
On the Exact Round Complexity of Secure Three-Party
Computation

Arpita Patra and Divya Ravi ?

Indian Institute of Science, India
{arpita,divyar}@iisc.ac.in

Abstract. We settle the exact round complexity of three-party computation
(3PC) in honest-majority setting, for a range of security notions such as selective
abort, unanimous abort, fairness and guaranteed output delivery. Selective abort
security, the weakest in the lot, allows the corrupt parties to selectively deprive
some of the honest parties of the output. In the mildly stronger version of unan-
imous abort, either all or none of the honest parties receive the output. Fairness
implies that the corrupted parties receive their output only if all honest parties
receive output and lastly, the strongest notion of guaranteed output delivery im-
plies that the corrupted parties cannot prevent honest parties from receiving their
output. It is a folklore that the implication holds from the guaranteed output de-
livery to fairness to unanimous abort to selective abort. We focus on two network
settings– pairwise-private channels without and with a broadcast channel.
In the minimal setting of pairwise-private channels, 3PC with selective abort is
known to be feasible in just two rounds, while guaranteed output delivery is in-
feasible to achieve irrespective of the number of rounds. Settling the quest for
exact round complexity of 3PC in this setting, we show that three rounds are nec-
essary and sufficient for unanimous abort and fairness. Extending our study to
the setting with an additional broadcast channel, we show that while unanimous
abort is achievable in just two rounds, three rounds are necessary and sufficient
for fairness and guaranteed output delivery. Our lower bound results extend for
any number of parties in honest majority setting and imply tightness of several
known constructions.
The fundamental concept of garbled circuits underlies all our upper bounds. Con-
cretely, our constructions involve transmitting and evaluating only constant num-
ber of garbled circuits. Assumption-wise, our constructions rely on injective (one-
to-one) one-way functions.

? This article is a full and extended version of an earlier article (https://link.
springer.com/chapter/10.1007/978-3-319-96881-0_15) that appeared in
CRYPTO 2018.

https://link.springer.com/chapter/10.1007/978-3-319-96881-0_15
https://link.springer.com/chapter/10.1007/978-3-319-96881-0_15

Table of Contents

On the Exact Round Complexity of Secure Three-Party Computation 1
Arpita Patra, Divya Ravi
1 Introduction . 3

1.1 Our Results . 5
1.2 Techniques . 7
1.3 Roadmap . 11

2 Preliminaries . 11
2.1 Model . 11
2.2 Primitives . 12

3 3-round 3PC with Fairness . 13
3.1 Protocol fairi . 14
3.2 Protocol certi . 15
3.3 Protocol fair . 17

4 2-round 3PC with Unanimous Abort . 25
4.1 Protocol uai . 26
4.2 Protocol ua . 29

5 3-round 3PC with Guaranteed Output Delivery . 31
5.1 Protocol godi . 32
5.2 Protocol god . 33

6 Lower Bounds . 37
6.1 The Impossibility of 2-round Fair 3PC . 37
6.2 The Impossibility of 2-round 3PC with Unanimous Abort 40

7 Conclusion . 43
Appendices
A Primitives . 48

A.1 Properties of Garbling Scheme . 48
A.2 Non-Interactive Commitment Schemes (NICOM) 48
A.3 Equivocal Non-interactive Commitment Schemes (eNICOM) 49
A.4 Symmetric-Key Encryption with Special Correctness 50

B The Security Model . 50
C Optimizations . 52
D Round Optimal 3PC with fairness . 53

D.1 Schematic Diagram . 53
D.2 Formal Proof of Security for Protocol fair . 53

E Proof of Security for Protocol ua . 61
F Proof of Security for Protocol god . 65
G Authenticated Conditional Disclosure of Secret . 69

1 Introduction

In secure multi-party computation (MPC) [GMW87, CDG87, Yao82], n parties wish
to jointly perform a computation on their private inputs in a secure way, so that no ad-
versary A actively corrupting a coalition of t parties can learn more information than
their outputs (privacy), nor can they affect the outputs of the computation other than
by choosing their own inputs (correctness). MPC has been a subject of extensive re-
search and has traditionally been divided into two classes: MPC with dishonest majority
[GMW87, DO10, BDOZ11, DPSZ12, GGHR14, BHP17, ACJ17] and MPC with honest
majority [BGW88, CCD88, RB89, BMR90, Bea91, DN07, BFO12, BH06, CDD+99].
While the special case of MPC with dishonest majority, namely the two-party compu-
tation (2PC) has been at the focus of numerous works [Yao82, IPS08, Lin13, SS13,
HKK+14, AMPR14, RR16, MR17], the same is not quite true for the special case of
MPC protocols with honest majority.

The three-party computation (3PC) and MPC with small number of parties main-
taining an honest majority make a fascinating area of research due to myriad reasons
as highlighted below. First, they present useful use-cases in practice, as it seems that
the most likely scenarios for secure MPC in practice would involve a small num-
ber of parties. In fact, the first large scale implementation of secure MPC, namely
the Danish sugar beet auction [BCD+09] was designed for the three-party setting.
Several other applications solved via 3PC include statistical data analysis [BTW12],
email-filtering [LADM14], financial data analysis [BTW12] and distributed creden-
tial encryption service [MRZ15]. The practical efficiency of 3PC has thus got con-
siderable emphasis in the past and some of them have evolved to technologies
[Gei07, BLW08, LDDA12, LADM14, CMF+14, FLNW17, AFL+16]. Second, in prac-
tical deployments of secure computation between multiple servers that may involve
long-term sensitive information, three or more servers are preferred as opposed to two.
This enables recovery from faults in case one of the servers malfunctions. Third and im-
portantly, practical applications usually demand strong security goals such as fairness
(corrupted parties receive their output only if all honest parties receive output) and
guaranteed output delivery (corrupted parties cannot prevent honest parties from receiv-
ing their output) which are feasible only in honest majority setting [Cle86]. Fourth and
interestingly, there are evidences galore that having to handle a single corrupt party can
be leveraged conveniently and taken advantage of to circumvent known lower bounds
and impossibility results. A lower bound of three rounds has been proven in [GIKR02]
for fair MPC with t ≥ 2 and arbitrary number of parties, even in the presence of broad-
cast channels. [IKKP15] circumvents the lower bound by presenting a two-round 4PC
protocol tolerating a single corrupt party that provides guaranteed output delivery with-
out even requiring a broadcast channel. Verifiable secret sharing (VSS) which serves
as an important tool in constructing MPC protocols are known to be impossible with
t ≥ 2 with one round in the sharing phase irrespective of the computational power of
the adversary [GIKR01, PCRR09, BKP11]. Interestingly enough, a perfect VSS with
(n = 5, t = 1) [GIKR01], statistical VSS with (n = 4, t = 1) [PCRR09, IKKP15] and
cryptographic VSS with (n = 4, t = 1) [BKP11] are shown to be achievable with one
round in the sharing phase.

3

The world of MPC for small population in honest majority setting witnesses a few
more interesting phenomena. Assumption-wise, MPC with 3, 4 and 5 parties can be
built from just One-way functions (OWF) or injective one-way functions/permutations
[IKKP15, MRZ15, CGMV17], shunning public-key primitives such as Oblivious
Transfer (OT) entirely, which is the primary building block in the 2-party setting. Last
but not the least, the known constructions for small population in the honest majority
setting perform arguably better than the constructions with two parties while offering
the same level of security. For instance, 3PC with honest majority [IKKP15, MRZ15] al-
lows to circumvent certain inherent challenges in malicious 2PC such as enforcing cor-
rectness of garbling which incurs additional communication. The exact round complex-
ity is yet another measure that sets apart the protocols with three parties over the ones
with two parties. For instance, 3PC protocol is achievable just in two rounds with the
minimal network setting of pairwise-private channels [IKKP15]. The 2PC (and MPC
with dishonest majority) protocols achieving the same level of security (with abort)
necessarily require 4 rounds [KO04] and have to resort to a common reference string
(CRS) to shoot for the best possible round complexity of 2 [HLP11].

With the impressive list of motivations that are interesting from both the theoretical
and practical viewpoint, we explore 3PC in the honest majority setting tolerating a
malicious adversary. In this work, we set our focus on the exact round complexity of
3PC. To set the stage for our contributions, we start with a set of relevant works below.

Related Works. Since round complexity is considered an important measure of effi-
ciency of MPC protocols, there is a rich body of work studying the round complexity
of secure 2PC and MPC protocols under various adversarial settings and computational
models. We highlight some of them below. Firstly, it is known that two rounds of in-
teraction are essential for realizing an MPC protocol irrespective of the setting. This is
because in a 1-round protocol, a corrupted party could repeatedly evaluate the “resid-
ual function" with the inputs of the honest parties fixed on many different inputs of its
own (referred as “residual function" attack) [HLP11]. In the plain model, any actively
secure 2PC is known to require 5 rounds in non-simultaneous message model [KO04]
(under black-box simulation). The bound can be improved to 4 even in the dishonest
majority setting [GMPP16] in simultaneous message model and tight upper bounds are
presented in [BHP17, ACJ17, HHPV17]. With a common reference string (CRS), the
lower bound can be further improved to 2 rounds [HLP11]. Tight upper bounds are
shown in [GGHR14] under indistinguishability obfuscation (assumption weakened to
witness encryption by [GLS15]), and in [MW16] under a variant of Fully Homomor-
phic Encryption (FHE) and Non-interactive Zero-knowledge (NIZK).

In the honest majority setting which is shown to be necessary [Cle86] and sufficient
[BGW88, CCD88, CL14] for the feasibility of protocols with fairness and guaranteed
output delivery, the study on round complexity has seen the following interesting re-
sults. Three is shown to be the lower bound for fair protocols in the broadcast-only
model (no private channels), surprisingly even with access to a CRS [GLS15]. Several
matching upper bounds can be found in [GLS15, ACGJ18, BJMS18] relying on tools
such as Zaps, multi-key FHE, dense crypto-systems. The protocol of [GLS15] can be
collapsed to two rounds given access to PKI where the infrastructure carries the public
keys corresponding to the multi-key FHE they use.

4

In the plain model, three rounds are shown to be necessary for MPC with fairness
and t ≥ 2, even in the presence of a broadcast channel and arbitrary number of par-
ties [GIKR02]. In an interesting work, [IKKP15] circumvents the above result by con-
sidering 4PC with one corruption. The protocol provides guaranteed output delivery,
yet does not use a broadcast channel. In the same setting (plain model and no broad-
cast), [IKKP15] presents a 2-round 3PC protocol tolerating single corruption; whose
communication and computation efficiency was improved by the 3-round protocol of
[MRZ15]. Both these protocols achieve a weaker notion of security known as security
with selective abort. Selective abort security [IKP10] (referred as ‘security with abort
and no fairness’ in [GL02]) allows the corrupt parties to selectively deprive some of
the honest parties of the output. In the mildly stronger version of unanimous abort (re-
ferred as ‘security with unanimous abort and no fairness’ in [GL02]), either all or none
of the honest parties receive the output. An easy observation concludes that the 3PC
of [MRZ15] achieves unanimous abort, when its third round message is broadcasted,
albeit for functions giving the same output to all. The works relevant to honest majority
setting are listed below.

3PC has been studied in different settings as well. High-throughput MPC with non-
constant round complexity are studied in [FLNW17, AFL+16]. [CKMZ14] studies 3PC
with dishonest majority. Recently, [CGMV17] presents a practically efficient 5-party
MPC protocol in honest majority setting, going beyond 3-party case, relying on dis-
tributed garbling technique based on [BMR90].

Ref. Setting Round Network Setting / Assumption Security Comments
[AJL+12] t < n/2 ≥ 5 private channel, Broadcast / CRS, FHE, NIZK fairness upper bound
[GLS15] t < n/2 3 broadcast-only / CRS, FHE guaranteed output delivery upper bound
[GLS15] t < n/2 2 broadcast-only / CRS, PKI, FHE guaranteed output delivery upper bound
[BJMS18] t < n/2 3 broadcast-only / Zaps, FHE, Dense Crypto-systems guaranteed output delivery upper bound
[ACGJ18] t < n/2 3 broadcast-only / Zaps, public-key encryption guaranteed output delivery upper bound
[IKP10] n = 5, t = 1 2 private channel / OWF guaranteed output delivery upper bound
[IKKP15] n = 3, t = 1 2 private channel / OWF selective abort upper bound
[IKKP15] n = 4, t = 1 2 private channel / (injective) OWF guaranteed output delivery upper bound
[MRZ15] n = 3, t = 1 3 private channel, Broadcast / PRG unanimous abort upper bound
[GLS15] t < n/2 3 broadcast-only / CRS fairness lower bound
[GIKR02] n; t > 1 3 private channel, Broadcast fairness lower bound

1.1 Our Results

In this paper, we set our focus on the exact round complexity of 3PC protocols with one
active corruption achieving a range of security notions, namely selective abort, unani-
mous abort, fairness and guaranteed output delivery in a setting with pair-wise private
channels and without or with a broadcast channel (and no additional setup). In the min-
imal setting of pair-wise private channels, it is known that 3PC with selective abort is
feasible in just two rounds [IKKP15], while guaranteed output delivery is infeasible to
achieve irrespective of the number of rounds [CHOR16]. No bound on round complex-
ity is known for unanimous abort or fairness. In the setting with a broadcast channel,
the result of [MRZ15] implies 3-round 3PC with unanimous abort. Neither the round
optimality of the [MRZ15] construction, nor any bound on round complexity is known
for protocols with fairness and guaranteed output delivery.

5

This work settles all the above questions via two lower bound results and three upper
bounds. Both our lower-bounds extend for general n and t with strict honest majority
i.e. n/3 ≤ t < n/2. They imply tightness of several known constructions of [IKKP15]
and complement the lower bound of [GIKR02] which holds for only t > 1. Our upper
bounds are from injective (one-to-one) one-way functions. The fundamental concept
of garbled circuits (GC) contributes as their key basis, following several prior works
in this domain [CKMZ14, IKKP15, MRZ15]. The techniques in our upper bounds do
not seem to extend for t > 1, leaving open designing round-optimal protocols for the
general case with various security notions. We now elaborate on the results below:

Without Broadcast Channel. In this paper, we show that three rounds are necessary to
achieve 3PC with unanimous abort and fairness, in the absence of a broadcast channel.
The sufficiency is proved via a 3-round fair protocol (which also achieves unanimous
abort security). Our lower bound result immediately implies tightness of the 3PC proto-
col of [IKKP15] achieving selective abort in two rounds, in terms of security achieved.
This completely settles the questions on exact round complexity of 3PC in the minimal
setting of pair-wise private channels. Our 3-round fair protocol uses a sub-protocol that
is reminiscent of Conditional Disclosure of Secrets (CDS) [GIKM00], with an addi-
tional property of authenticity that allows a recipient to detect the correct secret. Our
implementation suggests a realisation of authenticated CDS from privacy-free GCs.

With Broadcast Channel. With access to a broadcast channel, we show that it takes just
two rounds to get 3PC with unanimous abort, implying non-optimality of the 3-round
construction of [MRZ15]. On the other hand, we show that three rounds are necessary
to construct a 3PC protocol with fairness and guaranteed output delivery. The suffi-
ciency for fairness already follows from our 3-round fair protocol without broadcast.
The sufficiency for guaranteed output delivery is shown via yet another construction in
the presence of broadcast. The lower bound result restricted for t = 1 complements
the lower bound of [GIKR02] making three rounds necessary for MPC with fairness
in the honest majority setting for all the values of t. The lower bound further implies
that for two-round fair (or guaranteed output delivery) protocols with one corruption,
the number of parties needs to be at least four, making the 4PC protocol of [IKKP15]
an optimal one. Notably, our result does not contradict with the two-round protocol
of [GLS15] that assumes PKI (where the infrastructure contains the public keys of a
‘special’ FHE), CRS and also broadcast channel.

The table below captures the complete picture of the round complexity of 3PC. The
necessity of two rounds for any type of security follows from [HLP11] via the ‘residual
attack’. Notably, broadcast facility only impacts the round complexity of unanimous
abort and guaranteed output delivery, leaving the round complexity of selective abort
and fairness unperturbed.

Security Without References With References
Broadcast Necessity/Sufficiency Broadcast Necessity/Sufficiency

Selective Abort 2 [HLP11] / [IKKP15] 2 [HLP11] / [IKKP15]
Unanimous Abort 3 This paper / This paper 2 [HLP11] / This paper
Fairness 3 This paper / This paper 3 This paper / This paper
Guaranteed output delivery Impossible [CHOR16] 3 This paper / This paper

6

1.2 Techniques

Lower Bounds. We present two lower bounds– (a) three rounds are necessary for
achieving fairness in the presence of pair-wise channels and a broadcast channel; (b)
three rounds are necessary for achieving unanimous abort in the presence of just pair-
wise channels. The lower bounds are shown by taking a special 3-party function and by
devising a sequence hybrid executions under different adversarial strategies, allowing
to conclude any 3PC protocol computing the considered function cannot be simultane-
ously private and fair or secure with unanimous abort.

Upper Bounds. We present three upper bounds– (a) 3-round fair protocol;
(b) 2-round protocol with unanimous abort and (c) 3-round protocol with
guaranteed output delivery. The former in the presence of just pairwise channels, the
latter two with an additional broadcast channel. The known generic transformations
such as, unanimous abort to (identifiable) fairness [IKP+16] or identifiable fairness to
guaranteed output delivery [CL14], does not help in any of our constructions. For in-
stance, any 3-round fair protocol without broadcast cannot take the former route as it is
not round-preserving and unanimous abort in two rounds necessarily requires broadcast
as shown in this work. A 3-round protocol with guaranteed output delivery cannot be
constructed combining both the transformations due to inflation in round complexity.

Building on the protocol of [MRZ15], the basic building block of our protocols
needs two of the parties to enact the role of the garbler and the remaining party to
carry out the responsibility of circuit evaluation. Constrained with just two or three
rounds, our protocols are built from the parallel composition of three sub-protocols,
each one with different party enacting the role of the evaluator (much like [IKKP15]).
Each sub-protocol consumes two rounds. Based on the security needed, the sub-
protocols deliver distinct flavours of security with ‘identifiable abort’. For the fair
and unanimous abort, the identifiability is in the form of conflict that is local (pri-
vately known) and public/global (known to all) respectively, while for the protocol with
guaranteed output delivery, it is local identification of the corrupt. Achieving such iden-
tifiability in just two rounds (sometime without broadcast) is challenging in themselves.
Pulling up the security guarantee of these subprotocols via entwining three executions
to obtain the final goals of fairness, unanimous abort and guaranteed output delivery
constitute yet another novelty of this work. Maintaining the input consistency across
the three executions pose another challenge that are tackled via mix of novel techniques
(that consume no additional cost in terms of communication) and existing tricks such
as ‘proof-of-cheating’ or ‘cheat-recovery’ mechanism [Lin13, CKMZ14]. The issue of
input consistency does not appear in the construction of [MRZ15] at all, as it does not
deal with parallel composition. On the other hand, the generic input consistency tech-
nique adopted in [IKKP15] can only (at the best) detect a conflict locally and cannot be
extended to support the stronger form of identifiability that we need.

Below, we present the common issues faced and approach taken in all our protocols
before turning towards the challenges and way-outs specific to our constructions. Two
of the major efficiency bottlenecks of 2PC from garbled circuits, namely the need of
multiple garbled circuits due to cut-and-choose approach and Oblivious Transfer (OT)
for enabling the evaluator to receive its input in encoded form are bypassed in the 3PC

7

scenario through two simple tricks [IKKP15, MRZ15]. First, the garblers use common
randomness to construct the same garbled circuit individually. A simple comparison of
the GCs received from the two garblers allows to conclude the correctness of the GC.
Since at most one party can be corrupt, if the received GCs match, then its correctness
can be concluded. Second, the evaluator shares its input additively among the garblers at
the onset of the protocol, reducing the problem to a secure computation of a function on
the garblers’ inputs alone. Specifically, assuming P3 as the evaluator, the computation
now takes inputs from P1 and P2 as (x1, x31) and (x2, x32) respectively to compute
C(x1, x2, x31, x32) = f(x1, x2, x31 ⊕ x32). Since the garblers possess all the inputs
needed for the computation, OT is no longer needed to transfer the evaluator’s input in
encoded form to P3.

