
The Usefulness of Sparsifiable Inputs:
How to Avoid Subexponential iO

Thomas Agrikola?, Geoffroy Couteau?, and Dennis Hofheinz?

Karlsruhe Institute of Technology, Germany
{thomas.agrikola,geoffroy.couteau,dennis.hofheinz}@kit.edu

Abstract. We consider the problem of removing subexponential assumptions from cryptographic con-
structions based on indistinguishability obfuscation (iO). Specifically, we show how to apply complexity
absorption (Zhandry, Crypto 2016) to the recent notion of probabilistic indistinguishability obfusca-
tion (piO, Canetti et al., TCC 2015). As a result, we obtain a variant of piO which allows to obfuscate
a large class of probabilistic programs, from polynomially secure indistinguishability obfuscation and
extremely lossy functions. We then revisit several (direct or indirect) applications of piO, and obtain
– a fully homomorphic encryption scheme (without circular security assumptions),
– a multi-key fully homomorphic encryption scheme with threshold decryption,
– an encryption scheme secure under arbitrary key-dependent messages,
– a spooky encryption scheme for all circuits,
– a function secret sharing scheme with additive reconstruction for all circuits,

all from polynomially secure iO, extremely lossy functions, and, depending on the scheme, also other
(but polynomial and comparatively mild) assumptions. All of these assumptions are implied by poly-
nomially secure iO and the (non-polynomial, but very well-investigated) exponential DDH assumption.
Previously, all the above applications required to assume the subexponential security of iO (and more
standard assumptions).

Keywords: indistinguishability obfuscation, extremely lossy functions, subexponential assumptions.

1 Introduction

Obfuscation. Code obfuscation has been formalized already in the early 2000s as a cryptographic building
block, by Hada [42] and Barak et al. [5], along with a number of early positive [22, 45, 47, 55, 60] and
negative [5, 38, 60] results. However, prior to the candidate obfuscation scheme of Garg et al. [31], only
relatively few positive results on obfuscation were known.

The first candidate obfuscator from [31] changed things. Their work identified indistinguishability ob-
fuscation (iO, cf. [5, 39]) as an achievable and useful general notion of obfuscation: it presented a candidate
indistinguishability obfuscator, along with a first highly non-trivial application. Since then, a vast number
of applications have been proposed, ranging from functional [31], deniable [58], and fully homomorphic [25]
encryption, over multi-party computation (e.g., [30]), to separation results (e.g., [46]). In the process, pow-
erful techniques like “puncturing” [58] have been discovered, which have found applications even beyond
obfuscation (e.g., in multi-party computation [8, 35], instantiating the Fiat-Shamir paradigm [23], and ver-
ifiable random functions [9, 40]). Besides, the notion of iO itself has been refined, and related to other
notions of obfuscation [2, 10, 11, 19, 25, 50], and various different constructions of obfuscators have been pre-
sented [3, 4, 12,52,53,56,62].

Subexponential assumptions. It is currently hard to find a cryptographic primitive that can not be constructed
from iO (in combination with another mild assumption such as the existence of one-way functions). However,
some of the known iO-based constructions come only with subexponential reductions to iO. For instance,
the only known iO-based constructions of fully homomorphic encryption [25], spooky encryption [27], and
graded encoding schemes [28] suffer from reductions with a subexponential loss.

Hence, while iO has generally been recognized as an extremely powerful primitive (even to the extent
being called a “central hub” for cryptography [58]), it is not at all clear if this also holds for polynomially

? Supported by ERC Project PREP-CRYPTO 724307.

2 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

secure iO. Indeed, it is conceivable that only polynomially secure iO exists, in which case much of iO’s power
stands in question.

More generally, subexponential reductions (in particular to iO) are undesirable. Namely, the security of
existing iO constructions is still not well-understood, and in particular current state-of-the-art constructions
of iO schemes (such as [4, 52, 53]) already require subexponential computational assumptions themselves.
Hence, assuming subexponential iO is a particularly risky bet. This suspicion is confirmed in part by [57],
who separate polynomial and subexponential security for virtual black-box obfuscation.

Removing subexponential assumptions from iO-based constructions has already explicitly been consid-
ered in [33, 34, 54]. These works offer general techniques and ideas to turn subexponential reductions into
polynomial ones. For instance, [34, 54] offer ways to replace (subexponential) iO-based constructions with
(polynomial) constructions based on functional encryption. Of course, this requires a special structure of
the primitive to be implemented, and is demonstrated for several primitives, including non-interactive key
exchange and short signature schemes.

Our contribution. In this work, we are also concerned with substituting subexponential with polynomial
reductions in iO-based constructions. Unlike [34, 54], however, we do not follow the approach of using func-
tional encryption directly in place of iO, but instead will employ extremely lossy functions (ELFs) [61] to
“absorb” subexponential complexity.1

A little more specifically, we will implement a variant of probabilistic indistinguishability obfuscation
(piO, introduced in [25]) using polynomially secure iO (and ELFs). piO schemes can be used to obfuscate
probabilistic (i.e., randomized) programs, and are currently the only way to obtain, e.g., fully homomorphic
encryption (FHE) schemes without circular security assumptions [25]. However, the only previous construc-
tion of piO schemes required subexponentially secure iO [25]. Hence, our construction yields the first FHE
scheme from polynomially secure iO (and ELFs). Similarly, we can turn the assumption of subexponentially
secure iO into polynomially secure iO (plus ELFs) in the construction of spooky encryption from [27].

Both FHE and spooky encryption are quite powerful primitives, and we obtain several “spin-off results”
by revisiting their implications. For instance, when instantiating the piO-based FHE construction of [25]
with our piO scheme and a suitable public key encryption scheme, we obtain a fully key-dependent message
(KDM) secure public-key encryption scheme from (polynomially secure) iO and the exponentially secure
DDH assumption (and no further assumptions). Under the same assumptions, we obtain multi-key FHE
with threshold decryption and function secret sharing schemes from the spooky encryption construction
from [27].

1.1 Technical overview

The piO construction of Canetti et al. To describe our ideas, it will be helpful to briefly review the work of
Canetti et al. [25]. In a nutshell, they define the notion of piO as a way to obfuscate probabilistic programs,
and show how to use piO to implement the first FHE scheme without any circular security assumption.
Intuitively, where the notion of iO captures that the obfuscation iO(P) of a deterministic program P does
not leak anything beyond the functionality of P , piO captures the same for probabilistic programs P .2

They also show how to implement piO with an indistinguishability obfuscator iO and a pseudorandom
function (PRF) F . Namely, in order to obfuscate a probabilistic program P , Canetti et al. obfuscate the
deterministic program P ′ that, on input x, runs P (x) with random coins r = F (K,x). Here, K is a PRF
key hardcoded into P ′. The security proof uses “puncturing” techniques [58] and a hybrid argument over all
possible P -inputs x. More specifically, for each P -input x, separate reductions to the security of iO and F
show that the execution of P ′(x) is secure.3

1 That means that our final schemes depend on ELFs, which are currently only known to be instantiable from
exponential assumptions. However, we stress that ELFs can be built from exponential variants of very standard
assumptions, such as the decisional Diffie-Hellman (DDH) assumption.

2 This is of course on oversimplification. Also, [25] define several types of piO security that provide a tradeoff between
security and achievability.

3 Again, we are not very specific about the form of desired or assumed security. However, we believe that for this
exposition, these specifics do not matter.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 3

This proof strategy is very general and does not need to make any specific assumptions about the structure
of P . (In fact, this strategy can be viewed as a specific form of “complexity leveraging”, technically similar to
the conversion of selective security into adaptive security, e.g., [15].) However, the price to pay is a reduction
loss which is linear in the size of the input domain (which usually is exponentially large). In particular, even
after scaling security parameters suitably, Canetti et al. still require subexponentially secure iO and PRFs.

More on previous works to remove subexponentiality. There are a number of known ways to deal with
subexponential reduction losses due to complexity leveraging (or related techniques). For instance, various
semi-generic (pre-iO) techniques seek to achieve adaptive security (for different primitives) by establishing
an algebraic or combinatorial structure on the used inputs [16,44,49,59], and can sometimes be adapted to
the iO setting [48]. But like the already-mentioned, somewhat more general approaches [34,54], these works
make specific assumptions about the structure of the involved computations.

A somewhat more general approach (that works for more general classes of programs) was outlined by
Zhandry [61], who introduces the notion of “extremely lossy functions” (ELFs). Intuitively, an ELF is an
injective function G that can be switched into an “extremely lossy mode”, in which its range is polynomially
small. Such an ELF can sometimes be used to “preprocess” inputs in a cryptographic scheme, with the
following benefit: a security reduction can switch the ELF to extremely lossy mode, so that only a polynomial
number of (preprocessed) inputs G(x) need to be considered. This simplifies a potential hybrid argument
over all (preprocessed) inputs G(x), and can lead to a polynomial (instead of a subexponential) reduction.

However, trying to apply this strategy to the construction and reduction of Canetti et al. (as sketched
above) directly fails. Namely, in the application of Canetti et al., inputs will be inputs x to an arbitrary
(probabilistic) program P ; preprocessing them with an ELF will destroy their structure, and it is not clear
how to run P on ELF-preprocessed inputs G(x).

Main idea: piO with sparsifiable inputs. Instead, we will restrict ourselves to programs P that take as input
an element x from a small number of (arbitrary but efficiently samplable) distributions. In other words, all
possible inputs x need to be in the range of one of a small number of efficient samplers Si. As an example,
for i ∈ {0, 1}, sampler Si could sample ciphertexts C that encrypt plaintext i. Moreover, we require that all
inputs to a program P to be obfuscated are at some point actually sampled from some Si.

Obfuscating a given probabilistic program P (that takes as inputs one or more x as above) now consists
of two steps:
1. First, we encode all inputs x, in the sense that we modify all Si to attach a “certificate” aux to x. That

certificate aux certifies that x has really been sampled using Si. We also change each Si, so that it uses
random coins of the form G(r) (instead of r) for an ELF G. (When G is in injective mode, this will not
change the distribution of sampled x.)

2. Second, we use an indistinguishability obfuscator iO to obfuscate the following (deterministic) variant
P ′ of P : on inputs x1, . . . , x` (with certificates aux1, . . . , aux`), P ′ first checks the certificates auxi (and
aborts if one of them is invalid). Next, P ′ runs P (x1, . . . , x`), with random coins F (K, (xi)

`
i=1) for a PRF

F . Finally, P ′ outputs P ’s output.
Maybe the most important property of this setup is that now the sets of inputs xi are “sparsifiable”, in the
following sense. If we set G to extremely lossy mode, then only a polynomial number of different random
coins r can occur. Hence, each Si will output one of only a small number of possible samples (e.g., encryptions
C generated with random coins from a small set). In that sense, the set of possible inputs xi to P has been
“sparsified”, and a hybrid argument over all possible inputs is possible with polynomial loss. The rest of our
proof proceeds very similarly to that of Canetti et al. (We note that the certificates auxi are necessary to
ensure that every input xi really is from such a small set of possible samples.)

Note that our obfuscator produces circuits that only work on inputs which (certifiably) have been gener-
ated by a sampler Si. Hence, our piO scheme also only enjoys only a restricted form of correctness. On the
other hand, our piO scheme actually achieves the notion of “dynamic-input piO” [25], a very strong notion
of piO security. In fact, dynamic-input piO security implies differing-inputs obfuscation [2, 5], a notion for
which strong impossibility results exist [7, 32]. However, there is no contradiction to our results because
of our restrictions on input domains (and the resulting restricted correctness notion). Programs with a re-
stricted (sparsifiable) input domain as we require have trivial differing-inputs obfuscations, and do not allow
to formulate impossibilities such as those from [7,32].

4 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

Applications. One obvious question is of course how restrictive our assumption on input domains really is.
We show that our assumptions apply to two existing piO-based constructions, with a number of interesting
consequences.

First, we revisit the piO-based construction of fully homomorphic encryption from [25]. Here, piO is
used to obfuscate the FHE evaluation algorithm that takes two ciphertexts (say, of two bit plaintexts b0
and b1) as input, and outputs a ciphertext of the NAND of the two plaintexts (i.e., b0∧b1). If we set Sb
to be a sampler that samples an encryption of b, this setting perfectly fits our scheme. Hence, we obtain
first a leveled homomorphic encryption (LHE) scheme, and from this an FHE scheme using the high-level
strategy from [25]. Hence, putting this together with our piO construction, we obtain an FHE scheme from
polynomially secure iO and an ELF (and no further assumptions).

We note that the above FHE scheme is also fully key-dependent message (KDM, see [13]) secure when
implemented with a suitable basic public-key encryption scheme (such as the DDH-based scheme of [17]).
In that case, the FHE is secure even when an encryption of its own secret key Csk = Enc(pk, sk) is public.
However, such an encryption Csk can be transformed into an encryption Enc(pk, f(sk)) of an arbitrary
function of sk thanks to the fully homomorphic properties of the FHE scheme. This leads to a conceptually
very simple fully KDM-secure encryption scheme from polynomial assumptions (and ELFs). (We stress that
we do not claim novelty for this observation. The connection between FHE and KDM security has already
been observed in [6], and [27] have observed that the FHE construction of Canetti et al. preserves interesting
properties of the underlying encryption scheme. However, [27] do not explicitly mention KDM security, and
we find these consequences interesting enough to point out.)

As our second application, we consider spooky encryption (with CRS) introduced by Dodis et al. [27].
Intuitively, a spooky encryption scheme features a particular type of homomorphism in a multi-key, multi-
ciphertext setting. Dodis et al. show that spooky encryption implies (among other things) function secret
sharing, and they give a piO-based instantiation of spooky encryption (without the need of a CRS). At
the heart of their construction is an obfuscated public “spooky evaluation” algorithm with a hardcoded
decryption key. Since this algorithm also takes ciphertexts (and a public key) as input, its input domain can
be sparsified much like in the FHE case.

In contrast to the FHE application, however, the spooky encryption application contains more technical
subtleties. In particular, some inputs to the “spooky evaluation” algorithm may depend on other inputs, and
hence sparsifying inputs needs to proceed in a certain order. The main difficulty here is to find a suitably
flexible definition of sparsification; we omit the details in this overview. We note that our results of course
also yield all applications of spooky encryption, only from polynomially secure iO (and ELFs). In particular,
we obtain a simple protocol for function secret sharing for all functions (with additive reconstruction) from
these assumptions [20].

We believe that our new notion of obfuscation will prove useful in other applications; for example, it would
likely allow to improve the recent result of [26], which constructed CCA1-secure FHE from subexponentially
secure iO.

Organization. In Section 2, we introduce our notations and recall standard preliminaries. Section 3 formally
introduces our new variant of piO, called dpiO. Section 4 shows how to realize dpiO using polynomially
secure iO and ELFs. Eventually, in Section 5 we revisit the construction of leveled homomorphic encryption
from [25], using dpiO instead of piO and formally analyze our dpiO-based construction. In Section 6, we
revisit using dpiO the construction of spooky encryption from [27], and analyze our new construction.

