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Abstract. We concentrate on machine learning techniques used for pro-
filed side-channel analysis when having imbalanced data. Such scenarios
are realistic and often occurring, for instance in the Hamming weight or
Hamming distance leakage models. In order to deal with the imbalanced
data, we use various balancing techniques where we show that most of
them help in mounting successful attack when the data is highly imbal-
anced. Especially the results with the SMOTE technique are encouraging
since we observe scenarios where it reduces the number of necessary mea-
surements for more than 8 times. Next, we provide extensive results on
comparison of machine learning and side-channel metrics where we show
that machine learning metrics (and especially accuracy as the most of-
ten used one) can be extremely deceptive. This opens a need to revisit
the previous works and their findings in order to properly assess the
performance of machine learning in side-channel analysis.

Keywords: Profiled side-channel attacks, Imbalanced datasets, Synthetic ex-
amples, SMOTE, Metrics

1 Introduction

SCA is a serious threat, which exploits weakness in physical implementation of
cryptographic algorithms rather than the algorithms themselves [1]. The weak-
ness stems from basic device physics of underlying computing elements i.e.,
CMOS cells, which makes it hard to eliminate such threats. It exploits any
unintentional leakage observed in physical channels like timing, power dissipa-
tion, electromagnetic (EM) radiation, etc. For instance, a data transition from
0→ 1 or 1→ 0 in a CMOS cell causes current flow leading to power consump-
tion. This can be easily distinguished from the case when no transition occurs
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( 0 → 0 or 1 → 1). When connected with sensitive data, these differences can
be exploited by an adversary using statistical means. To date, the SCA which
received the largest amount of attention is power analysis. As a side-channel,
it uses the power consumed by the device. Despite being presented almost two
decades ago [2], it is still a very relevant topic of research. Template attack is rec-
ognized as the most powerful side-channel attack, at least from an information
theoretic point of view [3]. There, the attacker firstly profiles the behavior of a
device similar to the targeted one and then uses this information to finalize the
attack. In practice, there are many scenarios, for instance when the profiling set
is small, where machine learning (ML) techniques are outperforming template
attack. For this reason, researchers explored the use of machine learning (and
more recently, deep learning) in the context of side-channel attacks [4–11].

In order to run side-channel analysis, one may select a leakage model where
common examples are intermediate value, the Hamming weight, and the Ham-
ming distance models. As an example, let us consider an 8-bit circuit returning
random numbers between 0 and 255. If we take output values as class labels,
we have uniformly distributed data. A simpler models would be the Hamming
weight (HW) and the Hamming distance (HD), as commonly done in power
analysis. Unfortunately, with such models, we obtain severely imbalanced data.
There, some classes appear in 1/256 cases (when the HW/HD equals 0 and 8)
while one class appears in 70/256 cases (when the HW equals 4). This prob-
lem, in reality, is much more complex due to the presence of noise. In this case,
previous works demonstrate that often machine learning techniques classify all
measurements as the majority class (Hamming weight 4), see e.g., [12]. Then, ac-
curacy will reach around 27% on average but such classifier will not provide any
relevant information in the context of SCA to recover the secret key. Such issues
with imbalanced data are well-known in data science community and there exists
no definitive general solution for this problem. The solutions that are available
are purely empirical so it is not possible to give proper theoretical results on the
best approaches to deal with imbalanced data.

To further elaborate this problem, we give a small experiment. In a simu-
lated setting, we investigate the impact of imbalanced dataset on correlation (a
commonly used distinguisher in SCA). We compute Pearson’s correlation coef-
ficient between a random generated dataset and its observation in form of HW.
Two independent datasets are generated. While the first set is imbalanced as
per binomial distributions of the HW model, the other set is balanced by over-
sampling. Oversampling is done by adding samples to underrepresented classes
to make them at par with highly represented class (HW 4). When only one
class is available, let us say HW 4, correlation remains zero as no distinguishing
information can be recovered. As we add more classes, the correlation between
the dataset and its observation increases. In the experiment, classes are grad-
ually added from the most populated to the least populated. Figure 1 shows
how the imbalanced dataset perform compared to the balanced one, each time
as we increase the number of classes from 1 to 9. While adding noise (shown for
standard deviation σ 0.5 and 1) to the dataset has limited impact, a balanced
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dataset surely improves the correlation. Consequently, the advantage of balanced
dataset is evident.
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Fig. 1: Correlation vs the number of classes for imbalanced and balanced dataset

Since imbalanced data can introduce severe problems in the classification
process, the question is how to assess the performance of a classifier or even
how to compare the performance of several classifiers. While ML uses metrics
like accuracy, precision, or recall as indicators of performance, SCA domain has
specific metrics like guessing entropy and success rate that are applied over
a set of experiments [13]. As we show in this paper, in some scenarios, the
metrics from those two domains are sufficiently similar. Then, it is possible to
estimate the success capabilities of an SCA already on the basis of ML metrics. In
other scenarios, ML metrics do not provide relevant information to side-channel
attackers.

In this paper, we concentrate on the problem of imbalanced datasets and
how such data could be still used in a successful SCA. We examine the influ-
ence of the imbalanced data over several datasets and then we balance them by
using either class sensitive learners or data sampling techniques. To the best of
our knowledge, the performance of various oversampling techniques has not yet
been studied in the SCA context. To assess the performance of such methods, we
use both standard ML and SCA metrics. Our results show that data sampling
techniques are a very powerful option to fight against imbalanced data and that
such techniques, especially SMOTE, enables us to conduct successful SCAs and
to significantly reduce the number of measurements needed. We emphasize that
although we discuss machine learning, the same issues with imbalanced data
and metrics remain for deep learning. For instance, Cagli et al. report problems
coming from imbalanced data when using convolutional neural networks [11].
They use accuracy as the performance metric and recognize some limitations of
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it but do not investigate it in more depth.

Our main contributions are:
1. We show the benefits of data sampling techniques to fight against imbalanced

data.
2. We provide a detailed analysis of various machine learning metrics for as-

sessing the performance of classifiers and we show that ML metrics should
not be used to properly assess SCA performance.

3. The data balancing techniques we use, especially SMOTE, enables us to
reach excellent results where we reduce the number of traces needed for a
successful attack for up to 8 times.

4. We investigate the use of different machine learning metrics already in the
training process in order to mitigate the effects of imbalanced data.

5. We present a detailed discussion on accuracy and SCA metrics to recognize
the limitations of one metric for assessing the performance with another
metric. As far as we are aware, such analysis has not been done.
The rest of the paper is organized as follows. Section 2 summarizes the back-

ground on the target algorithm and on side-channel analysis and introduces the
particularities of our dataset. Section 3 discusses the phenomenon of imbalanced
data and introduces techniques to reduce the influence of imbalanced data. Sec-
tion 4 describe the experiments we carried out and report the achieved results.
Finally, Section 5 discusses in details accuracy as a machine learning metric and
guessing entropy/success rate as side-channel analysis metrics.

2 Background

In this section, we discuss profiling SCA and the Hamming weight and distance
models. Next, we present the datasets we use, machine learning techniques, and
performance metrics.