Next, to force the garblers to input encoding and decoding information (the keys)
that are consistent with the GCs, the following technique is adopted. Notice that the is-
sue of input consistency where a corrupt party may use different inputs as an evaluator
and as a garbler in different instances of the sub-protocols is distinct and remains to
be tackled separately. Together with the GC, each garbler also generates the commit-
ment to the encoding and decoding information using the common shared randomness
and communicates to the evaluator. Again a simple check on whether the set of com-
mitments are same for both the garblers allows to conclude their correctness. Now it is
infeasible for the garblers to decommit the encoded input corresponding to their own in-
put and the evaluator’s share to something that are inconsistent to the GC without being
caught. Following a common trick to hide the inputs of the garblers, the commitments
on the encoding information corresponding to every bit of the garblers’ input are sent
in permuted order that is privy to the garblers. The commitment on the decoding infor-
mation is relevant only for the fair protocol where the decoding information is withheld
to force a corrupt evaluator to be fair. Namely, in the third round of the final protocol,
the evaluator is given access to the decoding information only when it helps the honest
parties to compute the output. This step needs us to rely on the obliviousness of our gar-
bling scheme, apart from privacy. The commitment on the decoding information and its
verification by crosschecking across the garblers are needed to prevent a corrupt party
to lie later. Now we turn to the challenges specific to the constructions.

Achieving fairness in 3 rounds. The sub-protocol for our fair construction only achieves
a weak form of identifiability, a local conflict to be specific, in the absence of broad-
cast. Namely, the evaluator either computes the encoded output (‘happy’ state) or it just
gets to know that the garblers are in conflict (‘confused’ state) in the worst case. The
latter happens when it receives conflicting copies of GCs or commitments to the encod-
ing/decoding information. In the composed protocol, a corrupt party can easily breach
fairness by keeping one honest evaluator happy and the other confused in the end of
round 2 and selectively enable the happy party to compute the output by releasing the
decoding information in the third round (which was withheld until Round 2). Noting
that the absence of a broadcast channel ensues conflict and confusion, we handle this
using a neat trick of ‘certification mechanism’ that tries to enforce honest behaviour
from a sender who is supposed to send a common information to its fellow participants.

A party is rewarded with a ‘certificate’ for enacting an honest sender and emulating
a broadcast by sending the same information to the other two parties, for the common

8

information such as GCs and commitments. This protocol internally mimics a CDS pro-
tocol [GIKM00] for equality predicate, with an additional property of ‘authenticity’, a
departure from the traditional CDS. An authenticated CDS allows the receiver to de-
tect correct receipt of the secret/certificate (similar to authenticated encryption where
the receiver knows if the received message is the desired one). As demonstrated below,
the certificate allows to identify the culprit behind the confusion on one hand, and to
securely transmit the decoding information from a confused honest party to the happy
honest party in the third round, on the other. The certificate, being a proof of correct
behaviour, when comes from an honest party, say Pi, the other honest party who sees
conflict in the information distributed by Pi communicated over point-to-point channel,
can readily identify the corrupt party responsible for creating the conflict in Round 3.
This aids the latter party to compute the output using the encoded output of the former
honest party. The certificate further enables the latter party to release the decoding infor-
mation in Round 3 in encrypted form so that the other honest party holding a certificate
can decrypt it. The release of encryption is done only for the parties whose distributed
information are seen in conflict, so that a corrupt party either receives its certificate or
the encryption but not both. Consequently, it is forced to assist at least one honest party
in getting the certificate and be happy to compute the output, as only a happy party
releases the decoding information on clear. In a nutshell, the certification mechanism
ensures that when one honest party is happy, then no matter how the corrupt party be-
haves in the third round, both the honest parties will compute the output in the third
round. When no honest party is happy, then none can get the output. Lastly, the corrupt
party must keep one honest party happy, for it to get the output.

Yet again, we use garbled circuits to implement the above where a party willing to
receive a certificate acts as an evaluator for a garbled circuit implementing ‘equality’
check of the inputs. The other two parties act as the garblers with their inputs as the
common information dealt by the evaluator. With no concern of input privacy, the circuit
can be garbled in a privacy-free way [JKO13, FNO15]. The certificate that is the key
for output 1 is accessible to the evaluator only when it emulates a broadcast by dealing
identical copies of the common information to both the other parties. Notably, [IW14]
suggests application of garbling to realise CDS.
Achieving unanimous abort in 2 rounds. Moving on to our construction with unanimous
abort, the foremost challenge comes from the fact that it must be resilient to any corrupt
Round 2 private communication. Because there is no time to report this misbehaviour to
the other honest party who may have got the output and have been treated with honest
behaviour all along. Notably, in our sub-protocols, the private communication from both
garblers in second round inevitably carries the encoded share of the evaluator’s input
(as the share themselves arrives at the garblers’ end in Round 1). This is a soft spot for
a corrupt garbler to selectively misbehave and cause selective abort. While the problem
of transferring encoded input shares of the evaluator without relying on second round
private communication seems unresolvable on the surface, our take on the problem uses
a clever ‘two-part release mechanism’. The first set of encoding information for random
inputs picked by the garblers themselves is released in the first round privately and any
misbehaviour is brought to notice in the second round. The second set of encoding
information for the offsets of the random values and the actual shares of the evaluator’s

9

input is released in the second round via broadcast without hampering security, while
allowing public detection. Thus the sub-protocol achieves global/public conflict and
helps the final construction to exit with ⊥ unanimously when any of the sub-protocol
detects a conflict.

Achieving guaranteed output delivery in 3 rounds. For achieving this stronger notion,
the sub-protocol here needs a stronger kind of identifiability, identifying the corrupt
locally to be specific, to facilitate all parties to get output within an additional round
no matter what. To this effect, our sub-protocol is enhanced so that the evaluator either
successfully computes the output or identifies the corrupt party. We emphasise that the
goals of the sub-protocols for unanimous abort and guaranteed output delivery, namely
global conflict vs. local identification, are orthogonal and do not imply each other. The
additional challenge faced in composing the executions to achieve guaranteed output
delivery lies in determining the appropriate ‘committed’ input of the corrupt party based
on which round and execution of sub-protocol it chooses to strike.

Tackling input consistency. We take a uniform approach for all our protocols. We note
that a party takes three different roles across the three composed execution: an evaluator,
a garbler who initiate the GC generation by picking the randomness, a co-garbler who
verifies the sanity of the GC. In each instance, it gets a chance to give inputs. We take
care of input consistency in two parts. First, we tie the inputs that a party can feed as an
evaluator and as a garbler who initiates a GC construction via a mechanism that needs
no additional communication at all. This is done by setting the permutation strings (used
to permute the commitments of encoding information of the garblers) to the shares of
these parties’ input in a certain way. The same trick fails to work in two rounds for the
case when a party acts as a garbler and a co-garbler in two different executions. We
tackle this by superimposing two mirrored copies of the sub-protocol where the gar-
blers exchange their roles. Namely, in the final sub-protocol, each garbler initiates an
independent copy of garbled circuit and passes on the randomness used to the fellow
garbler for verification. The previous trick is used to tie the inputs that a party feeds as
an evaluator and as a garbler for the GC initiated by it (inter-execution consistency).
The input consistency of a garbler for the two garbled circuits (one initiated by him and
the other by the co-garbler) is taken care using ‘proof-of-cheating’ mechanism [Lin13]
where the evaluator can unlock the clear input of both the other parties using conflict-
ing output wire keys (intra-execution consistency). While this works for our protocols
with unanimous abort and guaranteed output delivery, the fair protocol faces additional
challenges. First, based on whether a party releases a clear or encoded input, a corrupt
garbler feeding two different inputs can conclude whether f leads to the same output for
both his inputs, breaching privacy. This is tackled by creating the ciphertexts using con-
flicting input keys. Second, inspite of the above change, a corrupt garbler can launch
‘selective failure attack’ [MF06, KS06] and breach privacy of his honest co-garbler.
We tackle this using ‘XOR-tree approach’ [LP07] where every input bit is broken into
s shares and security is guaranteed except with probability 2−(s−1) per input bit. We
do not go for the refined version of this technique, known as probe-resistant matrix,
[LP07, SS13] for simplicity.

On the assumption needed. While the garbled circuits can be built just from OWF,
the necessity of injective OWF comes from the use of commitments that need bind-

10

ing property for any (including adversarially-picked) public parameter. Our protocols,
having 2-3 rounds, seem unable to spare rounds for generating and communicating the
public parameters by a party who is different from the one opening the commitments.
On concrete efficiency. Though the focus is on the round complexity, the concrete ef-
ficiency of our protocols is comparable to Yao [Yao82] and require transmission and
evaluation of few GCs (upto 9) (in some cases we only need privacy-free GCs which
permit more efficient constructions than their private counterparts [JKO13, FNO15]).
The broadcast communication of the optimized variants of our protocols is independent
of the GC size via applying hash function. We would like to draw attention towards
the new tricks such as the ones used for input consistency, getting certificate of good
behaviour via garbled circuits, which may be of both theoretical and practical interest.
We believe the detailed take on our protocols will help to lift them or their derivatives
to practice in future.

1.3 Roadmap

We present a high-level overview of the primitives used in Section 2. The security def-
inition and the functionalities appear in Appendix B. We present our 3-round fair pro-
tocol, 2-round protocol with unanimous abort and 3-round protocol with guaranteed
output delivery in Section 3, 4 and 5 respectively. The respective security proofs appear
in Appendices D, E and F and the common optimizations in Appendix C. Our lower
bound results appear in Section 6. We define authenticated CDS in Appendix G and
show its realisation from one of the sub-protocol used in our 3-round fair protocol.

2 Preliminaries

2.1 Model

We consider a set of n = 3 parties P = {P1, P2, P3}, connected by pair-wise secure
and authentic channels. Each party is modelled as a probabilistic polynomial time Tur-
ing (PPT) machine. We assume that there exists a PPT adversary A, who can actively
corrupt at most t = 1 out of the n = 3 parties and make them behave in any arbitrary
manner during the execution of a protocol. We assume the adversary to be static, who
decides the set of t parties to be corrupted at the onset of a protocol execution. For our 2-
round protocol achieving unanimous abort and 3-round protocol achieving guaranteed
output delivery, a broadcast channel is assumed to exist.

We denote the cryptographic security parameter by κ. A negligible function in κ
is denoted by negl(κ). A function negl(·) is negligible if for every polynomial p(·)
there exists a value N such that for all m > N it holds that negl(m) < 1

p(m) . We
denote by [x], the set of elements {1, . . . , x} and by [x, y] for y > x, the set of elements
{x, x+ 1, . . . , y}. For any x ∈R {0, 1}m, xi denotes the bit of x at index i for i ∈ [m].
Let S be an infinite set and X = {Xs}s∈S , Y = {Ys}s∈S be distribution ensembles.
We say X and Y are computationally indistinguishable, if for any PPT distinguisherD
and all sufficiently large s ∈ S, we have |Pr[D(Xs) = 1]−Pr[D(Ys) = 1]| < 1/p(|s|)
for every polynomial p(·).

11

2.2 Primitives

Garbling Schemes. The term ‘garbled circuit’ (GC) was coined by Beaver [BMR90],
but it had largely only been a technique used in secure protocols until they were for-
malized as a primitive by Bellare et al. [BHR12]. ‘Garbling Schemes’ as they were
termed, were assigned well-defined notions of security, namely correctness, privacy,
obliviousness, and authenticity. A garbling scheme G is characterised by a tuple of
PPT algorithms G = (Gb,En,Ev,De) described below.

– Gb (1κ, C) is invoked on a circuitC in order to produce a ‘garbled circuit’ C, ‘input
encoding information’ e, and ‘output decoding information’ d.

– En (x, e) encodes a clear input x with encoding information e in order to produce
a garbled/encoded input X.

– Ev (C,X) evaluates C on X to produce a garbled/encoded output Y.
– De (Y, d) translates Y into a clear output y as per decoding information d.

We give an informal intuition of the notion captured by each of the security proper-
ties, namely correctness, privacy, obliviousness, and authenticity. Correctness enforces
that a correctly garbled circuit, when evaluated, outputs the correct output of the un-
derlying circuit. Privacy aims to protect the privacy of encoded inputs. Authenticity
enforces that the evaluator can only learn the output label that corresponds to the value
of the function. Obliviousness captures the notion that when the decoding information
is withheld, the garbled circuit evaluation leaks no information about any underlying
clear values; be they of the input, intermediate, or output wires of the circuit. The for-
mal definitions are deferred to Appendix A.1.

We are interested in a class of garbling schemes referred to as projective in
[BHR12]. When garbling a circuit C : {0, 1}n 7→ {0, 1}m, a projective garbling
scheme produces encoding information of the form e =

(
e0i , e

1
i

)
i∈[n], and the encoded

input X for x = (xi)i∈[n] can be interpreted as X = En(x, e) = (exii)i∈[n].
Our 3-round fair protocol relies on garbling schemes that are simultaneously cor-

rect, private and oblivious. One of its subroutine uses a garbling scheme that is only
authentic. Such schemes are referred as privacy-free [JKO13, FNO15]. Our protocols
with unanimous abort and guaranteed output delivery need a correct, private and au-
thentic garbling scheme that need not provide obliviousness. Both these protocols as
well as the privacy-free garbling used in the fair protocol further need an additional de-
coding mechanism denoted as soft decoding algorithm sDe [MRZ15] that can decode
garbled outputs without the decoding information d. The soft-decoding algorithm must
comply with correctness: sDe(Ev(C,En(e, x))) = C(x) for all (C, e, d). While both
sDe and De can decode garbled outputs, the authenticity needs to hold only with respect
to De. In practice, soft decoding in typical garbling schemes can be achieved by simply
appending the truth value to each output wire label.

Non-interactive Commitment Schemes. A non-interactive commitment scheme
(NICOM) consists of two algorithms (Com,Open) defined as follows. Given a security
parameter κ, a common parameter pp, message x and random coins r, PPT algorithm
Com outputs commitment c and corresponding opening information o. Given κ, pp, a

12

commitment and corresponding opening information (c, o), PPT algorithm Open out-
puts the message x. The algorithms should satisfy correctness, binding (i.e. it must be
hard for an adversary to come up with two different openings of any c and any pp)
and hiding (a commitment must not leak information about the underlying message)
properties. We need this kind of strong binding as the same party who generates the
pp and commitment is required to open later. Two such instantiations of NICOM based
on symmetric key primitives (specifically, injective one-way functions) and the formal
definitions of the properties are given in Appendix A.2.

We also need a NICOM scheme that admits equivocation property. An equivocal
non-interactive commitment (eNICOM) is a NICOM that allows equivocation of a cer-
tain commitment to any given message with the help of a trapdoor. The formal defini-
tions and instantiations appear in Appendix A.3.

Symmetric-Key Encryption (SKE) with Special Correctness. Our fair protocol uses a
SKE π = (Gen,Enc,Dec) which satisfies CPA security and a special correctness prop-
erty [JW16, LP09]– if the encryption and decryption keys are different, then decryption
fails with high probability. The definition and an instantiation appear in Appendix A.4.

3 3-round 3PC with Fairness

This section presents a tight upper bound for 3PC achieving fairness in the setting with
just pair-wise private channels. Our result from Section 6.2 rules out the possibility of
achieving fairness in 2 rounds in the same setting. Our result from Section 6.1 further
shows tightness of 3 rounds even in the presence of a broadcast channel.

Building on the intuition given in the introduction, we proceed towards more de-
tailed discussion of our protocol. Our fair protocol is built from parallel composition of
three copies of each of the following two sub-protocols: (a) fairi where Pi acts as the
evaluator and the other two as garblers for computing the desired function f . This sub-
protocol ensures that honest Pi either computes its encoded output or identifies just a
conflict in the worst case. The decoding information is committed to Pi, yet not opened.
It is released in Round 3 of the final composed protocol under subtle conditions as elab-
orated below. (b) certi where Pi acts as the evaluator and the other two as garblers for
computing an equality checking circuit on the common information distributed by Pi
in the first round of the final protocol. Notably, though the inputs come solely from the
garblers, they are originated from the evaluator and so the circuit can be garbled in a
privacy-free fashion. This sub-protocol ensures either honest Pi gets its certificate, the
key for output 1 (meaning the equality check passes through), or identifies a conflict
in the worst case. The second round of certi is essentially an ‘authenticated’ CDS for
equality predicate tolerating one active corruption as discussed in Appendix G. Three
global variables are maintained by each party Pi to keep tab on the conflicts and the
corrupt. Namely, Ci to keep the identity of the corrupt, flagj and flagk (for distinct
i, j, k ∈ [3]) as indicators of detection of conflict with respect to information distributed
by Pj and Pk respectively. The sub-protocols fairi and certi assure that if neither the
two flags nor Ci is set, then Pi must be able to evaluate the GC successfully and get its
certificate respectively.

13

Once {fairi, certi}i∈[3] complete by the end of round 2 of the final protocol fair,
any honest party will be in one of the three states: (a) no corruption and no conflict
detected ((Ci = ∅) ∧ (flagj = 0) ∧ (flagk = 0)); (b) corruption detected (Ci 6= ∅);
(c) conflict detected (flagj = 1) ∨ (flagk = 1). An honest party, guaranteed to have
computed its encoded output and certificate only in the first state, releases these as
well as the decoding information for both the other parties unconditionally in the third
round. In the other two states, an honest party conditionally releases only the decoding
information. This step is extremely crucial for maintaining fairness. Specifically, a party
that belongs to the second state, releases the decoding information only to the party
identified to be honest. A party that belongs to the third state, releases the decoding
information in encrypted form only to the party whose distributed information are not
agreed upon, so that the encryption can be unlocked only via a valid certificate. A
corrupt party will either have its certificate or the encrypted decoding information, but
not both. The former when it distributes its common information correctly and the latter
when it does not. The only way a corrupt party can get its decoding information is by
keeping one honest party in the first state, in which case both the honest parties will
be able to compute the output as follows. The honest party in state one, say Pi, either
gets it decoding information on clear or in encrypted form. The former when the other
honest party, Pj is in the first or second state and the latter when Pj is in the third state.
Pi retrieves the decoding information no matter what, as it also holds the certificate to
open the encryption. An honest party Pj in the second state, on identifying Pi as honest,
takes the encoded output of Pi and uses its own decoding information to compute the
output. The case for an honest party Pj in the third state is the most interesting. Since
honest Pi belongs to the first state, a corrupt party must have distributed its common
information correctly as otherwise Pi will find a conflict and would be in third state.
Therefore, Pj in the third state must have found Pi’s information on disagreement due
the corrupt party’s misbehaviour. Now, Pi’s certificate that proves his correct behaviour,
allows Pj to identify the corrupt, enter into the second state and compute the output by
taking the encoded output of honest Pi. In the following, we describe execution fairi
assuming input consistency, followed by certi. Entwining the six executions, tackling
the input consistency and the final presentation of protocol fair appear in the end.

3.1 Protocol fairi

At a high level, fairi works as follows. In the first round, the evaluator shares its input
additively between the two garblers making the garblers the sole input contributors to
the computation. In parallel, each garbler initiates construction of a GC and commit-
ments on the encoding and decoding information. While the GC and the commitments
are given to the evaluator Pi, the co-garbler, acting as a verifier, additionally receives
the source of the used randomness for GC and openings of commitments. Upon verifi-
cation, the co-garbler either approves or rejects the GC and commitments. In the former
case, it also releases its own encoded input and encoded input for the share of Pi via
opening the commitments to encoding information in second round. In the latter case,
Pi sets the flag corresponding to the generator of the GC to true. Failure to open a veri-
fied commitment readily exposes the corrupt to the evaluator. If all goes well, Pi eval-
uates both circuits and obtains encoded outputs. The correctness of the evaluated GC

14

follows from the fact that it is either constructed or scrutinised by a honest garbler. The
decoding information remains hidden (yet committed) with Pi and the obliviousness of
GC ensures that Pi cannot compute the output until it receives the correct opening.

To avoid issues of adaptivity, the GCs are not sent on clear in the first round to Pi
who may choose its input based on the GCs. Rather, a garbler sends a commitment to
its GC to Pi and it is opened only by the co-garbler after successful scrutiny. The cor-
rectness of evaluated GC still carries over as a corrupt garbler cannot open to a different
circuit than the one committed by an honest garbler by virtue of the binding property
of the commitment scheme. We use an eNICOM for committing the GCs and decoding
information as equivocation is needed to tackle a technicality in the security proof. The
simulator of our final protocol needs to send the commitments on GC, encoding and de-
coding information without having access to the input of an evaluator Pi (and thus also
the output), while acting on behalf of the honest garblers in fairi. The eNICOM cannot
be used for the encoding information, as they are opened by the ones who generate the
commitments and eNICOM does not provide binding in such a case. Instead, the GCs
and the decoding information are equivocated based on the input of the evaluator and
the output.