2 Preliminaries

Notations. Throughout this paper, λ denotes the security parameter. For a natural number n ∈ N, [n]
denotes the set {1, . . . , n}. A probabilistic polynomial time algorithm (PPT, also denoted efficient algorithm)
runs in time polynomial in the (implicit) security parameter λ. A positive function f is negligible if for any
polynomial p there exists a bound B > 0 such that, for any integer k ≥ B, f(k) ≤ 1/|p(k)|. An event
depending on λ occurs with overwhelming probability when its probability is at least 1 − negl(λ) for a
negligible function negl. Given a finite set S, the notation x $← S means a uniformly random assignment of
an element of S to the variable x. The notation AO indicates that the algorithm A is given oracle access to

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 5

O. Let C = {Cλ}λ≥0 be a family of sets of (possibly randomized) circuits, where Cλ contains circuits of size
poly(λ). A circuit sampler for C is a distribution ensemble D = {Dλ}λ≥0, such that Dλ ranges over triples
(C0, C1, z) with (C0, C1) ∈ C2

λ of identical size and taking inputs of the same length, and z ∈ {0, 1}poly(λ). A
class of sampler S is a set of circuit samplers for C.

2.1 Indistinguishability Obfuscation for General Samplers

Indistinguishability obfuscation (iO) for general samplers was introduced in [25]. This notion generalizes
the classical notion of iO introduced in [5]. Informally, an iO scheme for a sampler D allows to obfuscate
circuits sampled with D so that, given a sample (C0, C1) from D, iO(C0) ≈ iO(C1). The standard notion
of iO is recovered by considering samplers over functionally equivalent deterministic circuits of the same
size. Stronger notions of obfuscation, denoted piO, can be defined for samplers over probabilistic circuits,
satisfying various indistinguishability notions. We recall below the general definition of [25] of piO for a class
of samplers (using a different notion of correctness defined in [27]). In contrast to the original correctness
definition, which states that an efficient adversary given oracle access to either the original circuit or the
obfuscation (with the restriction that no input can be queried twice), can not tell the difference.

Definition 1 (piO for a Class of Samplers [25,27]). A uniform PPT machine piO is an indistinguisha-
bility obfuscator for a class of samplers S over a family C = {Cλ}λ≥0 of possibly randomized circuits if it
satisfies the following conditions:

Correctness. For every security parameter λ, every circuit C ∈ Cλ, and every input x, the distributions
of C(x) over the random coins of C and of piO(1λ, C)(x) over the random coins of the obfuscator are
identical (statistically close).

µ-Indistinguishability. For every sampler D = {Dλ}λ≥0 ∈ S, and for every non-uniform PPT machine
A, it holds that

|Pr[(C1, C2, z)
$← Dλ : A(C1, C2, piO(1λ, C1), z) = 1]

−Pr[(C1, C2, z)
$← Dλ : A(C1, C2, piO(1λ, C2), z) = 1]| ≤ µ(λ).

We remark that the construction of pIO from [25] satisfies this notion of correctness if instantiated with
a perfect pPRF (see Definition 4).

To recover the standard notion of iO, we introduce the class Seq of samplers for functionally equivalent
(possibly randomized) circuits, i.e., samplers over triplets (C0, C1, z) such that |C0| = |C1|, and for any input
x and random coin r, C0(x; r) = C1(x; r). The standard iO notion is obtained by considering piO over the
subclass Sdet ⊂ Seq of samplers for deterministic functionally equivalent circuits. We denote by AdviO(A)
the advantage of a PPT adversary A in distinguishing between the obfuscation of functionaly equivalent
deterministic circuits.

The work of [25] introduced four types of samplers over probabilistic circuits, which define four corre-
sponding variants of piO: dynamic-input piO, worst-case piO, memoryless worst-case piO, and X-Ind piO. The
strongest notion, dynamic-input piO, is a randomized equivalent of the notion of differing-input obfuscation.
Therefore, it inherits the implausibility results of differing-input obfuscation for general circuits [7, 32]. On
the other hand, [25] shows that X-Ind piO can be realized from subexponentially secure iO (and subexponen-
tially secure one-way functions). They conjectured that their construction is also a plausible candidate for
the two remaining notions of piO. Below, we recall the notion of dynamic-input samplers and dynamic-input
piO from [25].

2.2 Dynamic-Input Samplers

Definition 2 (Dynamic-Input Indistinguishable Samplers [25]).
The class Sd-Ind of dynamic-input samplers for a circuit family C contains all circuits samplers D = {Dλ}λ∈N
for C with the following properties: for every non-uniform PPT A = (A1,A2), the advantage Advd-Ind(A) :=
Pr[Exp-d-IndA(λ) = 1]− 1

2 of A in the experiment Exp-d-Ind represented in Figure 1 is negligible.

6 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

Experiment Exp-d-IndA(λ)

(C0, C1, z)
$← Dλ

(x, st)
$← A1(C0, C1, z) // the challenge input is chosen dynamically

y
$← Cb(x) for b $← {0, 1}

b′
$← A2(st, C0, C1, z, x, y)

return b = b′

Fig. 1. Experiment Exp-d-Ind for the indistinguishability property of dynamic-input samplers.

Definition 3 (dynamic-input piO). A uniform PPT machine is a dynamic-input piO scheme if it is a
piO for the class of dynamic-input samplers Sd-Ind over C that includes all randomized circuits.

Note that the class Seq of samplers for functionally equivalent circuits that we defined previously, is a
subclass of Sd-Ind: any sampler for triples (C0, C1, z) where C0 and C1 are functionally equivalent is trivially
a dynamic-input sampler.

2.3 Puncturable Pseudorandom Function

A pseudorandom function (PRF) originally introduced in [37] is a tuple of PPT algorithms F = (F.KeyGen,
F.Eval). Let K denote the key space, X denote the domain, and Y denote the range. The key generation
algorithm F.KeyGen on input of 1λ, outputs a random key from K and the evaluation algorithm F.Eval on
input of a key K and x ∈ X , evaluates the function F : K × X 7→ Y. The core property of PRFs is that,
on a random choice of key K, no probabilistic polynomial-time adversary should be able to distinguish
F (K, ·) from a truly random function, when given black-box access to it. Puncturable PRFs (pPRFs) have
the additional property that some keys can be generated punctured at some point, so that they allow to
evaluate the PRF at all points except for the punctured point. As observed in [18, 21, 51], it is possible to
construct such punctured keys for the original construction from [37], which can be based on any one-way
functions [43].

Definition 4 (Puncturable Pseudorandom Function [18,21,51]). A puncturable pseudorandom func-
tion (pPRF) with punctured key space Kp is a triple of PPT algorithms (F.KeyGen,F.Puncture,F.Eval) such
that

– F.KeyGen(1λ) outputs a random key K ∈ K,
– F.Puncture(K,x), on input K ∈ K, x ∈ X , outputs a punctured key K{x} ∈ Kp,
– F.Eval(K ′, x′), on input a key K ′ (punctured or not), and a point x′, outputs an evaluation of the PRF.

We require F to meet the following conditions:

Functionality preserved under puncturing. For every λ ∈ N, for every x ∈ X ,

Pr[K
$← F.KeyGen(1λ),K{x} $← F.Puncture(K,x) :

∀x′ ∈ X \ {x} : F.Eval(K,x′) = F.Eval(K{x}, x′)] = 1.

Pseudorandom at punctured points. For every PPT adversary A, the advantage

Advs-cPRF(A) := Pr[Exp-s-pPRFA(λ) = 1]− 1

2

of A in Exp-s-cPRF represented Figure 2 is negligible.

We call a pPRF F perfect, if for every input x ∈ X , the distribution {F.Eval(K,x)|K $← F.KeyGen(1λ)} is
identical to the uniform distribution over Y.4

Definition 4 corresponds to a selective security notion for puncturable pseudorandom functions; adaptive
security can also be considered, but will not be required in our work. For ease of notation we often write
F (·, ·) instead of F.Eval(·, ·).
4 Given any pPRF F′, we can build a perfect pPRF F by sampling two keys K1

$← F′.KeyGen(1λ) and K2
$← Y in

the key generation algorithm and defining the evaluation algorithm to output F′.Eval(K1, x)⊕K2 on input of x,
see [27].

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 7

Experiment Exp-s-pPRFA(λ)

(x∗, state)
$← A(1λ)

K
$← F.KeyGen(1λ), K{x∗} $← F.Puncture(K,x∗)

b
$← {0, 1}, y0 ← F.Eval(K,x∗), y1 $← Y

b′
$← A(state,K{x∗}, yb)

return b = b′

Fig. 2. Selective security game for puncturable pseudorandom functions.

2.4 Extremely Lossy Function

In this section we present extremely lossy functions (ELFs) introduced in [61]. ELFs are an extremely pow-
erful primitive for complexity absorption allowing to replace subexponential or even exponential security
assumptions with polynomial ones. Informally, an ELF is a function that can be generated in two differ-
ent modes: an injective mode and an extremely lossy mode. In injective mode, the range of the ELF has
exponential size whereas the range comprises only polynomially many elements in extremely lossy mode.

Definition 5 (Extremely Lossy Function [61]). An extremely lossy function ELF is an algorithm ELF.Gen
which, on input (M, r), where M is an integer and r ∈ [M], outputs the description of a function G : [M] 7→
[N] such that

– G can be computed in time poly(logM)
– If r = M , G is injective with overwhelming probability (in logM) over the randomness of ELF.Gen(M,M);
– For any r ∈ [M], |G([M])| < r with overwhelming probability (in logM) over the randomness of

ELF.Gen(M, r);
– Indistinguishability: For any large enough M , any polynomial P , and any inverse polynomial function
δ, there exists a polynomial Q such that for any adversary A running in time at most P (logM) and any
r ∈ [Q(logM),M], the advantage of A in distinguishing ELF.Gen(M,M) from ELF.Gen(M, r) is bounded
by δ(logM).

In addition, we will consider extremely lossy functions satisfying strong regularity, as defined below.

Definition 6 (Strong regularity). An ELF is strongly regular if for any (polynomial) r, the distribution
{x $← [M] : G(x)} is statistically close to uniform over G([M]), with overwhelming probability over the choice
of G $← ELF.Gen(M, r).

We note that, if an ELF is strongly regular, it is possible to efficiently enumerate its image: the set of
values obtained by evaluating an ELF on λr log r random inputs, where r is a bound on the size of its image,
contains the entire image of the ELF with overwhelming probability.

Instantiating ELFs. A construction of strongly regular extremely lossy function is given in [61]. It can be
based on the exponential hardness of the decision Diffie-Hellman assumption (or any of its variants, such
as the decision linear assumption), which we denote eDDH. The eDDH assumption for a group generator
GroupGen (which generates a tuple (G, p, g) where G is a group, p is its order, and g is a generator of
G) states that there exists a polynomial q such that for any time bound t and probability ε, denoting
κ← log q(t, 1/ε), any adversary A running in time at most t has advantage at most ε in distinguishing the
following distributions:

{(G, p, g)
$← GroupGen(1κ), (a, b, c)

$← Z3
p : (G, g, ga, gb, gc)},

{(G, p, g)
$← GroupGen(1κ), (a, b)

$← Z2
p : (G, g, ga, gb, gab)}.

As noted in [61], groups based on elliptic curves are plausible candidates for groups where this assumption
holds: in practical instantiations of DDH over elliptic curves, the size of the group is chosen assuming that
the best attack takes time O(

√
p), hence disproving eDDH (which amounts to showing that there is an

attack which takes time less than pc for any constant c) would have considerable practical implications.
Furthermore, relying on some form of exponential hardness assumption seems necessary, as a construction
from polynomial hardness only would have surprising complexity-theoretic implications.

8 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

2.5 Non-interactive Zero-Knowledge proof system

A non-interactive zero-knowledge (NIZK) proof system for a language L with witness relation R enables
to prove in a non-interactive manner that some statements are in L without leaking information about
corresponding witnesses. NIZK proof systems were originally introduced in [14].

Definition 7 (Non-interactive zero-knowledge proof system [41]). A non-interactive zero-knowledge
(NIZK) proof system for a language L ∈ NP (with witness relation R) is a tuple of PPT algorithms
NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) such that NIZK.Setup is a common reference string gener-
ation algorithm, NIZK.Prove is a proving algorithm NIZK.Verify is a (deterministic) verification algorithm.

– NIZK.Setup(1λ) outputs a common reference string crs.
– NIZK.Prove(crs, x, w), on input crs, a statement x and a witness w, outputs a prove π.
– NIZK.Verify(crs, x, π), on input crs, a statement x and a proof π, outputs either 1 or 0.

We require NIZK to meet the following properties:

Perfect completeness. For every (x,w) ∈ R, we have that

Pr[crs
$← NIZK.Setup(1λ), π $←NIZK.Prove(crs, x, w) :

NIZK.Verify(crs, x, π) = 1] = 1.

Perfect soundness. For every x 6∈ L with |x| = λ and every (possibly unbounded) adversary A, we have
that

Pr[crs
$← NIZK.Setup(1λ), π

$← A(crs, x) : NIZK.Verify(crs, x, π) = 1] = 0.

Computational zero-knowledge. There exists a PPT algorithm Sim = (Sim0,Sim1) such that for every
PPT adversary A,

AdvZK(A) := |Pr
[
crs

$← NIZK.Setup(1λ) : ANIZK.Prove(crs,·,·)(crs) = 1
]

− Pr
[
(crs, τ)

$← Sim0(1λ) : ASim′1(crs,τ,·,·)(crs) = 1
]
|

is negligible in λ, where Sim′1(crs, τ, x, w) returns Sim′1(crs, τ, x) only if (x,w) ∈ R.

ANote on Perfect Soundness. The perfect soundness requirement can be relaxed in our construction. The
exact property that we need is the following: with overwhelming probability over the coins of NIZK.Setup(1λ),
there does not exist any pair (x, π) such that x /∈ L and NIZK.Verify(crs, x, π) = 1. We call a NIZK that
satisfies this property almost perfectly sound. We note that there is a simple folklore method which allows
to construct an almost perfectly sound NIZK proof system, starting from any statistically sound NIZK
proof system. Consider a 2−λ-statistically sound NIZK proof system, for words x ∈ {0, 1}n. Using parallel
repetitions, the soundness of the proof system can be amplified to 2−λn. Then, it necessarily holds that for
all possible crs except a 2−λ fraction of them, there does not exist any pair (x, π) where x /∈ L and π is an
accepting proof, hence the NIZK proof system obtained via parallel repetitions is almost perfectly sound.
We note that this notion is stronger than adaptive soundness in the sense that an adversary who chooses
the statement x 6∈ L upon seeing the common reference string crs is unable to output a corresponding proof
π since with overwhelming probability over the choice of crs such a π does not exist.

Instantiating the NIZK Proof System. Our main construction, described in the next section, relies
on four primitives: a polynomially-secure indistinguishability obfuscation scheme, a perfect puncturable
pseudorandom function (which can be constructed from any one-way function), an extremely lossy function,
and an almost perfectly sound NIZK proof system. We note that the latter is already implied by the existence
of polynomially secure indistinguishability obfuscation and extremely lossy function. Indeed, as mentioned in
the previous paragraph, almost perfectly sound NIZK proof systems can be constructed from any statistically
sound NIZK proof system. In a recent work [24], a construction of certifiably injective doubly enhanced
trapdoor functions was proposed, assuming polynomially-secure indistinguishability obfuscation, and injective

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 9

pseudorandom generator with efficiently recognizable domain. The same paper shows that such trapdoor
permutations allow to implement the celebrated FLS transform [29], hence they can be used to construct
a statistically sound NIZK proof system for NP. Furthermore, it is shown in [61] that ELFs can be used to
construct an injective pseudorandom generator (see Theorem 6.6 and Claim 6.5 of [61]), with domain {0, 1}`
(which is trivially efficiently recognizable). As a consequence, the assumption of an almost perfectly sound
NIZK proof system is redundant with our other assumptions.