2.1 Profiling SCA

Profiling SCA performs the worst case security analysis since it assumes a strong
adversary which has access to a clone device. The adversary obtains side-channel
measurements from a clone device with known inputs, including the secret key.
From this data set, also known as the profiling set, the adversary completely char-
acterizes the relevant leakages. Characterized leakages are typically obtained for
secret key dependent intermediate values, that are processed on the device and
result in physical leakages. A leakage model or profile maps the target interme-
diate values to the leakage measurements. These models can then be used in the
attacking phase on the target device to predict which intermediate values are
processed and therefore have conclusions about the secret key.

Formally, a small part of secret key k∗ is processed with t (i.e., a part of)
input plaintext or output ciphertext of the cryptographic algorithm. In the case
of AES, k∗ and t are bytes to limit the attack complexity. The mapping y maps
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the plaintext or the ciphertext t ∈ T and the key k∗ ∈ K to a value that
is assumed to relate to the deterministic part of the measured leakage x. For
example,

y(t, k∗) = HW (Sbox[t⊕ k∗]), (1)

where Sbox[·] is SubBytes and HW the Hamming weight. We denote y(t, k∗) as
the label which is coherent with the terminology used in the machine learning
community.

In the rest of the paper, we are particularly interested in multivariate leak-
age x = x1, . . . , xD, where D is the number of time samples, i.e., features (or
attributes). The adversary first profiles the clone device with known keys and
uses obtained profiles for the attack. In particular, the attack functions in two
phases:

– profiling phase: N traces xp1 , . . . ,xpN , plaintext/ciphertext tp1 , . . . , tpN and
the secret key k∗p, such that the attacker can calculate the labels y(tp1 , k

∗
p), . . . , y(tpN , k

∗
p).

– attacking phase: Q traces xa1 , . . . ,xaQ (independent from the profiling traces),
plaintext/ciphertext ta1 , . . . , taQ .

In the attack phase, the goal is to make predictions about the occurring labels

y(ta1 , k
∗
a), . . . , y(taN , k

∗
a),

where k∗a is the secret unknown key on the attacking device.
One of the first and most commonly used profiling SCA method is tem-

plate attack (TA) [3]. The attack uses Bayes theorem, dealing with multivariate
probability distributions as the leakage over consecutive time samples is not
independent.

2.2 The Hamming Weight and Distance Models

The preference for HW/HD model is related to the underlying device. As stated
earlier, observing power consumption allows distinguishing a transition from no
transition. Thus, when a new data is written into memory (or flip-flop), the total
power consumption is directly proportional to the number of bit transitions. For
example, this happens when a new data is written over old data (HD model)
in flip-flops on embedded devices, or on a precharged data bus (HW model) in
a microcontroller. Although the power consumption occurs both in logic and
memory elements, the power consumption of memory is synchronized with the
clock and is stronger than in logic. This makes exploitation easier due to high
SNR. While weighted HW/HD model was shown to be better [14], it requires
strict profiling, which varies from device to device. Contrary, HD/HW model
works on a range of devices, providing a good starting point for evaluations.

In Eq. (1) y(t, k∗) for i.i.d. values for t and k∗, follows a binomial distribution
B(n, p) with p = 0.5 and n = 8 in case of AES. Accordingly, the HW class value
are imbalanced. Table 1 gives their occurrences.

Obviously, observing a HW value of 4 is more likely than any other value.
This also has an influence on the amount of information each observed HW class
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Table 1: Class taxonomy
HW value 0 1 2 3 4 5 6 7 8

Occurrences 1 8 28 56 70 56 28 8 1

value gives to an attacker to recover the secret key k∗a. For example, knowing t
and observing a HW of 4, it gives an attacker 70 possible secret keys, whereas
observing a HW of 0 or 8 leads to only one possible secret key. Accordingly, the
occurrence of HW classes close to 4 are more likely, but brings less information
about the secret key.

To avoid such imbalance, working with intermediate values rather than its
HW is an alternative. However, the computational complexity increases when
dealing with huge number of intermediate classes (256 vs 9). With only 9 classes,
HW is more resistant to noise as compared to 256 classes, which means lesser
misclassification. The disadvantages of HW model, apart from imbalance, are
less information on secret key as multiple intermediate value classes map to
same HW class. HW model can sometimes be also misleading when dealing with
countermeasures like dual-rail logic [15].

2.3 Attack Datasets

We use three different datasets for our experiments. The underlying crypto-
graphic algorithm remains AES. As we are dealing with the classification prob-
lem with different machine learning algorithms, we are more interested in the
first order leakage rather than higher order variants [16]. Consequently, coun-
termeasures like masking remain out of scope. To test across various setting, we
target 1) low-SNR unprotected implementation on FPGA, 2) high-SNR unpro-
tected implementation on a smartcard, and 3) low-SNR implementation on a
smartcard protected with the randomized delay countermeasure.

Unprotected AES-128 on FPGA (AES HD) We first target an unpro-
tected implementation of AES-128. AES-128 core was written in VHDL in a
round based architecture, which takes 11 clock cycles for each encryption. The
AES-128 core is wrapped around by a UART module to enable external com-
munication. It is designed to allow accelerated measurements to avoid any DC
shift due to environmental variation over prolonged measurements. The total
area footprint of the design contains 1 850 LUT and 742 flip-flops.

The design was implemented on Xilinx Virtex-5 FPGA of a SASEBO GII
evaluation board. Side-channel traces were measured using a high sensitivity
near-field EM probe, placed over a decoupling capacitor on the power line. Mea-
surements were sampled on the Teledyne LeCroy Waverunner 610zi oscilloscope.
A suitable and commonly used (HD) leakage model when attacking the last
round of an unprotected hardware implementation is the register writing in the
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last round [17], i.e.,

Y (k∗) = HW ( Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

), (2)

where Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and
b2 is given through the inverse ShiftRows operation of AES. We choose b1 = 12
resulting in b2 = 8 as it is one of the easiest bytes to attack. These measure-
ments are relatively noisy and the resulting model-based SNR (signal-to-noise

ratio), i.e., var(signal)
var(noise) = var(y(t,k∗))

var(x−y(t,k∗)) , with a maximum value of 0.0096. In to-

tal, 500 000 traces were captured corresponding to 500 000 randomly generated
plaintexts, each trace with 1 250 features. As this implementation leaks in HD
model, we denote this implementation as AES HD.

DPAcontest v4 DPAcontest v4 provides measurements of a masked AES soft-
ware implementation [17]. As we are interested in unmasked implementation, we
consider the mask to be known and thus can easily turn it into an unprotected
scenario. It is a software implementation with most leaking operation not being
the register writing but the processing of the S-box operation and we attack the
first round. Accordingly, the leakage model changes to

Y (k∗) = HW (Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

), (3)

where Pb1 is a plaintext byte and we choose b1 = 1. Compared to the mea-
surements from AES HD, the SNR is much higher with a maximum value of
5.8577. The measurements consist of 4 000 features around the S-box part of the
algorithm execution.

