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Abstract. Recent improvements in the state-of-the-art of MPC for non-
full-threshold access structures introduced the idea of using a collision-
resistant hash functions and redundancy in the secret-sharing scheme to
construct a communication-efficient MPC protocol which is computationally-
secure against malicious adversaries, with abort. The prior work is based
on replicated secret-sharing; in this work we extend this methodology
to any multiplicative LSSS implementing a Q2 access structure. To do
so we need to establish a folklore property of error detection for such
LSSS and their associated Monotone Span Programs. In doing so we ob-
tain communication-efficient online and offline protocols for MPC in the
pre-processing model.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a
function on their combined secret inputs so that all parties learn the output
of the function and no party can learn anything that cannot be inferred from
the output and their own inputs alone. As a field it has recently received a
lot of attention and has been explored in a variety of contexts: for example,
private auctions [13], secure statistical analysis of personal information [11] and
protection against side-channel attacks in hardware [8, 33,34].

Most MPC protocols fall into one of two broad categories: garbled circuits,
and LSSS-based (linear-secret-sharing-based) MPC. The garbled-circuit approach,
which began with the work of Yao [36], involves some collection of parties “gar-
bling” a circuit to conceal the internal circuit evaluations, and then later a single
party or a collection of parties jointly evaluating the garbled circuit. By con-
trast, the LSSS-based approach involves using a so-called linear secret-sharing
scheme, in which the parties: “share” a secret into several shares which are
distributed to different parties, perform computations on the shares, and then
reconstruct the secret at the end by combining the shares to determine the
output. Secret-sharing-based MPC is traditionally presented in the context of
information-theoretic security, although many modern practical protocols that
realise LSSS-based MPC often make use of computationally-secure primitives



such as SHE (somewhat-homomorphic encryption) [23] or OT (oblivious trans-
fer) [30]. In this paper, we focus on computationally-secure LSSS-based MPC.

An access structure for a set of parties defines which subsets of parties are
allowed to discover the secret if they pool their information. Such quorums of
parties are often called qualified sets of parties. An access structure is called Q`
(for ` ∈ N) if the union of any set of ` unqualified sets of parties is missing at
least one party. We discuss this in some detail later, but for now the reader can
think of an (n, t)-threshold scheme where t < n/` which is where a subset of
parties is qualified if and only if it is of size at least t + 1. Computationally-
secure LSSS-based MPC has recently seen significant, efficient instantiations
for full-threshold access structures [7, 21, 23, 30], which is where the protocol is
secure if at least one party is honest, even if the adversary causes the corrupt
parties to run arbitrary code (though this behaviour may cause the protocol to
abort rather than provide output to the parties). In the threshold case similar
efficient instantiations are known, such as the older VIFF protocol [20] which
uses (essentially) information-theoretic primitives only.

While protocols providing full-threshold security are an important research
goal, in the real world such guarantees of security do not always match the use-
cases that appear. Different applications call for different access structures, and
not necessarily the usual threshold examples. For example, a company may have
four directors (CEO, CTO, CSO and CFO) and access may be granted in the
two combinations (CEO and CFO) or (CTO and CSO and CFO). In such a
situation it may be more efficient to tailor the protocol to this structure, rather
than try to shoe-horn the application into a more standard (i.e. full-threshold)
structure. Indeed, while it is possible that a computation can be performed in
a full-threshold setting and then the outputs distributed in accordance with
the access structure, such a process requires all parties to participate equally
in the computation, which may not be feasible in the real world, especially if
the computing parties are distributed over a wide network, and susceptible to
outages if the total number of parties is large.

Most LSSS-based MPC protocols split the computation into two parts: an of-
fline phase, in which parties interact using “expensive” public-key cryptography
to lay the groundwork for an online phase in which only “cheap” information-
theoretic primitives are required. The online phase is where the actual circuit
evaluation takes place. For the access structures considered in this work, namely
Q2 structures, the offline phase is almost as fast as the online phase. Thus the
goal here is to minimize the cost of communication in both phases.

Realising MPC for different access structures has been well studied: shortly
following the advent of Shamir’s secret-sharing scheme [9, 35], the first formal
MPC – as opposed to 2PC – protocols [5, 16, 26] were constructed, with vary-
ing correctness guarantees for different threshold structures. These works were
developed by Hirt and Maurer [27], and then Beaver and Wool [3] to general
access structures, culminating in Maurer’s relatively more recent work [32]. In
this latter work it is shown that passively-secure information-theoretic MPC is
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possible if the access structure is Q2, and full active security (without abort) is
possible if the access structure is Q3.

In recent work [31], Keller et al. show that by generalising a method of Araki
et al [1, 25] communication-efficient computationally-secure MPC with abort
can be realised for Q2 access structures, if replicated secret-sharing is used. The
methodology in [1,25,31] uses the explicit properties of replicated secret-sharing
so as to authenticate various shares. This enables active security with abort
to be achieved relatively cheaply, albeit at the expense in general of the pre-
deployment of a large number (depending on the access structure) of symmetric
keys to enable the generation of pseudo-random secret sharings (PRSS) in a
non-interactive manner. A disadvantage of replicated sharing is the potentially
larger (than average) memory footprint needed for each party per share, and
consequently there is still a relatively large communication cost involved when
the parties need to send shares across the network. In this work we extend this
prior work to produce a protocol for any multiplicative LSSS which supports the
Q2 access structure. We remark that Cramer et al. [18] showed that any LSSS
realising a Q2 access structure can be made multiplicative by at most doubling
the total number of shares.

1.1 Authentication of Shares

Many of practical MPC protocols begin with a basic passively-secure (a.k.a.
semi-honest or honest-but-curious) protocol, in which corrupt parties execute
the protocol honestly but try to deduce anything they can about other par-
ties’ data from their own data and the communication tapes. Such passively-
secure protocols forQ2 access structures are highly efficient, and are information-
theoretically secure. The passively secure protocols are then augmented to obtain
active security with abort by using some form of “share authentication”; in this
security setting, corrupt parties may deviate arbitrarily from the protocol de-
scription but if they do so the honest parties will abort the protocol.

At a high level, modern actively-secure LSSS-based MPC protocols combine:
1. A linear (i.e. additively homomorphic) secret sharing scheme;
2. A passive multiplication protocol; and
3. An authentication protocol.

The communication efficiency of the computation (usually an arithmetic or
Boolean circuit) depends heavily on how authentication is performed.

In the full-threshold SPDZ [23] protocol and its successors, e.g. [21, 30], au-
thentication is achieved with additively homomorphic MACs (message authenti-
cation codes). For each secret that is shared amongst the parties, the parties also
share a MAC on that secret. Since the authentication is additively homomor-
phic and the sharing scheme is linear, this means that the sum (and consequently
scalar multiple of) of authenticated shares is authenticated “for free” by perform-
ing the addition (or scalar multiplication) on the associated MACs. More work
is required for multiplication of secrets, but the general methodology for doing
these operations on shared secrets is now generally considered “standard” for
MPC in this setting.
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One important branch of this authentication methodology contributing sig-
nificantly to their practical performance is the amortisation of verification costs
by batch-checking MACs, a technique developed in [6,23], amongst other works.
A different approach to batch verification for authentication of shares, in the
case of Q2 access structures, was introduced by Furakawa et al. [25], in the
context of the three-party honest-majority setting, i.e. a (3, 1)-threshold access
structure. This work extended a passively secure protocol of Araki et al. [1] in
the same threshold setting. This approach dispenses with the MACs and instead
achieves authentication of shares using a collision-resistant hash function when
authenticating an open-to-all operation, and uses redundancy of the underlying
secret sharing scheme in an open-to-one operation. Their protocol can be viewed
as a bootstrapping of the passively-secure protocol of Beaver and Wool [3], with
an optimised sharing procedure (highly tailored to the (3, 1)-threshold access
structure), to provide a communication-efficient actively-secure protocol (with
abort). By using a hash function they sacrifice the information-theoretic security
of Beaver-Wool for computational security, and also use computationally-secure
share generation operations to improve the offline phase.

The above protocols for replicated sharing in a (3, 1)-threshold access struc-
ture of [1,25] simultaneously reduce the number of secure communication chan-
nels needed and the total number of bits sent per multiplication. Recent work [31]
has shown that these techniques can be generalised from (3, 1)-threshold to any
Q2 access structure, using replicated secret-sharing. Both [25] and [31] make use
of the fact that replicated sharing provides a trivial method to authenticate a
full set of shares; i.e. it somehow offers a form of error-detection.

While replicated secret-sharing offers flexibility in being able to realise any
access structure, unfortunately it can require an exponentially-large number of
shares to be held by each party for each shared secret. As threshold access
structures illustrate, using a general MSP may enable the same access structure
to be realised in a more efficient manner; which motivates our work in this area.

1.2 Our contribution

Until recently most MPC protocols for multiplicative LSSSs for Q2 access struc-
tures have used the multiplicative property in essentially a black-box sense. The
two major contributions of this work are as follows:

– Providing a generic way to optimise the passive multiplication subprotocol
if we sacrifice information-theoretic security for computational security.

– Showing we can get authentication of shares almost for free, giving us active
security with abort.

In Section 6 we also present an actively-secure offline phase (with abort) whose
efficiency depends on the precise access structure. This offline phase avoids the
exponential blow-up of computation and communication costs of [31].

Many of the previous protocols are optimised for access structures on specific
numbers of parties, or use specific secret-sharing schemes. Our optimisation of
the passive multiplication is generic in the sense that it only uses the multiplica-
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tivity for the multiplication and then the Q2 nature of the access structure for
authentication, with [25] and [31] being special cases of our optimisation.

Our contribution, then, is not so much our full MPC protocol as it is the
mechanism for an actively-secure multiplication in the Q2 setting. Viewing the
protocol in this more modular sense allows us to separate the LSSS from the
actual multiplication and thus allows us to reduce the search for finding an
efficient MPC protocol for a given Q2 access structure to finding a multiplicative
LSSS with a small total number of shares.

To conclude this section, we briefly remark how our work relates to the cor-
respondence between LSSSs and linear codes. Cramer et al. [19] showed how the
correspondence between linear secret-sharing schemes and linear codes reveals
an efficient method by which qualified parties can correct any errors in a set
of shares for some secret. The ability to do so requires the access structure to
be Q3, since if this holds then a strongly-multiplicative LSSS realising it allows
honest parties to correct any errors introduced by the adversary. This is not a
direct connection to error-correction codes since such LSSSs do not necessarily
allow unique decoding of the entire share vector: it is only the component of the
share vector corresponding to the secret that is guaranteed to be correct. In our
work we show that if the access structure is Q2 then any LSSS realising it allows
honest parties to agree on whether or not the secret is correct: thus we obtain
a form of error-detection. This reveals why the protocols above (viz., [25, 31])
are able to perform the error-detection causing abort. This result seems to be
folklore – but we could find no statement or proof in the literature to this effect,
and so we prove the required properties here.

2 Preliminaries

2.1 Notation

Let F denote a finite field; we write F = Fq for q some prime power if F is the

field of q elements. We write r
$← F to mean that r is sampled uniformly at

random from F. Vectors are written in bold and are taken to be column vectors.
We denote by 0 a vector consisting entirely of zeros of appropriate dimension,
determined by the context, and similarly by 1 a vector consisting entirely of
ones. For a vector x we write the ith component as xi, whereas xi denotes the
ith vector from a sequence of vectors. We use the notation ei for the ith standard
basis vector (defined by eij := δij where δij is the Kronecker delta). We denote
by [n] the set ∪ni=1{i}, and by P the complete set of parties, which we take to
be {Pi}i∈[n]. Given some set S, a subset of some larger set S′, we write a 6∈ S
to indicate that element a is in S′ \ S; in general, S′ will be implicit, according
to context. We define the function supp : Fm → 2P via s 7→ {i ∈ [m] : si 6= 0}.
We use the notation A ⊆ B to mean that A is a (not necessarily proper) subset
of B, contrasted with A ( B where A is a proper subset of B. We write λ and
κ for the statistical and computational security parameters respectively.

Given a vector space V ⊆ Fd, we denote by V ⊥ the orthogonal complement;
that is, V ⊥ = {w ∈ Fd : 〈v,w〉 = 0}, where 〈v,w〉 = v> ·w is the standard inner
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product. From basic linear algebra, (V ⊥)⊥ = V . For a matrix M ∈ Fm×d, we
write M> for the transpose. If M is a matrix representing a linear map Fd → Fm,
then im(M>) = ker(M)⊥ by the fundamental theorem of linear algebra.

2.2 Access Structures, MSPs, LSSSs and Linear Codes

Access structures: Fix P = {Pi}i∈[n] and let Γ ⊆ 2P be a monotonically
increasing set, i.e. Γ is closed under taking supersets: if Q ∈ Γ and Q′ ⊇ Q
then Q′ ∈ Γ . Similarly, let ∆ ⊆ 2P be a monotonically decreasing set, i.e. ∆ is
closed under taking subsets: if U ∈ ∆ and U ′ ⊆ U then U ′ ∈ ∆. We call the
pair (Γ,∆) a monotone access structure if Γ ∩∆ = ∅. If ∆ = 2P \ Γ , then we
say the access structure is complete. In this paper, we will only be concerned
with complete monotone access structures and so this is assumed throughout
without qualification. The sets in Γ , usually denoted by Q, are called qualified,
and the sets in ∆, usually denoted by U , are called unqualified. Partial ordering
is induced on Γ and ∆ by the standard subset relation denoted by “⊆”: we
write Γ− for the set of minimally qualified sets where minimality is with respect
to “⊆”: Γ− = {Q ∈ Γ : if Q′ ∈ Γ and Q′ ⊆ Q then Q′ = Q}; similarly, ∆+

denotes the set of maximally unqualified sets where maximality is with respect
to “⊆”: ∆+ = {U ∈ ∆ : if U ′ ∈ ∆ and U ⊆ U ′ then U ′ = U}

An access structure is said to be Q2 (resp. Q3) if the union of no two (resp.
three) sets in Γ is the whole of P. A consequence of this is that in a Q2 access
structure, the complement of a qualified set is unqualified, and vice versa.

In an (n, t)-threshold access structure, any set of t + 1 parties is qualified,
whilst any set of t or fewer parties is unqualified. Thus Γ− contains

(
n
t+1

)
sets in

total. The term full threshold refers to an (n, n− 1)-threshold access structure.
For an arbitrary complete monotone access structure, the set of minimally qual-
ified sets together with the set of maximally unqualified sets uniquely determine
the entire structure. The dual access structure Γ ∗ of an access structure Γ is
defined by Γ ∗ := {Q ∈ 2P : 2P \ Q 6∈ Γ}. Cramer et al. [19] showed that an
access structure Γ is Q2 if and only if Γ ∗ ⊆ Γ .

