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Abstract

We give a construction of a secure multi-party computation (MPC) protocol from a
special type of key agreement, where the distribution of the messages sent by one of the
parties is computationally close to the uniform distribution over an efficiently sampleable
group, even when the other party is malicious. We term the latter strongly uniform key
agreement (SU-KA).

First, we show that for any odd t ∈ N, t-round SU-KA and statistically binding commit-
ments are sufficient for a black-box construction of (t+1)-round maliciously secure oblivious
transfer (M-OT). By invoking a recent result of Benhamouda and Lin (Eurocrypt 2017), the
latter implies maliciously secure MPC within max(t+ 1, 5) rounds in the plain model.

Additionally, we investigate the relationship between SU-KA, and similar types of public-
key encryption and semi-honestly secure OT protocols where we also demand strong uni-
formity. This finally allows us to instantiate our result for t = 2 and t = 3 under standard
assumptions, including any of low-noise LPN, LWE, Subset Sum, DDH, CDH, and RSA
(all with polynomial hardness), so that under the same set of assumptions we also obtain
5-round maliciously secure MPC (and 4-round M-OT) in the plain model.
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1 Introduction

In an oblivious transfer (OT) protocol, Alice, with input choice bit b, and Bob, with input
two strings s0, s1, engage in a conversation over a public channel. After finishing the protocol,
Alice has solely learned sb, whereas Bob learns nothing about the choice bit b [36, 12]. Alice
is called the receiver, while Bob is the sender of the OT. We speak of semi-honestly secure OT
(SH-OT) if privacy holds for honest-but-curious parties (i.e., parties who follow the protocol
faithfully, but try to infer something on the other party’s input). When a protocol does not
leak additional information even in case of active corruption of either of the parties (i.e., parties
that can deviate from the protocol), we call it a maliciously secure OT (M-OT).

OT is a fundamental cryptographic primitive, mainly due to its intimate connection with
secure computation. A seminal result of Yao [38, 39], in fact, shows that a 2-round SH-OT
implies semi-honestly secure two-party computation with the same number of rounds.1 On
the other hand, constructing round-efficient multi-party computation (MPC) from minimal
assumptions, such as OT, has turned to be a challenging task. Recent breakthrough results by
Benhamouda and Lin [5], and Garg and Srinivasan [14] show that 2-round OT implies secure
MPC in the common reference string model. Further, Benhamouda and Lin [5] show that for
t ≥ 5, a t-round M-OT implies t-round maliciously secure MPC in the plain model.

Given the above connection, it is an important objective to design OT protocols with mali-
cious security and low round complexity, from standard assumptions. Assuming trusted setup,
the constructions by Jarecki and Shamtikov [23], and Peikert, Vaikuntanathan, and Waters [35]
show how to obtain M-OT in 2 rounds. In the plain model, Ostrovsky, Richelson and Sca-
furo [34] show how to get 4-round M-OT using certified trapdoor permutations [4, 31, 8], which
in turn can be instantiated from the RSA assumption under some parameter regimes [24, 8].
One can also obtain M-OT generically from SH-OT, but such transformations are either non-
black-box and not in the plain model due to the use of non-interactive zero-knowledge proofs á
la GMW [16], or introduce considerable overhead in terms of round complexity [19]. This sets
our focus on the question:

Can we design round-efficient M-OT in the plain model, using black-box techniques
from weak assumptions?

1.1 Our Contribution

In this work, we make progress towards answering the above question. Our main technical
contribution is a construction of M-OT from a particular strengthening of key agreement (KA)
protocols, which we term strongly uniform (SU); our construction is fully black-box and essen-
tially round-preserving, adding only a constant overhead of at most two rounds. In particular,
we show:

Theorem 1 (Main Theorem, informal). For any odd t ∈ N, and assuming statistically binding
commitments, there is a construction of a max((t+ 1), 5)-round maliciously secure multi-party
computation protocol in the plain model from any t-round strongly uniform key agreement pro-
tocol.

Theorem 1 is a consequence of the following facts: (i) SU-KA implies SUSH-OT (cf. Lemma 4);
(ii) SUSH-OT and statistically binding commitments imply a black-box construction of M-OT
(cf. Theorem 3 and Theorem 2); (iii) M-OT implies maliciously secure MPC [5, 14], as ex-
plained above. Since, as we show, 2-round and 3-round SU-KA can be instantiated from several

1In this work, a round of a protocol counts a single message from one party to the other.



assumptions, including low-noise LPN, LWE, Subset Sum, CDH, DDH, and RSA, all with poly-
nomial hardness, a consequence of our result is that we obtain maliciously secure 5-round MPC
(and 4-round M-OT) in the plain model under the same set of assumptions.2 Previously to
our work, it was known how to get maliciously secure MPC in the plain model, for arbitrary
functionalities:

• Using 5 rounds, assuming polynomially-hard LWE with super-polynomial noise ratio and
adaptive commitments [6], polynomially hard DDH [2], and enhanced certified trapdoor
permutations (TDP) [34, 5];

• Using 4 rounds, assuming sub-exponentially-hard LWE with super-polynomial noise ra-
tio and adaptive commitments [6], sub-exponentially-hard DDH and one-way permuta-
tions [2], and very recently assuming polynomially-hard DDH/QR/DCR [3], and either
polynomially-hard QR or QR together with any of LWE/DDH/DCR (all with polynomial
hardness) [21].

Hence, ours are the first maliciously secure 5-round MPC (and 4-round M-OT) protocols in
the plain model from the polynomial hardness of low-noise LPN, Subset Sum, CDH, and LWE
with noise ratio

√
n (which relates to an approximation factor of n1.5 for SIVP in lattices of

dimension n [37]) and without further assuming3 adaptive commitments. We can also instantiate
our protocol based on the ring versions of LPN and LWE, and thus provide the first black-box
construction of 4-round M-OT under these assumptions in the plain model.

In our OT protocol construction, we use a tool that is called commit-and-prove protocols.
Such protocols were implicitly used and proven secure in previous works [27, 34]. A conceptual
contribution of this work is to formalize their security properties, which allows for a more
modular presentation and security analysis.

1.2 Technical Overview

We proceed to a high-level overview of the techniques behind our main result, starting with
the notion of strong uniformity and the abstraction of commit-and-prove protocols, and landing
with the intuition behind our construction of M-OT. See also Fig. 1 for a pictorial representation
of our result.

Strong uniformity. As an important stepping stone to our main result, in Section 3, we
introduce the notion of strong uniformity. Recall that a key agreement (KA) protocol allows
Alice and Bob to share a key over a public channel, in such a way that the shared key is
indistinguishable from uniform to the eyes of a passive eavesdropper. Strong uniformity here
demands that, even if Bob is malicious, the messages sent by Alice are computationally close
to uniform over an efficiently sampleable group.4 This flavor of security straightforwardly
translates to SH-OT and public-key encryption (PKE). In the case of OT, it demands that
all messages of the receiver have this property (even if the sender is malicious). For PKE, we
distinguish two types, which are strengthenings of the types defined by Gertner et al. [15]:5

2We can also base our construction on Factoring when relying on the hardness of CDH over the group of
signed quadratic residues [22], but this requires a trusted setup of this group which is based on a Blum integer.

3Adaptive commitments can be instantiated based on time-lock puzzles, collision-resistant hash functions,
non-interactive commitments, and ZAPs, all with sub-exponential security [28].

4We call a group efficiently sampleable if we can efficiently sample uniform elements from the group and,
given a group element, we can simulate this sampling procedure.

5The difference is that the notions in [15] only ask for oblivious sampleability, rather than our stronger
requirement of uniformity over efficiently sampleable groups.
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Figure 1: Overview over equivalence and implications of the notion of strong uniformity. The
value t ∈ N denotes the round complexity. † For this step, we need a statistically binding
commitment scheme. We do not know whether this is implied by SU-KA, but it is implied by
all mentioned assumptions that imply SU-PKE. ∗ This holds over efficiently sampleable groups.
‡ We need an enhanced certified TDP.

• Type-A PKE: The distribution of the public key is computationally indistinguishable
from uniform. This type of PKE is known to exist under DDH [11] and CDH [17] over
efficiently sampleable groups,6 LWE [37], low-noise LPN [1], and Subset Sum [32].

• Type-B PKE: The encryption of a uniformly random message w.r.t. a maliciously chosen
public key is computationally close to the uniform distribution over the ciphertext space.
This type of PKE is harder to obtain, and can be constructed from enhanced certified
TDPs, and from CDH and DDH over efficiently sampleable groups. In case of a TDP f ,
a ciphertext has the form (f(r), h(r) ⊕ m), where h is a hardcore predicate, and r is a
random element from the domain of f . Under CDH or DDH, a ciphertext is defined as
gr and h(gxr) ·m, gxr ·m respectively, where gr is a uniform group element, and gx is the
public key. Clearly, for a uniform message m, these ciphertexts are uniform even under
maliciously chosen public keys.

In §3, we show that SU Type-A and SU Type-B PKE imply, respectively, 2-round and 3-
round SU-KA, whereas 2-round SU-KA implies SU Type-A PKE. Further, we prove that SU-KA
is equivalent to SUSH-OT. This might seem surprising, since OT and KA are separated [15].
Therefore, our result shows that strong uniformity is a sufficiently strong notion to bypass this
impossibility result, in a similar way as Type-A and Type-B PKE bypass the impossibility of
constructing OT from PKE [15].

Commit-and-prove protocols. A commit-and-prove protocol is a 3-round protocol with
the following structure: (1) In the first round, the prover, with inputs two messages m0,m1 and
a choice bit b, sends a string γ (called “commitment”) to the verifier; (2) In the second round,
the verifier sends a value β to the prover (called “challenge”); (3) In the third round, the prover
sends a tuple (δ,m0,m1) to the verifier (called “opening”). Security requires two properties.
The first property, called existence of a committing branch, demands that a malicious prover
must be committed to at least one message already after having sent γ. The second property,

6These are groups for which one can directly sample a group element without knowing the discrete logarithm
with respect to some generator. The latter requires non black-box access to the group, which is always needed
when using ElGamal with messages that are encoded as group elements and not as exponents.
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called choice bit indistinguishability, asks that a malicious verifier cannot learn the committing
branch of an honest prover.

A construction of a commit-and-prove protocol for single bits is implicit in Kilian [27]. This
has been extended to strings by Ostrovsky et al. [34]. Both constructions make black-box use
of a statistically binding commitment scheme and allow a prover to equivocally open one of the
messages. In §A of the appendix, we revisit the protocol and proof by Ostrovsky et al. to show
that it indeed satisfy the two security notions sketched above.

M-OT from SUSH-OT: A warm up. In order to explain the main ideas behind our
construction of M-OT, we describe below a simplified version of our protocol for the special
case of t = 2, i.e. when starting with a 2-round SUSH-OT (S′,R′); here, we denote with ρ the
message sent by the receiver, and with σ the message sent by the sender, and further observe
that for the case of 2 rounds the notion of strong uniformity collapses to standard semi-honest
security with the additional property that the distribution of ρ is (computationally close to)
uniform to the eyes of an eavesdropper. We then construct a 4-round OT protocol (S,R), as
informally described below:

1. (R → S): The receiver picks a uniformly random value m1−b ∈ M, where b is the choice
bit, and runs the prover of the commit-and-prove protocol upon input m1−b, obtaining a
commitment γ that is forwarded to the sender.

2. (S→ R): The sender samples a challenge β for the commit-and-prove protocol, as well as
uniformly random elements r0, r1 ∈M. Hence, it forwards (β, r0, r1) to the receiver.

3. (R → S): The receiver runs the receiver R′ of the underlying 2-round OT protocol with
choice bit fixed to 0, obtaining a message ρb which is used to define the message mb =
ρb − rb required to complete the execution of the commit-and-prove protocol in the non-
committing branch b. This results in a tuple (δ,m0,m1) that is forwarded to the sender.

4. (S→ R): The sender verifies that the transcript T = (γ, β, (δ,m0,m1)) is accepting for the
underlying commit-and-prove protocol. If so, it samples u0, u1 ∈M uniformly at random,
and runs the sender S′ of the underlying 2-round OT protocol twice, with independent
random tapes: The first run uses input strings (s0, u0) and message m0 + r0 from the
receiver, resulting in a message σ0, whereas the second run uses input strings (s1, u1) and
message m1 + r1 from the receiver, resulting in a message σ1. Hence, it sends (σ0, σ1) to
the receiver.

5. Output: The receiver runs the receiver R′ of the underlying 2-round OT protocol, upon
input message σb from the sender, thus obtaining the value sb.

Correctness is immediate. In order to prove simulation-based security we proceed in two
steps. In the first step, we show the above protocol achieves a weaker security flavor called
receiver-sided simulatability [33, 34] which consists of two properties: (1) The existence of a
simulator which by interacting with the ideal OT functionality can fake the view of any efficient
adversary corrupting the receiver in a real execution of the protocol (i.e., standard simulation-
based security w.r.t. corrupted receivers); (2) Indistinguishability of the protocol transcripts
with choice bit of the receiver equal to zero or one, for any efficient adversary corrupting the
sender in a real execution of the protocol (i.e., game-based security w.r.t. corrupted senders).
In the second step, we rely on a round-preserving black-box transformation given in [34], which
allows to boost receiver-sided simulatability to fully-fledged malicious security.