Random Delay Countermeasure Dataset As our last use case, we use a
protected (i.e., with a countermeasure) software implementation of AES. The
target smartcard is an 8-bit Atmel AVR microcontroller. The protection uses
random delay countermeasure as described by Coron and Kizhvatov [18]. Adding
random delays to the normal operation of a cryptographic algorithm has as an
effect on the misalignment of important features, which in turns makes the attack
more difficult to conduct. As a result, the overall SNR is reduced. We mounted
our attacks in the Hamming weight power consumption model against the first
AES key byte, targeting the first S-box operation. The dataset consists of 50 000
traces of 3 500 features each. For this dataset, the SNR has a maximum value of
0.0556. Recently, this countermeasure were shown to be prone to deep learning
based side-channel [11]. However, since its quite often used countermeasure in
commercial product, while not modifying the leakage order (like masking), we
use it as a target case study. In the rest of the paper, we denote this dataset as
the Random delay dataset.



8

2.4 Performance Metrics

As machine learning performance metrics, we consider total classification accu-
racy (ACC), Matthew’s correlation coefficient (MCC), Cohen’s kappa score (κ),
precision, recall, F1 metric, and G-mean. To evaluate a side-channel attack, we
use two common SCA metrics: success rate (SR) and guessing entropy (GE) [13].

Machine Learning Metrics MCC was first introduced in biochemistry to as-
sess the performance of protein secondary structure prediction [19]. It can be
seen as a discretization of the Pearson correlation for binary variables. Cohen’s
kappa is a coefficient developed to measure agreement among observers [20]. It
shows the observed agreement normalized to the agreement by chance. Preci-
sion (also positive predictive value) is considered to be a measure of classifier’s
exactness, as it quantifies true positive instances among the all deemed positive
instances. Recall (also sensitivity) is considered to be a measure of classifier’s
completeness, as it quantifies true positive instances that are found among posi-
tive instances. F1 is a harmonic mean value of precision and recall, while G-mean
is geometric mean of recall (also called sensitivity) and negative accuracy (also
called specificity). MCC, κ, precision, recall, F1, and G-mean are all well estab-
lished in measuring classification performance on imbalanced datasets and are
great improvements over accuracy on such datasets [21–23]. The equations used
to obtain the evaluation metrics are given here:

ACC =
TP + TN

TP + TN + FP + FN
. (4)

PRE =
TP

TP + FP
, REC =

TP

TP + FN
. (5)

F1 = 2 · PRE ·REC
PRE +REC

=
2TP

2TP + FP + FN
. (6)

Gmean =

√
TP

TP + FN
× TN

TN + FP
. (7)

κ =
PObs − PChance

1− PChance
. (8)

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
. (9)

TP refers to true positive, TN to true negative, FP to false positive, and FN to
false negative classified instances. PObs is the percentage of observed agreement
among observers, and PChance is the agreement expected by pure chance. Note
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that due to distribution skewness in the analyzed datasets, ACC may not be the
best choice for evaluation. We still include it for comparison purposes and for
optimizing classifiers in the tuning phase. To efficiently visualize the performance
of an algorithm, we can use the confusion matrix where in each row we represent
the instances in an actual class, while each column represents the instances of a
predicted class.

Success Rate and Guessing Entropy A side-channel adversary AEK ,L con-
ducts experiment ExpAEK,L

, with time-complexity τ , memory complexity m, and

making Q queries to the target implementation of the cryptographic algorithm.
The attack outputs a guessing vector g of length o, and is considered success if
g contains correct key k∗. o is also known as the order of the success rate. The
oth order success rate of the side channel attack AEK,L is defined as:

SRo
AEK,L

(τ,m, k∗) = Pr[ExpAEK,L
= 1]

The Guessing entropy measures the average number of key candidates to
test after the attack. The Guessing entropy of the adversary AEk,L against a key
class variable S is defined as:

GEAEK,L
(τ,m, k∗) = E[ExpAEK,L

]

As SCA metrics, we report the number of traces needed to reach a first-order
success rate SR1

AEK,L
(τ,m, k∗) (in short SR) of 90% as well as a guessing entropy

GEAEK,L
(τ,m, k∗) (in short GE) of 10. We use ’–’ in case these thresholds are

not reached within the test set.

2.5 Classifiers

In all our experiments, we use two classifiers: radial kernel support vector ma-
chines (SVM) and random forest (RF). These two well-known classifiers were
used since they represent the usual classifiers of choice if highly accurate classifi-
cation is sought. It is expected that they will perform among the best classifiers
on the variety of datasets [24]. Although they may perform reasonably well even
for moderately imbalanced data sets, it was already shown that performance of
the classifiers on highly imbalanced data is expected to be reduced [25,26].

Radial Kernel Support Vector Machines Radial Kernel Support Vector
Machines (denoted SVM in the rest of this paper) is a kernel based machine
learning family of methods that are used to accurately classify both linearly
separable and linearly inseparable data. The idea for linearly inseparable data
is to transform them to a higher dimensional space using a kernel function,
wherein the data can usually be classified with higher accuracy. Radial kernel
based SVM that is used here has two significant tuning parameters: cost of the
margin C and the kernel parameter γ. The scikit-learn implementation we use
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considers libsvm’s C-SVC classifier that implements SMO-type algorithm based
on [27]. The multiclass support is handled according to a one-vs-one scheme.
The time complexity for SVM with radial kernel is O

(
D · N3

)
, where D is

the number of features and N is the number of instances. We experiment with
C = [0.001, 0.01, 0.1, 1] and γ = [0.001, 0.01, 0.1, 1] in the tuning phase.

Random Forest Random Forest (RF) is a well-known ensemble decision tree
learner [28]. Decision trees choose their splitting attributes from a random sub-
set of k attributes at each internal node. The best split is taken among these
randomly chosen attributes and the trees are built without pruning, RF is a
parametric algorithm with respect to the number of trees in the forest. RF is a
stochastic algorithm because of its two sources of randomness: bootstrap sam-
pling and attribute selection at node splitting. Learning time complexity for RF
is approximately O

(
I · k ·NlogN

)
. We use I = [10, 50, 100, 200, 500, 1000] trees

in the tuning phase, with no limit to the tree size.

3 Imbalanced Data and How to Handle It

Imbalanced data are a phenomenon often occurring in real-world application
where the distribution of classes is not balanced, i.e., some classes appear much
more frequently than the other ones. In such situations, machine learning clas-
sification algorithms (e.g. decision trees and decision forests, neural networks,
classification rules, support vector machines, etc.) have difficulties since they
will be biased towards the majority class. The reason is that canonical machine
learning algorithms assume the number of measurements for each class to be
approximately the same. Usually, within imbalanced setting, we consider cases
where the ratio between the majority and minority classes goes between 1 : 4 and
1 : 100. When the imbalancedness is even more pronounced, we talk about ex-
treme imbalance data [29]. By referring to Table 1, we see that our HW scenario
belongs to imbalanced scenarios, but approaching extreme imbalanced scenarios.