Protocol fairi appears in Figure 1 where Pi returns encoded outputs Yi = (Yj
i ,Y

k
i)

(initially set to ⊥) for the circuits created by Pj , Pk, the commitments to the respec-
tive decoding information Cdec

j , Cdec
k and the flags flagj , flagk (initially set to false)

to be used in the final protocol. The garblers output their respective corrupt set, flag
for the fellow garbler and opening for the decoding information corresponding to its
co-garbler’s GC and not its own. This is to ensure that it cannot break the binding of
eNICOM which may not necessarily hold for adversarially-picked public parameter.

Lemma 1. During fairi, Pβ /∈ Cα holds for honest Pα, Pβ .

Proof. An honest Pα would include Pβ in Cα only if one of the following hold: (a)
Both are garblers and Pβ sends commitments to garbled circuit, encoding and decoding
information inconsistent with the randomness and openings shared privately withPα (b)
Pα is an evaluator and Pβ is a garbler and either (i) Pβ’s opening of a committed garbled
circuit fails or (ii) Pβ’s opening of a committed encoded input fails. It is straightforward
to verify that the cases will never occur for honest (Pα, Pβ). ut

Lemma 2. If honest Pi has Ci = ∅ and flagj = flagk = 0, then Yi = (Yj
i ,Y

k
i) 6= ⊥.

Proof. According to fairi, Pi fails to compute Yi when it identifies the corrupt or
finds a mismatch in the common information Dj or Dk or receives a nOK signal from
one of its garblers. The first condition implies Ci 6= ∅. The second condition implies,
Pi would have set either flagj or flagk to true. For the third condition, if Pj sends
nOK then Pi would set flagk = 1. Lastly, if Pk sends nOK, then Pi sets flagj = 1.
Clearly when Ci = ∅ ∧ flagj = 0 ∧ flagk = 0, Pi evaluates both Cj ,Ck and obtains
Yi = (Yj

i ,Y
k
i) 6= ⊥. ut

3.2 Protocol certi
When a party Pi in fairi is left in a confused state and has no clue about the corrupt, it is
in dilemma on whether or whose encoded output should be used to compute output and

15

Protocol fairi()

Inputs: Party Pα has xα for α ∈ [3].
Common Inputs: The circuit C(x1, x2, x3, x4) that computes f(x1, x2, x3 ⊕ x4).
Output: A garbler Pl (l ∈ {j, k}) outputs corrupt set Cl, flag{j,k}\l and Odec

i . Pi outputs (Ci,
Yi = (Yj

i ,Y
k
i), C

dec
j , Cdec

k , flagj , flagk) where Yi denote a pair of encoded outputs or ⊥.
Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and oblivious, a

NICOM (Com,Open), an eNICOM (eGen, eCom, eOpen,Equiv) and a PRG G.

Round 1:

– Pi randomly secret shares his input xi as xi = xij ⊕ xik and sends xij to Pj and xik to Pk.
– Pl for l ∈ {j, k} samples sl ∈R {0, 1}κ, eppl and ppl for G, eNICOM and NICOM resp. and:

◦ compute garbled circuit (Cl, el, dl) ← Gb(1κ, C) using randomness from G(sl).
Assume {e0lα, e1lα}α∈[`], {e0l(`+α), e1l(`+α)}α∈[`], {e0l(2`+α), e1l(2`+α)}α∈[2`] denote the
encoding information for the input of Pj , Pk and the secret shares of Pi respectively.

◦ compute commitments for GC and decoding information. (cl, ol) ← eCom(eppl,Cl)
and (cdecl , odecl)← eCom(eppl, dl).

◦ sample permutation strings plj , plk ∈R {0, 1}` for the inputs of Pj and Pk. Com-
pute commitments to encoding information as: for b ∈ {0, 1}, (cblα, o

b
lα) ←

Com(ppl, e
pαlj⊕b
lα), (cbl(`+α), o

b
l(`+α)) ← Com(ppl, e

pαlk⊕b
l(`+α)) when α ∈ [`],

(cbl(2`+α), o
b
l(2`+α))← Com(ppl, e

b
l(2`+α)) when α ∈ [2`].

◦ send Dl = (eppl, ppl, cl, {cblα, }α∈[4`],b∈{0,1}, cdecl) to both the other parties and send
{sl, plj , plk, ol, {oblα, }α∈[4`],b∈{0,1}, odecl } only to co-garbler P{j,k}\l.

– Pj sets Cj = Pk if Dk and {sk, pkj , pkk, ok, {obkα, }α∈[4`],b∈{0,1}, odeck } are inconsistent.
Else, set Odec

i = odeck . Pk performs similar steps for the values received from Pj .

Round 2:

– Pi sends Dj to Pk and Dk to Pj . Pj sets flagk = 1 if Dk received from Pi and Pk does not
match. Similar step is executed by Pk.

– Pj computes the indicator strings mjj = pjj ⊕ xj ,mkj = pkj ⊕ xj for its inputs. If Pk /∈
Cj , then send

(
OK,Dk, (ok, {o

mαkj
kα , o

xαij
k(2`+α)}α∈[`],mkj), ({o

mαjj
jα , o

xαij
j(2`+α)}α∈[`],mjj)

)
to Pi. Else, send nOK to Pi. Pk performs similar steps.

– (Local Computation) Pi sets Yj
i = ⊥ and flagj = 1 when (a) Pk sent nOK or (b) Dj sent by

Pj and Pk do not match. Otherwise, Pi sets Cdec
j = cdecj ∈ Dj and does:

◦ open Cj ← eOpen(eppj , cj , oj) with oj received from Pk. Set Ci = Pk if Cj = ⊥.

◦ open Xα
j = Open(ppj , c

mαjj
jα , o

mαjj
jα), Xα

ij = Open(ppj , c
xαij
j(2`+α), o

xαij
j(2`+α)), for α ∈

[`], for the opening received from Pj and the commitments taken from Dj . Include Pj
in Ci if any of the opened input labels above is opened to ⊥.

◦ open Xα
k = Open(ppj , c

mαjk
j(`+α), o

mαjk
j(`+α)) and Xα

ik = Open(ppj , c
xαik
j(3`+α), o

xαik
j(3`+α))

for α ∈ [`], for the opening received from Pk and the commitments taken from Dj .
Include Pk in Ci if any of the opened input labels above is opened to ⊥.

◦ If Ci = ∅, set X = Xj |Xk|Xij |Xik, run Yj
i ← Ev(Cj ,X). Else set Yj

i = ⊥
Similar steps for Ck will be executed to compute Yk

i , populate Ci and update flagk.

Fig. 1: Protocol fairi

16

who should it release the decoding information (that it holds as a garbler) to in the final
protocol. Protocol certi, in a nutshell, is introduced to help a confused party to identify
the corrupt and take the honest party’s encoded output for output computation, on one
hand, and to selectively deliver the decoding information only to the other honest party,
on the other. Protocol certi implements evaluation of an equality checking function that
takes inputs from the two garblers and outputs 1 when the test passes and outputs the in-
puts themselves otherwise. In the final protocol, the inputs are the common information
(GCs and commitments) distributed by Pi across all executions of fairj . The certificate
is the output key corresponding to output 1. Since input privacy is not a concern here,
the circuit is enough to be garbled in privacy-free way and authenticity of garbling will
ensure a corrupt Pi does not get the certificate. certi follows the footstep of fairi with
the following simplifications: (a) Input consistency need not be taken care across the
executions implying that it is enough one garbler alone initiates a GC and the other
garbler simply extends its support for verification. To divide the load fairly, we assign
garbler Pj where i = (j + 1) mod 3 to act as the generator of GC in certi. (b) The
decoding information need not be committed or withheld. We use soft decoding that
allows immediate decoding.

Similar to fairi, at the end of the protocol, either Pi gets its certificate (either the
key for 1 or the inputs themselves), or sets its flags (when GC and commitment do
not match) or sets its corrupt set (when opening of encoded inputs fail). Pi outputs its
certificate, the flag for the GC generator and corrupt set, to be used in the final protocol.
The garblers output the key for 1, flag for its fellow garbler and the corrupt set. Notice
that, when certi is composed in the bigger protocol, Pi will be in a position to identify
the corrupt when the equality fails and the certificate is the inputs fed by the garblers.
The protocol appears in Figure 2.

Lemma 3. During certi, Pβ /∈ Cα holds for honest Pα, Pβ .

Proof. An honest Pα would include Pβ in Cα only if one of the following holds: (a)
Pβ sends inconsistent (sβ ,Wβ) to Pα. (b) Pβ’s opening of committed encoded input
or garbled circuit fails. It is straightforward to verify that the cases will never occur for
honest (Pβ , Pα). ut

Lemma 4. If an honest Pi has Ci = ∅ and flagj = flagk = 0, then, certi 6= ⊥.

Proof. The proof follows easily from the steps of the protocol. ut

3.3 Protocol fair

Building on the intuition laid out before, we only discuss input consistency that is taken
care in two steps: Inter-input consistency (across executions) and intra-input consis-
tency (within an execution). In the former, Pi’s input as an evaluator in fairi is tied with
its input committed as garblers for its own garbled circuits in fairj and fairk. In the
latter, the consistency of Pi’s input for both garbled circuits in fairj (and similarly in
fairk) is tackled. We discuss them one by one.

We tackle the former in a simple yet clever way without incurring any additional
overhead. We explain the technique for enforcing P1’s input consistency on input x1 as

17

certi()

Common Inputs: The circuit C(γj , γk) that outputs 1 if (γj = γk) and (0, γj , γk) otherwise.
For distinct i, j, k ∈ [3], Pi is assumed to be the evaluator and (Pj , Pk) as the garblers. We
assume i = (j + 1) mod 3, k = (j + 2) mod 3.

Primitives: A correct, authentic, privacy-free garbling scheme G = (Gb,En,Ev,De) that has
the property of soft decoding, a PRG G, a NICOM (Com,Open)

Output: A garbler Pl for l ∈ {j, k} outputs corrupt set Cl and keyi. Pi outputs
(certi, Ci, flagj , flagk). Garbler Pk additionally outputs flagj .

Round 1: Pj does the following:

– Choose a seed si ∈R {0, 1}κ for G and construct a garbled circuit (Ci, ei, di)← Gb(1κ, C).
Generate commitment on garbled circuit Ci as (ci, oi) ← Com(Ci) and on the encoding
information ei as (ci, oi) ← Com(ei) using randomness from G(si). Let Wi = {ci, ci}.
Send (si,Wi) to Pk andWi to Pi.

– (Local Computation by Pk) Pk adds Pj to Ck if (si,Wi) are inconsistent and is not as per
what an honest Pj should do. Pj and Pk output keyi equals to the key for output 1 of Ci.

Round 2:

– Pi sendsWi to Pk. Pk sets flagj = 1 ifWi received from Pi and Pj is not identical.
– Pj opens its encoded input Xj (corresponding to γj) to Pi by sending the opening of the

corresponding commitment in ci.
– If Pj ∈ Ck, Pk sends nOK to Pi. Else Pk sends Wi, opening for garbled circuit oi and its

encoded input Xk (for γk) to Pi.
– (Local Computation by Pi) If Pi does not receive identical Wi from Pj and Pk or receives

nOK from Pk, Pi sets certi = ⊥ and flagj = 1. Else, Pi uses the opening information sent
by Pj , Pk to retrieve Xj ,Xk. Pi adds Pl (l ∈ {j, k}) to Ci and sets certi = ⊥ if any of
the openings sent by Pl result in ⊥. Else, Pi runs Y ← Ev(Ci,Xj ,Xk). If sDe(Y) = 1,
then set certi = Y, else set certi = (γ′j , γ

′
k) where these two are decoded from Y.

Fig. 2: Protocol certi

an evaluator during fair1 and as a garbler during fair2, fair3 with respect to his GC C1.
Since the protocol is symmetric in terms of the roles of the parties, similar tricks are
adopted for P2 and P3. Let in the first round of fair1, P1 shares its input x1 by handing
x12 and x13 to P2 and P3 respectively. Now corresponding to C1 during fair2, P1 and
P3 who act as the garblers use x13 as the permutation vector p11 that defines the order
of the commitments of the bits of x1. Now input consistency of P1’s input is guaranteed
ifm11 transferred by P1 in fair2 is same as x12, P1’s share for P2 in fair1. For an honest
P1, the above will be true since m11 = p11 ⊕ x1 = x13 ⊕ x1 = x12. If the check fails,
then P2 identifies P1 as corrupt. This simple check forces P1 to use the same input
in both fair1 and fair2 (corresponding to C1). A similar trick is used to ensure input
consistency of the input of P1 across fair1 and fair3 (corresponding to C1) where P1 and
P2 who act as the garblers use x12 as the permutation vector p11 for the commitments
of the bits of x1. The evaluator P3 in fair3 checks if m11 transferred by P1 in fair3 is
same as x13 that P3 receives from P1 in fair1. While the above technique enforces the

18

consistency with respect to P1’s GC, unfortunately, the same technique cannot be used
to enforce P1’s input consistency with respect to C2 in fair3 (or fair2) since p21 cannot
be set to x12 which is available to P2 only at the end of first round. While, P2 needs to
prepare and broadcast the commitments to the encoding information in jumbled order
as per permutation string p21 in the first round itself. We handle it differently as below.

The consistency of Pi’s input for both garbled circuits in fairj (and similarly in
fairk) is tackled via ‘cheat-recovery mechanism’ [Lin13]. We explain with respect to
P1’s input in fair3. P2 prepares a ciphertext (cheat recovery box) with the input keys of
P1 corresponding to the mismatched input bit in the two garbled circuits, C1 and C2 in
fair3. This ciphertext encrypts the the input shares of garblers that P3 misses, namely,
x12 and x21. This would allow P3 to compute the function on clear inputs directly. To
ensure that the recovered missing shares are as distributed in fair1 and fair2, the shares
are not simply distributed but are committed via NICOM by the input owners and the
openings are encrypted by the holders. Since there is no way for an evaluator to detect
any mismatch in the inputs to and outputs from the two GCs as they are in encoded form,
we use encryption scheme with special correctness (Definition 6) to enable the evaluator
to identify the relevant decryptions. Crucially, we depart from the usual way of creating
the cheat recovery boxes using conflicting encoded outputs. Based on whether the clear
or encoded output comes out of honest P3 in round 3, corrupt garbler P1 feeding two
different inputs to C1 and C2 can conclude whether its two different inputs lead to the
same output or not, breaching privacy. Note that the decoding information cannot be
given via this cheat recovery box that uses conflicting encoded outputs as key, as that
would result in circularity.

Despite using the above fix, the mechanism as discussed above is susceptible to ‘se-
lective failure attack’, an attack well-known in the 2-party domain. While in the latter
domain, the attack is launched to breach the privacy of the evaluator’s input based on
whether it aborts or not. Here, a corrupt garbler can prepare the ciphertexts in an in-
correct way and can breach privacy of its honest co-garbler based on whether clear or
encoded output comes out of the evaluator. We elaborate the attack in fair3 considering
a corrupt P1 and single bit inputs. P1 is supposed to prepare two ciphertexts correspond-
ing to P2’s input bit using the following key combinations– (a) key for 0 in C1 and 1 in
C2 and (b) vice-versa. Corrupt P1 may replace one of the ciphertexts using key based
on encoded input 0 of P2 in both the GCs. In case P2 indeed has input 0 (that he would
use consistently across the 2 GCs during fair3), then P3 would be able to decrypt the
ciphertext and would send clear output in Round 3. P1 can readily conclude that P2’s
input is 0. This attack is taken care via the usual technique of breaking each input bit to
s number of xor-shares, referred as ‘XOR-tree approach’ [LP07] (probe-resistance ma-
trix [LP07, SS13] can also be used; we avoid it for simplicity). The security is achieved
except with probability 2−(s−1).

Given that input consistency is enforced, at the end of round 2, apart from the three
states– (a) no corruption and no conflict detected (b) corrupt identified (c) conflict de-
tected, a party can be in yet another state. Namely, no corruption and no conflict de-
tected and the party is able to open a ciphertext and compute f on clear. A corrupt party
cannot be in this state since the honest parties would use consistent inputs and therefore
the corrupt would not get access to conflicting encoded inputs that constitute the key

19

of the ciphertexts. If any honest party is in this state, our protocol results in all parties
outputting this output. In Round 3, this party can send the computed output along with
the opening of the shares he recovered via the ciphertexts as ‘proof’ to convince the
honest party of the validity of the output. The protocol fair appears in Figure 4 and the
schematic diagram is given in Appendix D.1.

We now prove the correctness of fair.

Lemma 5. During fair, Pj /∈ Ci holds for honest Pi, Pj .

Proof. An honest Pi will not include Pj in its corrupt set in the sub-protocols
{fairα, certα}α∈[3] following Lemma 1, Lemma 3. Now we prove the statement in-
dividually investigating the three rounds of fair.

In Round 1 of fair, Pi includes Pj as corrupt only if (a) Pi, Pj are garblers and Pj
sets pjj 6= xji or (b) Pj sends ppj , cji, oji, xji to Pi such that Open(ppj , cji, oji) 6=
xji. None of them will be true for an honest Pj . In Round 2 of fair, Pi includes Pj as
corrupt only if (a) Pj is a garbler and Pi is an evaluator andmjj 6= xji or (b) Pi obtains
certi = (γ′j , γ

′
k) and detects Pj’s input γ′j in certi to be different from the information

sent by him. The former will not be true for an honest Pj . The latter also cannot hold for
honest Pj by correctness of the privacy-free garbling used. In the last round of fair, Pi
will identify Pj as corrupt, if it has flagk = 1 and yet receives certk which is same as
keyk from Pk. A corrupt Pk receives keyk only by handing out correct and consistent
common information to Pi and Pj until the end of Round 1. Namely, the following must
be true for Pk to obtain keyk (except for the case when it breaks the authenticity of the
GC): (i) γi and γj for certk must be same and (ii) Pk must not be in the corrupt set of
any honest party at the end of Round 1. In this case, flagk cannot be 1. ut

Lemma 6. No corrupt party can be in st1 by the end of Round 1, except with negligible
probability.

Proof. For a corrupt Pk, its honest garblers Pi and Pj creates the ciphertexts cts using
keys with opposite meaning for their respective inputs from their garbled circuits. Since
honest Pi and Pj use the same input for both the circuits, Pk will not have a key to
open any of the ciphertexts. The openings (oij , oji) are therefore protected due to the
security of the encryption scheme. Subsequently, Pk cannot compute y. ut

Definition 1. A party Pi is said to be ‘committed’ to a unique input xi, if Pj holds
(cij , cik, oij , xij) and Pk holds (cij , cik, oik, xik) such that: (a) xi = xij ⊕xik and (b)
cij opens to xij via oij and likewise, cik opens to xik via oik.

We next prove that a corrupt party must have committed its input if some honest
party is in st1 or st2. To prove correctness, the next few lemmas then show that an
honest party computes its output based on its own output or encoded output if it is in
st1 or st2 or relies on the output or encoded output of the other honest party. In all
cases, the output will correspond to the committed input of the corrupt party.

Lemma 7. If an honest party is in {st1, st2}, then corrupt party must have committed
a unique input.

20

Protocol fair()

Inputs: Party Pi has xi for i ∈ [3].
Output: y = f(x1, x2, x3) or ⊥ where the inputs and the function output belong to {0, 1}`.
Subprotocols: fairi for i ∈ [3] (Figure 1), certi for i ∈ [3] (Figure 2), SKE (Enc,Dec) with

‘special correctness’ (Definition 6).

Round 1: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}

– Each Pi computes an encoding of length `s corresponding to its input xi. For each bit b of
xi, the encoding b1, . . . bs is such that b = ⊕sα=1bα. Reusing the notation, we refer to this
encoding as Pi’s input xi and its length by `.

– Round 1 of certi is run.
– Round 1 of fairi are run with the following amendments: (1) The circuit in fairi is changed as

follows: each input wire is replaced by a gate whose input consists of s new input wires and
whose output is the exclusive-or of these wires. (2) Pj and Pk work with the permutation
strings pjj and pkk respectively as xjk and xkj .

– Pi samples ppi, generates (cij , oij) ← Com(ppi, xij), (cik, oik) ← Com(ppi, xik) and
sends {ppi, cij , cik} to Pj , Pk. Additionally, Pi sends oij , oik to Pj , Pk respectively.