To show (1), we consider a series of hybrid experiments:

4



• In the first hybrid, we run the first 3 rounds of the protocol, yielding a partial transcript
γ, (β, r0, r1), (δ,m0,m1). Hence, after verifying that T = (γ, β, (δ,m0,m1)) is a valid
transcript of the commit-and-prove protocol, we rewind the adversary to the end of the
first round and continue the execution of the protocol from there using a fresh challenge
(β′, r′0, r

′
1), except that after the third round we artificially abort if there is no value

b̂ ∈ {0, 1} such that mb̂ = m′
b̂
, where (δ′,m′0,m

′
1) is the third message sent by the adversary

after the rewinding.

Notice that an abort means that it is not possible to indentify a committing branch for
the commit-and-prove protocol, which by security of the commit-and-prove protocol can
only happen with negligible probability; thus this hybrid is computationally close to the
original experiment.

• In the second hybrid, we modify the distribution of the value r′1−b (right after the rewind-

ing) to r′′1−b = ρ1−b −m1−b, where we set 1− b def
= b̂ from the previous hybrid, and where

ρ1−b is obtained by running the receiver R′ of the underlying 2-round OT protocol with
choice bit fixed to 1.

To argue indistinguishability, we exploit the fact that the distribution of m1−b is indepen-
dent from that of r′1−b, and thus by strong uniformity we can switch r′1−b + m1−b with
ρ1−b from the receiver R′.

• In the third hybrid, we use the simulator of the underlying 2-round SH-OT protocol to
compute the messages σ1−b sent by the sender. Note that in both the third and the second
hybrid the messages (ρ1−b, σ1−b) are computed by the honest sender, and thus any efficient
algorithm telling apart the third and the second hybrid violates semi-honest security of
(S′,R′).

In the last hybrid, a protocol transcript is independent of s1−b but still yields a well distributed
output for the malicious receiver. This allows us to define a valid simulator in the ideal world.

To show (2), we first use the strong uniformity property of (S′,R′) to sample mb uniformly
at random at the beginning of the protocol. Notice the this implies that the receiver cannot
recover the value sb of the sender anymore. Finally, we use the choice bit indistinguishability
of the commit-and-prove protocol to argue that the transcripts with b = 0 and b = 1 are
computationally indistinguishable.

M-OT from SUSH-OT: The general case. There are several difficulties when trying to
extend the above protocol to the general case where we start with a t-round SUSH-OT. In fact,
if we would simply iterate sequentially the above construction, where one iteration counts for
a message from R′ to S′ and back, the adversary could use different committing branches from
one iteration to the other. This creates a problem in the proof, as the simulator would need
to be consistent with both choices of possible committing branches from the adversary, which
however requires knowing both inputs from the sender.

We resolve this issue by having the receiver sending all commitments γi for the commit-
and-prove protocol in the first round, where each value γi is generated including a random
message mi

1−b concatenated with the full history mi−1
1−b, . . . ,m

1
1−b. Hence, during each iteration,

the receiver opens one commitment as before. As we show, this prevents the adversary from
switching committing branch from one iteration to the next one. We refer the reader to §4.1 for
a formal description of our protocol, and to §4.2 for a somewhat detailed proof intuition. The
full proof appears in Section 4.3
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1.3 Related Work

Maliciously secure OT. An elegant result by Haitner [19], see also [20], gives a fully black-
box construction of M-OT from SH-OT. While being based on weaker assumptions (i.e., plain
SH-OT instead of SUSH-OT), assuming the starting OT protocol has round complexity t, the
final protocol requires 4 additional rounds for obtaining an intermediate security flavor known
as “defensible privacy”, plus 4 rounds for cut and choose, plus 2 times the number of rounds
required for running coin tossing, plus a final round to conclude the protocol. Assuming coin
tossing can be done in 5 rounds [26], the total accounts to t + 19 rounds, and thus yields 21
rounds by setting t = 2.

Lindell [29], generalizing [25], gives direct constructions of M-OT with 7 rounds, under
the DDH assumption, the Nth residuosity assumption, and the assumption that homomorphic
PKE exists. Camenish, Neven, and shelat [7], and Green and Hohenberger [18], construct M-
OT protocols, some of which even achieve adaptive security, using computational assumptions
over bilinear groups.

Round-optimal MPC. The question of characterizing the round complexity of maliciously
secure MPC has recently received a lot of attention. For the special case of two parties, Katz and
Ostrovsky [26] proved that 5 rounds are necessary and sufficient for arbitrary functionalities,
but without assuming a simultaneous broadcast channel (where the parties are allowed to send
each other messages in the same round). Their result was later extended by Garg et al. [13]
who showed that, assuming simultaneous broadcast, 4 rounds are optimal for general-purpose
MPC.

Recently, Ciampi et al. [10] construct a special type of 4-round M-OT protocol assuming
certified trapdoor permutations,7 and show how to apply it in order to obtain (fully black-box)
4-round two-party computation with simultaneous broadcast. In a companion paper [9], the
same authors further give a 4-round MPC protocol for the specific case of multi-party coin-
tossing.

2 Preliminaries

2.1 Notation

We use λ ∈ N to denote the security parameter, sans-serif letters (such as A, B) to denote
algorithms, caligraphic letters (such as X , Y) to denote sets, and bold-face letters (such as v,
A) to denote vectors and matrices; all vectors are by default row vectors, and we write vT to
denote a column vector. An algorithm is probabilistic polynomial-time (PPT) if it is randomized,
and its running time can be bounded by a polynomial in its input length. By y←$ A(1λ, x), we
mean that the value y is assigned to the output of algorithm A upon input x and fresh random
coins. We implicitly assume that all algorithms are given the security parameter 1λ as input.

A function ν : N → [0, 1] is negligible in the security parameter (or simply negligible) if it
vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive
polynomials p(λ). We often write ν(λ) ∈ negl(λ) to denote that ν(λ) is negligible.

For a random variable X , we write P [X = x ] for the probability that X takes on a particular
value x ∈ X (with X being the set where X is defined). The statistical distance between two ran-
dom variables X and X ′ defined over the same set X is defined as ∆ (X ; X ′) = 1

2

∑
x∈X |Pr[X =

x] − Pr[X ′ = x]|. Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y

7They also claim [10, Footnote 3] that their OT protocol can be instantiated using PKE with special prop-
erties, however no proof of this fact is provided.
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Ideal Functionality FOT:

The functionality runs with Turing machines (S,R) and adversary Sim, and works as follows:

• Upon receiving message (send, s0, s1,S,R) from S, where s0, s1 ∈ {0, 1}λ, store s0 and s1

and answer send to R and Sim.

• Upon receiving a message (receive, b) from R, where b ∈ {0, 1}, send sb to R and receive

to S and Sim, and halt. If no message (send, ·) was previously sent, do nothing.

Figure 2: Oblivious transfer ideal functionality

to denote that they are identically distributed, and X ≈c Y to denote that they are compu-
tationally indistinguishable, i.e., for all PPT distinguishers D there exists a negligible function
ν : N→ [0, 1] such that |Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ ν(λ).

We call a group efficiently sampleable if and only if there is a PPT sampling procedure
Samp for the uniform distribution over the group, and moreover there exists a PPT simulator
SimSamp that given an element of the group, outputs the randomness used by Samp. More
precisely, r ≈c r′ where r′←$ SimSamp(1λ,Samp(1λ; r)) and r←$ {0, 1}∗.8

2.2 Oblivious Transfer

An interactive protocol Π for the Oblivious Transfer (OT) functionality, features two interactive
PPT Turing machines S, R called, respectively, the sender and the receiver. The sender S holds
a pair of strings s0, s1 ∈ {0, 1}λ, whereas the receiver R is given a choice bit b ∈ {0, 1}. At the
end of the protocol, which might take several rounds, the receiver learns sb (and nothing more),
whereas the sender learns nothing.

Typically, security of OT is defined using the real/ideal paradigm. Specifically, we compare
a real execution of the protocol, where an adversary might corrupt either the sender or the
receiver, with an ideal execution where the parties can interact with an ideal functionality.
The ideal functionality, which we denote by FOT, features a trusted party that receives the
inputs from both the sender and the receiver, and then sends to the receiver the sender’s input
corresponding to the receiver’s choice bit. We refer the reader to Fig. 2 for a formal specification
of the FOT functionality.

In what follows, we denote by REALΠ,R∗(z)(λ, s0, s1, b) (resp., REALΠ,S∗(z)(λ, s0, s1, b)) the
distribution of the output of the malicious receiver (resp., sender) during a real execution of the
protocol Π (with s0, s1 as inputs of the sender, b as choice bit of the receiver, and z as auxiliary in-
put for the adversary), and by IDEALFOT,SimR∗(z)(λ, s0, s1, b) (resp., IDEALFOT,SimS∗(z)(λ, s0, s1, b))
the output of the malicious receiver (resp., sender) in an ideal execution where the parties (with
analogous inputs) interact with FOT, and where the simulator is given black-box access to the
adversary.

Definition 1 (OT with full simulation). Let FOT be the functionality from Fig. 2. We say that
a protocol Π = (S,R) securely computes FOT with full simulation if the following holds:

(a) For every non-uniform PPT malicious receiver R∗, there exists a non-uniform PPT simu-
lator Sim such that{

REALΠ,R∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

≈c
{

IDEALFOT,SimR∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

8The existence of a simulator is crucial for constructing SH-OT from KA; we solely use it for this purpose.
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where λ ∈ N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.

(b) For every non-uniform PPT malicious sender S∗, there exists a non-uniform PPT simulator
Sim such that{

REALΠ,S∗(z)(s0, s1, b)
}
λ,s0,s1,b,z

≈c
{

IDEALFOT,SimS∗(z)(s0, s1, b)
}
λ,s0,s1,b,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.

Game-based security. One can also consider weaker security definitions for OT, where
simulation-based security only holds when either the receiver or the sender is corrupted, whereas
when the other party is corrupted only game-based security is guaranteed. Below, we give the
definition for the case of a corrupted sender, which yields a security notion known as receiver-
sided simulatability. Intuitively, game-based security w.r.t. a malicious sender means that the
adversary cannot distinguish whether the honest receiver is playing with choice bit 0 or 1.

Definition 2 (OT with receiver-sided simulation). Let FOT be the functionality from Fig. 2.
We say that a protocol Π = (S,R) securely computes FOT with receiver-sided simulation if the
following holds:

(a) Same as property (a) in Definition 1.

(b) For every non-uniform PPT malicious sender S∗ it holds that{
VIEW R

Π,S∗(z)(λ, s0, s1, 0)
}
λ,s0,s1,z

≈c
{

VIEW R
Π,S∗(z)(λ, s0, s1, 1)

}
λ,s0,s1,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, and z ∈ {0, 1}∗, and where VIEW R
Π,S∗(z)(λ, s0, s1, b) is the

distribution of the view of S∗ (with input s0, s1 and auxiliary input z) at the end of a real
execution of protocol Π with the honest receiver R (with input b).

Apart from being interesting on its own right, receiver-sided simulatability is also useful as
a stepping stone towards achieving full simulatability. In fact, Ostrovsky et al. [34, Protocol 3]
show how to compile any 4-round OT protocol with receiver-sided simulatability to a 4-round
OT protocol with full simulatability. This transformation can be easily extended to hold for any
t-round protocol, with t ≥ 3; the main reason is that the transform only relies on an extractable
commitment scheme, which requires at least 3 rounds.

Theorem 2 (Adapted from [34]). Assuming t ≥ 3, there is a black-box transformation from
t-round OT with receiver-sided simulation to t-round OT with full simulation.9

2.3 Commit-and-Prove Protocols

We envision a 3-round protocol between a prover and a verifier where the prover takes as input
two messages m0,m1 ∈M and a choice bit b ∈ {0, 1}. The prover speaks first, and the protocol
is public coin, in the sense that the message of the verifier consists of uniformly random bits.
Intuitively, we want that whenever the prover manages to convince the verifier, he must be
committed to at least one value after having sent the first message.

More formally, a commit-and-prove protocol is a tuple of efficient interactive Turing machines
Πc&p

def
= (P = (P0,P1),V = (V0,V1)) specified as follows. (i) The randomized algorithm P0 takes

9They also need the existence of one-way functions. Since OT implies OT extension which implies one-way
functions [30], OT implies one-way functions.
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as input mb and returns a string γ ∈ {0, 1}∗ and auxiliary state information α ∈ {0, 1}∗; (ii) The
randomized algorithm V0 returns a random string β←$ B; (iii) The randomized algorithm P1

takes as input (α, β, γ,m1−b) and returns a string δ ∈ {0, 1}∗; (iv) The deterministic algorithm
V1 takes a transcript (γ, β, (δ,m0,m1)) and outputs a decision bit.

We write 〈P(m0,m1, b),V(1λ)〉 for a run of the commit-and-prove protocol upon inputs

(m0,m1, b) to the prover, and we denote by T
def
= (γ, β, (δ,m0,m1)) the random variable cor-

responding to a transcript of the interaction. Note that the prover does not necessarily need
to know m1−b before computing the first message. We say that Πc&p satisfies completeness if
honestly generated transcripts are always accepted by the verifier, i.e. for all m0,m1 ∈ M and
b ∈ {0, 1} the following holds:

Pr[V1(T ) = 1 : T ←$ 〈P(m0,m1, b),V(1λ)〉] = 1,

where the probability is over the randomness of P0,V0, and P1.

Security properties. Roughly, a commit-and-prove protocol must satisfy two security re-
quirements. The first requirement is that at the end of the first round, a malicious prover
is committed to at least one message. This can be formalized by looking at a mental ex-
periment where we first run the protocol with a malicious prover, yielding a first transcript
T = (γ, β, (δ,m0,m1)); hence, we rewind the prover to the point it already sent the first mes-
sage, and give it a fresh challenge β′ which yields a second transcript T ′ = (γ, β′, (δ′,m′0,m

′
1)).