When the data is imbalanced, algorithms can decide to simply set all the
measurements to belong to the majority class. As an example, let us consider
the Hamming weight scenario with a significant amount of noise (so to make the
classification process even more difficult) and two hypothetical classifiers. The
first classifier can set all measurements to the class HW 4, which will result in
accuracy of 70/256 ≈ 27%. The second classifier will not classify everything as
HW 4 but will have problems in correct classification (e.g., its accuracy will be
somewhat better than a random guess of 1/9 ≈ 11%, let us say 20%). The stan-
dard machine learning metrics will favor the first classifier since it reaches the
better result, although such a result is not giving any useful information. Unfor-
tunately, all machine learning classifiers (some more than others) are susceptible
to such a behavior, but there are numerous techniques designed to alleviate the
imbalanced data problem.
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3.1 Handling Imbalanced Data

In order to improve the classification results in imbalanced data setting, there
are essentially two main approaches:
1. Data-level methods that modify the measurements by balancing distribu-

tions.
2. Algorithm-level methods that modify classifiers to remove (or reduce) the

bias towards majority classes.
Both of the approaches are performed in the data preprocessing phase, indepen-
dently of the classifier that is used later for building the model. We consider typ-
ically used methods in machine learning community for both approaches. Aside
from the methods that we consider here, there are also other approaches to help
with imbalanced datasets, including those based on loss function maximization
in cost-sensitive learning, classifiers adaptations (e.g., boosting SVMs) [30], or
active learning [31]. For the purpose of introducing efficient imbalance solving
methods in SCA, we focus on the well-known and successful methods for han-
dling imbalanced data, which are described in the following paragraphs.

3.2 Cost-Sensitive Learning by Class Weight Balancing

The importance of a class is equal to its weight, which may be determined as the
combined weight of all the instances belonging to that class. Balancing the classes
prior to classification can be made by assigning different weights to instances of
different classes (so called dataspace weighting) [23], so that the classes have the
same total weight. The total sum of weights across all instances in the dataset is
usually maintained, which means that the new instances are not introduced and
that the weights of the existing instances are rebalanced so that it counteracts
the effect of numbers of instances in each class in the original dataset. Thus, for
example, a class A, having 2 times the number of instances as class B, would
have all its instances’ weights divided by 2, while class B would have all its
instances multiplied by 2. To calculate the class weights, we use expression:

class weighti =
#samples

#classes ∗#samplesi
, (10)

where #samples denotes the number of measurements in a dataset, #classes
the number of classes, and #samplesi denotes the number of measurements
belonging to the class i.

3.3 Data Resampling Techniques

Data resampling techniques usually belong in two major categories: undersam-
pling and oversampling. In undersampling, the number of instances for a ma-
jority class is reduced, so that it becomes the same or similar to the minority
class. In oversampling, the number of instances in the minority class is increased
in order to become equal or similar to the majority class. In imbalanced multi-
class setting, undersampling reduces the number of instances in all classes except
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the one with the smallest number of instances, and oversampling increases the
number of instances of all classes except the one with the highest number of in-
stances. Oversampling may lead to overfitting when samples from the minority
class are repeated and thus synthetic samples (synthetic oversampling) may be
used to prevent it [32]. Here, overfitting means that the machine learning algo-
rithm adapts to the training set too well and thus loses the ability to generalize
to another datasets (e.g., test set). A simple way to identify overfitting is to
compare the results on the training and testing sets: if the training set accuracy
is much higher than the test set accuracy, then the algorithm overfitted.

As random undersampling may lead to loss of information in the majority
class, informed undersampling needs to be used, which is based on classifier
ensembles or k-NN approach [23]. Here, we consider two oversampling techniques
(one random and one synthetic) and one combined synthetic oversampling with
informed undersampling technique.

We do not use random undersampling techniques because of two reasons:
– Since we need to undersample all the classes except the least populated one

(HW 0 or HW 8), we must significantly reduce the number of measurements
in other classes. For instance, on average we need to reduce the measurements
belonging to HW 4 for 70 times, or measurements belonging to classes HW 3
and HW 5 for 56 times. Although a common assumption is that the profiling
phase is unbounded, the ratio of acquired measurements vs the number of
actually used measurements is extremely unfavorable from the attacker’s
perspective.

– The second reason is even more difficult to mitigate. Since we need to remove
measurements, we are in danger of removing extremely important informa-
tion (measurements), which would make the loss of information even more
significant than suggested by purely considering the number of removed mea-
surements. Since we do not classify before undersampling (if we did, it would
render undersampling not needed anymore), we cannot know whether we re-
move measurements that are the most informative.

Random Oversampling with Replacement Random oversampling with re-
placement oversamples the minority class by generating instances randomly se-
lected from the initial set of minority class instances, with replacement. Hence,
an instance from a minority class is usually selected multiple times in the final
prepared dataset, although there is a possibility that some instances may not
be selected at all. All minority classes are oversampled in order to reach the
number of instances equal to the highest majority class. Interestingly, this sim-
ple technique has previously been found comparable to some more sophisticated
resampling techniques [33].

Synthetic Minority Oversampling Technique The second method is SMOTE,
a well-known resampling method that oversamples by generating synthetic mi-
nority class instances [32]. This is done by taking each minority class instance
and introducing synthetic instances along the line segments joining any/all of the
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k minority class’ nearest neighbors (using Euclidean distance). It is reported that
the k parameter works best for k = 5 [32]. The user may specify the amount of
oversampling for each class, or else, the oversampling is performed in such a way
that all minority classes reach the number of instances in the (highest) majority
class.

Synthetic Minority Oversampling Technique with Edited Nearest Neigh-
bor SMOTE + ENN [33] combines oversampling used by SMOTE and data
cleaning by Edited Nearest Neighbor (ENN) method, originally proposed by
Wilson [34]. ENN cleaning method works by removing from the dataset any
instance whose class differs from the classes of at least two of its three nearest
neighbors. In this way, many noisy instances are removed from both the ma-
jority and minority classes. By first applying SMOTE oversampling on all but
the most numerous class, thus leveling the number of instances per class, and
then applying ENN, noisy instances from all the classes are removed so that the
dataset tends to have more defined class clusters of instances. Note that this
type of cleaning may again lead to some class imbalance, depending on the data.

4 Experimental Validation and Discussion

As the first step, we randomly select a number of measurements from each
dataset. From DPAv4 and AES HD datasets, we select 75 000 measurements,
while for the Random delay dataset, we take all 50 000 measurements that are
available. Next, before running the classification process, we select the most im-
portant 50 features for each dataset. To do that, we use Pearson correlation
coefficient. Pearson correlation coefficient measures linear dependence between
two variables, x and y, in the range [−1, 1], where 1 is total positive linear corre-
lation, 0 is no linear correlation, and −1 is total negative linear correlation [35].