Linear Secret Sharing Schemes: An LSSS is a method of sharing secret data
amongst parties. It consists of three multi-party algorithms: Input, Open, and
ALF (affine linear function), allowing parties to provide secret inputs, reveal (or
open) secrets, and compute an affine linear function on shared secrets. In a prac-
tical sense, this means that the parties can add secrets, multiply by scalars, and
add public constants to a shared secret, all by local computations. In this work
we consider, as examples, the three most well-known secret-sharing schemes:
Shamir; replicated, also known as CNF-based (conjunctive-normal-form-based);
and DNF-based (disjunctive-normal-form-based). We assume the reader is fa-
miliar with these schemes, but for completeness we give a recap in Appendix A.
We will use the term additive sharing to mean that a secret s takes the value
s =

∑n
i=1 si where si is held by Pi and the si’s are uniformly random subject to

the constraint that they sum to s.
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An LSSS is called multiplicative if the whole set of parties P can compute an
additive sharing of the product of two secrets by performing only local computa-
tions. If the product is to be kept as a secret and used further in the computation,
it is usually necessary for the parties to engage in one or more rounds of commu-
nication to convert the additive sharing into a sharing in the LSSS being used. A
secret-sharing scheme is called strongly multiplicative if, for any U ∈ ∆, the par-
ties in P\U can compute an additive sharing of the product of two secrets by local
computations. Such schemes offer robustness, since the adversary, corrupting an
unqualified set of parties, cannot prevent the honest parties from reconstructing
the desired secret. Cramer et al. [18] showed that any (non-multiplicative) LSSS
realising a Q2 access structure can be converted to a multiplicative LSSS for
the same access structure so that each party holds at most twice the number
of shares it held originally. There is currently no known construction to convert
an arbitrary Q3 LSSS to a strongly multiplicative LSSS with only polynomial
blow-up in the number of shares each party must hold [18,19].

Monotone Span Programs: Span programs, and monotone span programs
specifically, were introduced by Karchmer and Wigderson [29] as a model of
computation. It has been shown that MSPs have a close relationship to secret-
sharing schemes, as discussed informally below.

Definition 1. A Monotone Span Program (MSP), denoted by M, is a quadru-
ple (F,M, ε, ψ) where F is a field, M ∈ Fm×d is a full-rank matrix for some m
and d ≤ m, ε ∈ Fd is an arbitrary non-zero vector called the target vector, and
ψ : [m] � P is a surjective “labelling” map of rows to parties. The size of M is
defined to be m, the number of rows of the matrix M .

Typically, ε = e1 or ε = 1, but it can be an arbitrary non-zero vector: changing
it simply changes how the vector x is selected, and corresponds to performing
column operations on the columns of M , which does not change the access
structure the MSP realises by results of Beimel et al. [4]. Some definitions of
MSP do not require that M have full rank, since if this is not the case, one
can iteratively remove any columns which are linearly dependent on preceding
columns without changing the access structure M computes. We include this
assumption for the sake of simplicity later on.

We say that the row-map ψ defines which rows are “owned” by each party.
Given a set S ⊆ P, we denote by MS the submatrix of M whose rows are
indexed by the set {i ∈ [m] : ψ(i) ∈ S}, and similarly sS is the subvector of s
whose entries are indexed by the same. Later, we will somewhat abuse notation
by denoting again by MS , where now S ⊆ [m], the submatrix whose rows are
indexed by S. Context will determine which matrix we mean since the indexing
set is either a set of parties, or a set of row indices. If s ∈ Fm, then we call sQ
a qualified subvector of s if Q ∈ Γ , and an unqualified subvector otherwise. An
MSP M is said to compute an access structure Γ if for all Q ∈ Γ , ∃ λQ ∈ Fm
(i.e. depending on Q) such that M> · λQ = ε and ψ(supp(λQ)) ⊆ Q. Note that
we write λQ to show that this vector is associated to the set Q; compare with
λQQ, which is the subvector of λQ whose co-ordinates are indexed by Q, to be
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consistent with the notation above. This means that the parties in the set Q
“own” rows of the matrix M which can be combined in a public, known linear
combination encoded as the vector λQ, to obtain the target vector ε.

Monotone Span Programs induce LSSSs in the following way: Sample x
$← Fd

subject to 〈x, ε〉 = s, the secret. Now let s = M · x and for each i ∈ [m], give si
(that is, the ith co-ordinate) to party ψ(i). Thus party Pi has the vector s{Pi}.
We call x the randomness vector since x is chosen uniformly at random, subject
to 〈x, ε〉 = s, to generate s := M · x, the share vector. The co-ordinates of s are
precisely the shares of the secret which are distributed to parties according to
the mapping ψ. We say that a share vector s encodes a secret s if s = M · x
for some x where 〈x, ε〉 = s. An MSP is called ideal if ψ is injective; since it is
surjective by definition, an ideal MSP is an MSP for which ψ is bijective – i.e.
each party receives exactly one share.

The associated access structure for an MSP is such that ε is contained in
the linear span of the rows of M owned by any qualified set of parties, and also
so that ε is not in the linear span of the rows owned by any unqualified set of
parties. It is well known that, given a monotone access structure (Γ,∆), there
exists an MSP M computing it [24,28,29].

In more detail: A qualified set of parties Q ∈ Γ can compute the secret from
the qualified subvector sQ because by construction of M there is a publicly-
known recombination vector λ associated to this setQ such that ψ(supp(λ)) ⊆ Q
and M>λ = ε. Note that while ψ(supp(λ)) ⊆ Q, this subset of Q must still be
qualified – it just may be the case that not all of the parties’ shares are required to
reconstruct the secret (for example, if multiple parties hold the same share). Since
ψ(supp(λ)) ⊆ Q, we have 〈λ, s〉 = 〈λQ, sQ〉, so given sQ the parties can compute
〈λQ, sQ〉, and since 〈λQ, sQ〉 = 〈λ, s〉 = 〈λ,M · x〉 = 〈M>λ,x〉 = 〈ε,x〉 = s,
they can thus determine the secret.

Conversely, for any unqualified set of parties U ∈ ∆, again by construction
of M we have that ε 6∈ im(M>U ), which is equivalent to each of the following
three statements:

– ε 6∈ ker(MU )⊥

– ∃ k ∈ ker(MU ) such that 〈ε,k〉 6= 0
– ∃ k ∈ Fd such that MU · k = 0 with 〈ε,k〉 = 1

From the last statement, we can see that for any secret s, for any randomness
vector x ∈ Fd encoding it – i.e. where 〈x, ε〉 = s – for any other secret s′ ∈ F we
have MUx = MUx + 0 = MUx +MU ((s′− s) ·k) = MU (x + (s′− s) ·k). Thus if
x encodes the secret s, then the randomness vector x + (s′− s) ·k encodes s′ by
linearity of the inner product, but the share vectors held by parties in U are the
same. Thus the set of shares received by an unqualified set of parties provides
no information about the secret.

In this work we show that for any MSP computing any Q2 access structure,
there exists a matrix N such that for any vector e 6= 0 for which ψ(supp(e)) 6∈ Γ ,
we either have N ·e 6= 0, or N ·e = 0 and 〈e, ε〉 = 0. The matrix N is essentially
the parity-check matrix of the code generated by the matrix M of the MSP and
turns out to be very useful for efficiently detecting cheating behaviour.
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2.3 MPC

Network: We assume secure point-to-point channels. When broadcasting shares
but we do not assume broadcast channels: in this context we mean an honest
party sends the same element to each other party over the given secure channel.

Security Model: Our protocols are modelled and proved secure in the Univer-
sal Composability (UC) framework introduced by Canetti [14] and we assume
the reader is familiar with it. We assume static corruptions by the adversary,
meaning that the adversary corrupts some set of parties once at the beginning of
the protocol. We will usually denote the set of parties the adversary corrupts by
A ⊆ P. We assume the adversary is active, meaning that the corrupted parties
may execute arbitrary code determined by the adversary, and additionally we
allow the protocol to abort prematurely – i.e. the protocols are actively-secure
with abort. The protocol is secure against a computationally bounded adversary
(who successfully cheats by finding a collision of the hash function).

Pre-processing: Many modern MPC protocols split computation into two
phases, the offline or pre-processing phase and the online phase. In the offline
phase, the parties engage in several rounds of communication to produce data
which can then be used in the online phase. The purpose of doing this is that
the pre-processing can be done at any time prior to the execution of the on-
line phase, can be made independent of the function to be computed, and may
use expensive public-key primitives, in order to allow the online phase to use
only fast information-theoretic primitives. In our protocol design, we follow this
model, although we only require symmetric-key primitives throughout since the
access structure is Q2.

Hash API

The hash API implemented via the hash function H : F∗ → {0, 1}λ consists of the
following three algorithms:

– H.Initialise(): the hash function is initialised.
– H.Update(s): the hash function is updated with the vector s.
– H.Output(): the hash function is evaluated and output provided.

Figure 1. Hash API

Hash authentication: The work of Furakawa et al. [25] is in the three-party
honest majority case. A secret is additively split into three parts, and each party
is given a different set of two of them. To open a secret, each party sends one
field element to one other party. This suffices for all parties to obtain all shares,
but does not ensure that the one corrupt party sent the correct share. This is
where the hash evaluation comes in: after a secret is opened, all parties update
their hash function locally with all three shares (the two they held and the one
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they received); after possibly many secrets are opened, the parties broadcast
(here meaning each party sends to the other two parties over a secure channel)
the outputs of their hash evaluations and compare what they received with
what they computed themselves. If any hashes differ, they abort. This process
ensures that the shares held by all parties are consistent, even though each
party need only send one share to one party per opening. If many shares are
opened in the execution of the protocol (as is the case in SPDZ-like protocols,
since every multiplication requires two secrets to be opened), this significantly
reduces communication overhead, at the cost of cryptographic assumptions for
the existence of a collision-resistant hash function. This was generalised to any
replicated scheme Q2 LSSS by Keller et al. [31].

In our work, we apply similar techniques to Furukawa et al. and Keller et al.
to the problem of opening values to parties, but in a significantly more general
case. We achieve this by proving the folklore results that say an LSSS is error-
detecting if and only if it is Q2. Our protocol will use the “standard” hash
function API given in Figure 1; in brief, our methods are as follows:

– If single party Pi is required to learn a secret, all the other parties send all
of their shares to Pi, and then Pi performs an error-detection check on the
shares received, telling all parties to abort if errors are detected.

– If all parties are required to learn a secret, the parties engage in a round
of communication in which not all parties need to communicate with each
other. The parties reconstruct a view of what they think other parties have
received, even if they have not communicated with all other parties. After
opening possibly many secrets, each party calls Output on the hash function,
broadcasts their output, and checks every other party’s hash value against
their own; we will see that this process authenticates the secrets.

In the next two sections we outline why the methodologies for the two cases are
correct. The proof of security of our protocol can be found in Figure 14 and
Figure 15 in Appendix B, but it is best read in the context of the next sections.

3 Opening a Value to One Party

In this section, we show that for an LSSS realising a Q2 access structure, if
the share vector s for some secret s is modified with an error vector e with
unqualified support then s + e is either no longer a valid share vector (i.e. is not
in im(M)), or the error vector encodes 0, and so by linearity s + e also encodes
s. In our MPC protocol, this will provide an efficient method by which a party
to whom a secret is opened (by all other parties sending that party all of their
shares) can check whether or not the adversary has introduced an error. The
procedure of opening to a single party is necessary in order for the parties to
provide input and obtain output in an actively-secure manner.
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Lemma 1. For any MSPM = (F,M, ε, ψ) computing a Q2 access structure Γ ,
for any vector s ∈ Fm,

ψ(supp(s)) 6∈ Γ =⇒

{
s 6∈ im(M), or

s ∈ im(M) and s = Mx for some x ∈ Fd where 〈x, ε〉 = 0.

Proof. If ψ(supp(s)) 6∈ Γ then P \ ψ(supp(s)) ∈ Γ since the access structure is
Q2. Thus there is at least one set Q ∈ Γ where Q ⊆ P \ ψ(supp(s)) for which
si = 0 for all i ∈ [m] where ψ(i) ∈ Q (i.e. sQ = 0), by definition of supp.

Recall that for a qualified set Q of parties to reconstruct the secret, they take
the appropriate recombination vector λ (which has the property that ψ(supp(λ)) ⊆
Q) and compute s = 〈λ, s〉. For this particular Q and corresponding recombina-
tion vector λ, we have 〈λ, s〉 = 〈λQ, sQ〉 since ψ(supp(λ)) ⊆ Q, and 〈λQ, sQ〉 =
〈λQ,0〉 = 0 by the above, so the secret is 0.

If s ∈ im(M) then every set Q ∈ Γ must compute the secret as 0 by the
definition of MSP (though note that it is not necessarily the case that sQ = 0
for all Q ∈ Γ ). Thus the share vector s is in im(M) and encodes the secret s = 0.

Otherwise, s 6∈ im(M), and we are done. ut

We now show that if the adversary (controlling an unqualified set of parties)
adds an error vector e to a share vector s, the resulting vector c := s+e will either
not be a valid share vector, or will encode the same secret as s (by linearity).
Adding in an error e that does not change the value of the secret can be viewed
as the adversary re-randomising the shares he holds for corrupt parties.

Lemma 2. Let M = (F,M, ε, ψ) be an MSP computing Q2 access structure
Γ and c = s + e be the observed set of shares, given as a valid share vector s
encoding secret s, with error e. Then there exists a matrix N such that

ψ(supp(e)) 6∈ Γ =⇒ either e encodes the error e = 0, or N · c 6= 0

Proof. Let N be any matrix whose rows form a basis of ker(M>) and suppose
e ∈ Fm. By the fundamental theorem of linear algebra, ker(M>) = im(M)⊥, so
s ∈ im(M) if and only if N · s = 0. Since ψ(supp(e)) 6∈ Γ , then by Lemma 1 we
have that either e 6∈ im(M), or e ∈ im(M) and e = 0.

