Secure Multi-Party Computation from Strongly Uniform Key Agreement

Daniele Friolo ${ }^{1}$, Daniel Masny*2, and Daniele Venturi ${ }^{1}$
${ }^{1}$ Sapienza University of Rome, Italy
${ }^{2}$ University of California Berkley, USA

Abstract

We give a construction of a secure multi-party computation (MPC) protocol from a special type of key agreement, where the distribution of the messages sent by one of the parties is computationally close to the uniform distribution over an efficiently sampleable group, even when the other party is malicious. We term the latter strongly uniform key agreement (SU-KA).

First, we show that for any odd $t \in \mathbb{N}, t$-round SU-KA and statistically binding commitments are sufficient for a black-box construction of $(t+1)$-round maliciously secure oblivious transfer (M-OT). By invoking a recent result of Benhamouda and Lin (Eurocrypt 2017), the latter implies maliciously secure MPC within $\max (t+1,5)$ rounds in the plain model.

Additionally, we investigate the relationship between SU-KA, and similar types of publickey encryption and semi-honestly secure OT protocols where we also demand strong uniformity. This finally allows us to instantiate our result for $t=2$ and $t=3$ under standard assumptions, including any of low-noise LPN, LWE, Subset Sum, DDH, CDH, and RSA (all with polynomial hardness), so that under the same set of assumptions we also obtain 5 -round maliciously secure MPC (and 4-round M-OT) in the plain model.

Contents

1 Introduction 1
1.1 Our Contribution 1
1.2 Technical Overview 2
1.3 Related Work 6
2 Preliminaries 6
2.1 Notation 6
2.2 Oblivious Transfer 7
2.3 Commit-and-Prove Protocols 8
3 Strongly Uniform PKE, Key Agreement and OT 9
3.1 Strongly Uniform PKE 9
3.2 Strongly Uniform Key Agreement 10
3.3 Strongly Uniform OT 12
4 From Strongly Uniform Semi-Honestly Secure OT to Mali-ciously Secure OT14
4.1 Protocol Description 14
4.2 Proof Intuition 16
4.3 Security Analysis 17
5 Conclusions 26
A The ORS Commit-and-Prove Pro- tocol 30
A. 1 Commitment Schemes 30
A. 2 The ORS Construction 30

[^0]
1 Introduction

In an oblivious transfer (OT) protocol, Alice, with input choice bit b, and Bob, with input two strings s_{0}, s_{1}, engage in a conversation over a public channel. After finishing the protocol, Alice has solely learned s_{b}, whereas Bob learns nothing about the choice bit b [36,12]. Alice is called the receiver, while Bob is the sender of the OT. We speak of semi-honestly secure OT (SH-OT) if privacy holds for honest-but-curious parties (i.e., parties who follow the protocol faithfully, but try to infer something on the other party's input). When a protocol does not leak additional information even in case of active corruption of either of the parties (i.e., parties that can deviate from the protocol), we call it a maliciously secure OT (M-OT).

OT is a fundamental cryptographic primitive, mainly due to its intimate connection with secure computation. A seminal result of Yao [38, 39], in fact, shows that a 2 -round SH-OT implies semi-honestly secure two-party computation with the same number of rounds. ${ }^{1}$ On the other hand, constructing round-efficient multi-party computation (MPC) from minimal assumptions, such as OT, has turned to be a challenging task. Recent breakthrough results by Benhamouda and Lin [5], and Garg and Srinivasan [14] show that 2-round OT implies secure MPC in the common reference string model. Further, Benhamouda and Lin [5] show that for $t \geq 5$, a t-round M-OT implies t-round maliciously secure MPC in the plain model.

Given the above connection, it is an important objective to design OT protocols with malicious security and low round complexity, from standard assumptions. Assuming trusted setup, the constructions by Jarecki and Shamtikov [23], and Peikert, Vaikuntanathan, and Waters [35] show how to obtain M-OT in 2 rounds. In the plain model, Ostrovsky, Richelson and Scafuro [34] show how to get 4 -round M-OT using certified trapdoor permutations [4, 31, 8], which in turn can be instantiated from the RSA assumption under some parameter regimes [24, 8]. One can also obtain M-OT generically from SH-OT, but such transformations are either non-black-box and not in the plain model due to the use of non-interactive zero-knowledge proofs a á la GMW [16], or introduce considerable overhead in terms of round complexity [19]. This sets our focus on the question:

Can we design round-efficient M-OT in the plain model, using black-box techniques from weak assumptions?

1.1 Our Contribution

In this work, we make progress towards answering the above question. Our main technical contribution is a construction of M-OT from a particular strengthening of key agreement (KA) protocols, which we term strongly uniform (SU); our construction is fully black-box and essentially round-preserving, adding only a constant overhead of at most two rounds. In particular, we show:

Theorem 1 (Main Theorem, informal). For any odd $t \in \mathbb{N}$, and assuming statistically binding commitments, there is a construction of a $\max ((t+1), 5)$-round maliciously secure multi-party computation protocol in the plain model from any t-round strongly uniform key agreement protocol.

Theorem 1 is a consequence of the following facts: (i) SU-KA implies SUSH-OT (cf. Lemma 4); (ii) SUSH-OT and statistically binding commitments imply a black-box construction of M-OT (cf. Theorem 3 and Theorem 2); (iii) M-OT implies maliciously secure MPC [5, 14], as explained above. Since, as we show, 2 -round and 3 -round SU-KA can be instantiated from several

[^1]assumptions, including low-noise LPN, LWE, Subset Sum, CDH, DDH, and RSA, all with polynomial hardness, a consequence of our result is that we obtain maliciously secure 5 -round MPC (and 4-round M-OT) in the plain model under the same set of assumptions. ${ }^{2}$ Previously to our work, it was known how to get maliciously secure MPC in the plain model, for arbitrary functionalities:

- Using 5 rounds, assuming polynomially-hard LWE with super-polynomial noise ratio and adaptive commitments [6], polynomially hard DDH [2], and enhanced certified trapdoor permutations (TDP) [34, 5];
- Using 4 rounds, assuming sub-exponentially-hard LWE with super-polynomial noise ratio and adaptive commitments [6], sub-exponentially-hard DDH and one-way permutations [2], and very recently assuming polynomially-hard $\mathrm{DDH} / \mathrm{QR} / \mathrm{DCR}$ [3], and either polynomially-hard QR or QR together with any of LWE/DDH/DCR (all with polynomial hardness) [21].

Hence, ours are the first maliciously secure 5 -round MPC (and 4-round M-OT) protocols in the plain model from the polynomial hardness of low-noise LPN, Subset Sum, CDH, and LWE with noise ratio \sqrt{n} (which relates to an approximation factor of $n^{1.5}$ for SIVP in lattices of dimension n [37]) and without further assuming ${ }^{3}$ adaptive commitments. We can also instantiate our protocol based on the ring versions of LPN and LWE, and thus provide the first black-box construction of 4-round M-OT under these assumptions in the plain model.

In our OT protocol construction, we use a tool that is called commit-and-prove protocols. Such protocols were implicitly used and proven secure in previous works [27, 34]. A conceptual contribution of this work is to formalize their security properties, which allows for a more modular presentation and security analysis.

1.2 Technical Overview

We proceed to a high-level overview of the techniques behind our main result, starting with the notion of strong uniformity and the abstraction of commit-and-prove protocols, and landing with the intuition behind our construction of M-OT. See also Fig. 1 for a pictorial representation of our result.

Strong uniformity. As an important stepping stone to our main result, in Section 3, we introduce the notion of strong uniformity. Recall that a key agreement (KA) protocol allows Alice and Bob to share a key over a public channel, in such a way that the shared key is indistinguishable from uniform to the eyes of a passive eavesdropper. Strong uniformity here demands that, even if Bob is malicious, the messages sent by Alice are computationally close to uniform over an efficiently sampleable group. ${ }^{4}$ This flavor of security straightforwardly translates to SH-OT and public-key encryption (PKE). In the case of OT, it demands that all messages of the receiver have this property (even if the sender is malicious). For PKE, we distinguish two types, which are strengthenings of the types defined by Gertner et al. [15]: ${ }^{5}$

[^2]

Figure 1: Overview over equivalence and implications of the notion of strong uniformity. The value $t \in \mathbb{N}$ denotes the round complexity. ${ }^{\dagger}$ For this step, we need a statistically binding commitment scheme. We do not know whether this is implied by SU-KA, but it is implied by all mentioned assumptions that imply SU-PKE. * This holds over efficiently sampleable groups. \ddagger We need an enhanced certified TDP.

- Type-A PKE: The distribution of the public key is computationally indistinguishable from uniform. This type of PKE is known to exist under DDH [11] and CDH [17] over efficiently sampleable groups, ${ }^{6}$ LWE [37], low-noise LPN [1], and Subset Sum [32].
- Type-B PKE: The encryption of a uniformly random message w.r.t. a maliciously chosen public key is computationally close to the uniform distribution over the ciphertext space. This type of PKE is harder to obtain, and can be constructed from enhanced certified TDPs, and from CDH and DDH over efficiently sampleable groups. In case of a TDP f, a ciphertext has the form $(f(r), h(r) \oplus m)$, where h is a hardcore predicate, and r is a random element from the domain of f. Under CDH or DDH, a ciphertext is defined as g^{r} and $h\left(g^{x r}\right) \cdot m, g^{x r} \cdot m$ respectively, where g^{r} is a uniform group element, and g^{x} is the public key. Clearly, for a uniform message m, these ciphertexts are uniform even under maliciously chosen public keys.

In $\S 3$, we show that SU Type-A and SU Type-B PKE imply, respectively, 2-round and 3round SU-KA, whereas 2-round SU-KA implies SU Type-A PKE. Further, we prove that SU-KA is equivalent to SUSH-OT. This might seem surprising, since OT and KA are separated [15]. Therefore, our result shows that strong uniformity is a sufficiently strong notion to bypass this impossibility result, in a similar way as Type-A and Type-B PKE bypass the impossibility of constructing OT from PKE [15].

Commit-and-prove protocols. A commit-and-prove protocol is a 3-round protocol with the following structure: (1) In the first round, the prover, with inputs two messages m_{0}, m_{1} and a choice bit b, sends a string γ (called "commitment") to the verifier; (2) In the second round, the verifier sends a value β to the prover (called "challenge"); (3) In the third round, the prover sends a tuple (δ, m_{0}, m_{1}) to the verifier (called "opening"). Security requires two properties. The first property, called existence of a committing branch, demands that a malicious prover must be committed to at least one message already after having sent γ. The second property,

[^3]called choice bit indistinguishability, asks that a malicious verifier cannot learn the committing branch of an honest prover.

A construction of a commit-and-prove protocol for single bits is implicit in Kilian [27]. This has been extended to strings by Ostrovsky et al. [34]. Both constructions make black-box use of a statistically binding commitment scheme and allow a prover to equivocally open one of the messages. In $\S A$ of the appendix, we revisit the protocol and proof by Ostrovsky et al. to show that it indeed satisfy the two security notions sketched above.

M-OT from SUSH-OT: A warm up. In order to explain the main ideas behind our construction of M-OT, we describe below a simplified version of our protocol for the special case of $t=2$, i.e. when starting with a 2 -round $\operatorname{SUSH}-O T\left(\mathrm{~S}^{\prime}, \mathrm{R}^{\prime}\right)$; here, we denote with ρ the message sent by the receiver, and with σ the message sent by the sender, and further observe that for the case of 2 rounds the notion of strong uniformity collapses to standard semi-honest security with the additional property that the distribution of ρ is (computationally close to) uniform to the eyes of an eavesdropper. We then construct a 4-round OT protocol (S, R), as informally described below:

1. $(\mathrm{R} \rightarrow \mathrm{S})$: The receiver picks a uniformly random value $m_{1-b} \in \mathcal{M}$, where b is the choice bit, and runs the prover of the commit-and-prove protocol upon input m_{1-b}, obtaining a commitment γ that is forwarded to the sender.
2. $(\mathrm{S} \rightarrow \mathrm{R})$: The sender samples a challenge β for the commit-and-prove protocol, as well as uniformly random elements $r_{0}, r_{1} \in \mathcal{M}$. Hence, it forwards $\left(\beta, r_{0}, r_{1}\right)$ to the receiver.
3. $(\mathrm{R} \rightarrow \mathrm{S})$: The receiver runs the receiver R^{\prime} of the underlying 2-round OT protocol with choice bit fixed to 0 , obtaining a message ρ_{b} which is used to define the message $m_{b}=$ $\rho_{b}-r_{b}$ required to complete the execution of the commit-and-prove protocol in the noncommitting branch b. This results in a tuple (δ, m_{0}, m_{1}) that is forwarded to the sender.
4. $(\mathrm{S} \rightarrow \mathrm{R})$: The sender verifies that the transcript $T=\left(\gamma, \beta,\left(\delta, m_{0}, m_{1}\right)\right)$ is accepting for the underlying commit-and-prove protocol. If so, it samples $u_{0}, u_{1} \in \mathcal{M}$ uniformly at random, and runs the sender S^{\prime} of the underlying 2-round OT protocol twice, with independent random tapes: The first run uses input strings $\left(s_{0}, u_{0}\right)$ and message $m_{0}+r_{0}$ from the receiver, resulting in a message σ_{0}, whereas the second run uses input strings $\left(s_{1}, u_{1}\right)$ and message $m_{1}+r_{1}$ from the receiver, resulting in a message σ_{1}. Hence, it sends $\left(\sigma_{0}, \sigma_{1}\right)$ to the receiver.
5. Output: The receiver runs the receiver R^{\prime} of the underlying 2-round OT protocol, upon input message σ_{b} from the sender, thus obtaining the value s_{b}.

Correctness is immediate. In order to prove simulation-based security we proceed in two steps. In the first step, we show the above protocol achieves a weaker security flavor called receiver-sided simulatability [33, 34] which consists of two properties: (1) The existence of a simulator which by interacting with the ideal OT functionality can fake the view of any efficient adversary corrupting the receiver in a real execution of the protocol (i.e., standard simulationbased security w.r.t. corrupted receivers); (2) Indistinguishability of the protocol transcripts with choice bit of the receiver equal to zero or one, for any efficient adversary corrupting the sender in a real execution of the protocol (i.e., game-based security w.r.t. corrupted senders). In the second step, we rely on a round-preserving black-box transformation given in [34], which allows to boost receiver-sided simulatability to fully-fledged malicious security.

To show (1), we consider a series of hybrid experiments:

- In the first hybrid, we run the first 3 rounds of the protocol, yielding a partial transcript $\gamma,\left(\beta, r_{0}, r_{1}\right),\left(\delta, m_{0}, m_{1}\right)$. Hence, after verifying that $T=\left(\gamma, \beta,\left(\delta, m_{0}, m_{1}\right)\right)$ is a valid transcript of the commit-and-prove protocol, we rewind the adversary to the end of the first round and continue the execution of the protocol from there using a fresh challenge $\left(\beta^{\prime}, r_{0}^{\prime}, r_{1}^{\prime}\right)$, except that after the third round we artificially abort if there is no value $\hat{b} \in\{0,1\}$ such that $m_{\hat{b}}=m_{\hat{b}}^{\prime}$, where $\left(\delta^{\prime}, m_{0}^{\prime}, m_{1}^{\prime}\right)$ is the third message sent by the adversary after the rewinding.
Notice that an abort means that it is not possible to indentify a committing branch for the commit-and-prove protocol, which by security of the commit-and-prove protocol can only happen with negligible probability; thus this hybrid is computationally close to the original experiment.
- In the second hybrid, we modify the distribution of the value r_{1-b}^{\prime} (right after the rewinding) to $r_{1-b}^{\prime \prime}=\rho_{1-b}-m_{1-b}$, where we set $1-b \stackrel{\text { def }}{=} \hat{b}$ from the previous hybrid, and where ρ_{1-b} is obtained by running the receiver R^{\prime} of the underlying 2 -round OT protocol with choice bit fixed to 1 .
To argue indistinguishability, we exploit the fact that the distribution of m_{1-b} is independent from that of r_{1-b}^{\prime}, and thus by strong uniformity we can switch $r_{1-b}^{\prime}+m_{1-b}$ with ρ_{1-b} from the receiver R^{\prime}.
- In the third hybrid, we use the simulator of the underlying 2-round SH-OT protocol to compute the messages σ_{1-b} sent by the sender. Note that in both the third and the second hybrid the messages (ρ_{1-b}, σ_{1-b}) are computed by the honest sender, and thus any efficient algorithm telling apart the third and the second hybrid violates semi-honest security of (S^{\prime}, R^{\prime}).

In the last hybrid, a protocol transcript is independent of s_{1-b} but still yields a well distributed output for the malicious receiver. This allows us to define a valid simulator in the ideal world.

To show (2), we first use the strong uniformity property of ($\mathrm{S}^{\prime}, \mathrm{R}^{\prime}$) to sample m_{b} uniformly at random at the beginning of the protocol. Notice the this implies that the receiver cannot recover the value s_{b} of the sender anymore. Finally, we use the choice bit indistinguishability of the commit-and-prove protocol to argue that the transcripts with $b=0$ and $b=1$ are computationally indistinguishable.

M-OT from SUSH-OT: The general case. There are several difficulties when trying to extend the above protocol to the general case where we start with a t-round SUSH-OT. In fact, if we would simply iterate sequentially the above construction, where one iteration counts for a message from R^{\prime} to S^{\prime} and back, the adversary could use different committing branches from one iteration to the other. This creates a problem in the proof, as the simulator would need to be consistent with both choices of possible committing branches from the adversary, which however requires knowing both inputs from the sender.

We resolve this issue by having the receiver sending all commitments γ_{i} for the commit-and-prove protocol in the first round, where each value γ_{i} is generated including a random message m_{1-b}^{i} concatenated with the full history $m_{1-b}^{i-1}, \ldots, m_{1-b}^{1}$. Hence, during each iteration, the receiver opens one commitment as before. As we show, this prevents the adversary from switching committing branch from one iteration to the next one. We refer the reader to $\S 4.1$ for a formal description of our protocol, and to $\S 4.2$ for a somewhat detailed proof intuition. The full proof appears in Section 4.3

1.3 Related Work

Maliciously secure OT. An elegant result by Haitner [19], see also [20], gives a fully blackbox construction of M-OT from SH-OT. While being based on weaker assumptions (i.e., plain SH-OT instead of SUSH-OT), assuming the starting OT protocol has round complexity t, the final protocol requires 4 additional rounds for obtaining an intermediate security flavor known as "defensible privacy", plus 4 rounds for cut and choose, plus 2 times the number of rounds required for running coin tossing, plus a final round to conclude the protocol. Assuming coin tossing can be done in 5 rounds [26], the total accounts to $t+19$ rounds, and thus yields 21 rounds by setting $t=2$.

Lindell [29], generalizing [25], gives direct constructions of M-OT with 7 rounds, under the DDH assumption, the N th residuosity assumption, and the assumption that homomorphic PKE exists. Camenish, Neven, and shelat [7], and Green and Hohenberger [18], construct MOT protocols, some of which even achieve adaptive security, using computational assumptions over bilinear groups.

Round-optimal MPC. The question of characterizing the round complexity of maliciously secure MPC has recently received a lot of attention. For the special case of two parties, Katz and Ostrovsky [26] proved that 5 rounds are necessary and sufficient for arbitrary functionalities, but without assuming a simultaneous broadcast channel (where the parties are allowed to send each other messages in the same round). Their result was later extended by Garg et al. [13] who showed that, assuming simultaneous broadcast, 4 rounds are optimal for general-purpose MPC.

Recently, Ciampi et al. [10] construct a special type of 4-round M-OT protocol assuming certified trapdoor permutations, ${ }^{7}$ and show how to apply it in order to obtain (fully black-box) 4 -round two-party computation with simultaneous broadcast. In a companion paper [9], the same authors further give a 4 -round MPC protocol for the specific case of multi-party cointossing.

2 Preliminaries

2.1 Notation

We use $\lambda \in \mathbb{N}$ to denote the security parameter, sans-serif letters (such as A, B) to denote algorithms, caligraphic letters (such as \mathcal{X}, \mathcal{Y}) to denote sets, and bold-face letters (such as \mathbf{v}, A) to denote vectors and matrices; all vectors are by default row vectors, and we write \mathbf{v}^{\top} to denote a column vector. An algorithm is probabilistic polynomial-time (PPT) if it is randomized, and its running time can be bounded by a polynomial in its input length. By $y \leftarrow \mathrm{~A}\left(1^{\lambda}, x\right)$, we mean that the value y is assigned to the output of algorithm A upon input x and fresh random coins. We implicitly assume that all algorithms are given the security parameter 1^{λ} as input.

A function $\nu: \mathbb{N} \rightarrow[0,1]$ is negligible in the security parameter (or simply negligible) if it vanishes faster than the inverse of any polynomial in λ, i.e. $\nu(\lambda) \in O(1 / p(\lambda))$ for all positive polynomials $p(\lambda)$. We often write $\nu(\lambda) \in \operatorname{negl}(\lambda)$ to denote that $\nu(\lambda)$ is negligible.

For a random variable X, we write $\mathbb{P}[X=x]$ for the probability that X takes on a particular value $x \in \mathcal{X}$ (with \mathcal{X} being the set where X is defined). The statistical distance between two random variables X and X^{\prime} defined over the same set \mathcal{X} is defined as $\left.\Delta\left(X ; X^{\prime}\right)=\frac{1}{2} \sum_{x \in \mathcal{X}} \right\rvert\, \operatorname{Pr}[X=$ $x]-\operatorname{Pr}\left[X^{\prime}=x\right] \mid$. Given two ensembles $X=\left\{X_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ and $Y=\left\{Y_{\lambda}\right\}_{\lambda \in \mathbb{N}}$, we write $X \equiv Y$

[^4]
Ideal Functionality $\mathcal{F}_{\mathrm{OT}}$:

The functionality runs with Turing machines (S, R) and adversary Sim, and works as follows:

- Upon receiving message (send, $s_{0}, s_{1}, \mathrm{~S}, \mathrm{R}$) from S , where $s_{0}, s_{1} \in\{0,1\}^{\lambda}$, store s_{0} and s_{1} and answer send to R and Sim.
- Upon receiving a message (receive, b) from R , where $b \in\{0,1\}$, send s_{b} to R and receive to S and Sim, and halt. If no message (send, \cdot) was previously sent, do nothing.