We divide the traces into training and testing sets, where each test set has
25 000 measurements. We experiment with three training set sizes where the
measurements are selected randomly from the full training set: 1 000, 10 000, and
50 000 measurements (25 000 for Random delay). We use 3 datasets with signifi-
cantly different sizes to demonstrate that imbalanced data problem persists over
different problem sizes and that simply adding/removing measurements cannot
help. On the training set, we conduct a 5-fold cross-validation for 10 000 and
50 000 (25 000 for Random delay) measurements. We run 3-fold cross-validation
for 1 000 measurements due to the least represented class having only 3 mea-
surements on average. We use the averaged results of individual folds to select
the best classifier parameters. Before running the experiments, we normalize all
the data into [0, 1] range. Due to the lack of space, we report results from the
testing phase only. All the experiments are done with the scikit-learn library [36]
from Python.
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4.1 Results

The classification results for the original (imbalanced), class weight balanced,
random oversampling, SMOTE, and SMOTE+ENN datasets are available in
Tables 2 to 6. Note that we do not give MCC, kappa, and G-mean results, since
we found those metrics not providing relevant information except in the easiest
cases (where also the presented metrics work). Additionally, we observe that
even when SCA metrics show significant differences between scenarios, MCC,
kappa, and G-mean often do not differ significantly (or at all).

Table 2 gives results for DPAcontest v4 scenario. Since this dataset has the
highest SNR of all considered datasets (and is consequently the easiest), we see
that machine learning algorithms do not have problems with dealing with im-
balanced data. When the number of measurements is sufficiently high, we easily
get accuracies of around 70%. At the same time, both SR and GE indicate it is
possible to attack the target without issues. What is interesting, the difference
in GE between SVM with 10 000 measurements and RF with 50 000 measure-
ments is more than double, while the accuracies are within 1%. This is a clear
indication that we cannot use accuracy as a good estimate of a susceptibility of
an attack, even for a simple dataset. When applying class weight balancing, we
observe small changes in both accuracies and GE/SR (no apparent correlation in
change). For RF with 50 000 measurements, the accuracy even decreases when
comparing to the imbalanced case, but both SR and GE reduce significantly.
Random oversampling does not seem to be a good technique for handling im-
balanced data in SCA, since, although accuracy does not decrease significantly,
GE/SR for certain cases indicate much larger number of traces needed when
compared to the imbalanced case. Finally, SMOTE and SMOTE+ENN tech-
niques shows that, although accuracy can be even improved over imbalanced
case, there seems to be no apparent advantage in using such techniques when
considering SCA metrics. To conclude, in this low noise scenario, we see that
using techniques to fight imbalanced data are not always bringing high improve-
ments, especially when considering SCA metrics. As a natural question, one
could ask how to decide do we need to use techniques to balance the data. One
option would be to consider the confusion matrix. We give one example of it in
Table 3. As it can be seen, machine learning classifier is able to correctly classify
examples of all but one class, which is a good indication that we do not need to
use additional techniques (although it could be beneficial).

When considering the dataset with the random delay countermeasure, we
see the problem to be much more difficult. In fact for imbalanced dataset, only
in few cases we are able to reach the threshold for SR/GE, but the number of
traces needed is quite high. Interestingly, here we do not see almost any im-
provement when using class weight balancing (more precisely, we require around
500 traces less to reach the threshold for GE). Random oversampling is able
to bring improvements, since now we are able to reach the thresholds on two
more cases when considering GE and in 4 cases when considering SR. SMOTE,
although strictly speaking successful in one less occasion, brings even more sig-
nificant improvements since we now need much less traces to successfully reach
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Table 2: DPAv4 dataset. Values are given as percentages (ML metrics) and
number of traces (for GE/SR) on test set.

Method Tr. size Tuned ACC PRE REC F1 GE SR

Imbalanced classification results

SVM 1 000 C=1,γ=1 52.5 44 52 47 3 8
SVM 10 000 C=1,γ=1 72.4 71 72 71 3 7
SVM 50 000 C=1,γ=1 70.9 71 71 70 3 7
RF 1 000 I=1 000 69.1 69 69 68 5 11
RF 10 000 I=1 000 74.8 75 75 74 5 11
RF 50 000 I=500 73.2 73 73 72 7 16

Class weight balancing

SVM 1 000 C=1,γ=1 42.4 37 42 36 4 10
SVM 10 000 C=1, γ=1 73.1 74 73 73 3 6
SVM 50 000 C=1, γ=1 71.5 72 72 71 3 7
RF 10 00 I=1 000 67.5 67 67 66 4 12
RF 10 000 I=1 000 74.1 74 74 73 4 10
RF 50 000 I=1 000 71.6 70 72 70 5 13

Random oversampling

SVM 1 000 C=1, γ=1 49.4 43 49 44 4 9
SVM 10 000 C=1, γ=1 73.5 74 74 73 3 7
SVM 50 000 C=1, γ=1 70.7 71 71 70 3 8
RF 1 000 I=50 63.4 63 63 61 17 48
RF 10 000 I=1 000 72.6 72 73 71 5 11
RF 50 000 I=1 000 72.4 71 72 71 6 17

SMOTE

SVM 1 000 C=1, γ=1 46.4 39 46 41 4 10
SVM 10 000 C=1, γ=1 72.6 73 73 72 3 7
SVM 50 000 C=1, γ=1 70.5 71 71 70 3 8
RF 1 000 I=200 67.0 66 67 65 9 13
RF 10 000 I=500 72.2 72 72 72 6 23
RF 50 000 I=500 72.2 72 72 72 9 23

SMOTE+ENN

SVM 1 000 C=1, γ=1 36.3 28 36 27 20 62
SVM 10 000 C=1, γ=1 71.7 72 72 71 3 9
SVM 50 000 C=1, γ=1 68.4 69 68 68 3 9
RF 1 000 I=50 59.6 64 60 56 18 54
RF 10 000 I=500 73.2 74 73 73 6 17
RF 50 000 I=500 72.6 72 73 72 7 21
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Table 3: Confusion matrix for DPAcontest v4 imbalanced dataset, SVM with
C = 1, γ = 1, 10 000 measurements in the training phase.

Predicted Actual

0 1 2 3 4 5 6 7 8

0 65 43 0 0 0 0 0 0 0
0 39 710 6 0 0 0 0 0 1
0 0 2 118 670 4 0 0 0 0 2
0 0 326 4 148 894 3 0 0 0 3
0 0 6 744 5 410 719 2 0 0 4
0 0 0 5 951 4 121 421 0 0 5
0 0 0 0 9 628 2 069 37 0 6
0 0 0 0 0 2 584 176 0 7
0 0 0 0 0 0 9 73 8 8

the thresholds. Consider imbalanced case, RF with 50 000 measurements, where
we need 13 500 measurements and the same classifier with SMOTE where we
need only 1 600 measurements, which represents an improvement of more than
8 times. Moreover, with SMOTE we are able to reach a SR of 90% with only
approx 5 500 measurements, where for all imbalanced data sets this threshold
cannot be reached. SMOTE+ENN is again less successful than SMOTE and
somewhere similar as the class weight balancing technique. Generally speaking,
we observe that RF is more successful than SVM, which we attribute to the
RF capability to deal with noisy measurements. Finally, this dataset is a good
example to depict the problem of assigning all measurements to the majority
class as it can be seen in Table 5. Regardless of the number of measurements,
with such imbalancedness, we would never be able to break this target despite
relatively good accuracy of 27.3%.