If e ∈ im(M) then e = 0 and we are done, whilst if e 6∈ im(M) then N ·e 6= 0.
In the latter case, since s ∈ im(M) we haveN ·s = 0 and henceN ·c = N ·(s+e) =
N · s +N · e = 0 +N · e 6= 0. ut

The matrix N is usually called the cokernel of M , and can be viewed as the
parity-check matrix of the code defined by generator matrix M . The method to
open a secret to a single party Pi is then immediate: all parties send their shares
to Pi, who then concatenates the shares into a share vector s and computes N ·s.
Since the adversary controls an unqualified set of parties, if N · s = 0 then by
Lemma 2 the share vector s encodes the correct secret. In this case, Pi recalls
any recombination vector λ and computes the secret as s = 〈λ, s〉, and otherwise
tells the parties to abort.
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4 Opening a Value to All Parties

To motivate our procedure for opening to all parties and to show that it is
correct, we first discuss the näıve method of opening shares in a semi-honest
protocol, then show how to reduce the communication, and then explain how to
obtain a version which is actively-secure (with abort).

To open a secret in a passively-secure protocol, all parties can broadcast
all of their shares so that all parties can reconstruct the secret. This method
contains redundancy if the access structure is not full-threshold since proper
subsets of parties can reconstruct the secret by definition of the access structure.
This implies the existence of “minimal” communication patterns for each access
structure and LSSS, in which parties only communicate sufficiently for every
party to have all shares corresponding to a qualified set of parties.

When bootstrapping to active security, we see that the redundancy allows
verification of opened secrets: honest parties can check all other parties’ broad-
casted shares for correctness. When reducing communication with the aim of
avoiding the redundancy of broadcasting, honest parties must still be able to
detect when the adversary sends inconsistent or erroneous shares. In particular,
parties not receiving shares from the adversary must also be able to detect that
cheating has occurred in spite of not directly being sent erroneous shares.

To achieve this, in our protocol each party will receive enough shares from
other parties to determine “optimistically” all shares held by all parties – that
is, reconstruct the entire share vector – and then all parties will compare their
reconstructed share vectors. To amortise the cost of comparison, the parties will
actually update a local collision-resistant hash-function each time they recon-
struct a new share vector and will then compare the final output of the hash
function at the end of the computation, when output is required. This, in essence,
is the idea behind the protocols of Furakawa et al. [25] and Keller et al. [31] that
are tailored to replicated secret-sharing.

To fix ideas, consider the case of Shamir’s scheme; a set of t + 1 distinct
points determines a unique polynomial of degree at most t that passes through
them. This fact not only enables the secret to be computed using t + 1 shares,
but additionally enables determining the entire polynomial (the coefficients of
which are the share vector for the scheme) and consequently all other shares.
For some LSSSs it is not the case that any qualified set of parties have enough
information to reconstruct all shares3.

To allow the parties to perform reconstruction, each party is assigned a set
of shares that it will receive, which we encode as a map q : P → 2[m] defined as
follows: for each Pi ∈ P, define q(Pi) to be a set Si ⊆ [m] such that:

– ker(MSi
) = {0}; that is, the kernel of the submatrix M restricted to the

rows indexed by Si, is trivial; and

3 In Appendix D we provide a formal description of MSPs in which all qualified sets
of parties can reconstruct the entire share vector and explain how such MSPs are
“good” for our protocol.
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– ψ−1({Pi}) ⊆ Si, where ψ−1 denotes the preimage of the row-map ψ; that is,
each party includes all of their own shares in the set Si.

These sets are used as follows. Each Pi receives a set of shares, denoted by siq(Pi)
,

for a given secret. Then in order to reconstruct all shares, Pi tries to find xi such
that siq(Pi)

= Mq(Pi) · xi and then computes si = M · xi as the reconstructed

share vector, which is then used to update the hash function (locally). Trivially,
we can take q(Pi) = [m] for all Pi ∈ P, which corresponds to broadcasting all
shares; however, better choices of q result in better communication efficiency. In
Appendix C, we give a somewhat-optimised algorithm for finding a “good” map
q for a given MSP.

If such an xi does not exist then it must be because the adversary sent one or
more incorrect shares, because siq(Pi)

should be a subvector of some share vector.
In this case, the party or parties unable to reconstruct tell all parties to abort.

If such an xi does exist for each party then the adversary could still cause
different parties to reconstruct different share vectors (and thus output different
secrets), but then the hashes would differ and the honest parties would abort. The
first condition, ker(MSi

) = {0}, ensures that if all parties follow the protocol,
they all reconstruct the same share vector, since there are multiple possible share
vectors for a given secret, otherwise an honest execution may lead to an abort.

Indeed, the only thing the adversary can do without causing abort – either
immediately or later on when hashes are compared – is to change his shares so
that his shares combined with the honest parties’ shares form a valid share vector.
Intuitively, one can think of this as the adversary re-randomising the shares
owned only by corrupt parties, which is not possible in Shamir or replicated
secret-sharing, but is in DNF-based sharing, and in general is only possible if
the LSSS admits non-trivial share vectors with unqualified support.

More formally, we have the following lemma that shows that if all parties can
reconstruct share vectors and the share vectors are consistent, then the adversary
cannot have introduced an error.

Lemma 3. Let q : P → 2[m] be defined as above and let siq(i) denote the sub-
vector of shares received by party Pi for a given secret. Suppose it is possible for
each party Pi ∈ P to find a vector xi such that siq(Pi)

= Mq(Pi)x
i; let si := M ·xi

for each i ∈ [n]. If si = sj for all honest parties Pi and Pj, then the adversary
did not introduce an error on the secret.

Proof. The existence of q follows from the fact that “at worst” we can take
q(Pi) = [m] for all Pi ∈ P. There is a unique xi solving siq(Pi)

= Mq(Pi) · xi (not

a priori necessarily the same for all parties) because ker(Mq(Pi)) = {0} for all
Pi ∈ P by the first requirement in the definition of q.

Let A denote the set of corrupt parties. Since A is unqualified, the honest
parties form a qualified set Q = P \A since the access structure is Q2.

Each honest party uses their own shares in the reconstruction process by the
second requirement in the definition of q, so if si = sj for all honest parties
Pi and Pj , then in particular they all agree on a qualified subvector defined by
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Protocol ΠOpening

For each Pi ∈ P, the parties decide on some λi, which is any recombination vector
such that supp(λi) ⊆ q(Pi). See Section 4 for the definition of q. We denote by Hi

the hash function updated locally by Pi which will be initialised as in Figure 5, at
the start of the MPC protocol. If at any point a party receives the message Abort,
it runs the subprotocol Abort.

OpenTo(i):
If i = 0, the secret s encoded via share vector s, is to be opened to all, otherwise it
is to be opened to only player i.

If i = 0 then each Pj ∈ P does the following:
1. Retrieve from memory the recombination vector λj .
2. For each P` ∈ P, for each k ∈ q(P`), if ψ(k) = Pj then send sk to P`.
3. For each k ∈ q(Pj), wait to receive sk from party ψ(k).
4. Concatenate local and received shares into a vector denoted by sjq(Pj)

∈ F|q(Pj)|.

5. (Locally) output s = 〈λjq(Pj)
, sjq(Pj)

〉.
6. Solve Mq(Pj) · x

j = sjq(Pj)
for xj . If there are no solutions, run Abort.

7. Execute Hj .Update(Mxj).

If i 6= 0, the secret encoded via share vector s is to be opened to party Pi. The
parties do the following:
1. Each Pj ∈ P \ {Pi} sends s{Pj} to Pi, who concatenates local and received

shares into a vector s.
2. Party Pi computes N · s; if it is equal to 0, Pi (locally) outputs s = 〈λi, s〉, and

otherwise runs Abort.

Verify: Each Pi ∈ P does the following:
1. Compute hi := Hi.Output().
2. Send hi to all other parties Pj ∈ P \ {Pi} over pair-wise secure channels.
3. Wait for hj from all other parties Pj ∈ P \ {Pi}.
4. If hj 6= hi for any j, run Abort.

Abort: If a party calls this subroutine, it sends a message Abort to all parties and
aborts. If a party receives a message Abort, it aborts.

Broadcast: When Pi calls this procedure to broadcast a value s,
1. Party Pi sends the secret s to all other players over pair-wise secure channels.
2. When party Pj receives the share, it executes Hj .Update(s).

Figure 2. Protocol ΠOpening

honest shares – i.e. siQ = sjQ for all honest parties Pi and Pj . Thus some qualified
subvector of the share vector is well defined, which uniquely defines the secret
by definition of MSP. ut
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As mentioned in the introduction, our results in the last two sections are
somewhat analogous to the result of Cramer et al. [19, Thm 1] which roughly
shows that for a strongly multiplicative LSSS implementing a Q3 access struc-
ture, honest parties can always agree on the correct secret (when all parties
broadcast their shares). In Figure 2 we present the methods we use to open
secret shared data in different situations.

Functionality FPrep

The functionality maintains a list Value of secrets that it stores. The set A indexes
the corrupt parties (unknown to the honest parties).

Triples: On input (Triple, NT ) from all parties, the functionality does the following:
1. For i from 1 to NT :

(a) Sample ai, bi
$← F and compute share vectors ai and bi.

(b) Send (aiA,b
i
A) to the adversary.

(c) Receive a subvector of shares c̃iA from the adversary.
(d) Compute a vector ci = M · xic such that 〈xic, ε〉 = ai · bi and ciA = c̃iA. If

no such vector ci exists, set an internal flag Abort to true and continue.
2. Wait for a message OK or Abort from the adversary.
3. If the response is OK and the internal flag Abort has not been set to true, for

each honest Pi ∈ P, send (ai{Pi},b
i
{Pi}, c

i
{Pi})

NT
i=1 to each honest party Pi, and

otherwise output the message Abort to all honest parties and abort.

Figure 3. Functionality FPrep

5 MPC Protocol

We are now ready to present our protocol to implement the MPC functionality
offering active security with abort as given in Figure 4. We present the online
method here, leaving the offline method for Section 6, which, as discussed in
Section 6.5, is much more scalable than [31] since the dependence on replicated
secret-sharing is removed. The offline method implements the functionality given
in Figure 3. Our online protocol, in Figure 5, makes use of the opening protocol
ΠOpening given in Figure 2 earlier. The majority of our protocol uses standard
MPC techniques for secret-sharing. In particular, the equation the parties com-
pute for the multiplication is a standard application of Beaver’s circuit randomi-
sation technique [2], albeit for a general LSSS.

Correctness of our input procedure follows from the input method given in the
Non-Interactive Pseudo-Random Secret-Sharing protocol of [17]. In particular for
party Pi to provide an input s in a secret-shared form s, the parties will first
take a secret-sharing r of a uniformly random secret r – which is some a or b
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Functionality FMPC

Initialise: On input Init from all parties, the functionality initialises the array
Value[]. Accept a message OK or Abort from the adversary; if the message is OK
then continue, and otherwise send the message Abort to all parties and abort.

Input: On input (Input, id, x) from party Pi and (Input, id,⊥) from all other parties,
where id is a fresh identifer, the functionality sets Value[id] := x.

Add: On input (Add, id1, id2, id3) from all parties, if id3 is a fresh identifier and
Value[id1] and Value[id2] have been defined, the functionality sets Value[id3] :=
Value[id1] + Value[id2].

Multiply: On input (Multiply, id1, id2, id3) from all parties, if id3 is a fresh identifier
and Value[id1] and Value[id2] have been defined, the functionality waits for a message
OK or Abort from the adversary. If the adversary sends the message Abort, send
the message Abort to all parties and the adversary and abort, and otherwise set
Value[id3] := Value[id1] · Value[id2].

Output: On input (Output, id, i) from all parties, if Value[id] has been defined, the
functionality does the following:

– If i = 0, send Value[id] to the adversary and wait for a signal OK or Abort
in return. If it signals Abort, send the message Abort to all parties and the
adversary and abort, and otherwise send Value[id] to all parties. If not aborted,
wait for another signal OK or Abort. If the adversary signals Abort, send the
message Abort to all parties and the adversary and abort.

– If i 6= 0 and Pi is corrupt, then the functionality sends Value[id] to the adversary
and waits for the adversary to signal OK or Abort. If it signals Abort, send the
message Abort to all parties and abort.

– If i 6= 0 and Pi is honest, the functionality waits for the adversary to signal
OK or Abort. If it signals Abort, send the message Abort to all parties and the
adversary and abort, and otherwise send Value[id] to Pi.

Figure 4. Functionality FMPC

from a Beaver triple – and open it by calling OpenTo(i). Then Pi determines
the encoded secret (using any recombination vector) and broadcasts ε := s− r.
The parties compute the share vector as s := ε · u + r where u is a pre-agreed
sharing of 1, which may be the same vector used to compute all inputs, by which
we mean that for i ∈ [m], party ψ(i) computes si := ε · ui + ri. Since this r is
uniformly random by assumption, it hides the input s in the broadcast of ε. This
is proved formally in our simulation proof.

We have the following proposition, which we prove in Appendix B under the
UC framework of Canetti [15]. Here we use (ΠMPC‖ΠOpening) to mean simply
that the union of the procedures from both protocols are used.

Proposition 1. The protocol (ΠMPC‖ΠOpening) securely realises FMPC for a Q2

access structure in the presence of a computationally-bounded active adversary,

16



corrupting any unqualified set of parties, in the FPrep-hybrid model, assuming the
existence of a collision-resistant hash function and point-to-point secure chan-
nels.

We note that since we do not use MAC values, we can also instantiate our
protocol over small finite fields4, or indeed using a LSSS over a ring. The latter
will hold as long as the reconstruction vectors can be defined over the said ring.
By taking a ring such as Z/232Z we thus obtain a generalisation to an arbitrary
Q2 structure of the Sharemind methodology [12]. Also note that we can extend
FPrep in a trivial way so as to obtain other forms of pre-processing such shares
of bits etc. as in [21].

6 Improved Offline Phase

In this section we give an offline subprotocol. Recall that the offline phase of
MPC protocols involves the generation of so-called Beaver triples: triples of
share vectors, (a,b, c) such that c encodes the product of the secrets encoded
by a and b. As is relatively standard practice for MPC protocols in the pre-
processing model, we provide a semi-honest multiplication procedure, which is
then bootstrapped to active security using the standard technique known as
sacrificing to catch if errors were introduced.

The Beaver triples must be share-vectors with respect to the LSSS used in
the online phase. Perhaps the most obvious methods of achieving this are the
following:
– Method 1 Use standard techniques to generate uniformly random shares

(e.g. all parties act as the dealer to share a uniform secret, then the par-
ties sum all n share vectors); then use Maurer’s protocol to do the passive
multiplication, and then sacrifice for active security.