Figure 2: Oblivious transfer ideal functionality
to denote that they are identically distributed, and $X \approx_{c} Y$ to denote that they are computationally indistinguishable, i.e., for all PPT distinguishers D there exists a negligible function $\nu: \mathbb{N} \rightarrow[0,1]$ such that $\left|\operatorname{Pr}\left[\mathrm{D}\left(X_{\lambda}\right)=1\right]-\operatorname{Pr}\left[\mathrm{D}\left(Y_{\lambda}\right)=1\right]\right| \leq \nu(\lambda)$.

We call a group efficiently sampleable if and only if there is a PPT sampling procedure Samp for the uniform distribution over the group, and moreover there exists a PPT simulator SimSamp that given an element of the group, outputs the randomness used by Samp. More precisely, $r \approx_{c} r^{\prime}$ where $r^{\prime} \leftarrow \& \operatorname{SimSamp}\left(1^{\lambda}, \operatorname{Samp}\left(1^{\lambda} ; r\right)\right)$ and $r \leftarrow\{0,1\}^{* .8}$

2.2 Oblivious Transfer

An interactive protocol Π for the Oblivious Transfer (OT) functionality, features two interactive PPT Turing machines S, R called, respectively, the sender and the receiver. The sender S holds a pair of strings $s_{0}, s_{1} \in\{0,1\}^{\lambda}$, whereas the receiver R is given a choice bit $b \in\{0,1\}$. At the end of the protocol, which might take several rounds, the receiver learns s_{b} (and nothing more), whereas the sender learns nothing.

Typically, security of OT is defined using the real/ideal paradigm. Specifically, we compare a real execution of the protocol, where an adversary might corrupt either the sender or the receiver, with an ideal execution where the parties can interact with an ideal functionality. The ideal functionality, which we denote by $\mathcal{F}_{\text {OT }}$, features a trusted party that receives the inputs from both the sender and the receiver, and then sends to the receiver the sender's input corresponding to the receiver's choice bit. We refer the reader to Fig. 2 for a formal specification of the $\mathcal{F}_{\text {or }}$ functionality.

In what follows, we denote by $R E A L_{\Pi, R^{*}(z)}\left(\lambda, s_{0}, s_{1}, b\right)$ (resp., $R E A L_{\Pi, s^{*}(z)}\left(\lambda, s_{0}, s_{1}, b\right)$) the distribution of the output of the malicious receiver (resp., sender) during a real execution of the protocol Π (with s_{0}, s_{1} as inputs of the sender, b as choice bit of the receiver, and z as auxiliary input for the adversary), and by $\operatorname{IDEAL} L_{\mathcal{F}_{\text {or }}, \text { Sim }^{R^{*}(z)}}\left(\lambda, s_{0}, s_{1}, b\right)$ (resp., $\operatorname{IDEAL}_{\mathcal{F}_{\text {or }, S i m}{ }^{s^{*}(z)}}\left(\lambda, s_{0}, s_{1}, b\right)$) the output of the malicious receiver (resp., sender) in an ideal execution where the parties (with analogous inputs) interact with $\mathcal{F}_{0 \mathrm{~T}}$, and where the simulator is given black-box access to the adversary.

Definition 1 (OT with full simulation). Let $\mathcal{F}_{\text {ot }}$ be the functionality from Fig. 2. We say that a protocol $\Pi=(S, R)$ securely computes $\mathcal{F}_{\text {от }}$ with full simulation if the following holds:
(a) For every non-uniform PPT malicious receiver R^{*}, there exists a non-uniform PPT simulator Sim such that

$$
\left\{R E A L_{\Pi, R^{*}(z)}\left(\lambda, s_{0}, s_{1}, b\right)\right\}_{\lambda, s_{0}, s_{1}, b, z} \approx_{c}\left\{\operatorname{IDEAL} L_{\mathcal{F}_{\text {or }, S i m}^{R^{*}(z)}}\left(\lambda, s_{0}, s_{1}, b\right)\right\}_{\lambda, s_{0}, s_{1}, b, z}
$$

[^5]where $\lambda \in \mathbb{N}, s_{0}, s_{1} \in\{0,1\}^{\lambda}, b \in\{0,1\}$, and $z \in\{0,1\}^{*}$.
(b) For every non-uniform PPT malicious sender S* *, there exists a non-uniform PPT simulator Sim such that
$$
\left\{R E A L_{\Pi, \mathrm{S}^{*}(z)}\left(s_{0}, s_{1}, b\right)\right\}_{\lambda, s_{0}, s_{1}, b, z} \approx_{c}\left\{\operatorname{IDEAL_{\mathcal {F}_{\text {OT}},\operatorname {Sim}^{\mathrm {s}^{*}(z)}}(s_{0},s_{1},b)\} _{\lambda ,s_{0},s_{1},b,z}}\right.
$$
where $\lambda \in \mathbb{N}, s_{0}, s_{1} \in\{0,1\}^{\lambda}, b \in\{0,1\}$, and $z \in\{0,1\}^{*}$.

Game-based security. One can also consider weaker security definitions for OT, where simulation-based security only holds when either the receiver or the sender is corrupted, whereas when the other party is corrupted only game-based security is guaranteed. Below, we give the definition for the case of a corrupted sender, which yields a security notion known as receiversided simulatability. Intuitively, game-based security w.r.t. a malicious sender means that the adversary cannot distinguish whether the honest receiver is playing with choice bit 0 or 1 .

Definition 2 (OT with receiver-sided simulation). Let $\mathcal{F}_{0 T}$ be the functionality from Fig. 2. We say that a protocol $\Pi=(\mathrm{S}, \mathrm{R})$ securely computes $\mathcal{F}_{\mathrm{OT}}$ with receiver-sided simulation if the following holds:
(a) Same as property (a) in Definition 1.
(b) For every non-uniform PPT malicious sender S* it holds that

$$
\left\{\operatorname{VIE} W_{\Pi, \mathrm{S}^{*}(z)}^{\mathrm{R}}\left(\lambda, s_{0}, s_{1}, 0\right)\right\}_{\lambda, s_{0}, s_{1}, z} \approx_{c}\left\{\operatorname{VIE} W_{\Pi, \mathrm{S}^{*}(z)}^{\mathrm{R}}\left(\lambda, s_{0}, s_{1}, 1\right)\right\}_{\lambda, s_{0}, s_{1}, z}
$$

where $\lambda \in \mathbb{N}, s_{0}, s_{1} \in\{0,1\}^{\lambda}$, and $z \in\{0,1\}^{*}$, and where $\operatorname{VIE} W_{\Pi, S^{*}(z)}^{\mathrm{R}}\left(\lambda, s_{0}, s_{1}, b\right)$ is the distribution of the view of S^{*} (with input s_{0}, s_{1} and auxiliary input z) at the end of a real execution of protocol Π with the honest receiver R (with input b).

Apart from being interesting on its own right, receiver-sided simulatability is also useful as a stepping stone towards achieving full simulatability. In fact, Ostrovsky et al. [34, Protocol 3] show how to compile any 4 -round OT protocol with receiver-sided simulatability to a 4 -round OT protocol with full simulatability. This transformation can be easily extended to hold for any t-round protocol, with $t \geq 3$; the main reason is that the transform only relies on an extractable commitment scheme, which requires at least 3 rounds.

Theorem 2 (Adapted from [34]). Assuming $t \geq 3$, there is a black-box transformation from t-round OT with receiver-sided simulation to t-round OT with full simulation. ${ }^{9}$

2.3 Commit-and-Prove Protocols

We envision a 3-round protocol between a prover and a verifier where the prover takes as input two messages $m_{0}, m_{1} \in \mathcal{M}$ and a choice bit $b \in\{0,1\}$. The prover speaks first, and the protocol is public coin, in the sense that the message of the verifier consists of uniformly random bits. Intuitively, we want that whenever the prover manages to convince the verifier, he must be committed to at least one value after having sent the first message.

More formally, a commit-and-prove protocol is a tuple of efficient interactive Turing machines $\Pi_{c \& p} \stackrel{\text { def }}{=}\left(\mathrm{P}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right), \mathrm{V}=\left(\mathrm{V}_{0}, \mathrm{~V}_{1}\right)\right)$ specified as follows. (i) The randomized algorithm P_{0} takes

[^6]as input m_{b} and returns a string $\gamma \in\{0,1\}^{*}$ and auxiliary state information $\alpha \in\{0,1\}^{*}$; (ii) The randomized algorithm V_{0} returns a random string $\beta \leftarrow \& \mathcal{B}$; (iii) The randomized algorithm P_{1} takes as input ($\alpha, \beta, \gamma, m_{1-b}$) and returns a string $\delta \in\{0,1\}^{*}$; (iv) The deterministic algorithm V_{1} takes a transcript $\left(\gamma, \beta,\left(\delta, m_{0}, m_{1}\right)\right)$ and outputs a decision bit.

We write $\left\langle\mathrm{P}\left(m_{0}, m_{1}, b\right), \mathrm{V}\left(1^{\lambda}\right)\right\rangle$ for a run of the commit-and-prove protocol upon inputs $\left(m_{0}, m_{1}, b\right)$ to the prover, and we denote by $T \stackrel{\text { def }}{=}\left(\gamma, \beta,\left(\delta, m_{0}, m_{1}\right)\right)$ the random variable corresponding to a transcript of the interaction. Note that the prover does not necessarily need to know m_{1-b} before computing the first message. We say that $\Pi_{c \& p}$ satisfies completeness if honestly generated transcripts are always accepted by the verifier, i.e. for all $m_{0}, m_{1} \in \mathcal{M}$ and $b \in\{0,1\}$ the following holds:

$$
\operatorname{Pr}\left[\mathrm{V}_{1}(T)=1: T \leftarrow \&\left\langle\mathrm{P}\left(m_{0}, m_{1}, b\right), \mathrm{V}\left(1^{\lambda}\right)\right\rangle\right]=1,
$$

where the probability is over the randomness of P_{0}, V_{0}, and P_{1}.
Security properties. Roughly, a commit-and-prove protocol must satisfy two security requirements. The first requirement is that at the end of the first round, a malicious prover is committed to at least one message. This can be formalized by looking at a mental experiment where we first run the protocol with a malicious prover, yielding a first transcript $T=\left(\gamma, \beta,\left(\delta, m_{0}, m_{1}\right)\right)$; hence, we rewind the prover to the point it already sent the first message, and give it a fresh challenge β^{\prime} which yields a second transcript $T^{\prime}=\left(\gamma, \beta^{\prime},\left(\delta^{\prime}, m_{0}^{\prime}, m_{1}^{\prime}\right)\right)$. The security property now states that, as long as the two transcripts T and T^{\prime} are valid, it shall exist at least one "committing branch" $\hat{b} \in\{0,1\}$ for which $m_{\hat{b}}=m_{\hat{b}}^{\prime}$. The second requirement says that no malicious verifier can learn any information on the choice bit of the prover. The formal definitions appear below.

Definition 3 (Secure commit-and-prove protocol). Let $\Pi_{c \& p}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{~V}_{0}, \mathrm{~V}_{1}\right)$ be a commit-and-prove protocol. We say that $\Pi_{c \& p}$ is secure if, besides completeness, it satisfies the following security properties:

- Existence of Committing Branch: For every PPT malicious prover $\mathrm{P}^{*}=\left(\mathrm{P}_{0}^{*}, \mathrm{P}_{1}^{*}\right)$ there exists a negligible function $\nu: \mathbb{N} \rightarrow[0,1]$ such that

$$
\operatorname{Pr}\left[\begin{array}{cc}
\left(\mathrm{V}_{1}(T)=1\right) \wedge\left(\mathrm{V}_{1}\left(T^{\prime}\right)=1\right) & \left(\gamma, \alpha_{0}\right) \leftarrow \varangle \mathrm{P}_{0}^{*}\left(1^{\lambda}\right) ; \beta, \beta^{\prime} \leftarrow \& \mathrm{~V}_{0}\left(1^{\lambda}\right) ; \\
\wedge\left(m_{0} \neq m_{0}^{\prime}\right) \wedge\left(m_{1} \neq m_{1}^{\prime}\right) & \left(\delta, m_{0}, m_{1}\right) \leftarrow \mathrm{P}_{1}^{*}\left(\alpha_{0}, \beta\right) ; \\
\left(\delta^{\prime}, m_{0}^{\prime}, m_{1}^{\prime}\right) \leftarrow \mathrm{P}_{1}^{*}\left(\alpha_{0}, \beta^{\prime}\right)
\end{array}\right] \leq \nu(\lambda),
$$

with $T=\left(\gamma, \beta,\left(\delta, m_{0}, m_{1}\right)\right)$ and $T^{\prime}=\left(\gamma, \beta,\left(\delta, m_{0}^{\prime}, m_{1}^{\prime}\right)\right)$, and where the probability is taken over the random coin tosses of P^{*} and V .

- Choice Bit Indistinguishability: For all PPT malicious verifiers V^{*}, and for all messages $m_{0}, m_{1} \in \mathcal{M}$, we have that

$$
\left\{\tilde{T}: \tilde{T} \leftarrow \&\left\langle\mathrm{P}\left(m_{0}, m_{1}, 0\right), \mathrm{V}^{*}\left(1^{\lambda}\right)\right\rangle\right\}_{\lambda \in \mathbb{N}} \approx_{c}\left\{\tilde{T}: \tilde{T} \leftarrow \curvearrowright\left\langle\mathrm{P}\left(m_{0}, m_{1}, 1\right), \mathrm{V}^{*}\left(1^{\lambda}\right)\right\rangle\right\}_{\lambda \in \mathbb{N}} .
$$

In Appendix A we show that a protocol by Ostrovsky et al. [34] achieves this definition.

3 Strongly Uniform PKE, Key Agreement and OT

3.1 Strongly Uniform PKE

We start with defining strongly uniform public-key encryption (PKE). Here, we differ between two types of PKE. A Type-A PKE has a public key that is computationally close to uniform,
while for a Type-B PKE this is the case for ciphertexts of uniform messages (under malicious public keys).

In general, a PKE scheme $\Pi_{\text {pke }}$ consists of three efficient algorithms (KGen, Enc, Dec) specified as follows. (i) The probabilistic algorithm KGen takes as input the security parameter and outputs a pair of keys $(p k, s k)$; (ii) The probabilistic algorithm Enc takes as input the public key $p k$ and a message $\mu \in \mathcal{M}$, and returns a ciphertext $c \in \mathcal{C}$; (iii) The deterministic algorithm Dec takes as input the secret key $s k$ and a ciphertext $c \in \mathcal{C}$, and returns a value $\mu \in \mathcal{M} \cup\{\perp\}$. We say that Π_{pke} meets correctness, if for all $\lambda \in \mathbb{N}$, all $(p k, s k)$ output by $\operatorname{KGen}\left(1^{\lambda}\right)$, and all $\mu \in \mathcal{M}$ the following holds: $\mathbb{P}[\operatorname{Dec}(s k, \operatorname{Enc}(p k, \mu))=\mu]=1$.

Definition 4 (Strongly uniform Type-A PKE). A PKE scheme $\Pi_{p k e}=(K G e n$, Enc, Dec) is called a strongly uniform Type-A PKE if for any PPT distinguisher D the following holds:

$$
|\operatorname{Pr}[\mathrm{D}(p k)=1]-\operatorname{Pr}[\mathrm{D}(u)=1]| \in \operatorname{neg}(\lambda)
$$

where $(p k, s k) \leftarrow \$ \operatorname{KGen}\left(1^{\lambda}\right)$ and u is uniform over a suitable, efficiently sampleable group.
In case of strongly uniform Type-B PKE, we even ask that a ciphertext of a uniform message is indistinguishable from uniform to a distinguisher that chooses a public key for the encryption procedure in an arbitrary way.

Definition 5 (Strongly uniform Type-B PKE). A PKE scheme $\Pi_{p k e}=(\mathrm{KGen}$, Enc, Dec) is called a strongly uniform Type-B PKE if for any PPT distinguisher D the following holds:

$$
|\operatorname{Pr}[\mathrm{D}(c)=1]-\operatorname{Pr}[\mathrm{D}(u)=1]| \in \operatorname{negl}(\lambda)
$$

where $p k \in\{0,1\}^{*}$ is chosen by $\mathrm{D}, \mu \leftarrow \$ \mathcal{M}, c \leftarrow \$ \operatorname{Enc}(p k, \mu)$, and u is uniform over a suitable, efficiently sampleable group.

When using PKE in the following, we also ask for standard security against chosen-plaintext or at least random-plaintext attacks, since this is not implied by the notion of strong uniformity.

3.2 Strongly Uniform Key Agreement

Let $\Pi_{\mathrm{ka}}=($ Alice, Bob) be a key agreement (KA) protocol, where Alice sends messages during t^{\prime} rounds, which we denote by $\rho^{1}, \ldots, \rho^{t^{\prime}}$. We denote the messages from Bob to Alice with $\sigma^{1}, \ldots, \sigma^{t^{\prime}+1}$, which are at most $t^{\prime}+1$ messages. W.l.o.g. we will assume that Bob sends the last message.

More precisely, algorithms Alice and Bob are stateful interactive Turing machines such that for each $i \in\left[t^{\prime}\right]$: (i) Algorithm Alice takes the current state information $\alpha_{\text {Alice }}^{i-1}$ (where $\alpha_{\text {Alice }}^{0}$ is equal to Alice's input 1^{λ}) and a message σ^{i-1} from Bob (with σ^{0} empty), and returns ρ^{i} together with updated state information $\alpha_{\text {Alice }}^{i}$; (ii) Algorithm Bob takes the current state information $\alpha_{\text {Bob }}^{i-1}$ (where $\alpha_{\text {Bob }}^{0}$ is equal to Bob's input 1^{λ}) and message ρ^{i} from the receiver, and returns σ^{i} together with updated state information $\alpha_{\text {Bob }}^{i}$.

For strong uniformity, we ask that Alice's messages are computationally close to uniform over an efficiently sampleable group \mathcal{M}. For simplicity, we assume that this is the same group for all messages. Our results still hold when the messages are uniform in different groups.

Additionally, we ask that given a transcript, one cannot distinguish the key Alice and Bob agreed upon from a uniformly random string.

Definition 6 (Strongly uniform secure key agreement). A KA protocol $\Pi_{\mathrm{ka}}=($ Alice, Bob) as defined above is a strongly uniform secure KA if there exists an efficiently samplable group \mathcal{M} such that the messages $\left(\rho^{1}, \ldots, \rho^{t^{\prime}}\right)$ sent by Alice in a honest execution of the protocol are distributed over \mathcal{M}, and moreover the following conditions are met:
(a) Key Indistinguishability: For an honest execution $\left\langle\operatorname{Alice}\left(1^{\lambda}\right), \operatorname{Bob}\left(1^{\lambda}\right)\right\rangle$ with agreed key K,

$$
\left(\left\langle\operatorname{Alice}\left(1^{\lambda}\right), \operatorname{Bob}\left(1^{\lambda}\right)\right\rangle, K\right) \approx_{c}\left(\left\langle\operatorname{Alice}\left(1^{\lambda}\right), \operatorname{Bob}\left(1^{\lambda}\right)\right\rangle, U\right),
$$

where U is uniform and independent of the view of Alice and Bob.
(b) Uniformity w.r.t. Malicious Interaction: For all PPT distinguishers D:

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathrm{D}\left(\alpha_{\mathrm{D}}^{t^{\prime}},\left(\rho^{i}, \sigma^{i}\right)_{i \in\left[t^{\prime}\right]}\right)=1: \begin{array}{c}
\forall i \in\left[t^{\prime}\right],\left(\alpha_{\text {Alice }}^{i}, \rho^{i}\right) \leftarrow \text { Alice }\left(\alpha_{\text {Alice }}^{i-1}, \sigma^{i}\right) \\
\wedge\left(\alpha_{\mathrm{D}}^{i}, \sigma^{i}\right) \leftarrow \mathrm{D}\left(\alpha_{\mathrm{D}}^{i-1}, \rho^{i-1}\right)
\end{array}\right] \\
& -\operatorname{Pr}\left[\mathrm{D}\left(\alpha_{\mathrm{D}}^{t^{\prime}},\left(\rho^{i}, \sigma^{i}\right)_{i \in\left[t^{\prime}\right]}\right)=1:\right. \\
& \left.\left.\wedge\left(\alpha_{\mathrm{D}}^{i}, \sigma^{i}\right) \leftarrow t^{\prime}\right], \rho^{i} \leftarrow \mathbb{M}\left(\alpha_{\mathrm{D}}^{i-1}, \rho^{i-1}\right)\right] \mid \in \operatorname{negl}(\lambda),
\end{aligned}
$$

where ρ^{0} is the empty string, and $\alpha_{\text {Alice }}^{0}=\alpha_{\text {Bob }}^{0}=1^{\lambda}$.
We show now that the property of strong uniformity is preserved within known construction of KA from Type-A or Type-B PKE, as well as Type-A PKE from KA. Both of the following lemmata are straigthforward, and therefore we forego a more formal proof and just sketch them.

Lemma 1. There exists a 2-round strongly uniform secure $K A$ if and only if there exists a strongly uniform CPA-secure Type-A PKE (constructive).

Proof. It is a well known fact that 2-round KA implies PKE and vice versa. What we will show is that this construction preserves strong uniformity. In the construction of KA from PKE the receiver sends a public key and receives back an encryption of a uniform key. If the public key is indistinguishable from uniform with all but negligible probability, then all the receivers messages are, and hence the KA is strongly uniform.