The security property now states that, as long as the two transcripts T and T ′ are valid, it shall
exist at least one “committing branch” b̂ ∈ {0, 1} for which mb̂ = m′

b̂
. The second requirement

says that no malicious verifier can learn any information on the choice bit of the prover. The
formal definitions appear below.

Definition 3 (Secure commit-and-prove protocol). Let Πc&p = (P0,P1,V0,V1) be a commit-
and-prove protocol. We say that Πc&p is secure if, besides completeness, it satisfies the following
security properties:

• Existence of Committing Branch: For every PPT malicious prover P∗ = (P∗0,P
∗
1)

there exists a negligible function ν : N→ [0, 1] such that

Pr

 (V1(T ) = 1) ∧ (V1(T ′) = 1)
∧(m0 6= m′0) ∧ (m1 6= m′1)

:
(γ, α0)←$ P∗0(1λ);β, β′←$ V0(1λ);

(δ,m0,m1)←$ P∗1(α0, β);
(δ′,m′0,m

′
1)←$ P∗1(α0, β

′)

 ≤ ν(λ),

with T = (γ, β, (δ,m0,m1)) and T ′ = (γ, β, (δ,m′0,m
′
1)), and where the probability is

taken over the random coin tosses of P∗ and V.

• Choice Bit Indistinguishability: For all PPT malicious verifiers V∗, and for all mes-
sages m0,m1 ∈M, we have that{

T̃ : T̃ ←$ 〈P(m0,m1, 0),V∗(1λ)〉
}
λ∈N
≈c
{
T̃ : T̃ ←$ 〈P(m0,m1, 1),V∗(1λ)〉

}
λ∈N

.

In Appendix A we show that a protocol by Ostrovsky et al. [34] achieves this definition.

3 Strongly Uniform PKE, Key Agreement and OT

3.1 Strongly Uniform PKE

We start with defining strongly uniform public-key encryption (PKE). Here, we differ between
two types of PKE. A Type-A PKE has a public key that is computationally close to uniform,
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while for a Type-B PKE this is the case for ciphertexts of uniform messages (under malicious
public keys).

In general, a PKE scheme Πpke consists of three efficient algorithms (KGen,Enc,Dec) speci-
fied as follows. (i) The probabilistic algorithm KGen takes as input the security parameter and
outputs a pair of keys (pk , sk); (ii) The probabilistic algorithm Enc takes as input the public
key pk and a message µ ∈M, and returns a ciphertext c ∈ C; (iii) The deterministic algorithm
Dec takes as input the secret key sk and a ciphertext c ∈ C, and returns a value µ ∈M∪ {⊥}.
We say that Πpke meets correctness, if for all λ ∈ N, all (pk , sk) output by KGen(1λ), and all
µ ∈M the following holds: P [Dec(sk ,Enc(pk , µ)) = µ] = 1.

Definition 4 (Strongly uniform Type-A PKE). A PKE scheme Πpke = (KGen,Enc,Dec) is
called a strongly uniform Type-A PKE if for any PPT distinguisher D the following holds:

|Pr[D(pk) = 1]− Pr[D(u) = 1]| ∈ negl(λ) ,

where (pk , sk)←$ KGen(1λ) and u is uniform over a suitable, efficiently sampleable group.

In case of strongly uniform Type-B PKE, we even ask that a ciphertext of a uniform message
is indistinguishable from uniform to a distinguisher that chooses a public key for the encryption
procedure in an arbitrary way.

Definition 5 (Strongly uniform Type-B PKE). A PKE scheme Πpke = (KGen,Enc,Dec) is
called a strongly uniform Type-B PKE if for any PPT distinguisher D the following holds:

|Pr[D(c) = 1]− Pr[D(u) = 1]| ∈ negl(λ) ,

where pk ∈ {0, 1}∗ is chosen by D, µ←$M, c←$ Enc(pk , µ), and u is uniform over a suitable,
efficiently sampleable group.

When using PKE in the following, we also ask for standard security against chosen-plaintext
or at least random-plaintext attacks, since this is not implied by the notion of strong uniformity.

3.2 Strongly Uniform Key Agreement

Let Πka = (Alice,Bob) be a key agreement (KA) protocol, where Alice sends messages during
t′ rounds, which we denote by ρ1, . . . , ρt

′
. We denote the messages from Bob to Alice with

σ1, . . . , σt
′+1, which are at most t′ + 1 messages. W.l.o.g. we will assume that Bob sends the

last message.
More precisely, algorithms Alice and Bob are stateful interactive Turing machines such that

for each i ∈ [t′]: (i) Algorithm Alice takes the current state information αi−1
Alice (where α0

Alice is
equal to Alice’s input 1λ) and a message σi−1 from Bob (with σ0 empty), and returns ρi together
with updated state information αiAlice; (ii) Algorithm Bob takes the current state information
αi−1
Bob (where α0

Bob is equal to Bob’s input 1λ) and message ρi from the receiver, and returns σi

together with updated state information αiBob.
For strong uniformity, we ask that Alice’s messages are computationally close to uniform

over an efficiently sampleable group M. For simplicity, we assume that this is the same group
for all messages. Our results still hold when the messages are uniform in different groups.

Additionally, we ask that given a transcript, one cannot distinguish the key Alice and Bob
agreed upon from a uniformly random string.

Definition 6 (Strongly uniform secure key agreement). A KA protocol Πka = (Alice,Bob) as
defined above is a strongly uniform secure KA if there exists an efficiently samplable group
M such that the messages (ρ1, . . . , ρt

′
) sent by Alice in a honest execution of the protocol are

distributed over M, and moreover the following conditions are met:
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(a) Key Indistinguishability: For an honest execution 〈Alice(1λ),Bob(1λ)〉 with agreed key
K, (

〈Alice(1λ),Bob(1λ)〉,K
)
≈c
(
〈Alice(1λ),Bob(1λ)〉, U

)
,

where U is uniform and independent of the view of Alice and Bob.

(b) Uniformity w.r.t. Malicious Interaction: For all PPT distinguishers D:∣∣∣∣Pr

[
D(αt

′
D, (ρ

i, σi)i∈[t′]) = 1 :
∀i ∈ [t′], (αiAlice, ρ

i)←$ Alice(αi−1
Alice, σ

i)

∧ (αiD, σ
i)←$ D(αi−1

D , ρi−1)

]
− Pr

[
D(αt

′
D, (ρ

i, σi)i∈[t′]) = 1 :
∀i ∈ [t′], ρi←$M

∧ (αiD, σ
i)←$ D(αi−1

D , ρi−1)

] ∣∣∣∣ ∈ negl(λ) ,

where ρ0 is the empty string, and α0
Alice = α0

Bob = 1λ.

We show now that the property of strong uniformity is preserved within known construction
of KA from Type-A or Type-B PKE, as well as Type-A PKE from KA. Both of the following
lemmata are straigthforward, and therefore we forego a more formal proof and just sketch them.

Lemma 1. There exists a 2-round strongly uniform secure KA if and only if there exists a
strongly uniform CPA-secure Type-A PKE (constructive).

Proof. It is a well known fact that 2-round KA implies PKE and vice versa. What we will show
is that this construction preserves strong uniformity. In the construction of KA from PKE the
receiver sends a public key and receives back an encryption of a uniform key. If the public
key is indistinguishable from uniform with all but negligible probability, then all the receivers
messages are, and hence the KA is strongly uniform.

In the construction of PKE from KA, one uses the first message of the KA as public key.
In a 2-round strongly uniform KA this message is indistinguishable from uniform with all but
negligible probability by definition. Hence, the public key is computationally indistinguishable
from uniform with all but negligible probability.

Lemma 2. If there exists a strongly uniform CPA-secure Type-B PKE, then there exists a
3-round strongly uniform secure KA (constructive).

Gertner et al. [15] showed a similar lemma, namely that Type-B PKE implies 3-round semi-
honestly secure OT. For simplicity, we prefer showing that there is a 3-round strongly uniform
secure KA given a strongly uniform CPA-secure Type-B PKE.

Proof. The idea is simple and similar to the proof of Lemma 1. Alice sends a public key, Bob
sends an encryption of a uniform key. Finally, Bob decrypts the ciphertext and sends a dummy
message. The last message is required by the definition of strongly uniform KA, which asks
that Alice’s messages are indistinguishable from uniform, where Bob sends the last message.

In order to achieve strongly uniform KA, even for maliciously chosen public key, the ci-
phertext needs to be indistinguishable from uniform with all but negligible probability. Type-B
PKE has this property, and hence the described protocol is strongly uniform. Security follows
trivially, and for identical reasons, as in Lemma 1.
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3.3 Strongly Uniform OT

In an OT protocol Π = (S,R) we can w.l.o.g. assume that the sender S always speaks last. We
use the same notation as described above for a key agreement protocol. In particular, ρ1, . . . , ρt

′

are the messages from R to S, and σ1, . . . , σt
′+1 the messages from S to R. The inital states are

identical with the inputs, i.e. α0
R = b ∈ {0, 1} and α0

S = (s0, s1) ∈ {0, 1}2λ.
Correctness means that for all b ∈ {0, 1}, and for all s0, s1 ∈ {0, 1}λ, the following probability

is overwhelming:

Pr
[
ρt
′+1 = sb : ∀i ∈ [t′ + 1], (αiR, ρ

i)←$ R(αi−1
R , σi) ∧ (αiS, σ

i)←$ S(αi−1
S , ρi−1)

]
,

where ρ0 is the empty string, and α0
S = (s0, s1), α0

R = b.
As for security, we will require two properties. The first property is equivalent to simulation-

based security for the case of a honest-but-curious receiver. The second property says that a
malicious sender cannot distinguish the case where it is interacting with the honest receiver,
from the case where the messages from the receiver are replaced by uniform elements over an
efficiently sampleable group M.

Definition 7 (Strongly Uniform semi-honestly secure OT). An OT protocol Π = (S,R) as de-
fined above is a strongly uniform semi-honestly secure OT if there exists an efficiently samplable
group M such that the messages (ρ1, . . . , ρt

′
) sent by R in a honest execution of the protocol

are distributed over M, and moreover the following conditions are met:

(a) Security w.r.t. Semi-Honest Receivers: There exists a PPT simulator SimR such
that for all b ∈ {0, 1} and for all s0, s1 ∈ {0, 1}λ the following holds:{

SimR(1λ, b, sb)
}
λ,b,sb

≈c
{

VIEW R
Π(λ, s0, s1, b)

}
λ,s0,s1,b

,

where VIEW R
Π(λ, s0, s1, b) denotes the distribution of the view of the honest receiver at

the end of the protocol.

(b) Uniformity w.r.t. Malicious Senders: For all PPT distinguishers D, and for all b ∈
{0, 1}, the following holds:∣∣∣∣Pr

[
D(αt

′
D, (ρ

i, σi)i∈[t′]) = 1 :
∀i ∈ [t′], (αiR, ρ

i)←$ R(αi−1
R , σi−1)

∧ (αiD, σ
i)←$ D(αi−1

D , ρi−1)

]
− Pr

[
D(αt

′
D, (ρ

i, σi)i∈[t′]) = 1 :
∀i ∈ [t′], ρi←$M

∧ (αiD, σ
i)←$ D(αi−1

D , ρi−1)

] ∣∣∣∣ ∈ negl(λ) ,

where ρ0 is the empty string, and α0
R = b.

Note that the second property implies game-based security w.r.t. malicious senders (i.e.,
property (b) of Definition 2). Furthermore, for the special case of t′ = 1 the above definition
collapses to standard semi-honest security, as the only message sent by the malicious sender
plays no role in distinguishing the two distributions.

Next, we show a lemma that is not very surprising, namely that strongly uniform secure
KA can be constructed from strongly uniform semi-honestly secure OT.

Lemma 3. If there exists a t-round strongly uniform semi-honestly secure OT, then there exists
a t-round strongly uniform secure KA (constructive).
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Proof. We construct a t-round KA Πka from a t-round OT Π as follows. Alice and Bob run Π,
where Alice takes the role of the receiver with choice bit 0. Bob takes the role of the sender,
with inputs equal to a uniform key k, i.e. s0 = k, and a uniformly random string u, i.e. s1 = u.

Given that Π is semi-honestly secure, Gertner et al. [15, Theorem 5] have shown that Πka is
indeed a secure KA. The rough idea is to first switch the receiver’s choice bit to 1 by using the
game-based security of Π against honest-but-curious senders (which in our case is implies by
strong uniformity). Afterwards, we can use the security against an honest-but-curious receiver
to argue that an eavesdropper cannot distinguish s0 = k from random anymore, since even the
receiver can only learn s1 but has no information about s0. Therefore Πka is a secure KA. It
remains to prove strong uniformity.

Claim 1. Assuming Π is strongly uniform, so is Πka.

Proof. Let PPT D′ break the strong uniformity of Πka, then we construct a PPT distinguisher
D that breaks the strong uniformity of Π as follows. Distinguisher D chooses k and u uniformly,
and interacts as a honest sender in Π, where the receiver’s messages are either distributed
according to the protocol description or uniform. Hence, Alice’s messages are either conform
with the protocol or uniform. Distinguisher D′ receives the view of Bob generated by D. Now, if
D′ distinguishes the messages of Alice being conform with the protocol from uniform, D breaks
the strong uniformity of Π.

The next lemma is more surprising, as it implies that strongly uniform secure KA is equiv-
alent to strongly uniform semi-honestly secure OT. Hence, the notion of strong uniformity is
sufficiently strong to bypass the black-box separation of KA and OT by Gertner et al. [15,
Corollary 7], which is a consequence of the separation between PKE and OT, and the fact that
2-round KA implies PKE. The above also implies that 2-round secure KA is separated as well
from 2-round strongly uniform secure KA.