3 Indistinguishability Obfuscation of Probabilistic Circuits over Distributions
of Inputs

We first define the notion of a sampler with input. A sampler with input is a family of PPT algorithms which,
on input x, sample from some distribution Dx. This notion is convenient to capture the fact that, in many
scenarios, the inputs to an obfuscated (probabilistic) circuit are sampled from some distribution Dx, where
x is some private input of a player.

Definition 8 (Sampler with Input). We say that SI = {SIλ}λ∈N is a family of samplers with input,
with input domain I = {Iλ}λ∈N, if for any λ ∈ N, SIλ is a set of probabilistic algorithms running in
polynomial time (in 1λ) with input domain Iλ such that for any S ∈ SIλ, and x ∈ Iλ, S(x) samples from
{0, 1}λ.

3.1 Doubly-Probabilistic Indistinguishability Obfuscation

Below, we define a variant of indistinguishability obfuscation, that takes into account the fact that in many
applications, obfuscated (probabilistic) circuits might only have to be evaluated on inputs coming from
specific distributions. This is formalized by defining an encoding procedure for a sampler with input, which
produces auxiliary material that the obfuscated circuit can use to check that the inputs were constructed
correctly, and by restricting the correctness of the obfuscated circuit to only hold for well-formed inputs.

However, this approach faces two issues. First, the inputs to an obfuscated circuit might not be sampled
“all at once” from a specific distribution; rather, they can come from different and independent sources. We
capture this behavior by defining `-source obfuscation, to account for the fact that different inputs might
have been sampled independently. Second, when inputs are sampled by different parties, there might still be
interdependencies which must be accounted for. For example, a party might sample an input, pass it to a
second party, who then samples a second input from a distribution that is parametrized by the first input.
We handle this possibility by ordering the ` inputs to the obfuscated circuit, and by considering a stateful
sampler with input S: when S is used to generate the i’th sample yi, it receives in addition to its input a
state stf(y1, · · · , yi−1), where stf is some fixed efficiently computable state function (which depends on the
particular application), and the yj are outputs sampled by the i−1 first sources. The state function captures
the fact that a particular application might define an arbitrary communication pattern, and specifies which
samples a party should have access to when generating his sample.

Definition 9 (Doubly-Probabilistic Indistinguishability Obfuscation (dpiO)). Let ` be an integer.
Let {stfλ : ({0, 1}λ∪{⊥})`−1 7→ Tλ}λ∈N be a family of efficiently computable functions. Let SI = {SIλ}λ∈N be
a family of sampler with inputs, with input domain {Tλ×I}λ∈N. Let C = {Cλ}λ∈N be a family of (probabilistic)
circuits, and let CS a circuit-sampler over C. An `-source dpiO scheme for (stf,SI, C,CS) is a triple of PPT
algorithms (Setup,Encode,Obfuscate) such that

– Setup(1λ), on input the security parameter (in unary), outputs public parameters pp;
– Encode(pp, S), on input the public parameters pp, and a sampler with input S ∈ SIλ, outputs an encoded

sampler S′;
– Obfuscate(pp, S, C), on input public parameters pp, a sampler with input S ∈ SIλ, and a circuit C ∈ C`λ,

outputs a circuit C ′ of size poly(λ, |C|). We call C ′ an obfuscation of C with respect to S.

We further assume that the outputs of S on any input (state, x) is of the form (y; y′) (looking ahead, we will
call y the authenticated output, and y′ the unauthenticated output). The scheme should satisfy the three
properties given below.

10 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

Exp0-encA (1λ) :

pp
$← Setup(1λ)

return b′ ← AO
enc
0 pp

Oracle Oenc
0 [pp] :

on input (S, state, x) from A,
S′ ← Encode(pp, S)

(y, aux; y′)
$← S′(state, x)

return (y, aux; y′)

Exp1-encA (1λ) :

(pp, trap)
$← Sim0(1λ)

return b′ ← AO
enc
1 [pp,trap](pp)

Oracle Oenc
1 [pp, trap] :

on input (S, state, x) from A,
(y; y′)

$← S(state, x)

aux
$← Sim1(pp, trap, S, y, state)

return (y, aux; y′)

Fig. 3. Experiments Exp0-encA (1λ) and Exp1-encA (1λ) for the simulatability of encodings in an `-source dpiO. The PPT
algorithm A can interact polynomially many times with either Oenc

0 [pp] or Oenc
1 [pp, trap]. A wins the experiment when

it outputs b′ = b in Expb-encA (1λ)

Informally, the first security requirement ensures that, on any (adversarially chosen) input x, state state,
and sampler with input S, the sampler S′ obtained by encoding S outputs samples of the form (y, aux; y′)
where (y; y′) is distributed as an output from S(state, x), and aux does not leak any non-trivial information
about the outputs. This is formalized by requiring the existence of a simulator that can simulate aux given
only y.

Definition 10 (Simulatability of Encodings). An `-source dpiO scheme for (stf,SI, C,CS) satisfies
simulatability of encodings if for any large enough λ and any (stateful) PPT adversary A, there exists a PPT
simulator Sim = (Sim0,Sim1) such that the advantage of A in distinguishing the experiments Exp0-enc and
Exp1-enc represented on Figure 3 is negligible. We denote by Advenc(A) the advantage of A in this experiment.

We now introduce the restricted correctness requirement. Intuitively, it states the following: in an hon-
est scenario, the inputs (y1, · · · , y`) should be constructed using the sampler with input S. The restricted
correctness property guarantees that if the inputs have indeed been constructed “according to S”, then the
obfuscated circuit will behave correctly, and its outputs distribution (taken over the coins of the obfuscator)
will be (statistically) indistinguishable from the output distribution of the circuit C (taken over its internal
random coins).

To make this definition meaningful, we need a way to let the obfuscated circuit verify that the inputs are
well-formed. Note that we do not want to ensure that they were generated through S with uniformly random
coins, but only that they were generated through S with some random coins (and some input). To make
this verification possible, we let the parties generate their input using the encoded sampler S′ instead. This
encoded sampler should correctly sample as S, but it will in addition produce auxiliary information which
can be used by the obfuscated program to verify that the inputs were honestly constructed (more formally,
for a given y, that there exists an input x, coins r, and an unauthenticated part y′ such that (y; y′) = S(x; r)).

A small technicality is that we must allow the sampler with input to depend on state information,
to capture the possible interdependencies between the inputs. This means that the auxiliary information
will have to certify that an input was generated correctly, with respect to some state that the obfuscated
circuit might not have access too (which would prevent it from verifying the certificate). However, this issue
disappears by restricting the interdependencies to only involve a state computed from the previous samples
(as opposed to more complex interdependencies which would involve, for example, the coins using to produce
these samples). In this case, the obfuscated circuit can check the certificates in an incremental way: it first
checks that y1 was correctly constructed with respect to the state stλ(⊥, · · · ,⊥), then it checks that y2 was
correctly constructed with respect to the state stλ(y1,⊥, · · · ,⊥), and so on.

Definition 11 (Statistical Restricted Correctness). An `-source dpiO scheme for (stf,SI, C,CS) sat-
isfies restricted correctness if for any large enough λ ∈ N, any S ∈ SIλ, (x1, · · · , x`) ∈ I`λ, and C ∈ C`λ, the
advantage of any (possibly unbounded) adversary A in distinguishing the experiments Exp0-rcorr and Exp1-rcorr

represented on Figure 4 is negligible. We denote by Advrcorr(A) the advantage of A in this experiment.

We now introduce the indistinguishability notion. It is close in spirit to the standard indistinguishability
notion for obfuscation of probabilistic circuits of [25]. However, in our scenario, the security notion must
account for the fact that a set of public parameters pp is generated in a setup phase; the indistinguishability

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 11

Exp0-rcorrA (1λ) :

pp
$← Setup(1λ)

S′ ← Encode(pp, S)

C′
$← Obfuscate(pp, S, C)

for j ∈ [`] do
statej ← stfλ(y1, . . . , yj−1,⊥, . . .)
(yj , auxj ; y

′
j)← S′(statej , xj)

z ← C′(y1, aux1, · · · , y`, aux`)
return A(z)

Exp1-rcorrA (1λ) :
for j ∈ [`] do

statej ← stfλ(y1, . . . , yj−1,⊥, . . .)
(yj ; y

′
j)← S(statej , xj)

z ← C(y1, · · · , y`)
return A(z)

Fig. 4. Experiments Exp0-rcorrA (1λ) and Exp1-rcorrA (1λ) for the restricted correctness property an `-source dpiO. A wins
the experiment when it outputs b′ = b in Expb-rcorrA (1λ) when b $← {0, 1}.

property of obfuscated circuits must therefore hold when (polynomially) many circuits are obfuscated with
respect to a single string of public parameters. This suggests an oracle-based security notion.

Definition 12 (Indistinguishability with Respect to CS). An `-source dpiO scheme for (stf,SI, C,CS)
satisfies indistinguishability with respect to CS if for every circuit-sampler D = {Dλ}λ∈N ∈ CS, for any
large enough λ, the advantage of any PPT adversary A in distinguishing the experiments Exp0-ind and Exp1-ind

represented on Figure 5 is negligible. We denote by Advind(A) the advantage of A in this experiment.

Expb-indA (1λ) :

pp
$← Setup(1λ)

return b′ ← AO
ind
b [pp,Dλ](pp)

Oracle Oind
b [pp, Dλ] :

on input S from A,
(C0, C1, z)

$← Dλ

C′
$← Obfuscate(pp, S, Cb)

return (C0, C1, z, C
′)

Fig. 5. Experiment Expb-indA (1λ) for the indistinguishability with respect toCS in an `-source dpiO. The PPT algorithm
A can interact polynomially many times with Oind

b [pp, Dλ]. The oracle Oind
b [pp, Dλ] is stateful and has (pp, Dλ)

hardcoded in its description. A wins the experiment when it outputs b′ = b in Expb-indA (1λ) when b $← {0, 1}.

4 Construction

In this section, we will construct an `-source dpiO scheme (for any constant `), for samplers with input over an
input domain I of polynomial size, and dynamic-input indistinguishable circuit-samplers. Our construction
relies on polynomially-secure indistinguishability obfuscation, a perfect puncturable pseudorandom function,
an almost perfectly sound non-interactive zero-knowledge proof system, and an extremely lossy function.

4.1 Overview

We start by providing an high-level overview of our construction. The Setup procedure generates pa-
rameters for the ELF and for the NIZK proof system. To encode a sampler with input S, we define
the encoded sampler S′ as follows: on input (state, x; r), S′ computes (y; y′)

$← S(state, x;G(r)) and
aux

$← NIZK.Prove(y, LG,Sstate, (y
′, x, r)), and outputs (y, aux; y′). Here, G is the ELF defined by the pub-

lic parameters, and the language LG,Sstate contains all values y for which there exists (y′, x, r) such that
(y; y′) = S(state, x,G(r)). We call valid input a value y ∈ Lstate,G. Note that when G is in injective mode,
LG,Sstate will in general be a trivial language. The simulatability of the encodings directly follows from the
injectivity of G, and the zero-knowledge property of the proof system.

We construct the Obfuscate algorithm for a circuit C as follows (we assume a single source in this overview
for simplicity). It first samples a pPRF keyK for the pPRF F. Then, it returns an obfuscation of the following
circuit: on input (y, aux), run NIZK.Verify on aux to check that y is a valid input (and output ⊥ otherwise).
Set r ← F (K, y), and output C(y; r). Restricted correctness follows from the correctness of the NIZK scheme.
For indistinguishability between obfuscations of two dynamic-input indistinguishable circuits (C0, C1), we
follow the standard puncturing strategy of [25]: we proceed through a sequence of hybrids, with successive

12 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

modifications of the obfuscated circuit. For every possible input y, we construct a sequence of hybrids where
the outputs C0(y; r) are gradually replaced by C1(y; r). Each replacement relies on the security of the iO
scheme, the PRF security, and the dynamic-input indistinguishability of C0 and C1.

The main issue of this approach is that the number of possible inputs y (hence the number of hybrids) is
exponential – indeed, this is the reason why the piO scheme of [25] requires subexponentially secure primitives
(iO and PRF). To get around this issue, we first switch G to an appropriate extremely lossy mode, that the
adversary cannot distinguish from the injective mode. Now, the soundness of the NIZK proof system ensures
that all valid inputs y are of the form S(state, x;G(r)) for some (x, r) (omitting y′ for simplicity). For a given
state, the number of possible such values is bounded by the size of the range of G (which is polynomial),
times the size of the input domain I. Therefore, in all applications where the inputs to the obfuscated circuit
are sampled using private inputs from a small domain, we can base security on polynomially secure iO.

4.2 Construction

Setup(1λ)

crs
$← NIZK.Setup(1λ)

G
$← ELF.Gen(M,M)

return pp← (crs, G)

Encode(pp, S)

define S′pp as follows :

Circuit S′pp(state, x; r1, r2)

(y; y′)← S(state, x;G(r1))

π
$← NIZK.Prove(crs,

st = (G,S, state, y), w = (x, r1); r2)

return (y, π; y′)

return S′pp

Obfuscate(pp, S, C)

K
$← F.KeyGen(1λ)

define C̄ as follows:

Circuit C̄[stf, (crs, G), S, C,K](x)

parse x =: ((y1, aux1), . . . , (y`, aux`))

statej := stf(y1, . . . , yj−1,⊥, . . . ,⊥)

if ¬ (∀j ∈ [`] : NIZK.Verify(crs, (G,S, statej , yj), auxj) = 1) then

return ⊥
r := F.Eval(K, (y1, . . . , y`))

y := C((y1, . . . , y`); r)

return y

Λ
$← iO(C̄)

return Λ

Fig. 6. Description of our dpiO scheme.

For our construction, we employ a perfectly sound NIZK proof system for the following (parametrized)
language

LG,Sstate := {y | ∃(y′, x, r) : (y; y′) = S(state, x;G(r))}.

Let ` ∈ N be a constant, let {stfλ : ({0, 1}λ ∪ {⊥})`−1 → Tλ}λ be a family of efficiently computable
state functions, and let C = {Cλ}λ be a family of (randomized) circuits with random space {0, 1}M (where
M = M(λ) is polynomial). Let SI be a family of samplers with input domain I of polynomial size. Further,
let Sd-Ind be the class of dynamic-input indistinguishable samplers (over C).

Theorem 13. If ELF is a strongly regular extremely lossy function, iO is a perfectly correct polynomi-
ally secure IO scheme, F is a polynomially secure perfect puncturable PRF, and NIZK is a perfectly sound
polynomially zero-knowledge NIZK proof system for the family of languages {LG,Sstate}state,G,S, then dpiO =
(Setup,Encode,Obfuscate) defined in Figure 6 is an `-source dpIO scheme for (stf,SI, C,Sd-Ind).