In the construction of PKE from KA, one uses the first message of the KA as public key. In a 2 -round strongly uniform KA this message is indistinguishable from uniform with all but negligible probability by definition. Hence, the public key is computationally indistinguishable from uniform with all but negligible probability.

Lemma 2. If there exists a strongly uniform CPA-secure Type-B PKE, then there exists a 3 -round strongly uniform secure KA (constructive).

Gertner et al. [15] showed a similar lemma, namely that Type-B PKE implies 3-round semihonestly secure OT. For simplicity, we prefer showing that there is a 3 -round strongly uniform secure KA given a strongly uniform CPA-secure Type-B PKE.

Proof. The idea is simple and similar to the proof of Lemma 1. Alice sends a public key, Bob sends an encryption of a uniform key. Finally, Bob decrypts the ciphertext and sends a dummy message. The last message is required by the definition of strongly uniform KA, which asks that Alice's messages are indistinguishable from uniform, where Bob sends the last message.

In order to achieve strongly uniform KA, even for maliciously chosen public key, the ciphertext needs to be indistinguishable from uniform with all but negligible probability. Type-B PKE has this property, and hence the described protocol is strongly uniform. Security follows trivially, and for identical reasons, as in Lemma 1.

3.3 Strongly Uniform OT

In an OT protocol $\Pi=(S, R)$ we can w.l.o.g. assume that the sender S always speaks last. We use the same notation as described above for a key agreement protocol. In particular, $\rho^{1}, \ldots, \rho^{t^{\prime}}$ are the messages from R to S , and $\sigma^{1}, \ldots, \sigma^{t^{\prime}+1}$ the messages from S to R . The inital states are identical with the inputs, i.e. $\alpha_{\mathrm{R}}^{0}=b \in\{0,1\}$ and $\alpha_{\mathrm{S}}^{0}=\left(s_{0}, s_{1}\right) \in\{0,1\}^{2 \lambda}$.

Correctness means that for all $b \in\{0,1\}$, and for all $s_{0}, s_{1} \in\{0,1\}^{\lambda}$, the following probability is overwhelming:

$$
\operatorname{Pr}\left[\rho^{t^{\prime}+1}=s_{b}: \forall i \in\left[t^{\prime}+1\right],\left(\alpha_{\mathrm{R}}^{i}, \rho^{i}\right) \leftarrow \mathrm{R}\left(\alpha_{\mathrm{R}}^{i-1}, \sigma^{i}\right) \wedge\left(\alpha_{\mathrm{S}}^{i}, \sigma^{i}\right) \leftarrow \mathrm{S}\left(\alpha_{\mathrm{S}}^{i-1}, \rho^{i-1}\right)\right],
$$

where ρ^{0} is the empty string, and $\alpha_{\mathrm{S}}^{0}=\left(s_{0}, s_{1}\right), \alpha_{\mathrm{R}}^{0}=b$.
As for security, we will require two properties. The first property is equivalent to simulationbased security for the case of a honest-but-curious receiver. The second property says that a malicious sender cannot distinguish the case where it is interacting with the honest receiver, from the case where the messages from the receiver are replaced by uniform elements over an efficiently sampleable group \mathcal{M}.

Definition 7 (Strongly Uniform semi-honestly secure OT). An OT protocol $\Pi=(S, R)$ as defined above is a strongly uniform semi-honestly secure OT if there exists an efficiently samplable group \mathcal{M} such that the messages $\left(\rho^{1}, \ldots, \rho^{t^{\prime}}\right)$ sent by R in a honest execution of the protocol are distributed over \mathcal{M}, and moreover the following conditions are met:
(a) Security w.r.t. Semi-Honest Receivers: There exists a PPT simulator Sim_{R} such that for all $b \in\{0,1\}$ and for all $s_{0}, s_{1} \in\{0,1\}^{\lambda}$ the following holds:

$$
\left\{\operatorname{Sim}_{\mathrm{R}}\left(1^{\lambda}, b, s_{b}\right)\right\}_{\lambda, b, s_{b}} \approx_{c}\left\{\operatorname{VIE} W_{\Pi}^{\mathrm{R}}\left(\lambda, s_{0}, s_{1}, b\right)\right\}_{\lambda, s_{0}, s_{1}, b},
$$

where $\operatorname{VIE} W_{\Pi}^{\mathrm{R}}\left(\lambda, s_{0}, s_{1}, b\right)$ denotes the distribution of the view of the honest receiver at the end of the protocol.
(b) Uniformity w.r.t. Malicious Senders: For all PPT distinguishers D, and for all $b \in$ $\{0,1\}$, the following holds:

$$
\begin{aligned}
& \left\lvert\, \operatorname{Pr}\left[\mathrm{D}\left(\alpha_{\mathrm{D}}^{t^{\prime}},\left(\rho^{i}, \sigma^{i}\right)_{i \in\left[t^{\prime}\right]}\right)=1: \begin{array}{c}
\forall i \in\left[t^{\prime}\right],\left(\alpha_{\mathrm{R}}^{i}, \rho^{i}\right) \leftarrow \mathrm{R}\left(\alpha_{\mathrm{R}}^{i-1}, \sigma^{i-1}\right) \\
\wedge\left(\alpha_{\mathrm{D}}^{i}, \sigma^{i}\right) \leftarrow \mathrm{D}\left(\alpha_{\mathrm{D}}^{i-1}, \rho^{i-1}\right)
\end{array}\right]\right. \\
& \left.-\operatorname{Pr}\left[\mathrm{D}\left(\alpha_{\mathrm{D}}^{t^{\prime}},\left(\rho^{i}, \sigma^{i}\right)_{i \in\left[t^{\prime}\right]}\right)=1: \begin{array}{c}
\forall i \in\left[t^{\prime}\right], \rho^{i} \leftarrow \mathcal{M} \mathcal{M} \\
\left(\alpha_{\mathrm{D}}^{i}, \sigma^{i}\right) \leftarrow \mathrm{D}\left(\alpha_{\mathrm{D}}^{i-1}, \rho^{i-1}\right)
\end{array}\right] \right\rvert\, \in \operatorname{negl}(\lambda),
\end{aligned}
$$

where ρ^{0} is the empty string, and $\alpha_{\mathrm{R}}^{0}=b$.
Note that the second property implies game-based security w.r.t. malicious senders (i.e., property (b) of Definition 2). Furthermore, for the special case of $t^{\prime}=1$ the above definition collapses to standard semi-honest security, as the only message sent by the malicious sender plays no role in distinguishing the two distributions.

Next, we show a lemma that is not very surprising, namely that strongly uniform secure KA can be constructed from strongly uniform semi-honestly secure OT.

Lemma 3. If there exists a t-round strongly uniform semi-honestly secure $O T$, then there exists a t-round strongly uniform secure KA (constructive).

Proof. We construct a t-round $\mathrm{KA} \Pi_{\mathrm{ka}}$ from a t-round OT Π as follows. Alice and Bob run Π, where Alice takes the role of the receiver with choice bit 0 . Bob takes the role of the sender, with inputs equal to a uniform key k, i.e. $s_{0}=k$, and a uniformly random string u, i.e. $s_{1}=u$.

Given that Π is semi-honestly secure, Gertner et al. [15, Theorem 5] have shown that Π_{ka} is indeed a secure KA. The rough idea is to first switch the receiver's choice bit to 1 by using the game-based security of Π against honest-but-curious senders (which in our case is implies by strong uniformity). Afterwards, we can use the security against an honest-but-curious receiver to argue that an eavesdropper cannot distinguish $s_{0}=k$ from random anymore, since even the receiver can only learn s_{1} but has no information about s_{0}. Therefore $\Pi_{\text {ka }}$ is a secure KA. It remains to prove strong uniformity.

Claim 1. Assuming Π is strongly uniform, so is Π_{ka}.
Proof. Let PPT D' break the strong uniformity of Π_{ka}, then we construct a PPT distinguisher D that breaks the strong uniformity of Π as follows. Distinguisher D chooses k and u uniformly, and interacts as a honest sender in Π, where the receiver's messages are either distributed according to the protocol description or uniform. Hence, Alice's messages are either conform with the protocol or uniform. Distinguisher D^{\prime} receives the view of Bob generated by D. Now, if D^{\prime} distinguishes the messages of Alice being conform with the protocol from uniform, D breaks the strong uniformity of Π.

The next lemma is more surprising, as it implies that strongly uniform secure KA is equivalent to strongly uniform semi-honestly secure OT. Hence, the notion of strong uniformity is sufficiently strong to bypass the black-box separation of KA and OT by Gertner et al. [15, Corollary 7], which is a consequence of the separation between PKE and OT, and the fact that 2-round KA implies PKE. The above also implies that 2-round secure KA is separated as well from 2-round strongly uniform secure KA.

Lemma 4. If there exists a t-round strongly uniform secure $K A$, then there exists a t-round strongly uniform semi-honestly secure OT (constructive).

Proof. We construct an OT protocol Π using two parallel executions of a KA protocol Π_{ka}, which we denote with Π_{ka}^{0} and Π_{ka}^{1}. The receiver of the OT acts in both executions as Alice. For his choice bit b, he runs Π_{ka}^{b} according to the protocol description, and in Π_{ka}^{1-b} he samples and sends uniform messages.

In the last round the sender sends $k_{0}+s_{0}$ and $k_{1}+s_{1}$, where for $j \in\{0,1\}$ the key k_{j} is the exchanged key in Π_{ka}^{j}, and s_{0}, s_{1} are the OT inputs of the sender. Notice that this is a t-round protocol, since the sender can send his masked inputs together with his last messages of the KA protocols.

Claim 2. Assuming Π_{ka} is strongly uniform, so is Π.
Proof. Let there be a PPT distinguisher D^{\prime} that distinguishes the receiver's messages in Π from uniform. We construct a PPT distinguisher D for Alice's messages using D'. Distinguisher D acts in Π_{ka} as Bob, where Alice's messages are either distributed according to the protocol description or uniform. Hence, D picks $b \leftarrow \&\{0,1\}$ and uses the messages sent by D^{\prime} in Π to interact with Alice in Π_{ka}^{b}. For Π_{ka}^{1-b}, distinguisher D sends uniform messages as in the protocol description. Finally, D outputs the output of D^{\prime}. Hence, if D^{\prime} is successful, then so is D.

Claim 3. Assuming Π_{ka} is strongly uniform and secure, then Π is secure against honest-butcurious receivers.

Proof. We use the following hybrids, where a simulator Sim generates a view of the receiver. In the last hybrid, Sim only uses s_{b} but not s_{1-b} and therefore implements a simulator $\operatorname{Sim}\left(1^{\lambda}, b, s_{b}\right)$ as required for security against honest-but-curious receivers.
$H Y B_{1}(\lambda)$: Sim generates the receivers messages in Π_{ka}^{1-b} as in an actual key agreement Π_{ka}, i.e. not uniform as in Π. The receiver's view only contains the messages, not the randomness used in $\Pi_{\text {ka }}$ to generate these messages.
$H Y B_{2}(\lambda)$: Sim sends a uniform value u instead of $k_{1-b}+s_{1-b}$.
To prove the claim, we need to show that the receiver's view in the real protocol is indistinguishable from $H Y B_{1}(\lambda)$, and that $H Y B_{1}(\lambda)$ is indistinguishable from $H Y B_{2}(\lambda)$.

Let D^{\prime} be a PPT distinguisher that distinguishes the recevier's view in the real protocol from $H Y B_{1}(\lambda)$ with non-negligible probability. We show that there is a PPT distinguisher D that breaks the strong uniformity of the KA Π_{ka} with the same probability. Distinguisher D runs Π, but replaces the interaction in Π_{ka}^{1-b} on the receiver's side with a challenge instance of Π_{ka} against the strong uniformity. To simulate the view of the receiver correctly, we need to simulate the sampling procedure of the uniform messages in the protocol given only the challenge messages. We can do this by using the simulator SimSamp of efficiently sampleable groups. The challenge messages are either uniform, as in the receiver's actual view in Π, or honestly generated, as in $H Y B_{1}(\lambda)$. Otherwise, D acts exactly according to the protocol description of Π. If D^{\prime} distinguishes the two cases, D breaks the uniformity of Π_{ka}.

Now let D^{\prime} be a PPT distinguisher that distinguishes $H Y B_{1}(\lambda)$ from $H Y B_{2}(\lambda)$ with nonnegligible probability. Then we can construct a PPT distinguisher that breaks security, i.e. key indistinguishability, of Π with the same probability. Distinguisher D receives a transcript of Π_{ka} and a challenge z which is either the key k or uniform. Hence, D uses the transcript of Π_{ka} as transcript of Π_{ka}^{1-b}, and the challenge z to generate the message $k_{1-b}+s_{1-b}$ as $z+s_{1-b}$. Finally, D generates the remaining parts of the receiver's view honestly. If $z=k$, then D simulates $H Y B_{1}(\lambda)$, and if $z=u$, and hence $z+s_{1-b}$ is uniform, D simulates $H Y B_{2}(\lambda)$. If now D^{\prime} distinguishes $H Y B_{1}(\lambda)$ from $H Y B_{2}(\lambda)$, then D distinguishes the actual key from uniform.

4 From Strongly Uniform Semi-Honestly Secure OT to Maliciously Secure OT

Our protocol is described in $\S 4.1$, whereas in $\S 4.3$ we prove the protocol satisfies receiver-sided simulatability; recall that by using Theorem 2 we immediately get a fully simulatable OT protocol.

4.1 Protocol Description

Let $\Pi_{c \& p}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{~V}_{0}, \mathrm{~V}_{1}\right)$ be a commit-and-prove protocol and $\Pi^{\prime}=\left(\mathrm{S}^{\prime}, \mathrm{R}^{\prime}\right)$ be a $\left(2 t^{\prime}+1\right)$ round OT protocol, where the first message σ^{1} might be the empty string. Our OT protocol $\Pi=(S, R)$ is depicted in Fig. 3. The protocol consists of $\left(2 t^{\prime}+2\right)$ rounds as informally described below:

1. The receiver samples $m_{1-b, i} \in \mathcal{M}$ for all $i \in\left[t^{\prime}\right]$, where b is the choice bit. Then he runs the prover of the commit-and-prove protocol upon input $\left(m_{1-b, j}\right)_{j \in[i]}$ for all $i \in\left[t^{\prime}\right]$, obtaining $\left(\gamma_{i}\right)_{i \in\left[t^{\prime}\right]}$ which are forwarded to the sender.

Sender $\mathrm{S}\left(s_{0}, s_{1}\right)$
Receiver $\mathrm{R}(b)$

$$
\alpha_{\mathrm{R}, b}^{0}=0
$$

$$
\forall i \in\left[t^{\prime}\right]:
$$

$$
\begin{aligned}
& m_{1-b, i} \leftarrow \mathcal{M} \\
& \left(\gamma_{i}, \alpha_{i}\right) \leftarrow \mathrm{P}_{0}\left(\left(m_{1-b, j}\right)_{j \in[i]}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\alpha_{\mathrm{R}, b}^{i}, \rho_{b}^{i}\right) \leftarrow \mathrm{R}^{\prime}\left(\alpha_{\mathrm{R}, b}^{i-1}, \sigma_{b}^{i}\right) \\
& m_{b, i}=\rho_{b}^{i}-r_{b, i}
\end{aligned}
$$

if $\mathrm{V}\left(\gamma_{i}, \beta_{i},\left(\delta_{i},\left(m_{0, j}\right)_{j \in[i]},\left(m_{1, j}\right)_{j \in[i]}\right)\right)=0 \longleftarrow\left(\delta_{i}, m_{0, i}, m_{1, i}\right) \quad \delta_{i} \leftarrow{ }_{8} \mathrm{P}_{1}\left(\alpha_{i}, \beta_{i}, \gamma_{i},\left(m_{b, j}\right)_{j \in[i]}\right)$
return \perp
$\left(\alpha_{\mathrm{S}, 0}^{i+1}, \sigma_{0}^{i+1}\right) \leftarrow \mathrm{S}^{\prime}\left(\alpha_{\mathrm{S}, 0}^{i}, m_{0, i}+r_{0, i}\right)$
$\left(\alpha_{\mathrm{S}, 1}^{i+1}, \sigma_{1}^{i+1}\right) \leftarrow \mathrm{S}^{\prime}\left(\alpha_{\mathrm{S}, 1}^{i}, m_{1, i}+r_{1, i}\right)$
$\beta_{i+1} \leftarrow \mathrm{~V}_{0}\left(1^{\lambda}\right)$
$r_{0, i+1}, r_{1, i+1} \leftarrow \& \mathcal{M}$

$$
\left(\beta_{i+1},\left(r_{k, i+1}, \sigma_{k}^{i+1}\right)_{k \in\{0,1\}}\right)
$$

$$
\begin{aligned}
& \left(\alpha_{\mathrm{R}, b}^{t^{\prime}+1}, \rho_{b}^{t^{\prime}+1}\right) \leftarrow \curvearrowright \mathrm{R}^{\prime}\left(\alpha_{\mathrm{R}, b}^{t^{\prime}}, \sigma_{b}^{t^{\prime}+1}\right) \\
& \text { output } s_{b}=\rho_{b}^{t^{\prime}+1}
\end{aligned}
$$

Figure 3: $\left(2 t^{\prime}+2\right)$-round OT protocol achieving receiver-sided simulatability from $\left(2 t^{\prime}+1\right)$-round strongly uniform semi-honestly secure OT. Note that the initial state information $\alpha_{\mathrm{S}, 0}^{0}, \alpha_{\mathrm{S}, 1}^{0}$ and $\alpha_{R, b}^{0}$ is set to be equal, respectively to the inputs used by the sender and the receiver during the runs of the underlying OT protocol (S^{\prime}, R^{\prime}). The values $\beta_{t^{\prime}+1}, r_{0, t^{\prime}+1}, r_{1, t^{\prime}+1}$ are not needed and can be removed, but we avoided to do that in order to keep the protocol description more compact.
2. The sender samples uniform values $u_{0}, u_{1} \leftarrow \mathcal{M}$. Then, he runs the underlying $\left(2 t^{\prime}+1\right)$ round OT twice with inputs $\left(s_{0}, u_{0}\right)$ and $\left(s_{1}, u_{1}\right)$ to generate the first messages σ_{0}^{1} and σ_{1}^{1}. Further, the sender samples a challenge β_{1} for the commit-and-prove protocol, as well as two uniformly random group elements $r_{0,1}, r_{1,1}$ from \mathcal{M}, and forwards ($\beta_{1}, r_{0,1}, r_{1,1}$) to the receiver together with the first messages of the OTs (i.e. σ_{0}^{1} and σ_{1}^{1}).
3. Repeat the following steps for each $i \in\left[t^{\prime}\right]$:
(a) $(\mathrm{R} \rightarrow \mathrm{S})$: The receiver runs the receiver R^{\prime} of the underlying $\left(2 t^{\prime}+1\right)$-round OT protocol with choice bit fixed to 0 , and upon input message σ_{b}^{i} from the sender, obtaining a message ρ_{b}^{i} which is used to define the message $m_{b, i}=\rho_{b}^{i}-r_{b, i}$ required

$$
\begin{aligned}
& u_{0}, u_{1} \leftarrow \Phi \mathcal{M} \\
& \alpha_{\mathrm{S}, 0}^{0}=\left(s_{0}, u_{0}\right) \\
& \begin{array}{l}
\alpha_{\mathrm{S}, 1}^{0}=\left(s_{1}, u_{1}\right) \\
\left(\alpha_{\mathrm{S}, 0}^{1}, \sigma_{0}^{1}\right) \leftarrow \mathrm{S}^{\prime}\left(\alpha_{\mathrm{S}, 0}^{0}\right)
\end{array} \\
& \left(\alpha_{\mathrm{S}, 1}^{1}, \sigma_{1}^{1}\right) \leftarrow \mathrm{S}^{\prime}\left(\alpha_{\mathrm{S}, 1}^{0}\right) \\
& \longleftarrow\left(\gamma_{i}\right)_{i \in\left[t^{\prime}\right]} \\
& \beta_{1} \leftarrow \mathrm{~V}_{0}\left(1^{\lambda}\right) \\
& r_{0,1}, r_{1,1} \leftarrow \$ \mathcal{M} \\
& \xrightarrow{\left(\beta_{1},\left(r_{k, 1}, \sigma_{k}^{1}\right)_{k \in\{0,1\}}\right)} \\
& \text {. Repeat for each } i \in\left[t^{\prime}\right] \text {. }
\end{aligned}
$$

to complete the execution of the commit-and-prove protocol in the non-committing branch b. This results in a tuple $\left(\delta_{i}, m_{0, i}, m_{1, i}\right)$ that is forwarded to the sender.
(b) $(\mathrm{S} \rightarrow \mathrm{R})$: The sender verifies that the transcript $T_{i}=\left(\gamma_{i}, \beta_{i},\left(\delta_{i},\left(m_{0, j}\right)_{j \in[i]},\left(m_{1, j}\right)_{j \in[i]}\right)\right)$ is accepting for the underlying commit-and-prove protocol. If so, he continues the two runs of the sender S^{\prime} for the underlying $\left(2 t^{\prime}+1\right)$-round OT protocol. The first run uses state $\alpha_{\mathrm{S}, 0}^{i}$ and message $m_{0, i}+r_{0, i}$ from the receiver resulting in a message σ_{0}^{i+1} and state $\alpha_{\mathrm{S}, 0}^{i+1}$, whereas the second run uses state $\alpha_{\mathrm{S}, 1}^{i}$ and message $m_{1, i}+r_{1, i}$ from the receiver resulting in a message σ_{1}^{i+1} and state $\alpha_{\mathrm{S}, 1}^{i+1}$. Finally, the sender samples a challenge β_{i+1} for the commit-and-prove protocol, as well as another two uniformly random group elements $r_{0, i+1}, r_{1, i+1}$ from \mathcal{M}, and forwards $\left(\sigma_{0}^{i+1}, \sigma_{1}^{i+1}\right)$ and $\beta_{i+1}, r_{0, i+1}, r_{1, i+1}$ to the receiver.
4. Output: The receiver runs the receiver R^{\prime} of the underlying $\left(2 t^{\prime}+1\right)$-round OT protocol, upon input the $\left(t^{\prime}+1\right)$-th message $\sigma_{b}^{t^{\prime}+1}$ from the sender, thus obtaining an output $\rho_{b}^{t^{\prime}+1}$.