– (Local Computation by Pi) Pi adds P` in Ci if Open(cli, oli) 6= xli. Pj adds Pk in Cj if: (a)
pkk not taken as xkj or (b) the check in fairi or certi fails. Pk adds Pj in Ck if: (a) pjj not
taken as xjk or (b) the check in fairi or certi fails.

Round 2: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}:

– If Pi 6∈ Cj , Pj sends (ppi, cij , cik) to Pk. If Pi 6∈ Ck, Pk sends (ppi, cij , cik) to Pj . They set
flagi = 1 in case of mismatch or no communication.

– If Pi 6∈ Cj , Pj participates in certi as a garbler with input γj as {Dji ,D
k
i ,Wk, ppi, cij , cik}

where Dji ,D
k
i ,Wk and (ppi, cij , cik) was received from Pi during Round 1 of fairj , fairk,

certk (assuming k = (i+ 1) mod 3) and fair respectively. Similar step is taken by Pk.
– If certi = (γ′j , γ

′
k), Pi sets Ci = Pl if γ′l 6= {Dji ,D

k
i ,Wk, ppi, cij , cik} for l ∈ {j, k}.

– If Pi /∈ Cj , Pj participates in Round 2 of fairi. When Pk 6∈ Cj , Pj additionally sends the ci-
phertexts ctβjα for β ∈ {0, 1} and α ∈ [`] created as follows. Let {X0

l(`+α),X
1
l(`+α)},

denote the encoding information of co-garbler Pk’s input wire α corresponding to Cl

(l ∈ {j, k}). Then ctβjα = Enc
sk
β
α
(ojk, okj) for sk0

α = X0
j(`+α) ⊕ X1

k(`+α) and
sk1
α = X1

j(`+α) ⊕X0
k(`+α). Pk takes similar steps.

– (Local Computation by Pi) Include Pl in Ci if mll 6= xli for l ∈ {j, k}. If Ci = ∅, flagj =

0, flagk = 0, then use key X
mαjk
j(`+α) ⊕ X

mαkk
k(`+α) (α ∈ [`]) to decrypt the ciphertexts ct0jα

or ct1jα obtained from Pj . If the decryption succeeds, retrieve okj , ojk. Execute xkj ←
Open(ckj , okj) and xjk ← Open(cjk, ojk). If the opening succeeds, then evaluate f on
(xi, xji ⊕ xjk, xki ⊕ xkj) to obtain y. Similarly, steps are taken with respect to Pj’s input,

using the key X
mαjj
jα ⊕X

mαkj
kα to decrypt the ciphertexts ct0kα or ct1kα obtained from Pk.

Fig. 3: A Three-Round Fair 3PC protocol

Proof. An honest Pi is in {st1, st2} only when Ci = ∅, flagj = 0, flagk = 0 hold at
the end of Round 2. Assume Pk is corrupt. Pk has not committed to a unique xk implies
either it has distributed different copies of commitments (cki, ckj) to the honest parties

21

A party Pi is said to be in stα for α ∈ [4] if the following conditions are satisfied. Let
(Yi, C

dec
j , Cdec

k), Odec
j and Odec

k denote the output of Pi in fairi, fairj and fairk, respectively.
Let certi, keyj , and keyk denotes the output of Pi in certi, certj and certk respectively.

(i) st1(output is already computed): If y and proofs (ojk, okj) are computed in Round 2.
(ii) st2 (no corruption and no conflict detected): If ((Ci = ∅) ∧ (flagj = 0) ∧ (flagk = 0))

(which implies Yi 6= ⊥ and certi 6= ⊥)
(iii) st3 (corruption detected): If (Ci 6= ∅)
(iv) st4 (conflict detected, but no corruption detected): If (flagj = 1) ∨ (flagk = 1)

Round 3: Each Pi for i ∈ [3] does the following based one of the four states that it belongs to.

– If in st1, then send y to Pj , Pk. Send ojk to Pj and okj to Pk as proofs.
– If in st2, then send (Yi, certi, O

dec
l) to Pl for l ∈ {j, k}.

– If in st3, then send Odec
l to Pl for l ∈ {j, k} only if Pl 6∈ Ci.

– If in st4, then send zl = Enckeyl(O
dec
l) to Pl only if flagl = 1. If flagj = 1 and certj

received from Pj is same as keyj , then set Ci = Pk. Similar steps are taken to check and
identify if Pj is corrupt. Update state from st4 to st3 if corrupt is identified.

– If in st1, then output y.
– If in {st2, st3, st4} and if any other party is identified to be in st1, namely if y is received

from Pj or Pk with oki or oji respectively such that Open(ppi, cli, oli) 6= ⊥ for l ∈ {j, k},
then output the received y.

– If in st2, then compute y as follows: Retrieve Odec
i from either zi (with certi as the key)

received from Pj or from direct communication of Pj . If d ← eOpen(eppk, C
dec
k , Odec

i) is
not ⊥, then use d to compute y ← De(Yk

i , d). Similar steps are executed with respect to
Pk’s communication if y is not computed yet.

– If in st3, then output y ← De(Yi
l , d) where Yl is received from (honest) Pl 6∈ Ci and

decoding information d is known as garbler during fairl. Otherwise output y = ⊥.
– If in st4, output y = ⊥.

Fig. 4: A Three-Round Fair 3PC protocol

or distributed incorrect opening information to some honest party. In the former case,
flagk will be set by Pi. In the latter case, at least one honest party will identify Pk to
be corrupt by the end of Round 1. If it is Pi, then Ci 6= ∅. Otherwise, Pj populates its
corrupt set with Pk, leading to Pi setting flagk = 1 in Round 2. ut

Lemma 8. If an honest party is in st1, then its output y corresponds to the unique
input committed by the corrupt party.

Proof. An honest Pi is in st1 only when Ci = ∅, flagj = 0, flagk = 0 hold at the end
of Round 2 and it computes y via decryption of the ciphertexts ct sent by either Pj or
Pk. Assume Pk is corrupt. By Lemma 7, Pk has committed to its input. The condition
flagj = 0 implies that Pk exchanges the commitments on the shares of Pj’s input,
namely {cji, cjk}, honestly. Now if Pi opens honest Pj’s ciphertext, then it unlocks
the opening information for the missing shares, namely (okj , ojk) corresponding to
common and agreed commitments (ckj , cjk). Using these it opens the missing shares
xkj ← Open(ckj , okj) and xjk ← Open(cjk, ojk) and finally computes output on
(xi, xji⊕xjk, xki⊕xkj). Next, we consider the case when Pi computes y by decrypting

22

a ct sent by corrupt Pk. In this case, no matter how the ciphertext is created, the binding
property of NICOM implies that Pk will not be able to open cjk, ckj to anything other
than xjk, xkj except with negligible probability. Thus, the output computed is still as
above and the claim holds. ut

Lemma 9. If an honest party is in st2, then its encoded output Y corresponds to the
unique input committed by the corrupt party.

Proof. An honest Pi is in st2 only when Ci = ∅, flagj = 0, flagk = 0 hold at the end
of Round 2. The conditions also imply that Pi has computed Yi successfully (due to
Lemma 2) and Pk has committed to its input (due to Lemma 7). Now we show that Yi

correspond to the unique input committed by the corrupt Pk. We first note that Pk must
have used the same input for both the circuits Cj and Ck in fairi. Otherwise one of the
ciphertexts prepared by honest Pj must have been opened and y would be computed,
implying Pi belongs to st1 and not in st2 as assumed. We are now left to show that the
input of Pk for its circuit Ck in fairi is the same as the one committed.

In fair, honest Pj would use permutation string pkk = xkj for permuting the com-
mitments inDk corresponding to xk. Therefore, one can conclude that the commitments
in Dk are constructed correctly and ordered as per xkj . Now the only way Pk can de-
commit x′k is by giving mkk = pkk⊕x′k. But in this case honest Pi would add Pk to Ci
as the check mkk = xki would fail (mkk = pkk ⊕ x′k 6= pkk ⊕ xk) and will be in st3
and not in st2 as assumed.

ut

Lemma 10. If an honest party is in st2, then its output y corresponds to the unique
input committed by the corrupt party.

Proof. Note that an honest party Pi in st2 either uses y of another party in st1 or
computes output from its encoded output Yi. The proof for the former case goes as
follows. By Lemma 6, a corrupt Pk can never be in st1. The correctness of y computed
by an honest Pj follows directly from Lemma 8. For the latter case, Lemma 9 implies
that Yi corresponds to the unique input committed by the corrupt party. All that needs
to be ensured is that Pi gets the correct decoding information. The condition flagj =
flagk = 0 implies that the commitment to the decoding information is computed and
distributed correctly for both Cj and Ck. Now the binding property of eNICOM ensures
that the decoding information received from either Pj (for Ck) or Pk (for Cj) must be
correct implying correctness of y (by correctness of the garbling scheme). ut

Lemma 11. If an honest party is in st3 or st4, then its output y corresponds to the
unique input committed by the corrupt party.

Proof. An honest party Pi in st3 either uses y of another party in st1 or computes
output from encoded output Yj of Pj who it identifies as honest. For the latter case
note that an honest Pj will never be identified as corrupt by Pi, due to Lemma 5. The
claim now follows from Lemma 6, Lemma 8 and the fact that corrupt Pk cannot forge
the ‘proof’ oij (binding of NICOM) for the former case and from Lemma 9 and the fact
that it possesses correct decoding information as a garbler for Yj for the latter case. An
honest party Pi in st4 only uses y of another party in st1. The lemma follows in this
case via the same argument as before. ut

23

Theorem 1. Protocol fair is correct.

Proof. In order to prove the theorem, we show that if an honest party, say Pi outputs y
that is not ⊥, then it corresponds to x1, x2, x3 where xj is the input committed by Pj
(Definition 1). We note that an honest Pi belong to one among {st1, st2, st3, st4} at
the time of output computation. The proof now follows from Lemmas 7,8,10,11. ut

Fairness implies: (a) if a corrupt party gets the output then so does the honest parties;
(b) if an honest party gets the output then so does the other parties. We give the intuition
for both below starting with (a). The formal proof appears in Appendix D.2.

A corrupt Pk cannot be in st1 (due to Lemma 6). The only way it can retrieve the
output is by having an honest party in st1 or st2. An honest party in st3 only releases
the decoding information and it never release it to a corrupt party (Lemma 5 implies
it identifies the honest party correctly). An honest party in st4 releases the encrypted
decoding information zk under key keyk to Pk conditionally when flagk = 1. The
condition flagk = 1 implies that Pk must have distributed the common information
incorrectly and so γi and γj are not same. This further implies certk is not same as
keyk and so Pk does not have access to the key to open zk and cannot recover the de-
coding information. So the corrupt Pk getting the output implies that at least one honest
party is in {st1, st2}. Lemma 7 implies that in this case, Pk must have committed to a
unique input. By Lemma 8 and Lemma 10, the y and encoded output Y computed by
any honest party in st1 and in st2 respectively will correspond Pk’s committed input.
Further, if Pk computes encoded output Yk, it also correspond to Pk’s committed input.
So no matter how the corrupt party compute the output, it will be with respect to unique
(x1, x2, x3). We need to show that both honest parties receive the same output. This
easily follows when at least one honest party is in st1. We now prove the lemma based
on the following cases. (a) Both Pi, Pj are in st2: They receive the decoding informa-
tion from each other on the clear and use their respective computed encoded output to
compute the output y. (b) Pi is in st2 and Pj in st3: Pi uses the decoding information
sent exclusively to him by Pj and decode the output as in the previous case. Pj uses the
encoded output of Pi, Yi and its decoding information (held as a garbler) to compute
the output. (c) Pi is in st2 and Pj in st4: Pj must be in st4 because of flagi = 1.
If flagk = 1, Pi will have the same status for this flag and would belong to st4. Now
since flagi = 1, Pj sends encryption of the decoding information zi to Pi who can use
certi to decrypt zi and compute the output as in the previous two cases. Pj , on noting
that flagi = 1, yet Pi obtained certi = keyi, will identify Pk to be corrupt, upgrade to
st3 and compute the output as in the previous case.

Next, we argue for part (b). For an honest party to compute the output y, at least one
honest party must be in {st1, st2}. If both belong to {st3, st4}, then neither Pk has
committed any input (due to Lemma 7) nor anyone gets the output. The latter follows by
the argument below. An honest party in st3 only outputs based on the encoded output
of the other honest party. But since the other honest party is in {st3, st4}, it will output
⊥. An honest party in st4 outputs⊥, except for the case it finds one in st1 which is not
true for bothPj andPk (Lemma 6). The corrupt Pk does not get the output too following
the fact that it cannot be in st1 (Lemma 6) and it does not receive decoding information
from an honest party. An honest party Pi in st3 sends the decoding information only to
the identified honest party. An honest party Pi in st4 may send the encrypted decoding

24

information zk under key keyk to Pk when flagk = 1. But the condition flagk = 1
implies that Pk must have distributed the common information incorrectly and so γi
and γj are not same. This further implies certk is not same as keyk and so Pk does
not have access to the key to open zk and cannot recover the opening information. Now
we are left to show that when at least one honest party is in {st1, st2}, then everyone
gets the output. This already follows from the argument given for the other direction.

4 2-round 3PC with Unanimous Abort

This section presents a tight upper bound for 3PC achieving unanimous abort in the set-
ting with pair-wise private channels and a broadcast channel. The impossibility of one-
round protocol in the same setting follows from “residual function" attack [HLP11].
Our result from Section 6.2 rules out the possibility of achieving unanimous abort in
the absence of a broadcast channel in two rounds. This protocol can be used to yield a
round-optimal fair protocol with broadcast (lower bound in Section 6.1) by application
of the transformation of [IKP+16] that compiles a protocol with unanimous abort to
a fair protocol via evaluating the circuits that compute shares (using error-correcting
secret sharing) of the function output using the protocol with unanimous abort and then
uses an additional round for reconstruction of the output.

In an attempt to build a protocol with unanimous abort, we note that any protocol
with unanimous abort must be robust to any potential misbehaviour launched via the
private communication in the second round. Simply because, there is no way to report
the abort to the other honest party who may have seen honest behaviour from the cor-
rupt party all along and has got the output, leading to selective abort. Our construction
achieves unanimity by leveraging the availability of the broadcast channel to abort when
a corrupt behaviour is identified either in the first round or in the broadcast communi-
cation in the second round, and behaving robustly otherwise. In summary, if the corrupt
party does not strike in the first round and in the broadcast communication of the second
round, then our construction achieves robustness.

Turning to the garbled circuit based constructions such as the two-round protocol
of [IKKP15] achieving selective abort or the composition of three copies of the sub-
protocol fairi of fair, we note that the second round private communication that involves
encoding information for inputs is crucial for computing the output and cannot transit
via broadcast because of input privacy breach. A bit elaborately, the transfer of the
encoding information for the inputs of the garblers can be completed in the first round
itself and any inconsistency can be handled via unanimous abort in the second round.
However, a similar treatment for the encoding information of the shares of the evaluator
seems impossible as they are transferred to garblers only in the first round. We get
past this seemingly impossible task via a clever ‘two-part release mechanism’ for the
encoding information of the shares of the evaluator. Details follow.

Similar to protocol fair, we build our protocol ua upon three parallel executions of
a sub-protocol uai (i ∈ [3]), each comprising of two rounds and with each party Pi en-
acting the role of the evaluator once. With fairi as the starting point, each sub-protocol
uai allows the parties to reach agreement on whether the run was successful and the
evaluator got the output or not. A flag flagi is used as an indicator. The protocol ua then

25

decides on unanimous abort if at least one of the flags from the three executions uai for
i ∈ [3] is set to true. Otherwise, the parties must have got the output. Input consistency
checks ensure that the outputs are identical. Intra-execution input consistency is taken
care by cheat-recovery mechanism (similar and simplified version of what protocol fair
uses), while inter-execution input consistency is taken care by the same trick that we
use in our fair protocol. Now looking inside uai, the challenge goes back to finding
a mechanism for the honest evaluator to get the output when a corrupt party behaves
honestly in the first round and in the broadcast communication of the second round. In
other words, its private communication in the second round should not impact robust-
ness. This is where the ‘two-part release mechanism’ for the encoding information of
the shares of the evaluator kicks in. It is realized by tweaking the function to be eval-
uated as f(xj , xk, (zj ⊕ rj) ⊕ (zk ⊕ rk)) in the instance uai where Pi enacts the role
of the evaluator. Here rj , rk denote random pads chosen by the garblers Pj , Pk respec-
tively in the first round. The encoding information for these are released to Pi privately
in the first round itself. Any inconsistent behaviour in the first round is detected, the
flag is set and the the protocol exits with⊥ unanimously. Next, zj and zk are the offsets
of these random pads with the actual shares of Pi’s input and are available only at the
end of first round. The encoding information for these offsets and these offsets them-
selves are transferred via broadcast in the second round for public verification. As long
as the pads are privately communicated, the offsets do not affect privacy of the shares
of Pi’s input. Lastly, note that the encoding information for a garbler’s input for its own
generated circuit can be transferred in the first round itself. This ensures that a corrupt
garbler misbehaves either in the first round or in the broadcast communication in the
second round or lets the evaluator get the output via its own GC. We describe execu-
tion uai, assuming input consistency. Entwining the three executions, tackling the input
consistency and the final presentation of protocol ua are done next. Lastly, we present
the security proof.

4.1 Protocol uai

With the goal to achieve agreement among the honest parties regarding whether the
evaluator got the output or not, uai starts with fairi and makes the following changes.
First, the broadcast channel is used to reach agreement on the commitments to GCs
and the encoding information. Second, a garbling scheme with soft decoding property
is used to allow immediate output decoding. Third, a garbler opens its encoded input
for its own GC in the first round itself. In addition, we implement the two-part release
mechanism for Pi’s shares where apart from the garblers, Pi too broadcasts the offsets
in the second round. A flag flagi is used to keep track if a complaint is raised for the
first round communication by broadcast in the second round or the offsets broadcasted
in parallel by both Pi and respective garblers do not match or the opening of the encoded
input for the offsets fails. When flagi remains to be false for the honest parties, an honest
Pi must be able to evaluate and output from the GC prepared by the corrupt garbler.
Because, the commitments to that GC and encoding information has been scrutinized
by the honest co-garbler, the encoded input of the corrupt party has been verified by
the evaluator, the release of the encoded inputs for the shares of the evaluator has been
verified publicly and the offsets themselves matched. Lastly, since the flag when set to

26

be true by any honest party in the end of first round can be propagated to all in the
second round and is only set based on the broadcasts in the second round, all honest
parties exit uai with an agreement on flagi. We now present our protocol in Figures 5-6
assuming input consistency and prove its properties needed later.

Protocol uai()

Inputs: Party Pα has xα for α ∈ [3].
Common Inputs: The circuit C((xj , rj , zj), (xk, rk, zk),⊥) that computes f(xj , xk, (zj ⊕

rj) ⊕ (zk ⊕ rk)) such that zj ⊕ rj = xij , zk ⊕ rk = xik and xij ⊕ xik = xi and
where the inputs belong to {0, 1}`. For distinct i, j, k ∈ [3], Pi acts as the evaluator and
(Pj , Pk) as the garblers.

Output: All parties output boolean flagi, initially set to 0. Pi outputs (yj , yk).
Primitives: A correct, private and authentic garbling scheme G = (Gb,En,Ev,De) with soft

decoding, an eNICOM (eGen, eCom, eOpen,Equiv), a PRG G and a NICOM (Com,Open)

Round 1:

– Pi randomly secret shares his input xi as xi = xij ⊕ xik and sends xij to Pj and xik to Pk.
– Pl for l ∈ {j, k} samples sl ∈R {0, 1}κ, eppl and ppl for G, eNICOM and NICOM resp. and:

◦ compute garbled circuit (Cl, el, dl) ← Gb(1κ, C) using randomness from
G(sl). Assume {e0lα, e1lα}α∈[`], {e0l(`+α), e1l(`+α)}α∈[`], {e0l(2`+α), e1l(2`+α)}α∈[2`],
{e0l(4`+α), e1l(4`+α)}α∈[2`] correspond to the encoding information for the input of
Pj , Pk (i.e. xj , xk), the random inputs chosen by Pj , Pk (i.e. rj , rk) and the offsets
between the random pads and the secret shares of Pi (i.e. zj , zk) respectively.