Lemma 4. If there exists a t-round strongly uniform secure KA, then there exists a t-round
strongly uniform semi-honestly secure OT (constructive).

Proof. We construct an OT protocol Π using two parallel executions of a KA protocol Πka,
which we denote with Π0

ka and Π1
ka. The receiver of the OT acts in both executions as Alice.

For his choice bit b, he runs Πb
ka according to the protocol description, and in Π1−b

ka he samples
and sends uniform messages.

In the last round the sender sends k0 + s0 and k1 + s1, where for j ∈ {0, 1} the key kj is the

exchanged key in Πj
ka, and s0, s1 are the OT inputs of the sender. Notice that this is a t-round

protocol, since the sender can send his masked inputs together with his last messages of the KA
protocols.

Claim 2. Assuming Πka is strongly uniform, so is Π.

Proof. Let there be a PPT distinguisher D′ that distinguishes the receiver’s messages in Π from
uniform. We construct a PPT distinguisher D for Alice’s messages using D′. Distinguisher
D acts in Πka as Bob, where Alice’s messages are either distributed according to the protocol
description or uniform. Hence, D picks b←$ {0, 1} and uses the messages sent by D′ in Π to
interact with Alice in Πb

ka. For Π1−b
ka , distinguisher D sends uniform messages as in the protocol

description. Finally, D outputs the output of D′. Hence, if D′ is successful, then so is D.

Claim 3. Assuming Πka is strongly uniform and secure, then Π is secure against honest-but-
curious receivers.
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Proof. We use the following hybrids, where a simulator Sim generates a view of the receiver. In
the last hybrid, Sim only uses sb but not s1−b and therefore implements a simulator Sim(1λ, b, sb)
as required for security against honest-but-curious receivers.

HYB1(λ): Sim generates the receivers messages in Π1−b
ka as in an actual key agreement Πka, i.e.

not uniform as in Π. The receiver’s view only contains the messages, not the randomness
used in Πka to generate these messages.

HYB2(λ): Sim sends a uniform value u instead of k1−b + s1−b.

To prove the claim, we need to show that the receiver’s view in the real protocol is indistin-
guishable from HYB1(λ), and that HYB1(λ) is indistinguishable from HYB2(λ).

Let D′ be a PPT distinguisher that distinguishes the recevier’s view in the real protocol from
HYB1(λ) with non-negligible probability. We show that there is a PPT distinguisher D that
breaks the strong uniformity of the KA Πka with the same probability. Distinguisher D runs Π,
but replaces the interaction in Π1−b

ka on the receiver’s side with a challenge instance of Πka against
the strong uniformity. To simulate the view of the receiver correctly, we need to simulate the
sampling procedure of the uniform messages in the protocol given only the challenge messages.
We can do this by using the simulator SimSamp of efficiently sampleable groups. The challenge
messages are either uniform, as in the receiver’s actual view in Π, or honestly generated, as
in HYB1(λ). Otherwise, D acts exactly according to the protocol description of Π. If D′

distinguishes the two cases, D breaks the uniformity of Πka.
Now let D′ be a PPT distinguisher that distinguishes HYB1(λ) from HYB2(λ) with non-

negligible probability. Then we can construct a PPT distinguisher that breaks security, i.e. key
indistinguishability, of Π with the same probability. Distinguisher D receives a transcript of Πka

and a challenge z which is either the key k or uniform. Hence, D uses the transcript of Πka as
transcript of Π1−b

ka , and the challenge z to generate the message k1−b+ s1−b as z+ s1−b. Finally,
D generates the remaining parts of the receiver’s view honestly. If z = k, then D simulates
HYB1(λ), and if z = u, and hence z + s1−b is uniform, D simulates HYB2(λ). If now D′

distinguishes HYB1(λ) from HYB2(λ), then D distinguishes the actual key from uniform.

4 From Strongly Uniform Semi-Honestly Secure OT to Mali-
ciously Secure OT

Our protocol is described in §4.1, whereas in §4.3 we prove the protocol satisfies receiver-sided
simulatability; recall that by using Theorem 2 we immediately get a fully simulatable OT
protocol.

4.1 Protocol Description

Let Πc&p = (P0,P1,V0,V1) be a commit-and-prove protocol and Π′ = (S′,R′) be a (2t′ + 1)-
round OT protocol, where the first message σ1 might be the empty string. Our OT protocol
Π = (S,R) is depicted in Fig. 3. The protocol consists of (2t′+2) rounds as informally described
below:

1. The receiver samples m1−b,i ∈ M for all i ∈ [t′], where b is the choice bit. Then he
runs the prover of the commit-and-prove protocol upon input (m1−b,j)j∈[i] for all i ∈ [t′],
obtaining (γi)i∈[t′] which are forwarded to the sender.
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Sender S(s0, s1) Receiver R(b)

u0, u1←$M α0
R,b = 0

α0
S,0 = (s0, u0) ∀i ∈ [t′] :

α0
S,1 = (s1, u1) m1−b,i←$M

(α1
S,0, σ

1
0)←$ S′(α0

S,0) (γi, αi)←$ P0((m1−b,j)j∈[i])

(α1
S,1, σ

1
1)←$ S′(α0

S,1) (γi)i∈[t′]

β1←$ V0(1λ)

r0,1, r1,1←$M (β1, (rk,1, σ
1
k)k∈{0,1})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repeat for each i ∈ [t′] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(αiR,b, ρ
i
b)←$ R′(αi−1R,b , σ

i
b)

mb,i = ρib − rb,i

if V(γi, βi, (δi, (m0,j)j∈[i], (m1,j)j∈[i])) = 0 (δi,m0,i,m1,i) δi←$ P1(αi, βi, γi, (mb,j)j∈[i])

return ⊥
(αi+1

S,0 , σ
i+1
0 )←$ S′(αiS,0,m0,i + r0,i)

(αi+1
S,1 , σ

i+1
1 )←$ S′(αiS,1,m1,i + r1,i)

βi+1←$ V0(1λ)

r0,i+1, r1,i+1←$M (βi+1, (rk,i+1, σ
i+1
k )k∈{0,1})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(αt
′+1
R,b , ρ

t′+1
b )←$ R′(αt

′

R,b, σ
t′+1
b )

output sb = ρt
′+1
b

Figure 3: (2t′+2)-round OT protocol achieving receiver-sided simulatability from (2t′+1)-round
strongly uniform semi-honestly secure OT. Note that the initial state information α0

S,0, α
0
S,1 and

α0
R,b is set to be equal, respectively to the inputs used by the sender and the receiver during

the runs of the underlying OT protocol (S′,R′). The values βt′+1, r0,t′+1, r1,t′+1 are not needed
and can be removed, but we avoided to do that in order to keep the protocol description more
compact.

2. The sender samples uniform values u0, u1←$M. Then, he runs the underlying (2t′ + 1)-
round OT twice with inputs (s0, u0) and (s1, u1) to generate the first messages σ1

0 and σ1
1.

Further, the sender samples a challenge β1 for the commit-and-prove protocol, as well as
two uniformly random group elements r0,1, r1,1 from M, and forwards (β1, r0,1, r1,1) to
the receiver together with the first messages of the OTs (i.e. σ1

0 and σ1
1).

3. Repeat the following steps for each i ∈ [t′]:

(a) (R → S): The receiver runs the receiver R′ of the underlying (2t′ + 1)-round OT
protocol with choice bit fixed to 0, and upon input message σib from the sender,
obtaining a message ρib which is used to define the message mb,i = ρib − rb,i required
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to complete the execution of the commit-and-prove protocol in the non-committing
branch b. This results in a tuple (δi,m0,i,m1,i) that is forwarded to the sender.

(b) (S→ R): The sender verifies that the transcript Ti = (γi, βi, (δi, (m0,j)j∈[i], (m1,j)j∈[i]))
is accepting for the underlying commit-and-prove protocol. If so, he continues the
two runs of the sender S′ for the underlying (2t′ + 1)-round OT protocol. The first
run uses state αiS,0 and message m0,i + r0,i from the receiver resulting in a message

σi+1
0 and state αi+1

S,0 , whereas the second run uses state αiS,1 and message m1,i + r1,i

from the receiver resulting in a message σi+1
1 and state αi+1

S,1 . Finally, the sender
samples a challenge βi+1 for the commit-and-prove protocol, as well as another two
uniformly random group elements r0,i+1, r1,i+1 from M, and forwards (σi+1

0 , σi+1
1 )

and βi+1, r0,i+1, r1,i+1 to the receiver.

4. Output: The receiver runs the receiver R′ of the underlying (2t′ + 1)-round OT protocol,
upon input the (t′ + 1)-th message σt

′+1
b from the sender, thus obtaining an output ρt

′+1
b .

Correctness follows by the fact that, when both the sender and the receiver are honest,
by correctness of the commit-and-prove protocol the transcripts Ti are always accepting, and
moreover the messages produced by the sender σib are computed using message mb,i + rb,i = ρib
from the receiver, so that each pair (ρib, σ

i
b) corresponds to the i-th interaction of the underlying

(2t′ + 1)-round OT protocol with input strings (sb, ub) for the sender and choice bit 0 for the
receiver, and thus at the end the receiver outputs sb. As for security, we establish the following
result.

Theorem 3 (Receiver-sided simulatability of Π). Assuming that Π′ is a (2t′+1)-round strongly
uniform semi-honestly secure OT protocol, and that Πc&p is a secure commit-and-prove protocol,
then the protocol Π from Fig. 3 securely realizes FOT with receiver-sided simulation.

4.2 Proof Intuition

We give a detailed proof in Section 4.3, and here provide some intuition. In order to show
receiver-sided simulatability we need to prove two things: (1) The existence of a simulator
Sim which by interacting with the ideal functionality FOT can fake the view of any efficient
adversary corrupting the receiver in a real execution of the protocol; (2) Indistinguishability of
the protocol transcripts with choice bit of the receiver equal to zero or one, for any efficient
adversary corrupting the sender in a real execution of the protocol.

To show (1), we consider a series of hybrid experiments that naturally lead to the definition
of a simulator in the ideal world. In order to facilitate the description of the hybrids, it will be
useful to think of the protocol as a sequence of t′ iterations, where each iteration consists of 2
rounds, as depicted in Fig. 3.

• In the first hybrid, we run a malicious receiver twice after he has sent his commitments.
The purpose of the first run is to learn a malicious receiver’s input bit, i.e. on which branch
he is not committed. If he is committed on both branches, simulation will be easy since
he will not be able to receive any of the sender’s inputs. We use the second run to learn
the output of a malicious receiver. We describe the two runs now.

1. The first round of each iteration yields an opening (δi,m0,i,m1,i). Hence, after veri-
fying that the opening is valid, we rewind the adversary to the end of the first round
of the i-th iteration to receive another opening (δ′i,m

′
0,i,m

′
1,i).

Now, let b ∈ {0, 1} such that mb,i 6= m′b,i. By the security of the commit-and-prove
protocol, there can be at most one such b. If there is no b we continue the first run.
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Otherwise, if there is such a b ∈ {0, 1}, we have learned the equivocal branch and
start the second run.

2. We execute the second run according to the protcol with the difference that we now
know the equivocal branch, i.e. b, from the very beginning, which will help us later
to simulate correctly right from the start. Notice that by the security of the commit-
and-prove protocol, a malicious receiver cannot change the equivocal branch in the
second run. Obviously, he cannot change it during the same iteration since then
he would be equivocal on both branches and contradict the security of the commit-
and-prove protocol. He can also not change the equivocal branch of one of the later
rounds j > i, since in the j-th commitment δj he cannot be committed to both mb,i

and m′b,i, so he needs to equivocally open δj as well. Thus, he needs to be committed
on the other branch, i.e. branch 1− b.

• The values m′k,i (right after the rewinding) of each iteration of the first run for k ∈ {0, 1},
and second run for k = 1 − b, are identical to mk,i. Moreover, m′k,i 6= mk,i holds only
for the second run for branch k = b. Therefore, in the second hybrid, we can change the
distribution of r′k,i to r′k,i = ρik −mk,i for k ∈ {0, 1}, and both runs except branch k = b

during the second run. The value ρik is obtained by running the simulator for the receiver
of the underlying strongly uniform semi-honest OT protocol with choice bit 1 and input
uk. We can use the messages generated by this simulator on the sender’s side as well.

We will use the strong uniformity of the OT to argue that a malicious receiver cannot
distinguish r′k,i = ρik − mk,i from uniform. By the semi-honest security, the messages
generated by the simulator are indistinguishable from the actual semi-honest OT. At the
same time this simulator is independent of the senders inputs s0 and s1. Note that in this
hybrid, we only need to known sb for the second run after having learned b.

In the last hybrid, a protocol transcript is independent of s1−b but still yields a well distributed
output for the malicious receiver. This allows us to define a valid simulator in the ideal world.

To show (2), we first use the strong uniformity of the underlying OT protocol to sample mb,i

uniformly at random at the beginning of the protocol. Notice that this implies that the receiver
cannot recover the value sb of the sender anymore. Further, we need the strong uniformity
property here, since the receiver is interacting with a malicious sender who could influence the
distribution of mb,i sent by the receiver.

Once both messages, m0,i and m1,i for all iterations are known before the start of the
protocol, we can challenge the choice bit indistinguishability of the commit-and-prove protocol.
As a consequence, we can argue that the transcripts with b = 0 and b = 1 are computationally
indistinguishable, which implies game-based security against a malicious sender.