– Method 2 Use [31] to do all of the pre-processing, and then use the technique
by Cramer et al. [17] to convert the replicated shares into shares under any
LSSS computing the same access structure by local computations (after an
inexpensive one-time set-up phase).

– Method 3 Generalise the procedure from [31] to convert additive sharings
to replicated.
We would expect the second method to be extremely efficient in many sit-

uations, since after setting up keys for generating random secrets efficiently,
every party only needs to send Θ(n) field elements to different parties for each
passive multiplication. The main problem is that the required number of PRF
(pseudo-random function) keys grows linearly with the number of maximally
unqualified sets. Indeed, for a (84, 41)-threshold access structure using the for-
mer method, the parties would need to agree on

(
84
43

)
> 280 keys. We note

that the optimisation in [31], requiring PRF keys to generate some shares of
a product deterministically, can be instantiated using keys already set up for

4 If using a small ring/finite field we simply need to modify the sacrificing stage in the
triple production process: no changes are needed for the online phase at all.
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generating the PRSS shares. The computational cost is asymptotically approx-
imately O(2n/

√
n) PRF evaluations per party; nevertheless this computational

cost reduces the communication cost, so there is a trade-off here.
In this section we propose an optimisation to the plain resharing protocol

of Maurer, and use this to improve on pre-processing when the key-agreement
becomes prohibitively expensive. For an ideal secret sharing, such as Shamir’s,
we obtain the same communication costs as in the optimised version of [31], but
without additional computational costs. For general secret sharing schemes/ac-
cess structures, the choice of whether replicated sharing and the protocol in [31],
or using the method for general MSPs presented here, depends on the precise
nature of the access structure and associated MSP.

Generating random secrets If we dispense with the PRF keys (as in Method
1 and Method 3) then we are required to generate several random secrets for
use as Beaver triples. This can done in different ways; for example, here are two
different methods:
1. Take the largest maximally unqualified set, say of size t, take its complement,

and let the parties in this set each generate a random share vector and
distribute the shares. The parties then sum the share vectors. Correctness
comes from the fact that this set of n − t parties must contain at least one
honest party, so the secret is always uniform. The cost is then the cost of
sending (n− t) share vectors per random secret.

2. Apply the “randomness extraction” method of [22] to obtain n − t random
sharings from n random sharings.

Generating PRZSs Pseudo-random zero-sharings (PRZSs) are additive shar-
ings of zero, and are used to mask shares before sending them without changing
the underlying secret. The functionality is given in Figure 8. We do not provide
the protocol here as it is given in [31], but we note that we may trivially extend
the protocol there to allow the generation of PRZSs for any subset of parties if
we assume pair-wise PRF keys have been created during a one-time setup phase
(as in the protocol given) by each Pi computing

ti :=
∑

j 6=i,j∈S

Fκi,j
(count)− Fκj,i

(count).

Our extension by the procedure Rand is possible if we assume the existence
of random oracles (but we note that this assumption is required for the sacrifice
step in any case).

6.1 Method 1: Bootstrap Maurer’s Protocol

After obtaining shares of random secrets (as above), the parties do the following:
1. Perform local computations on shares to obtain an additive sharing of the

product of the secrets.
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2. Each party reshares its summand in the LSSS by acting as the dealer in the
sharing protocol.

3. Each party sums the n sharings that result.
4. Use the sacrificing technique to check that the triples were generated cor-

rectly.

The chief advantage of this method is that it is computationally relatively
lightweight. The local computation cost becomes crucially important when con-
sidering large numbers of parties due to the exponential blow-up of the total
number of shares in replicated secret-sharing.

We include this method for doing the offline protocol as for very small num-
bers of parties it is likely to be as good as any other protocol, and for very large
numbers of parties it does not need unreasonably many PRF keys.

6.2 Method 2: Use offline protocol of [31]

The basic structure of the [31] triple-generation protocol is:

1. Retrieve two replicated shares from memory and perform the (local) multi-
plication procedure to get an additive sharing of the product;

2. Convert the additive sharing to a replicated sharing.
3. Use the sacrificing technique to check that the triples were generated cor-

rectly.

Recall that an MSP is multiplicative if the parties can perform local compu-
tations to obtain an additive sharing of the product of two secrets, and that
replicated secret-sharing is always multiplicative if the access structure is Q2.

The heart of the [31] protocol – the only part requiring communication – is
simply an efficient method of turning an additive sharing back into a replicated
sharing. This is achieved by finding a map f which maps shares to parties: then
each party Pi is set to be in charge of some set of replicated shares Si defined
by f , so to convert from an additive share, Pi additively splits his share into |Si|
pieces and treats them as replicated shares (after blinding with a pseudo-random
zero-sharing – see Figure 8) that need to be distributed; these shares are then
sent to the players who are supposed to hold them. This obviates the need for
each player to reshare their additive share as proposed in Method 1.

The obvious way to obtain Beaver triples for any LSSS for any Q2 access
structure, then, would be to use [31] to generate replicated shares and then
convert using [17]. Note that unlike with Method 1 above, the final LSSS need
not be multiplicative. Curiously, then, this gives an online protocol for any Q2

access structure using any LSSS that realises it.

An optimisation to the plain [31] protocol is for each party to designate
some s∗ ∈ Si as the one which will be communicated, and for all other shares
s ∈ Si \ {s∗} to be computed as s := Fκs

(count) where κs is a key known
to all parties who are supposed to hold the share s and F is the chosen PRF
keyed with κs; then party Pi with share xi computes the special share as s∗ :=
xi −

∑
s∈Si\{s∗} Fκs

(count) and sends this to the parties who are supposed to
hold share s∗. This significantly reduces the communication cost and requires no
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more PRF keys than are required to generate the random secrets for the triples
in the first place.

6.3 Method 3: New Offline Protocol

This method principally involves an efficient method of converting an additively-
shared secret to a sharing in the LSSS. The starting point is therefore any random
secrets shared using a multiplicative LSSS, and sharings of random secrets may
be obtained either using standard techniques as described above, or using pre-
shared PRF keys.

Since we expect that [31] will outperform other methods when the number of
parties is small, we will make the assumption that the secrets are merely shared
using some multiplicative LSSS and not necessarily replicated sharings created
using PRF evaluations as in Method 2.

That said, we note that if the parties start with a multiplicative LSSS re-
alising the access structure, they can perform the local computations to obtain
an additive sharing of the product, and then reshare this to any (not necessarily
multiplicative) LSSS.

First we provide an algorithm in Figure 6 that, given an MSP provided by the
user, transforms the the MSP into a new MSP which realises the same LSSS but
has properties amenable to be used in an efficient share-conversion procedure.
Then we provide a protocol ΠConvert in Figure 7, which shows how to use this
MSP to convert additive shares into shares in the LSSS in a communication-
efficient manner. One way of viewing our protocol is simply as an efficient
computationally-secure resharing method optimised for resharing additive (i.e.
full-threshold) sharings.

Correctness of Transformation Algorithm Any MSP can be converted to
another equivalent MSP computing the same access structure by performing
column operations on the matrix M [4]. This (potentially) changes the target
vector, but share vectors in an LSSS are just vectors in the column-space of
the generating matrix M , so in fact share vectors under the altered scheme are
equally-well viewed as share vectors under the original scheme: one can think
of the difference as choosing different randomness vectors to generate the share
vector. Note also that column operations do not change the multiplicativity of
the LSSS since it merely represents a change of basis for the space of share
vectors5.

In particular, it is always possible for the matrix M with d columns and rank
d to be reduced via column operations so that all of the standard basis vectors

5 In brief, the proof of this fact involves computing the pair-wise tensor of each row
with each other row held by a given party and checking that the target vector
tensored with itself is in the span of the resulting tensored vectors; the point is that
by tensoring the matrices corresponding to the column operations and applying these
to the tensored vectors will not change the rank of the span of the tensored rows.
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{ek}di=1 appear in the rows of M . The map χ is well-defined since we assume
the matrix and target vector are non-zero.

Correctness of ΠConvert We discuss when the protocol aborts in detail in the
proof of security, Appendix B; here we just consider correctness of the conversion
procedure.

So far, for consistency with the literature, we have denoted by ψ the map from
rows of M to parties in P. For clean notation, we now define ρ : [m]→ [n] by the
following: for all j ∈ [m], ρ(j) := i if and only if ψ(j) = Pi. Thus ψ(j) = Pρ(j).

The goal is to reshare the additively-shared x, which we denote by 〈x〉 where
party Pi holds xi and

∑n
i=1 xi = x, under the LSSS. To do this, the parties

essentially distribute an additive sharing of a share-vector sharing the sum. In
more detail, each party Pi first adds on its share t0i of a PRZS 〈t0〉 – that is,
a sharing where Pi holds ti where

∑n
i=1 ti = 0 – onto its share xi and then

samples a set {xi,k}k∈Ki∩Sε where Ki := {χ(i)} ∪ ([d] \ im(χ)) and Sε is the
support of ε, such that xi + t0i =

∑
k∈Ki∩Sε

xi,k. In other words, xi + t0i is
reshared into as many pieces as there are unassigned columns, plus one for the
column assigned by χ, and except where εk = 0. Then for each k ∈ Ki ∩ Sε,
Pi chooses its contribution to the kth co-ordinate of a randomness vector x to
be ri,j := xi,k/εk. For columns where εk = 0 for some k ∈ [d], each party will
sample some randomness ri,k ← F as their contribution to the co-ordinate xk of
the randomness vector x. This is because this part of the randomness vector will
be cancelled out upon reconstruction, and as such the parties cannot pack part
of their summand xi in this column. Note that the definition of χ precludes any
party from being mapped to a column k where εk = 0, so the columns where
εk = 0 necessarily lie in [d] \ im(χ).

Defining x in this way means that overall (i.e. after all parties have done the
above) we have

• xk =
∑
i∈χ−1({k}) xi,k/εk for all k ∈ im(χ);

• xk =
∑n
i=1 xi,k/εk for k ∈ [d] \ im(χ) where εk 6= 0; and

• xk =
∑n
i=1 ri,k for k ∈ [d] \ im(χ) where εk = 0.

Hence the following:

〈x, ε〉 =
∑

k∈im(χ)

xk · εk +
∑

k∈([d]\im(χ))∩Sε

xk · εk +
∑

k∈([d]\im(χ))\Sε

xk · εk

=
∑

k∈im(χ)

∑
i∈χ−1({k})

(xi,k/εk) · εk

+
∑

k∈([d]\im(χ))∩Sε

n∑
i=1

(xi,k/εk) · εk +

n∑
i=1

∑
k∈([d]\im(χ))\Sε

ri,k · 0

=

n∑
i=1

(xi,χ(i)/εχ(i)) · εχ(i) +

n∑
i=1

∑
k∈([d]\im(χ))∩Sε

(xi,k/εk) · εk
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=

n∑
i=1

xi,χ(i) +
∑

k∈([d]\im(χ))∩Sε

xi,k

 =

n∑
i=1

∑
k∈Ki∩Sε

xi,k =

n∑
i=1

xi = x,

i.e. the share vector where x is the randomness vector shares the secret x =∑n
i=1 xi.
We will now discuss in more detail how the shares of the share vector with

randomness vector defined as above are distributed amongst the parties. Each
share is then computed in one of two different ways.

– For each row of the matrix which is not a standard basis vector, the parties
each compute

aji :=

( ∑
k∈Ki∩Sε

Mj [k] · ri,k

)
+ tji

where 〈tj〉 is an n-party PRZS and in the protocol and above we defined

ri,k := xi,k/εk for k ∈ Ki ∩ Sε and sampled ri,k
$← F for k ∈ Ki \ Sε;

the recipient simply sums all incoming share and adds its own contribution
computed in the same way. Thus the party obtains:

n∑
i=1

aji =

n∑
i=1

( ∑
k∈Ki∩Sε

Mj [k] · xi,k/εk

)
+

 ∑
k∈Ki\Sε

Mj [k] · ri,k

+ tji


=

n∑
i=1

( ∑
k∈Ki∩Sε

Mj [k] · xi,k/εk

)
+

 ∑
k∈Ki\Sε

Mj [k] · ri,k

+

n∑
i=1

tji

=
∑

k∈im(χ)

 ∑
i∈χ−1({k})

Mj [k] · xi,k/εk


+

∑
k∈([d]\im(χ))∩Sε

(
n∑
i=1

Mj [k] · xi,k/εk

)

+
∑

k∈([d]\im(χ))\Sε

(
n∑
i=1

Mj [k] · ri,k

)

=

d∑
k=1

Mj [k] · xk = 〈Mj ,x〉.

– For each row j which is a standard basis vector, the parties do the following:
let k be the column index of the non-zero entry of the row; then the parties
in Pi with k ∈ Ki retrieve a PRZS amongst them and send their contribution
ri,k to party ψ(j):

aji := Mj [k] · ri,k + tji

where here Mj [k] = 1. Note that if it holds for some party Pi that Ki ⊇ Kj

for some j 6= i then Pi will potentially be able to compute the value of xj+t
0
j ;
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this is one reason for adding the n-party PRZS. The recipient again simply
sums all values received.

The result of the protocol is that the parties have converted an additive sharing
into a sharing in the LSSS with which they are working. The cost of doing so

6.4 Full Pre-processing Protocol

In Figure 9 we provide the full pre-processing protocol when using Method 3,
which shows how ΠConvert interfaces with our more specialised opening protocol
ΠOpening. For the sake of simplicity of exposition, we will assume sharings of ran-
dom secrets are still generated using FRand and are therefore replicated sharings,
but we emphasise that the purpose of our protocol is to avoid using replicated
secret-sharing in practice. (It makes almost no difference to the protocol descrip-
tion, since the only property of replicated sharing that is used is multiplicativity.)
When it is necessary to produce random sharings for large numbers of parties,
one of the methods outlined at the beginning of this section may be used. In
our comparison of the costs in Section 6.5, we assume replicated secret-sharing
is not used.

At a high level, ΠPrep generates Beaver triples in an actively-secure manner
assuming black-box access to a functionality generating additive sharings of zero
and replicated sharings of random secrets. Active security is obtained by doing
a multiplication passively and then employing the standard technique of sacri-
ficing. Extending the protocol to produce other forms of pre-processing (such as
shared bits – see [21] for details) is trivial and therefore omitted. Recall we use
ΠA||ΠB to denote a protocol comprising the union of the procedures of ΠA and
ΠB .

Proposition 2. For a Q2 access structure, the protocol (ΠPrep||ΠOpening) (Fig-
ure 9) securely implements FPrep (Figure 3) in the FRand-hybrid model.