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 13

As noted in Section 2.5, almost perfectly correct NIZKs can be constructed from polynomially-secure
indistinguishability obfuscation and extremely lossy functions. ELFs also imply the existence of one-way
functions, hence of perfect puncturable PRFs [37,43]. Therefore, we get as corollary:

Corollary 14. Assuming polynomially-secure indistinguishability obfuscation and extremely lossy functions,
there exists (for any constant `) an `-source doubly-probabilistic indistinguishability obfuscation scheme for
the class of dynamic-input circuit-samplers, and input-samplers with a polynomial size input domain.

Proof. We prove that dpiO as defined in Figure 6 satisfies simulatability of encodings (cf. Definition 10),
statistical restricted correctness (cf. Definition 11), and indistinguishability (cf. Definition 12).

Simulatability of encodings. We prove that there exists a PPT simulator Sim = (Sim0,Sim1) such that
for every PPT adversary A, the advantage Advenc(A) is negligible. By the zero-knowledge property of NIZK,
there exists a simulator (NIZK.Sim0,NIZK.Sim1). We construct a simulator Sim = (Sim0,Sim1) as follows:

– Sim0 produces the CRS using (crs, τ)
$← NIZK.Sim0(1λ), samples the parameters of the ELF G in injective

mode, and outputs pp := (crs, G) together with trap := τ .
– Sim1 on input (pp, trap), a sampler S, a state state, and a value y sampled via (y; y′)

$← S(state, x), Sim1

produces a simulated proof via π $← NIZK.Sim1(crs, τ, (G,S, state, y)) and outputs aux := π.

Let A be a PPT adversary on the simulatability property of dpiO. We prove indistinguishability between the
real and the simulated distribution via a series of hybrids starting from the simulated game Exp1-enc

A (1λ).

Game G0: This game is identical to Exp1-enc
A (1λ). We remark that in this game, the tuple (y; y′) is produced

using the adversarially chosen sampler S on input of the adversarially chosen state state and input x supplied
with true randomness.
Game G1: This game is identical to G0 except for the fact that for each query (S, state, x), the sampler S
is supplied with randomness G(r) for uniform r (instead of true randomness). Due to the strong regularity
of G and by a standard hybrid argument over all queries, the statistical distance between G0 and G1 is
negligible.
Game G2: This game is the same asG1 with the difference that crs is produced honestly using NIZK.Setup(1λ).
Additionally, for each adversarial query (S, state, x), the proof π is produced honestly by NIZK.Prove(crs, (G,
S, state, y), (x, r)), where G(r) are the random coins supplied to the sampler S. The view of A in game G2

is distributed exactly as in the real game Exp0-enc
A (1λ).

We construct a PPT adversary B on the zero-knowledge property of NIZK. Given a CRS crs, B samples
an ELF G in injective mode and invokes A on input of pp := (crs, G). Each time A queries its oracle on
(S, state, x), B draws random coins r and invokes the sampler S on input of (state, x) with random coins
G(r) to obtain (y; y′). In order to produce π, B calls its prove oracle on input (G,S, state, y) with witness
(x, r). Therefore, if B is supplied with an honest CRS and honestly generated proofs, B perfectly simulates
G2 for A, else B perfectly simulates G1. Hence, |Pr[out2 = 1] − Pr[out3 = 1]| ≤ AdvZK(B). This concludes
the proof.

Restricted Correctness. Let S ∈ SIλ be an arbitrary sampler with input, let y1, . . . , y` be arbitrary values
from the input domain Iλ, and let C be a circuit from the family C`λ. To prove the correctness of dpiO, we
proceed over a series of hybrids.

Game G0: This game is the ideal game Exp1-rcorr
A (1λ). As the sampler S is called using true randomness

whereas in Exp0-rcorr
A (1λ) samples are generated using G(r), where r is truly random, we need an intermediate

hybrid.
Game G1: This game is identical to G0 with the difference that each call of the sampler S is supplied with
G(r) as randomness (where r is sampled uniformly for each call). Due to the strong regularity of G, and by
a hybrid argument over all calls of S, the statistical distance between G0 and G1 is negligible.
Game G2: This game is the real game Exp0-rcorr

A (1λ).
We now argue that the view of A in game G1 is distributed identically to its view in G2. G2 samples
public parameters pp via Setup(1λ) and S′ an encoded sampler via S′ ← Encode(pp, S). Further, (yj , auxj)

are sampled as statej ← stf(y1, . . . , yj−1,⊥, . . . ,⊥) and (yj , auxj , y
′
j)

$← S′(statej , xj), for j ∈ [`]. Let Λ be

14 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

the obfuscation Λ
$← Obfuscate(pp, S, C) of the circuit C with respect to sampler S. Due to the perfect

correctness of iO, Λ has the same functionality as C̄[stf, (crs, G), S, C,K], where K is a freshly generated key
for the PRF F. Hence, by the perfect completeness of NIZK, on input of ((y1, aux1), . . . , (y`, aux`)), Λ evaluates
the circuit C on input of (y1, . . . , y`) with random coins F (K, (y1, . . . , y`)). Therefore, the view of A in the
games G1 and G2 only differs in the fact that G1 supplies C with true random coins whereas G2 supplies
C with F (K, (y1, . . . , y`)) as randomness. As F is a perfect PRF, the distribution {F (K, (y1, . . . , y`)) |K $←
F.KeyGen(1λ)} is identical to the uniform distribution over the image of F . Therefore, the view of A in G1

and G2 is distributed identically.

Security. Let D ∈ Sd-Ind be an arbitrary dynamic-input indistinguishable circuit sampler over C. To prove
that dpiO satisfies indistinguishability (Definition 12), we proceed over a series of hybrids. Toward contradic-
tion, assume that there is a PPT adversary A distinguishing Exp0-ind

A (1λ) from Exp1-ind
A (1λ) with non-negligible

advantage ε over the random guess after making a polynomial number Q of queries to the oracle. Let s = s(λ)
denote the circuit size of A.

Game G0. In this game, the challenger samples b $← {0, 1}, and sets up the experiment Expb-indA (1λ). More
formally, A has access to the public parameters pp and an oracle Oind

b [pp, Dλ], that on input of a sampler
with input S, draws a sample (C0, C1, z) from D and outputs (C0, C1, z) together with an obfuscation
Obfuscate(pp, S, Cb). It outputs a guess b′. The challenger returns 1 if b′ = b. By assumption, Pr[out0 = 1] = ε.
Game G1. In this game, the challenger samples G as G $← ELF.Gen(M, t), where t is a polynomial such
that any PPT algorithm of circuit size s has advantage at most ε/2 in distinguishing ELF.Gen(M,M) from
ELF.Gen(M, t). The advantage of A in this game is therefore lower bounded by ε/2: Pr[out1 = 1] > ε/2.
Game G′1. This game proceeds exactly as G1, except that after sampling b $← {0, 1}, the challenger always
sets up the experiment Exp1-ind

A (1λ). The challenger still returns 1 iff b′ = b.
By using a standard hybrid argument over the oracle queries, we prove that |Pr[out1 = 1]− Pr[out′1 = 1]| ≤
Q · negl(λ), where Q is a polynomial in λ.
Game G1.q This game is identical to G1 except for the fact that the first q oracle queries are answered
using an obfuscation Λq of C1 instead of Cb. Hence, Pr[out1.0 = 1] = Pr[out1 = 1] and Pr[out1.Q = 1] =
Pr[out′1 = 1], where Q is the number of adversarial oracle queries.
As |Pr[out1 = 1] − Pr[out′1 = 1]| ≤

∑Q
q=1|Pr[out1.q = 1] − Pr[out1.q+1 = 1]|, it suffices to upper bound the

distinguishing gap between G1.q and G1.q+1.
We observe that due to the (almost) perfect soundness of NIZK, the obfuscated circuit in the q-th oracle
answer simulates the randomized computation of the circuit Cq,0 only on well-formed inputs, i.e. on outputs
of Sq using random coins from the range of G. As ELF is in extremely lossy mode, this set of well-formed
inputs is extremely sparsified. Therefore, by the strong regularity of ELF, we can enumerate over all possible
outputs at all input positions j ∈ [`]. Let Bq,j be the set of all well-formed inputs for input position j:

Bq,j := {Sq(stf(y1, . . . , yj−1), x;G(r)) |
x ∈ Iλ, r ∈ {0, 1}M , yk ∈ Bk for k ∈ [j − 1]}.

The set Bq,j contains at most |I|·tj−1 elements. Further, let γq,1 < · · · < γq,t̄ be the ordered enumeration of all
`-tuples in Bq :=

∏`
j=1Bq,j .

5 Hence, the total number of well-formed inputs t̄ =
∏`
j=1|Bq,j | ≤ (|I| · t`−1)` ≤

|I|` · t(`2) is polynomial in λ (given that ` is a constant, and |I| and t are polynomial).
Towards proving indistinguishability between G1.q and G1.q+1, we conduct a hybrid argument over all well-
formed inputs for the obfuscation Λq and gradually replace the evaluation of circuit Cq,b with Cq,1. From here
on, our proof strategy is similar to the one employed in [25]. However, we only need to consider polynomially
many hybrids (as we assume |I| to be polynomial), hence we only loose a polynomial factor to the underlying
assumptions.
Game G1.q.i. In game G1.q.i the oracle answers the q-th query using an obfuscation of the circuit

C̄ ′[stf, (crs, G), Sq, Cq,b, Cq,1,Kq, γq,i]

that is defined in Figure 7 using iO.
5 We remark that the values of each set Bj can be computed efficiently by evaluating S on all possible inputs from
I × (

∏j−1
k=1Bj) and all possible images in the range of G. Furthermore, it is possible to enumerate the image of G

in polynomial time because G is strongly regular.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 15

Circuit C̄′[stf, (crs, G), S, C0, C1,K, γi](x)

parse x =: ((y1, aux1), . . . , (y`, aux`))

statej := stf(y1, . . . , yj−1,⊥, . . . ,⊥)

if ¬ (∀j ∈ [`] : NIZK.Verify(crs, (G,S, statej , yj), auxj) = 1) then

return ⊥
γ := (y1, . . . , y`)

if γ < γi then r := F (K, γ); return C1(γ; r)

if γ = γi then r := F (K, γ); return Cb(γ; r)

if γ > γi then r := F (K, γ); return Cb(γ; r)

Fig. 7. Definition of the circuit C̄′.

The circuits C̄[stf, (crs, G), Sq, Cq,b,Kq] and C̄ ′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq, γq,1] are functionally equivalent
(on input x = ((y1, aux1), . . . , (y`, aux`)), both return Cq,b(y1, . . . , y`) with randomness F (Kq, (y1, . . . , y`))).
Hence, this game hop is justified by the indistinguishability property of iO, more formally there exists a PPT
adversary B such that |Pr[out1.q = 1]− Pr[out1.q.1] = 1| ≤ AdviO(B).
We aim to reduce the game hop from Gb

1.q.i to Gb
1.q.i+1 to the dynamic-input indistinguishability of the

circuit sampler Dλ. For this purpose, we first need to supply Cq,b with true randomness. Hence, we define
an other series of hybrids between G1.q.i and G1.q.i+1.
Game G1.q.i.1. This game is identical to G1.q.i except for the fact that we use a punctured PRF key

Kq{γq,i} $← F.Puncture(Kq, γq,i)

and obfuscate the circuit C̄ ′′[stf, (crs, G), Cq,0, Cq,1,Kq{γq,i}, Y := Cq,b(γq,i;F (Kq, γq,i)), γq,i] defined in Fig-
ure 8 using iO.
As F preserves the functionality under punctured keys, the circuits C̄ ′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq, γq,i] and
C̄ ′′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq{γq,i}, Y := Cq,b(γq,i;F (Kq, γq,i)), γq,i] are functionally equivalent. Hence,
there exists a PPT adversary B such that |Pr[out1.q.i = 1]− Pr[out1.q.i.1 = 1]| ≤ AdviO(B).
We note that the view of A in game G1.q.i.1 does not depend on the PRF key K. This enables to exploit
the selective security of F.

Circuit C̄′′[stf, (crs, G), S, C0, C1,K{γi}, Y, γi](x)

parse x =: ((y1, aux1), . . . , (y`, aux`))

statej := stf(y1, . . . , yj−1,⊥, . . . ,⊥)

if ¬ (∀j ∈ [`] : NIZK.Verify(crs, (G,S, statej , yj), auxj) = 1) then

return ⊥
γ := (y1, . . . , y`)

if γ < γi then r := F (K{γi}, γ); return C1(γ; r)

if γ = γi then return Y

if γ > γi then r := F (K{γi}, γ); return Cb(γ; r)

Fig. 8. Definition of the circuit C̄′′.

Game G1.q.i.2. In this game we replace the randomness F (Kq, (γq,i)) by true randomness, i.e. we produce
Y as follows: Y := Cq,b(γq,i;R). This game hop is justified by the selective PRF property, more formally
|Pr[out1.q.i.1 = 1]− Pr[out1.q.i.2 = 1]| ≤ Advs-cPRF(B) for some PPT adversary B.
Game G1.q.i.3. Game G1.q.i.3 is the same as G1.q.i.2 except for the fact that Y is produced using the
circuit Cq,1, i.e. Y := Cq,1(γq,i;R). This game hop is justified by the fact that the circuit sampler Dλ is a
dynamic-input indistinguishable sampler.
Game G1.q.i.4. This game is the same as G1.q.i.3 with the difference that we again use pseudorandom coins
to compute Y , i.e. Y := Cq,1(γq,i;F (Kq, γq,i)). For every PPT adversary A there exists a PPT adversary B
such that |Pr[out1.q.i.3 = 1]− Pr[out1.q.i.4 = 1]| ≤ Advs-cPRF(B).
As the pPRF F preserves functionality under punctured keys, the two circuits C̄ ′′[stf, (crs, G), Sq, Cq,0,
Cq,1,Kq{γq,i}, Y := Cq,1(γq,i;F (Kq, γq,i)), γq,i] and C̄ ′[stf, (crs, G), Sq, Cq,0, Cq,1,Kq, γq,i+1] are functionally
equivalent. Therefore, we have that |Pr[out1.q.i.4 = 1]− Pr[out1.q.i+1 = 1]| ≤ AdviO(B).