◦ compute commitment for the GC as (cl, ol)← eCom(eppl,Cl)
◦ sample permutation strings plj , plk ∈R {0, 1}` for the inputs of Pj and
Pk and compute commitments of encoding information as: For b ∈ {0, 1},
(cblα, o

b
lα) ← Com(ppl, e

pαlj⊕b
lα) , (cbl(`+α), o

b
l(`+α)) ← Com(ppl, e

pαlk⊕b
l(`+α)) when

α ∈ [`], (cbl(2`+α), o
b
l(2`+α)) ← Com(ppl, e

b
l(2`+α)), (cbl(4`+α), o

b
l(4`+α)) ←

Com(ppl, e
b
l(4`+α)) when α ∈ [2`].

◦ broadcast Dl = (eppl, ppl, cl, {cblα}α∈[6`],b∈{0,1}) and send {sl, plj , plk, ol, {oblα
}α∈[6`],b∈{0,1}} privately to the co-garbler P{j,k}\l.

– Pj computes indicator string mjj = pjj ⊕ xj , picks its share of pad rj ∈R {0, 1}` and sends(
{om

α
jj

jα , o
rαj
j(2`+α)}α∈[`],mjj , rj

)
to Pi. Similarly, Pk computes mkk, picks rk and sends(

{om
α
kk

k(`+α), o
rαk
k(3`+α)}α∈[`],mkk, rk

)
to Pi.

– (Local Computation by garblers) Pj sets flagi = 1 if Dk and {sk, pkj , pkk, ok,
{obkα}α∈[6`],b∈{0,1}} received from Pk are not consistent. Pk performs similar steps with
respect to the values received from Pj .

– (Local Computation by evaluator) Pi sets flagi = 1 if (a) the openings of the input la-

bels sent by Pj fail to open some commitment in Dj i.e Open(ppj , c
mαjj
jα , o

mαjj
jα) = ⊥ or

Open(ppj , c
rαj
j(2`+α), o

rαj
j(2`+α)) = ⊥ for some α ∈ [`] OR (b) the openings for the input

labels sent by Pk fail to open some commitment in Dk.

Fig. 5: Protocol uai

27

Contd. Protocol uai()

Round 2:

– Pj broadcasts abort if flagi = 1. Else, it computes its indicator string
mkj = pkj ⊕ xj for Pk’s circuit and the offset zj = xij ⊕ rj , sends(
OK, ok, {o

mαkj
kα , o

rαj
k(2`+α), o

zαj
k(4`+α)}α∈[`],mkj

)
privately to Pi and broadcasts

Wj =
(
zj , {o

zαj
j(4`+α)}α∈[`]

)
. Pk performs similar steps.

– Pi broadcasts abort if flagi = 1. Else, it broadcasts zj = xij ⊕ rj and zk = xik ⊕ rk
– Every party sets flagi = 1 if (a) abort was received or sent via broadcast in Round 2 OR (b)

either zj broadcast by (Pj , Pi) or zk broadcast by (Pk, Pi) do not match OR (c) Dj ,Wj is

not consistent i.e Open(ppj , c
zαj
j(4`+α), o

zαj
j(4`+α)) = ⊥ or similarlyDk,Wk is not consistent.

– (Local Computation by Pi) Output yj = yk = ⊥ if flagi = 1. Else, with respect to Cj :
◦ open Cj ← eOpen(eppj , cj , oj) where the opening is received from Pk.

◦ open Xα
j = Open(ppj , c

mαjj
jα , o

mαjj
jα), Rα

j = Open(ppj , c
rαj
j(2`+α), o

rαj
j(2`+α)), and Zαj =

Open(ppj , c
zαj
j(4`+α), o

zαj
j(4`+α)), for the openings received from Pj .

◦ open Xα
k = Open(ppj , c

mαjk
j(`+α), o

mαjk
j(`+α)), R

α
k = Open(ppj , c

rαk
j(3`+α), o

rαk
j(3`+α)) and

Zαk = Open(ppj , c
zαk
j(5`+α), o

zαk
j(5`+α)) for α ∈ [`], for openings are received from Pk.

◦ If any of the above openings fail, set yj = ⊥. Else set X = Xj |Xk|Rj |Rk|Zj |Zk, run
Yj ← Ev(Cj ,X) and yj ← sDe(Yj).

Similar steps as above with respect to Ck is executed to compute Yk and yk.

Fig. 6: Protocol uai

Lemma 12. At the end of protocol uai, all honest parties output the same flagi.

Proof. We have two cases based on whether atleast one honest party set flagi = 1 at the
end of Round 1. If this is true, then the honest party would broadcast abort in Round
2 and all honest parties would output flagi = 1. Otherwise, an honest party sets flagi
based on the following conditions (a) abort was broadcast in Round 2 or (b) either
zj broadcast by (Pj , Pi) or zk broadcast by (Pk, Pi) do not match or (c) (Dj ,Wj)
or (Dk,Wk) is inconsistent. All these checks are with respect to broadcast messages.
Therefore, we can conclude that every honest party will output identical flagi. ut

Lemma 13. Assuming input consistency, if flagi = 0, then yk 6= ⊥wherePk is corrupt.

Proof. First, Lemma 12 implies that both Pi, Pj output identical flagi = 0. Now
flagi = 0 implies that: (a) Ck and the commitments to the encoding information are
computed correctly; (b) the opening of encoding information Xk,Rk for Ck is correct
in Round 1 with high probability due to binding property of eNICOM and NICOM; (c)
the opening of the remaining encoding information Zk is correct with high probability
due to binding property of NICOM. Pj being honest would open the encoding relevant
to his input for Ck, namely, Xj ,Rj ,Zj . So Pi has got complete encoded input X for
Ck and will evaluate Ck to obtain yk. Thus, if flagi = 0, then yk will not be ⊥. ut

28

4.2 Protocol ua

Our two-round 3PC protocol ua achieving unanimous abort composes uai for i ∈ [3] in
parallel. Assuming input consistency, entwining the three executions requires tapping
all the flags returned by the three executions and outputting the result computed as an
evaluator when none of them are set to true and ⊥, otherwise. This works since when a
flag for an execution uai is false, then the evaluator Pi is guaranteed to get the output.
The challenge that remains to handle is input consistency within and across executions
which ensures the outputs computed are the same irrespective of the execution and GC.
The inter-execution input consistency, i.e the consistency of the input committed by Pi
in uai and the inputs given to the GCs constructed by Pi as garbler in the remaining
two executions are enforced using the same trick that we use in fair via setting the
permutation strings as the shares of the parties’ input.

Dealing with the input consistency within an execution uai to make sure the garblers
provide the same input for both the GCs without inflating the round complexity con-
stitutes yet another challenge. Noting that this misbehaviour has no way to show up in
the common flag as this is targeted via the private communication in the second round,
the evaluator must find a way to robustly compute the output when conflicted outputs
are computed from the two garbled circuits. This output must be based on the input of
the corrupt garbler that it has committed as an evaluator and received output based on.
We use the trick of “proof-of-cheating" mechanism [Lin13] to enable an (honest) eval-
uator with conflicting outputs to retrieve the inputs committed by both garblers in their
respective instances. To be specific, the output keys corresponding to the mismatched
output bit in the two garbled circuits, say C1 and C3 in ua2, enables the evaluator P2

to unlock the missing shares, namely, x31 and x13 of the two garblers from ua3 and ua1
respectively. To ensure that the recovered missing shares are as distributed in ua1 and
ua3, the shares are committed via NICOM by the input owners and the openings are
encrypted by the holders (as in fair). The binding of NICOM, prevents a corrupt P1 to
lie on (x13, x31). This allows the honest party to compute the same output that P1 gets
from ua1. Lastly, the flag in execution uai also takes into account consistent dealing
of the commitments by its evaluator Pi. Our protocol appears in Figure 7, the proof of
correctness and the proof of security below. We use Definition 1 for input commitment.

Lemma 14. If a corrupt party Pk has not committed its input or does not use the com-
mitted input in its GCs in {uai, uaj}, then each honest party outputs y = ⊥.

Proof. Pk has not committed to a unique input implies it has not dealt correct open-
ing to one or both the honest parties. In either case, abort is raised in the second
round, leading to an output that is ⊥. Now assume Pk uses input x′k 6= xk during
uai for its own GC. Pk should use xkj as the permutation string pkk in execution uai
for permuting the commitments corresponding to xk. If it does not, then honest Pj
sets flagi = 1 in Round 1 and broadcasts abort in Round 2. Otherwise, the com-
mitments are constructed correctly and ordered as per xkj . Now the only way Pk can
decommit x′k is by giving mkk = pkk ⊕ x′k. But in this case honest Pi would set
flagi = 1 in Round 1 and broadcast abort in Round 2 as the check mkk = xki would
fail (mkk = pkk ⊕ x′k 6= pkk ⊕ xk). Thus, every honest party outputs y = ⊥. ut

29

Protocol ua()

Inputs: Party Pi has xi for i ∈ [3].
Output: y = f(x1, x2, x3) or ⊥.
Sub-protocols: uai for i ∈ [3] (Figure 5), a NICOM (Com,Open), CPA-secure SKE Enc.

Round 1: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}

– Round 1 of uai are run parallel. In uai, Pj and Pk work with the permutation strings pjj and
pkk respectively as xjk and xkj .

– Pi samples ppi, generates (cij , oij) ← Com(ppi, xij), (cik, oik) ← Com(ppi, xik), broad-
casts {ppi, cij , cik} and sends oij , oik to Pj , Pk respectively.

– (Local Computation) Pi sets flagi = 1 if Open(cli, oli) 6= xli or mll 6= xli for l ∈
{j, k}. Pj sets flagi = 1 if: (a) pkk not taken as xkj or (b) the check in uai fails. (c)
Open(cij , oij) 6= xij . Pk sets flagi = 1 if: (a) pjj not taken as xjk or (b) the check in uai
fails. (c) Open(cik, oik) 6= xik.

Round 2:

– Round 2 of uai for i ∈ [3] are run parallel. In uai, the garbler Pj (similar steps will be taken by
Pk) does the following additionally if flagi 6= 1. Let {Y0

l ,Y
1
l }, denote the encoding infor-

mation for output wire corresponding to Cl (l ∈ {j, k}). It sends two ciphertexts (ct0j , ct1j)
where ct0j = EncY0

j⊕Y1
k
(ojk, okj) and ct1j = EncY1

j⊕Y0
k
(ojk, okj).

– For i ∈ [3], party Pi computes output as follows:
◦ If flagα = 1 for some α ∈ [3], then output y = ⊥ .
◦ Otherwise, output y as yj when yj = yk or yk = ⊥, as yk when yj = ⊥where (yj , yk)

are output from uai.
◦ Otherwise, let the encoded outputs corresponding to Cj ,Ck in uai are Yj ,Yk. It uses

key Y
yj
j ⊕Y

yk
k to decrypt the ciphertext ct

yj
j obtained from Pj to retrieve (ojk, okj).

It executes xkj ← Open(ckj , okj) and xjk ← Open(cjk, ojk). If xkj or xjk = ⊥,
then they are recomputed as above using ct

yj
k obtained from Pk. Then Pi evaluates f

on inputs (xi, xji ⊕ xjk, xki ⊕ xkj) to obtain y.

Fig. 7: A Two-Round 3PC protocol achieving unanimous abort

Theorem 2. Protocol ua is correct.

Proof. In order to prove the theorem, we show that if an honest party, say Pi outputs
y that is not ⊥, then it corresponds to (x1, x2, x3) where xj is the input committed by
Pj . Assume that Pk is corrupt. Recall that Pi outputs yj and yk in uai on evaluating the
GCs of the garblers Pj and Pk respectively. We have the following cases.

– y = yk. Follows from Lemma 13, 14.
– y 6= yk. In this case, y 6= yj either as y is set to yj when yj = yk or yk = ⊥.

Following Lemma 13, yk cannot be⊥. So it must be that Pi retrieves the output via
opening the ciphertexts. If the output is computed just from the ciphertext of honest
Pj , then y is computed as f(xi, xji⊕xjk, xki⊕xkj) using openings okj , ojk given
by Pj . Since an honest Pj correctly reveals the opening okj of the share of Pk’s
input given to Pj and ojk corresponding to his input share, f(xi, xji ⊕ xjk, xki ⊕

30

xkj) corresponds to the correct value. If the output is computed from the ciphertext
of corrupt Pk, then y computed must be still as above as a corrupt Pk cannot open
the shares xjk, xkj in an incorrect way (following binding property of NICOM).

ut
The intuition for achieving unanimous abort follows from the correctness and

Lemma 12 that implies the honest parties will be on the same page for all flags. The
formal proof appears in Appendix E.

5 3-round 3PC with Guaranteed Output Delivery

In this section, we present a three-round 3PC protocol, given access to pairwise-private
channels and a broadcast channel. The protocol is round-optimal following 3-round
lower bound for fair 3PC proven in Section 6.1. The necessity of the broadcast chan-
nel for achieving guaranteed output delivery with strict honest majority follows from
[CHOR16].

Our tryst starts with the known generic transformations that are relevant such as the
transformations from the unanimous abort to (identifiable) fair protocol [IKP+16] or
identifiable fair to guaranteed output delivery [CL14]. However, these transformations
being non-round-preserving do not turn out to be useful. Turning a 2-round protocol
offering unanimous (or even selective) abort with identifiability (when the honest par-
ties learn about the identity of the corrupt when deprived of the output) to a 3-round
protocol with guaranteed output delivery in a black-box way show some promise. The
third round can be leveraged by the honest parties to exchange their inputs and compute
output on the clear. We face two obstacles with this approach. First, there is neither any
known 2-round construction for selective / unanimous abort with identifiability nor do
we see how to transform our unanimous abort protocol to one with identifiability in two
rounds. Second, when none of the parties (including the corrupt) receive output from
the selective / unanimous abort protocol and the honest parties compute it on the clear
in the third round by exchanging their inputs and taking a default value for the input of
the corrupt party, it is not clear how the corrupt party can obtain the same output (note
that the ideal functionality demands delivering the output to the adversary).

We get around the above issues by taking a non-blackbox approach and tweaking
uai and fairi to get yet another sub-protocol godi that achieves a form of local identi-
fiability. Namely, the evaluator Pi in godi either successfully computes the output or
identifies the corrupt party. As usual, our final protocol god is built upon three parallel
executions of godi (i ∈ [3]), each comprising of two rounds and with each party Pi
enacting the role of the evaluator once. Looking ahead, the local identifiability helps
in achieving guaranteed output delivery as follows. In a case when both honest parties
identify the corrupt party and the corrupt party received the output by the end of Round
2, the honest parties can exchange their inputs and reconstruct the corrupt party’s input
using the shares received during one of the executions of godi and compute the function
on clear inputs in the third round. Otherwise, the honest party who identifies the corrupt
can simply accept the output computed and forwarded by the other honest party. The
issue of the corrupt party getting the same output as that of the honest parties when it
fails to obtain any in its instance of godi is taken care as follows. First, the only reason

31

a corrupt party in our protocol does not receive its output in its instance of godi is due
to denial of committing its input. In this case it is detected early and the honest parties
exchange inputs in the second round itself so that at least one honest party computes
the output using a default input of the corrupt party by the end of Round 2 and hands it
over to others in Round 3.

In the following, we describe one execution godi. Entwining the three executions,
tackling the input consistency and the final presentation of protocol god are done next.
The security proof appears in Appendix F.

5.1 Protocol godi

Recall that the goal of godi for i ∈ [3] comprising of two rounds, is either successful
computation of output or successful identification of the corrupt party by the evaluator
Pi. Starting with the ideas of uai, we note that uai only ensures detection of the corrupt
party by some honest party that is not necessarily the evaluator in case of a failed output
computation. Specifically, a garbler would identify his co-garbler to be corrupt when
the broadcast communication of co-garbler is not consistent with the privately shared
randomness. In such a case, the evaluator neither gets the output nor has any clue on
the identity of the corrupt, which is not in accordance with the goal of godi. In the
absence of broadcast, fairi gives even weaker guarantee where the best any party gets
to know is a conflict. The above is handled by having the garblers send their inputs
on clear to the evaluator on finding inconsistent behaviour of the fellow garbler in the
first round. If both the garblers are in conflict with each other, the evaluator gets their
inputs and computes the function on clear. Otherwise, the evaluator can either evaluate
at least one of the GCs or identify the corrupt. Lastly, as we do not require unanimity of
any form at the end of two rounds, we simplify godi by removing the two-part release
mechanism and the flag altogether. Like uai, we do not take care of the possibility of
a corrupt garbler handing out inconsistent input for the two GCs in godi. This is taken
care in the main protocol god via the input consistency. Pi outputs (y = (yj , yk),Yi =

(Yj
i ,Y

k
i), Ci), the outputs computed from two GCs, the encoded outputs and its corrupt

set, all initially set to ⊥ and to be used in the main construction. If both (yj , yk) are ⊥,
then the corrupt set will be non-empty. The garblers output their corrupt set. We now
prove a few lemmas. The protocol godi appears in Figure 8.

Lemma 15. Pβ /∈ Cα holds for honest Pα, Pβ .

Proof. An honestPα would includePβ in Cα only if one of the following holds: (a) Both
Pα, Pβ are garblers andPβ broadcastsDβ inconsistent with values privately shared with
Pα (b) Pα is an evaluator and Pβ is a garbler and Pβ’s opening of a committed encoded
input or garbled circuit approved by him fails. It is easy to verify that the cases will
never occur for honest (Pα, Pβ). ut

Lemma 16. Assuming input consistency, at the end of protocol godi, an honest evalu-
ator Pi either computes the output or identifies the corrupt party.

Proof. Assume that Pk is the corrupt garbler. We have two cases.

32

Protocol godi()

Inputs: Party Pα has xα for α ∈ [3].
Common Inputs: Same as fairi (Figure 1).
Output: A garbler Pl for l ∈ {j, k} outputs Cl. Pi outputs (y = (yj , yk),Yi = (Yj

i ,Y
k
i), Ci)

where y is the output (initially set to ⊥) and Ci denotes the corrupt set maintained by Pi.
Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and authentic, an

eNICOM (eGen, eCom, eOpen,Equiv) and a PRG G.

Round 1: Same as Round 1 of fairi (Figure 1) except that the garblers do not commit to the de-
coding information and Dl computed by garbler Pl (l ∈ {j, k}) is communicated via broadcast.
Round 2:

– Pj computes indicator string mjj = pjj ⊕ xj ,mkj = pkj ⊕ xj . If Pk /∈ Cj , then

send
(
OK, (ok, {o

mαkj
kα , o

xαij
k(2`+α)}α∈[`],mkj), ({o

mαjj
jα , o

xαij
j(2`+α)}α∈[`],mjj)

)
to Pi. Else, it

sends
(
nOK, xj , ({o

mαjj
jα , o

xαij
j(2`+α)}α∈[`],mjj)

)
. Pk performs similar steps.

– (Local Computation) If nOK is received from both Pj , Pk, then compute yj = yk =
f(x1, x2, x3) using xj , xk. Otherwise, one of the parties has sent OK. Assume, for sim-
plicity that Pk has sent OK. Then, compute Yj

i as in fairi. If Yj
i 6= ⊥, then yj ← sDe(Yj

i).
If Pj sent OK, then similar steps as above for Ck will be executed and yk will be set.

Fig. 8: Protocol godi

– Pk sends nOK: If Pj sends nOK too, Pi receives xl from Pl for l ∈ {j, k} (else
Pk is identified to be corrupt) and computes f on inputs xi, xj , xk. If Pj sends OK,
then the garbled circuit Ck is correctly constructed and the corresponding encoding
information is correctly committed. The only way a corrupt garbler Pk can stop Pi
from evaluating Ck (and avoid being caught by Pi) is by sending encoded inputs
corresponding to (xk, xik) that are inconsistent with Ck via breaching the binding
property of NICOM which happens only with negligible probability.

– Pk sends OK: In this case, the binding property of eNICOM ensures that with high
probability the correct Cj is opened (otherwise Pk is caught). The arguments now
follow as the previous case where the probability that Pi does not get the output
and does not detect Pk reduces to the probability of breaching binding of NICOM.

ut

5.2 Protocol god

Our three-round 3PC protocol achieving guaranteed output delivery composes godi for
i ∈ [3], with each party acting as the evaluator in parallel. At a high level, the protocol
assures that every party either outputs y that is not ⊥ or identifies the corrupt by end of
second round. In the third round, a party simply sends his output if it is non-⊥, else it
sends its input and share of the corrupt party’s input to the honest party alone. A party
outputs its own output computed in second round if it is not⊥. Otherwise, it outputs the
non-⊥ output received from the non-faulty party or computes the output using the input
and share sent by the non-faulty party. The input consistency is handled exactly as in ua.
Additionally every party maintains a corrupt set and populates it when it identifies the

33

corrupt. The overall composition maintains guaranteed output delivery as below based
on when a corrupt party chooses to expose itself.