6.5 Costs

To make some comparisons with the other protocols, we now consider the asymp-
totic costs involved in Maurer’s protocol [32], the protocol of Keller et al. [31],
and our protocol. The communication costs are summarised in Table 1. Note
that we do not assume PRFs are used to generate random secrets for our proto-
col in our cost analysis, though our description of ΠPrep does to ease exposition:
instead, we assume in Maurer’s protocol and our own that each random secret
is generated by all parties sampling a random secret and dealing shares as in the
sharing protocol, and finally all parties summing the shares locally.

Notably, our protocol is as good or better than Maurer’s protocol in all of
the most expensive subroutines run in the pre-processing, and indeed the cost
of setting up PRF keys and of performing authentication in our protocol is
negligible considering the number of triples one typically needs to evaluate a
reasonable circuit.
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Our protocol is also considerably cheaper than [31] in these methods where
even compared to the optimised version we replace a large binomial term with
a linear term in the sacrifice step. This proves the importance of removing the
dependence on replicated secret-sharing.

We note that while we have an O(n2) cost associated with generating random
secrets in our protocol compared to [31], which arises from the fact that in our
case the parties do not agree on

(
n
t

)
PRF keys, our protocol is much more

scalable. Indeed, the key set-up of [31] begins to become prohibitively expensive
even with only 20 parties, where potentially

(
20
9

)
> 217 PRF keys need to be

agreed upon in the honest majority setting.

An additional goal of [31] was to reduce the number of communication chan-
nels required to perform MPC. In Table 2 we compare the number of channels
used in each protocol at different points. Our protocol uses a smaller number of
channels than Maurer’s protocol [32] and uses the same as [31] in the threshold
case for most subroutines.

Protocol [32] [31] Optimised [31] Ours

Key set-up 0 κn
(
(n− 1) +

(
n−1
t

))
κn
(
(n− 1) +

(
n−1
t

))
κn(n− 1)

Random secret gen. n(n− 1) 0 0 n(n− 1)

Passive mult. n(n− 1)
(
n
t

)
· (n− t− 1) n(n− t− 1) n(n− t− 1)

Sacrifice 3n(n− 1) 3
(
n
t

)
· t 3

(
n
t

)
· t 3nt

Authentication 0 256n(n− 1) 256n(n− 1) 256n(n− 1)
Table 1. A comparison of communication cost given in number of bits. The rows
Key set-up and Authentication are the number of bits, the rest are the number
of field elements. We assume the hash function is SHA256 to give 128 bits of security
against collision by the birthday bound; κ is the computational security parameter
and is the key-length of the PRF. In [32]’s and our protocol we use Shamir’s secret-
sharing whereas [31] (necessarily) uses the standard replicated MSP. Note that while
our protocol comparatively little key set-up, the sharings of random secrets used in
Beaver triples are more expensive to generate in terms of communication.

Protocol [32] [31] Optimised [31] Ours

Key set-up 0 n(n− 1) n(n− 1) n(n− 1)

Random secret gen. n(n− 1) 0 0 n(n− 1)

Passive mult. n(n− 1) n(n− t− 1) n(n− t− 1) n(n− t− 1)

Sacrifice n(n− 1) nt nt nt

Authentication 0 n(n− 1) n(n− 1) n(n− 1)
Table 2. A comparison of the number of uni-directional channels required for each
subroutine in our protocol ΠPrep
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Protocol ΠMPC

Note that this protocol calls on procedures from ΠOpening in Figure 2. If a party
never receives an expected message from the adversary, we assume the receiving
party signals Abort to all other parties and aborts.

Initialise: The parties do the following:
1. Each Pi ∈ P executes Hi.Initialise().
2. The parties call FPrep with input (Triple, NT ) get NT triples.
3. The parties agree on a public sharing of the secret 1, denoted by u.
4. Each party has one random secret opened to them for every input they will

provide to the protocol: the parties do the following:
(a) Retrieve from memory a sharing r of a uniformly random secret r, obtained

first or second random secret from a Beaver triple. (The secret used may
neither be used again for input nor used in a multiplication.)

(b) Run OpenTo(i) on r so that Pi obtains r.

Input: For party Pi to input secret s,
1. Party Pi retrieves a secret r from memory, corresponding to a share vector r

established during Initialise for inputs, and all parties Pj ∈ P retrieve their
shares r{Pj}.

2. Party Pi executes Broadcast to open ε := s− r.
3. Each party Pj ∈ P computes s{Pj} := ε · u{Pj} + r{Pj}.

Add: To add secrets s and s′, with corresponding share vectors s and s′, for each
Pi ∈ P party Pi computes s{Pi} + s′{Pi}.

Multiply: To multiply secrets s and s′, with corresponding share vectors s and s′,
each Pi ∈ P does the following:
1. Retrieve from memory the shares (a{Pi},b{Pi}, c{Pi}) of a triple (a,b, c) ob-

tained in Initialise.
2. Compute s{Pi} − a{Pi} and s′{Pi} − b{Pi}.
3. Run OpenTo(0) on s− a and s′ − b to obtain (publicly) s− a and s′ − b.
4. If the parties have not aborted, compute the following as the share of the

product c{Pi} + (s− a) · s′{Pi} + (s′ − b) · s{Pi} − (s− a) · (s′ − b) · u{Pi}.

OutputTo(i): If i = 0, the secret s, encoded via share vector s, is to be output to
all parties, so the parties do the following:
1. Run Verify.
2. If the parties have not aborted, run OpenTo(0) on s.
3. If the parties have not aborted, run Verify again.
4. If the parties have not aborted, all parties (locally) output s.

If Pi ∈ P, the secret s encoded via share vector s is to be output to party Pi, so
the parties do the following:
1. Run Verify.
2. If the parties have not aborted, run OpenTo(i) on s.
3. If Pi has not aborted it (locally) outputs s.

Figure 5. Protocol ΠMPC
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Algorithm for computing a “good” MSP

The input is the multiplicative MSP M = (F,M, ε, ψ), where we assume M has d
columns and rank d. The output is a map χ : [n]→ [d] of party indices to columns,
and a new MSP.

1. Perform column operations on M of M and the same on ε to obtain an MSP
M′ with the same ψ and F but with matrix M ′ and target vector ε′ such that
all of the standard basis vectors in Fd, {ek}di=1 ⊆ Fd, appear as rows of M ′.

2. Define the map χ : [n]→ [d] in the following way, making choices so that im(χ)
is as large as possible:

– If Pi owns a row which is a standard basis vector ek, and εk 6= 0, then set
χ(i) := k;

– If Pi does not own such a row, assign Pi any column k in which Pi owns a
row j such that Mj [k] 6= 0 and εk 6= 0;

– If no such column exists, find any row j (not necessarily owned by Pi), and
any column k such that Mj [k] 6= 0 and εk 6= 0 and set χ(i) = k.

3. Output χ and M′.

Figure 6. Algorithm for computing a “good” MSP
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Subprotocol ΠConvert converting additive shares to shares in the LSSS

At this point in the protocol, the parties have an additive sharing 〈x〉, where Pi
holds xi, and will convert it to a sharing under the current MSP (F,M, ε, ψ) (output
by the conversion algorithm).

1. The parties call FRand with the command (PRZS, count,P) to obtain a PRZS
amongst them, denoted hereafter by 〈t0〉.

2. Each Pi splits xi+ t0i as xi+ t0i =
∑
k∈Ki∩Sε

xi,k where Ki := ({(χ(Pi)}∪ ([d]\
im(χ))) and Sε is the support of ε.

3. Each Pi sets ri,k := xi,k/εk for each k ∈ Ki ∩ Sε.
4. Each Pi samples ri,k ← F for each k ∈ Ki \ Sε.
5. For each row j which is not a standard basis vector, the parties do the following

(a) The parties call FRand with the command (PRZS, count,P) to obtain a
PRZS amongst them, denoted hereafter by 〈tj〉.

(b) Each Pi computes

aji :=

(
d∑
k=1

Mj [k] · ri,k

)
+ tji ,

where Mj [k] denotes the kth element of row j.
(c) Party Pi sends aji to party ψ(j).
(d) Party ψ(j) computes sj :=

∑n
i=1 a

j
i .

6. For each row j which is a standard basis vector: let k be the column in which
the vector is non-zero; then the parties do the following:
(a) Let Xi = {Pi ∈ P : Ki 3 k}; then parties in Xi call FRand with the

command (PRZS, count, Xi) to obtain a PRZS 〈tj〉.
(b) Each party Pi ∈ Xi computes

aji := Mj [k] · ri,k + tji ,

and then sends aji to party ψ(j) (or retains it if ψ(j) = Pi). (Note that we
always have Mj [k] = 1 in this case.)

(c) Party ψ(j) sets sj :=
∑
i:Pi∈Xi

aji

Figure 7. Subprotocol ΠConvert converting additive shares to shares in the LSSS
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The Functionality FRand

This functionality outputs the same random field element to all parties, pseudo-
random additive sharings of zero and pseudo-random replicated shares of random
field elements, depending on what the parties input. The set B is the set of com-
plements of sets in ∆+, the set of maximally unqualified sets, which is used in
replicated secret-sharing: see Figure 11 for more details.
PRZS:

– On input (PRZS, count, S) from all parties in a set S ⊆ P, if the counter value
is the same for all parties and has not been used before, the functionality
arbitrarily chooses some Pi∗ , and then for each party Pi in S \ {Pi∗} samples

ti
$← F uniformly at random, fixes ti∗ := −

∑
i∈S\{Pi∗}

ti and sends ti to party

Pi for each i ∈ S \ {Pi∗} and ti∗ to Pi∗ .

PRSS:
– On input (PRSS, count) from all parties, if the counter value is the same

for all parties and has not been used before, the functionality samples a set

{rB}B∈B
$← F and for each B ∈ B sends rB to all i ∈ B.

Rand
– On input (Rand, count) from all parties, if the counter value is the same for

all parties and has not been used before, the functionality samples r
$← F and

sends it to all parties.

Figure 8. The Functionality FRand
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Protocol ΠPrep

Pre-processing for any LSSS computing a Q2 access structure. Note that it takes
replicated shares from FRand, computes the additive sharing of the product, then
uses ΠConvert to convert this to the specific LSSS sharing. Consequently, the LSSS
need not be multiplicative. It takes in a parameter NT for the number of triples,
and then the parties do the following:
1. Initialise a global counter count and agree on some sharing u of the value 1.
2. For i from 1 to NT , do the following:

(a) Call FRand with input (PRSS, count) four times, incrementing count after
each call, to obtain secrets ai, bi, xi and yi shared as replicated shares; i.e.
ai, bi, xi and yi.

(b) Each party performs local computations on its shares so that together they
obtain an additive sharing of the product of ai and bi, and then do similarly
with xi and yi.

(c) Run the subprotocol ΠConvert to obtain a sharing ci of the secret ai · bi and
a sharing zi of the secret xi · yi (both sharings in the LSSS).

(d) Using the method of [17], locally convert ai and bi from replicated shares
to shares in this LSSS.

3. Now sacrifice: for i from 1 to NT , do the following:
(a) Call FRand with input (Rand, count) to obtain ri, increment count, and run

ΠOpening.OpenTo(0) on rixi − ai and yi − bi.
(b) Locally compute

ti := rizi − (yi − bi)ai − (rixi − ai)bi − ci − (rixi − ai)(yi − bi)u.

(c) Run ΠOpening.OpenTo(0) on ti to obtain ti.
4. Run ΠOpening.Verify.
5. If ti = 0 for all i, locally output the triples (ai,bi, ci)NT

i=1.

Figure 9. Protocol ΠPrep
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A Standard Linear Secret-Sharing Schemes

In order to aid the reader, in this appendix we outline some examples of standard
Linear Secret Sharing Schemes that we refer to in the main text. For each, we
point out how the schemes relate to the notions in our paper in terms of error-
detection. The three schemes we select are Shamir, Replicated and DNF-based
sharing; the latter is sometimes referred to as ISN sharing. Replicated and DNF-
based sharing can be derived from the conjunctive and disjunctive normal forms
of the Boolean formulae describing their access structures, respectively. Every
OR(A,B) in the formulae denotes that the parties in A and B get the current
share; and every AND(A,B) denotes that the current share is additively shared
between A and B. Proofs of correctness are omitted: the interested reader may
refer to [28,35].

A.1 Shamir Sharing

We now give examples of Shamir sharing to make ideas more concrete.

Shamir Sharing ΠShamir

The access structure is (n, t)-threshold.

Input: For party Pi to provide input s, it does the following:

1. Sample an irreducible polynomial f
$← F[X] of degree t subject to f(0) = s.

2. For each Pj ∈ P \ {Pi}, give party Pi the value f(i).

Open: For a qualified set of parties Q to open a secret s,
1. Each party Pi ∈ Q broadcasts their share f(i) to all other parties in Q.
2. Each party uses Lagrange interpolation to compute f(0).

ALF: To compute an affine function L(s1, . . . , sk) + a where L is a linear func-
tion, a a public constant, and {s1, . . . , sk} a set of secrets, each party computes
L(fs1(i), . . . , fsk (i)) + a.

Figure 10. Shamir Sharing ΠShamir

Shamir, (3, 1)-threshold Consider Shamir’s secret-sharing scheme for a (3, 1)-
threshold access structure and for simplicity assume that Pi receives f(i). The
MSP matrix is a Vandermonde matrix. We write it below with the row-map ψ
on the left:

M =
P1

P2

P3

1 1
1 2
1 3
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The target vector in this case is ε = e1 = (1, 0)> ∈ F2. Let N be the cokernel of
M , for some choice of basis; one possible choice is:

N =
(
1 −2 1

)
.

There are no share vectors with unqualified support, since such a share vector
corresponds to a polynomial of degree t with t + 1 zeros, which cannot exist.
Hence, by linearity, the adversary cannot change the share vector so that the
resulting vector is still a valid share vector. This is consistent with our lemmata
since the access structure is Q2.

Shamir, (4, 1)-threshold Now we do the same for (4, 1)-threshold. We have

M =

P1

P2

P3

P4


1 1
1 2
1 3
1 4


and a possible parity-check matrix

N =

(
1 0 −3 2
0 1 −2 1

)
.

A.2 Replicated Sharing

Again we give some basic examples.

Replicated Sharing ΠReplicated

Let B := {B ∈ 2P : P \B ∈ ∆+}.

Input: For party Pi to provide input s, it does the following:

1. Sample a set {sB}B∈B
$← F subject to

∑
B∈B sB = s.