Finally, in Table 6, we give results for the AES HD dataset. The results could
be considered somewhere between the previous two cases: the dataset charac-
teristics and imbalancedness represents bigger problem than for DPAcontest v4,
but not as significant as in the Random delay dataset. We observe that, for
this scenario, class weight balancing is actually deteriorating the behavior of
classifiers as in less cases we are able to actually reach the threshold. Contrary,
random oversampling helps and we have only three instances where GE or SR do
not reach the threshold. Additionally, we see that, due to oversampling, several
scenarios require less measurements to reach the threshold values. SMOTE, as in
the previous scenarios, proves to be the most powerful method. There is only one
instance where we are not able to reach the threshold and we observe significant
reduction in the number of traces needed. SMOTE+ENN reaches all thresholds
for the SVM algorithm but none for the RF algorithm. This further demon-
strates how accuracy is not suitable measure since RF algorithm reaches higher
accuracy values. Finally, other considered ML metrics and confusion matrices
also do not reveal further insights, which shows how misleading ML metrics can
be. We compare two confusion matrices for imbalanced scenario, RF with 10 000
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Table 4: Random delay dataset. Values are given as percentages (ML metrics)
and number of traces (for GE/SR) on test set.

Method Tr. size Tuned ACC PRE REC F1 GE SR

Imbalanced classification results

SVM 1 000 C=.001,γ=.001 27.3 7 27 12 – –
SVM 10 000 C=.001,γ=.001 27.3 7 27 12 – –
SVM 25 000 C=.001,γ=.001 27.3 7 27 12 – –
RF 1 000 I=1 000 25.1 21 25 19 – –
RF 10 000 I=1 000 26.5 23 26 18 18 800 –
RF 25 000 I=1 000 26.6 29 27 17 13 490 –

Class weight balancing

SVM 1 000 C=1, γ=1 18.9 19 19 19 – –
SVM 10 000 C=.01, γ=.01 11.1 1 11 2 – –
SVM 25 000 C=.01, γ=.001 21.7 5 22 8 – –
RF 1 000 I=100 24.9 19 25 19 – –
RF 10 000 I=1 000 27.1 24 27 16 18 660 –
RF 25 000 I=1 000 27.0 24 27 15 12 980 –

Random oversampling

SVM 1 000 C=1, γ=1 21.1 19 21 20 – –
SVM 10 000 C=1, γ=1 20.7 20 21 20 19 290 –
SVM 50 000 C=1, γ=1 19.8 21 20 20 7 177 19 210
RF 1 000 I=200 24.4 20 24 20 – –
RF 10 000 I=1 000 26.2 21 26 19 17 360 –
RF 50 000 I=1 000 26.3 25 26 19 7 173 20 650

SMOTE

SVM 1 000 C=1, γ=1 22.0 20 22 21 – –
SVM 10 000 C=1, γ=1 21.5 20 21 21 – –
SVM 50 000 C=1, γ=1 21.3 21 21 21 10 320 –
RF 1 000 I=1 000 20.2 20 20 20 – –
RF 10 000 I=1 000 23.2 21 23 21 4 305 13 710
RF 50 000 I=1 000 24.1 22 24 22 1 619 5 593

SMOTE+ENN

SVM 1 000 C=1, γ=1 7.7 7 8 4 – –
SVM 10 000 C=1, γ=1 9.3 14 9 5 – –
SVM 50 000 C=1, γ=1 8.9 12 9 5 11 780 –
RF 1 000 I=500 7.3 5 7 4 – –
RF 10 000 I=1 000 8.2 7 8 4 15 770 –
RF 50 000 I=1 000 8.9 19 9 5 20 400 –
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Table 5: Confusion matrix for random delay imbalanced dataset, SVM with
C = 1, γ = 1, 10 000 measurements in the training phase.

Predicted Actual

0 1 2 3 4 5 6 7 8

0 0 0 0 99 0 0 0 0 0
0 0 0 0 727 0 0 0 0 1
0 0 0 0 2 767 0 0 0 0 2
0 0 0 0 5 481 0 0 0 0 3
0 0 0 0 6 815 0 0 0 0 4
0 0 0 0 5 422 0 0 0 0 5
0 0 0 0 2 777 0 0 0 0 6
0 0 0 0 809 0 0 0 0 7
0 0 0 0 103 0 0 0 0 8

measurements and for SMOTE, RF with 10 000 measurements in Tables 7 and 8.
Differing from Table 5, we observe that here, even for the imbalanced scenario,
our classifier is able to correctly classify measurements into several classes (more
precisely, 5 classes but where for one of them, we have only a single successful
measurement). After applying SMOTE we observe that for 7 classes we have
correct predictions.

In Figures 2a until 2d, we depict guessing entropy and success rate results
for all 3 datasets when using either imbalanced datasets (straight lines) or those
after applying SMOTE (dashed lines). We depict the results for both SVM and
RF classifiers illustrating the significant improvements for the Random delay
and AES HD datasets.

4.2 Discussion

Our results clearly demonstrate that if the classification problem is sufficiently
hard (e.g., for a dataset with a high level of noise) and there is imbalance, data
sampling techniques may increase SR and GE significantly. As it can be seen from
Table 2, the DPAcontest v4 dataset constitutes an easy classification problem. In
this case, adding more samples to try to balance the dataset either by adjusting
class weights or by oversampling is not needed or even beneficial. For the two
more difficult datasets (Random delay and AES HD), we see that balancing
the classes may bring significant improvements. Comparing the techniques we
investigated, the SMOTE technique performs the best, followed by Random
Oversampling, class weight balancing, and finally, SMOTE+ENN.

On a more general level, our experiments indicate that none of the ML met-
rics we tested can be used as a reliable indicator of SCA performance when
dealing with imbalanced data. In the best case, machine learning metrics can
serve as indicator of performance where high value means the attack should be
possible, while low value could indicate attack would be difficult or even im-
possible. But as it can be seen from our results, those metrics are not reliable.
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Table 6: AES HD dataset. Values are given as percentages (ML metrics) and
number of traces (for GE/SR) on test set.