The cases when a corrupt Pi is detected by the end of first round itself, the honest
party who makes the identification, halts the execution where it plays the evaluator with
the corrupt set as the output and also halts godi to stop letting Pi get output in godi.
Since the detection may be owing to non-commitment of any input by Pi in godi, the
unique input of Pi has to be set to the one that it commits in the running execution or
as a default value when either there is no running execution or Pi does not commit to
anything in the running execution. Specifically, if both the honest parties identify Pi to
be corrupt by the end of first round, both would have exchanged their input as per the
code of god protocols and a default common value is taken as the input of Pi to compute
the function output by the end of second round itself and the output is handed over to
Pi in third round. Handing the output to corrupt Pi is necessary to technically realise
the functionality correctly where the corrupt party also gets the output. If just one of the
parties detects the corrupt party Pi, say Pj , it stops its execution as the evaluator in godj
and as garbler in godi to prevent Pi getting any output in godi. Now Pi has two options:
either it passes on its input on clear to Pk or it lets Pk to evaluate the garbled circuit of
Pj by giving its encoded input. In either case, this input of Pi is taken as his committed
input and the output computed by Pk is the one to be outputted by all. (Note that Pi’s
own GC will not be approved by its co-garbler who has identified it as corrupt by the
end of first round.) Pk can simply pass on the output to Pi and Pj in the third round
and Pj simply takes the output of Pk who it knows to be honest. Our protocol appears
in Figure 9. The proof of correctness appear below and the full proof in Appendix F.

Lemma 17. Pβ /∈ Cα holds for honest Pα, Pβ in protocol godi, where i ∈ [3].

Proof. This lemma follows from Lemma 15 and the fact that the following will not be
true for honest (Pα, Pβ): (a) Pβ sends oβα, xβα to Pα such that Open(cβα, oβα) 6= xβα
(b) Both Pα, Pβ are garblers and pββ 6= xβα. (c) Pβ is the garbler, Pα is an evaluator
and mββ 6= xβα ut

Lemma 18. Every party Pi uses its ‘committed’ input xi (Definition 1) in its GCs in
{godj , godk}. Otherwise, it is identified by at least one of the honest parties.

Proof. Pi has not committed to its input implies it has not dealt correct opening to one
or both the honest parties. In either case, at least one of the honest parties identify him.
Now assume Pi has committed to input xi but uses input x′i 6= xi during godj for the
garbled circuit constructed by Pi. Pi should use xik as the permutation string pii in
execution godj for permuting the commitments corresponding to xi. If Pi does other-
wise, then it is identified by honest Pk. Otherwise, the commitments are constructed
correctly and ordered as per xik. Now the only way Pi can decommit x′i is by giving
mii = pii ⊕ x′i. But Pj identifies Pi as corrupt as mii = pii ⊕ x′i 6= pii ⊕ xi. ut

We now prove correctness of the protocol accounting exhaustively all the scenarios:
the corrupt party

– belongs to the corrupt set of both the honest parties,
– belongs to the corrupt set of exactly one of the honest parties and

34

Protocol god()

Inputs: Party Pi has xi for i ∈ [3].
Output: y = f(x1, x2, x3).
Sub-protocols Used: godi, i ∈ [3] (Figure 8), a NICOM (Com,Open), CPA-secure SKE Enc.

Round 1: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}

– Round 1 of godi are run parallel. In godi, Pj and Pk work with the permutation strings pjj
and pkk respectively as xjk and xkj .

– Pi samples ppi, generates (cij , oij) ← Com(ppi, xij), (cik, oik) ← Com(ppi, xik), broad-
casts {ppi, cij , cik} and sends oij , oik to Pj , Pk respectively.

– (Local Computation) Pi adds P` in Ci if Open(cli, oli) 6= xli. Pj adds Pk in Cj if: (a) pkk not
taken as xkj or (b) the check in godi fails. Pk adds Pj in Ck if: (a) pjj not taken as xjk or
(b) the check in godi fails.

Round 2: For i ∈ [3] and for distinct indices j, k ∈ [3] \ {i}

– If Pi 6∈ Cj , then Pj participates in godi. If Pk 6∈ Cj , it additionally sends the following
ciphertexts {ct0j , ct1j} created as below. Let {Y0

l ,Y
1
l }, denote the encoding information

for output wire corresponding to Cl (l ∈ {j, k}). Then ct0j = EncY0
j⊕Y1

k
(ojk, okj) and

ct1j = EncY1
j⊕Y0

k
(ojk, okj).

– Pi includes Pl in Ci if mll 6= xli for l ∈ {j, k}.
– (Local Computation by Pi) If Ci = ∅, then compute y = (yj , yk) as in godi. If yj = yk (6= ⊥)

or one of them is non-⊥, set y to one of them in the former and to the not-⊥ in the latter. If
yj 6= yk, use key Y

yj
j ⊕Y

yk
k to decrypt the ciphertexts ct

yj
j obtained from Pj to retrieve

(ojk, okj). Execute xkj ← Open(ckj , okj) and xjk ← Open(cjk, ojk). If xkj or xjk = ⊥,
then they are recomputed as above using ct

yj
k obtained from Pk. Then evaluate f on inputs

(xi, xji ⊕ xjk, xki ⊕ xkj) to obtain y. If Ci 6= ∅, y = ⊥ and Pi receives xl from Pl /∈ Ci,
compute y as the value of f on xi, xl and a default value for the remaining party’s input.

Round 3: Each Pi for i ∈ [3] either has y 6= ⊥ or Ci 6= ∅. It does the following

– If y 6= ⊥, send y to Pj , Pk. Send (xi, xji) to Pk when Pj ∈ Ci or (xi, xki) to Pj when
Pk ∈ Ci.

– If y 6= ⊥, output y. Else if Pl 6∈ Ci sends y, output y. Else if Pj 6∈ Ci sends (xj , xkj),
then compute y as the output of f on (xi, xj , xkj ⊕ xki). Similar steps are executed when
Pk 6∈ Ci and it sends (xk, xjk) i.e y is derived from (xi, xk, xjk ⊕ xji).

Fig. 9: A Three-Round 3PC protocol achieving guaranteed output delivery

– does not belong to the corrupt set of the honest parties

by the end of the first round. For simplicity, we assume that Pk is the corrupt party and
Pi, Pj are the honest parties.

Lemma 19. Assuming that the corrupt party belongs to the corrupt set of both the
honest parties by the end of the first round, protocol god is correct.

Proof. In this case, Pi and Pj does not communicate at all in the second round of godk
preventing Pk to compute an output. In godi and godj , Pj and Pi, respectively send

35

their inputs on clear to each other along with nOK signal. Both compute y on the inputs
xi, xj that are exchanged and a default common value for xk by the end of round 2. In
the third round, Pk receives y from the honest parties and the honest parties output y.
In this case the unique input of the corrupt party taken for computation is the default
commonly-agreed value. ut

Lemma 20. Assuming that the corrupt party belongs to the corrupt set of exactly one
of the honest parties by the end of the first round, protocol god is correct.

Proof. For simplicity Pk ∈ Ci at the end of first round. (The proof follows in a similar
way when Pk ∈ Cj .) This implies Pi, as an evaluator, ignores communication from both
the garblers in its execution godi and will conclude the second round with y = ⊥ and
Ci = Pk. Pi does not participate in godk as a garbler making sure Pk cannot compute
an output by the end of second round. In godj , Pi sends xi on clear to Pj with nOK
signal which implies evaluation of the GC created by Pk is ruled out. Now based on
whether Pk commits to any input or not, Pj computes the output in the following way.
If nOK signal is sent along with its input xk, then Pj computes y = yi = yk using its
own input xj and the inputs sent by Pi and Pk. If Pk sends OK with its encoded input
which verifies correctly with respect to the committed encoded information, Pj obtains
y = yi upon GC (Ci) evaluation. In the case when Pk does not commit to any input
either on clear or in encoded form (namely, the encoded input does not verify against
the committed encoded input), Pj must have identified Pk to be corrupt and computes
y using its own input xj , the input sent by Pi and using a default value for xk. The third
round is finally used by Pi and Pk to obtain the output of Pj and correctness follows.
The unique input of Pk is taken as the one that it sends either on clear or in encoded
form to Pj in the former case and a default value in the latter. ut

Lemma 21. Assuming that the corrupt party does not belong to the corrupt set of both
the honest parties by the end of the first round, protocol god is correct.

Proof. In this case, Pk must have ‘committed’ (Definition 1) to his input (else would be
identified by atleast one of the honest parties at end of Round 1) and obtained output y
based on its committed input during godk. Further, Pk is not detected yet by the end of
first round, implies that it has played the role of the garblers in godi and godj honestly
in the first round. In this case, we prove that no matter how Pk behaves in the second
round, the honest parties will obtain y based on their inputs and Pk’s committed input.
We present the argument for honest Pi. Similar argument holds for Pj . Based on the
observation that Pi must have attempted to evaluate Ck since Pj must have sent OK
signal in godi, we consider the following cases:

– Pi is unsuccessful in evaluating the circuit Ck of garbler Pk in godi. This implies
Pk has given inconsistent encoded input for its circuit to Pi. So Pi concludes the
second round with y = ⊥ and Ci = Pk.

– Pi is successful in evaluating the circuit Ck of garbler Pk in godi. By Lemma 18,
Pk must have given encoded input corresponding to its committed input xk for Ck.
This implies the output obtained via Ck (i.e yk) is the desired y in this case. Now
we have two cases based on whether Pk approves the garbled circuit constructed by

36

Pj or not. In each case we show that, Pi outputs the desired y by the end of second
round itself. If Pk disapproves, then yj = ⊥ and Pi outputs the value y = yk ob-
tained via the GC Ck as per the specification of godi. Otherwise, Pi evaluates both
circuits, namely Cj and Ck. If the outputs are the same, then the guarantee pro-
vided by Lemma 18 implies Pi outputs the desired y. Else if Pi has got conflicting
outputs (yj 6= yk), then it gets access to the key Y

yj
j ⊕Yyk

k and uses it to decrypt
at least one of the ciphertexts {ct

yj
j , ct

yj
k } generated by Pj and Pk. If the decryp-

tion of only the honest party Pj’s ciphertext succeeds, then Pi obtains (ojk, okj),
retrieves his missing shares xjk, xkj and computes y using xi, xj = xji ⊕ xjk and
xk = xki ⊕ xkj where Pi and Pj receives xki and xkj respectively from Pk in
godk. Even if corrupt Pk’s ciphertext is decrypted successfully, the y computed is
still as above due the fact that Pk cannot open a different value for xjk, xkj due to
the binding property of NICOM. Pi retains this output in the third round.

In the former case, if both Pi and Pj outputs ⊥ in the end of second round, then
the third round is used by Pi and Pj to exchange their inputs and the shares of xk that
they possess. By the end of third round Pi (and Pj as well) outputs the desired y. If
Pj was successful in computing y in godj , then Pj sends the output directly in third
round which Pi takes as the output. In the latter case, Pi retains his output in the third
round. ut

Theorem 3. Protocol god is correct.

Proof. The proof follows from Lemma 19,20,21 as we have considered all the cases
exhaustively based on whether the corrupt party Pk is identified by none, exactly one
or both the honest parties by the end of first round. ut

6 Lower Bounds

In this paper, we present two lower bounds– (a) three rounds are necessary for achiev-
ing fairness in the presence of pair-wise private channels and a broadcast channel; (b)
three rounds are necessary for achieving unanimous abort in the presence of just pair-
wise private channels (and no broadcast). The second result holds even if broadcast
was allowed in the first round. Our results extend for any n and t with 3t ≥ n > 2t
via standard player-partitioning technique [Lyn96]. Our results imply the following.
First, selective abort is the best amongst the four notions (considered in this work)
that we can achieve in two rounds without broadcast (from (b)). Second, unanimous
abort as well as fairness require 3 rounds in the absence of broadcast (from (b)). Third,
broadcast does not help to improve the round complexity of fairness (from (a)). Lastly,
guaranteed output delivery requires 3 rounds with broadcast (from (a)).

6.1 The Impossibility of 2-round Fair 3PC

In this section, we show that it is impossible to construct a fair 2-round 3PC for gen-
eral functions. [GLS15] presents a lower bound of three rounds assuming non-private

37

point-to-point channels and a broadcast channel (their proof crucially relies on the as-
sumption of non-private channels). [GIKR02] presents a three-round lower bound for
fair MPC with t ≥ 2 (arbitrary number of parties) in the same network setting as ours.
Similar to the lower bounds of [GLS15] and [GIKR02] (for the function of conjunction
of two input bits), our lower bound result does not exploit the rushing nature of the
adversary and hence holds for non-rushing adversary as well. Finally, we observe that
the impossibility of 2-round 3PC for the information-theoretic setting follows from the
impossibility of 2-round 3-party statistical VSS of [PCRR09] (since VSS is a special
case of MPC). We now prove the impossibility formally.

Theorem 4. There exist functions f such that no two-round fair 3PC protocol can com-
pute f , even in the honest majority setting and assuming access to pairwise-private and
broadcast channel.

Proof. Let P = {P1, P2, P3} denote the set of 3 parties and the adversary A may
corrupt any one of them. We prove the theorem by contradiction. We assume that there
exists a two-round fair 3PC protocol π that can compute f(x1, x2, x3) defined below
for Pi’s input xi:

f(x1, x2, x3) =

{
1 if x2 = x3 = 1

0 otherwise

At a high level, we discuss two adversarial strategies A1 and A2 of A. We consider
party Pi launching Ai in execution Σi (i ∈ [2]) of π. Both the executions are assumed
to be run for the same input tuple (x1, x2, x3) and the same random inputs (r1, r2, r3)
of the three parties. (Same random inputs are considered for simplicity and without
loss of generality. The same arguments hold for distribution ensembles as well.) When
strategy A1 is launched in execution Σ1, we would claim that by correctness of π,
A corrupting P1 should learn the output y = f(x1, x2, x3). Here, we note that the
value of f(x1, x2, x3) depends only on the inputs of honest P2, P3 (i.e input values
x2, x3) and is thus well-defined. We refer to f(x1, x2, x3) as the value determined by
this particular combination of inputs (x2, x3) henceforth. Now, since A corrupting P1

learnt the output, due to fairness, P2 should learn the output too in Σ1. Next strategy
A2 is designed so that P2 in Σ2 can obtain the same view as in Σ1 and therefore it
gets the output too. Due to fairness, we can claim that P3 receives the output in Σ2. A
careful observation then lets us claim that P3 can, in fact, learn the output at the end of
Round 1 itself in π. Lastly, using the above observation, we show a strategy for P3 that
explicitly allows P3 to breach privacy.

We use the following notation: Let pri→j denote the pairwise communication from
Pi to Pj in round r and bri denote the broadcast by Pi in round r, where r ∈ [2], {i, j} ∈
[3]. Vi denotes the view of party Pi at the end of execution of π. Below we describe the
strategies A1 and A2.

A1: P1 behaves honestly during Round 1 of the protocol. In Round 2, P1 waits to
receive the messages from other parties, but does not communicate at all.

A2: P2 behaves honestly towards P3 in Round 1, i.e sends the messages p1
2→3, b

1
2 ac-

cording to the protocol specification. However P2 does not communicate to P1 in
Round 1. In Round 2, P2 waits to receive messages from P3, but does not commu-
nicate to the other parties.

38

Next we present the views of the parties in the two executions Σ1 and Σ2 in Ta-
ble 1. The communications that could potentially be different from the communications
in an honest execution (where all parties behave honestly) with the considered inputs
and random inputs of the parties are appended with ? (e.g. p2

1→3(?)). We now prove a
sequence of lemmas to complete our proof.

Table 1: Views of P1, P2, P3 in Σ1 and Σ2

Σ1 Σ2

V1 V2 V3 V1 V2 V3

Initial Input (x1, r1) (x2, r2) (x3, r3) (x1, r1) (x2, r2) (x3, r3)

Round 1 p1
2→1, p1

3→1 p1
1→2, p1

3→2, p1
1→3, p1

2→3, –, p1
3→1, p1

1→2, p1
3→2, p1

1→3, p1
2→3,

b1
2, b

1
3 b1

1, b
1
3 b1

1, b
1
2 b1

2, b
1
3 b1

1, b
1
3 b1

1, b
1
2

Round 2 p2
2→1, p2

3→1, –, p2
3→2, –, p2

2→3, –, p2
3→1, p2

1→2(?), p2
3→2, –, p2

1→3(?),
b2
2, b

2
3 b2

3 b2
2 b2

3 b2
1(?), b

2
3 b2

1(?)

Lemma 22. A corrupt P1 launching A1 in Σ1 should learn the output y =
f(x1, x2, x3).

Proof. The proof follows easily. Since P1 behaved honestly during Round 1, it received
all the desired communication from honest P2 and P3 in Round 2 (refer to Table 1 for
the view of P1 inΣ1 in the end of Round 2). So it follows from the correctness property
that his view at the end of the protocol i.e V1 should enable P1 to learn the correct
function output f(x1, x2, x3). ut

Lemma 23. A corrupt P2 launching A2 in Σ2 should learn the output y.

Proof. We prove the lemma with the following two claims. First, the view of P2 in Σ2

subsumes the view of honest P2 in Σ1. Second, P2 learns the output in Σ1 due to the
fact that the corrupt P1 learns it and π is fair. We now prove our first claim. In Σ1, we
observe that P2 has received communication from both P1 and P3 in the first round,
and only from P3 in the second round. So V2 = {x2, r2, p1

1→2, b
1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3}

(refer to Table 1). We now analyze P2’s view in Σ2. Both P1 and P3 are honest and
must have sent {p1

1→2, b
1
1, p

1
3→2, b

1
3} according to the protocol specifications in Round

1. Since P3 received the expected messages from P2 in Round 1, P3 must have sent
{p2

3→2, b
2
3} in Round 2. Note that we can rule out the possibility of P3’s messages in

this round having been influenced by P1 possibly reporting P2’s misbehavior towards
P1. This holds since P3 would send the messages in the beginning of Round 2. We do
not make any assumption regarding P1’s communication to P2 in Round 2 since P1 has
not received the expected message from P2 in Round 1. Thus, overall, P2’s view V2

comprises of {x2, r2, p1
1→2, b

1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3} (refer to Table 1). Note that there

may also be some additional messages from P1 to P2 in Round 2 which can be ignored
by P2. These are marked with ‘(?)′ in Table 1. A careful look shows that the view of P2

in Σ2 subsumes the view of honest P2 in Σ1. This concludes our proof. ut

Lemma 24. P3 in Σ2 should learn the output y by the end of Round 1.

39

Proof. According to the previous lemma, P2 should learn the function output in Σ2.
Due to fairness property, it must hold that an honest P3 learns the output as well (same
as obtained by P2 i.e y with respect to x2). First, we note that as per strategy A2, P2

only communicates to P3 in Round 1. Second, we argue that the second round commu-
nication from P1 does not impact P3’s output computation as follows.

We observe that the function output depends only on (x2, x3). Clearly, Round 1
messages {p1

1→3, b
1
1} of P1 does not depend on x2. Next, since there is no private

communication to P1 from P2 as per strategyA2, the only information that can possibly
hold information on x2 and can impact the round 2 messages of P1 is b1

2. However, since
this is a broadcast message, P3 holds this by the end of Round 1 itself. ut

Lemma 25. A corrupt P3 violates the privacy property of π.

Proof. The adversary corrupting P3 participates in the protocol honestly by fixing in-
put x3 = 0. Since P3 can get the output from P2’s and P1’s round 1 communication
(Lemma 24), it must be true that P3 can evaluate the function f locally by plugging in
any value of x3. (Note that P2 and P1’s communication in round 1 are independent of
the communication of P3 in the same round.) Now a corrupt P3 can plug in x3 = 1
locally and learn x2 (via the output x2 ∧ x3). In the ideal world, corrupt P3 must learn
nothing beyond the output 0 as it has participated in the protocol with input 0. But in
the execution of π (in which P3 participated honestly with input x3 = 0), P3 has learnt
x2. This is a clear breach of privacy as P3 learns x2 regardless of his input. ut
Hence, we have arrived at a contradiction, completing the proof of Theorem 4. ut

6.2 The Impossibility of 2-round 3PC with Unanimous Abort

Theorem 5. There exist functions f such that no two-round 3PC protocol achieving se-
curity with unanimous abort can compute f assuming access to pairwise-private chan-
nels, even in the honest majority setting.