2. For each B ∈ B, give sB to all i ∈ B.

Open: For a qualified set of parties Q to open a secret s,
1. A qualified set Q of parties together has all shares, i.e. the set {sB}B∈B. For

each B ∈ B, if Pj ∈ Q and Pj 6∈ B then all parties Pi ∈ B send sB to party Pj .
2. Each party computes s =

∑
B∈B sB .

ALF: To compute an affine linear function L(s1, . . . , sk) + a where L is a linear
function, a a public constant, and {s1, . . . , sk} a set of secrets, each Pi ∈ P, for
each B ∈ B where B 3 Pi, computes the output as sB := L(s1B , . . . , s

k
B), and then

for some B ∈ B, every Pi ∈ B sets the share sB as sB := L(s1B , . . . , s
k
B) + a.

Figure 11. Replicated Sharing ΠReplicated
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Replicated, (3, 1)-threshold Consider the replicated secret-sharing for the
(3, 1)-threshold access structure. One choice of MSP matrix is:

M =

P1

P2

P2

P3

P3

P1


1 −1 −1
1 −1 −1
0 1 0
0 1 0
0 0 1
0 0 1


where the numbers to the left of the matrix indicate which party owns each row
(i.e. they indicate the map ψ). The target vector is ε = e1 = (1, 0, 0)> ∈ F3. Let
N be the cokernel of M , for some choice of basis; one possible choice is:

N =

−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

 .

As with Shamir’s secret-sharing, there are no share vectors with unqualified
support: if N · t = 0, then t is of the form (t1, t1, t2, t2, t3, t3)> where ti ∈ F;
however, the image under ψ of the support of an error with this form (for which
the encoded secret is non-zero) is necessarily qualified (e.g. t = (0, 0, 0, 0, 1, 1)>

has support {1, 3}, which is qualified). Thus the adversary cannot change the
share vector so that the new shares encode the same secret, let alone changing
the share so that it shares a different secret, without the resulting vector not
being in im(M).

A.3 DNF-based Sharing

Here we choose a little more exotic an example. Consider the Q2 access structure
given by (where we are just writing party indices, for clarity):

Γ− = {{4}, {1, 2}, {1, 3}, {2, 3}}

∆+ = {{1}, {2}, {3}}.

One choice of MSP matrix is:

M =

P4

P1

P2

P1

P3

P2

P3



1 0 0 0
1 −1 0 0
0 1 0 0
1 0 −1 0
0 0 1 0
1 0 0 −1
0 0 0 1


.
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DNF Sharing ΠDNF

Input: For party Pi to provide input s, it does the following:

1. For each Q ∈ Γ−, sample {sjQ}Pj∈Q
$← F subject to

∑
Pj∈Q s

j
Q = s.

2. For each Q ∈ Γ−, for each Pj ∈ Q, give sjQ to Pj .

Open: For a qualified set of parties Q to open a secret s,
1. A qualified set Q of parties has all shares in the set {siQ}Pi∈Q. Each party

Pi ∈ Q broadcasts their share siQ to all other parties in Q.
2. Each party in Q computes s =

∑
Pi∈Q s

i
Q.

ALF: For notational simplicity, we describe how to compute the affine linear func-
tion L(x, y) = αx+ βy+ γ where α, β ∈ F define a linear function on secrets x and
y, and γ ∈ F is a public constant.
Each Pi ∈ P, for each Q ∈ Γ+ where Q 3 Pi, computes ziQ := αxiQ + βyiQ. The
public constant γ must be added to each of the |Γ−| sharings, so for each Q ∈ Γ−
the parties decide on some Pi ∈ Q to modify ziQ to be ziQ := ziQ + γ.

Figure 12. DNF Sharing ΠDNF

The target vector in this case is ε = e1 = (1, 0, 0, 0)> ∈ F4. Let N be the cokernel
of M , for some choice of basis; one possible choice is:

N =

1 −1 −1 0 0 0 0
1 0 0 −1 −1 0 0
1 0 0 0 0 −1 −1

 .

As with the Q2 Shamir and Replicated secret sharing examples, there are no
share vectors with unqualified support. This is because any share vector must
contain the secret in the first component, which automatically makes its support
qualified since ψ(1) = {P4}, which is qualified.

B Proofs

B.1 Proof of Proposition 1

Following standard proofs in the UC model, we provide a simulator in Figure 13,
Figure 14 and Figure 15 and will argue that no environment, which provides
input and output to all parties, and additionally decides on all action and views
all internal behaviour of the adversary, can distinguish between the world in
which the simulator provides a transcript running the adversary as a subroutine
and interacting with FMPC given in Figure 4, and a hybrid world in which the
honest parties and adversary instead interact in a protocol execution given in
Figure 2 and Figure 5 where in this hybrid world the existence of FPrep given
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in Figure 3 is assumed. Before we give the formal indistinguishability argument,
we make a couple of remarks on the proof and simulation.

Correctness of Simulation The majority of the simulation merely involves
running the protocol honestly with the adversary, extracting inputs, and faking
inputs of honest parties.

Initialise: Note that FMPC must even allow the adversary to abort during the
initialisation since the FPrep protocol allows the adversary to abort. Agreement of
the sharing of 1 can be done in different ways and is not particularly interesting
for our protocol; for example, one party can generate a random sharing of 1 and
broadcast it; the parties can then update the hash function with the sharing
they observed to ensure (after running ΠMPC.Verify later on) that all parties
receive the same vector. It is for this reason that the details are omitted from
the protocol description.

When opening the random mask r which will be an input mask, the func-
tionality must allow a message from the adversary to abort or continue because
in the simulation the adversary can cause an abort during ΠOpening.OpenTo(i).
Recall, however, that the adversary can either cause an abort, or the party pro-
viding input necessarily computes the correct mask r, by Lemma 1; in particular,
then, the adversary cannot cause the (honest) party to use an incorrect value
instead of r. Note also that if the party providing input is corrupt and sends
different values of ε to different honest players (emulated by the simulator), the
flag Abort is not set as true because the protocol is supposed to continue; how-
ever, the hashes are computed by the simulator exactly as they would be in the
real world, and hence the protocol will abort if the adversary behaves in this
manner.

LSSSs admitting non-trivial sharings of 0 We highlight this part of the
proof since it is important for understanding why simulation is possible even
though for some LSSSs the adversary can cause different parties to reconstruct
different share vectors which share the same secret.

Note that if the LSSS admits non-trivial sharings of the secret 0, the adver-
sary could open a secret to different honest parties by making them reconstruct
different share vectors, even though the secret must be the same because of the
inherent error-detection in the MSP. However, the definition of q in Section 4
disallows this since it requires that ker(Mq(Pi)) = {0} for each i. In such cases,
the size of the set q(Pi) is likely to be large, if not the whole set of shares.

Indistinguishability

Proof. Following standard practice, we provide a sequence of hybrid executions
between the real-world and ideal-world executions, prove that each hybrid is
indistinguishable from the next, and conclude that the first and last executions
are indistinguishable.
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Hybrid 0: This is the hybrid world in which the adversary and simulator run
the protocol and the simulator additionally responds to all calls to FPrep.
Here the simulator uses the actual inputs of honest parties. Using knowledge
of the mask from internally running FRand, the simulator extracts input of
the adversary from the broadcast and passes it to FMPC, which interacts
with honest parties with their inputs from the environment. Whatever the
behaviour of the adversary, the simulator continues the protocol honestly,
and sends the message to FMPC to abort if an honest party or the adversary
in the protocol would signal abort.

Hybrid 1: Same as Hybrid 0, but the simulator additionally stores errors for
each sharing, as induced by the adversary during calls toΠOpening.Broadcast
and ΠOpening.OpenTo(). Then, during calls to ΠMPC.Add, the simulator add
errors in the obvious way, and in ΠMPC.Multiply replace opening of vectors

s−a and s′−b in Multiply with share vectors ρ+δ(s) and σ+δ(s
′) sharing

uniform secrets, but which agree with the shares held by the adversary on
sA − aA and s′A − bA respectively. See the appropriate procedures in SMPC

in Figure 13 for details.
Hybrid 2: Same as Hybrid 1 but the simulator replaces the broadcast of
ε = s−r for honest parties’ actual inputs s, and r from FPrep, with uniformly
randomly sampled inputs instead (or equivalently sample and broadcast a
uniform ε). Note that in the previous hybrid we removed the dependence on
the inputs of honest parties of the transcript during ΠMPC.Multiply. The
only remaining place to remove the dependence is during output. To do this,
the simulator stores all share vectors output from FPrep, and executes the
entire remainder of ΠMPC (after the alterations in Input) just as honest par-
ties would, except for output, in which the simulator generates new shares
derived from the output of the functionality FMPC and the internally-run
FPrep and passes these to the adversary during the call to OutputTo (de-
tailed in Figure 15). The simulator sends the message to FMPC to abort if
an honest party or the adversary in the protocol would signal abort.

Hybrid 0 → Hybrid 1 Hybrid 0 produces the same transcript for the ad-
versary as would be generated in the protocol execution since at this point we
give the simulator the actual inputs of honest parties, and the simulator uses
the honest parties’ inputs to perform the protocol honestly. Observe that any
errors induced on share vectors by acting maliciously in ΠOpening.Broadcast
or ΠOpening.OpenTo will (possibly) be observed by the adversary in the proce-
dure ΠMPC.Multiply, since the honest parties will not necessarily have aborted
by this point; of course, the protocol will still abort in ΠMPC.OutputTo, but
the simulation of the protocol must continue until this is called, since honest
parties in the real (hybrid) world would also continue. Moreover, note that
ΠMPC.Multiply is the only place errors are (possibly) observable by the adver-
sary. Therefore, to replace the secrets opened in ΠMPC.Multiply with uniform
secrets, which we want to do as then they are trivially independent of the honest
parties’ inputs, the simulator must keep track of the errors introduced by the
adversary throughout and ensure those errors are observed during the calls to
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ΠOpening.OpenTo of ΠMPC.Multiply. By “observed”, we mean that the same
sets of honest and/or corrupt parties will fail to reconstruct and consequently
request that the protocol abort. (Note that this set of parties is somewhat gov-
erned by the function q since this defines how shares are reconstructed (before
verification), but we are not claiming any secrecy on this function.) Since the
simulator is able to extract these errors and maintain them through the com-
putation (see Figure 14, Figure 15), the adversary will observe the same the
same set of parties failing or succeeding in ΠOpening.OpenTo as if the protocol
were followed honestly. Note that the errors δ computed by the simulator will
be (subvectors of) sharings of zero if the adversary behaves honestly with the
inputs provided by the simulator.

More concretely, consider Input for corrupt parties’ inputs: the simulator
needs to maintain a record of the corrupt shares by computing s{Pj} := εj ·
u{Pj} + r{Pj} for each honest Pj , where εj is what the adversary sent to honest
Pj , not necessarily the same to all honest parties since we only assume pair-wise
secure channels. Observe that if the adversary behaves dishonestly and sends a
different ε to the simulator for some honest party, then the hashes will differ in
Verify later on; otherwise, the adversary behaves honestly and the simulator is
able to extract the well-defined input of the adversary as s := ε+ r and forward
it to the functionality FMPC because the mask r was provided by FPrep, which
the simulator ran internally, and forwarded it to the adversary during Initialise.

Note also that maintaining a list of these errors allows the simulator to eval-
uate the hash function used in Verify identically to how honest parties would
in the protocol.

Finally, note that the replacement secrets the simulator uses during multi-
plication were sampled uniformly, so the contribution to the distributions is the
same between the hybrids because:
1. The secrets a and b in the triple are never revealed, so the secrets s− a and
s′ − b are computationally indistinguishable from uniform since a and b are
pseudo-randomly generated;

2. The errors induced by the adversary during calls to ΠOpening.Broadcast and
ΠOpening.OpenTo were carried through.

Hybrid 1 → Hybrid 2 Since r is generated from pre-processing and the en-
coded secret r is uniform and unknown to the adversary, the broadcasted value
ε masks the input of honest parties computationally since r is only generated as
a pseudo-random secret. Indeed, note that every call to ΠOpening.OpenTo is of
sharings encoding uniformly random secrets, and that when ΠOpening.Broadcast
is called when honest parties are to provide inputs, the broadcasted value is also
uniform. Thus the transcript reveals nothing about the inputs of honest parties,
and in particular (computationally) hides the fact that the simulator samples
honest parties’ inputs during SMPC.Input in Hybrid 2.

Moreover, the simulator is able to create a convincing output vector which
shares the secret output by the functionality because a set of unqualified parties
learns no information about the secret from the shares they hold. Note that
some generalised forms of secret-sharing do not offer such guarantees: see, for
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example, ramp schemes [10] in which some sets of parties are neither unqualified
nor qualified and are allowed to learn something about the secret. If the set of
shares revealed something about the secret (say, for example, that the sampled
secret lay in a strict subset of the domain) then if the functionality later outputs a
secret not in this domain, the simulator cannot necessarily provide a set of shares
which convincingly opens to the actual input (and not the sampled secret). Since
this does not happen, the inputs and outputs of all parties are the same, the
transcript is independent of the input, and the parties abort with the same
distributions in both worlds.

Since each pair of hybrids is indistinguishable (computationally or better), by
the triangle inequality applied to the success probabilities adversary in distin-
guishing between each pair, the FPrep-hybrid world and the ideal world are com-
putationally indistinguishable. ut

B.2 Proof of Proposition 2

We will first briefly justify the correctness of the protocol in the sense that it
will always abort if the adversary cheats. Note that our protocol allows any
party to alter the encoded secrets simply by changing their beginning summand
xi; sacrificing is used to ensure that this does not happen. Let the error the
adversary introduces be δ.

1. If Nδ 6= 0 then the adversary has introduced errors so that the resulting vec-
tor is not a valid sharing of any secret in the LSSS. An error of this form will
cause honest parties construct different but valid share vectors when open-
ing shares during sacrifice. Such an error is moreover not detected during
the sacrifice stage, during ΠOpening.OpenTo(0), if and only if the adversary
manages to cancel the error in the other triple used during sacrifice: i.e. if
the adversary manages to introduce errors δa,b and δx,y on c and z, and
errors when broadcasting for the sacrifice check so that the vector defined
by

r · δx,y{Pi} − (ρ− ρi) · b{Pi} − (σi − σ) · a{Pi} − δ
a,b
{Pi} − (ρi · σi − ρ · σ) · u{Pi}

for each i ∈ [n] is a valid sharing of zero, where ρi and σi are the values
reconstructed by Pi in opening ρ and σ. Since ρ and σ are uniform, the
protocol will abort during ΠOpening except with probability 1/q where q = |F|.