Correctness follows by the fact that, when both the sender and the receiver are honest, by correctness of the commit-and-prove protocol the transcripts T_{i} are always accepting, and moreover the messages produced by the sender σ_{b}^{i} are computed using message $m_{b, i}+r_{b, i}=\rho_{b}^{i}$ from the receiver, so that each pair $\left(\rho_{b}^{i}, \sigma_{b}^{i}\right)$ corresponds to the i-th interaction of the underlying $\left(2 t^{\prime}+1\right)$-round OT protocol with input strings $\left(s_{b}, u_{b}\right)$ for the sender and choice bit 0 for the receiver, and thus at the end the receiver outputs s_{b}. As for security, we establish the following result.

Theorem 3 (Receiver-sided simulatability of Π). Assuming that Π^{\prime} is a $\left(2 t^{\prime}+1\right)$-round strongly uniform semi-honestly secure OT protocol, and that $\Pi_{c \& p}$ is a secure commit-and-prove protocol, then the protocol Π from Fig. 3 securely realizes $\mathcal{F}_{\mathrm{OT}}$ with receiver-sided simulation.

4.2 Proof Intuition

We give a detailed proof in Section 4.3, and here provide some intuition. In order to show receiver-sided simulatability we need to prove two things: (1) The existence of a simulator Sim which by interacting with the ideal functionality $\mathcal{F}_{\mathrm{OT}}$ can fake the view of any efficient adversary corrupting the receiver in a real execution of the protocol; (2) Indistinguishability of the protocol transcripts with choice bit of the receiver equal to zero or one, for any efficient adversary corrupting the sender in a real execution of the protocol.

To show (1), we consider a series of hybrid experiments that naturally lead to the definition of a simulator in the ideal world. In order to facilitate the description of the hybrids, it will be useful to think of the protocol as a sequence of t^{\prime} iterations, where each iteration consists of 2 rounds, as depicted in Fig. 3.

- In the first hybrid, we run a malicious receiver twice after he has sent his commitments. The purpose of the first run is to learn a malicious receiver's input bit, i.e. on which branch he is not committed. If he is committed on both branches, simulation will be easy since he will not be able to receive any of the sender's inputs. We use the second run to learn the output of a malicious receiver. We describe the two runs now.

1. The first round of each iteration yields an opening $\left(\delta_{i}, m_{0, i}, m_{1, i}\right)$. Hence, after verifying that the opening is valid, we rewind the adversary to the end of the first round of the i-th iteration to receive another opening $\left(\delta_{i}^{\prime}, m_{0, i}^{\prime}, m_{1, i}^{\prime}\right)$.
Now, let $b \in\{0,1\}$ such that $m_{b, i} \neq m_{b, i}^{\prime}$. By the security of the commit-and-prove protocol, there can be at most one such b. If there is no b we continue the first run.

Otherwise, if there is such a $b \in\{0,1\}$, we have learned the equivocal branch and start the second run.
2. We execute the second run according to the protcol with the difference that we now know the equivocal branch, i.e. b, from the very beginning, which will help us later to simulate correctly right from the start. Notice that by the security of the commit-and-prove protocol, a malicious receiver cannot change the equivocal branch in the second run. Obviously, he cannot change it during the same iteration since then he would be equivocal on both branches and contradict the security of the commit-and-prove protocol. He can also not change the equivocal branch of one of the later rounds $j>i$, since in the j-th commitment δ_{j} he cannot be committed to both $m_{b, i}$ and $m_{b, i}^{\prime}$, so he needs to equivocally open δ_{j} as well. Thus, he needs to be committed on the other branch, i.e. branch $1-b$.

- The values $m_{k, i}^{\prime}$ (right after the rewinding) of each iteration of the first run for $k \in\{0,1\}$, and second run for $k=1-b$, are identical to $m_{k, i}$. Moreover, $m_{k, i}^{\prime} \neq m_{k, i}$ holds only for the second run for branch $k=b$. Therefore, in the second hybrid, we can change the distribution of $r_{k, i}^{\prime}$ to $r_{k, i}^{\prime}=\rho_{k}^{i}-m_{k, i}$ for $k \in\{0,1\}$, and both runs except branch $k=b$ during the second run. The value ρ_{k}^{i} is obtained by running the simulator for the receiver of the underlying strongly uniform semi-honest OT protocol with choice bit 1 and input u_{k}. We can use the messages generated by this simulator on the sender's side as well.
We will use the strong uniformity of the OT to argue that a malicious receiver cannot distinguish $r_{k, i}^{\prime}=\rho_{k}^{i}-m_{k, i}$ from uniform. By the semi-honest security, the messages generated by the simulator are indistinguishable from the actual semi-honest OT. At the same time this simulator is independent of the senders inputs s_{0} and s_{1}. Note that in this hybrid, we only need to known s_{b} for the second run after having learned b.

In the last hybrid, a protocol transcript is independent of s_{1-b} but still yields a well distributed output for the malicious receiver. This allows us to define a valid simulator in the ideal world.

To show (2), we first use the strong uniformity of the underlying OT protocol to sample $m_{b, i}$ uniformly at random at the beginning of the protocol. Notice that this implies that the receiver cannot recover the value s_{b} of the sender anymore. Further, we need the strong uniformity property here, since the receiver is interacting with a malicious sender who could influence the distribution of $m_{b, i}$ sent by the receiver.

Once both messages, $m_{0, i}$ and $m_{1, i}$ for all iterations are known before the start of the protocol, we can challenge the choice bit indistinguishability of the commit-and-prove protocol. As a consequence, we can argue that the transcripts with $b=0$ and $b=1$ are computationally indistinguishable, which implies game-based security against a malicious sender.

4.3 Security Analysis

4.3.1 Simulatability Against a Malicious Receiver

We need to prove that for all non-uniform PPT malicious receivers R^{*}, there exists a PPT simulator Sim such that

$$
\left\{R E A L_{\Pi, \mathrm{R}^{*}(z)}\left(\lambda, s_{0}, s_{1}, b\right)\right\}_{\lambda, s_{0}, s_{1}, b, z} \approx_{c}\left\{\operatorname{IDEAL_{\mathcal {F}_{\text {OT},\operatorname {Sim}^{\mathrm {R}^{*}(z)}}}(\lambda ,s_{0},s_{1},b)\} _{\lambda ,s_{0},s_{1},b,z}}\right.
$$

where $\lambda \in \mathbb{N}, s_{0}, s_{1} \in\{0,1\}^{*}, b \in\{0,1\}$, and $z \in\{0,1\}^{*}$.
To this end, we introduce several hybrid experiments naturally leading to the definition of an efficient simulator in the ideal world. Let $H Y B_{0}(\lambda)$ be the real world experiment with a
malicious receiver R*. (All experiments are further parametrized by the inputs s_{0}, s_{1} for the sender, but we omit to explicitly write this for simplicity.)

First hybrid. Hybrid $H Y B_{1}(\lambda)$ proceeds as follows.

1. The sender picks $u_{0}, u_{1} \leftarrow \mathcal{M}$ and lets $\tilde{\alpha}_{\mathrm{S}, 0}^{0}=\alpha_{\mathrm{S}, 0}^{0}=\left(s_{0}, u_{0}\right), \tilde{\alpha}_{\mathrm{S}, 1}^{0}=\alpha_{\mathrm{S}, 1}^{0}=\left(s_{1}, u_{1}\right)$, and $b, b^{\prime}, b^{\prime \prime}=\perp$.
2. R^{*} forwards $\left(\gamma_{i}\right)_{i \in\left[t^{\prime}\right]}$, to which the sender replies with $\left(\beta_{1}, r_{0,1}, r_{1,1}, \tilde{\sigma}_{0}^{1}, \tilde{\sigma}_{1}^{1}\right)$, where $\left(\tilde{\alpha}_{\mathrm{S}, 0}^{1}, \tilde{\sigma}_{0}^{1}\right)$ $\leftarrow \mathrm{S}^{\prime}\left(1^{\lambda}, \tilde{\alpha}_{\mathrm{S}, 0}^{0}\right),\left(\tilde{\alpha}_{\mathrm{S}, 1}^{1}, \tilde{\sigma}_{1}^{1}\right) \leftarrow \mathrm{S}^{\prime}\left(1^{\lambda}, \tilde{\alpha}_{\mathrm{S}, 1}^{0}\right)$.
3. Repeat the steps below, for each $i \in\left[t^{\prime}\right]$:
(a) R^{*} sends a tuple $\left(\delta_{i}, m_{0, i}, m_{1, i}\right)$. Let $T_{i}=\left(\gamma_{i}, \beta_{i},\left(\delta_{i},\left(m_{0, j}\right)_{j \in[i]},\left(m_{1, j}\right)_{j \in[i]}\right)\right.$. Hence:
i. If $\mathrm{V}_{1}\left(T_{i}\right)=0$, restart the experiment with fresh randomness for R^{*}. Since the protocol is correct with non-negligible probability, it will only take polynomial time to find a run where R^{*} never gets restarted within this step in any iteration.
ii. Rewind R^{*} at the beginning of the current iteration, and send a freshly sampled tuple ($\beta_{i}^{\prime}, r_{0, i}^{\prime}, r_{1, i}^{\prime}$) with the same distribution as before.
(b) R^{*} replies with $\left(\delta_{i}^{\prime}, m_{0, i}^{\prime}, m_{1, i}^{\prime}\right)$. Let $T_{i}^{\prime}=\left(\gamma_{i}, \beta_{i}^{\prime},\left(\delta_{i}^{\prime},\left(m_{0, j}^{\prime}\right)_{j \in[i]},\left(m_{1, j}^{\prime}\right)_{j \in[i]}\right)\right.$. Hence:
i. If $\mathrm{V}_{1}\left(T_{i}^{\prime}\right)=0$, we restart R^{*} as in step $3(\mathrm{a}) \mathrm{i}$ (again this can be done in polynomial time). If $\mathrm{V}_{1}\left(T_{i}^{\prime}\right)=1$ and on both branches $\left(m_{0, j}^{\prime}\right)_{j \in[i]} \neq\left(m_{0, j}\right)_{j \in[i]}$ and $\left(m_{1, j}^{\prime}\right)_{j \in[i]} \neq\left(m_{1, j}\right)_{j \in[i]}$, the sender aborts.
ii. Attempt to define b^{\prime} as the binary value for which $\left(m_{b^{\prime}, j}^{\prime}\right)_{j \in[i]} \neq\left(m_{b^{\prime}, j}\right)_{j \in[i]}$, but $\left(m_{1-b^{\prime}, j}^{\prime}\right)_{j \in[i]}=\left(m_{1-b^{\prime}, j}\right)_{j \in[i]}$. If such value is found, halt and go directly to step 4 after setting $b \stackrel{\text { def }}{=} b^{\prime}$.
(c) The sender computes $\left(\tilde{\alpha}_{\mathrm{S}, 0}^{i+1}, \tilde{\sigma}_{0}^{i+1}\right) \leftarrow \mathrm{S}^{\prime}\left(\tilde{\alpha}_{\mathrm{S}, 0}^{i}, m_{0, i}^{\prime}+r_{0, i}^{\prime}\right),\left(\tilde{\alpha}_{\mathrm{S}, 1}^{i+1}, \tilde{\sigma}_{1}^{i+1}\right) \leftarrow \delta \mathrm{S}^{\prime}\left(\tilde{\alpha}_{\mathrm{S}, 1}^{i}, m_{1, i}^{\prime}+\right.$ $r_{1, i}^{\prime}$), samples ($\beta_{i+1}, r_{0, i+1}, r_{1, i+1}$) as in the original protocol, and forwards ($\tilde{\sigma}_{0}^{i+1}, \tilde{\sigma}_{1}^{i+1}, \beta_{i+1}$, $\left.r_{0, i+1}, r_{1, i+1}\right)$ to R^{*}.
4. Rewind R^{*} to step 2, and re-start running the experiment from there with the following differences applied to each iteration $i \in\left[t^{\prime}\right]$:
(a) Denote by $\left(\beta_{i}^{\prime \prime}, r_{0, i}^{\prime \prime}, r_{1, i}^{\prime \prime}\right)$ the new challenges sent to R^{*} in step 3 (a) ii, and with $\left(\delta_{i}^{\prime \prime}, m_{0, i}^{\prime \prime}\right.$, $\left.m_{1, i}^{\prime \prime}\right)$ the corresponding answer computed by R^{*} in step 3 b . Also let $T_{i}^{\prime \prime}=\left(\gamma_{i}, \beta_{i}^{\prime \prime},\left(\delta_{i}^{\prime \prime}\right.\right.$, $\left.\left(m_{0, j}^{\prime \prime}\right)_{j \in[i]},\left(m_{1, j}^{\prime \prime}\right)_{j \in[i]}\right)$.
(b) If either $\mathrm{V}_{1}\left(T_{i}^{\prime \prime}\right)=0$, or $\mathrm{V}_{1}\left(T_{i}^{\prime \prime}\right)=1$ and on both branches $\left(m_{0, j}^{\prime \prime}\right)_{j \in[i]} \neq\left(m_{0, j}\right)_{j \in[i]}$ and $\left(m_{1, j}^{\prime \prime}\right)_{j \in[i]} \neq\left(m_{1, j}\right)_{j \in[i]}$, the sender aborts.
(c) Attempt to define $b^{\prime \prime}$ as the binary value for which $\left(m_{b^{\prime \prime}, j}\right)_{j \in[i]} \neq\left(m_{b^{\prime \prime}, j}^{\prime \prime}\right)_{j \in[i]}$, but $\left(m_{1-b^{\prime \prime}, j}\right)_{j \in[i]}=\left(m_{1-b^{\prime \prime}, j}^{\prime \prime}\right)_{j \in[i]}$. If such value is found, but $b^{\prime \prime} \neq b$ the sender aborts.
(d) The sender aborts if $b^{\prime \prime} \neq \perp$, but $\left(m_{b^{\prime \prime}, j}^{\prime \prime}\right)_{j \in[i]}=\left(m_{b^{\prime \prime}, j}\right)_{j \in[i]}$.
(e) The sender computes $\left(\alpha_{\mathrm{S}, 0}^{i+1}, \sigma_{0}^{i+1}\right) \leftarrow \mathrm{S}^{\prime}\left(\alpha_{\mathrm{S}, 0}^{i}, m_{0, i}^{\prime}+r_{0, i}^{\prime}\right),\left(\alpha_{\mathrm{S}, 1}^{i+1}, \sigma_{1}^{i+1}\right) \leftarrow \mathrm{S}^{\prime}\left(\alpha_{\mathrm{S}, 1}^{i}, m_{1, i}^{\prime}+\right.$ $\left.r_{1, i}^{\prime}\right)$ samples ($\beta_{i+1}, r_{0, i+1}, r_{1, i+1}$) as in the original protocol, and forwards ($\sigma_{0}^{i+1}, \sigma_{1}^{i+1}, \beta_{i+1}$, $\left.r_{0, i+1}, r_{1, i+1}\right)$ to R^{*}.
5. Experiment output: The output of R*.

Lemma 5. $H Y B_{0}(\lambda) \approx_{c} H Y B_{1}(\lambda)$.

Proof. First notice that all the restarts and rewindings of R^{*} do not change R^{*} 's output distribution, they only decrease the probability of a protocol abort at the cost of a polynomial increase in the running time.

For $i \in\left[t^{\prime}\right]$, consider the following events defined over the probability space of $H Y B_{1}(\lambda)$.
Event $W_{1,1}^{i}$: The event becomes true if the sender aborts during step $3(\mathrm{~b})$ i, i.e. the values $\left(\delta_{i}, m_{0, i}, m_{1, i}\right)$ and ($\delta_{i}^{\prime}, m_{0, i}^{\prime}, m_{1, i}^{\prime}$) output by R^{*} are such that there is no $\hat{b} \in\{0,1\}$ for which $\left(m_{\hat{b}, j}\right)_{j \in[i]}=\left(m_{\hat{b}, j}^{\prime}\right)_{j \in[i]}$, and furthermore both transcripts T_{i} and T_{i}^{\prime} are valid transcripts for the underlying commit-and-prove protocol.

Event $W_{1,2}^{i}$: The event becomes true if the sender aborts during step 4b, i.e. the values $\left(\delta_{i}, m_{0, i}, m_{1, i}\right)$ and ($\delta_{i}^{\prime \prime}, m_{0, i}^{\prime \prime}, m_{1, i}^{\prime \prime}$) output by R^{*} are such that there is no $\hat{b} \in\{0,1\}$ for which $\left(m_{\hat{b}, j}\right)_{j \in[i]}=\left(m_{\hat{b}, j}^{\prime \prime}\right)_{j[i]}$, and furthermore both transcripts T_{i} and $T_{i}^{\prime \prime}$ are valid transcripts for the underlying commit-and-prove protocol.

Event $W_{1,3}^{i}$: The event becomes true if the sender aborts during step 4c, i.e., the non-committing branches b^{\prime} and $b^{\prime \prime}$ are different for the two runs of the adversary (after rewinding).

Event $W_{1,4}^{i}$: The event becomes true if the sender aborts during step 4 d, i.e., the value $b^{\prime \prime}$ was set in some previous iteration $k<i$, meaning that $\left(m_{b^{\prime \prime}, j}\right)_{j \in[k]} \neq\left(m_{b^{\prime \prime}, j}^{\prime \prime}\right)_{j \in[k]}$, but during the i-th iteration the same branch becomes again committing, meaning that $\left(m_{b^{\prime \prime}, j}\right)_{j \in[i]}=$ $\left(m_{b^{\prime \prime}, j}^{\prime \prime}\right)_{j \in[i]}$.

Define $W_{1}^{i} \stackrel{\text { def }}{=} W_{1,1}^{i} \vee W_{1,2}^{i} \vee W_{1,3}^{i} \vee W_{1,4}^{i}$. For all PPT distinguishers D, by a union bound, we can write

$$
\Delta_{\mathrm{D}}\left(H Y B_{0}(\lambda) ; H Y B_{1}(\lambda)\right) \leq \operatorname{Pr}\left[\exists i \in\left[t^{\prime}\right]: W_{1}^{i}\right] \leq \sum_{i=1}^{t^{\prime}} \sum_{j=1}^{4} \operatorname{Pr}\left[W_{1, j}^{i}\right],
$$

and thus it suffices to prove that each of the events happens with negligible probability for all $i \in\left[t^{\prime}\right]$. We show this fact below, which concludes the proof of the lemma.
Claim 4. For all PPT R^{*}, and for all $i \in\left[t^{\prime}\right]$, we have that $\operatorname{Pr}\left[W_{1,1}^{i}\right] \in \operatorname{negl}(\lambda)$.
Proof. The proof is down to the property of existence of a committing branch for the commit-and-prove protocol. By contradiction, assume that there is a pair $s_{0}, s_{1} \in\{0,1\}^{\lambda}$, some $i \in\left[t^{\prime}\right]$, a non-uniform PPT adversary R^{*}, and an auxiliary input $z \in\{0,1\}^{*}$, such that $\mathrm{R}^{*}(z)$ provokes event $W_{1,1}^{i}$ in an execution of $H Y B_{1}(\lambda)$ with non-negligible probability. We build a non-uniform PPT adversary P^{*} that, given $i \in\left[t^{\prime}\right]$, attacks the security of $\Pi_{\mathrm{c} \& \mathrm{p}}$ as follows: ${ }^{10}$

1. Run $\mathrm{R}^{*}(z)$, and after receiving $\left(\gamma_{i}\right)_{i \in\left[t^{\prime}\right]}$, forward γ_{i} to the challenger, thus obtaining a challenge β.
2. Emulate a run of experiment $H Y B_{1}(\lambda)$ with \mathbf{R}^{*}, except that the value β_{i} is defined by embedding the value β received from the challenger.
3. Upon receiving $\left(\delta_{i}, m_{0, i}, m_{1, i}\right)$ from R^{*}, check that $T_{i}=\left(\gamma_{i}, \beta_{i},\left(\delta_{i},\left(m_{0, j}\right)_{j \in[i]},\left(m_{1, j}\right)_{j \in[i]}\right)\right)$ is a valid transcript; if so, forward $\left(\delta_{i},\left(m_{0, j}\right)_{j \in[i]},\left(m_{1, j}\right)_{j \in[i]}\right)$ to the challenger.
4. Upon receiving a fresh challenge β^{\prime} for the commit-and-prove protocol from the challenger, rewind R^{*} as described in $H Y B_{1}(\lambda)$, except that the value β_{i}^{\prime} is defined by embedding the value β^{\prime} received from the challenger.

[^7]5. Upon receiving $\left(\gamma_{i}^{\prime}, m_{0, i}^{\prime}, m_{1, i}^{\prime}\right)$ from \mathbf{R}^{*}, check that $T_{i}^{\prime}=\left(\gamma_{i}, \beta_{i}^{\prime},\left(\delta_{i}^{\prime},\left(m_{0, j}^{\prime}\right)_{j \in[i]},\left(m_{1, j}^{\prime}\right)_{j \in[i]}\right)\right)$ is a valid transcript; if so, forward $\left(\gamma_{i}^{\prime},\left(m_{0, j}^{\prime}\right)_{j \in[i]},\left(m_{1, j}^{\prime}\right)_{j \in[i]}\right)$ to the challenger.
6. Complete the remaining steps of the protocol with R^{*}, as described in $H Y B_{1}(\lambda)$.