4.3 Security Analysis

4.3.1 Simulatability Against a Malicious Receiver

We need to prove that for all non-uniform PPT malicious receivers R∗, there exists a PPT
simulator Sim such that{

REALΠ,R∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

≈c
{

IDEALFOT,SimR∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

where λ ∈ N, s0, s1 ∈ {0, 1}∗, b ∈ {0, 1}, and z ∈ {0, 1}∗.
To this end, we introduce several hybrid experiments naturally leading to the definition of

an efficient simulator in the ideal world. Let HYB0(λ) be the real world experiment with a
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malicious receiver R∗. (All experiments are further parametrized by the inputs s0, s1 for the
sender, but we omit to explicitly write this for simplicity.)

First hybrid. Hybrid HYB1(λ) proceeds as follows.

1. The sender picks u0, u1←$M and lets α̃0
S,0 = α0

S,0 = (s0, u0), α̃0
S,1 = α0

S,1 = (s1, u1), and
b, b′, b′′ = ⊥.

2. R∗ forwards (γi)i∈[t′], to which the sender replies with (β1, r0,1, r1,1, σ̃
1
0, σ̃

1
1), where (α̃1

S,0, σ̃
1
0)

←$ S′(1λ, α̃0
S,0), (α̃1

S,1, σ̃
1
1)←$ S′(1λ, α̃0

S,1).

3. Repeat the steps below, for each i ∈ [t′]:

(a) R∗ sends a tuple (δi,m0,i,m1,i). Let Ti = (γi, βi, (δi, (m0,j)j∈[i], (m1,j)j∈[i]). Hence:

i. If V1(Ti) = 0, restart the experiment with fresh randomness for R∗. Since the
protocol is correct with non-negligible probability, it will only take polynomial
time to find a run where R∗ never gets restarted within this step in any iteration.

ii. Rewind R∗ at the beginning of the current iteration, and send a freshly sampled
tuple (β′i, r

′
0,i, r

′
1,i) with the same distribution as before.

(b) R∗ replies with (δ′i,m
′
0,i,m

′
1,i). Let T ′i = (γi, β

′
i, (δ

′
i, (m

′
0,j)j∈[i], (m

′
1,j)j∈[i]). Hence:

i. If V1(T ′i ) = 0, we restart R∗ as in step 3(a)i (again this can be done in poly-
nomial time). If V1(T ′i ) = 1 and on both branches (m′0,j)j∈[i] 6= (m0,j)j∈[i] and
(m′1,j)j∈[i] 6= (m1,j)j∈[i], the sender aborts.

ii. Attempt to define b′ as the binary value for which (m′b′,j)j∈[i] 6= (mb′,j)j∈[i], but
(m′1−b′,j)j∈[i] = (m1−b′,j)j∈[i]. If such value is found, halt and go directly to step 4

after setting b
def
= b′.

(c) The sender computes (α̃i+1
S,0 , σ̃

i+1
0 )←$ S′(α̃iS,0,m

′
0,i+r

′
0,i), (α̃i+1

S,1 , σ̃
i+1
1 )←$ S′(α̃iS,1,m

′
1,i+

r′1,i), samples (βi+1, r0,i+1, r1,i+1) as in the original protocol, and forwards (σ̃i+1
0 , σ̃i+1

1 , βi+1,
r0,i+1, r1,i+1) to R∗.

4. Rewind R∗ to step 2, and re-start running the experiment from there with the following
differences applied to each iteration i ∈ [t′]:

(a) Denote by (β′′i , r
′′
0,i, r

′′
1,i) the new challenges sent to R∗ in step 3(a)ii, and with (δ′′i ,m

′′
0,i,

m′′1,i) the corresponding answer computed by R∗ in step 3b. Also let T ′′i = (γi, β
′′
i , (δ

′′
i ,

(m′′0,j)j∈[i], (m
′′
1,j)j∈[i]).

(b) If either V1(T ′′i ) = 0, or V1(T ′′i ) = 1 and on both branches (m′′0,j)j∈[i] 6= (m0,j)j∈[i]

and (m′′1,j)j∈[i] 6= (m1,j)j∈[i], the sender aborts.

(c) Attempt to define b′′ as the binary value for which (mb′′,j)j∈[i] 6= (m′′b′′,j)j∈[i], but
(m1−b′′,j)j∈[i] = (m′′1−b′′,j)j∈[i]. If such value is found, but b′′ 6= b the sender aborts.

(d) The sender aborts if b′′ 6= ⊥, but (m′′b′′,j)j∈[i] = (mb′′,j)j∈[i].

(e) The sender computes (αi+1
S,0 , σ

i+1
0 )←$ S′(αiS,0,m

′
0,i+r

′
0,i), (αi+1

S,1 , σ
i+1
1 )←$ S′(αiS,1,m

′
1,i+

r′1,i) samples (βi+1, r0,i+1, r1,i+1) as in the original protocol, and forwards (σi+1
0 , σi+1

1 , βi+1,
r0,i+1, r1,i+1) to R∗.

5. Experiment output: The output of R∗.

Lemma 5. HYB0(λ) ≈c HYB1(λ).
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Proof. First notice that all the restarts and rewindings of R∗ do not change R∗’s output dis-
tribution, they only decrease the probability of a protocol abort at the cost of a polynomial
increase in the running time.

For i ∈ [t′], consider the following events defined over the probability space of HYB1(λ).

Event W i
1,1: The event becomes true if the sender aborts during step 3(b)i, i.e. the values

(δi,m0,i,m1,i) and (δ′i,m
′
0,i,m

′
1,i) output by R∗ are such that there is no b̂ ∈ {0, 1} for which

(mb̂,j)j∈[i] = (m′
b̂,j

)j∈[i], and furthermore both transcripts Ti and T ′i are valid transcripts

for the underlying commit-and-prove protocol.

Event W i
1,2: The event becomes true if the sender aborts during step 4b, i.e. the values

(δi,m0,i,m1,i) and (δ′′i ,m
′′
0,i,m

′′
1,i) output by R∗ are such that there is no b̂ ∈ {0, 1} for

which (mb̂,j)j∈[i] = (m′′
b̂,j

)j∈[i], and furthermore both transcripts Ti and T ′′i are valid tran-

scripts for the underlying commit-and-prove protocol.

Event W i
1,3: The event becomes true if the sender aborts during step 4c, i.e., the non-committing

branches b′ and b′′ are different for the two runs of the adversary (after rewinding).

Event W i
1,4: The event becomes true if the sender aborts during step 4d, i.e., the value b′′ was

set in some previous iteration k < i, meaning that (mb′′,j)j∈[k] 6= (m′′b′′,j)j∈[k], but during
the i-th iteration the same branch becomes again committing, meaning that (mb′′,j)j∈[i] =
(m′′b′′,j)j∈[i].

Define W i
1

def
= W i

1,1 ∨W i
1,2 ∨W i

1,3 ∨W i
1,4. For all PPT distinguishers D, by a union bound, we

can write

∆D(HYB0(λ); HYB1(λ)) ≤ Pr[∃i ∈ [t′] : W i
1 ] ≤

t′∑
i=1

4∑
j=1

Pr[W i
1,j ],

and thus it suffices to prove that each of the events happens with negligible probability for all
i ∈ [t′]. We show this fact below, which concludes the proof of the lemma.

Claim 4. For all PPT R∗, and for all i ∈ [t′], we have that Pr[W i
1,1] ∈ negl(λ).

Proof. The proof is down to the property of existence of a committing branch for the commit-
and-prove protocol. By contradiction, assume that there is a pair s0, s1 ∈ {0, 1}λ, some i ∈ [t′],
a non-uniform PPT adversary R∗, and an auxiliary input z ∈ {0, 1}∗, such that R∗(z) provokes
event W i

1,1 in an execution of HYB1(λ) with non-negligible probability. We build a non-uniform

PPT adversary P∗ that, given i ∈ [t′], attacks the security of Πc&p as follows:10

1. Run R∗(z), and after receiving (γi)i∈[t′], forward γi to the challenger, thus obtaining a
challenge β.

2. Emulate a run of experiment HYB1(λ) with R∗, except that the value βi is defined by
embedding the value β received from the challenger.

3. Upon receiving (δi,m0,i,m1,i) from R∗, check that Ti = (γi, βi, (δi, (m0,j)j∈[i], (m1,j)j∈[i]))
is a valid transcript; if so, forward (δi, (m0,j)j∈[i], (m1,j)j∈[i]) to the challenger.

4. Upon receiving a fresh challenge β′ for the commit-and-prove protocol from the challenger,
rewind R∗ as described in HYB1(λ), except that the value β′i is defined by embedding the
value β′ received from the challenger.

10We can also make the reduction uniform, at the cost of losing a polynomial factor in the computational
distance between the two hybrids (which is needed to guess the index i for which event W i

1,1 is provoked).
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5. Upon receiving (γ′i,m
′
0,i,m

′
1,i) from R∗, check that T ′i = (γi, β

′
i, (δ

′
i, (m

′
0,j)j∈[i], (m

′
1,j)j∈[i]))

is a valid transcript; if so, forward (γ′i, (m
′
0,j)j∈[i], (m

′
1,j)j∈[i]) to the challenger.

6. Complete the remaining steps of the protocol with R∗, as described in HYB1(λ).

Notice that the above simulation is perfect; this is because the values (β, β′) that the reduc-
tion embeds during the i-th iteration have exactly the same distribution as in an execution of
experiment HYB1(λ), whereas all other iterations are perfectly distributed as in HYB1(λ). It
follows that adversary R∗ will provoke event W i

1,1 with non-negligible probability, which means
that both the transcripts Ti and T ′i are accepting, and moreover (m0,j)j∈[i] 6= (m′0,j)j∈[i] and
(m1,j)j∈[i] 6= (m′1,j)j∈[i]. Thus, P∗ wins with non-negligible probability, which concludes the
proof of the claim.

Claim 5. For all PPT R∗, and for all i ∈ [t′], we have that Pr[W i
1,2] ∈ negl(λ).

Proof. The proof is similar to the one of the previous claim, and therefore omitted. The only
difference is that the challenge β′ is now embedded by the reduction in β′′i , and also the tuple
(γ′′i , (m

′′
0,j)j∈[i], (m

′′
1,j)j∈[i]) is sent to the challenger after the rewinding.

Claim 6. For all PPT R∗, and for all i ∈ [t′], we have that Pr[W i
1,3] ∈ negl(λ).

Proof. Without loss of generality, assume that b′ = 0 and b′′ = 1. Notice that event W i
1,3

means that both transcripts Ti and T ′′i are accepting for the commit-and-prove protocol, and
additionally (m0,j)j∈[i] 6= (m′0,j)j∈[i], whereas (m1,j)j∈[i] 6= (m′′0,j)j∈[i]. The latter contradicts the
property of existence of a committing branch for the commit-and-prove protocol. The formal
reduction is similar to the one given above, and is therefore omitted.

Claim 7. For all PPT R∗, and for all i ∈ [t′], we have that Pr[W i
1,4] ∈ negl(λ).

Proof. Notice that event W i
1,4 means that, for some iteration k < i, both transcripts Tk =

(γk, βk, (δk, (m0,j)j∈[k], (m1,j)j∈[k])) and T ′′k = (γk, β
′′
k , (δ

′′
k , (m

′′
0,j)j∈[k], (m

′′
1,j)j∈[k])) are accepting

for the commit-and-prove protocol, and additionally there exists a value b ∈ {0, 1} such that
branch b is non-committing, which means (m1−b,j)j∈[k] = (m′′1−b,j)j∈[k]. However, during the
i-th iteration, both transcripts Ti and T ′′i are accepting for the commit-and-prove protocol, but
branch b becomes committing again. The latter implies that there exist accepting transcripts
Tk and T ′′k for which both (m1−b,j)j∈[i] = (m′′1−b,j)j∈[k] and (mb,j)j∈[k] = (m′′b,j)j∈[k], which
contradicts the property of existence of a committing branch for the commit-and-prove protocol.
The formal reduction is similar to the one given above, and is therefore omitted.

Second hybrid. Hybrid HYB2(λ) proceeds identically to HYB1(λ), except for the following
differences.

1. In step 1, the sender additionally sets α̃0
R′,0 = 1.

2. The distribution of the values r′0,i computed during step 3(a)ii is changed by evaluating

(α̃iR′,0, ρ̃
i
0)←$ R′(α̃i−1

R′,0, σ̃
i
0), and by letting r′0,i = ρ̃i0 −m0,i.

Notice that the latter change is applied only to the first run of R∗ (i.e., up to the point where
the value b′ is set). This means that the distribution of the values (r′′0,i)i∈[t′] is not modified.

Lemma 6. HYB1(λ) ≈c HYB2(λ).
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Proof. Let W i
2 be the same event as W i

1 , but over the probability space of HYB2(λ). For all
PPT distinguishers D, we can write:

∆D(HYB1(λ); HYB2(λ)) ≤ ∆D(HYB1(λ); HYB2(λ)|∀i ∈ [t′] : ¬W i
2) + Pr[∃i ∈ [t′] : W2].

An argument similar to that used in the proof of Lemma 5 shows that Pr[∃i ∈ [t′] : W i
2 ] is neg-

ligible, hence it suffices to prove that ∆D(HYB1(λ); HYB2(λ)|∀i ∈ [t′] : ¬W i
2) is also negligible.

Note that the only difference between the two experiments comes from the distribution of the
messages (r′0,j)j∈[i∗], with i∗ ≤ t′ being the index corresponding to the round (if any) where the
bit b′ is set during a run of the protocol: In experiment HYB1(λ) these values are uniformly
random, whereas in experiment HYB2(λ) they are set to ρ̃j0 −m0,j , where ρ̃j0 is generated by a
fresh run of the receiver for Π′ with choice bit fixed to one.