2. If Nδ = 0 then the adversary has introduced errors so that the resulting
vector is a valid sharing of some secret which is different from the secret
encoded by the original additive sharing. In this case, the protocol will abort
unless the adversary manages to compute something to add to c and z such
that in the sacrifice step it holds that

0 = r · (x · y + δz) + a′ · b′ − (a′ · b′ + δc)− r · x · y.

In other words, the adversary must add on errors to c and z encoding secrets
δc and δz such that rδz− δc = 0, which again only happens with probability
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1/q since r is uniformly random (since it is derived from ρ and σ which are
uniform.

Thus in either case, the protocol will abort with overwhelming probability.

We now turn to proving security. Our simulator is given in Figure 17 and
Figure 18. We will discuss correctness of the simulation, and then prove that the
simulator successfully provides a transcript to adversary so that no environment,
who provides all inputs, sees all outputs of honest parties, and additionally
controls all internal behaviour of the adversary, can distinguish between the ideal
world in which the simulator acts with FPrep, and the hybrid world in which the
honest parties interact with the adversary as in the protocol and additionally
have access to FRand.

Correctness of Simulation Since we are in the FRand-hybrid world, the sim-
ulator is required to respond to all calls of the adversary to generate PRSSs and
PRZSs and public random values r.

Throughout the simulation, the simulator keeps track of errors introduced by
the adversary on honest parties’ shares by storing a vector δ along with share
vector; these vectors (potentially) change after each round of communication,
which is the only time the adversary can influence shares of honest parties.
More specifically, the simulator must keep track of errors from ΠConvert so that
the correct distribution of honest parties aborts during OpenTo() or Verify.

Because all of the raw data used to construct the Beaver triples comes from
either FRand or FPrep, the simulator can always compute what the adversary
would compute were he to follow the protocol, as the simulator runs FRand inter-
nally and interfaces between the adversary and FPrep; using this information, he
can exactly determine the errors the adversary introduces when sending infor-
mation to (emulated) honest parties; the simulator can then use this information
to provide a transcript indistinguishable between the hybrid world and the ideal
world, even without learning the shares received by honest parties, as we shall
prove.

Note that if the LSSS admits share vectors with unqualified support, the
adversary can potentially create a set of shares different from those generated
by the multiplication protocol but so that the sacrifice check passes; this can
be viewed as re-randomising shares, as was discussed in Section 4. However, by
Lemma 2, any re-randomisation cannot affect the value of the secrets encoded.
In particular, this means that the shares the adversary holds at the end may
not be the same as the shares given to the functionality by the simulator, who
simply passes on exactly what the adversary would compute were he to follow
the protocol; however, if the adversary follows the protocol then the distributions
of the final share vectors held by all parties are the same in both real (hybrid)
and ideal worlds, since by linearity,

{c : c encodes the secret c} = {c + e : c encodes the secret c}
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for any e with ψ(supp(e)) ⊆ A, since e must encode 0, and the functionality
uniformly selects the share vector c to which to lift the subvector cA, subject to
the constraint that it must share a · b.

Indistinguishability

Proof. We will show directly that our simulator provides the correct view, in-
stead of hopping between a series of hybrids.

The simulator creates a view for the adversary as if it were running the
protocol, and responds to all calls to FRand. Note that there is no input from the
adversary to the functionality, so there is no need for the simulator to extract any
inputs from the adversary. The simulator runs FRand honestly internally for calls
to PRZS. For the calls to the simulator for x and y, the simulator runs FRand

internally honestly and sends the adversary the appropriate output. The secrets
x and y are never revealed to the adversary and the simulator can compute them
since it stored all outputs of FRand. Thus for these two calls by the adversary to
FRand, the protocol transcript produced in the real world and the transcript the
simulator produces are identically distributed.

When the adversary requests a PRSS for a and b, the simulator only receives
a subset of shares for corrupt parties – namely aA and bA. Thus the simulator
cannot know secrets a and b sampled by FPrep, and so it samples random secrets
a′ and b′ and creates share vectors consistent with these secrets and the outputs
of FPrep.

However, later in the protocol the simulator replaces share vectors which
should encode the secrets r ·x−a′ and y−b′ with share vectors encoding uniform
secrets but which also agree on shares held by corrupt parties; the simulator can
do this as it knows the values of a′A, b′A, xA and yA from the above.

Note that by definition of MSP, it is always possible to create a share vector
for any secret given only some unqualified subvector. This fact is used repeatedly
in our simulator to replace the shares of honest parties. Note that choosing r
in the way defined in Figure 17, it is indistinguishable from uniform as σ and ρ
were sampled uniformly. This removes the dependence of the transcript during
ΠOpening on the secrets a′ and b′ the simulator initially sampled.

Observe that if ρi = ρ and σi = σ for all i, then since the simulator simply
runs the protocol honestly and stores errors introduced, the sacrifice will fail,
with the same set of parties initially calling for abort, with the same distributions
in both worlds.

We still require that the transcript reveal nothing about the secrets the simu-
lator sampled, a′ and b′. Consider what can be learnt from the protocol transcript
during ΠConvert:
1. For any row which is not a standard basis vector, the owner of the row

receives shares from all other parties and learns the value of 〈Mj ,x〉. Since

the summands aji contain PRZS masks, the recipient can learn nothing more
than what they can learn from their own shares and the value 〈Mj ,x〉.

2. For any row which is a standard basis vector, the owner can learn the sum
of reshares assigned to the column whose index is the index of the non-
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zero entry of the row. Here the n-party PRZS added to 〈x〉 prevents the
recipient from learning anything about any of the shares xi of the secret
before conversion, and hence nothing from the original secrets a and b used
to create 〈x〉 which otherwise might be learnable since xi is a sum of a subset
of shares of a and b.

Note that for any column in which εk = 0, the parties randomise the sharing by
choosing a random scalar multiple of this column to the final share vector. This
is possible because the fact that εk = 0 means that any amount of the secret
value shared via share vectors in the linear span of column M [k] are cancelled
out in recombination. Randomising in this way is necessary because the secrets
corresponding to these columns are essentially used to mask the secret. (Consider
an MSP for Shamir, as in Appendix A: all entries of the target vector but the first
are zero; if one were always to assume one column of the latter columns of the
MSP matrix contributed nothing to the final share vector, the resulting access
structure would have threshold one less than before – i.e. the access structure
would change).

This shows that the transcript during ΠConvert does not reveal information to
the adversary about the values of the secrets being multiplied.

Now consider values opened in ΠOpening. In the real (hybrid) world, x and
y are uniform, and hence the broadcasted values r · x − a and y − b reveal
nothing about a and b; thus the simulation in which ρ and σ encode uniform
secrets is contributes the same distribution of elements here. Then, observe that
in ΠOpening.OpenTo(0) on t the shares of honest parties are independent of a′

and b′, since even δa,b is computed by the adversary based only on knowledge
of aA and bA. Thus the transcript is independent of a′, b′ and a′ · b′, and so
the environment is not able to detect that a different triple has been generated
from the one in the ideal world (with high probability) since the simulator did
not receive shares for honest parties from FPrep and thus could not compute the
secrets. This shows that the transcript during ΠOpening does not reveal informa-
tion on a′ and b′, and hence hides the fact that they are not the same as in the
ideal world.

Thus, since the adversary and environment cannot learn information on the
encoded secrets from the transcript, the simulator can provide a convincing
transcript by replacing the share vectors which are multiplied and opened with
share vectors encoding uniform secrets, subject to the constraint that the share
vectors be consistent with whatever was previously seen by the adversary.

Since the triples are produced independently of each other, the combined
distribution of triples offers no information to the environment.

Since the hybrids are computationally indistinguishable, the hybrid world
and the ideal world are also computationally indistinguishable. ut
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Simulator SOpening

The set A ⊆ P is the set of corrupt parties; let IA ⊆ [n] denote the corresponding
indexing set. We write i 6∈ IA, and Pi 6∈ A, if Pi is honest. See the protocol descrip-
tion in Figure 2 for the definition of λi and Section 4 for the definition of q. We
denote by Hi the hash function updated locally by Pi. Error vectors δ are com-
puted in SMPC.Input, SMPC.Multiply and SMPC.Add. In the protocol, if an honest
party never receives an expected message from the adversary, it signals abort; in
the simulation, if this happens then simulator sets the internal flag Abort to true.

OpenTo(i): By the time this is called in the simulation, the simulator has obtained
a secret s, knows the complete share vector s, and has the corresponding the error
vector δ.

– To open a secret to all parties, the simulator does the following:
1. Retrieve from memory the recombination vectors λj , for j ∈ [n].
2. For each j ∈ IA and k ∈ q(Pj), if ψ(k) 6∈ A then send sk + δk to the

adversary.
3. For each j 6∈ IA and k ∈ q(Pj), if ψ(k) ∈ A then wait for sk from adversary.
4. For each j 6∈ IA, concatenate local and received shares into a vector sjq(Pj)

∈
F|q(Pj)|.

5. For each j 6∈ IA, solve Mq(Pj)x
j = sjq(Pj)

for xj , if it exists. If for any j

there is no such xj , send the message Abort to the adversary to abort the
protocol and set the internal flag Abort to true.

6. If the protocol has not aborted, for all j 6∈ IA execute Hj .Update(Mxj).
– To open a secret to Pi, the simulator does the following:

1. If Pi is corrupt,
(a) For each Pj 6∈ A, send s{Pj} to the adversary.
(b) If the adversary signals Abort then send the message Abort to the

adversary to abort the protocol and set the internal flag Abort to true.
2. If Pi is honest,

(a) For each Pj ∈ A, for each i ∈ IA, wait for some subvector s′{Pj} from
the adversary.

(b) Let s′ be the vector s modified so that s{Pj} := s′{Pj} for all j 6∈ IA. If

Ns′ 6= 0, then run send the message Abort to the adversary to abort
the protocol and set the internal flag Abort to true.

Verify The simulator runs the procedure as honest parties would:
1. Compute hi := Hi.Output() for all i 6∈ IA and send to the adversary.
2. Wait for {hj,i}j∈IA,i 6∈IA from the adversary, where hj,i denotes the output of

the hash function sent by the adversary for corrupt Pi to the simulator in place
of honest Pj .

3. For each i 6∈ IA, if hj,i 6= hi for any j ∈ IA, send the message Abort to the
adversary to abort the protocol and set the internal flag Abort to true.

Broadcast: The simulator runs the procedure as honest parties would: when Pi
needs to run this procedure to broadcast some ε, the simulator does the following:

– If the broadcasting party Pi is honest, then for each j 6∈ IA set εj := ε and then
send {εj}j 6∈IA to the adversary on behalf of Pi.

– If the broadcasting party Pi is corrupt, wait for the adversary to send {εj}j 6∈IA .
For each j 6∈ IA, update the local hash function Hj .Update(εj).

Figure 13. Simulator SOpening
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Simulator SMPC Part 1 of 3 (Commands Part 1 of 3)

The simulator stores all share vectors with their identifiers, along with error vectors
(see below). The set IA denotes the indexing set of corrupt parties. The simulator
always performs ΠOpening exactly as honest parties would in the protocol, but we
define our simulator SOpening because we must keep track of, and incorporate into any
revealed shares or secrets, all errors the adversary introduces during the protocol.

Initialise: The simulator does the following:
1. Set the internal flag Abort to false and for each i 6∈ IA, initialise a local hash

function Hi by running Hi.Initialise().
2. Initialise an internal copy of FPrep. When the adversary sends a message

(Triple, NT ), execute FPrep.Triples honestly with the adversary and store all
information sent from the adversary and output from the functionality. If FPrep

aborts, send the message Abort to the adversary, and send Init and then Abort
to FMPC and abort, and otherwise continue. For each share vector s output from
FPrep, determine the encoded secret s by computing 〈s,λ〉 using any recombi-
nation vector λ, and store it.

3. Agree with the adversary on the sharing of 1, denoted by u.
4. For generating input masks, the simulator honestly executes the protocol:

(a) For providing input to corrupt or honest Pi, retrieve a sharing r and cor-
responding secret r from memory.

(b) Run SOpening.OpenTo(i) with the adversary on r.
5. Send the message Init to FMPC, followed by a message Abort if the internal flag

Abort is set to true, or OK otherwise.

Input: For Pi to give input, the simulator does the following:
1. Do the following:

– If Pi is honest, sample ε
$← F and do the following:

(a) Run SOpening.Broadcast with the adversary, with Pi broadcasting ε.
(b) Define an error vector to be used later by δ{Pj} := 0 for all j ∈ [n] and

store the share vector s := ε · u + r.
(c) Using the fresh identifier id, send (Input, id,⊥)Pj∈A to FMPC.

– If Pi is corrupt, do the following:
(a) Run SOpening.Broadcast with the adversary (where the adversary pro-

vides input) so that the simulator obtains a set {εj}j 6∈IA . Choose any
j 6∈ IA and set ε := εj .

(b) Define an error vector to be used later by δ{Pj} := (εj − ε) · u{Pj} for
all j ∈ [n] and also store the share vector s := ε · u + r.

(c) If the internal flag Abort has not been set to true, using the fresh
identifier id, send (Input, id, ε+r) and (Input, id,⊥)j∈IA\{i} to the func-
tionality FMPC, and then additionally send OK; otherwise sample some
ε, send (Input, id, ε) and (Input, id,⊥)j∈IA\{i} to FMPC and then send
the message Abort.

Figure 14. Simulator SMPC Part 1 of 3 (Commands Part 1 of 3)
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Simulator SMPC Part 2 of 3 (Commands Part 2 of 3)

Add: When adding secrets shared via s and s′ with identifiers ids and ids′ , the
simulator does the following:
1. Retrieve s and s′ from memory along with error vectors δ(s) and δ(s

′).
2. Compute the sum as s + s′ and a new error vector δ(s) + δ(s

′), and store these
with the new identifier id.

3. Send the command (Add, ids, ids′ , id) to FMPC.

Multiply: When multiplying secrets shared via s and s′ with identifiers ids and
ids′ , the simulator does the following:

– Retrieve the share vectors for the triple a, b, and c, and the corresponding
identifiers.

– Retrieve from memory the share vectors s and s′ and corresponding error vec-
tors δ(s) and δ(s

′).
– Sample two share vectors ρ and σ of uniform secrets ρ and σ such that ρA =

sA − aA and σA = s′A − bA.
– Execute SOpening.OpenTo(0) on ρ + δ(s) and σ + δ(s

′) to obtain for honest
parties {ρi}i 6∈IA and {σi}i 6∈IA .