Notice that the above simulation is perfect; this is because the values $\left(\beta, \beta^{\prime}\right)$ that the reduction embeds during the i-th iteration have exactly the same distribution as in an execution of experiment $H Y B_{1}(\lambda)$, whereas all other iterations are perfectly distributed as in $H Y B_{1}(\lambda)$. It follows that adversary R^{*} will provoke event $W_{1,1}^{i}$ with non-negligible probability, which means that both the transcripts T_{i} and T_{i}^{\prime} are accepting, and moreover $\left(m_{0, j}\right)_{j \in[i]} \neq\left(m_{0, j}^{\prime}\right)_{j \in[i]}$ and $\left(m_{1, j}\right)_{j \in[i]} \neq\left(m_{1, j}^{\prime}\right)_{j \in[i]}$. Thus, P^{*} wins with non-negligible probability, which concludes the proof of the claim.

Claim 5. For all PPT R^{*}, and for all $i \in\left[t^{\prime}\right]$, we have that $\operatorname{Pr}\left[W_{1,2}^{i}\right] \in \operatorname{negl}(\lambda)$.
Proof. The proof is similar to the one of the previous claim, and therefore omitted. The only difference is that the challenge β^{\prime} is now embedded by the reduction in $\beta_{i}^{\prime \prime}$, and also the tuple $\left(\gamma_{i}^{\prime \prime},\left(m_{0, j}^{\prime \prime}\right)_{j \in[i]},\left(m_{1, j}^{\prime \prime}\right)_{j \in[i]}\right)$ is sent to the challenger after the rewinding.

Claim 6. For all PPT R^{*}, and for all $i \in\left[t^{\prime}\right]$, we have that $\operatorname{Pr}\left[W_{1,3}^{i}\right] \in \operatorname{negl}(\lambda)$.
Proof. Without loss of generality, assume that $b^{\prime}=0$ and $b^{\prime \prime}=1$. Notice that event $W_{1,3}^{i}$ means that both transcripts T_{i} and $T_{i}^{\prime \prime}$ are accepting for the commit-and-prove protocol, and additionally $\left(m_{0, j}\right)_{j \in[i]} \neq\left(m_{0, j}^{\prime}\right)_{j \in[i]}$, whereas $\left(m_{1, j}\right)_{j \in[i]} \neq\left(m_{0, j}^{\prime \prime}\right)_{j \in[i]}$. The latter contradicts the property of existence of a committing branch for the commit-and-prove protocol. The formal reduction is similar to the one given above, and is therefore omitted.

Claim 7. For all PPT R*, and for all $i \in\left[t^{\prime}\right]$, we have that $\operatorname{Pr}\left[W_{1,4}^{i}\right] \in \operatorname{negl}(\lambda)$.
Proof. Notice that event $W_{1,4}^{i}$ means that, for some iteration $k<i$, both transcripts $T_{k}=$ $\left(\gamma_{k}, \beta_{k},\left(\delta_{k},\left(m_{0, j}\right)_{j \in[k]},\left(m_{1, j}\right)_{j \in[k]}\right)\right)$ and $T_{k}^{\prime \prime}=\left(\gamma_{k}, \beta_{k}^{\prime \prime},\left(\delta_{k}^{\prime \prime},\left(m_{0, j}^{\prime \prime}\right)_{j \in[k]},\left(m_{1, j}^{\prime \prime}\right)_{j \in[k]}\right)\right)$ are accepting for the commit-and-prove protocol, and additionally there exists a value $b \in\{0,1\}$ such that branch b is non-committing, which means $\left(m_{1-b, j}\right)_{j \in[k]}=\left(m_{1-b, j}^{\prime \prime}\right)_{j \in[k]}$. However, during the i-th iteration, both transcripts T_{i} and $T_{i}^{\prime \prime}$ are accepting for the commit-and-prove protocol, but branch b becomes committing again. The latter implies that there exist accepting transcripts T_{k} and $T_{k}^{\prime \prime}$ for which both $\left(m_{1-b, j}\right)_{j \in[i]}=\left(m_{1-b, j}^{\prime \prime}\right)_{j \in[k]}$ and $\left(m_{b, j}\right)_{j \in[k]}=\left(m_{b, j}^{\prime \prime}\right)_{j \in[k]}$, which contradicts the property of existence of a committing branch for the commit-and-prove protocol. The formal reduction is similar to the one given above, and is therefore omitted.

Second hybrid. Hybrid $H Y B_{2}(\lambda)$ proceeds identically to $H Y B_{1}(\lambda)$, except for the following differences.

1. In step 1 , the sender additionally sets $\tilde{\alpha}_{R^{\prime}, 0}^{0}=1$.
2. The distribution of the values $r_{0, i}^{\prime}$ computed during step $3(\mathrm{a}) \mathrm{ii}$ is changed by evaluating $\left(\tilde{\alpha}_{\mathrm{R}^{\prime}, 0}^{i}, \tilde{\rho}_{0}^{i}\right) \leftarrow \mathrm{R}^{\prime}\left(\tilde{\alpha}_{\mathrm{R}^{\prime}, 0}^{i-1}, \tilde{\sigma}_{0}^{i}\right)$, and by letting $r_{0, i}^{\prime}=\tilde{\rho}_{0}^{i}-m_{0, i}$.

Notice that the latter change is applied only to the first run of R^{*} (i.e., up to the point where the value b^{\prime} is set). This means that the distribution of the values $\left(r_{0, i}^{\prime \prime}\right)_{i \in\left[t^{\prime}\right]}$ is not modified.

Lemma 6. $H Y B_{1}(\lambda) \approx_{c} H Y B_{2}(\lambda)$.

Proof. Let W_{2}^{i} be the same event as W_{1}^{i}, but over the probability space of $H Y B_{2}(\lambda)$. For all PPT distinguishers D, we can write:

$$
\Delta_{\mathrm{D}}\left(H Y B_{1}(\lambda) ; H Y B_{2}(\lambda)\right) \leq \Delta_{\mathrm{D}}\left(H Y B_{1}(\lambda) ; H Y B_{2}(\lambda) \mid \forall i \in\left[t^{\prime}\right]: \neg W_{2}^{i}\right)+\operatorname{Pr}\left[\exists i \in\left[t^{\prime}\right]: W_{2}\right]
$$

An argument similar to that used in the proof of Lemma 5 shows that $\operatorname{Pr}\left[\exists i \in\left[t^{\prime}\right]: W_{2}^{i}\right]$ is negligible, hence it suffices to prove that $\Delta_{\mathrm{D}}\left(H Y B_{1}(\lambda) ; H Y B_{2}(\lambda) \mid \forall i \in\left[t^{\prime}\right]: \neg W_{2}^{i}\right)$ is also negligible. Note that the only difference between the two experiments comes from the distribution of the messages $\left(r_{0, j}^{\prime}\right)_{j \in\left[i^{*}\right]}$, with $i^{*} \leq t^{\prime}$ being the index corresponding to the round (if any) where the bit b^{\prime} is set during a run of the protocol: In experiment $H Y B_{1}(\lambda)$ these values are uniformly random, whereas in experiment $H Y B_{2}(\lambda)$ they are set to $\tilde{\rho}_{0}^{J}-m_{0, j}$, where $\tilde{\rho}_{0}^{j}$ is generated by a fresh run of the receiver for Π^{\prime} with choice bit fixed to one.

By contradiction, assume that there exists a pair of values $s_{0}, s_{1} \in\{0,1\}^{\lambda}$, and a non-uniform PPT distinguisher D , such that D can tell apart $H Y B_{1}(\lambda)$ and $H Y B_{2}(\lambda)$ with non-negligible probability. We use D to construct a PPT distinguisher $\hat{\mathrm{D}}$ attacking the uniformity property (cf. property (b) in Definition 7) of protocol Π^{\prime}. Actually, for this particular step of the proof we only need a weaker property where the distinguisher \hat{D} is honest but curious. The reduction works as follows:

1. Forward $\hat{b}=1, \hat{s}_{0}=s_{0}$, and uniform $\hat{s}_{1}=u_{0}$ to the challenger.
2. Receive a challenge $\left(\left(\hat{\rho}^{i}, \hat{\sigma}^{i}\right)_{i \in\left[t^{\prime}\right]}, \hat{\sigma}^{t^{\prime}+1}\right)$ from the challenger.
3. Run experiment $H Y B_{2}(\lambda)$ with D , except that the changes below are applied to each iteration of the first run of the distinguisher:
(a) During step 3(a)ii, the value $r_{0, i}^{\prime}$ is set to be $r_{0, i}^{\prime}=\hat{\rho}^{i}-m_{0, i}^{\prime}$, whereas $r_{1, i}^{\prime}$ is chosen uniformly at random in \mathcal{M}.
(b) During step 3c, the value $\tilde{\sigma}_{0}^{i+1}$ is defined by embedding the value $\hat{\sigma}^{i+1}$ from the challenge.
4. Output the same as D (output of R^{*}).

By inspection, depending on each pair $\left(\hat{\rho}^{i}, \hat{\sigma}^{i}\right)$ being distributed either as in a honest execution of protocol Π^{\prime} between $\mathrm{S}^{\prime}\left(s_{0}, u_{0}\right)$ and $\mathrm{R}^{\prime}(1)$, or as in an interaction between $\mathrm{S}^{\prime}\left(s_{0}, u_{0}\right)$ and using uniformly random group elements for the messages of the receiver, the distribution generated by the reduction is identical either to that of $H Y B_{1}(\lambda)$ or to that of $H Y B_{2}(\lambda)$. The latter in particular holds since we are conditioning on the event W_{2}^{i} not happening for all $i \in\left[t^{\prime}\right]$, which means that in $H Y B_{2}(\lambda)$ the values $\tilde{\sigma}_{0}^{i+1}$ are computed by running the honest sender $\mathrm{S}^{\prime}\left(s_{0}, u_{0}\right)$ upon input $r_{0, i}^{\prime}+m_{0, i}=\left(\tilde{\rho}_{0}^{i}-m_{0, i}\right)+m_{0, i}=\tilde{\rho}_{0}^{i}$.

It follows that \hat{D} makes a perfect simulation, and thus it retains the same distinguishing advantage as that of D, which concludes the proof of the lemma.

Third hybrid. Hybrid $H Y B_{3}(\lambda)$ proceeds identically to $H Y B_{2}(\lambda)$, except for the following differences.

1. In step 1 , the sender additionally sets $\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 0}^{0}=\left(1, u_{0}\right)$ and defines $\tilde{\sigma}_{0}^{1}$ as $\left(\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 0}^{1}, \tilde{\sigma}_{0}^{1}\right)$ $\leftarrow \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(1^{\lambda}, \tilde{\alpha}_{\operatorname{Sim}^{\prime}, 0}^{0}\right)$.
2. The distribution of the values $\tilde{\rho}_{0}^{i}$ defined during step 3(a)ii, and of the values $\tilde{\sigma}_{0}^{i}$ defined during step 3 c is changed by evaluating $\left(\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 0}^{i+1}, \tilde{\rho}_{0}^{i}, \tilde{\sigma}_{0}^{i+1}\right) \leftarrow \varangle \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 0}^{1}\right)$.

Notice that the latter change is applied only to the first run of R* (i.e., up to the point where the value b^{\prime} is set). This means that the distribution of the values $\left(\rho_{0}^{i}, \sigma_{0}^{i}\right)_{i \in\left[t^{\prime}\right]}$ is not modified.

Lemma 7. $H Y B_{2}(\lambda) \approx_{c} H Y B_{3}(\lambda)$.
Proof. Let W_{3}^{i} be the same event as W_{2}^{i}, but over the probability space of $H Y B_{3}(\lambda)$. For all PPT distinguishers D, we can write:

$$
\Delta_{\mathrm{D}}\left(H Y B_{2}(\lambda) ; H Y B_{3}(\lambda)\right) \leq \Delta_{\mathrm{D}}\left(H Y B_{2}(\lambda) ; H Y B_{3}(\lambda) \mid \forall i \in\left[t^{\prime}\right]: \neg W_{3}^{i}\right)+\operatorname{Pr}\left[\exists i \in\left[t^{\prime}\right]: W_{3}\right]
$$

An argument similar to that used in the proof of Lemma 5 shows that $\operatorname{Pr}\left[\exists i \in\left[t^{\prime}\right]: W_{3}^{i}\right]$ is negligible, hence it suffices to prove that $\Delta_{\mathrm{D}}\left(H Y B_{2}(\lambda) ; H Y B_{3}(\lambda) \mid \forall i \in\left[t^{\prime}\right]: \neg W_{3}^{i}\right)$ is also negligible. Note that the only difference between the two experiments comes from the distribution of the values $\tilde{\sigma}_{0}^{t^{\prime}+1},\left(\tilde{\rho}_{0}^{j}, \tilde{\sigma}_{0}^{j}\right)_{j \in\left[i^{*}\right]}$, with $i^{*} \leq t^{\prime}$ being the index corresponding to the round (if any) where the bit b^{\prime} is set during a run of the protocol: In experiment $H Y B_{2}(\lambda)$ these values are generated through a honest execution of protocol Π^{\prime} between receiver R^{\prime} with choice bit fixed to 1 and sender S^{\prime} with inputs $\left(s_{0}, u_{0}\right)$, whereas in experiment $H Y B_{3}(\lambda)$ they are generated by running the simulator $\mathrm{Sim}_{\mathrm{R}^{\prime}}^{\prime}$.

The proof is down to the security of the underlying $\left(2 t^{\prime}+1\right)$-round OT protocol $\Pi^{\prime}=\left(\mathrm{S}^{\prime}, \mathrm{R}^{\prime}\right)$ w.r.t. semi-honest receivers (cf. property (a) of Definition 7). By contradiction, assume that there exists a pair of inputs $s_{0}, s_{1} \in\{0,1\}^{\lambda}$, and a non-uniform PPT distinguisher D , such that D can tell apart $H Y B_{2}(\lambda)$ and $H Y B_{3}(\lambda)$ with non-negligible probability. We construct a PPT distinguisher $\hat{\mathrm{D}}$ that given $\left(s_{0}, s_{1}\right)$ attacks semi-honest security of Π^{\prime} as follows:

1. Forward $\hat{b}=1, \hat{s}_{0}=s_{0}$, and $\hat{s}_{1}=s_{1}$ to the challenger.
2. Receive a challenge $\left(\hat{\rho}^{i}, \hat{\sigma}^{i}\right)_{i \in\left[t^{\prime}\right]}, \hat{\sigma}^{t^{\prime}+1}$ from the challenger.
3. Run experiment $H Y B_{3}(\lambda)$ with D , except that the changes below are applied to each iteration of the first run of the distinguisher:
(a) During step 3(a)ii, the value $r_{0, i}^{\prime}$ is set to be $r_{0, i}^{\prime}=\hat{\rho}^{i}-m_{0, i}^{\prime}$, whereas $r_{1, i}^{\prime}$ is chosen uniformly at random in \mathcal{M}.
(b) During step 3c, the value $\tilde{\sigma}_{0}^{i+1}$ is defined by embedding the value $\hat{\sigma}^{i+1}$ from the challenge.
4. Output the same as D (output of R^{*}).

By inspection, depending on each pair $\left(\hat{\rho}^{i}, \hat{\sigma}^{i}\right)$ being distributed either as in a honest execution of protocol Π^{\prime} between $\mathrm{S}^{\prime}\left(s_{0}, u_{0}\right)$ and $\mathrm{R}^{\prime}(1)$, or as computed by the simulator $\operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}$ with inputs $\left(1^{\lambda}, 1, u_{0}\right)$, the distribution generated by the reduction is identical either to that of $H Y B_{2}(\lambda)$ or to that of $\mathrm{HYB}_{3}(\lambda)$. The latter in particular holds since we are conditioning on the event W_{3}^{i} not happening for all $i \in\left[t^{\prime}\right]$, which means that in $H Y B_{2}(\lambda)$ the values $\tilde{\sigma}_{0}^{i}$ are computed by running the honest sender $\mathrm{S}^{\prime}\left(s_{0}, u_{0}\right)$ upon input $r_{0, i}^{\prime}+m_{0, i}=\left(\tilde{\rho}_{0}^{i}-m_{0, i}\right)+m_{0, i}=\tilde{\rho}_{0}^{i}$.

It follows that $\hat{\mathrm{D}}$ makes a perfect simulation, and thus it retains the same distinguishing advantage as that of D, which concludes the proof of the lemma.

Fourth hybrid. Hybrid $H Y B_{4}(\lambda)$ proceeds identically to $H Y B_{3}(\lambda)$, except for the following differences.

1. In step 1 , the sender additionally sets $\tilde{\alpha}_{\mathrm{R}^{\prime}, 1}^{0}=1$.
2. The distribution of the values $r_{1, i}^{\prime}$ computed during step 3 (a)ii is changed by evaluating $\left(\tilde{\alpha}_{R^{\prime}, 1}^{i}, \tilde{\rho}_{1}^{i}\right) \leftarrow \mathrm{R}^{\prime}\left(\tilde{\alpha}_{\mathrm{R}^{\prime}, 1}^{i-1}, \tilde{\sigma}_{1}^{i}\right)$, and by letting $r_{1, i}^{\prime}=\tilde{\rho}_{1}^{i}-m_{1, i}$.

Notice that the latter change is applied only to the first run of R^{*} (i.e., up to the point where the value b^{\prime} is set). This means that the distribution of the values $\left(r_{1, i}^{\prime \prime}\right)_{i \in\left[t^{\prime}\right]}$ is not modified. The proof of the lemma below is identical to the proof of Lemma 6, and is therefore omitted.

Lemma 8. $H Y B_{3}(\lambda) \approx_{c} H Y B_{4}(\lambda)$.

Fifth hybrid. Hybrid $H Y B_{5}(\lambda)$ proceeds identically to $H Y B_{4}(\lambda)$, except for the following differences.

1. In step 1 , the sender additionally sets $\tilde{\alpha}_{\text {Sim }^{\prime}, 1}^{0}=\left(1, u_{1}\right)$ and defines $\tilde{\sigma}_{1}^{1}$ as $\left(\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 1}^{1}, \tilde{\sigma}_{1}^{1}\right)$ $\leftarrow \operatorname{Sim}_{R^{\prime}}^{\prime}\left(1^{\lambda}, \tilde{\alpha}_{\text {Sim }^{\prime}, 1}^{0}\right)$
2. The distribution of the values $\tilde{\rho}_{1}^{i}$ defined during step $3(\mathrm{a})$ ii, and of the values $\tilde{\sigma}_{1}^{i}$ defined during step 3 c is changed by evaluating $\left(\tilde{\alpha}_{\mathrm{Sim}^{\prime}, 1}^{i+1}, \tilde{\rho}_{1}^{i}, \tilde{\sigma}_{1}^{i+1}\right) \leftarrow \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(\tilde{\alpha}_{\mathrm{Sim}^{\prime}, 1}^{i}\right)$.

Notice that the latter change is applied only to the first run of R^{*} (i.e., up to the point where the value b^{\prime} is set). This means that the distribution of the values $\left(\rho_{1}^{i}, \sigma_{1}^{i}\right)_{i \in\left[t^{\prime}\right]}$ is not modified. The proof of the lemma below is identical to that of Lemma 7, and is therefore omitted.

Lemma 9. $H Y B_{4}(\lambda) \approx_{c} H Y B_{5}(\lambda)$.
Sixth hybrid. Hybrid $H Y B_{6}(\lambda)$ proceeds identically to $\operatorname{HYB}_{5}(\lambda)$, except for the following differences.

1. In step 4 , the sender additionally sets $\alpha_{R^{\prime}, 1-b}^{0}=1$. If $b=\perp$, set both $\alpha_{R^{\prime}, 0}^{0}=\alpha_{R^{\prime}, 1}^{0}=1$.
2. The distribution of the values $r_{1-b, i}^{\prime \prime}$ computed during step 4 a is changed by evaluating $\left(\alpha_{\mathbf{R}^{\prime}, 1-b}^{i}, \rho_{1-b}^{i}\right) \leftarrow \& \mathrm{R}^{\prime}\left(\alpha_{\mathrm{R}^{\prime}, 1-b}^{i-1}, \sigma_{1-b}^{i}\right)$, and by letting $r_{1-b, i}^{\prime}=\tilde{\rho}_{1-b}^{i}-m_{1-b, i}$. If $b=\perp$, such a change is applied on both branches.

The proof of the lemma below is identical to the proof of Lemma 6, and is therefore omitted.
Lemma 10. $H Y B_{5}(\lambda) \approx_{c} H Y B_{6}(\lambda)$.

Seventh hybrid. Hybrid $H Y B_{7}(\lambda)$ proceeds identically to $H Y B_{6}(\lambda)$, except for the following differences.

1. In step 4 , the sender additionally sets $\alpha_{\text {Sim }^{\prime}, 1-b}^{0}=\left(1, u_{1-b}\right)$ and defines σ_{1-b}^{1} as $\left(\alpha_{\text {Sim }^{\prime}, 1-b}^{1}, \sigma_{1-b}^{1}\right)$ $\leftarrow \operatorname{Sim}_{R^{\prime}}^{\prime}\left(1^{\lambda}, \alpha_{\text {Sim }^{\prime}, 1-b}^{0}\right)$. If $b=\perp$, set both $\alpha_{\text {Sim }^{\prime}, 0}^{0}=\left(1, u_{0}\right), \alpha_{\text {Sim }^{\prime}, 1}^{0}=\left(1, u_{1}\right)$ and generate $\sigma_{0}^{1}, \sigma_{1}^{1}$ as $\left(\alpha_{\operatorname{Sim}^{\prime}, 0}^{1}, \sigma_{0}^{1}\right) \leftarrow \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(1^{\lambda}, \alpha_{\operatorname{Sim}^{\prime}, 0}^{0}\right),\left(\alpha_{\mathrm{Sim}^{\prime}, 1}^{1}, \sigma_{1}^{1}\right) \leftarrow \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(1^{\lambda}, \alpha_{\operatorname{Sim}^{\prime}, 1}^{0}\right)$
2. The distribution of the values ρ_{1-b}^{i} defined during step 4 a , and of the values σ_{1-b}^{i+1} defined during step 4 e is changed by evaluating $\left(\alpha_{\operatorname{Sim}^{\prime}, 1-b}^{i+1}, \rho_{1-b}^{i}, \sigma_{1-b}^{i+1}\right) \leftarrow \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(\alpha_{\operatorname{Sim}^{\prime}, 1-b}^{i}\right)$. If $b=$ \perp, such changes are applied on both branches.