By contradiction, assume that there exists a pair of values s0, s1 ∈ {0, 1}λ, and a non-uniform
PPT distinguisher D, such that D can tell apart HYB1(λ) and HYB2(λ) with non-negligible
probability. We use D to construct a PPT distinguisher D̂ attacking the uniformity property
(cf. property (b) in Definition 7) of protocol Π′. Actually, for this particular step of the proof
we only need a weaker property where the distinguisher D̂ is honest but curious. The reduction
works as follows:

1. Forward b̂ = 1, ŝ0 = s0, and uniform ŝ1 = u0 to the challenger.

2. Receive a challenge ((ρ̂i, σ̂i)i∈[t′], σ̂
t′+1) from the challenger.

3. Run experiment HYB2(λ) with D, except that the changes below are applied to each
iteration of the first run of the distinguisher:

(a) During step 3(a)ii, the value r′0,i is set to be r′0,i = ρ̂i −m′0,i, whereas r′1,i is chosen
uniformly at random in M.

(b) During step 3c, the value σ̃i+1
0 is defined by embedding the value σ̂i+1 from the

challenge.

4. Output the same as D(output of R∗).

By inspection, depending on each pair (ρ̂i, σ̂i) being distributed either as in a honest execution
of protocol Π′ between S′(s0, u0) and R′(1), or as in an interaction between S′(s0, u0) and using
uniformly random group elements for the messages of the receiver, the distribution generated
by the reduction is identical either to that of HYB1(λ) or to that of HYB2(λ). The latter in
particular holds since we are conditioning on the event W i

2 not happening for all i ∈ [t′], which
means that in HYB2(λ) the values σ̃i+1

0 are computed by running the honest sender S′(s0, u0)
upon input r′0,i +m0,i = (ρ̃i0 −m0,i) +m0,i = ρ̃i0.

It follows that D̂ makes a perfect simulation, and thus it retains the same distinguishing
advantage as that of D, which concludes the proof of the lemma.

Third hybrid. Hybrid HYB3(λ) proceeds identically to HYB2(λ), except for the following
differences.

1. In step 1, the sender additionally sets α̃0
Sim′,0

= (1, u0) and defines σ̃1
0 as (α̃1

Sim′,0
, σ̃1

0)

←$ Sim′R′(1
λ, α̃0

Sim′,0
).

2. The distribution of the values ρ̃i0 defined during step 3(a)ii, and of the values σ̃i0 defined
during step 3c is changed by evaluating (α̃i+1

Sim′,0
, ρ̃i0, σ̃

i+1
0 )←$ Sim′R′(α̃

1
Sim′,0

).
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Notice that the latter change is applied only to the first run of R∗ (i.e., up to the point where
the value b′ is set). This means that the distribution of the values (ρi0, σ

i
0)i∈[t′] is not modified.

Lemma 7. HYB2(λ) ≈c HYB3(λ).

Proof. Let W i
3 be the same event as W i

2 , but over the probability space of HYB3(λ). For all
PPT distinguishers D, we can write:

∆D(HYB2(λ); HYB3(λ)) ≤ ∆D(HYB2(λ); HYB3(λ)|∀i ∈ [t′] : ¬W i
3) + Pr[∃i ∈ [t′] : W3].

An argument similar to that used in the proof of Lemma 5 shows that Pr[∃i ∈ [t′] : W i
3 ] is neg-

ligible, hence it suffices to prove that ∆D(HYB2(λ); HYB3(λ)|∀i ∈ [t′] : ¬W i
3) is also negligible.

Note that the only difference between the two experiments comes from the distribution of the
values σ̃t

′+1
0 ,(ρ̃j0, σ̃

j
0)j∈[i∗], with i∗ ≤ t′ being the index corresponding to the round (if any) where

the bit b′ is set during a run of the protocol: In experiment HYB2(λ) these values are generated
through a honest execution of protocol Π′ between receiver R′ with choice bit fixed to 1 and
sender S′ with inputs (s0, u0), whereas in experiment HYB3(λ) they are generated by running
the simulator Sim′R′ .

The proof is down to the security of the underlying (2t′+1)-round OT protocol Π′ = (S′,R′)
w.r.t. semi-honest receivers (cf. property (a) of Definition 7). By contradiction, assume that
there exists a pair of inputs s0, s1 ∈ {0, 1}λ, and a non-uniform PPT distinguisher D, such that
D can tell apart HYB2(λ) and HYB3(λ) with non-negligible probability. We construct a PPT
distinguisher D̂ that given (s0, s1) attacks semi-honest security of Π′ as follows:

1. Forward b̂ = 1, ŝ0 = s0, and ŝ1 = s1 to the challenger.

2. Receive a challenge (ρ̂i, σ̂i)i∈[t′], σ̂
t′+1 from the challenger.

3. Run experiment HYB3(λ) with D, except that the changes below are applied to each
iteration of the first run of the distinguisher:

(a) During step 3(a)ii, the value r′0,i is set to be r′0,i = ρ̂i −m′0,i, whereas r′1,i is chosen
uniformly at random in M.

(b) During step 3c, the value σ̃i+1
0 is defined by embedding the value σ̂i+1 from the

challenge.

4. Output the same as D(output of R∗).

By inspection, depending on each pair (ρ̂i, σ̂i) being distributed either as in a honest execution
of protocol Π′ between S′(s0, u0) and R′(1), or as computed by the simulator Sim′R′ with inputs
(1λ, 1, u0), the distribution generated by the reduction is identical either to that of HYB2(λ)
or to that of HYB3(λ). The latter in particular holds since we are conditioning on the event
W i

3 not happening for all i ∈ [t′], which means that in HYB2(λ) the values σ̃i0 are computed by
running the honest sender S′(s0, u0) upon input r′0,i +m0,i = (ρ̃i0 −m0,i) +m0,i = ρ̃i0.

It follows that D̂ makes a perfect simulation, and thus it retains the same distinguishing
advantage as that of D, which concludes the proof of the lemma.

Fourth hybrid. Hybrid HYB4(λ) proceeds identically to HYB3(λ), except for the following
differences.

1. In step 1, the sender additionally sets α̃0
R′,1 = 1.
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2. The distribution of the values r′1,i computed during step 3(a)ii is changed by evaluating

(α̃iR′,1, ρ̃
i
1)←$ R′(α̃i−1

R′,1, σ̃
i
1), and by letting r′1,i = ρ̃i1 −m1,i.

Notice that the latter change is applied only to the first run of R∗ (i.e., up to the point where
the value b′ is set). This means that the distribution of the values (r′′1,i)i∈[t′] is not modified.
The proof of the lemma below is identical to the proof of Lemma 6, and is therefore omitted.

Lemma 8. HYB3(λ) ≈c HYB4(λ).

Fifth hybrid. Hybrid HYB5(λ) proceeds identically to HYB4(λ), except for the following
differences.

1. In step 1, the sender additionally sets α̃0
Sim′,1

= (1, u1) and defines σ̃1
1 as (α̃1

Sim′,1
, σ̃1

1)

←$ Sim′R′(1
λ, α̃0

Sim′,1
)

2. The distribution of the values ρ̃i1 defined during step 3(a)ii, and of the values σ̃i1 defined
during step 3c is changed by evaluating (α̃i+1

Sim′,1
, ρ̃i1, σ̃

i+1
1 )←$ Sim′R′(α̃

i
Sim′,1

).

Notice that the latter change is applied only to the first run of R∗ (i.e., up to the point where
the value b′ is set). This means that the distribution of the values (ρi1, σ

i
1)i∈[t′] is not modified.

The proof of the lemma below is identical to that of Lemma 7, and is therefore omitted.

Lemma 9. HYB4(λ) ≈c HYB5(λ).

Sixth hybrid. Hybrid HYB6(λ) proceeds identically to HYB5(λ), except for the following
differences.

1. In step 4, the sender additionally sets α0
R′,1−b = 1. If b = ⊥, set both α0

R′,0 = α0
R′,1 = 1.

2. The distribution of the values r′′1−b,i computed during step 4a is changed by evaluating

(αiR′,1−b, ρ
i
1−b)←$ R′(αi−1

R′,1−b, σ
i
1−b), and by letting r′1−b,i = ρ̃i1−b−m1−b,i. If b = ⊥, such a

change is applied on both branches.

The proof of the lemma below is identical to the proof of Lemma 6, and is therefore omitted.

Lemma 10. HYB5(λ) ≈c HYB6(λ).

Seventh hybrid. Hybrid HYB7(λ) proceeds identically to HYB6(λ), except for the following
differences.

1. In step 4, the sender additionally sets α0
Sim′,1−b = (1, u1−b) and defines σ1

1−b as (α1
Sim′,1−b, σ

1
1−b)

←$ Sim′R′(1
λ, α0

Sim′,1−b). If b = ⊥, set both α0
Sim′,0

= (1, u0), α0
Sim′,1

= (1, u1) and generate

σ1
0, σ1

1 as (α1
Sim′,0

, σ1
0)←$ Sim′R′(1

λ, α0
Sim′,0

), (α1
Sim′,1

, σ1
1)←$ Sim′R′(1

λ, α0
Sim′,1

)

2. The distribution of the values ρi1−b defined during step 4a, and of the values σi+1
1−b defined

during step 4e is changed by evaluating (αi+1
Sim′,1−b, ρ

i
1−b, σ

i+1
1−b)←$ Sim′R′(α

i
Sim′,1−b). If b =

⊥, such changes are applied on both branches.

The proof of the lemma below is identical to that of Lemma 7, and is therefore omitted.

Lemma 11. HYB6(λ) ≈c HYB7(λ).
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Simulator. We are now ready to describe the simulator Sim, interacting with the ideal func-
tionality FOT. The simulator works as follows:

1. Pick u0, u1←$M, and let α̃0
Sim′,0

= (1, u0), α̃0
Sim′,1

= (1, u1), (α̃1
Sim′,0

, σ̃1
0)←$ Sim′R′(1

λ, α̃0
Sim′,0

),

(α̃1
Sim′,1

, σ̃1
1)←$ Sim′R′(1

λ, α̃0
Sim′,1

), and b, b′, b′′ = ⊥.

2. Upon receiving (γi)i∈[t′] from R∗, sample β1←$ V0(1λ), r0,1, r1,1←$M, and send (β1, r0,1, r1,1,
σ̃1

0, σ̃
1
1) to R∗.

3. Repeat the steps below, for each i ∈ [t′]:

(a) Upon receiving a tuple (δi,m0,i,m1,i) from R∗, let Ti = (γi, βi, (δi, (m0,j)j∈[i], (m1,j)j∈[i]).
Hence:

i. If V1(Ti) = 0, restart R∗.

ii. Rewind R∗ at the beginning of the current iteration, and send a tuple (β′i, r
′
0,i, r

′
1,i)

where β′i←$ V0(1λ), r′0,i = ρ̃i0 −m0,i and r′1,i = ρ̃i1 −m1,i, for (α̃i+1
Sim′,0

, ρ̃i0, σ̃
i+1
0 )

←$ Sim′R′(α̃
i
Sim′,0

) and (α̃i+1
Sim′,1

, ρ̃i1, σ̃
i+1
1 )←$ Sim′R′(α̃

i
Sim′,1

).

(b) Upon receiving a tuple (δ′i,m
′
0,i,m

′
1,i) from R∗, let T ′i = (γi, β

′
i, (δ

′
i, (m

′
0,j)j∈[i], (m

′
1,j)j∈[i]).

Hence:

i. If V1(T ′i ) = 0, restart R∗. If V1(T ′i ) = 1 and on both branches (m′0,j)j∈[i] 6=
(m0,j)j∈[i] and (m′1,j)j∈[i] 6= (m1,j)j∈[i], abort.

ii. Attempt to define b′ as the binary value for which (m′b′,j)j∈[i] 6= (mb′,j)j∈[i], but
(m′1−b′,j)j∈[i] = (m1−b′,j)j∈[i]. If such value is found, halt and go directly to step 4

after setting b
def
= b′.

(c) Forward (σ̃i+1
0 , σ̃i+1

1 , βi+1, r0,i+1, r1,i+1) to R∗, where βi+1←$ V0(1λ), and r0,i+1, r1,i+1

←$M.

4. Query FOT upon input b, obtaining a value sb ∈ {0, 1}λ.11 Let α0
Sim′,1−b = (1, u1−b), α

0
S′,b =

(sb, ub) and define σ1
0, σ1

1 as (α1
Sim′,1−b, σ

1
1−b)←$ Sim′R′(1

λ, α0
Sim′,1−b), (α1

S′,b, σ
1
b )←$ S′(1λ, α0

S′,b).

Rewind R∗ to step 2, sample β1←$ V0(1λ), r0,1, r1,1←$M, and send (β1, r0,1, r1,1, σ
1
0, σ

1
1)

to R∗.

5. Repeat the steps below, for each i ∈ [t′]:

(a) Upon receiving a tuple (δi,m0,i,m1,i) from R∗, let Ti = (γi, βi, (δi, (m0,j)j∈[i], (m1,j)j∈[i]).
Hence:

i. If V1(Ti) = 0, restart R∗.

ii. Rewind R∗ at the beginning of the current iteration, and send a tuple (β′′i , r
′′
0,i, r

′′
1,i)

where β′′i ←$ V0(1λ), r′′1−b,i = ρi1−b−m1−b,i and r′′b,i←$M, for (αi+1
Sim′,1−b, ρ

i
1−b, σ

i+1
1−b)

←$ Sim′R′(α
i
Sim′,1−b).