16 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

Summing up, the advantage to distinguish G1 and G1.Q is bounded by |I|` · t`2 · negl(λ). As ` is constant
and |I|, t are polynomial, this quantity is negligible. As the circuit obfuscated in G1.Q is now functionally
equivalent to the circuit obfuscated inG1

1, the game hop toG′1 is justified by the indistinguishability property
of iO. More formally there exists a PPT adversary B such that |Pr[out1.Q = 1] − Pr[out′1] = 1| ≤ AdviOB (λ).
This implies that the advantage of A in game G′1 is lower bounded by ε/2− negl(λ), which is non-negligible.
However, the view of A in G′1 is perfectly independent of b, hence its advantage in this game cannot be
non-zero; therefore, we reach a contradiction, which concludes the proof. ut

4.3 Extension

We sketch a straightforward extension of our above construction. It follows easily by inspection that the same
proof strategy would work even if the ` sources, which sample inputs accorded to an encoding of a sampler
S with respect to public parameters pp, are not required anymore to use the same public parameters. The `
sources could even each use different public parameters (pp1, · · · , pp`). The modified proof for this scenario
would proceed by first switching the ELFs in (pp1, · · · , pp`) to an extremely-lossy mode, through a sequence
of ` hybrids. Each extremely-lossy mode is chosen so that A as advantage at most ε/2` in distinguishing
it from the injective mode. By a union bound, A has therefore advantage at most ε/2 in distinguishing
the all-injective modes from the all-lossy modes. Then, enumerating over all possible valid inputs to an
obfuscated circuit takes polynomial time as before, as each input of a source comes from a set of polynomial
size. Therefore, the exact same sequence of hybrids proves security, with a polynomial loss in the underlying
primitives. To adapt the security properties of our definition of dpiO to this multi-parameter setting, it suffices
to let all experiments initially sample and send to the adversary ` public parameters (pp1, · · · , pp`) instead of
one. In the simulatability of encodings definition (resp. in the indistinguishability definition), the adversary is
allowed to specify under which public parameters it wants to receive a (real or simulated) sample (y, aux; y′)
(resp. under which public parameters it wants Cb to be obfuscated in the indistinguishability experiment).

It can prove convenient to simplify the construction in some applications to allow different sources to use
different public parameters. Let us illustrate the syntax we adopt on an example: if (Setup,Encode,Obfuscate)
is a 5-source dpiO scheme, we denote by Obfuscate(pp1[1− 3], pp2[4, 5], , S, C) an obfuscation of a circuit C,
whose first three inputs should be sampled with respect to pp1, and whose last two inputs should be sampled
with respect to pp2. We will also sometimes slightly abuse our notation, noting that an `-source dpiO scheme
directly implies an i-source dpiO scheme for i ≤ `, and allow an `-source scheme to obfuscate a circuit C
that takes i < ` inputs.

5 Leveled Homomorphic Encryption

In this section we show that our notion of dpIO from Section 3 can be applied to construct leveled homo-
morphic encryption in a similar way as in [25]. This construction leads to a transformation which operates
on an encryption scheme E, satisfying IND-CPA security (and possibly other security properties, e.g., KDM
security), and produces a leveled homomorphic encryption scheme that retains the security properties of E.

Definition 15 (Leveled Homomorphic Encryption [36]). A leveled homomorphic encryption scheme
LHE is a family of encryption schemes {EncL : L ≥ 0} such that each EncL is homomorphic for all polysize
depth-L circuits (i.e., it allows to homomorphically and compactly evaluate any polysize depth-L circuit) with
an algorithm Eval of size polynomial in (λ, L), and all the EncL use the same decryption circuit. We require
LHE to meet the following properties:

Correctness. We say that LHE is correct if for every λ ∈ N, for every polysize depth-L circuits C and
respective inputs m1, . . . ,mk ∈ {0, 1}, we have that

Pr [LHE.Dec(sk, (LHE.Eval(ek, C, c1, . . . , ck))) = C(m1, . . . ,mk)]

is negligible in λ, where (pk, ek, sk)
$← LHE.KeyGen(1λ) and mj

$← LHE.Enc(pk,mj) for j ∈ [k].

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 17

Security. We say that LHE is IND-CPA secure if for every PPT adversary A the advantage

AdvIND-CPA(A) := |Pr [A(pk, ek, LHE.Enc(pk, 0))]

− Pr [A(pk, ek, LHE.Enc(pk, 1))]|

is negligible in λ, where (pk, ek, sk)
$← LHE.KeyGen(1λ).

Let stfλ be the trivial state function, i.e. stf : (y1, y2) 7→ ⊥ for each (y1, y2) ∈ ({0, 1}λ ∪ {⊥})2. Let
E = (E.KeyGen, E.Enc, E.Dec) be an IND-CPA-secure public-key encryption scheme. Let the class SI contain
all samplers Spk that on input of a state state and an input x ∈ I := {0, 1}, produce an encryption
E.Enc(pk, x) ignoring state, where pk is a public key in the range of E.KeyGen(1λ). Let C be the class of
polynomially sized randomized circuits and let Sd-Ind be the class of dynamic-input indistinguishable samplers
over C.

Theorem 16. Let (Setup,Encode,Obfuscate) be a 2-source dpiO scheme for (stf,SI, C,Sd-Ind) and let E be
an IND-CPA secure public-key encryption scheme. Then, LHE as defined in Figure 9 is an IND-CPA secure
LHE scheme.

LHE.KeyGen(1λ, 1L)

for i ∈ {0, . . . , L} do

(pki, ski)
$← E.KeyGen(1λ)

ppi
$← Setup(1λ)

S′pki ← Encode(ppi, S
pki)

for i ∈ {1, . . . , L} do

Λi
$← Obfuscate

(
ppi−1, S

pki−1 , C[S′pki , ski−1]
)

pk := S′pk0 , sk := skL, ek := (Λ1, . . . , ΛL)

return (pk, ek, sk)

LHE.Enc(pk,m ∈ {0, 1})

parse pk =: S′pk0

(y, aux, y′)
$← S′pk0(⊥,m)

return c← (y, aux)

LHE.Dec(sk, c)

parse sk =: skL

parse c =: (y, aux)

return E.Dec(skL, x)

LHE.Eval(ek, C, (c1, . . . , cl))

for i ∈ {1, . . . , L} do
foreach gate g on level i do
// let αg, βg denote the respective inputs

γg := Λi(αg, βg)

Fig. 9. Description of the LHE scheme LHE. The circuit C is defined in Figure 10.

The proof strategy is similar as in [25]. On a high level, we want to reduce the security of LHE to the
security of the underlying encryption scheme E. However, the evaluation key ek contains information (even
though obfuscated) on the secret keys of each level. For the purpose of invoking the security of E on the
challenge ciphertext, we need to remove this dependency on sk0. Therefore, we gradually (starting from level
L) replace the obfuscations of the circuits C with an obfuscation of trapdoor circuits tC that simply output
samples produced by the encoded sampler S′ on input of 0 (hence, not needing any information on decryption
keys). These two circuits only differ in the fact that they sample from the same encoded sampler S′ using
(possibly) different inputs. Due to the simulatability of encodings and the IND-CPA security of E, the two
circuits are dynamic-input indistinguishable. Hence, by the indistinguishability property of dpiO for Sd-Ind,
an honest evaluation key and an evaluation key consisting only of trapdoor circuits are indistinguishable.

Given these modifications, the challenge ciphertext c∗ consists of an encryption of a bit b under pk0

accompanied by some auxiliary information produced by the corresponding encoded sampler. This auxiliary
information might leak information on the bit b and thereby prevents to directly employ the IND-CPA secu-
rity of E. However, as dpiO satisfies simulatability of encodings, this auxiliary information can be simulated
without knowledge of b and, hence, contains no information about b. Therefore, by the IND-CPA security of
E, LHE is IND-CPA secure.

Before we start the analysis of our construction, we briefly recall the definition of an IND-CPA secure
public-key encryption scheme.

18 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

C[S′pk, sk′](xα, xβ)

α← E.Dec(sk′, xα)

β ← E.Dec(sk′, xβ)

(y, aux, y′)
$← S′pk(⊥, α∧β)

return (y, aux)

tC[S′pk](xα, xβ)

(y, aux, y′)
$← S′pk(⊥, 0)

return (y, aux)

Fig. 10. Definition of the circuits C and tC.

Definition 17 (Public-key bit-encryption scheme). A public-key bit-encryption scheme is a triple of
PPT algorithms E = (E.KeyGen, E.Enc, E.Dec) that satisfies the following properties:

Perfect correctness. E is perfectly correct, if for every λ ∈ N and every message m ∈ {0, 1}

Pr[E.Dec(sk, E.Enc(pk,m)) = m|(pk, sk)
$← E.KeyGen(1λ)] = 1.

IND-CPA security. We say that E is IND-CPA secure if for every PPT adversary A, the advantage

AdvIND-CPA(A) := |Pr [A(pk, LHE.Enc(pk, 0))]

− Pr [A(pk, LHE.Enc(pk, 1))]|

is negligible in λ, where (pk, sk)← E.KeyGen(1λ).

Proof (of Theorem 16). We prove that LHE satisfies correctness and IND-CPA security as defined in Defini-
tion 15.

Correctness. Let C be a polysized circuit of depth L that consists only of ∧-gates. We prove that on every
level i every gate g in C is evaluated as the original gate given the decrypted inputs (except for an negligible
error). By a union bound argument over the number of gates, the probability that an error occurs when
evaluating circuit C is negligible.
Let i ∈ [L] be a level and let g be a gate on level i. Further, let (xα, auxα, ·) be in the scope of S′pki−1(⊥, α)
and (xβ , auxβ , ·) be in the scope of S′pki−1(⊥, β). By the perfect correctness of E, the circuit C[S′pki , ski−1] on
input of (xα, auxα) and (xβ , auxβ) always outputs an element from the scope of S′pki(⊥, α∧β).6 Furthermore,
due to the statistical correctness of dpiO, the distribution C[S′pki , ski−1]((xα, auxα), (xβ , auxβ)) is statistically
close to the output of Λi (over the random coins of Setup, Obfuscate, and S′). Hence, the probability that gate
g is not evaluated correctly is negligible. Therefore, the probability (over the random coins of LHE.KeyGen
and LHE.Enc) that the circuit C is not evaluated correctly is negligible.7

Security. To prove that LHE is IND-CPA secure, we proceed over a series of hybrids. Let A be a PPT
adversary.
Game Gb

0. This game is exactly the IND-CPA game for LHE, where the challenge ciphertext c∗ contains
the bit b.
Game Gb

1. This game is the same as Gb
0 with the difference that the evaluation key consists of obfuscations

tΛi of the circuit tC[S′pki].
Claim. For every PPT adversary A, we have that |Pr[outb0 = 1]−Pr[outb1 = 1]| ≤ negl(λ) for some negligible
function negl.
Proof. We define a series of L+ 1 hybrid games Gb

0.i for i ∈ {0, . . . , L} as follows:
Game Gb

0.i. This game is identical to Gb
0.i−1 with the difference that we replace the obfuscated circuit

ΛL−i+1 with the obfuscation tΛL−i+1 := Obfuscate(ppL−i, S
pkL−i , tC[pkL−i+1]). Hence, inGb

0.i the evaluation
key ek has the form

ek := (Λ1, . . . , ΛL−i, tΛL−i+1, . . . , tΛL) .

We define Gb
0.0 := Gb

0. Hence, we have Gb
0.L = Gb

1.
Claim. For every PPT adversary A, there exists a PPT adversary B on the indistinguishability property of
dpiO, such that |Pr[outb0.i = 1]− Pr[outb0.i+1 = 1]| ≤ Advind(B).

6 We implicitly use that the scopes of S′(⊥, 0) and S′(⊥, 1) are disjoint.
7 Our construction from Section 4 even guarantees perfect correctness.

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 19

By a standard hybrid argument, this implies that |Pr[outb0 = 1]− Pr[outb1 = 1]| ≤ L · Advind(B).
Proof. Let D be a circuit sampler, that samples public parameters pp $← Setup(1λ) and two public key pairs
(pk, sk), (pk′, sk′)

$← E.KeyGen(1λ), produces the encoded sampler S′pk ← Encode(pp, Spk) and outputs the
circuits C0 := C[S′pk, sk′] and C1 := tC[S′pk] together with its state z := (pk, pk′, sk′, pp).
Claim. The circuit sampler D as defined above is a dynamic-input indistinguishable sampler.
Proof. We prove this using two hybrids. Let A be an adversary for the dynamic-input indistinguishability
game for the circuit sampler D.
Game H0. This is the dynamic-input indistinguishability game as defined in Figure 1. In detail, given the
descriptions of the sampled circuits C0 and C1 together with the state z, A chooses an input x (dynamically).
Game H0 evaluates the circuit Cb (for a random bit b) at x using fresh random coins and sends the output
to A.
Game H1. By the simulatability of encodings property of dpiO, there exists a simulator Sim = (Sim0,Sim1).
Game H1 is the same as H0 with the difference that the public parameters are sampled as (pp, trap)

$←
Sim0(1λ). Given the input x = (y1, y2) for the circuits, compute (m0,m1) := (α∧β, 0) using the secret key
sk′. Furthermore, instead of evaluating Cb at x honestly, game H1 produces (y, ·) $← Spk(⊥,mb) and aux

$←
Sim1(trap, Spk, y,⊥). Due to the simulatability of encodings, the difference |Pr[outH0

= 1] − Pr[outH1
= 1]|

between these two games is negligible.
The advantage of A in game H1 is negligible. To realize that, we construct an adversary B on the IND-CPA
security of E with respect to the public key pk. On input of pk, B samples (C0, C1, z) in the same way as in
H1 (embedding pk) and calls A on input of (C0, C1, z) to obtain (x, state). B decrypts x = (y1, y2) to obtain
α, β using sk′, and outputs (m0,m1) := (α∧β, 0) to the IND-CPA game. In return B receives a ciphertext c∗,
simulates the corresponding auxiliary information aux

$← Sim1(pp, trap, Spk, c∗,⊥), and invokes A on input
of its previous state state and (c∗, aux). If c∗ encrypts mb̃, y is distributed exactly as in H1 conditioned on
b = b̃. Finally, B outputs A’s output. Hence, by the IND-CPA security of E, |Pr[outH.1 = 1]− 1

2 | is negligible.
ut

In order to upper bound the distinguishing gap between G0.i and G0.i+1, we construct a PPT adversary
B on the indistinguishability property of dpiO. B gets as input public parameters pp′, the circuits C0, C1

together with auxiliary information z produced by D, and an obfuscation Λ̄ $← Obfuscate(pp′, Spk′ , Cb̃) for
some b̃ ∈ {0, 1}. Initially, B samples parameters as LHE.KeyGen embedding its input as ppL−i−1 := pp′,
pkL−i−1 := pk′, and pkL−i := pk, and defines the public key to be pk := S′pk0 for S′pk0 ← Encode(pp0, S

pk).
B produces the obfuscations

Λj
$← Obfuscate(ppj−1, S

pkj−1 , C[Spkj , skj−1]) for j ∈ {1, . . . , L− i− 1},

tΛj
$← Obfuscate(ppj−1, S

pkj−1 , tC[Spkj]) for j ∈ {L− i+ 1, . . . , L}

and defines the evaluation key ek := (Λ1, . . . , ΛL−i−1, Λ̄, tΛL−i+1, . . . , tΛL).
The challenge ciphertext c∗ is produced for the bit b as c∗ $← S′pk0(b). Finally, B calls A on input (pk, ek, c∗)
and outputs the resulting output b′. We observe that if b̃ = 0, B simulates Gb

0.i for A, else B simulates Gb
0.i+1

for A. Hence, |Pr[outb0.i = 1]− Pr[outb0.i+1 = 1]| ≤ Advind(B) which is negligible by assumption. ut
ut

With the objective of exploiting the IND-CPA security of E to the challenge ciphertext c∗, we need to ensure
that the auxiliary information that accompanies the ciphertext from Spk0(b) does not leak any information
about b. This is formalized via another game transition.
Game Gb

2. This game is identical to Gb
1 except for the fact that the public parameters pp0 are simulated

by Sim0 (additionally yielding a trapdoor trap0). Furthermore, the challenge ciphertext c∗ is produced by
drawing a sample (y; y′) from Spk0(b) and simulating the auxiliary information aux using Sim1(pp0, trap0,
Spk0 , y,⊥). We recall that for any PPT adversary A such a simulator Sim = (Sim0,Sim1) exists as dpiO
satisfies simulatability of encodings. Hence, by simulatability of encodings, the distinguishing gap |Pr[outb1 =
1]− Pr[outb2 = 1]| is negligible in λ.
It remains to argue, that the games G0

2 and G1
2 are computationally indistinguishable. This can be reduced

to the IND-CPA security of E with respect to pk0 as in Gb
2 neither the corresponding secret key sk0 nor the

plaintext b are necessary for simulation.