The proof of the lemma below is identical to that of Lemma 7, and is therefore omitted.
Lemma 11. $H Y B_{6}(\lambda) \approx_{c} H Y B_{7}(\lambda)$.

Simulator. We are now ready to describe the simulator Sim, interacting with the ideal functionality $\mathcal{F}_{\text {от }}$. The simulator works as follows:

1. Pick $u_{0}, u_{1} \leftarrow \Phi \mathcal{M}$, and let $\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 0}^{0}=\left(1, u_{0}\right), \tilde{\alpha}_{\operatorname{Sim}^{\prime}, 1}^{0}=\left(1, u_{1}\right),\left(\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 0}^{1}, \tilde{\sigma}_{0}^{1}\right) \leftarrow \Phi \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(1^{\lambda}, \tilde{\alpha}_{\operatorname{Sim}^{\prime}, 0}^{0}\right)$, $\left(\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 1}^{1}, \tilde{\sigma}_{1}^{1}\right) \leftarrow \Phi \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(1^{\lambda}, \tilde{\alpha}_{\operatorname{Sim}^{\prime}, 1}^{0}\right)$, and $b, b^{\prime}, b^{\prime \prime}=\perp$.
2. Upon receiving $\left(\gamma_{i}\right)_{i \in\left[t^{\prime}\right]}$ from R^{*}, sample $\beta_{1} \leftarrow \$ \mathrm{~V}_{0}\left(1^{\lambda}\right), r_{0,1}, r_{1,1} \leftarrow \$ \mathcal{M}$, and send $\left(\beta_{1}, r_{0,1}, r_{1,1}\right.$, $\left.\tilde{\sigma}_{0}^{1}, \tilde{\sigma}_{1}^{1}\right)$ to R^{*}.
3. Repeat the steps below, for each $i \in\left[t^{\prime}\right]$:
(a) Upon receiving a tuple $\left(\delta_{i}, m_{0, i}, m_{1, i}\right)$ from $\mathrm{R}^{*}, \operatorname{let} T_{i}=\left(\gamma_{i}, \beta_{i},\left(\delta_{i},\left(m_{0, j}\right)_{j \in[i]},\left(m_{1, j}\right)_{j \in[i]}\right)\right.$. Hence:
i. If $\mathrm{V}_{1}\left(T_{i}\right)=0$, restart R^{*}.
ii. Rewind R^{*} at the beginning of the current iteration, and send a tuple $\left(\beta_{i}^{\prime}, r_{0, i}^{\prime}, r_{1, i}^{\prime}\right)$ where $\beta_{i}^{\prime} \leftarrow \$ \mathrm{~V}_{0}\left(1^{\lambda}\right), r_{0, i}^{\prime}=\tilde{\rho}_{0}^{i}-m_{0, i}$ and $r_{1, i}^{\prime}=\tilde{\rho}_{1}^{i}-m_{1, i}$, for $\left(\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 0}^{i+1}, \tilde{\rho}_{0}^{i}, \tilde{\sigma}_{0}^{i+1}\right)$ $\leftarrow \$ \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(\tilde{\alpha}_{\mathrm{Sim}^{\prime}, 0}^{i}\right)$ and $\left(\tilde{\alpha}_{\mathrm{Sim}^{\prime}, 1}^{i+1}, \tilde{\rho}_{1}^{i}, \tilde{\sigma}_{1}^{i+1}\right) \leftarrow \$ \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(\tilde{\alpha}_{\operatorname{Sim}^{\prime}, 1}^{i}\right)$.
(b) Upon receiving a tuple $\left(\delta_{i}^{\prime}, m_{0, i}^{\prime}, m_{1, i}^{\prime}\right)$ from $\mathrm{R}^{*}, \operatorname{let} T_{i}^{\prime}=\left(\gamma_{i}, \beta_{i}^{\prime},\left(\delta_{i}^{\prime},\left(m_{0, j}^{\prime}\right)_{j \in[i]},\left(m_{1, j}^{\prime}\right)_{j \in[i]}\right)\right.$. Hence:
i. If $\mathrm{V}_{1}\left(T_{i}^{\prime}\right)=0$, restart R^{*}. If $\mathrm{V}_{1}\left(T_{i}^{\prime}\right)=1$ and on both branches $\left(m_{0, j}^{\prime}\right)_{j \in[i]} \neq$ $\left(m_{0, j}\right)_{j \in[i]}$ and $\left(m_{1, j}^{\prime}\right)_{j \in[i]} \neq\left(m_{1, j}\right)_{j \in[i]}$, abort.
ii. Attempt to define b^{\prime} as the binary value for which $\left(m_{b^{\prime}, j}^{\prime}\right)_{j \in[i]} \neq\left(m_{b^{\prime}, j}\right)_{j \in[i]}$, but $\left(m_{1-b^{\prime}, j}^{\prime}\right)_{j \in[i]}=\left(m_{1-b^{\prime}, j}\right)_{j \in[i]}$. If such value is found, halt and go directly to step 4 after setting $b \stackrel{\text { def }}{=} b^{\prime}$.
(c) Forward $\left(\tilde{\sigma}_{0}^{i+1}, \tilde{\sigma}_{1}^{i+1}, \beta_{i+1}, r_{0, i+1}, r_{1, i+1}\right)$ to R^{*}, where $\beta_{i+1} \leftarrow \$ \mathrm{~V}_{0}\left(1^{\lambda}\right)$, and $r_{0, i+1}, r_{1, i+1}$ $\leftarrow \$ \mathcal{M}$.
4. Query $\mathcal{F}_{\text {OT }}$ upon input b, obtaining a value $s_{b} \in\{0,1\}^{\lambda}$. ${ }^{11}$ Let $\alpha_{\operatorname{Sim}^{\prime}, 1-b}^{0}=\left(1, u_{1-b}\right), \alpha_{\mathrm{S}^{\prime}, b}^{0}=$ $\left(s_{b}, u_{b}\right)$ and define $\sigma_{0}^{1}, \sigma_{1}^{1}$ as $\left(\alpha_{\operatorname{Sim}^{\prime}, 1-b}^{1}, \sigma_{1-b}^{1}\right) \leftarrow \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(1^{\lambda}, \alpha_{\operatorname{Sim}^{\prime}, 1-b}^{0}\right),\left(\alpha_{\mathrm{S}^{\prime}, b}^{1}, \sigma_{b}^{1}\right) \leftarrow \$ \mathrm{~S}^{\prime}\left(1^{\lambda}, \alpha_{\mathrm{S}^{\prime}, b}^{0}\right)$. Rewind R^{*} to step 2, sample $\beta_{1} \leftarrow \$ \mathrm{~V}_{0}\left(1^{\lambda}\right), r_{0,1}, r_{1,1} \leftarrow \$ \mathcal{M}$, and send $\left(\beta_{1}, r_{0,1}, r_{1,1}, \sigma_{0}^{1}, \sigma_{1}^{1}\right)$ to R^{*}.
5. Repeat the steps below, for each $i \in\left[t^{\prime}\right]$:
(a) Upon receiving a tuple $\left(\delta_{i}, m_{0, i}, m_{1, i}\right)$ from R^{*}, let $T_{i}=\left(\gamma_{i}, \beta_{i},\left(\delta_{i},\left(m_{0, j}\right)_{j \in[i]},\left(m_{1, j}\right)_{j \in[i]}\right)\right.$. Hence:
i. If $\mathrm{V}_{1}\left(T_{i}\right)=0$, restart R^{*}.
ii. Rewind R^{*} at the beginning of the current iteration, and send a tuple ($\beta_{i}^{\prime \prime}, r_{0, i}^{\prime \prime}, r_{1, i}^{\prime \prime}$) where $\beta_{i}^{\prime \prime} \leftarrow \$ \mathrm{~V}_{0}\left(1^{\lambda}\right), r_{1-b, i}^{\prime \prime}=\rho_{1-b}^{i}-m_{1-b, i}$ and $r_{b, i}^{\prime \prime} \leftarrow \$ \mathcal{M}$, for $\left(\alpha_{\operatorname{Sim}^{\prime}, 1-b}^{i+1}, \rho_{1-b}^{i}, \sigma_{1-b}^{i+1}\right)$ $\leftarrow \$ \operatorname{Sim}_{\mathrm{R}^{\prime}}^{\prime}\left(\alpha_{\operatorname{Sim}^{\prime}, 1-b}^{i}\right)$.
(b) Upon receiving a tuple $\left(\delta_{i}^{\prime \prime}, m_{0, i}^{\prime \prime}, m_{1, i}^{\prime \prime}\right)$ from R^{*}, let $T_{i}^{\prime \prime}=\left(\gamma_{i}, \beta_{i}^{\prime \prime},\left(\delta_{i}^{\prime \prime},\left(m_{0, j}^{\prime \prime}\right)_{j \in[i]}\right.\right.$, $\left.\left(m_{1, j}^{\prime \prime}\right)_{j \in[i]}\right)$. Hence:
i. If either $\bigvee_{1}\left(T_{i}^{\prime \prime}\right)=0$, or $\bigvee_{1}\left(T_{i}^{\prime \prime}\right)=1$ and on both branches $\left(m_{0, j}^{\prime \prime}\right)_{j \in[i]} \neq\left(m_{0, j}\right)_{j \in[i]}$ and $\left(m_{1, j}^{\prime \prime}\right)_{j \in[i]} \neq\left(m_{1, j}\right)_{j \in[i]}$, abort.

[^8]ii. Attempt to define $b^{\prime \prime}$ as the binary value for which $\left(m_{b^{\prime \prime}, j}^{\prime \prime}\right)_{j \in[i]} \neq\left(m_{b^{\prime \prime}, j}\right)_{j \in[i]}$, but $\left(m_{1-b^{\prime \prime}, j}^{\prime \prime}\right)_{j \in[i]}=\left(m_{1-b^{\prime \prime}, j}\right)_{j \in[i]}$. If such value is found, but $b^{\prime \prime} \neq b$, abort. iii. If $b^{\prime \prime} \neq \perp$, but $\left(m_{b^{\prime \prime}, j}^{\prime \prime}\right)_{j \in[i]}=\left(m_{b^{\prime \prime}, j}\right)_{j \in[i]}$.
(c) Forward $\left(\sigma_{0}^{i+1}, \sigma_{1}^{i+1}, \beta_{i+1}, r_{0, i+1}, r_{1, i+1}\right)$ to R^{*}, where $\beta_{i+1} \leftarrow \$ \mathrm{~V}_{0}\left(1^{\lambda}\right)$, and $r_{0, i+1}, r_{1, i+1}$ $\leftarrow \$ \mathcal{M}$, and further $\left(\alpha_{\mathrm{S}^{\prime}, b}^{i+1}, \sigma_{b}^{i+1}\right) \leftarrow \$ \mathrm{~S}^{\prime}\left(\alpha_{\mathrm{S}^{\prime}, b}^{i}, m_{b, i}^{\prime \prime}+r_{b, i}^{\prime \prime}\right)$, while σ_{1-b}^{i+1} was obtained in step 5(a)ii above.

6. Return the output of R^{*}.

By inspection, the distribution of $H Y B_{7}(\lambda)$ is identical to that of $I D E A L_{\mathcal{F}_{\text {or }}, \operatorname{Sim}^{\mathrm{R}^{*}(z)}}\left(\lambda, s_{0}, s_{1}, b\right)$ for the above defined simulator. This concludes the proof of property (a) in the definition of receiver-sided simulatability.

4.3.2 Indistinguishability Against a Malicious Sender

We need to show that given the view of a malicious sender it is hard to distinguish whether he has interacted with a reciever using choice bit $b=0$ or $b=1$. More precisely, for every non-uniform PPT malicious sender S^{*} it holds that

$$
\left\{V I E W_{\Pi, S^{*}(z)}^{\mathrm{R}}\left(\lambda, s_{0}, s_{1}, 0\right)\right\}_{\lambda, s_{0}, s_{1}, z} \approx_{c}\left\{\operatorname{VIE} W_{\Pi, \mathrm{S}^{*}(z)}^{\mathrm{R}}\left(\lambda, s_{0}, s_{1}, 1\right)\right\}_{\lambda, s_{0}, s_{1}, z}
$$

where $\lambda \in \mathbb{N}, s_{0}, s_{1} \in\{0,1\}^{\lambda}$, and $z \in\{0,1\}^{*}$, and where $\operatorname{VIE} W_{\Pi, \mathrm{S}^{*}(z)}^{\mathrm{R}}\left(\lambda, s_{0}, s_{1}, b\right)$ is the distribution of the view of S^{*} (with input s_{0}, s_{1} and auxiliary input z) at the end of a real execution of protocol Π with the honest receiver R (with input b).

Let $H Y B_{0}(\lambda, b) \equiv \operatorname{VIE} W_{\Pi, \mathrm{S}^{*}(z)}^{\mathrm{R}}\left(\lambda, s_{0}, s_{1}, b\right)$. To show the above, we define the following hybrid $H Y B(\lambda, b)$.

1. The receiver picks for all $i \in\left[t^{\prime}\right] m_{1-b, i} \leftarrow \$ \mathcal{M}$. then he computes $\left(\gamma_{i}, \alpha_{i}\right) \leftarrow \$ \mathrm{P}_{0}\left(\left(m_{1-b, j}\right)_{j \in[i]}\right)$ and sends $\left(\gamma_{i}\right)_{i \in\left[t^{\prime}\right]}$.
2. Repeat the steps below, for each $i \in\left[t^{\prime}\right]$:

Upon receiving $\left(\sigma_{0}^{i}, \sigma_{1}^{i}, \beta_{i}, r_{0, i}, r_{1, i}\right)$ the receiver picks $\rho_{b}^{i} \leftarrow \$ \mathcal{M}$. He sets $m_{b, i}=\rho_{b}^{i}-r_{b, i}$ and computes $\delta_{i} \leftarrow \& \mathrm{P}_{1}\left(\alpha_{i}, \beta_{i}, \gamma_{i},\left(m_{b, j}\right)_{j \in[i]}\right)$. Then he sends $\left(\delta_{i}, m_{0, i}, m_{1, i}\right)$.
3. The experiment outputs the view of malicious sender S^{*}.

Notice that the output distribution of $H Y B_{1}(\lambda, b)$ does not change when we sample $m_{b, i} \leftarrow \$ \mathcal{M}$ during the first step and define $\rho_{b}^{i}=m_{b, i}+r_{b, i}$ in the second step.

Lemma 12. For all $b \in\{0,1\}$, we have that $H Y B_{0}(\lambda, b) \approx_{c} H Y B_{1}(\lambda, b)$.
Proof. By contradiction, assume that there exists a PPT distinguisher D, a bit $b \in\{0,1\}$, and a polynomial $p(\lambda) \in \operatorname{poly}(\lambda)$ such that for infinitely many values of $\lambda \in \mathbb{N}$:

$$
\mid \operatorname{Pr}\left[\mathrm{D}\left(H Y B_{0}(\lambda, b)=1\right]-\operatorname{Pr}\left[\mathrm{D}\left(H Y B_{1}(\lambda, b)\right)=1\right] \mid \geq 1 / p(\lambda)\right.
$$

We will construct a PPT distinguisher D^{\prime} such that

$$
\begin{aligned}
& \left\lvert\, \mathbb{P}\left[\mathrm{D}^{\prime}\left(\alpha_{\mathrm{D}}^{t^{\prime}},\left(\rho^{i}, \sigma^{i}\right)_{i \in\left[t^{\prime}\right]}\right)=1: \begin{array}{rl}
\forall i & \in\left[t^{\prime}\right],\left(\alpha_{\mathrm{R}}^{i}, \rho^{i}\right) \leftarrow \$ \mathrm{R}\left(\alpha_{\mathrm{R}}^{i-1}, \sigma^{i}\right) \\
& \wedge\left(\alpha_{\mathrm{D}}^{i}, \sigma^{i}\right) \leftarrow \mathrm{D}\left(\alpha_{\mathrm{D}}^{i-1}, \rho^{i}\right)
\end{array}\right]\right. \\
&-\mathbb{P}\left[\mathrm{D}^{\prime}\left(\alpha_{\mathrm{D}}^{t^{\prime}},\left(\rho^{i}, \sigma^{i}\right)_{i \in\left[t^{\prime}\right]}\right)=1: \quad \forall i \in\left[t^{\prime}\right], \rho^{i} \leftarrow \$ \mathcal{M}\right. \\
& \quad\left.\wedge\left(\alpha_{\mathrm{D}}^{i}, \sigma^{i}\right) \leftarrow \$ \mathrm{D}\left(\alpha_{\mathrm{D}}^{i-1}, \rho^{i}\right)\right] \mid \geq 1 / p(\lambda) .
\end{aligned}
$$

We define D^{\prime} as follows. Distinguisher D^{\prime} invokes D and acts as in the actual protocol, except for the way he samples the values ρ^{i} which are obtained from the challenger after forwarding each of the values σ^{i} sent by the malicious sender. Finally, D^{\prime} outputs the same as D . It is easy to see that when ρ^{i} is generated by R , then D^{\prime} simulates $H Y B_{0}(\lambda, b)$, and when ρ^{i} is picked uniformly at random he generates $H Y B_{1}(\lambda, b)$. Hence, D^{\prime} has the same distinguishing advantage as that of D. This finishes the proof.

In $H Y B_{1}(\lambda, b)$ we can sample both messages $m_{1, i}, m_{0, i}$ for all $i \in[n]$ of the commit-andprove protocol in the very beginning. Therefore we can use the choice bit indistinguishability to argue that the receivers choice bit is hidden.

Lemma 13. $H Y B_{1}(\lambda, 0) \approx_{c} H Y B_{1}(\lambda, 1)$.
Proof. The proof is by a standard hybrid argument. For each $j \in\left[0, t^{\prime}\right]$, let $H Y B_{1, j}(\lambda, b)$ be the hybrid experiment that is identical to $H Y B_{1}(\lambda, b)$ except that after sampling $\left(m_{0, i}, m_{1, i}\right)_{i \in\left[t^{\prime}\right]}$ uniformly from \mathcal{M}, the receiver defines all commitments $\left(\gamma_{i}\right)_{i \leq j}$ by running the prover P of the underlying commit-and-prove protocol upon input ($\left.m_{1-b, i}\right)_{i \leq j}$, whereas the commitments $\left(\gamma_{i}\right)_{i>j}$ are defined by running the prover P upon input $\left(m_{b, i}\right)_{i \leq j}$. Observe that $H Y B_{1,0}(\lambda, b) \equiv$ $H Y B_{1}(\lambda, 1-b)$ and $H Y B_{1, t^{\prime}}(\lambda, b) \equiv H Y B_{1}(\lambda, b)$; hence, it suffices to show that $H Y B_{1, j}(\lambda, b) \approx_{c}$ $H Y B_{1, j+1}(\lambda, b)$ holds for all $b \in\{0,1\}$ and for all $j \in\left[0, t^{\prime}\right]$.

By contradiction, assume that there exists a PPT distinguisher D , a value $b \in\{0,1\}$, an index $j \in\left[0, t^{\prime}\right]$, and a polynomial $p(\lambda) \in \operatorname{poly}(\lambda)$, such that for infinitely many values of $\lambda \in \mathbb{N}$:

$$
\left|\mathbb{P}\left[\mathrm{D}\left(H Y B_{1, j}(\lambda, b)\right)=1\right]-\mathbb{P}\left[\mathrm{D}\left(H Y B_{1, j+1}(\lambda, b)\right)=1\right]\right| \mid \geq 1 / p(\lambda) .
$$

We will construct a PPT distinguisher D^{\prime} and a PPT malicious verifier V^{*} such that

$$
\begin{aligned}
& \mid \mathbb{P}\left[\mathrm{D}^{\prime}\left(\left\langle\mathrm{P}\left(\left(m_{b, i}\right)_{i \leq j+1},\left(m_{1-b, i}\right)_{i \leq j+1}, 0\right), \mathrm{V}^{*}\left(1^{\lambda}\right)\right\rangle\right)=1\right] \\
& \quad-\mathbb{P}\left[\mathrm{D}^{\prime}\left(\left\langle\mathrm{P}\left(\left(m_{b, i}\right)_{i \leq j+1},\left(m_{1-b, i}\right)_{i \leq j+1}, 1\right), \mathrm{V}^{*}\left(1^{\lambda}\right)\right\rangle\right)=1\right] \mid \geq 1 / p(\lambda)
\end{aligned}
$$

where for all $i \in\left[t^{\prime}\right]$, the values $m_{0, i}, m_{1, i}$ are uniformly sampled by D^{\prime} from \mathcal{M}. Verifier V^{*} invokes D and emulates faithfully a run of $H Y B_{1, j}(\lambda, b)$ except that it embeds the commitment received from the challenger in the value γ_{j+1} which is part of the first message sent to D , and similarly, after receiving $\left(\sigma_{0}^{j+1}, \sigma_{1}^{j+1}, \beta_{j+1}, r_{0, j+1}, r_{1, j+1}\right)$ from D , it forwards β_{j+1} to the challenger, obtaining a value δ_{j+1} that is used together with $\left(m_{b, i}\right)_{i \leq j+1}$ and $\left(m_{1-b, i}\right)_{i \leq j+1}$ in order to terminate the execution of the experiment. In the end, D^{\prime} outputs the output of D .