(b) Upon receiving a tuple (δ′′i ,m
′′
0,i,m

′′
1,i) from R∗, let T ′′i = (γi, β

′′
i , (δ

′′
i , (m

′′
0,j)j∈[i],

(m′′1,j)j∈[i]). Hence:

i. If either V1(T ′′i ) = 0, or V1(T ′′i ) = 1 and on both branches (m′′0,j)j∈[i] 6= (m0,j)j∈[i]

and (m′′1,j)j∈[i] 6= (m1,j)j∈[i], abort.

11In case b = ⊥, it is not necessary to query the ideal functionality. In fact, the latter means that in all
iterations of the first run with the adversary, both branches for the commit-and-prove protocol are committing,
and so they will be in the second run. Thus, the simulator can simply use the simulation strategy for the
committing branch, which is independent of the sender’s input, on both branches.
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ii. Attempt to define b′′ as the binary value for which (m′′b′′,j)j∈[i] 6= (mb′′,j)j∈[i], but
(m′′1−b′′,j)j∈[i] = (m1−b′′,j)j∈[i]. If such value is found, but b′′ 6= b, abort.

iii. If b′′ 6= ⊥, but (m′′b′′,j)j∈[i] = (mb′′,j)j∈[i].

(c) Forward (σi+1
0 , σi+1

1 , βi+1, r0,i+1, r1,i+1) to R∗, where βi+1←$ V0(1λ), and r0,i+1, r1,i+1

←$M, and further (αi+1
S′,b, σ

i+1
b )←$ S′(αiS′,b,m

′′
b,i + r′′b,i), while σi+1

1−b was obtained in
step 5(a)ii above.

6. Return the output of R∗.

By inspection, the distribution of HYB7(λ) is identical to that of IDEALFOT,SimR∗(z)(λ, s0, s1, b)
for the above defined simulator. This concludes the proof of property (a) in the definition of
receiver-sided simulatability.

4.3.2 Indistinguishability Against a Malicious Sender

We need to show that given the view of a malicious sender it is hard to distinguish whether
he has interacted with a reciever using choice bit b = 0 or b = 1. More precisely, for every
non-uniform PPT malicious sender S∗ it holds that{

VIEW R
Π,S∗(z)(λ, s0, s1, 0)

}
λ,s0,s1,z

≈c
{

VIEW R
Π,S∗(z)(λ, s0, s1, 1)

}
λ,s0,s1,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, and z ∈ {0, 1}∗, and where VIEW R
Π,S∗(z)(λ, s0, s1, b) is the

distribution of the view of S∗ (with input s0, s1 and auxiliary input z) at the end of a real
execution of protocol Π with the honest receiver R (with input b).

Let HYB0(λ, b) ≡ VIEW R
Π,S∗(z)(λ, s0, s1, b). To show the above, we define the following

hybrid HYB(λ, b).

1. The receiver picks for all i ∈ [t′]m1−b,i←$M. then he computes (γi, αi)←$ P0((m1−b,j)j∈[i])
and sends (γi)i∈[t′].

2. Repeat the steps below, for each i ∈ [t′]:

Upon receiving (σi0, σ
i
1, βi, r0,i, r1,i) the receiver picks ρib←$M. He sets mb,i = ρib − rb,i

and computes δi←$ P1(αi, βi, γi, (mb,j)j∈[i]). Then he sends (δi,m0,i,m1,i).

3. The experiment outputs the view of malicious sender S∗.

Notice that the output distribution of HYB1(λ, b) does not change when we sample mb,i←$M
during the first step and define ρib = mb,i + rb,i in the second step.

Lemma 12. For all b ∈ {0, 1}, we have that HYB0(λ, b) ≈c HYB1(λ, b).

Proof. By contradiction, assume that there exists a PPT distinguisher D, a bit b ∈ {0, 1}, and
a polynomial p(λ) ∈ poly(λ) such that for infinitely many values of λ ∈ N:

|Pr[D(HYB0(λ, b) = 1]− Pr[D(HYB1(λ, b)) = 1]| ≥ 1/p(λ).

We will construct a PPT distinguisher D′ such that∣∣∣∣P[D′(αt′D, (ρi, σi)i∈[t′]) = 1 :
∀i ∈ [t′], (αiR, ρ

i)←$ R(αi−1
R , σi)

∧ (αiD, σ
i)←$ D(αi−1

D , ρi)

]
− P

[
D′(αt

′
D, (ρ

i, σi)i∈[t′]) = 1 :
∀i ∈ [t′], ρi←$M

∧ (αiD, σ
i)←$ D(αi−1

D , ρi)

] ∣∣∣∣ ≥ 1/p(λ).
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We define D′ as follows. Distinguisher D′ invokes D and acts as in the actual protocol, except for
the way he samples the values ρi which are obtained from the challenger after forwarding each
of the values σi sent by the malicious sender. Finally, D′ outputs the same as D. It is easy to see
that when ρi is generated by R, then D′ simulates HYB0(λ, b), and when ρi is picked uniformly
at random he generates HYB1(λ, b). Hence, D′ has the same distinguishing advantage as that
of D. This finishes the proof.

In HYB1(λ, b) we can sample both messages m1,i, m0,i for all i ∈ [n] of the commit-and-
prove protocol in the very beginning. Therefore we can use the choice bit indistinguishability
to argue that the receivers choice bit is hidden.

Lemma 13. HYB1(λ, 0) ≈c HYB1(λ, 1).

Proof. The proof is by a standard hybrid argument. For each j ∈ [0, t′], let HYB1,j(λ, b) be the
hybrid experiment that is identical to HYB1(λ, b) except that after sampling (m0,i,m1,i)i∈[t′]

uniformly from M, the receiver defines all commitments (γi)i≤j by running the prover P of
the underlying commit-and-prove protocol upon input (m1−b,i)i≤j , whereas the commitments
(γi)i>j are defined by running the prover P upon input (mb,i)i≤j . Observe that HYB1,0(λ, b) ≡
HYB1(λ, 1− b) and HYB1,t′(λ, b) ≡ HYB1(λ, b); hence, it suffices to show that HYB1,j(λ, b) ≈c
HYB1,j+1(λ, b) holds for all b ∈ {0, 1} and for all j ∈ [0, t′].

By contradiction, assume that there exists a PPT distinguisher D, a value b ∈ {0, 1}, an
index j ∈ [0, t′], and a polynomial p(λ) ∈ poly(λ), such that for infinitely many values of λ ∈ N:

|P [D(HYB1,j(λ, b)) = 1]− P [D(HYB1,j+1(λ, b)) = 1]| | ≥ 1/p(λ).

We will construct a PPT distinguisher D′ and a PPT malicious verifier V∗ such that∣∣P[D′(〈P((mb,i)i≤j+1, (m1−b,i)i≤j+1, 0),V∗(1λ)〉) = 1
]

− P
[
D′(〈P((mb,i)i≤j+1, (m1−b,i)i≤j+1, 1),V∗(1λ)〉) = 1

] ∣∣ ≥ 1/p(λ),

where for all i ∈ [t′], the values m0,i,m1,i are uniformly sampled by D′ from M. Verifier V∗

invokes D and emulates faithfully a run of HYB1,j(λ, b) except that it embeds the commitment
received from the challenger in the value γj+1 which is part of the first message sent to D,

and similarly, after receiving (σj+1
0 , σj+1

1 , βj+1, r0,j+1, r1,j+1) from D, it forwards βj+1 to the
challenger, obtaining a value δj+1 that is used together with (mb,i)i≤j+1 and (m1−b,i)i≤j+1 in
order to terminate the execution of the experiment. In the end, D′ outputs the output of D.

Clearly, when the challenger uses committing branch zero, the reduction perfectly simu-
lates HYB1,j(λ, b), and when the challenger uses committing branch 1, the reduction perfectly
simulates HYB1,j+1(λ, b). Since t′ ∈ poly(λ), the statement follows.

5 Conclusions

We have shown a construction of maliciously secure oblivious transfer (OT) protocol from
a certain class of key agreement (KA) and semi-honestly secure OT protocols that enjoy a
property called strong uniformity, which informally means that the distribution of the messages
sent by one of the parties is computationally close to uniform, even in case the other party is
malicious.

When starting with 2-round or 3-round strongly uniform OT or KA, we obtain 4-round
maliciously secure OT, and thus, invoking [5], 5-round maliciously secure MPC, from standard
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assumptions including low-noise LPN, LWE, Subset Sum, CDH, DDH, and RSA (all with
polynomial hardness).

It remains a fascinating open problem whether round-optimal (i.e., 4-round) maliciously
secure MPC exists under the same assumptions (except for DDH [3]). Also, it is a natural
question to see whether strongly uniform KA or semi-honestly secure OT with t ≥ 4 rounds
can be instantiated from even weaker assumptions, and whether they imply a secure commit-
and-prove protocol.
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A The ORS Commit-and-Prove Protocol

A.1 Commitment Schemes

A non-interactive commitment scheme is an efficient randomized algorithm Commit taking as
input a message m ∈ M together with random coins r ∈ {0, 1}λ, and returning a commit-
ment com. The opening of a commitment com consists of strings (m, r) such that com =
Commit(m; r); we sometimes write Open(m) to denote the randomness that is needed to open
successfully a value com, i.e. com = Commit(m;Open(m)).

As for security, commitment schemes should satisfy two properties called hiding and binding.
Intuitively, the first property says that a commitment does not leak any information on the
committed message; the second property says that it should be hard to open a given commitment
in two different ways. The formal definitions follow.

Definition 8 (Hiding of commitments). A commitment scheme is perfectly (resp., computation-
ally or statistically) hiding, if for allm0,m1 ∈M it holds that the ensembles {Commit(m0;Uλ)}λ∈N
and {Commit(m1;Uλ)}λ∈N are identically distributed (resp., computationally or statistically
close), where Uλ denotes the uniform distribution over {0, 1}λ.

Definition 9 (Binding of commitments). A commitment scheme is computationally binding,
if for all PPT adversaries A there is a negligible function ν : N→ [0, 1] such that

Pr
[
Commit(m; r) = Commit(m′; r′) = com ∧m 6= m′ : (com, (m, r), (m′, r′))←$ A(1λ)

]
≤ ν(λ).

In case the above probability equals zero for all even unbounded adversaries, we say that the
commitment scheme is perfectly binding.

A.2 The ORS Construction

The ORS string commit-and-prove protocol Πc&p = (P0,P1,V0,V1) for string length n is de-
picted in Fig. 4. It relies on a statistically binding commitment scheme (Commit,Open) and
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a linear error detection code G with minimal distance of at least 1
2(n + κ), which can be in-

stantiated with, e.g., a Reed-Solomon code. In what follows, the code G is a public parameter
of the protocol, and we write G(m) to denote an encoding of message m under code G. For
simplifying the presentation of the protocol, we use ψ : Zqq → Zq−1

q to denote the linear map

(x[0], . . . ,x[q − 1]) 7→ (x[1]− x[0], . . . ,x[q − 1]− x[0]),

where x[i] is the i-th entry of a vector x ∈ Zqq.

Remark 1. In the ORS protocol, the prover does not need to known or fix m̂1−b till the second
round. Nevertheless, during the choice bit indistinguishability experiment, both messages need
to be fixed before the first round.

Lemma 14 (Completeness of the ORS protocol). Assuming that the commitment scheme
Commit is complete with probability at least 1 − ε, then the ORS commit-and-prove protocol
from Fig. 4 is complete with probability at least (1− ε)(q+1)n.

Proof. The verifier opens (q+ 1)n commitments. By its (1− ε) completeness, the commitments
will be opened correctly with probability (1− ε)(q+1)n. In the following, we assume that this is
the case. The protocol will succeed if and only if the checks do not fail, i.e.

(c0+c1 = β)∧(m̂0 = G(m0)∧m̂1 = G(m1)]∧(∀k ∈ {0, 1}, i ∈ [n] : ψ(Mk,i[ck[i], ∗]) = (−1)ck[i]vk,i)

holds. By construction, it is easy to see that β = c0 + c1. Next we will show that in a honest
execution of the protocol, both m̂0 and m̂1 will be codewords w.r.t. code G. The entries of m̂0

and m̂1 are computed by the verifier as

m̂`[i] :=
∑

k∈{0,1}

M`,i[k,d`[i]]

for ` ∈ {0, 1}, i ∈ [n]. For branch 1− b, the vector d ∈ Znq is chosen by the receiver such that∑
k∈{0,1}

M1−b,i[k,d1−b[i]] = m̂′1−b[i]

holds for all i ∈ [n], where m̂′1−b[i] denotes m̂1−b[i] on the receiver’s side. Further, such a vector
d1−b always exists due to the fact that there are q columns in M1−b,i and each column sums to
a different value in Zq. For branch b,∑

k∈{0,1}

Mb,i[k,db[i]] = m̂′b[i]

holds for any db ∈ Znq . Therefore the vectors m̂0 and m̂1 computed by the verifier are identical to
the vectors m̂′0 and m̂′1 computed by the prover, which are in particular chosen to be codewords
w.r.t. code G for messages m0 and m1.