Proof. We prove the theorem by contradiction. We assume that there exists a two-
round 3PC protocol π achieving security with unanimous abort that can compute the
same function f(x1, x2, x3) considered in the proof of Theorem 4.

At a high level, we discuss three adversarial strategies A1,A2,A3 of A. We con-
sider party P1 launches A1 in execution Σ1, and P2 launches A2,A3 in executions
Σ2, Σ3 of π respectively. For the sake of simplicity, the executions are assumed to be
run for the same input tuple (x1, x2, x3) and the same random inputs (r1, r2, r3) (with-
out loss of generality) of the three parties. We use the notation Vji to denote the view of
party Pi at the end of execution Σj of π. The skeleton of the proof goes as follows: We
first claim that strategy A1 leads to honest P2 computing the output y = f(x1, x2, x3).
Here, we note that the value of f(x1, x2, x3) depends only on the inputs of honest
P2, P3 (i.e input values x2, x3) and is thus well-defined. We refer to f(x1, x2, x3) as
the value determined by this particular combination of inputs (x2, x3) henceforth. Since
the protocol achieves unanimous abort, honest P3’s view V1

3 at the end of Σ1 must lead
to output computation of y by P3. Next, strategy A2 executed by P2 during Σ2 results
in P3 having the same view as in Σ1 i.e V1

3 = V2
3. Thus, honest P3 computes the output

40

and to preserve the property of unanimous abort, honest P1 with view V2
1 must also

compute the output. Finally, we present a strategy A3 by P2 during Σ3 that results in
P1 having the same view as in Σ2 i.e V2

1 = V3
1. It follows that honest P1 computes

the output and therefore honest P3 with view V3
3 must be able to compute the output

too. This results in a contradiction as we conclude that if P3’s view V3
3 enables output

computation, P3 must be able to compute the output at the end of Round 1 itself which
violates privacy as proved in Lemma 25.

Let pri→j denote the pairwise communication from Pi to Pj in round r, where r ∈
[2], {i, j} ∈ [3]. Below we describe the strategies A1,A2 and A3.

A1: P1 behaves honestly during Round 1 of the protocol. In Round 2, P1 behaves
honestly towards P2. P1’s communication to P3 in Round 2 is according to the
protocol specification for the scenario when P1 didn’t receive the expected message
(or nothing) from P2 in Round 1. In more detail, suppose p2

1→3 is the message
that should be sent by P1 to P3 according to the protocol incase P1 didn’t receive
anything from P2 in Round 1. Then as per A1, corrupt P1 sends p2

1→3 to P3 in
Round 2.

A2: P2 does not communicate at all to P1 but behaves honestly to P3 throughout π.
A3: In Round 1, P2 does not communicate to P1 but behaves honestly to P3. In Round

2, P2 does not communicate at all.

Next we present the views of the parties in Σ1, Σ2 and Σ3 in Table 2. Here, p2
1→3

is the message that should be sent by P1 to P3 according to the protocol incase P1

didn’t receive anything from P2 in Round 1. Besides this, the communications that
could potentially be different from the communications in an honest execution with the
considered inputs and random inputs of the parties are appended with ? (e.g. p2

1→2(?)).
We now prove a sequence of lemmas to complete our proof.

Table 2: Views of P1, P2, P3 in Σ1, Σ2, Σ3

Σ1 Σ2 Σ3

V1 V2 V3 V1 V2 V3 V1 V2 V3

Initial Input (x1, r1) (x2, r2) (x3, r3) (x1, r1) (x2, r2) (x3, r3) (x1, r1) (x2, r2) (x3, r3)

Round 1 p1
2→1, p1

3→1 p1
1→2, p1

3→2, p1
1→3, p1

2→3, –, p1
3→1, p1

1→2, p1
3→2, p1

1→3, p1
2→3, –, p1

3→1, p1
1→2, p1

3→2, p1
1→3, p1

2→3,

Round 2 p2
2→1, p2

3→1, p2
1→2, p2

3→2, p2
1→3, p2

2→3, –, p2
3→1, p2

1→2(?), p2
3→2, p2

1→3, p2
2→3, –, p2

3→1, p2
1→2(?), p2

3→2, p2
1→3, –

Lemma 26. P3 computes the output y = f(x1, x2, x3) at the end of Σ1.

Proof. The proof follows easily. DuringΣ1, as per strategyA1, corruptP1 behaved hon-
estly to P2 throughout π. Therefore P2 would compute the output y = f(x1, x2, x3).
Due to property of unanimous abort, honest P3 must learn the output as well. ut

Lemma 27. P3 computes the output y = f(x1, x2, x3) at the end of Σ2.

Proof. We observe that the view of P3 during Σ1, Σ2 is same. As per both strategies
A1, andA2, P3 receives communication from P1, P2 as per honest execution in Round

41

1. In Round 2, according to A1, corrupt P1 sends p2
1→3 as per protocol specification

for case when P1 receives nothing from P2 in Round 1. A similar message would be
sent by honest P1 to P3 who did not receive anything from P2 in Round 1 (as per A2)
during Σ2. It is now easy to check (refer Table 2) that V1

3 = V2
3. Finally, since V1

3 leads
to output computation of y as per Lemma 26, P3’s view at the end of Σ2 i.e V2

3 must
result in P3 computing the output y. ut

Lemma 28. P3 learns the output at the end of Σ3.

Proof. Firstly, it follows from lemma 27 and property of unanimous abort that honest
P1 must compute the output at the end of Σ2. Next, it is easy to check that V2

1 = V3
1

(refer Table 2). We can thus conclude that honest P1 computes the output at the end of
Σ3. Therefore, honest P3 must also be able to compute the output at the end of Σ3 (by
assumption that π achieves unanimous abort). ut

Finally, we now prove that P3 learns the output at the end of Round 1 (similar to
Lemma 24).

Lemma 29. P3 in Σ3 should learn the output y by the end of Round 1.

Proof. According to lemma 28, P3 should learn the function output in Σ3. First, we
note that as per strategy A3, corrupt P2 only communicates to P3 in Round 1. Second,
we argue that the second round communication from P1 does not impact P3’s output
computation as follows.

We observe that the function output depends only on (x2, x3). Clearly, the first
round messages {p1

1→3} of P1 does not depend on x2. Next, since there is no commu-
nication to P1 from P2 as per strategyA3, round 2 messages of P1 hold no information
about x2. ut
If P3 is able to compute output at the end of Round 1, we know that protocol π violates
privacy (proved in Lemma 25). We have thus arrived at a contradiction, concluding the
proof of Theorem 5. ut
We observe that even if broadcast was allowed in the first round, all the above arguments
would still hold. We state this as a corollary below.

Corollary 1. There exist functions f such that no two-round 3PC protocol achieving
security with unanimous abort can compute f assuming access to pairwise-private and
broadcast channels in Round 1 and only pairwise-private channels in Round 2; even in
the honest majority setting.

Proof. We observe that the following minor tweaks to the proof of Theorem 5 imply
Corollary 1: We redefine p2

1→3 to be the message that should be sent by P1 to P3 in
Round 2 according to the protocol incase P1 didn’t receive anything privately (over
pairwise-private channel) from P2 in Round 1 (if Round 1 includes broadcast commu-
nication from P2, then we assume P1 has received P2’s broadcast communication). A1

remains the same with p2
1→3 defined as above. We emphasize that there is no broadcast

channel available in Round 2 and p2
1→3 is communicated via pairwise-private channel

between P1 and P3. Strategies A2 and A3 are tweaked to include honest behavior of
P2 in broadcast communication of Round 1. It is now easy to check that the arguments

42

of Lemma 26 - 28 hold. We can now conclude that P3 learns the output at the end of
Σ3 where the only communication from P2 throughout the protocol includes broadcast
communication in Round 1 and private communication to P3 in Round 1. Finally, sim-
ilar to Lemma 29 we can argue that P3 learns the output at the end of Round 1 itself
which violates privacy. This completes the proof. ut

Alternative functions. While it suffices to show impossibility with respect to a particular
function to rule out the possibility of having generic protocols, we cite yet another
function that can lead to the same conclusion. Consider a function f ′ that outputs the
message m which is the decryption of ciphertext c (P2’s input) where the decryption
key k constitutes P3’s input. All our arguments still hold except Lemma 25: Instead
of the argument of how privacy could be breached by corrupt P3 who gets access to
output at the end of Round 1, in the context of this function f ′, a corrupt P3 (who gets
access to the output at the end of Round 1 itself) would be able to get decryptions of the
ciphertext c corresponding to multiple keys k of his choice which violates correctness.

7 Conclusion

In this paper, we settle exact round complexity of 3PC with selective abort, unanimous
abort, fairness and guaranteed output delivery in a setting with private pairwise
channels and with or without broadcast channel. Our lower bounds extend for any n
and t with 3t > n > 2t. Our protocols rely on injective OWF.

Acknowledgement. The first author would like to acknowledge partial support from
Google Inc. and SERB Women Excellence Award from Science and Engineering Re-
search Board of India. The second author would like to acknowledge partial support
from Indian Association for Research in Computing Science (IARCS) and Microsoft
Research India.

References

AARV17. Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan. Con-
ditional disclosure of secrets: Amplification, closure, amortization, lower-bounds,
and separations. In CRYPTO, 2017.

ACGJ18. Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-
optimal secure multiparty computation with honest majority. Cryptology ePrint
Archive, Report 2018/572, 2018. https://eprint.iacr.org/2018/572.

ACJ17. Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In CRYPTO, 2017.

AFL+16. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
High-throughput semi-honest secure three-party computation with an honest major-
ity. In ACM CCS, 2016.

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In EUROCRYPT, 2012.

AMPR14. Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive se-
cure computation based on cut-and-choose. In EUROCRYPT, 2014.

43

https://eprint.iacr.org/2018/572

BCD+09. Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas P.
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,
Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multiparty compu-
tation goes live. In FC, 2009.

BDOZ11. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT, 2011.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO, 1991.

BFO12. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-
secure multiparty computation with a dishonest minority. In CRYPTO, 2012.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, 1988.

BH06. Zuzana Beerliová-Trubíniová and Martin Hirt. Efficient multi-party computation
with dispute control. In TCC, 2006.

BHP17. Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure com-
putation without setup. In TCC, 2017.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled cir-
cuits. In CCS, 2012.

BJMS18. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure
mpc: Laziness leads to god. Cryptology ePrint Archive, Report 2018/580, 2018.
https://eprint.iacr.org/2018/580.

BKP11. Michael Backes, Aniket Kate, and Arpita Patra. Computational verifiable secret shar-
ing revisited. In ASIACRYPT, 2011.

BLW08. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Computer Security- ESORICS, 2008.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In ACM STOC, 1990.

BTW12. Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party
computation for financial data analysis - (short paper). In FC, 2012.

Can00. Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1), 2000.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally se-
cure protocols (extended abstract). In ACM STOC, 1988.

CDD+99. Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin.
Efficient multiparty computations secure against an adaptive adversary. In EURO-
CRYPT, 1999.

CDG87. David Chaum, Ivan Damgård, and Jeroen Graaf. Multiparty computations ensuring
privacy of each party’s input and correctness of the result. In CRYPTO, 1987.

CGMV17. Nishanth Chandran, Juan A. Garay, Payman Mohassel, and Satyanarayana
Vusirikala. Efficient, constant-round and actively secure MPC: beyond the three-
party case. In ACM CCS, 2017.

CHOR16. Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. Characterization of secure
multiparty computation without broadcast. In TCC, 2016.

CIO98. Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-
malleable commitment. In ACM STOC, 1998.

CKMZ14. Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient
three-party computation from cut-and-choose. In CRYPTO, 2014.

CL14. Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure
multiparty computation. In ASIACRYPT, 2014.

44

https://eprint.iacr.org/2018/580

Cle86. Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In ACM STOC, 1986.

CMF+14. Koji Chida, Gembu Morohashi, Hitoshi Fuji, Fumihiko Magata, Akiko Fujimura,
Koki Hamada, Dai Ikarashi, and Ryuichi Yamamoto. Implementation and evaluation
of an efficient secure computation system using ‘R’ for healthcare statistics. Journal
of the American Medical Informatics Association, 2014.

DN07. Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multi-
party computation. In CRYPTO, 2007.

DO10. Ivan Damgård and Claudio Orlandi. Multiparty computation for dishonest majority:
From passive to active security at low cost. In CRYPTO, 2010.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In CRYPTO, 2012.

FLNW17. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput se-
cure three-party computation for malicious adversaries and an honest majority. In
EUROCRYPT, 2017.

FNO15. Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free
garbled circuits with applications to efficient zero-knowledge. In EUROCRYPT,
2015.

Gei07. Martin Geisler. Viff: Virtual ideal functionality framework, 2007.
GGHR14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure

MPC from indistinguishability obfuscation. In TCC, 2014.
GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random

functions. JACM, 1986.
GIKM00. Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy

in private information retrieval schemes. J. Comput. Syst. Sci., 2000.
GIKR01. Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complex-

ity of verifiable secret sharing and secure multicast. In ACM STOC, 2001.
GIKR02. Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure

multiparty computation. In CRYPTO, 2002.
GL02. Shafi Goldwasser and Yehuda Lindell. Secure computation without agreement. In

DISC, 2002.
GLS15. S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness

and guarantee of output delivery. In CRYPTO, 2015.
GMPP16. Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou.

The exact round complexity of secure computation. In EUROCRYPT, 2016.
GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or

A completeness theorem for protocols with honest majority. In ACM STOC, 1987.
Gol01. Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.

Cambridge University Press, 2001.
HHPV17. Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan

Venkitasubramaniam. Round-optimal secure multi-party computation. Cryptology
ePrint Archive, Report 2017/1056, 2017. https://eprint.iacr.org/2017/
1056.

HKK+14. Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J.
Malozemoff. Amortizing garbled circuits. In CRYPTO, 2014.

HLP11. Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In CRYPTO, 2011.

IKKP15. Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Se-
cure computation with minimal interaction, revisited. In CRYPTO, 2015.

IKP10. Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. In CRYPTO, 2010.

45

https://eprint.iacr.org/2017/1056
https://eprint.iacr.org/2017/1056

IKP+16. Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua Yu.
Secure protocol transformations. In CRYPTO, 2016.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivi-
ous transfer - efficiently. In CRYPTO, 2008.

IW14. Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In
ICALP 2014, 2014.

JKO13. Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In CCS, 2013.

JW16. Zahra Jafargholi and Daniel Wichs. Adaptive security of yao’s garbled circuits. In
TCC 2016-B, 2016.

KO04. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In CRYPTO, 2004.

KS05. Jonathan Katz and Ji Sun Shin. Modeling insider attacks on group key-exchange
protocols. In CCS, 2005.

KS06. Mehmet S Kiraz and Berry Schoenmakers. A protocol issue for the malicious case
of yao’s garbled circuit construction. In 27th Symposium on Information Theory in
the Benelux, 2006.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In ICALP, 2008.

LADM14. John Launchbury, Dave Archer, Thomas DuBuisson, and Eric Mertens. Application-
scale secure multiparty computation. In ESOP, 2014.

LDDA12. John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy Adams-Moran.
Efficient lookup-table protocol in secure multiparty computation. In ACM SIGPLAN
ICFP’12, 2012.

Lin13. Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In CRYPTO, 2013.

Lin17. Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. In
Tutorials on the Foundations of Cryptography., pages 277–346. 2017.

LP07. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In EUROCRYPT, 2007.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party
computation. J. Cryptology, 2009.

Lyn96. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
MF06. Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious two-

party computation. In PKC, 2006.
MR17. Payman Mohassel and Mike Rosulek. Non-interactive secure 2pc in the offline/online

and batch settings. In EUROCRYPT, 2017.
MRZ15. Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party com-

putation: The garbled circuit approach. In ACM CCS, 2015.
MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-

key FHE. In EUROCRYPT, 2016.
Nao91. Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2), 1991.
PCRR09. Arpita Patra, Ashish Choudhary, Tal Rabin, and C. Pandu Rangan. The round com-

plexity of verifiable secret sharing revisited. In CRYPTO, 2009.
Ped91. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable se-

cret sharing. In CRYPTO, 1991.
RB89. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols

with honest majority (extended abstract). In ACM STOC, 1989.
RR16. Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with

online/offline dual execution. In USENIX Security Symposium, 2016.

46

SS13. Abhi Shelat and Chih-Hao Shen. Fast two-party secure computation with minimal
assumptions. In ACM CCS, 2013.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, 1982.

ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In EUROCRYPT, 2015.

47

Supplementary Material

A Primitives

A.1 Properties of Garbling Scheme

Definition 2. (Correctness) A garbling scheme G is correct if for all input lengths
n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the follow-
ing probability is negligible in κ:

Pr
(
De(Ev(C,En(e, x)), d) 6= C(x) : (C, e, d)← Gb(1κ, C)

)
.

Definition 3. (Privacy) A garbling scheme G is private if for all input lengths n ≤
poly(κ), circuits C : {0, 1}n → {0, 1}m, there exists a PPT simulator Spriv such
that for all inputs x ∈ {0, 1}n, for all probabilistic polynomial-time adversaries A, the
following two distributions are computationally indistinguishable:

– REAL(C, x) : run (C, e, d)← Gb(1κ, C), and output (C,En(x, e), d).
– IDEALSpriv

(C,C(x)): output (C′,X, d′)← Spriv(1κ, C, C(x))

Definition 4. (Authenticity) A garbling scheme G is authentic if for all input lengths
n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all PPT
adversaries A, the following probability is negligible in κ:

Pr

(
Ŷ 6= Ev(C,X)

∧De(Ŷ, d) 6= ⊥
:
X = En(x, e), (C, e, d)← Gb(1κ, C)

Ŷ ← A(C,X)

)
.

Definition 5. (Obliviousness) A garbling scheme G achieves obliviousness if for all
input lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, there exists a PPT sim-
ulator Sobv such that for all inputs x ∈ {0, 1}n, for all probabilistic polynomial-time
adversaries A, the following two distributions are computationally indistinguishable:

– REAL(C, x) : run (C, e, d)← Gb(1κ, C), and output (C,En(x, e)).
– IDEALSobv

(C): output (C′,X)← Sobv(1κ, C)

A.2 Non-Interactive Commitment Schemes (NICOM)

Properties.

– Correctness: For all pp, x ∈ M and r ∈ R, if (c, o) ← Com(x; r) then
Open(c, o) = x.

– Binding: For all PPT adversariesA and all pp, it is with negligible probability that
A(pp) outputs (c, o, o′) such that Open(c, o) 6= Open(c, o′) and ⊥ /∈ {Open(c, o),
Open(c, o′)}

– Hiding: For all PPT adversaries A, the following difference is negligible (over
uniform choice of pp and the random coins of A) for all x, x′ ∈M:∣∣Pr(c,o)←Com(x)[A(c) = 1]− Pr(c,o)←Com(x′)[A(c) = 1]

∣∣
48

Instantiations. Here we present two instantiations of NICOM. In the random oracle
model, commitment is (c, o) = (H(x||r), x||r) = Com(x; r). The pp can in fact be
empty. In the standard model, we can use the following bit-commitment scheme from
any injective one-way function. Let f : {0, 1}n → {0, 1}n be a one-way permutation
and h : {0, 1}n → {0, 1} a hard core predicate for f(·). Then the commitment scheme
for a single bit x is:

- Com(x; r): set c = (f(r), x⊕ h(r)); where r ∈R {0, 1}n; set o = (r, x).
- Open(c, o = (r, x)): return x if c = (f(r), x⊕ h(r)); otherwise return ⊥.

For commitment of multi-bit string, the Goldreich-Goldwasser-Micali [GGM86]
construction from a one-way permutation f can be used. Recall the GGM construc-
tion: given one-way permutation f : {0, 1}k → {0, 1}k with hard-core predicate
h : {0, 1}k → {0, 1}, first construct a length-doubling pseudorandom generator
G : {0, 1}k → {0, 1}k via: G(s) = fk(s) h(fk−1(s)) . . . h(s). Let G0(s) denote the
first k bits of G(s), and let G1(s) denote the last k bits of G(s). For a binary string s, the
commitment c can be defined as c = F(s, 0`) = G0(. . . (G0(G0(s))) . . .) with o = (s).
It is shown in [GGM86] that the function family F = {Fκ} with Fκ = {F(s)}s∈{0,1}κ
is pseudorandom. Now, note that F(s, 0`) = f `.κ(s). Since f is a permutation, this
means that the function g(x) = F(x, 0`) is a permutation, and hence the commitment
scheme has the binding property. Hiding follows from the property of PRF F [KS05].