Clearly, when the challenger uses committing branch zero, the reduction perfectly simulates $H Y B_{1, j}(\lambda, b)$, and when the challenger uses committing branch 1 , the reduction perfectly simulates $H Y B_{1, j+1}(\lambda, b)$. Since $t^{\prime} \in \operatorname{poly}(\lambda)$, the statement follows.

5 Conclusions

We have shown a construction of maliciously secure oblivious transfer (OT) protocol from a certain class of key agreement (KA) and semi-honestly secure OT protocols that enjoy a property called strong uniformity, which informally means that the distribution of the messages sent by one of the parties is computationally close to uniform, even in case the other party is malicious.

When starting with 2 -round or 3 -round strongly uniform OT or KA, we obtain 4 -round maliciously secure OT, and thus, invoking [5], 5-round maliciously secure MPC, from standard
assumptions including low-noise LPN, LWE, Subset Sum, CDH, DDH, and RSA (all with polynomial hardness).

It remains a fascinating open problem whether round-optimal (i.e., 4-round) maliciously secure MPC exists under the same assumptions (except for DDH [3]). Also, it is a natural question to see whether strongly uniform KA or semi-honestly secure OT with $t \geq 4$ rounds can be instantiated from even weaker assumptions, and whether they imply a secure commit-and-prove protocol.

References

[1] Michael Alekhnovich. More on average case vs approximation complexity. In 44 th Annual Symposium on Foundations of Computer Science, pages 298-307. IEEE Computer Society Press, October 2003.
[2] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to roundoptimal secure multiparty computation. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 468-499. Springer, Heidelberg, August 2017.
[3] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai. Promise zero knowledge and its applications to round optimal mpc. Cryptology ePrint Archive, Report 2017/1088, 2017. https://eprint.iacr.org/ 2017/1088.
[4] Mihir Bellare and Moti Yung. Certifying cryptographic tools: The case of trapdoor permutations. In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO'92, volume 740 of Lecture Notes in Computer Science, pages 442-460. Springer, Heidelberg, August 1993.
[5] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages 500-532. Springer, Heidelberg, April / May 2018.
[6] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation without setup. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages 645-677. Springer, Heidelberg, November 2017.
[7] Jan Camenisch, Gregory Neven, and abhi shelat. Simulatable adaptive oblivious transfer. In Moni Naor, editor, Advances in Cryptology - EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 573-590. Springer, Heidelberg, May 2007.
[8] Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited. Cryptology ePrint Archive, Report 2017/631, 2017. http://eprint.iacr.org/2017/631.
[9] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Delayed-input non-malleable zero knowledge and multi-party coin tossing in four rounds. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages 711-742. Springer, Heidelberg, November 2017.
[10] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Round-optimal secure two-party computation from trapdoor permutations. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages 678-710. Springer, Heidelberg, November 2017.
[11] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley and David Chaum, editors, Advances in Cryptology - CRYPTO'84, volume 196 of Lecture Notes in Computer Science, pages 10-18. Springer, Heidelberg, August 1984.
[12] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology - CRYPTO'82, pages 205-210. Plenum Press, New York, USA, 1982.
[13] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact round complexity of secure computation. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science, pages 448-476. Springer, Heidelberg, May 2016.
[14] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages 468-499. Springer, Heidelberg, April / May 2018.
[15] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh Viswanathan. The relationship between public key encryption and oblivious transfer. In 41 st Annual Symposium on Foundations of Computer Science, pages 325-335. IEEE Computer Society Press, November 2000.
[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691-729, 1991.
[17] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270-299, 1984.
[18] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simulatable oblivious transfer. In Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 265-282. Springer, Heidelberg, December 2007.
[19] Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of Lecture Notes in Computer Science, pages 412-426. Springer, Heidelberg, March 2008.
[20] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Blackbox constructions of protocols for secure computation. Cryptology ePrint Archive, Report 2010/164, 2010. http://eprint.iacr.org/2010/164.
[21] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubramaniam. Round-optimal secure multi-party computation. Cryptology ePrint Archive, Report 2017/1056, 2017. http://eprint.iacr.org/2017/1056.
[22] Dennis Hofheinz and Eike Kiltz. The group of signed quadratic residues and applications.
In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 637-653. Springer, Heidelberg, August 2009.
[23] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed inputs. In Moni Naor, editor, Advances in Cryptology - EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 97-114. Springer, Heidelberg, May 2007.
[24] Saqib A. Kakvi, Eike Kiltz, and Alexander May. Certifying RSA. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages 404-414. Springer, Heidelberg, December 2012.
[25] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 78-95. Springer, Heidelberg, May 2005.
[26] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Matthew Franklin, editor, Advances in Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 335-354. Springer, Heidelberg, August 2004.
[27] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th Annual ACM Symposium on Theory of Computing, pages 723-732. ACM Press, May 1992.
[28] Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and non-interactive concurrent non-malleable commitments from time-lock puzzles. Cryptology ePrint Archive, Report 2017/273, 2017. http://eprint.iacr.org/2017/273.
[29] Andrew Y. Lindell. Efficient fully-simulatable oblivious transfer. In Tal Malkin, editor, Topics in Cryptology - CT-RSA 2008, volume 4964 of Lecture Notes in Computer Science, pages 52-70. Springer, Heidelberg, April 2008.
[30] Yehuda Lindell and Hila Zarosim. On the feasibility of extending oblivious transfer. In Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of Lecture Notes in Computer Science, pages 519-538. Springer, Heidelberg, March 2013.
[31] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate signatures from trapdoor permutations. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 74-90. Springer, Heidelberg, May 2004.
[32] Vadim Lyubashevsky, Adriana Palacio, and Gil Segev. Public-key cryptographic primitives provably as secure as subset sum. In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture Notes in Computer Science, pages 382-400. Springer, Heidelberg, February 2010.
[33] Moni Naor and Benny Pinkas. Computationally secure oblivious transfer. Journal of Cryptology, 18(1):1-35, January 2005.
[34] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box twoparty computation. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryptology - CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Science, pages 339-358. Springer, Heidelberg, August 2015.
[35] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer. In David Wagner, editor, Advances in Cryptology - CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 554-571. Springer, Heidelberg, August 2008.
[36] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical report, Harvard University, 1981.
[37] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of Computing, pages 84-93. ACM Press, May 2005.
[38] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual Symposium on Foundations of Computer Science, pages 160-164. IEEE Computer Society Press, November 1982.
[39] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual Symposium on Foundations of Computer Science, pages 162-167. IEEE Computer Society Press, October 1986.

A The ORS Commit-and-Prove Protocol

A. 1 Commitment Schemes

A non-interactive commitment scheme is an efficient randomized algorithm Commit taking as input a message $m \in \mathcal{M}$ together with random coins $r \in\{0,1\}^{\lambda}$, and returning a commitment com. The opening of a commitment com consists of strings (m, r) such that com $=$ Commit $(m ; r)$; we sometimes write $\operatorname{Open}(m)$ to denote the randomness that is needed to open successfully a value com, i.e. com $=\operatorname{Commit}(m ; \operatorname{Open}(m))$.

As for security, commitment schemes should satisfy two properties called hiding and binding. Intuitively, the first property says that a commitment does not leak any information on the committed message; the second property says that it should be hard to open a given commitment in two different ways. The formal definitions follow.

Definition 8 (Hiding of commitments). A commitment scheme is perfectly (resp., computationally or statistically) hiding, if for all $m_{0}, m_{1} \in \mathcal{M}$ it holds that the ensembles $\left\{\operatorname{Commit}\left(m_{0} ; U_{\lambda}\right)\right\}_{\lambda \in \mathbb{N}}$ and $\left\{\operatorname{Commit}\left(m_{1} ; U_{\lambda}\right)\right\}_{\lambda \in \mathbb{N}}$ are identically distributed (resp., computationally or statistically close), where U_{λ} denotes the uniform distribution over $\{0,1\}^{\lambda}$.

Definition 9 (Binding of commitments). A commitment scheme is computationally binding, if for all PPT adversaries A there is a negligible function $\nu: \mathbb{N} \rightarrow[0,1]$ such that
$\operatorname{Pr}\left[\operatorname{Commit}(m ; r)=\operatorname{Commit}\left(m^{\prime} ; r^{\prime}\right)=\operatorname{com} \wedge m \neq m^{\prime}:\left(\operatorname{com},(m, r),\left(m^{\prime}, r^{\prime}\right)\right) \leftarrow \& \mathrm{~A}\left(1^{\lambda}\right)\right] \leq \nu(\lambda)$.
In case the above probability equals zero for all even unbounded adversaries, we say that the commitment scheme is perfectly binding.

A. 2 The ORS Construction

The ORS string commit-and-prove protocol $\Pi_{c \& p}=\left(\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{~V}_{0}, \mathrm{~V}_{1}\right)$ for string length n is depicted in Fig. 4. It relies on a statistically binding commitment scheme (Commit, Open) and
a linear error detection code G with minimal distance of at least $\frac{1}{2}(n+\kappa)$, which can be instantiated with, e.g., a Reed-Solomon code. In what follows, the code G is a public parameter of the protocol, and we write $G(m)$ to denote an encoding of message m under code G. For simplifying the presentation of the protocol, we use $\psi: \mathbb{Z}_{q}^{q} \rightarrow \mathbb{Z}_{q}^{q-1}$ to denote the linear map

$$
(\mathbf{x}[0], \ldots, \mathbf{x}[q-1]) \mapsto(\mathbf{x}[1]-\mathbf{x}[0], \ldots, \mathbf{x}[q-1]-\mathbf{x}[0])
$$

where $\mathbf{x}[i]$ is the i-th entry of a vector $\mathbf{x} \in \mathbb{Z}_{q}^{q}$.
Remark 1. In the ORS protocol, the prover does not need to known or fix $\hat{\mathbf{m}}_{1-b}$ till the second round. Nevertheless, during the choice bit indistinguishability experiment, both messages need to be fixed before the first round.

Lemma 14 (Completeness of the ORS protocol). Assuming that the commitment scheme Commit is complete with probability at least $1-\epsilon$, then the ORS commit-and-prove protocol from Fig. 4 is complete with probability at least $(1-\epsilon)^{(q+1) n}$.

Proof. The verifier opens $(q+1) n$ commitments. By its $(1-\epsilon)$ completeness, the commitments will be opened correctly with probability $(1-\epsilon)^{(q+1) n}$. In the following, we assume that this is the case. The protocol will succeed if and only if the checks do not fail, i.e.

$$
\left(\mathbf{c}_{0}+\mathbf{c}_{1}=\beta\right) \wedge\left(\hat{\mathbf{m}}_{0}=G\left(m_{0}\right) \wedge \hat{\mathbf{m}}_{1}=G\left(m_{1}\right)\right] \wedge\left(\forall k \in\{0,1\}, i \in[n]: \psi\left(\mathbf{M}_{k, i}\left[\mathbf{c}_{k}[i], *\right]\right)=(-1)^{\mathbf{c}_{k}[i]} \mathbf{v}_{k, i}\right)
$$

holds. By construction, it is easy to see that $\beta=\mathbf{c}_{0}+\mathbf{c}_{1}$. Next we will show that in a honest execution of the protocol, both $\hat{\mathbf{m}}_{0}$ and $\hat{\mathbf{m}}_{1}$ will be codewords w.r.t. code G. The entries of $\hat{\mathbf{m}}_{0}$ and $\hat{\mathbf{m}}_{1}$ are computed by the verifier as

$$
\hat{\mathbf{m}}_{\ell}[i]:=\sum_{k \in\{0,1\}} \mathbf{M}_{\ell, i}\left[k, \mathbf{d}_{\ell}[i]\right]
$$

for $\ell \in\{0,1\}, i \in[n]$. For branch $1-b$, the vector $\mathbf{d} \in \mathbb{Z}_{q}^{n}$ is chosen by the receiver such that

$$
\sum_{k \in\{0,1\}} \mathbf{M}_{1-b, i}\left[k, \mathbf{d}_{1-b}[i]\right]=\hat{\mathbf{m}}_{1-b}^{\prime}[i]
$$

holds for all $i \in[n]$, where $\hat{\mathbf{m}}_{1-b}^{\prime}[i]$ denotes $\hat{\mathbf{m}}_{1-b}[i]$ on the receiver's side. Further, such a vector \mathbf{d}_{1-b} always exists due to the fact that there are q columns in $\mathbf{M}_{1-b, i}$ and each column sums to a different value in \mathbb{Z}_{q}. For branch b,

$$
\sum_{k \in\{0,1\}} \mathbf{M}_{b, i}\left[k, \mathbf{d}_{b}[i]\right]=\hat{\mathbf{m}}_{b}^{\prime}[i]
$$

holds for any $\mathbf{d}_{b} \in \mathbb{Z}_{q}^{n}$. Therefore the vectors $\hat{\mathbf{m}}_{0}$ and $\hat{\mathbf{m}}_{1}$ computed by the verifier are identical to the vectors $\hat{\mathbf{m}}_{0}^{\prime}$ and $\hat{\mathbf{m}}_{1}^{\prime}$ computed by the prover, which are in particular chosen to be codewords w.r.t. code G for messages m_{0} and m_{1}.

The last part of the checking procedure checks whether the image of ψ for the two rows of \mathbf{M} is indeed consistent with the transmitted value $\mathbf{v}_{k, i}$. More specifically, $\forall k \in\{0,1\}, i \in[n]$,

$$
\psi\left(\mathbf{M}_{k, i}\left[\mathbf{c}_{k}[i], *\right]\right)=(-1)^{\mathbf{c}_{k}[i]} \mathbf{v}_{k, i}
$$

must hold. Again, by construction this is true for all $i \in[n]$ and $k=1-b$, simply because $\mathbf{v}_{1-b, i}$ is chosen such that it holds. In case $k=b$ it holds as well, since for each $i \in[n]$ all the

```
Verifier \(\mathrm{V}\left(1^{\lambda}\right)\)
Prover \(\mathrm{P}\left(m_{0}, m_{1}, b\right)\)
\(\hat{\mathbf{m}}_{b}:=G\left(m_{b}\right), \mathbf{c}_{1-b} \leftarrow\{0,1\}^{n}\)
\(\forall i \in[n]\) :
    \(\mathbf{M}_{b, i} \leftarrow \mathrm{~s} \mathbb{Z}_{q}^{2 \times q}\) s.t. \(\forall j \in \mathbb{Z}_{q}:\)
        \(\sum_{k \in\{0,1\}} \mathbf{M}_{b, i}[k, j]=\hat{\mathbf{m}}_{b}[i]\)
    \(\sigma_{i} \leftarrow s \operatorname{Perm}\left(\mathbb{Z}_{q}\right)\)
    \(\mathbf{M}_{1-b, i} \leftarrow \mathbb{Z}_{q}^{2 \times q}\) s.t. \(\forall j \in \mathbb{Z}_{q}\) :
        \(\sum_{k \in\{0,1\}} \mathbf{M}_{1-b, i}[k, j]=\sigma_{i}(j)\)
    \(\mathbf{v}_{b, i}:=\psi\left(\mathbf{M}_{b, i}[0, *]\right)\)
    \(\mathbf{v}_{1-b, i}:=(-1)^{\mathbf{c}_{1-b}[i]} \psi\left(\mathbf{M}_{1-b . i}\left[\mathbf{c}_{1-b}[i], *\right]\right)\)
\(\gamma:=\left\{\mathbf{v}_{k, i}, \operatorname{Commit}\left(\mathbf{M}_{k, i}\right)\right\}_{k \in\{0,1\}, i \in[n]}\)
\(\beta \leftarrow s\{0,1\}^{n}\)
    \(\xrightarrow{\beta}\)
    \(\hat{\mathbf{m}}_{1-b}:=G\left(m_{1-b}\right), \mathbf{c}_{b}:=\beta-\mathbf{c}_{1-b}\)
    \(\mathbf{d}_{1-b} \in \mathbb{Z}_{q}^{n}\) s.t.
        \(\sum_{k \in\{0,1\}} \mathbf{M}_{1-b, i}\left[k, \mathbf{d}_{1-b}[i]\right]=\hat{\mathbf{m}}_{1-b}[i]\)
    \(\mathrm{d}_{b} \leftarrow \mathbb{Z}_{q}^{n}\)
    \(\delta_{\mathbf{c}}:=\operatorname{Open}\left(\mathbf{M}_{k, i}\left[\mathbf{c}_{k}[i], *\right]\right)_{k \in\{0,1\}, i \in[n]}\)
    \(\delta_{\mathbf{d}}:=\operatorname{Open}\left(\mathbf{M}_{k, i}\left[1-\mathbf{c}_{k}[i], \mathbf{d}_{k}[i]\right]\right)_{k \in\{0,1\}, i \in[n]}\)
    \(\delta, m_{0}, m_{1}\)
    \(\delta:=\left(\mathbf{c}_{0}, \mathbf{c}_{1}, \mathbf{d}_{0}, \mathbf{d}_{1}, \delta_{\mathbf{c}}, \delta_{\mathbf{d}}\right)\)
```

```
\forall\ell\in{0,1},i\in[n]:
```

