test.

Game 9: In this game, the oracle is replaced by C ′ring[p,K] where p
$← P` and K

$← PRPGen(1λ).

We let Ti be the event that S outputs 1, and let Q be the maximum number of S’s queries.
What we have to prove is that |Pr[T9] − Pr[T1]| is negligible. We prove this by the following
lemmas.

Lemma 7. If (PRPGen,PRP,PRP−1) is a secure PRP, then Pr[T1]− Pr[T0] is negligible.

Proof. Game 1 is the same as Game 0 except that PRP(K, ·) and PRP−1(K, ·) are replaced by σ
and σ−1. Since S only accesses to them as oracles, they are computationally indistinguishable
by the security of a PRP. ut

ut

Lemma 8. We have |Pr[T2]− Pr[T1]| ≤ Q·2`
2`′−Q−1

. Especially, |Pr[T2]− Pr[T1]| is negligible.

Proof. Since at most one element is added to L at each query, we have |L| ≤ Q+ 1 throughout
the game. For any Enc{0, 1}`′ \ L, S cannot obtain any information about σ−1(Enc), and thus

the probability that σ−1(Enc) ∈ Zp is p−|L|
2`′−|L| ≤

2`

2`′−Q−1
. Therefore the probability that S
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Oracle O(2)
ring[p, σ](mode, in):

If mode = identity
Return σ(1)

If mode = operation
Parse (Enc1,Enc2, ◦)← in
If Enc1 /∈ L or Enc2 /∈ L

Return ⊥
Else
X1 ← σ−1(Enc1), X2 ← σ−1(Enc2)
X ′ := X1 ◦X2 mod p
CT ′ ← σ(X ′)
L← L ∪ {Enc′}
Return Enc′

If mode = test
Return ⊥

Oracle O(8)
ring[p, σ](mode, in):

If mode = identity
Return σ(1)

If mode = operation
Parse (Enc1,Enc2, ◦)← in
X1 ← σ−1(Enc1), X2 ← σ−1(Enc2)
If X1 /∈ Zp or X2 /∈ Zp

Return ⊥
Else
X ′ := X1 ◦X2 mod p
Enc′ ← σ(X ′)
Return Enc′

If mode = test
Return ⊥

Figure 5: Description of oracles O(7)
ring[p, σ] and O(8)

ring[p, σ].

makes at least one query that contains Enc ∈ {0, 1}`′ \ L such that σ−1(Enc) /∈ Zp is at most
Q·2`

2`′−Q−1
. Unless this occurs, Game 1 and Game 2 are identical. Since we assume `′ ≥ `+ λ and

Q is polynomial in λ, Q·2`
2`′−Q−1

is negligible. ut
ut

The following two lemmas are easy to verify because the modifications from Game 2 to
Game 3 and from Game 3 to Game 4 are just conceptual.

Lemma 9. We have Pr[T3] = Pr[T2].

Lemma 10. We have Pr[T4] = Pr[T3].

Lemma 11. There exists a PPT generic algorithm S̄ in the DR-generic model such that
|Pr[T5] − Pr[T4]| ≤ Q · Advgen−invS̄,DR,c

(λ) where DR is a distribution of a ring R = Zp for p
$← P`.

Especially, if the factoring assumption w.r.t. unbalanced moduli holds, then |Pr[T5]−Pr[T4]| is
negligible.

Proof. The latter part of the lemma follows from the former part and Theorem 4. We prove
the former part in the following. We construct a generic algorithm S̄ against the c-inversion
assumption in the DR-generic ring model. Recall that S̄ has access to the oracle Oring defined
in Sec.5.2. As a building block, we use an algorithm S that accesses to an oracle O (which is

supposed to be either of O(4)
ring[p,Enc0] or O(5)

ring[p,Enc0]) .