– If the internal flag Abort has been set to true, send the command
(Multiply, ids, ids′ , id) to FMPC, and then send the message Abort; otherwise,
do the following:
• Compute {ρi}i∈IA and {σi}i∈IA based on knowledge of ρA and σA.
• Store the new share vector as

s′′ := c{Pi} + ρ · s′{Pi} + σ · s{Pi} − ρ · σ · u{Pi}

and also store the new error on the product defined by

δ
(s′′)
{Pi}

:= (ρi−ρ)·s′{Pi}+ρ
i·δ(s

′)
{Pi}

+(σi−σ)·s{Pi}+σ
i·δ(s){Pi}

−(ρi·σi−ρ·σ)·u{Pi}

for all i ∈ [n].
• Send the command (Multiply, ids, ids′ , id) to FMPC, and then send the mes-

sage Abort if the internal flag Abort was set to true, and otherwise send
the message OK.

Figure 15. Simulator SMPC Part 2 of 3 (Commands Part 2 of 3)
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Simulator SMPC Part 3 of 3 (Commands Part 3 of 3)

OutputTo(i): When the adversary requests to open a sharing s encoding secret s,
the simulator does the following:
1. Send the command (Output, id, 0) to FMPC.
2. Retrieve the identifier id used for this secret and the error vector δ(s).
3. Run SOpening.Verify.
4. – If i = 0,

(a) Receive the secret s from FMPC.
(b) Run SOpening.OpenTo(0) to open s + δ(s).
(c) If the internal flag Abort has been set to true, send the message Abort

to FMPC and otherwise run SOpening.Verify.
(d) If the internal flag Abort has been set to true, send Abort to FMPC, and

otherwise send OK.
– If Pi ∈ P,
• If Pi is corrupt,

(a) Send the command (Output, id, i) to FMPC and receive back the
secret s.

(b) Retrieve from memory the share vector s corresponding to this
secret along with its error vector δ(s) and sample a new share
vector t that encodes the secret s and it holds that sA = tA.

(c) Run SOpening.OpenTo(i) on t + δ(s).
(d) If the internal flag Abort has been set to true, send Abort to FMPC,

and otherwise send OK.
• If Pi is honest,

(a) Run SOpening.OpenTo(i) with the adversary.
(b) If the internal flag Abort has been set to true, send Abort to FMPC,

and otherwise send OK.

Figure 16. Simulator SMPC Part 3 of 3 (Commands Part 3 of 3)
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Simulator SPrep

We omit indices for the NT triples for the sake of clarity and because all triples are
generated independently. The simulator does the following:
1. Initialise count.
2. For i from 1 to NT , do the following:

– When the adversary sends a message PRSS to the simulator for FRand,
invoke FPrep and forward to the adversary the vectors aA and bA it receives.
Create share vectors a′ and b′ such that they share uniform secrets a′ and
b′, respectively, and such that a′A = aA and b′A = bA.

– When the adversary asks for shares of x and y, run FRand internally and
give the appropriate outputs to the adversary.

– As in the protocol, perform the local computations to obtain additive shar-
ings of the products of a′ with b′ and x with y. Using knowledge of the
shares given to the adversary from FRand and FPrep, the simulator can do
this for all parties, including corrupt.

– Now run SConvert with the adversary; the simulator obtains share vectors c,
c̃ and an error vector δa,b, where c is computed by emulating the whole
ΠConvert protocol honestly using knowledge of a′A and b′A.

– Do similarly for x and y to obtain share vectors z and z̃ and error vector
δx,y.

– Send to FPrep the share (sub)-vector cA computed as in the execution of
ΠConvert on the additive sharing of the product of a′ and b′.

– Run FRand honestly internally to obtain some r and send it to the adversary.
– Create sharings ρ and σ of uniform secrets ρ and σ subject to the require-

ment that ρA = r · xA − a′A and σA = yA − b′A, which is possible as A is
unqualified.

– Execute ΠOpening.OpenTo(0) as in the protocol (aborting if necessary and
sending the message Abort to FPrep), but opening ρ and σ instead of r·x−a′

and y − b′. Denote by ρi and σi respectively the values each party i 6∈ IA
opened the secrets to.

– Now set

t{Pi} := r · (z{Pi} + δx,y{Pi}
)− ρi · (y{Pi} − σ{Pi})− σ

i · (r · x{Pi} − ρ{Pi})

−(c{Pi} + δa,b{Pi}
)− ρi · σi · u{Pi}

and run ΠOpening.OpenTo(0) on t. If the procedure ΠOpening.OpenTo(0)
aborts or one of the (emulated) honest parties computes an opening dif-
ferent from 0, then the simulator sends the message Abort to FPrep and the
adversary.

3. Execute ΠOpening.Verify as in the protocol, sending the message Abort to FPrep

if an honest party would abort and otherwise sending OK.

Figure 17. Simulator SPrep
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Simulator SConvert

When this part of the simulation is called, the simulator has one summand xi of the
secret product for each party (including summands the corrupt parties are supposed
to be holding, since they were derived from secrets known to the simulator).

1. Following the protocol, the simulator samples a set of shares {xi,k : i 6∈ A, k ∈
Ki} such that

∑
k∈Ki

xi,k = xi for each i 6∈ IA.
2. Following the protocol, for each j ∈ [m], the simulator does the following:
3. If j is not a standard basis vector, the simulator does the following:

(a) When the adversary sends the command (PRZS, count,P) to the simula-
tor, run FRand honestly to obtain some PRZS 〈tj〉, record all outputs, and
forward appropriate outputs to the adversary.

(b) If ψ(j) 6∈ A then wait to receive a set {ãji : i ∈ IA} of shares from the
adversary, and additionally compute the shares {aji : i 6∈ IA} by following
the protocol for honest parties. Compute s̃j :=

∑n
i∈IA

ãji +
∑
i 6∈IA

aji and

sj :=
∑n
i=1 a

j
i .

(c) If ψ(j) ∈ A then execute the protocol honestly to compute the shares
{aji : i 6∈ IA}, and send them to the adversary. Additionally, compute the
shares an honest adversary would compute {aji : i ∈ IA} using knowledge
of outputs of FPrep and FRand and then set sj := s̃j :=

∑n
i=1 a

j
i .

4. If j is a standard basis vector ek for some k, the simulator does the following:
(a) When the adversary sends the command (PRZS, count, X) to the simula-

tor, run FRand honestly to obtain some PRZS 〈tj〉, record all outputs, and
forward appropriate outputs to the adversary.

(b) If ψ(j) 6∈ A then wait to receive a set {ãji : i ∈ X ∩ IA} of shares from the
adversary. Compute s̃j :=

∑
i∈X∩IA

ãji +
∑
i∈X\IA

aji and sj :=
∑
i∈X a

j
i .

(c) If ψ(j) ∈ A then, execute the protocol honestly and send {aji : i ∈ X \ IA}
to the adversary. Additionally, compute the shares an honest adversary
would compute {aji : i ∈ IA} using knowledge of outputs of FPrep and FRand

and then set sj := s̃j :=
∑n
i=1 a

j
i .

5. The simulator computes an error

δ := s− s̃

(and note that δP\A = 0).

Figure 18. Simulator SConvert
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C Algorithm for finding a (crudely optimised) map q

See Section 4 for the definition of q. In this section we provide an algorithm to
find a map q such that |supp(q(i))| is “quite small”, for all i. We have a choice
as to whether to minimise the number of implied uni- or bi-directional channels.
In the algorithm below, by choosing the qualified sets as described we crudely
optimise the number of uni-directional channels.

For the algorithm, we assume the MSP matrix M has linearly independent
columns, since if not then we can take a linearly independent subset to obtain a
new LSSS which realises the same access structure [4]. We also assume that the
map ψ is increasing so that each party owns a contiguous submatrix of M . If it
is not, the rows can be interchanged so that this is true.

Algorithm for determining q

1. For each Pi ∈ P,
(a) Set A := M{Pi}, S := ∅, k := 1, and ExhaustedQ := false.
(b) Set Q ∈ Γ− to be a smallest minimally qualified set containing Pi.
(c) While rank(A) < NoOfColumns(M) and ExhaustedQ = false Do

i. While ψ(k) 6∈ Q and k ≤ NoOfRows(M) do k := k + 1.
ii. If k ≤ NoOfRows(M) and the row Mk of M is linearly independent of

the rows of A then
A. Insert Mk into A.
B. S := S ∪ {k}.

iii. End if.
iv. k := k + 1.
v. If k > NoOfRows(M) then ExhaustedQ := true.

(d) End While.
(e) k := 1.
(f) While rank(A) < NoOfColumns(M) and k ≤ NoOfRows(M) do

i. While ψ(k) ∈ Q and k ≤ NoOfRows(M) do k := k + 1.
ii. If k ≤ NoOfRows(M) and the row Mk of M is linearly independent of

the rows of A then
A. Insert Mk into A.
B. S := S ∪ {k}.

iii. End if.
iv. k := k + 1.

(g) End While.
(h) Set q(Pi) := S.

2. End For.
3. Output q.

Figure 19. Algorithm for determining q
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D Share-reconstructable

In this section, we briefly define “share-reconstructable” MSPs as those in which
share vectors can be reconstructed entirely from any qualified subvector. They
are of interest to us because their use offers particularly good communication
efficiency in our protocol, as q(Pi) is “as small as possible” for each Pi ∈ P, which
makes our opening protocol very efficient. If an MSP is used in our protocol
which is both share-reconstructable and ideal (such as Shamir’s scheme), then
the communication cost in our protocol obtains its minimum for that access
structure.

Definition 2. Let M = (F,M, ε, ψ) be an MSP, where ker(M) = {0}, comput-
ing a Q2 access structure Γ . M is called share-reconstructable if for every any
s ∈ im(M), for every Q ∈ Γ , sQ uniquely determines the vector s.

The following lemma is a restatement but provides a more concrete check
of whether or not a given MSP is share-reconstructable, though it requires the
computation of exponentially-many submatrices (näıvely).

Lemma 4. Let M = (F,M, ε, ψ) be an MSP, where ker(M) = {0}, computing
a Q2 access structure Γ . ThenM is share-reconstructable if and only if for every
Q ∈ Γ it holds that ker(MQ) = {0}.

Proof. Suppose MQ has full column rank for all Q ∈ Γ , and that there ex-
ist s, s′ ∈ im(M) such that s 6= s′ but sQ = s′Q for some Q ∈ Γ . Then let
Mx = s and Mx′ = s′. Then MQ(x − x′) = MQx −MQx′ = sQ − s′Q = 0,
so since ker(MQ) = {0}, we have x = x′. But then s = Mx = Mx′ = s′,
which is a contradiction. Thus no such pair of share vectors exist, soM is share-
reconstructable.

Suppose there exists some Q ∈ Γ such that ker(MQ) 6= {0} and suppose we
are given sQ 6= 0. Fix some x such that sQ = MQx and fix k ∈ ker(MQ)\{0}. We
have MQ(x+k) = MQx+MQk = sQ+0 = sQ. Let s = Mx and s′ = M(x+k).
Since ker(M) = {0} and k 6= 0 it holds that Mk 6= 0, so s′ = M(x + k) =
Mx+Mk 6= Mx = s; but sQ = s′Q, so sQ does not have a unique reconstruction,
and hence M is not share reconstructable. ut

Example 1. Shamir’s secret-sharing scheme is an example since any t rows of
the Vandermonde matrix are linearly independent.

Example 2. Consider the access structure defined by Γ− = {{1, 2}, {1, 3}, {1, 4},
{2, 3, 4}} and ∆+ = {{1}, {2, 3}, {2, 4}, {3, 4}} computed by the MSP given as
follows:

P1

P1

P2

P3

P4


1 0 0
0 1 0
1 0 1
0 1 1
0 0 1
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where ε = (1, 1, 1). The reader may check that ker(MQ) = {0} for every Q ∈ Γ−,
so given sQ there is always unique solution to MQx = sQ for x, and hence s can
be determined from sQ by finding x and computing s = Mx.

We know by Lemma 1 that for any MSP computing a Q2 access structure,
share vectors all have qualified support unless they encode the secret 0; to al-
low a unique construction of each share vector from qualified subsets, share-
reconstructable MSPs are those for which the secret 0 is only encoded via the
zero vector or with share vectors with qualified support.

Lemma 5. Let M = (F,M, ε, ψ) be an MSP, where ker(M) = {0}, computing
a Q2 access structure Γ . Then M is share reconstructable if and only if

s ∈ im(M) =⇒ ψ(supp(s)) ∈ Γ ∪ {∅}

for all s ∈ Fm.

In other words, M is share-reconstructable if and only if the only share vec-
tor with unqualified support which encodes the secret 0 is the zero vector. For
intuition, one can think of Shamir’s scheme: the only polynomial of degree at
most t which has at least n− t > t zeros is the zero polynomial. The statement
is corollary to the previous lemmata by linearity of the MSP, but we give the
formal proof below.

Proof. Suppose that M is not share-reconstructable. Then there exists Q ∈ Γ
for which ∃ x ∈ ker(MQ) such that x 6= 0. Since MQx = 0 it holds that
ψ(supp(Mx)) ⊆ P \Q, which is unqualified, since Γ is Q2. Since ker(M) = {0}
and x 6= 0, it holds that Mx 6= 0. Now Mx ∈ im(M), is non-zero, and has
unqualified support. In other words, we have Mx ∈ im(M) and supp(Mx) 6∈
Γ ∪ {∅}.

Conversely, suppose there exists some s ∈ im(M) such that supp(s) 6∈ Γ ∪
{∅}, i.e., s 6= 0 and supp(s) is unqualified. Let x be such that s = Mx, which
exists since s ∈ im(M). Then Q := P\ψ(supp(s)) is qualified since Γ is Q2. Since
sQ = 0, we have MQx = sQ = 0, so x ∈ ker(MQ). If x = 0 then s = Mx = 0;
but supp(s) 6= ∅, so this is not the case, and so ker(MQ) 6= {0}, and thus M is
not share-reconstructable by Lemma 4. ut

Share-reconstructable MSPs yield comparatively communication-efficient instan-
tiations of our protocol because to each Pi the map q can assign a smallest
Q ∈ Γ− containing Pi.

Theorem 1. For every Q2 access structure there exists a share-reconstructable
MSP computing it.

Proof. Replicated secret-sharing is always share reconstructable since a qualified
set of parties together hold all shares by definition and so can vacuously compute
the shares held by all other parties. ut
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