The last part of the checking procedure checks whether the image of ψ for the two rows of
M is indeed consistent with the transmitted value vk,i. More specifically, ∀k ∈ {0, 1}, i ∈ [n],

ψ(Mk,i[ck[i], ∗]) = (−1)ck[i]vk,i

must hold. Again, by construction this is true for all i ∈ [n] and k = 1 − b, simply because
v1−b,i is chosen such that it holds. In case k = b it holds as well, since for each i ∈ [n] all the
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Verifier V(1λ) Prover P(m0,m1, b)

m̂b := G(mb), c1−b←$ {0, 1}n

∀i ∈ [n] :

Mb,i←$ Z2×q
q s.t. ∀j ∈ Zq :∑

k∈{0,1}

Mb,i[k, j] = m̂b[i]

σi←$ Perm(Zq)
M1−b,i←$ Z2×q

q s.t. ∀j ∈ Zq :∑
k∈{0,1}

M1−b,i[k, j] = σi(j)

vb,i := ψ(Mb.i[0, ∗])
v1−b,i := (−1)c1−b[i]ψ(M1−b.i[c1−b[i], ∗])

γ := {vk,i,Commit(Mk,i)}k∈{0,1},i∈[n]

γ

β←$ {0, 1}n

β

m̂1−b := G(m1−b), cb := β − c1−b

d1−b ∈ Znq s.t.∑
k∈{0,1}

M1−b,i[k,d1−b[i]] = m̂1−b[i]

db←$ Znq
δc := Open(Mk,i[ck[i], ∗])k∈{0,1},i∈[n]
δd := Open(Mk,i[1− ck[i],dk[i]])k∈{0,1},i∈[n]

δ,m0,m1 δ := (c0, c1,d0,d1, δc, δd)

∀` ∈ {0, 1}, i ∈ [n] :

m̂`[i] :=
∑

k∈{0,1}

M`,i[k,d`[i]]

check if

c0 + c1 = β

m̂0 = G(m0), m̂1 = G(m1)

∀k ∈ {0, 1}, i ∈ [n] :

ψ(Mk,i[ck[i], ∗]) = (−1)ck[i]vk,i

output 0 iff check fails

Figure 4: The ORS string commit-and-prove protocol. Perm(Zq) is the set of permutations over
Zq, and Open(m) denotes the randomness that is needed to open commitment Commit(m).

columns of Mb,i sum to m̂b,i or equivalently for all j ∈ Zq, Mb,i[1, j] = m̂b,i−Mb,i[0, j]. Due to
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this fact, for all c ∈ {0, 1}, i ∈ [n]

ψ(Mb,i[c, ∗]) = (Mb,i[c, 1]−Mb,i[c, 0], . . . ,Mb,i[c, q − 1]−Mb,i[c, 0])

= (−Mb,i[1− c, 1] + Mb,i[1− c, 0], . . . ,−Mb,i[1− c, q − 1] + Mb,i[1− c, 0])

= (−1)ψ(Mb,i[1− c, ∗])

holds. Further, vb,i := ψ(Mb.i[0, ∗]) and therefore

ψ(Mb,i[cb[i], ∗]) = (−1)cb[i]vb,i

holds for any choice of cb ∈ {0, 1}n. This concludes proving completeness.

Lemma 15 (Existence of a committing branch for the ORS protocol). Let κ ∈ N be a statistical
security parameter. Assuming that the commitment scheme Commit is statistically binding
except with probability at most ε, and that code G has minimal distance 1

2(n + κ), then the
ORS protocol from Fig. 4 satisfies the property of existence of a committing branch except with
probability at most 2ε+ 2−κ.

Proof. We define several hybrids to prove the lemma. In the first hybrid, a malicious prover P∗

loses if, for any i ∈ [n] and any k ∈ {0, 1}, a partial message m̂k[i] differs from m̂′b[i] and the
opened row of Mk,i differs as well, i.e. ck[i] 6= c′k[i].

In the second hybrid, the adversary will lose as well if there are more than κ positions i ∈ [n]
for which both messages m̂0[i] and m̂1[i] differ from the messages m̂′0[i] and m̂′1[i] of the second
run.

Hybrid HYB0(λ): This is the original security game, i.e.

(γ, α0)←$ P∗0(1λ);

β, β′←$ V0(1λ);

(δ,m0,m1)←$ P∗1(α0, β);

(δ′,m′0,m
′
1)←$ P∗1(α0, β

′)

and the prover wins iff

(V1(T ) = 1) ∧ (V1(T ′) = 1)

∧(m0 6= m′0) ∧ (m1 6= m′1).

Hybrid HYB1(λ): Identical to HYB0(λ) except that the prover wins iff

(V1(T ) = 1) ∧ (V1(T ′) = 1)

∧(m0 6= m′0) ∧ (m1 6= m′1)

∧∀i ∈ [n], k ∈ {0, 1} : (m̂k[i] = m̂′k[i]) ∨ (ck[i] = c′k[i]).

Hybrid HYB2(λ): Identical to HYB1(λ) except the prover wins iff

(V1(T ) = 1) ∧ (V1(T ′) = 1)

∧(m0 6= m′0) ∧ (m1 6= m′1)

∧∀i ∈ [n], k ∈ {0, 1} : (m̂k[i] = m̂′k[i]) ∨ (ck[i] = c′k[i])

∧|{i ∈ [n] | m̂0[i] 6= m̂′0[i] ∧ m̂1[i] 6= m̂′1[i]}| < κ.
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Claim 8. ∆ (HYB0(λ); HYB1(λ)) ≤ 2ε.

Proof. There is a difference between the two hybrids if and only if there is an i ∈ [n] and
k ∈ {0, 1} such that

(m̂k[i] 6= m̂′k[i]) ∧ (ck[i] 6= c′k[i]).

By the checking procedure of the verifier, we have

ψ(Mk,i[ck[i], ∗]) = (−1)ck[i]vk,i,

which implies the two equalities

v[dk[i]] = Mk,i[0,dk[i]]−Mk,i[0, 0] = −Mk,i[1,dk[i]] + Mk,i[1, 0],

v[dk[i]] = M′
k,i[0,d

′
k[i]]−M′

k,i[0, 0] = −M′
k,i[1,d

′
k[i]] + M′

k,i[1, 0].

Further,
m̂k[i] = Mk,i[0,dk[i]] + Mk,i[1,dk[i]] = Mk,i[0, 0] + Mk,i[1, 0]

as well as m̂′k[i] = M′
k,i[0, 0] + M′

k,i[1, 0]. Since m̂k[i] 6= m̂′k[i], either Mk,i[0, 0] 6= M′
k,i[0, 0] or

Mk,i[1, 0] 6= M′
k,i[1, 0] which breaks statistical binding.

Claim 9. ∆ (HYB1(λ); HYB2(λ)) ≤ 2−κ.

Proof. A malicious prover P∗ is successful in HYB1(λ) but not in HYB2(λ) if for set

S := {i ∈ [n] : m̂0[i] 6= m̂′0[i] ∧ m̂1[i] 6= m̂′1[i]}

the inequality |S| ≥ κ holds. To prove the claim, we show this bound on set S.
For any i ∈ [n] and k ∈ {0, 1}, either m̂k[i] 6= m̂′k[i] or ck[i] 6= c′k[i] holds. Hence, for all

elements i in S, we necessarily have c0[i] = c′0[i] and c1[i] = c′1[i]. This implies that challenge
β = c0 + c1 is identical with β′ on position i. Since β′ is uniformly random, this is only the
case with probability 1/2. If it is not the case, the verifier rejects. Since the size of S has to be
at least κ, the probability of this to happen is at most 2−|S| ≤ 2−κ.

In HYB2(λ), the adversary’s choice of m̂0 and m̂1 will both differ from m̂′0 and m̂′1 on at
most κ positions. On all other positions, m̂0 and m̂1 will be identical to m̂′0 and m̂′1. Since
there are n − κ positions left, at least one of the pairs will be identical on at least 1

2(n − κ)
positions. Let this be m̂b.

Due to the minimal distance 1
2(n+ κ) of code G, there is a unique codeword that matches

these 1
2(n − κ) positions. Hence, in both runs, a malicious receiver is committed to m̂b = m̂′b,

because if m̂b or m̂′b is not a codeword, the verifier rejects. Thus, m̂b = m̂′b decodes to a unique
message mb and therefore for all unbounded provers P∗ experiment HYB2(λ) returns 1 with
zero probability, which concludes this proof.

Lemma 16 (Choice bit indistinguishability of the ORS protocol). Assuming that the com-
mitment scheme Commit satisfies computational hiding, the ORS protocol from Fig. 4 satisfies
choice bit indistinguishability.

Proof. To show indistinguishablity, we define a hybrid in which a prover commits to both
messages and both branches will follow the same distribution. Let HYB0(λ, b) be the experiment
defining choice bit indistinguishability, where the adversary V∗ acts as a malicious verifier; our
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goal is to show that for all PPT V∗, we have HYB0(λ, 0) ≈c HYB(λ, 1). Consider the hybrid
experiment HYB(λ, b) where in the first round the prover takes the following actions:

m̂b := G(mb), c1−b←$ {0, 1}n, m̂1−b := G(m1−b)

db,d1−b←$ Znq
∀i ∈ [n], ` ∈ {0, 1} :

M`,i←$ Z2×q
q s.t. ∀j ∈ Zq :∑

k∈{0,1}

M`,i[k, j] = m̂b[i]

v`,i := ψ(M`.i[0, ∗])
γ := {vk,i,Commit(Mk,i)}k∈{0,1},i∈[n],

and moreover during the third round, the prover acts as follows:

cb = β − c1−b

δc := Open(Mk,i[ck[i], ∗])k∈{0,1},i∈[n]

δd := Open(Mk,i[1− ck[i],dk[i]])k∈{0,1},i∈[n]

Notice that sampling first c1−b and setting cb = β − c1−b has the same distribution as
c0, c1←$ {0, 1}n conditioned on β = c0 + c1. Therefore both branches have the same distribu-
tion.

Claim 10. For all PPT V∗, and for all b ∈ {0, 1}, we have that HYB0(λ, b) ≈c HYB1(λ, b).

Proof. We will define n(q − 1) sub-hybrids. For each i ∈ [n], there are q − 1 commitments in
branch b − 1 that are not opened in the third round. We will switch their committed value
M1−ci,i step by step from the distribution in HYB0 to the distribution in HYB1, i.e. from being
uniform conditioned on summing to σi(j) to summing to m̂[i].

We denote the sub hybrids with HYB0,0,0(λ, b) to HYB0,n,q(λ, b), where HYB0,0,0(λ, b) ≡
HYB0(λ, b) and HYB0,n,q(λ, b) ≡ HYB1(λ, b). We switch from HYB0,i,j(λ, b) to HYB0,i,j+1(λ, b),
and from HYB0,i,q(λ, b) to HYB0,i+1,0(λ, b). In the following, we will just show how to transi-
tion from HYB0,i,j(λ, b) to HYB0,i,j+1(λ, b). The other step is done analogously. Further notice
that the the hybrids

HYB0,i,d1−b[i]−1(λ, b) and HYB0,i,d1−b[i](λ, b)

are already distributed identically. Next, we show that for any i∗ ∈ [n], j∗ ∈ Zq, and for all
PPT V∗ and b ∈ {0, 1}, hybrids HYB0,i∗,j∗(λ, b) and HYB0,i∗,j∗+1(λ, b) are computationally
close, which finishes the proof of the claim.

Recall that an adversary A against the hiding of the commitment scheme chooses two mes-
sages m̃0 and m̃1, and receives a commitment ˜com of one of the two messages. We denote this by

˜com←$OCommit(m̃0, m̃1) Attacker A wins if he successfully determines which message has been
committed to. In what follows, we mostly ignore branch b since it has the same distribution in
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both hybrids. In the first round, A simulates the prover as follows.

c1−b←$ {0, 1}n, m̂1−b := Gm1−b,d1−b←$ Znq
∀(i < i∗ ∨ (i = i∗ ∧ j ≤ j∗)), σi(j) := m̂1−b[i]

σ′←$ Perm(Zq) s.t. σ′(d1−b[i
∗]) = m̂1−b[i

∗]

∀j > j∗, σi∗(j) := σ′(j)

∀i > i∗, σi←$ Perm(Zq) s.t. σi(d1−b[i]) = m̂1−b[i]

∀i ∈ [n],M1−b,i←$ Z2×q
q s.t.∑

k∈{0,1}

M1−b,i[k, j] = σi(j)

∀i < i∗,v1−b,i := ψ(M1−b,i[0, ∗])
∀i ≥ i∗,v1−b,i := (−1)c1−b[i]ψ(M1−b.i[c1−b[i], ∗])
∀(i 6= i∗ ∨ j 6= j∗ ∨ k 6= c1−b[i]), comi,k,j ←$ Commit(M1−b,i[k, j])

comi∗,c1−b[i∗],j∗ ←$OCommit(σ
′[j∗]−M1−b,i∗ [cb[i

∗], j∗],M1−b,i∗ [c1−b[i
∗], j∗])

γ := {v0,i,v1,i,Commit(Mb,i), (comi,k,j)k∈{0,1},j∈[q]}i∈[n].

Since A does not open comi∗,c1−b[i∗],j∗ , he can easily simulate the third round:

cb = β − c1−b

δc := Open(Mk,i[ck[i], ∗])k∈{0,1},i∈[n]

δd := Open(Mk,i[1− ck[i],dk[i]])k∈{0,1},i∈[n].

If the challenger of the commitment security game commits to message σ′[j∗]−M1−b,i∗ [cb[i
∗], j∗],

attacker A simulates hybrid HYB0,i∗,j∗(λ, b), and otherwise if the challenger commits to M1−b,i∗ [c1−b[i
∗], j∗]

the attacker simulates hybrid HYB0,i∗,j∗+1(λ, b). This concludes the proof of this claim.

Clearly, the distribution of hybrid HYB1(λ, b) is independent of bit b. Therefore, HYB1(λ, 0) ≡
HYB1(λ, 1). This and Claim 10 result in the statement of the lemma.
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