20 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

Claim. For every PPT adversary A, the distinguishing gap |Pr[out01 = 1]− Pr[out11 = 1]| is negligible.

Proof. Let A be a PPT adversary on distinguishing G0
2 and G1

2. We construct a PPT adversary B on the
IND-CPA security of E. On input of pk, B defines pk0 := pk, samples key pairs (pkj , skj)

$← E.KeyGen(1λ)

for j ∈ {1, . . . , L} and produces ek as in G1
2. B outputs the messages 0 and 1 to the IND-CPA game and in

turn receives a ciphertext c′∗. Furthermore, B simulates the auxiliary information by aux∗ $← Sim1(pp0, trap0,
Spk0 , c′∗,⊥). Finally, B invokes A on input of (pk0, ek, (c

′∗, aux∗) and forwards its output to the IND-CPA
experiment. Hence, |Pr[out01 = 1]− Pr[out11 = 1]| is negligible by the IND-CPA security of E. ut

ut

Given our construction of dpiO from Section 4, we obtain the following corollary:

Corollary 18. Assuming polynomially secure indistinguishability obfuscation and extremely lossy functions,
there exists a leveled homomorphic encryption scheme.

Note that IND-CPA secure cryptosystems, as required in our construction, can be constructed from
(polynomially secure) IO and one-way function (the latter being implied by ELFs). Previously, constructions
of LHE were only known from the learning with error assumption, or from subsexponentially secure indis-
tinguishability obfuscation (together with lossy encryption, which can be based e.g. on DDH). Using the
generic transformation from leveled homomorphic encryption to fully homomorphic encryption from [25], we
also get:

Corollary 19. Assuming slightly-superpolynomially secure indistinguishability obfuscation and extremely
lossy functions, there exists a fully homomorphic encryption scheme.

Previously, constructions of FHE were only known from circular-security assumptions over lattice-based
cryptosystems, or subexponentially secure indistinguishability obfuscation and lossy encryption. Below, we
sketch an improvement to Corollary 19, which removes the need for superpolynomially-secure iO.

Fully Homomorphic Encryption from Polynomial iO and ELFs. Applying the [25] transform of LHE
into FHE requires to use superpolynomially secure iO. However, using the same techniques as we used to
build dpiO, we can actually base this transformation on polynomially secure iO (and ELFs). We briefly sketch
the strategy. The LHE-to-FHE transform of [25] stems from the following observation: if an LHE scheme can
handle a (slightly) superpolynomial number of levels L, then it is fully homomorphic for all polynomial size
circuits. However, this would require generating and storing a superpolynomial number of evaluation keys
(ek1, · · · , ekL).

To overcome this issue, the strategy of [25] is to obfuscate a master key generation program MProg,
which generates the evaluation keys on the fly : on input i, MProg returns eki. It was observed in [25] that
probabilistic iO cannot be directly used to obfuscate this program, because the coins used by MProg must
be correlated between two consecutive levels (for example, in our LHE construction, eki is an obfuscated
program with a secret key ski and a public key pki+1 hardcoded; hence, eki+1 must contain the matching
secret key for pki+1). Nevertheless, “derandomizing” this program, using the standard technique of generating
the coins using a pseudorandom function F (the coins for ski are generated as F(K, i), and the coins for pki+1

are generated as F(K, i+ 1), which guarantees the appropriate correlation between the coins used in eki and
eki+1), and obfuscating with standard iO, allows to prove security of this approach.

To apply the techniques developped in this work, we must make the input to MProg “sparsifiable”, so as
to puncture at every possible input with a polynomial loss in the security reduction. We outline a natural
approach to achieve this. Instead of directly taking the index i as input, the program MProg takes as input
a pair (ci, π), where ci is a counter defined as follows: c0 = 0, and ci+1 = G(ci), where G is an extremely
lossy function in injective mode, and π is a proof (with a statistically sound NIZK proof system) that ci is
in the image of G. On input (ci, π), the program MProg checks the proof, and outputs ⊥ if the check fails. If
the check passes, it computes ci+1 ← G(ci), “draws” random coins ri ← F(K, ci) and ri+1

$← F(K, ci+1), and
uses these random coins to generate the evaluation key eki. The exact same proof strategy as [25] applies,
except that in the security analysis, we first switch G to an extremely lossy mode, and enumerate over all
pairs of the form (x,G(x)) where x is in the image of G; this enumeration is done in polynomial time, hence
the reduction only looses a polynomial factor. Therefore, we get:

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 21

Corollary 20. Assuming polynomially-secure indistinguishability obfuscation and extremely lossy functions,
there exists a fully homomorphic encryption scheme.

By replacing the IND-CPA secure encryption scheme E in the construction of Figure 9 by a KDM-secure
encryption scheme for the identity function, which remains secure even when the adversary is allowed to
obtain ciphertexts of the form E(pk, sk) (i.e., encryptions of the secret key), we obtain a fully-homomorphic
encryption scheme which satisfies KDM-security for the identity function. As already noted in the intro-
duction, this directly implies a fully-KDM secure encryption scheme (which remains secure even when the
adversary can receive encryptions of arbitrary functions of its secret key). Plugging in the DDH-based KDM-
secure encryption scheme of [17], we obtain:

Corollary 21. Assuming polynomially-secure indistinguishability obfuscation and eDDH, there exists a fully
KDM-secure encryption scheme.

6 Spooky Encryption

In this section, we recall the definition of spooky encryption from [27], describe a new construction of spooky
encryption from dpiO, and discuss some applications.

6.1 Tools and Definitions

Definition 22 (Spooky Encryption [27]). Let C be a class of (possibly randomized) circuits with n
inputs and n outputs. An n-key C-spooky encryption scheme SE is a five-tuple of PPT algorithms (SE.Setup,
SE.KeyGen,SE.Enc,SE.Eval,SE.Dec) such that
– (SE.Setup,SE.KeyGen,SE.Enc,SE.Dec) is an IND-CPA-secure bit encryption scheme;
– SE.Eval(C, (pk1, c1), · · · , (pkn, cn)), on input a circuit C ∈ C, and n pairs of public key and ciphertext,

outputs n ciphertexts;

which additionally satisfies the following condition: for every λ, every C ∈ C, every input x = (x1, · · · , xn)
to C, the distribution

{∀i, (pki, ski)
$← SE.KeyGen(1λ), ci

$← Enc(pki, xi),

(c′1, · · · , c′n)← SE.Eval(C, (pki, ci)i≤n) : (SE.Dec(ski, c
′
i))i≤n}

is statistically close (in λ) to the distribution C(x1, · · · , xn).

Note that we allow the encryption scheme to have a universal setup algorithm, that generates common
parameters used (implicitely) in all other algorithms (in particular in the key generation). This corresponds
to a “common reference string” flavor of spooky encryption, as for the LWE-based construction in [27]. The
piO-based construction given in [27], however, does not require any such setup, but the definition of dpiO
requires a universal setup, which we therefore assume for our construction of spooky encryption below.

An important class of spooky relations are the circuits that, on input (x1, . . . , xn), output random additive
(bitwise) shares of a function f(x1, · · · , xn). A spooky encryption scheme handling this type of relation is
called AFS-spooky.

Two-Key Spooky Encryption of Re-Sampleable Circuits. The work of [27] constructs two-key spooky
encryption schemes, for probabilistic circuits satisfying efficient re-sampleability, assuming piO (as well as
other primitives, which can be instanciated from DDH). Below, we revisit their construction, and show that
we can replace the underlying piO scheme by a dpiO scheme for samplers with input over a small domain.
We first recall the necessary notions and primitives.

Definition 23 (Efficient Re-Sampleability). A probabilistic circuit C : {0, 1}`1 × {0, 1}`2 → {0, 1}`′1 ×
{0, 1}`′2 of polynomial size is efficiently re-sampleable if there exists a polynomial-size resampling circuit RSC
such that for any (x1, x2) ∈ {0, 1}`1 ×{0, 1}`2 , the distribution C(x1, x2) is identical to the distribution {(y1,

y2)
$← C(x1, x2), y′2

$← RSC(x1, x2, y1) : (y1, y
′
2)}.

Let M : {0, 1}2 7→ {0, 1}2 be a probabilistic circuit which performs a spooky multiplication: on input
(b1, b2), it outputs random bit-shares of their product b1b2. It is clear that M is efficiently re-sampleable. We
write M(b1, b2; r)1 to denote the first output of M on input (b1, b2) with randomness r.

22 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

Maliciously Circuit-Private (Non-Compact) Homomorphic Encryption Scheme. A public key
encryption scheme E = (E.KeyGen, E.Enc, E.Dec) is homomorphic for a class of circuits C if there exists an
algorithm E.Eval such that for every key pair (pk, sk), circuit C ∈ C, and ciphertext c ← E.Enc(pk, x), it
holds that E.Dec(sk, E.Eval(pk, C, c)) = C(x).

Definition 24 (Perfect Malicious Circuit Privacy [27]). A homomorphic encryption scheme E =
(E.KeyGen, E.Enc, E.Dec, E.Eval) for a class of circuits C has perfect malicious circuit privacy if for every
alleged public key pk (possibly outside of the support of KeyGen) and ciphertext c∗ (possibly maliciously
computed), there exists an “effective plaintext” x such that for every two circuits (C1, C2) ∈ C with C1(x)
and C2(x), it holds that E.Eval(pk, C1, c

∗) and E.Eval(pk, C2, c
∗) are identically distributed.

Our construction will employ an homomorphic encryption scheme with perfect malicious circuit privacy.
As noted in [27], a perfect malicious circuit private encryption scheme homomorphic for NC1 (which suffices
for the construction) can be constructed from the DDH assumption.

6.2 Overview of the dpiO-Based Construction

At an intuitive level, our construction of spooky encryption from dpiO mimics the piO-based construction
of [27], in the same way that our construction of LHE from dpiO in the previous section follows the same path
as the piO-based construction of LHE from [25]. However, this strategy faces a number of technical challenges.
Below, we provide a high level overview of our construction, the challenges which must be overcome, and
our solutions.

Overview. The construction of [27] proceeds in two steps: first, it constructs a two-key spooky encryption
scheme for bit inputs that supports evaluation of spooky multiplication. This evaluation procedure is per-
formed by an obfuscated circuit. Second, it enhances this two-key spooky encryption scheme into a scheme
that supports d hops of (interleaved) two-key spooky multiplications, and single-key homomorphic addition
(for any polynomial d(λ)). This second step is done by applying Canetti et al’s piO-based transformation
of an encryption scheme into a d-leveled encryption scheme [25]. Eventually, the authors observed that a
scheme that supports both single key homomorphic addition and two-key spooky multiplication leads to a
leveled AFS-spooky encryption scheme for all circuits, drawing upon an elegant connection to the GMW
protocol for multiparty computation.

We therefore start by building a dpiO-based two-key spooky encryption scheme for bit inputs and eval-
uation of spooky multiplication. The inputs to the obfuscated evaluation circuit P are tuples of the form
(pk1, pk2, c1, pk, c), where pk1, pk2, pk are public keys, c1 is a ciphertext under pk1, and c is a ciphertext
under pk. P will decrypt c1 with sk1 to some x, encrypt with pk2 a plaintext computed from x, and ho-
momorphically evaluate (using pk) the corresponding second part of the M -spooky evaluation on c. Toward
obfuscating P with a dpiO scheme, we define a sampler with input S which has five possible states. With the
first four states, it generates the appropriate input (pk1, pk2, c1, pk, c) for P . With the last state, it generates
the output of P . Note that unlike in the LHE construction of the previous section, S must be stateful to
allow for sampling, e.g., c1 as a fresh ciphertext under the public key pk1, which is itself sampled with S.

While this would suffice to construct a dpiO-based two-keyM -spooky encryption scheme, we cannot apply
the second step of [27] to transform it into an n-key spooky encryption scheme for all circuits. Indeed, the
transformation requires to enhance the M -spooky scheme into a leveled-homomorphic M -spooky scheme. It
was done in [27] using the piO-based approach of [25]; here, we would like to follow the same approach, but
using our dpiO-based construction of LHE from the previous section. However, for this to work, we need to
ensure that all inputs to the (dpiO-obfuscated) leveled homomorphic evaluation circuits are appropriately
authenticated samples from the encryption algorithm (with respect to some hardcoded public key). This is
not the case, as ciphertexts obtained by evaluating P are not distributed as fresh ciphertexts. To overcome
this issue, we therefore add to the public key of our two-key scheme a dpiO-obfuscated circuit that performs
a re-encryption procedure. More precisely, it takes all the inputs of P , plus the output of P , and checks that
they were correctly constructed as samples with S. Then, it decrypts the outputs of P , and re-encrypt them
freshly.

With this last modification, the outputs of a spooky evaluation procedure are generated as fresh ci-
phertexts and authenticated as such. By replacing the encryption scheme E in the LHE construction of the

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 23

previous section with our two-key M -spooky encryption scheme, the correctness argument follows as before
and we get a 2-keyM -spooky encryption scheme that supports leveled (single-key) homomorphic evaluation.
We can therefore invoke Theorem 9 from [27], which states that such a scheme directly implies an n-spooky
encryption scheme for all circuits.

6.3 Two-Key Spooky Encryption for Bit-Inputs

We proceed with a construction of a two-key M -spooky encryption scheme for bit-inputs.

Sampler with Input for Spooky Encryption. Let E = (E.KeyGen, E.Enc, E.Dec, E.Eval) be a mali-
ciously circuit-private homomorphic encryption scheme for NC1. Fix any security parameter λ ∈ N. Let
Tλ ← [3]× ({0, 1}λ ∪ {⊥})3. We denote by stλ : ({0, 1}λ ∪ {⊥})5 7→ Tλ the following state function:

– on input (y1,⊥,⊥,⊥,⊥) with any y1 ∈ {0, 1}λ ∪ {⊥}, stλ output (1,⊥,⊥,⊥);
– on input (y1, y2,⊥,⊥,⊥) with y2 6= ⊥, stλ output (2, y1,⊥,⊥);
– on input (y1, y2, y3,⊥,⊥) with y3 6= ⊥, stλ output (1,⊥,⊥,⊥);
– on input (y1, y2, y3, y4,⊥) with y4 6= ⊥, stλ output (2, y4,⊥,⊥);
– on input (y1, y2, y3, y4, y5) with y4 6= ⊥, stλ output (3, y2, y4, y5).