S̄Oring(1λ): This algorithm picks Enc0
$← {0, 1}`′ , generates a list L′′ := {(0,Enc0)}, sets ctr := 0

and gives 1M to S as input. When S makes a query (mode, in), S̄ simulates the oracle
as follows. If mode = identity, then S̄ returns Enc0. If mode = operation and in =
(Enc1,Enc2, ◦), S̄ finds i1, i2 such that (i1,Enc1), (i2,Enc2) ∈ L′′. If such i1 or i2 does
not exist, then S ′ returns ⊥ to S as a response of S’s oracle O. Otherwise S̄ makes a
operation query (i1, i2, ◦) to its own oracle Oring and increments ctr ← ctr + 1. Then for
j ∈ {0, 1, . . . , ctr−1}, S̄ makes an equal query (ctr, j) to its own oracle Oring. If there exists
j ∈ {0, 1, . . . , ctr − 1} such that Oring returns true for an equal query (ctr, j), then S̄ sets
Encctr := Encj . (If there exist multiple such j, it simply takes the smallest one.) If there

does not exist such j, then S̄ ′ chooses Encctr
$← {0, 1}`′ \L′′2. Then S̄ adds (ctr,Encctr) to
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L′′ and returns Encctr to S as a response by the S’s oracle O. If mode = test, S̄ returns
⊥ as a response by O. When the execution of S halts, S̄ picks k

$← [Q] where Q denotes
the number of S’s test query. Let in = Enc∗ be the S’s k-th test query. S̄ finds i∗ such
that (i∗,Enc∗) ∈ L′′ and outputs i∗.

First, we remark that responses from O(4)
ring[p,Enc0] and O(5)

ring[p,Enc0] are identical unless S queries

(test,Enc∗) such that Pi∗(Zp) = [c]−1
Zp where i∗ is an integer such that (i∗,Enc∗) ∈ L′′ and P is an

NI-SLP maintained by an oracle. We denote the event that S makes such a query by F . Then we

have |Pr[1
$← SOring(4)[p,Enc0](1λ, 1M )] − Pr[1

$← SO
(5)
ring[p,Enc0](1λ, 1M )]| ≤ Pr[F ]. Here, we notice

that unless F occurs, S̄ perfectly simulates the environment for S that accesses to O(4)
ring[p,Enc0]

or O(5)
ring[p,Enc0]. Thus the probability that the output i∗ by S̄ satisfies Pi∗(Zp) = [c]−1

Zp where

P is an NI-SLP maintained by the oracle Oring, is Pr[F ]/Q. This probability is defined to be

Advgen-inv
S̄,DR,c

(λ). Therefore we have Advgen-inv
S̄,DR,c

(λ) = Pr[F ]/Q. Therefore the lemma follows. ut
ut

The following lemmas can be proven similarly to Lemma 7 to 11.

Lemma 12. If (PRPGen,PRP,PRP−1) is a secure PRP, then |Pr[T9]− Pr[T5]| is negligible.

By combining the above lemmas, Lemma 6 is proven, and thus Theorem 14 is proven. ut
ut

43


	Introduction
	Background
	Our Contribution
	Discussion
	Related Work

	Technical Overview
	Generic Ring with Unknown Characteristic
	Generic Hardness of Inversion
	Self-Bilinear Map from Inversion-Hard Ring
	Applications of Self-Bilinear Maps

	Preliminaries
	Notations
	Factoring Assumption
	Self-bilinear Map

	Straight-line Program
	Definition
	Complexity Assumptions

	Inversion-hard Ring
	Ring Scheme
	Generic Ring Model
	Generic Hardness of the c-inversion Assumption
	Is Factoring Assumption Necessary?

	Self-bilinear Map
	Self-bilinear group scheme.
	Construction based on Inversion-hard Ring.
	Generic Self-bilinear Map Model

	Applications of Self-bilinear Map
	Multiparty NIKE
	Broadcast Encryption
	Fully Homomorphic Signatures

	Instantiation of Inversion-hard Ring via VBB Obfuscation
	Definitions
	Construction