\forall\ell\in{0,1},i\in[n]:
\mp@subsup{\hat{\mathbf{m}}}{\ell}{\ell}[i]:=}\mp@subsup{\sum}{k\in{0,1}}{}\mp@subsup{\mathbf{M}}{\ell,i}{[}[k,\mp@subsup{\mathbf{d}}{\ell}{}[i]
\mp@subsup{\hat{\mathbf{m}}}{\ell}{\ell}[i]:=}\mp@subsup{\sum}{k\in{0,1}}{}\mp@subsup{\mathbf{M}}{\ell,i}{[}[k,\mp@subsup{\mathbf{d}}{\ell}{}[i]
check if
$\mathbf{c}_{0}+\mathbf{c}_{1}=\beta$
$\hat{\mathbf{m}}_{0}=G\left(m_{0}\right), \hat{\mathbf{m}}_{1}=G\left(m_{1}\right)$
$\forall k \in\{0,1\}, i \in[n]:$
$\psi\left(\mathbf{M}_{k, i}\left[\mathbf{c}_{k}[i], *\right]\right)=(-1)^{\mathbf{c}_{k}[i]} \mathbf{v}_{k, i}$
output 0 iff check fails

```

Figure 4: The ORS string commit-and-prove protocol. Perm \(\left(\mathbb{Z}_{q}\right)\) is the set of permutations over \(\mathbb{Z}_{q}\), and Open \((m)\) denotes the randomness that is needed to open commitment Commit \((m)\).
columns of \(\mathbf{M}_{b, i}\) sum to \(\hat{\mathbf{m}}_{b, i}\) or equivalently for all \(j \in \mathbb{Z}_{q}, \mathbf{M}_{b, i}[1, j]=\hat{\mathbf{m}}_{b, i}-\mathbf{M}_{b, i}[0, j]\). Due to
this fact, for all \(c \in\{0,1\}, i \in[n]\)
\[
\begin{aligned}
\psi\left(\mathbf{M}_{b, i}[c, *]\right) & =\left(\mathbf{M}_{b, i}[c, 1]-\mathbf{M}_{b, i}[c, 0], \ldots, \mathbf{M}_{b, i}[c, q-1]-\mathbf{M}_{b, i}[c, 0]\right) \\
& =\left(-\mathbf{M}_{b, i}[1-c, 1]+\mathbf{M}_{b, i}[1-c, 0], \ldots,-\mathbf{M}_{b, i}[1-c, q-1]+\mathbf{M}_{b, i}[1-c, 0]\right) \\
& =(-1) \psi\left(\mathbf{M}_{b, i}[1-c, *]\right)
\end{aligned}
\]
holds. Further, \(\mathbf{v}_{b, i}:=\psi\left(\mathbf{M}_{b . i}[0, *]\right)\) and therefore
\[
\psi\left(\mathbf{M}_{b, i}\left[\mathbf{c}_{b}[i], *\right]\right)=(-1)^{\mathbf{c}_{b}[i]} \mathbf{v}_{b, i}
\]
holds for any choice of \(\mathbf{c}_{b} \in\{0,1\}^{n}\). This concludes proving completeness.
Lemma 15 (Existence of a committing branch for the ORS protocol). Let \(\kappa \in \mathbb{N}\) be a statistical security parameter. Assuming that the commitment scheme Commit is statistically binding except with probability at most \(\epsilon\), and that code \(G\) has minimal distance \(\frac{1}{2}(n+\kappa)\), then the ORS protocol from Fig. 4 satisfies the property of existence of a committing branch except with probability at most \(2 \epsilon+2^{-\kappa}\).

Proof. We define several hybrids to prove the lemma. In the first hybrid, a malicious prover \(\mathrm{P}^{*}\) loses if, for any \(i \in[n]\) and any \(k \in\{0,1\}\), a partial message \(\hat{\mathbf{m}}_{k}[i]\) differs from \(\hat{\mathbf{m}}_{b}^{\prime}[i]\) and the opened row of \(\mathbf{M}_{k, i}\) differs as well, i.e. \(\mathbf{c}_{k}[i] \neq \mathbf{c}_{k}^{\prime}[i]\).

In the second hybrid, the adversary will lose as well if there are more than \(\kappa\) positions \(i \in[n]\) for which both messages \(\hat{\mathbf{m}}_{0}[i]\) and \(\hat{\mathbf{m}}_{1}[i]\) differ from the messages \(\hat{\mathbf{m}}_{0}^{\prime}[i]\) and \(\hat{\mathbf{m}}_{1}^{\prime}[i]\) of the second run.

Hybrid \(H Y B_{0}(\lambda)\) : This is the original security game, i.e.
\[
\begin{aligned}
& \left(\gamma, \alpha_{0}\right) \leftarrow \$ \mathrm{P}_{0}^{*}\left(1^{\lambda}\right) \\
& \beta, \beta^{\prime} \leftarrow \$ \mathrm{~V}_{0}\left(1^{\lambda}\right) \\
& \left(\delta, m_{0}, m_{1}\right) \leftarrow \$ \mathrm{P}_{1}^{*}\left(\alpha_{0}, \beta\right) \\
& \left(\delta^{\prime}, m_{0}^{\prime}, m_{1}^{\prime}\right) \leftarrow \$ \mathrm{P}_{1}^{*}\left(\alpha_{0}, \beta^{\prime}\right)
\end{aligned}
\]
and the prover wins iff
\[
\begin{gathered}
\left(\vee_{1}(T)=1\right) \wedge\left(\vee_{1}\left(T^{\prime}\right)=1\right) \\
\wedge\left(m_{0} \neq m_{0}^{\prime}\right) \wedge\left(m_{1} \neq m_{1}^{\prime}\right)
\end{gathered}
\]

Hybrid \(H Y B_{1}(\lambda)\) : Identical to \(H Y B_{0}(\lambda)\) except that the prover wins iff
\[
\begin{aligned}
&\left(\mathrm{V}_{1}(T)=1\right) \wedge\left(\mathrm{V}_{1}\left(T^{\prime}\right)=1\right) \\
& \wedge\left(m_{0} \neq m_{0}^{\prime}\right) \wedge\left(m_{1} \neq m_{1}^{\prime}\right) \\
& \wedge \forall i \in[n], k \in\{0,1\}:\left(\hat{\mathbf{m}}_{k}[i]=\hat{\mathbf{m}}_{k}^{\prime}[i]\right) \vee\left(\mathbf{c}_{k}[i]=\mathbf{c}_{k}^{\prime}[i]\right) .
\end{aligned}
\]

Hybrid \(H Y B_{2}(\lambda)\) : Identical to \(H Y B_{1}(\lambda)\) except the prover wins iff
\[
\begin{aligned}
& \quad\left(\vee_{1}(T)=1\right) \wedge\left(\vee_{1}\left(T^{\prime}\right)=1\right) \\
& \wedge\left(m_{0} \neq m_{0}^{\prime}\right) \wedge\left(m_{1} \neq m_{1}^{\prime}\right) \\
& \wedge \forall i \in[n], k \in\{0,1\}:\left(\hat{\mathbf{m}}_{k}[i]=\hat{\mathbf{m}}_{k}^{\prime}[i]\right) \vee\left(\mathbf{c}_{k}[i]=\mathbf{c}_{k}^{\prime}[i]\right) \\
& \wedge\left|\left\{i \in[n] \mid \hat{\mathbf{m}}_{0}[i] \neq \hat{\mathbf{m}}_{0}^{\prime}[i] \wedge \hat{\mathbf{m}}_{1}[i] \neq \hat{\mathbf{m}}_{1}^{\prime}[i]\right\}\right|<\kappa .
\end{aligned}
\]

Claim 8. \(\Delta\left(H Y B_{0}(\lambda) ; H Y B_{1}(\lambda)\right) \leq 2 \epsilon\).
Proof. There is a difference between the two hybrids if and only if there is an \(i \in[n]\) and \(k \in\{0,1\}\) such that
\[
\left(\hat{\mathbf{m}}_{k}[i] \neq \hat{\mathbf{m}}_{k}^{\prime}[i]\right) \wedge\left(\mathbf{c}_{k}[i] \neq \mathbf{c}_{k}^{\prime}[i]\right) .
\]

By the checking procedure of the verifier, we have
\[
\psi\left(\mathbf{M}_{k, i}\left[\mathbf{c}_{k}[i], *\right]\right)=(-1)^{\boldsymbol{c}_{k}[i]} \mathbf{v}_{k, i},
\]
which implies the two equalities
\[
\begin{aligned}
\mathbf{v}\left[\mathbf{d}_{k}[i]\right] & =\mathbf{M}_{k, i}\left[0, \mathbf{d}_{k}[i]\right]-\mathbf{M}_{k, i}[0,0] \\
\mathbf{v}\left[\mathbf{d}_{k}[i]\right] & =\mathbf{M}_{k, i}^{\prime}\left[1, \mathbf{M}_{k, i}\left[0, \mathbf{d}_{k}^{\prime}[i]\right]\right]+\mathbf{M}_{k, i}[1,0], \\
\mathbf{M}_{k, i}^{\prime}[0,0] & =-\mathbf{M}_{k, i}^{\prime}\left[1, \mathbf{d}_{k}^{\prime}[i]\right]+\mathbf{M}_{k, i}^{\prime}[1,0] .
\end{aligned}
\]

Further,
\[
\hat{\mathbf{m}}_{k}[i]=\mathbf{M}_{k, i}\left[0, \mathbf{d}_{k}[i]\right]+\mathbf{M}_{k, i}\left[1, \mathbf{d}_{k}[i]\right]=\mathbf{M}_{k, i}[0,0]+\mathbf{M}_{k, i}[1,0]
\]
as well as \(\hat{\mathbf{m}}_{k}^{\prime}[i]=\mathbf{M}_{k, i}^{\prime}[0,0]+\mathbf{M}_{k, i}^{\prime}[1,0]\). Since \(\hat{\mathbf{m}}_{k}[i] \neq \hat{\mathbf{m}}_{k}^{\prime}[i]\), either \(\mathbf{M}_{k, i}[0,0] \neq \mathbf{M}_{k, i}^{\prime}[0,0]\) or \(\mathbf{M}_{k, i}[1,0] \neq \mathbf{M}_{k, i}^{\prime}[1,0]\) which breaks statistical binding.

Claim 9. \(\Delta\left(H Y B_{1}(\lambda) ; H Y B_{2}(\lambda)\right) \leq 2^{-\kappa}\).
Proof. A malicious prover \(\mathrm{P}^{*}\) is successful in \(H Y B_{1}(\lambda)\) but not in \(H Y B_{2}(\lambda)\) if for set
\[
\mathcal{S}:=\left\{i \in[n]: \quad \hat{\mathbf{m}}_{0}[i] \neq \hat{\mathbf{m}}_{0}^{\prime}[i] \wedge \hat{\mathbf{m}}_{1}[i] \neq \hat{\mathbf{m}}_{1}^{\prime}[i]\right\}
\]
the inequality \(|\mathcal{S}| \geq \kappa\) holds. To prove the claim, we show this bound on set \(\mathcal{S}\).
For any \(i \in[n]\) and \(k \in\{0,1\}\), either \(\hat{\mathbf{m}}_{k}[i] \neq \hat{\mathbf{m}}_{k}^{\prime}[i]\) or \(\mathbf{c}_{k}[i] \neq \mathbf{c}_{k}^{\prime}[i]\) holds. Hence, for all elements \(i\) in \(\mathcal{S}\), we necessarily have \(\mathbf{c}_{0}[i]=\mathbf{c}_{0}^{\prime}[i]\) and \(\mathbf{c}_{1}[i]=\mathbf{c}_{1}^{\prime}[i]\). This implies that challenge \(\beta=\mathbf{c}_{0}+\mathbf{c}_{1}\) is identical with \(\beta^{\prime}\) on position \(i\). Since \(\beta^{\prime}\) is uniformly random, this is only the case with probability \(1 / 2\). If it is not the case, the verifier rejects. Since the size of \(\mathcal{S}\) has to be at least \(\kappa\), the probability of this to happen is at most \(2^{-|\mathcal{S}|} \leq 2^{-\kappa}\).

In \(H Y B_{2}(\lambda)\), the adversary's choice of \(\hat{\mathbf{m}}_{0}\) and \(\hat{\mathbf{m}}_{1}\) will both differ from \(\hat{\mathbf{m}}_{0}^{\prime}\) and \(\hat{\mathbf{m}}_{1}^{\prime}\) on at most \(\kappa\) positions. On all other positions, \(\hat{\mathbf{m}}_{0}\) and \(\hat{\mathbf{m}}_{1}\) will be identical to \(\hat{\mathbf{m}}_{0}^{\prime}\) and \(\hat{\mathbf{m}}_{1}^{\prime}\). Since there are \(n-\kappa\) positions left, at least one of the pairs will be identical on at least \(\frac{1}{2}(n-\kappa)\) positions. Let this be \(\hat{\mathbf{m}}_{b}\).

Due to the minimal distance \(\frac{1}{2}(n+\kappa)\) of code \(G\), there is a unique codeword that matches these \(\frac{1}{2}(n-\kappa)\) positions. Hence, in both runs, a malicious receiver is committed to \(\hat{\mathbf{m}}_{b}=\hat{\mathbf{m}}_{b}^{\prime}\), because if \(\hat{\mathbf{m}}_{b}\) or \(\hat{\mathbf{m}}_{b}^{\prime}\) is not a codeword, the verifier rejects. Thus, \(\hat{\mathbf{m}}_{b}=\hat{\mathbf{m}}_{b}^{\prime}\) decodes to a unique message \(m_{b}\) and therefore for all unbounded provers \(\mathrm{P}^{*}\) experiment \(H Y B_{2}(\lambda)\) returns 1 with zero probability, which concludes this proof.

Lemma 16 (Choice bit indistinguishability of the ORS protocol). Assuming that the commitment scheme Commit satisfies computational hiding, the ORS protocol from Fig. 4 satisfies choice bit indistinguishability.

Proof. To show indistinguishablity, we define a hybrid in which a prover commits to both messages and both branches will follow the same distribution. Let \(H Y B_{0}(\lambda, b)\) be the experiment defining choice bit indistinguishability, where the adversary \(\mathrm{V}^{*}\) acts as a malicious verifier; our
goal is to show that for all PPT \(\mathrm{V}^{*}\), we have \(H Y B_{0}(\lambda, 0) \approx_{c} H Y B(\lambda, 1)\). Consider the hybrid experiment \(H Y B(\lambda, b)\) where in the first round the prover takes the following actions:
\[
\begin{aligned}
& \hat{\mathbf{m}}_{b}:=G\left(m_{b}\right), \mathbf{c}_{1-b} \leftarrow \$\{0,1\}^{n}, \underline{\hat{\mathbf{m}}_{1-b}:=G\left(m_{1-b}\right)} \\
& \mathbf{d}_{b}, \underline{\mathbf{d}_{1-b}} \leftarrow \$ \mathbb{Z}_{q}^{n} \\
& \forall i \in[n], \ell \in\{0,1\}: \\
& \quad \mathbf{M}_{\ell, i} \leftarrow \$ \mathbb{Z}_{q}^{2 \times q} \text { s.t. } \forall j \in \mathbb{Z}_{q}: \\
& \quad \sum_{k \in\{0,1\}} \mathbf{M}_{\ell, i}[k, j]=\hat{\mathbf{m}}_{b}[i] \\
& \quad \mathbf{v}_{\ell, i}:=\psi\left(\mathbf{M}_{\ell . i}[0, *]\right) \\
& \gamma:=\left\{\mathbf{v}_{k, i}, \operatorname{Commit}\left(\mathbf{M}_{k, i}\right)\right\}_{k \in\{0,1\}, i \in[n]},
\end{aligned}
\]
and moreover during the third round, the prover acts as follows:
\[
\begin{aligned}
& \mathbf{c}_{b}=\beta-\mathbf{c}_{1-b} \\
& \delta_{\mathbf{c}}:=\operatorname{Open}\left(\mathbf{M}_{k, i}\left[\mathbf{c}_{k}[i], *\right]\right)_{k \in\{0,1\}, i \in[n]} \\
& \delta_{\mathbf{d}}:=\operatorname{Open}\left(\mathbf{M}_{k, i}\left[1-\mathbf{c}_{k}[i], \mathbf{d}_{k}[i]\right]\right)_{k \in\{0,1\}, i \in[n]}
\end{aligned}
\]

Notice that sampling first \(\mathbf{c}_{1-b}\) and setting \(\mathbf{c}_{b}=\beta-\mathbf{c}_{1-b}\) has the same distribution as \(\mathbf{c}_{0}, \mathbf{c}_{1} \leftarrow \$\{0,1\}^{n}\) conditioned on \(\beta=\mathbf{c}_{0}+\mathbf{c}_{1}\). Therefore both branches have the same distribution.

Claim 10. For all \(P P T \mathrm{~V}^{*}\), and for all \(b \in\{0,1\}\), we have that \(H Y B_{0}(\lambda, b) \approx_{c} H Y B_{1}(\lambda, b)\).
Proof. We will define \(n(q-1)\) sub-hybrids. For each \(i \in[n]\), there are \(q-1\) commitments in branch \(b-1\) that are not opened in the third round. We will switch their committed value \(\mathbf{M}_{1-\mathbf{c}_{i}, i}\) step by step from the distribution in \(H Y B_{0}\) to the distribution in \(H Y B_{1}\), i.e. from being uniform conditioned on summing to \(\sigma_{i}(j)\) to summing to \(\hat{\mathbf{m}}[i]\).

We denote the sub hybrids with \(H Y B_{0,0,0}(\lambda, b)\) to \(H Y B_{0, n, q}(\lambda, b)\), where \(H Y B_{0,0,0}(\lambda, b) \equiv\) \(H Y B_{0}(\lambda, b)\) and \(H Y B_{0, n, q}(\lambda, b) \equiv H Y B_{1}(\lambda, b)\). We switch from \(H Y B_{0, i, j}(\lambda, b)\) to \(H Y B_{0, i, j+1}(\lambda, b)\), and from \(H Y B_{0, i, q}(\lambda, b)\) to \(H Y B_{0, i+1,0}(\lambda, b)\). In the following, we will just show how to transition from \(H Y B_{0, i, j}(\lambda, b)\) to \(H Y B_{0, i, j+1}(\lambda, b)\). The other step is done analogously. Further notice that the the hybrids
\[
H Y B_{0, i, \mathbf{d}_{1-b}[i]-1}(\lambda, b) \quad \text { and } \quad H Y B_{0, i, \mathbf{d}_{1-b}[i]}(\lambda, b)
\]
are already distributed identically. Next, we show that for any \(i^{*} \in[n], j^{*} \in \mathbb{Z}_{q}\), and for all PPT \(\mathrm{V}^{*}\) and \(b \in\{0,1\}\), hybrids \(H Y B_{0, i^{*}, j^{*}}(\lambda, b)\) and \(H Y B_{0, i^{*}, j^{*}+1}(\lambda, b)\) are computationally close, which finishes the proof of the claim.

Recall that an adversary A against the hiding of the commitment scheme chooses two messages \(\tilde{m}_{0}\) and \(\tilde{m}_{1}\), and receives a commitment cõm of one of the two messages. We denote this by \(c \tilde{m} \leftarrow_{\$} \mathcal{O}_{\text {Commit }}\left(\tilde{m}_{0}, \tilde{m}_{1}\right)\) Attacker A wins if he successfully determines which message has been committed to. In what follows, we mostly ignore branch \(b\) since it has the same distribution in
both hybrids. In the first round, A simulates the prover as follows.
\[
\begin{aligned}
& \mathbf{c}_{1-b} \leftarrow \&\{0,1\}^{n}, \hat{\mathbf{m}}_{1-b}:=G m_{1-b}, \mathbf{d}_{1-b} \leftarrow \& \mathbb{Z}_{q}^{n} \\
& \forall\left(i<i^{*} \vee\left(i=i^{*} \wedge j \leq j^{*}\right)\right), \sigma_{i}(j):=\hat{\mathbf{m}}_{1-b}[i] \\
& \sigma^{\prime} \leftarrow \$ \operatorname{Perm}\left(\mathbb{Z}_{q}\right) \text { s.t. } \sigma^{\prime}\left(\mathbf{d}_{1-b}\left[i^{*}\right]\right)=\hat{\mathbf{m}}_{1-b}\left[i^{*}\right] \\
& \forall j>j^{*}, \sigma_{i^{*}}(j):=\sigma^{\prime}(j) \\
& \forall i>i^{*}, \sigma_{i} \leftarrow \curvearrowright \operatorname{Perm}\left(\mathbb{Z}_{q}\right) \text { s.t. } \sigma_{i}\left(\mathbf{d}_{1-b}[i]\right)=\hat{\mathbf{m}}_{1-b}[i] \\
& \forall i \in[n], \mathbf{M}_{1-b, i} \leftarrow \$ \mathbb{Z}_{q}^{2 \times q} \text { s.t. } \\
& \sum_{k \in\{0,1\}} \mathbf{M}_{1-b, i}[k, j]=\sigma_{i}(j) \\
& \forall i<i^{*}, \mathbf{v}_{1-b, i}:=\psi\left(\mathbf{M}_{1-b, i}[0, *]\right) \\
& \forall i \geq i^{*}, \mathbf{v}_{1-b, i}:=(-1)^{\mathbf{c}_{1-b}[i]} \psi\left(\mathbf{M}_{1-b . i}\left[\mathbf{c}_{1-b}[i], *\right]\right) \\
& \forall\left(i \neq i^{*} \vee j \neq j^{*} \vee k \neq \mathbf{c}_{1-b}[i]\right), \operatorname{com}_{i, k, j} \leftarrow \operatorname{Commit}\left(\mathbf{M}_{1-b, i}[k, j]\right) \\
& \operatorname{com}_{i^{*}, \mathbf{c}_{1-b}\left[i^{*}\right], j^{*}} \leftarrow \mathcal{O}_{\text {Commit }}\left(\sigma^{\prime}\left[j^{*}\right]-\mathbf{M}_{1-b, i^{*}}\left[\mathbf{c}_{b}\left[i^{*}\right], j^{*}\right], \mathbf{M}_{1-b, i^{*}}\left[\mathbf{c}_{1-b}\left[i^{*}\right], j^{*}\right]\right) \\
& \gamma:=\left\{\mathbf{v}_{0, i}, \mathbf{v}_{1, i}, \operatorname{Commit}\left(\mathbf{M}_{b, i}\right),\left(\operatorname{com}_{i, k, j}\right)_{k \in\{0,1\}, j \in[q]}\right\}_{i \in[n]} .
\end{aligned}
\]

Since A does not open \(\operatorname{com}_{i^{*}, \mathbf{c}_{1-b}\left[i^{*}, j^{*}\right.}\), he can easily simulate the third round:
\[
\begin{aligned}
& \mathbf{c}_{b}=\beta-\mathbf{c}_{1-b} \\
& \delta_{\mathbf{c}}:=\operatorname{Open}\left(\mathbf{M}_{k, i}\left[\mathbf{c}_{k}[i], *\right]\right)_{k \in\{0,1\}, i \in[n]} \\
& \delta_{\mathbf{d}}:=\operatorname{Open}\left(\mathbf{M}_{k, i}\left[1-\mathbf{c}_{k}[i], \mathbf{d}_{k}[i]\right]\right)_{k \in\{0,1\},, i \in[n]} .
\end{aligned}
\]

If the challenger of the commitment security game commits to message \(\sigma^{\prime}\left[j^{*}\right]-\mathbf{M}_{1-b, i^{*}}\left[\mathbf{c}_{b}\left[i^{*}\right], j^{*}\right]\), attacker A simulates hybrid \(H Y B_{0, i^{*}, j^{*}}(\lambda, b)\), and otherwise if the challenger commits to \(\mathbf{M}_{1-b, i^{*}}\left[\mathbf{c}_{1-b}\left[i^{*}\right], j^{*}\right]\) the attacker simulates hybrid \(H Y B_{0, i^{*}, j^{*}+1}(\lambda, b)\). This concludes the proof of this claim.

Clearly, the distribution of hybrid \(H Y B_{1}(\lambda, b)\) is independent of bit \(b\). Therefore, \(H Y B_{1}(\lambda, 0) \equiv\) \(H Y B_{1}(\lambda, 1)\). This and Claim 10 result in the statement of the lemma.```


[^0]:    *Supported by the Center for Long-Term Cybersecurity (CLTC, UC Berkeley).

[^1]:    ${ }^{1}$ In this work, a round of a protocol counts a single message from one party to the other.

[^2]:    ${ }^{2}$ We can also base our construction on Factoring when relying on the hardness of CDH over the group of signed quadratic residues [22], but this requires a trusted setup of this group which is based on a Blum integer.
    ${ }^{3}$ Adaptive commitments can be instantiated based on time-lock puzzles, collision-resistant hash functions, non-interactive commitments, and ZAPs, all with sub-exponential security [28].
    ${ }^{4}$ We call a group efficiently sampleable if we can efficiently sample uniform elements from the group and, given a group element, we can simulate this sampling procedure.
    ${ }^{5}$ The difference is that the notions in [15] only ask for oblivious sampleability, rather than our stronger requirement of uniformity over efficiently sampleable groups.

[^3]:    ${ }^{6}$ These are groups for which one can directly sample a group element without knowing the discrete logarithm with respect to some generator. The latter requires non black-box access to the group, which is always needed when using ElGamal with messages that are encoded as group elements and not as exponents.

[^4]:    ${ }^{7}$ They also claim [10, Footnote 3] that their OT protocol can be instantiated using PKE with special properties, however no proof of this fact is provided.

[^5]:    ${ }^{8}$ The existence of a simulator is crucial for constructing SH-OT from KA; we solely use it for this purpose.

[^6]:    ${ }^{9}$ They also need the existence of one-way functions. Since OT implies OT extension which implies one-way functions [30], OT implies one-way functions.

[^7]:    ${ }^{10}$ We can also make the reduction uniform, at the cost of losing a polynomial factor in the computational distance between the two hybrids (which is needed to guess the index $i$ for which event $W_{1,1}^{i}$ is provoked).

[^8]:    ${ }^{11}$ In case $b=\perp$, it is not necessary to query the ideal functionality. In fact, the latter means that in all iterations of the first run with the adversary, both branches for the commit-and-prove protocol are committing, and so they will be in the second run. Thus, the simulator can simply use the simulation strategy for the committing branch, which is independent of the sender's input, on both branches.