We now describe the sampler with input S, with input domain Tλ×{0, 1}. On input (state, x), S parses state
as (i, y, y′, y′′), and does the following:

– if i = 1, run (pk, sk)
$← E.KeyGen(1λ), and output (pk; sk).

– if i = 2, run c $← E.Enc(y, x), and output (c;⊥);
– if i = 3, pick random coins (r, r′, r1), define

M ′[x, r, r′](·) ≡ RSM (x, ·,M(x, 0; r)1; r′),

set c′1 ← E.Enc(y,M(x, 0; r)1; r1) and c′2 ← E.Eval(y′,M ′[x, r, r′], y′′), and output ((c′1, c
′
2);⊥).

Description of the Scheme. Let SI = {SIλ}λ∈N be the family of samplers with input as defined in the
previous paragraph, with input domain Tλ ×{0, 1}, where each SIλ contains a single sampler with input S,
with state function stλ. Let (Setup,Encode,Obfuscate) be a 5-source dpiO scheme for (stλ,SI, C,CS), where
C contains all circuits of the following form:

– the programs P [sk1, pk1, pk2, pp2, S] represented on Figure 11 for all strings (sk1, pk1, pk2, pp2);
– the programs Qj [sk3−j , pk3, pp3, S] represented on Figure 11 for all strings (sk3−j , pk3, pp3) for j = 1, 2;
– the programs P̂ [pk1, pk2, pp2, trap2, S] represented on Figure 13 for all strings (pk1, pk2, pp2, trap2);
– the programs Q̂j [pk3, pp3, S, trap3] represented on Figure 12 for all strings for j = 1, 2,

and the circuit sampler CS randomly samples keys (ski, pki) sampled with S1((1,⊥,⊥,⊥), 0), public param-
eters pp2, pp3 with Setup (or with the simulator algorithm for the Setup when it must generate (pp2, trap2)
or (pp3, trap3)), and outputs either (C0, C1, z) = (P [sk1, pk1, pk2, pp2, S], P̂ [pk1, pk2, pp2, trap2, S], (pk1, pk2,
pp2)) or (C0, C1, z) = (Qj [sk3−j , pk3, pp3, S], Q̂j [pk3, pp3, S, trap3], (pk3, pp3)) for j = 1 or j = 2. We will
prove that this circuit sampler outputs pairs of circuits satisfying dynamic-input indistinguishability in the
security analysis of our protocol. We represent on Figure 11 our construction of a two-keyM -spooky encryp-
tion scheme for bit inputs.

Theorem 25. If there exists a secure dpiO scheme, and an IND-CPA-secure circuit-private (non-compact)
homomorphic encryption scheme for one-bit functions, then there exists a two-key M -spooky encryption
scheme for bit inputs.

Plugging in our construction of dpiO of the previous section, and the DDH-based construction of a circuit-
private encryption scheme [27], we get the following corollary:

24 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

P [sk1, pk1, pk2, pp2, S](y1, y2, c1, y, c)

if pki 6= yi for i ∈ {1, 2} return ⊥
x1 ← E.Dec(sk1, c1)

S2 ← Encode(pp2, S)

(c′1, c
′
2, aux)

$← S2((3, y2, y, c), x1)

return ((2, c′1), (1, c′2), aux)

Qj [sk3−j , pk3, pp3, S](y1, y2, c1, y, c, (c
′
1, c
′
2))

if pki 6= yi for i ∈ {1, 2} return ⊥
x′j ← E.Dec(sk3−j , c

′
j)

S3 ← Encode(pp3, S)

(c′′j , aux)
$← S3((2, pk3,⊥,⊥), x′j)

return (3, c′′j , aux)

SE.Setup(1λ)

pp1
$← Setup(1λ)

pp2
$← Setup(1λ)

pp3
$← Setup(1λ)

crs← (pp1, pp2, pp3)

return crs

SE.KeyGen(crs)

parse crs as (pp1, pp2, pp3)

for j ∈ {1, 3}, Sj ← Encode(ppj , S)

(pk1, aux1; sk1)
$← S1((1,⊥,⊥,⊥), 0)

(pk2, aux2; sk2)
$← S2((1,⊥,⊥,⊥), 0)

(pk3, aux3; sk3)
$← S3((1,⊥,⊥,⊥), 0)

P̃
$← Obfuscate(pp1, S, P [sk1, pk1, pk2, pp2, S])

for j ∈ {1, 2},

Q̃j
$← Obfuscate(pp1[1− 5], pp2[6], S,Qj [sk3−j , pk3, pp3, S])

sk← (sk1, sk2, sk3)

pk← (pk1, aux1, pk2, aux2, pk3, aux3, P̃ , Q̃1, Q̃2)

return (pk, sk)

SE.Enc(crs, pk, x)

parse crs as (pp1, pp2, pp3), and parse pk as

(pk1, aux1, pk2, aux2, pk3, aux3, P̃ , Q̃1, Q̃2)

S1 ← Encode(pp1, S)

(c, aux)
$← S1((2, pk1,⊥,⊥), x)

return (1, c, aux)

SE.Dec((sk1, sk2, sk3), i, c)

return E.Dec(ski, c)

SE.Eval(pk0, c0, aux0, pk1, c1, aux1)

parse pk0 as (pk01, aux
0
1, pk

0
2, aux

0
2, pk

0
3, aux

0
3, P̃

0, Q̃1
0
, Q̃2

0
)

parse pk1 as (pk11, aux
1
1, pk

1
2, aux

1
2, pk

1
3, aux

1
3, P̃

1, Q̃1
1
, Q̃2

1
)

((2, c′1), (1, c′2), aux)← P̃ 0(pk01, aux
0
1, pk

0
2, aux

0
2, c

0, aux0, pk11, aux
1
1, c

1, aux1)

(3, c′′1 , aux
′′
1)← Q̃1(pk01, aux

0
1, pk

0
2, aux

0
2, c

0, aux0, pk11, aux
1
1, c

1, aux1, (c′1, c
′
2, aux))

(3, c′′2 , aux
′′
2)← Q̃2(pk01, aux

0
1, pk

0
2, aux

0
2, c

0, aux0, pk11, aux
1
1, c

1, aux1, (c′1, c
′
2, aux))

return ((3, c′′1 , aux
′′
1), (3, c′′2 , aux

′′
2))

Fig. 11. dpiO-based construction of a two-key M -spooky encryption scheme for bit inputs.

Corollary 26. Assuming polynomially-secure indistinguishability obfuscation and eDDH, there exists a two-
key M -spooky encryption scheme for bit inputs.

Proof. We first show that the scheme SE is complete and M -spooky. Consider the following simplification of
the scheme of the Figure 11: the algorithm SE.Setup is removed, all invocations of (S1, S2, S3) are replaced by
invocations of S (hence all auxiliary values are removed), the obfuscated programs Q̃1, Q̃2 are removed (and
SE.Eval outputs ((2, c′1), (1, c′2)) directly), and the program P is obfuscated using a standard piO scheme.
The new scheme SE′ obtained this way is exactly the piO-based spooky encryption scheme of [27]; we refer
the reader to [27] for a thorough analysis of its properties.

Here, we focus on showing that our modifications do not alter the completeness andM -spooky properties.
Let us first show completeness of the encryption and decryption algorithms. Let x ∈ {0, 1}. Let crs

$←
SE.Setup(1λ). For any j ∈ {1, 3}, let (pkj , auxj ; skj)

$← Sj((1,⊥,⊥,⊥), 0), let (c, aux)
$← Sj((2, pkj ,⊥,⊥), x)

and let x′ ← E.Dec(skj , c). It necessarily holds that x′ = x: otherwise, this would distinguish the output

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 25

distribution of Sj from the output distribution of S (as S((1,⊥,⊥,⊥), 0) outputs a random key pair (pk, sk)
for E, and S((2, pk,⊥,⊥), x) outputs a random encryption of x under E).

It remains to show the correctness of the spooky evaluation procedure. First, we show that the outputs
(c′1, c

′
2) of P̃ 0 are encryptions (under pk0

2 and pk1
1 respectively) of the spooky evaluation ofM on the plaintexts

of (c0, c1). Observe that the inputs to P̃ 0 satisfy the requirements of the statistical restricted correctness
of the dpiO scheme. It follows immediatly from the definition of SE.KeyGen and SE.Enc that the inputs
(pk0

1, pk
0
2, c

0, pk1
1, c

1) are appropriately authenticated inputs sampled using S1 = Encode(pp1, S), with the
appropriate auxiliary inputs, with respective states

(1,⊥,⊥,⊥), (1,⊥,⊥,⊥), (2, pk0
1,⊥,⊥), (1,⊥,⊥,⊥), (2, pk1

1,⊥,⊥).

Therefore, by the restricted correctness of dpiO, the correctness analysis of [27] applies and allows to
conclude that (c′1, c

′
2) of P̃ 0 are encryptions (under pk0

2 and pk1
1 respectively) of the spooky evaluation of

M on the plaintexts of (c0, c1). We now argue that the outputs c′′1 and c′′2 are encryptions (under pk0
3 and

pk1
3 respectively) of the spooky evaluation of M on the plaintexts of (c0, c1). As Q1 and Q2 do only perform

decryption (of c′′1 and c′′2 respectively) and re-encryption with pk3, it suffices to show that the inpus to
(Q̃1, Q̃2) satisfy the requirements of the statistical restricted correctness of the dpiO scheme. This follows
immediatly by our previous observation that the inputs (pk0

1, pk
0
2, c

0, pk1
1, c

1) are appropriately authenticated
inputs sampled using S1 = Encode(pp1, S), with the appropriate auxiliary inputs, and by observing that
(c′1, c

′
2) are appropriately authenticated inputs sampled using S2 = Encode(pp, 2), with state (3, pk0

2, pk
1
1, c

1) =
stλ(pk0

1, pk
0
2, c

0, pk1
1, c

1).
Let us now show that the scheme (SE.Setup,SE.KeyGen,SE.Enc,SE.Dec) is an IND-CPA-secure bit encryp-

tion scheme. Let A be an adversary against the IND-CPA-security of the scheme. Recall that the IND-CPA
security notion for bit encryption schemes is equivalent to the following experiment: the challenger picks
b

$← {0, 1}, samples crs $← SE.Setup(1λ), (pk, sk)
$← SE.KeyGen(crs), and c $← SE.Enc(pk, b). It sends (crs, pk, c)

to A; the adversary wins the game if it correctly guesses b. We prove security through a sequence of games.

Game G0: This is the normal game, where the challenger picks b $← {0, 1}, samples crs
$← SE.Setup(1λ),

(pk, sk)
$← SE.KeyGen(crs), and c $← SE.Enc(pk, b).

Game G1: In this game, we use the simulatability of encodings property of the dpiO scheme. Let Sim =
(Sim0,Sim1) be the simulator whose existence is guaranteed by Definition 10. The challenger computes
(pp1, trap1)

$← Sim0(1λ), (pp2, trap2)
$← Sim0(1λ), (pp3, trap3)

$← Sim0(1λ), and sends crs ← (pp1, pp2, pp3).
It computes (pk, c) as before. This game is indistinguishable from the previous one, by the simulatability of
encodings property of the dpiO scheme.
Game G2: In this game, we modify the generation of pk by the challenger. We divide this game into
two successive hybrids, for j = 1 and j = 2, where the challenger generates pk as follows: instead of
building Q̃j as Obfuscate(pp1[1 − 5], pp2[6], S,Qj [sk3−j , pk3, pp3, S]) in SE.KeyGen(crs), the challenger sets
Q̃j ← Obfuscate(pp1[1 − 5], pp2[6], S, Q̂j [pk3, pp3, trap3, S]) instead, with the program Q̂j represented on
Figure 12. The indistinguishability argument proceeds by showing that Qj and Q̂j are dynamic-input indis-
tinguishable. The argument proceeds in 4 steps.
1. Consider the program Q0

j represented on Figure 12. Its only difference with Qj is that it generates c′′j
through S instead of S3, and generate the auxiliary input using Sim1. By the simulatability of encodings
property of the dpiO scheme, the output distribution of Qj and Q0

j are computationally indistinguishable
(even on adversarially chosen inputs), hence Qj and Q0

j are dynamic-input indistinguishable.
2. Consider the program Q1

j represented on Figure 12. By definition of S, c′′j is now a uniformly random
encryption (with E) of 0 under the key pk3. Note that the corresponding secret key sk3 is not used in any
program. Therefore, under the IND-CPA security property of E, Q1

j is dynamic-input indistinguishable
from Q0

j .
3. Consider the program Q2

j represented on Figure 12. It is identical to Q1
j , except that it does not have

sk3−j hardcoded in its description anymore (note that Q1
j does not use this hardcoded key). Therefore,

Q1
j and Q2

j are functionally equivalent.
4. Observe now that the only difference between Q2

j and Q̂j , represented on Figure 12, is that Q̂j generates
(c′′j , aux) using S3, while Q2

j uses S and Sim1. Therefore, by the simulatability of encodings property of
the dpiO scheme, Q2

j and Q̂j are dynamic-input indistinguishable.

26 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

From there, the indistinguishability property of the dpiO scheme allows to conclude that the obfuscation of
Qj and the obfuscation of Q̂j are computationally indistinguishable, hence this game is indistinguishable
from the previous one.

Q0
j [sk3−j , pk3, pp3, trap3, S](y1, y2, c1, y, c, (c

′
1, c
′
2))

if pki 6= yi for i ∈ {1, 2} return ⊥
x′j ← E.Dec(sk3−j , c

′
j)

c′′j
$← S((2, pk3,⊥,⊥), x′j)

aux
$← Sim1(pp3, trap3, S, c

′′
j , (2, pk3,⊥,⊥))

return (3, c′′j , aux)

Q1
j [sk3−j , pk3, pp3, trap3, S](y1, y2, c1, y, c, (c

′
1, c
′
2))

if pki 6= yi for i ∈ {1, 2} return ⊥
x′j ← E.Dec(sk3−j , c

′
j)

c′′j
$← S((2, pk3,⊥,⊥), 0)

aux
$← Sim1(pp3, trap3, S, c

′′
j , (2, pk3,⊥,⊥))

return (3, c′′j , aux)

Q2
j [pk3, pp3, trap3, S](y1, y2, c1, y, c, (c

′
1, c
′
2))

if pki 6= yi for i ∈ {1, 2} return ⊥

c′′j
$← S((2, pk3,⊥,⊥), 0)

aux
$← Sim1(pp3, trap3, S, c

′′
j , (2, pk3,⊥,⊥))

return (3, c′′j , aux)

Q̂j [pk3, pp3, trap3, S](y1, y2, c1, y, c, (c
′
1, c
′
2))

if pki 6= yi for i ∈ {1, 2} return ⊥
S3 ← Encode(pp3, S)

(c′′j , aux)
$← S3((2, pk3,⊥,⊥), 0)

return (3, c′′j , aux)

Fig. 12. Successive transformations of the program Qj .