Method Tr. size Tuned ACC PRE REC F1 GE SR

Imbalanced classification results

SVM 1 000 C=.001,γ=.001 27.0 7 27 11 – –
SVM 10 000 C=.001,γ=.001 27.0 7 27 11 13 330 24 700
SVM 50 000 C=.001,γ=.001 27.0 7 27 11 17 680 –
RF 1 000 I=500 24.7 21 25 20 – –
RF 10 000 I=1 000 26.0 19 26 18 16 620 –
RF 50 000 I=1 000 26.0 23 26 18 13 560 24 380

Class weight balancing

SVM 1 000 C=.001, γ=1 0.4 0 0 0 – –
SVM 10 000 C=.01, γ=.001 11.0 1 11 2 – –
SVM 50 000 C=.01, γ=.001 0.3 0 0 0 – –
RF 1 000 I=200 25.1 21 25 19 – –
RF 10 000 I=1 000 26.4 26 26 17 16 120 24 990
RF 50 000 I=1 000 26.7 17 27 15 16 650 –

Random oversampling

SVM 1 000 C=1, γ=1 11.6 20 12 12 6 653 20 160
SVM 10 000 C=1, γ=1 17.5 21 18 18 10 320 14 520
SVM 50 000 C=1, γ=1 9.9 19 10 12 9 986 21 820
RF 1 000 I=500 24.3 20 24 20 – –
RF 10 000 I=1 000 25.4 21 25 20 12 530 24 960
RF 50 000 I=1 000 25.9 21 26 19 16 190 –

SMOTE

SVM 1 000 C=1, γ=1 18.0 20 18 17 11 700 21 850
SVM 10 000 C=1, γ=1 23.0 21 23 19 9 170 20 450
SVM 50 000 C=1, γ=1 23.7 20 24 19 17 320 –
RF 1 000 I=500 17.6 20 18 18 8 328 19 700
RF 10 000 I=1 000 16.7 20 17 17 2 877 7 943
RF 50 000 I=1 000 14.0 20 14 14 4 771 12 030

SMOTE+ENN

SVM 1 000 C=1, γ=1 7.4 8 7 4 10 700 21 800
SVM 10 000 C=1, γ=1 6.2 3 6 4 10 390 22 410
SVM 50 000 C=1, γ=1 3.9 3 4 2 11 770 23 270
RF 1 000 I=500 8.9 3 9 4 – –
RF 10 00 I=1 000 7.8 14 8 4 – –
RF 50 000 I=1 000 7.8 3 8 4 – –
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Table 7: Confusion matrix for the AES HD imbalanced dataset, RF with 1 000
iterations, 10 000 measurements in the training phase.

Predicted Actual

0 1 2 3 4 5 6 7 8

0 0 1 14 72 15 0 0 0 0
0 0 5 80 582 92 0 0 0 1
0 0 14 274 2 047 386 0 0 0 2
0 0 29 565 4 174 744 2 0 0 3
0 0 16 596 5 114 1 028 0 0 0 4
0 0 27 514 4 175 807 0 0 0 5
0 0 8 229 2 081 436 1 0 0 6
0 0 3 68 583 125 0 0 0 7
0 0 1 6 70 16 0 0 0 8

Table 8: Confusion matrix for the AES HD imbalanced dataset after SMOTE,
RF with 1 000 iterations, 10 000 measurements in the training phase.

Predicted Actual

0 1 2 3 4 5 6 7 8

0 4 23 20 21 21 11 1 1 0
0 19 158 124 197 146 76 34 5 1
2 43 533 446 732 523 308 113 21 2
7 87 1 091 864 1 440 1 111 617 276 21 3
4 104 1 192 995 1 767 1 478 813 373 28 4
8 76 948 842 1 458 1 159 651 351 30 5
2 43 433 414 723 625 330 174 11 6
1 7 123 115 215 159 106 49 4 7
0 2 11 11 32 27 8 2 0 8
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(a) Guessing entropy (GE) for the imbal-
anced and SMOTE dataset on DPAcontest
v4.

(b) Success rate (SR) for the imbalanced
and SMOTE dataset on DPAcontest v4.

(c) Guessing entropy (GE) for the imbal-
anced and SMOTE dataset on Random de-
lay dataset.

(d) Success rate (SR) for the imbalanced
and SMOTE dataset on Random delay
dataset.

(e) Guessing entropy (GE) for the imbal-
anced and SMOTE dataset on AES HD.

(f) Success rate (SR) for the imbalanced
and SMOTE dataset on AES HD.

Fig. 2: Guessing entropy and success rate for imbalanced and SMOTE on all
three datasets
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Sometimes a small difference in machine learning metric means large difference
in SCA metrics, but that is not a rule. We also see situations where machine
learning metrics indicate significant difference in performance and yet, SCA met-
rics show absolutely no difference. Finally, as the most intriguing case, we also
see that even lower values of machine learning metrics can actually be better
when considering SCA metrics. To conclude, we experimentally prove that there
is no clear connection between machine learning and side-channel metrics. Still,
there are general answers (or intuitions) we can give.

Q Can we use accuracy as a good estimate of behavior of SCA metrics?
A The answer is no, since our experiments clearly show that sometimes accu-

racy can be used to infer about SCA success but is often misleading. This is
also very important from the perspective where SCA community questions
whether a small difference in accuracy (or other machine learning metrics)
means anything for SCA. Unfortunately, our experiments show there is no
definitive answer to that question. What is more, we see that we also cannot
use accuracy to compare the performance of two or more algorithms. We give
a detailed discussion about the differences between accuracy and SR/GE in
the following section.

Q If accuracy is not appropriate machine learning metric for SCA, can we use
some other ML metric?

A The answer seems to be again no. We experimented with 7 different ma-
chine learning metrics and none gave good indication of SCA behavior over
different scenarios.

Q If we concluded that accuracy is not appropriate measure, what sense does
it make to evaluate other ML metrics on test set, since still accuracy is used
in training/tuning phase?

A We modified our classifiers to use different machine learning metrics (as given
in Section 2.4) already in the training phase. The results are either compara-
ble or even worse than for accuracy. Naturally, we did not test exhaustively
all possible combinations, but the current answer seems to be that other ML
metrics in the training phase do not solve the problem.

Q Can we design a new ML metric that would better fit SCA needs?
A Currently, the answer seems to be no. Simply put, using all the information

relevant for SCA would mean that we need to use SCA metrics in classifiers.
Anything else would mean that we need to extrapolate the behavior on the
basis of only partial information.

Q Since we said that using all relevant information for SCA means using SCA
metrics in ML classifiers, what are the obstacles there?

A Although there does not seem to be any design obstacles for this scenario,
there are many from the implementation perspective. SCA metrics are com-
putationally expensive on their own. Using them within machine learning
classifiers means that we need to do tuning and training with metrics that
are complex and slow to evaluate. Next, many machine learning algorithms
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are actually much slower when required to output probabilities (e.g., SVM).
Consequently, this would mean that the computational complexity would
additionally increase. Finally, not all machine learning algorithms are even
capable of outputting probabilities. This can be circumvented by simply not
using such algorithms, but then we already impose some constraints on our
framework.
Finally, our conclusions are not connected with any specific dataset or ma-

chine learning algorithm. The same problems should be expected in different
settings, which implies that the same solutions could be used. For instance, Cagli
et al. use deep learning (convolutional neural networks) and encounter problems
with imbalanced data. They propose data augmentation techniques to remedy it
but their techniques use random changes in the measurements [11]. We believe
our setting is more powerful since we do not rely solely on random changes. More
precisely, although such changes can improve generalization, they also introduce
more erroneous measurements that limit the performance of classifiers.

5 Accuracy vs SR/GE

In this section, we discuss two differences between accuracy and SR/GE, where
the first difference is present regardless of the imbalanced data problem and
applies in general. We start by detailing the empirical computations of accuracy,
SR, and GE in practice.