Game G3: In this game, we further modify the generation of pk by the challenger. Instead of generat-
ing P̃ as Obfuscate(pp1, S, P [sk1, pk1, pk2, pp2, S]), the challenger sets P̃ ← Obfuscate(pp1, S, P̂ [pk1, pk2, pp2,
trap2, S]) instead, with the program P̂ represented on Figure 13. The proof proceeds by showing that P and
P̃ are dynamic-input indistinguishable. This is done in the same way as in the previous game, by exhibiting
a sequence of programs P, P 0, P 1, P 22, P̂ which are all dynamic-input indistinguishable. The programs are
represented on Figure 13. Indistinguishability between P and P 0 follows by the same argument as in step 1
of the previous game. P 1 is constructed by replacing all occurences of x1 by 0 in P 0.

Lemma 27. The circuits P 0 and P 1 are dynamic-input indistinguishable.

Proof. The indistinguishability argument is essentially identical to the proof of the claim 4.10.3 of [27]. We
recall it briefly for the sake of completeness. Observe that in P 0, c′1 is distributed as a random encryption
of x1, and c′2 is the output of an homomorphic evaluation on c. We consider an intermediate programs P 0.1.
Tt proceeds as P 0, except that it uses instead of S a sampler S0.1 which, on input the state (3, y2, y, c) and
x1, samples the output c′1 as a random encryption of 0 instead (it proceeds as S otherwise). Note that the
encryption of c′1 is under pk2, whose corresponding secrey key is not known to the program. Therefore, under
the IND-CPA-security property of E, P 0.1 is dynamic-input indistinguishable from P 0.
Now, the only difference between P 0.1 and P 1 is that c′2 is obtained by homomorphically evaluating
M ′[x1, r, r

′] on c in P 0.1, and M ′[0, r, r′] on c in P 1. By the malicious circuit privacy of E, c′2 is there-
fore distributed as an encryption with fresh random coin (of some plaintext under pk) in both P 0.1 and P 1.
Therefore, by the IND-CPA-security property of E, P 0.1 and P 1 are dynamic-input indistinguishable. ut

Then, the circuit P 2 represented on Figure 13 is obtained by not harcoding sk1 in P 1 anymore; as in
step 3 of the previous game, P 2 is functionally equivalent to P 1. Eventually, P 2 and P̂ are dynamic-input
indistinguishable by the simulatability of encodings property of the dpiO scheme, using the same argument
as step 4 of the previous game. From there, the indistinguishability property of the dpiO scheme allows to
conclude that the obfuscation of P and the obfuscation of P̂ are computationally indistinguishable, hence
this game is indistinguishable from the previous one.
Game G4: In this game, the challenger sets c $← SE.Enc(pk, 0) instead of c $← SE.Enc(pk, b). By definition
of SE.Enc, c is now computed as (c, aux)← S1((2, pk1), x), with x = b in the previous game, and x = 0 in this
game. By definition of S, it follows that c is a random encryption under E of x, with key pk1. Observe that the
key sk1 is not hardcoded anymore in any of the obfuscated circuits of the public key pk. Therefore, this game
is indistinguishable from the previous game under the IND-CPA security property of E. Observe now that
in the current game, the output of the challenger does not depend on b anymore, hence the advantage of A
in this game is 0. This concludes the proof that (SE.Setup,SE.KeyGen,SE.Enc,SE.Dec) is an IND-CPA-secure
bit encryption scheme.

ut

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 27

P 0[sk1, pk1, pk2, pp2, trap2, S](y1, y2, c1, y, c)

if pki 6= yi for i ∈ {1, 2} return ⊥
x1 ← E.Dec(sk1, c1)

(c′1, c
′
2)

$← S((3, y2, y, c), x1)

aux
$← Sim1(pp2, trap2, S, (c

′
1, c
′
2), (3, y2, y, c))

return ((2, c′1), (1, c′2), aux)

P 1[sk1, pk1, pk2, pp2, trap2, S](y1, y2, c1, y, c)

if pki 6= yi for i ∈ {1, 2} return ⊥
x1 ← E.Dec(sk1, c1)

(c′1, c
′
2)

$← S((3, y2, y, c), 0)

aux
$← Sim1(pp2, trap2, S, (c

′
1, c
′
2), (3, y2, y, c))

return ((2, c′1), (1, c′2), aux)

P 2[pk1, pk2, pp2, trap2, S](y1, y2, c1, y, c)

if pki 6= yi for i ∈ {1, 2} return ⊥

(c′1, c
′
2)

$← S((3, y2, y, c), 0)

aux
$← Sim1(pp2, trap2, S, (c

′
1, c
′
2), (3, y2, y, c))

return ((2, c′1), (1, c′2), aux)

P̂ [pk1, pk2, pp2, trap2, S](y1, y2, c1, y, c)

if pki 6= yi for i ∈ {1, 2} return ⊥
S2 ← Encode(pp2, S)

(c′1, c
′
2, aux)

$← S2((3, y2, y, c), 0)

return ((2, c′1), (1, c′2), aux)

Fig. 13. Successive transformations of the program P .

6.4 From Two-Key M-Spooky Encryption to n-Key Spooky Encryption for all Circuits

By plugging our construction of two-key M -spooky encryption scheme in the transformation of the previous
section, we obtain a two-key M -spooky and (single-key) leveled homomorphic encryption scheme. More
precisely, let us sketch how to integrate our scheme to the LHE construction of the previous section. Our
two-key M -spooky scheme SE requires three public keys of E, (pk1, pk2, pk3). Fresh ciphertexts are samples
with S corresponding to encryptions with E under pk1, and outputs of a spooky-evaluation are samples with
S corresponding to encryptions with E under pk3. To simplify the integration, we add to the public key of
SE an (obfuscated) re-encryption circuit, which takes fresh ciphertexts under pk1 as input (sampled with S),
performs decryption with sk1, and outputs fresh re-encryption with E sampled with S under pk3.

The obfuscated circuit for homomorphic operations takes as input two ciphertexts under pk3 (sampled
with S), decrypts them with sk3, computes a XOR gate,8 and re-encrypts the result under a new key pk4.
We can generalize this to d levels of interleaved two-key spooky evaluations and single-key homomorphic
evaluations by using 3d public keys for E. The computation at each level i will output the result of either
a spooky evaluation or an homomorphic evaluation, under the public key pk3i+1. Note that the output of a
spooky evaluation procedure at level i are encrypted under pk3i, but given an encryption of x under pk3i, one
can always encrypt 0 under pk3i and homomorphically XOR x with 0, obtaining an encryption of x under
the key pk3i+1.

From there, we can invoke Theorem 9 of [27]:

Theorem 28 (2-Spooky to n-Spooky [27]). Let d = d(λ) and assume that there exists a public-key bit
encryption cheme that supports 2d (interleaving) hops of (1) single-key compact additive homomorphism and
(2) two-key spooky multiplication. Then, that same scheme is a d-level AFS-spooky encryption for all circuits.

The proof of Theorem 9 can be found in [27]. It follows from an elegant connection with the GMW
protocol: it evaluates an arbitrary circuit gate by gate, given n encrypted shares under n different public
keys (pk1, · · · , pkn) of the value on a gate. If the gate is a XOR, it performs an homomorphic XOR operations
on each pair of shares encrypted with the same public key. If its an AND gate, it performs a two-key spooky
multiplication for each pair of public keys, between the shares encrypted under these two keys, obtaining
shares of the products. Then, it homomorphically XOR all outputs which are encrypted under the same
public keys (if there are n keys, this requires log n levels of 2-input homomorphic XOR). It follows by
inspection that the resulting n ciphertexts encrypt additive shares of the output of the gate, under the n
different public keys (pk1, · · · , pkn).

Using our construction of a dpiO scheme (Corollary 14) together with Theorem 28, we obtain:

Theorem 29. Assuming polynomially-secure indistinguishability obfuscation and eDDH, there exists an n-
key spooky encryption scheme for all circuits.

As observed in [27], this implies a de-centralized function secret sharing scheme for all circuits, and a
counter-example to the [1] heuristics (which transforms multi-prover protocols to single-prover protocols),
under the same assumptions.
8 homomorphic evaluation of XOR gate is sufficient for the transformation of [27].

28 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

References

1. William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Fast verification of any
remote procedure call: Short witness-indistinguishable one-round proofs for NP. In Ugo Montanari, José D. P.
Rolim, and Emo Welzl, editors, ICALP 2000, volume 1853 of LNCS, pages 463–474. Springer, Heidelberg, July
2000.

2. Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-inputs obfuscation
and applications. Cryptology ePrint Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689.

3. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional encryption.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
308–326. Springer, Heidelberg, August 2015.

4. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistinguishability ob-
fuscation from degree-5 multilinear maps. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part I, volume 10210 of LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

5. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and Ke Yang.
On the (im)possibility of obfuscating programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001.

6. Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-dependent message security. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 423–444. Springer, Heidelberg, May / June
2010.

7. Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on differing-inputs obfuscation. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 792–821.
Springer, Heidelberg, May 2016.

8. Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious transfer via garbled
interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 500–532. Springer, Heidelberg, April / May 2018.

9. Nir Bitansky. Verifiable random functions from non-interactive witness-indistinguishable proofs. In Yael Kalai
and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of LNCS, pages 567–594. Springer, Heidelberg,
November 2017.

10. Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On virtual grey box obfuscation for general
circuits. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
108–125. Springer, Heidelberg, August 2014.

11. Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and applications to resettable
cryptography. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 241–250.
ACM Press, June 2013.

12. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption. In Venkate-
san Guruswami, editor, 56th FOCS, pages 171–190. IEEE Computer Society Press, October 2015.

13. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the presence of key-
dependent messages. In Kaisa Nyberg and Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages
62–75. Springer, Heidelberg, August 2003.

14. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications (extended
abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

15. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without random oracles.
In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 223–238.
Springer, Heidelberg, May 2004.

16. Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 443–459. Springer, Heidelberg, August 2004.

17. Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption from decision Diffie-
Hellman. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 108–125. Springer, Heidelberg,
August 2008.

18. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue Sako and
Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer, Heidelberg,
December 2013.

19. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Heidelberg, February 2014.

20. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 337–367. Springer, Heidelberg, April 2015.

21. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In Hugo
Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

http://eprint.iacr.org/2013/689

The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO 29

22. Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In Burton S.
Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 455–469. Springer, Heidelberg, August 1997.

23. Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and correlation intractability from
strong KDM-secure encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I,
volume 10820 of LNCS, pages 91–122. Springer, Heidelberg, April / May 2018.

24. Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited. Cryptology ePrint Archive,
Report 2017/631, 2017. http://eprint.iacr.org/2017/631.

25. Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of probabilistic circuits and
applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 468–497. Springer, Heidelberg, March 2015.

26. Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikuntanathan. Chosen-ciphertext secure
fully homomorphic encryption. In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 213–240.
Springer, Heidelberg, March 2017.

27. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and its applications. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 93–122.
Springer, Heidelberg, August 2016.

28. Pooya Farshim, Julia Hesse, Dennis Hofheinz, and Enrique Larraia. Graded encoding schemes from obfuscation.
In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 371–400.
Springer, Heidelberg, March 2018.

29. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on a single
random string (extended abstract). In 31st FOCS, pages 308–317. IEEE Computer Society Press, October 1990.

30. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from indistinguishability
obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 74–94. Springer, Heidelberg,
February 2014.

31. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer
Society Press, October 2013.

32. Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-inputs obfuscation
and extractable witness encryption with auxiliary input. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535. Springer, Heidelberg, August 2014.

33. Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryptographic hardness of finding a
nash equilibrium. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of
LNCS, pages 579–604. Springer, Heidelberg, August 2016.

34. Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking the sub-exponential barrier
in obfustopia. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume
10212 of LNCS, pages 156–181. Springer, Heidelberg, April / May 2017.

35. Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from minimal assumptions.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages
468–499. Springer, Heidelberg, April / May 2018.

36. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
37. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended abstract).

In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.
38. Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary input. In 46th

FOCS, pages 553–562. IEEE Computer Society Press, October 2005.
39. Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P. Vadhan, editor, TCC 2007,

volume 4392 of LNCS, pages 194–213. Springer, Heidelberg, February 2007.
40. Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic approach to constructing and

proving verifiable random functions. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678
of LNCS, pages 537–566. Springer, Heidelberg, November 2017.

41. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In Serge Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 339–358. Springer, Heidelberg, May / June 2006.

42. Satoshi Hada. Zero-knowledge and code obfuscation. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume
1976 of LNCS, pages 443–457. Springer, Heidelberg, December 2000.

43. Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

44. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 21–38. Springer, Heidelberg, August 2008.

45. Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for cryptographic purposes. In Salil P.
Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 214–232. Springer, Heidelberg, February 2007.

http://eprint.iacr.org/2017/631

30 Thomas Agrikola, Geoffroy Couteau?, and Dennis Hofheinz?

46. Dennis Hofheinz, Vanishree Rao, and Daniel Wichs. Standard security does not imply indistinguishability under
selective opening. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS,
pages 121–145. Springer, Heidelberg, October / November 2016.

47. Susan Hohenberger, Guy N. Rothblum, abhi shelat, and Vinod Vaikuntanathan. Securely obfuscating re-
encryption. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 233–252. Springer, Heidelberg,
February 2007.

48. Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain hash from indistin-
guishability obfuscation. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 201–220. Springer, Heidelberg, May 2014.

49. Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA assumption. In Shai Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 654–670. Springer, Heidelberg, August 2009.

50. Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation and its applications. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 668–697.
Springer, Heidelberg, March 2015.

51. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable pseudorandom
functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13,
pages 669–684. ACM Press, November 2013.

52. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 599–629. Springer,
Heidelberg, August 2017.

53. Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-wise local PRGs.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660.
Springer, Heidelberg, August 2017.

54. Qipeng Liu and Mark Zhandry. Exploding obfuscation: A framework for building applications of obfuscation from
polynomial hardness. Cryptology ePrint Archive, Report 2017/209, 2017. http://eprint.iacr.org/2017/209.

55. Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for obfuscation. In Chris-
tian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 20–39. Springer,
Heidelberg, May 2004.

56. Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from semantically-secure multilin-
ear encodings. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 500–517. Springer, Heidelberg, August 2014.

57. Rafael Pass and Abhi Shelat. Impossibility of VBB obfuscation with ideal constant-degree graded encodings.
In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 3–17. Springer,
Heidelberg, January 2016.

58. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and more. In
David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014.

59. Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May 2005.

60. Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC,
pages 523–532. ACM Press, May 2005.

61. Mark Zhandry. The magic of ELFs. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I,
volume 9814 of LNCS, pages 479–508. Springer, Heidelberg, August 2016.

62. Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 439–467. Springer, Heidelberg, April 2015.

http://eprint.iacr.org/2017/209

	The Usefulness of Sparsifiable Inputs:How to Avoid Subexponential iO
	Introduction
	Technical overview

	Preliminaries
	Indistinguishability Obfuscation for General Samplers
	Dynamic-Input Samplers
	Puncturable Pseudorandom Function
	Extremely Lossy Function
	Non-interactive Zero-Knowledge proof system

	Indistinguishability Obfuscation of Probabilistic Circuits over Distributions of Inputs
	Doubly-Probabilistic Indistinguishability Obfuscation

	Construction
	Overview
	Construction
	Extension

	Leveled Homomorphic Encryption
	Spooky Encryption
	Tools and Definitions
	Overview of the dpiO-Based Construction
	Two-Key Spooky Encryption for Bit-Inputs
	From Two-Key M-Spooky Encryption to n-Key Spooky Encryption for all Circuits