5.1 Empirical Computation of Accuracy and SR/GE

Let us denote the class labels in the attacking phase as

ya1 , . . . , yaQ = y(ta1 , k
∗
a), . . . , y(taQ , k

∗
a), (11)

with y ∈ {c1, . . . , cC} with C being the number of classes. For example, when
considering the HW/HD over a byte we have C = 9 with {c1, . . . , c9} = {0, . . . , 8}.
We denote the vector of output probabilities of a classifier for the ith measure-
ment sample as

pi = pi,c1 , . . . , pi,cC , (12)

where i = 1, . . . , Q. For each sample i in the test set, classifier predicts a class
label ỹai corresponding to the maximal output probability in pi, i.e.,

ỹai = arg max
{c1,...,cC}

pi. (13)

The accuracy is then computed as

1

Q

∑
i

1ỹai
=yai

(14)
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with 1 being the indicator function. Accordingly, accuracy only takes into ac-
count the most likely label predictions without their exact values of probabilities
(see Eq. (13)) and predictions over i are considered independently (see Eq. (14)).

Contrary, GE and SR are computed regarding the secret key k∗a and output
probability values are accumulated as relying on a maximum-likelihood approach
(like template attack). In particular, for a given plaintext tai let us denote the
set of keys corresponding to the class ci through y(tai , k) = ci as

Kci;tai
= {k1, . . . , kδci}, (15)

where δci is the amount of keys corresponding to one class ci. For example,
for y(tai , k) = HW (Sbox[tai ⊕ k]) we have δci =

(
ci
8

)
. Now, for each class ci

the probability pi,k of each key k in Kci;tai
is set to pi,ci . Given Q amount of

samples in the test set and uniformly chosen plaintexts t, the likelihood for each
k is calculated as

pQk =

Q∑
i=1

pi,k. (16)

A classifier now decides for the key k̃Q with the maximal likelihood, i.e.,

k̃Q = arg max
k

pQk . (17)

The SR is then computed over an amount of E experiments as

1

E

E∑
e=1

1k̃Q=k∗a
. (18)

Note that, normally for each experiment e an independent and uniformly dis-
tributed set of plaintexts and a new secret key ka is chosen. Taking pQk in Eq. (16)
and sorting it in descending order of likelihood, the GE over E experiments is
the average position of ka in the sorted vector.

5.2 Label Prediction vs Fixed Secret Key Prediction

The first difference between accuracy and SR/GE is that for accuracy each
label prediction in the test set is considered independently, whereas SR/GE is
computed regarding a fixed secret key. More precisely, comparing Eq. (14) and
Eq. (18) one can see that accuracy is measured regarding class labels y averaged
over Q amount of samples, whereas SR (and GE) is measured in respect to
the secret key ka accumulated over Q amount of samples and averaged over E
experiments. Moreover, SR/GE are taking into account the exact value of the
output probability of each class (see Eq. (16)), whereas accuracy only considers
which class corresponds to the maximal output probability (see Eq. (13)).

Based on these differences, we can derive that a low accuracy may not indicate
that the SR is reaching the threshold value of 90% using a higher amount of traces
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(or similarly the GE). Let us consider a toy example with 3 classes c1, c2, c3 with
ka = 2 for Q = 3 and

p1 = {0.4, 0.5, 0.1}, p2 = {0.3, 0.4, 0.3}, p3 = {0.1, 0.4, 0.5}, and (19)

y1 = c1, y2 = c3, y3 = c2. (20)

Moreover, we consider the simplified case that each class label corresponds to
only one key, i.e., Kci = ki, and E = 1. According to Eq. (19) and (20), the
accuracy is 0%, but the SR will reach 100% for ≥ 1 sample(s), as

p1k=1 = 0.4, p2k=1 = 0.7, p3k=1 = 0.8, (21)

p1k=2 = 0.5, p2k=2 = 0.9, p3k=2 = 1.3, (22)

p1k=3 = 0.1, p2k=3 = 0.4, p3k=3 = 0.9. (23)

However, the opposite conclusion might hold: A high accuracy may indicate
that the SR/GE is reaching the threshold value of 90% using a lower amount of
traces. Note that, the differences between accuracy and SR/GE derived in this
subsection are not based on the imbalancedness of the class labels, as also our
toy example shows.

5.3 Global Accuracy vs Class Accuracies

When considering the case of imbalanced classes, as e.g., y(tai , ka) = HW (Sbox[tai⊕
ka]), the amount of information in respect to the secret key ka is varying de-
pending on the observed class y(tai , k) (see δci in Eq. (15) or the explanation in
Subsection 2.2). Accordingly, accurately predicting the classes corresponding to
a smaller δc may improve SR/GE more than accurately predicting classes with
a higher δ. Therefore, the class accuracies with smaller δ may be more relevant
than the class accuracies for higher δ or the global accuracy (i.e. averaged over
all classes).

Note that this observation may bring new direction for future work on how
to derive (or tune) classification techniques which are more accurate for classes
contributing more information to the secret key.

Remark 1. Even though our previous experiments demonstrated the beneficial
impact of balancing techniques like SMOTE, a straightforward approach to com-
pensate the effect of global vs class accuracies may be to not consider the Ham-
ming weight and directly use the intermediate value e.g., Sbox[tai⊕ka]. However,
this approach has its own merits and demerits (see also Subsection 2.2). Using
the intermediate value directly increases the number of classes, for which a larger
training set is required. As larger number of classes are present within the same
margins, the classification becomes more prone to noise. The aforementioned
problems may be partly solved if a large enough set of profiling traces are pro-
vided. That is not always possible due to several practical shortcomings. To
name a few, countermeasures can restrict the number of available traces for a
given key. Similarly, time bounded certification process also does not give the
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luxury to collect a large number of traces. Accordingly, to cope up with these
issues in absence of infinite number of traces, considering HW/HD classes with
proposed data balancing techniques can prove as a practical solution.

6 Conclusions and Future Work

In this paper, we focused on the problem of highly imbalanced datasets and
classification. Side-channel analysis offers realistic scenarios where we encounter
datasets that have large amounts of noise and are highly imbalanced (where
some classes are on average 70 times more represented than some other classes).
Additionally, the SCA domain uses specific metrics to assess the performance of
classifiers where the end goal is to estimate the number of measurements needed
for a successful attack.

We conducted a detailed analysis on techniques that can help in imbalanced
data scenarios and we show that SMOTE is especially useful in some difficult
(noisy) scenarios. Interestingly, we observe significant discrepancy between ML
metrics and SCA metrics, which indicates that estimating the success of a po-
tential side-channel attack is a difficult task if we rely solely on ML metrics.
In such scenarios, accuracy is not a reliable metric to predict the ability of key
recovery in SCA.

In future work, we plan to continue working on the last two questions from
Section 4.2. Designing a new ML metric that reflects the SCA behavior better
seems to be very difficult (or even impossible), but using SCA metrics in ML
process is possible. The main question is whether such an approach would be
acceptable from the computational complexity perspective. Finally, we consid-
ered some well-known methods for handling imbalanced data which were highly
efficient on our datasets but naturally, the choice of the methods was not ex-
haustive.
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