A.3 Equivocal Non-interactive Commitment Schemes (eNICOM)

An eNICOM comprises of the following algorithms, apart from the ones needed in
NICOM:

– eGen(1κ) returns a public parameter and a corresponding trapdoor (epp, t), where
epp is used by both eCom and eOpen. The trapdoor t is used for equivocation.

– Equiv(c, o′, x, t) is invoked on a certain commitment c and its corresponding open-
ing o′, given message x and the trapdoor t and returns o such that x ←
eOpen(epp, c, o).

An eNICOM satisfies correctness, hiding and binding properties much like the NICOM
does. The hiding property of eNICOM is slightly changed compared to that of NICOM
taking the equivocation property into account. This new definition implies the usual
hiding definition.

Properties.

– Correctness: For all (epp, t) ← eGen(1κ), x ∈ M and r ∈ R, if (c, o) ←
eCom(x; r) then eOpen(c, o) = x.

– Binding: For all (epp, t) ← eGen(1κ) and for all PPT adversaries A, it is
with negligible probability that A(epp) outputs (c, o, o′) such that eOpen(c, o) 6=
eOpen(c, o′) and ⊥ /∈ {eOpen(c, o), eOpen(c, o′)}

– Hiding: For all (epp, t)← eGen(1κ) and for all PPT adversaries A, and all x, x′ ∈
M, the following difference is negligible:∣∣Pr(c,o)←eCom(x)[A(c, o) = 1]− Pr(c,o)←eCom(x′),o←Equiv(c,x,t)[A(c, o) = 1]

∣∣
49

Instantiations. We first present the equivocal bit commitment scheme of [CIO98],
which is based on Naor’s commitment scheme [Nao91] for single bit message. This
scheme avoids the use of public-key primitives. Let G : {0, 1}n → {0, 1}4n be a pseu-
dorandom generator.

- eGen(1κ): set (epp, t) = (σ, (r0, r1)), where σ = G(r0)⊕ G(r1)
- eCom(x; r): set c = G(r) if x = 0, else c = G(r)⊕ σ; set o = (r, x)
- eOpen(c, o = (r, x)): return x if c = G(r)⊕x ·σ (where (·) denotes multiplication

by constant); otherwise return ⊥.
- Equiv(c = G(r0),⊥, x, t): return o = (r, x) where r = r0 if x = 0, else r = r1.

Next, we present the instantiation based on Pedersen commitment scheme [Ped91].
Let p, q denote large primes such that q divides (p − 1), Gq is the unique subgroup of
Z∗p of order q and g is a generator of Gq .

- eGen(1κ): set (epp, t) = ((g, h), α) where α ∈ Zq; h = gα

- eCom(x; r): set c = gxhr; set o = (r, x).
- eOpen(c, o = (r, x)): return x if c = gxhr; otherwise return ⊥.
- Equiv((c = eCom(x′; r′)) , (x′, r′), x, t): return o = (r, x) where r = r′ + x′−x

t

While in Naor-based instantiation, a specific commitment c = G(r0) can be de-
committed to either 0 or 1, the Pedersen commitment scheme allows equivocation of
any commitment. For the purpose of our protocols, even the former weaker property
suffices and hence our protocols can be based on symmetric key operations alone.

A.4 Symmetric-Key Encryption with Special Correctness

Definition 6. A CPA-secure symmetric-key encryption scheme π = (Gen,Enc,Dec)
satisfies special correctness if there is some negligible function ε such that for any mes-
sage m we have: Pr[Deck2(Enck1(m)) 6= ⊥ : k1, k2 ← Gen(1κ)] ≤ ε(κ)

Instantiation. Here we present an instantiation borrowed from [JW16, LP09]. Let F =
{fk} be a family of pseudorandom functions where fk = {0, 1}κ → {0, 1}κ+s, for
k ∈ {0, 1}κ and s is a parameter denoting message length.

- Enck(m) = (r, fk(r) ⊕m0κ) where m ∈ {0, 1}s, r ← {0, 1}κ and m0κ denotes
the concatenation of m with a string of 0s of length κ.

- Deck(c) which parses c = (r, z), computes w = z ⊕ fk(r) and if the last κ bits of
w are 0’s, it outputs the first s bits of w, else it outputs ⊥

B The Security Model

We prove the security of our protocols based on the standard real/ideal world paradigm.
Essentially, the security of a protocol is analyzed by comparing what an adversary can
do in the real execution of the protocol to what it can do in an ideal execution, that is
considered secure by definition (in the presence of an incorruptible trusted party). In an

50

ideal execution, each party sends its input to the trusted party over a perfectly secure
channel, the trusted party computes the function based on these inputs and sends to each
party its respective output. Informally, a protocol is secure if whatever an adversary can
do in the real protocol (where no trusted party exists) can be done in the above de-
scribed ideal computation. We refer to [Can00, Gol01, Lin17, CL14] for further details
regarding the security model.

The “ideal" world execution involves parties P1, P2, P3, an ideal adversary S who
may corrupt one of the parties, and a functionality F . The “real" world execution in-
volves the PPT parties P1, P2, P3, and a real world adversary A who may corrupt one
of the parties. We let IDEALF,S(1

κ, z) denote the output pair of the honest parties and
the ideal-world adversary S from the ideal execution with respect to the security pa-
rameter 1κ and auxiliary input z. Similarly, let REALΠ,A(1

κ, z) denote the output pair
of the honest parties and the adversary A from the real execution with respect to the
security parameter 1κ and auxiliary input z.

Definition 7. For n ∈ N, let F be a functionality and let Π be a 3-party protocol. We
say that Π securely realizes F if for every PPT real world adversary A, there exists a
PPT ideal world adversary S, corrupting the same parties, such that the following two
distributions are computationally indistinguishable:

IDEALF,S
c
≈ REALΠ,A.

Target Functionalities. Taking motivation from [CL14, GLS15], we define ideal func-
tionalities Fsa, Fua, Ffair,Fgod in Figures 10, 11, 12, 13 for secure 3PC of a function f
with selective abort, unanimous abort, fairness and guaranteed output delivery respec-
tively.

Fsa

Input: On message (sid, Input, xi) from a party Pi (i ∈ [3]), do the following: if (sid, Input, ∗)
message was received from Pi, then ignore. Otherwise record x′i = xi internally. If x′i is
outside of the domain for Pi (i ∈ [3]), consider x′i = abort.

Output to adversary: If there exists i ∈ [3] such that x′i = abort, send (sid, Output,⊥) to all
the parties. Else, send (sid, Output, y) to the adversary, where y = f(x′1, x

′
2, x
′
3).

Output to selected honest parties: Receive (select, {I}) from adversary, where {I} denotes
a subset of the honest parties. If an honest party belongs to I , send (sid, Output, y), else
send (sid, Output,⊥).

Fig. 10: Ideal Functionality for selective abort

51

Fua

Input: On message (sid, Input, xi) from a party Pi (i ∈ [3]), do the following: if (sid, Input, ∗)
message was received from Pi, then ignore. Otherwise record x′i = xi internally. If x′i is
outside of the domain for Pi (i ∈ [3]), consider x′i = abort.

Output to adversary: If there exists i ∈ [3] such that x′i = abort, send (sid, Output,⊥) to all
the parties. Else, send (sid, Output, y) to the adversary, where y = f(x′1, x

′
2, x
′
3).

Output to honest parties: Receive either continue or abort from adversary. In case of
continue, send y to honest parties, whereas in case of abort send ⊥ to all honest par-
ties.

Fig. 11: Ideal Functionality for unanimous abort

Ffair

Input: On message (sid, Input, xi) from a party Pi (i ∈ [3]), do the following: if (sid, Input, ∗)
message was received from Pi, then ignore. Otherwise record x′i = xi internally. If x′i is
outside of the domain for Pi (i ∈ [3]), consider x′i = abort.

Output: If there exists i ∈ [3] such that x′i = abort, send (sid, Output,⊥) to all the parties.
Else, send (sid, Output, y) to party Pi for every i ∈ [3], where y = f(x′1, x

′
2, x
′
3).

Fig. 12: Ideal Functionality for fairness

Fgod

Input: On message (sid, Input, xi) from a party Pi (i ∈ [3]), do the following: if (sid, Input, ∗)
message was received from Pi, then ignore. Otherwise record x′i = xi internally. If x′i is
outside of the domain for Pi, set x′i to be some predetermined default value.

Output: Compute y = f(x′1, x
′
2, x
′
3) and send (sid, Output, y) to party Pi for every i ∈ [3].

Fig. 13: Ideal Functionality for guaranteed output delivery

C Optimizations

In this section, we propose some optimizations to our protocols fair, ua and god that
will reduce their communication. To reduce total communication, the transmission of
garbled circuits should be kept minimal since they constitute the dominant part of com-
munication. We note that the protocols already ensure that each distinct GC is com-
municated only once to the evaluator, namely when a garbler sends the opening of the
co-garbler’s circuit. Next, a proposed optimization to reduce communication is that H
of the GC could be committed rather than the GC itself, where H denotes a collision-
resistant hash function. Infact since broadcast communication is considered more ex-
pensive than private communication, corresponding to broadcast of a message, say m,
let H(m) be the message broadcast by the sender whilem is sent privately over pairwise
channels. The same trick can be applied on the redundant common messages sent over
pairwise channels as well i.e if both P1, P2 are supposed to send m to P3, then have
P1 send m and P2 send H(m). P3 can locally compute the hash of the message which
would suffice to verify if P1 and P2 agree on a common m. The above techniques re-
duce total communication and makes the broadcast communication complexity of the

52

protocol independent of the circuit size. Lastly, an optimization with respect to protocol
fair is that the inputs to the subprotocol certi can be modified to hash of the relevant
inputs instead, reducing considerably the size of the equality-checking circuit in certi.

D Round Optimal 3PC with fairness

D.1 Schematic Diagram

We present the schematic diagram of the 3-round fair protocol in Figures 14 - 15.

D.2 Formal Proof of Security for Protocol fair

In this section, we present the proof of security of fair relative to the ideal functionality
for fairness shown in Appendix B. For better clarity, we assume without loss of gener-
ality that P1 is corrupt (denoted as P ∗1) and describe the simulator Sfair. Since the roles
of the parties are symmetric in fair, similar proof would hold in case of corrupt P2, P3

as well. The simulator plays the role of the honest parties P2, P3 and simulates each
step of the protocol fair. Recall that during the first two rounds of fair, the two round
protocols fairi (i ∈ [3]) and certi (i ∈ [3]) run in parallel. We divide the description
of Sfair as follows: We describe Sfair during fair1, cert1 where corrupt P ∗1 is the evalu-
ator and during fair2, cert2 when corrupt P ∗1 acts as a garbler. The steps corresponding
to fair3, and cert3 would follow symmetrically from that described corresponding to
fair2, cert2. Finally, we describe the steps corresponding to the third round. The simula-
tor Sfair appears in Figure 16-17 with R1/R2/R3 indicating simulation for round 1, 2 and
3 respectively and f/c/F denoting the steps corresponding to subprotocol fairi, certi, fair
respectively.

When simulating fair1, the simulator does not have access to the inputs of the honest
parties. Further, it does not know if and what P1 commits as its input in Round 1, when
simulating and sending the commitments for GC and encoding information in parallel
in Round 1. Nor does it know if all the parties will get the output (relative to corrupt
P1’s committed input from Round 1) or not, when it opens the encoded input and GC in
Round 2. The decision comes from P1’s behaviour in Round 2. A privacy simulator Sprv
cannot be invoked for emulating Round 2 message, as Ffair cannot be invoked yet and
so y is not available. Instead oblivious simulator Sobv is invoked that works without y.
Later if and when Ffair is invoked and y is known, Sprv is invoked which simply returns
the decoding information that makes the fake GC returned by Sobv output y.

We now argue that IDEALFfair,Sfair
c
≈ REALfair,A, whenA corrupts P1. The views are

shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALfair,A.
– HYB1: Same as HYB0, except that P2, P3 in fair1 use uniform randomness rather

than pseudo-randomness for the garbled circuit construction.
– HYB2: Same as HYB1, except that some of the commitments of encoded in-

puts which will not be sent to P1 during fair1 are replaced with commitments
on dummy values. Specifically, these are corresponding to indices not equal to
m22,m23, x12, x13 for C2 and not equal to m32,m33, x12, x13 for C3.

53

Input Output

fair1

x1 C1,Y2
1,Y

3
1, C

dec
2 , Cdec

3 , flag2, flag3

x2 C2, flag3, O
dec
1

x3 C3, flag2, O
dec
1

fair2

x1 C1, flag3, O
dec
2

x2 C2,Y1
2,Y

3
2, C

dec
1 , Cdec

3 , flag1, flag3

x3 C3, flag1, O
dec
2

fair3

x1 C1, flag2, O
dec
3

x2 C2, flag1, O
dec
3

x3 C3,Y1
3,Y

2
3, C

dec
1 , Cdec

2 , flag1, flag2

cert1

– cert1, C1, flag2, flag3

γ2 = {D2
1,D3

1,W2, pp1, c12, c13} C2,key1

γ3 = {D2
1,D3

1,W2, pp1, c12, c13} C3,key1

cert2

γ1 = {D1
2,D3

2,W3, pp2, c21, c23} C1,key2

– cert2, C2, flag1, flag3

γ3 = {D1
2,D3

2,W3, pp2, c21, c23} C3,key2

cert3

γ1 = {D1
3,D2

3,W1, pp3, c31, c32} C1,key3

γ2 = {D1
3,D2

3,W1, pp3, c31, c32} C2,key3

– cert3, C3, flag1, flag2

P1’s view at end of R2 = {C1,Y2
1,Y

3
1, C

dec
2 , Cdec

3 , flag2, flag3, O
dec
2 , Odec

3 ,key2,key3}
Additionally, P1 may receive as part of fair1 from P2 if P3 /∈ C2 (Similar message from P3 also):
ctβ2α = Enc

sk
β
α
(o23, o32) for sk0

α = X0
2(`+α) ⊕X1

3(`+α) ; sk1
α = X1

2(`+α) ⊕X0
3(`+α)(α ∈ [`]).

States of P1:
–st1: if decrypted ctβ2α or ctβ3α successfully for some α to retrieve o23, o32
–st2: If ((C1 = ∅) ∧ (flag2 = 0) ∧ (flag3 = 0)) (which implies Y2

1,Y
3
1 6= ⊥ and cert1 6= ∅)

–st3: If C1 6= ∅
–st4: If (flag2 = 1) ∨ (flag3 = 1)

Fig. 14: Schematic Diagram of fair protocol (Round 1 and 2)

– HYB3 : Same as HYB2, except the following:
- HYB3.1: When the execution results in P1 evaluating GCs during fair1

but results in abort, C2 is created as C′2 ← Sobv(1κ, C,X2 =

{em
α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]). The commitment c2 is later equiv-

54

Fig. 15: Schematic Diagram of Protocol fair (Round 3 wrt P1)

st1:

P1

P2

P3
y, o32

y, o23

st3 :

P1

(C1 = P3)

P2

P3
–

Odec
2

st2:

P1

P2

P3
Y1, cert1, O dec

3

Y1, cer
t1, O

dec
2

st4:

P1

(flag3 = 1)

P2

P3

z3 = Enckey
3 (O dec

3)

–

Output Computation:
– st1: Output y
– {st2, st3, st4}: Output y if y received from P2 or P3 with valid o13 or o12 respectively
– st2: Retrieve Odec

1 either directly or using z1 (with cert1 as the key) from P2.
If d← eOpen(epp3, C

dec
3 , Odec

1) is not ⊥, compute y ← De(Y3
1, d). (Similar steps wrt P3)

– st3: (Let C1 = P3) If received Y2 from P2, output y ← De(Y1
2, d). Else output ⊥

– st4: (Let flag3 = 1) If cert3 = key3 received from P3, update C1 = P2 and go to st3.
Else output ⊥.

ocated to C′2 using o2 computed via o2 ← Equiv(c2,C
′
2, t2). The commitment

to the decoding information is created for a dummy value. Since the encoding
information are committed in round 1 using committing commitments that can-
not be equivocated, we invoke Sobv using an X that corresponds to the correct
shares of P1 and it returns a fake GC (consistent with the labels in X) such that
indistinguishability holds. We note that most of the known garbling schemes
based on Yao and optimizations [Yao82, ZRE15, KS08] have simulators that
comply with the above.

- HYB3.2: When the execution results in P1 evaluating GCs during fair1
and output y, the GC is created as (C′2, d2) ← Sprv(1κ, C, y,X2 =

{em
α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]). The commitment c2 is later equiv-

ocated to C′2 using o2 computed via o2 ← Equiv(c2,C
′
2, t2). The commitment

cdec2 to the decoding information is created for a dummy value and later equiv-
ocated to d2 using od2 computed via od2 ← Equiv(cdec2 , d2, t2). The set of
ciphertexts ct and z1 (if) generated use d2 .

– HYB4 : Same as HYB2, except the following:
- HYB4.1: When the execution results in P1 evaluating GCs during fair1

but results in abort, C3 is created as C′3 ← Sobv(1κ, C,X3 =

55

Fig. 16: Description of Sfair

(a) Sfair during fair1, cert1, fair

P2

p22 = x23
p33 = x32

P ∗1
m22 = x21
m33 = x31P3

x12

x13

R1 f: Sample epp2, epp3 for eCom, having
trapdoor t2, t3. Choose m22 = x21
(sent during fair2), m33 = x31 (sent
during fair3), m23, m32 at random.
On behalf of Pi (i ∈ {2, 3}) com-
pute (Ci, ei, di) ← Gb(1κ, C)
using uniform randomness.
Send Di = (eppi, ppi, ci,
{cbiα}α∈[4`],b∈{0,1}, cdeci) to P ∗1

where ci, {cm
α
i2

iα , c
mαi3
i(`+α), c

0
i(2`+α),

c1i(2`+α), c
0
i(3`+α), c

1
i(3`+α)}α∈[`] be

computed as per the protocol. Let
cdeci and remaining {cbiα} commit
to dummy values. (For Naor-based
eNICOM, set ci, cdeci to the specific
commitment supporting equivocation)

R1 c: As per the protocol, compute and
sendW1 to P ∗1 on behalf of P3.

R1 f: Receive x12, x13 from P ∗1 on behalf
of P2, P3 respectively.

R1 F: Receive (pp1, c12, c13, o12) on be-
half of P2 and (pp1, c12, c13, o13) on
behalf of P3 from P ∗1 . Set Ci = {P1},
i ∈ {2, 3} if Open(ppi, c1i, o1i) 6=
x1i.

R2 f: If P1 6∈ C2, C3, run
C′i ← Sobv(1κ, C,Xi =

{em
α
i2

iα , e
mαi3
i(`+α), e

xα12
i(2`+α), e

xα13
i(3`+α)

}α∈[`]). Using trapdoor ti, compute
oi = Equiv(ci,C

′
i, ti). Send OK

message on behalf of P2, P3 as per
protocol using computed o2, o3.

R2 f: Else if P1 6∈ Ci, then act on behalf of
Pi as per the protocol (For Naor-based
eNICOM equivocate ci to Ci using ti.)

(b) Sfair during fair2, cert2, fair

P ∗1
p11 = x13
p33 = x31

P2

m11 = x12
m33 = x32P3

x21

x23

R1 f: Choose x21 at random and send to P ∗1 on
behalf of P2.

R1 F: Let p33 = x31 (sent during fair3).
R1 F: Sample pp2 to compute (c21, o21) ←

Com(pp2, x21). Send {pp2, c21, c23, o21}
to P ∗1 where c23 is dummy commitment.

R1 f: Compute and send D3 and the informa-
tion associated with D3 to P ∗1 on behalf of
P3 according to the protocol.

R1 f: Receive D1 and associated information
privately from P ∗1 on behalf of P3. Do all
the verifications as an honestP3 would per-
form for P1 and update C3.

R1 F: Add P1 to C3 if p11 6= x13 (received in
fair1).

R1 c: ReceiveW2 from P ∗1 on behalf of P2.
R1 c: Receive (s2,W2) from P ∗1 on behalf of

P3. Do all the verifications and update C3
as per the protocol.

R2 f: Send D3 (as computed on behalf of P3)
to P ∗1 on behalf of P2.

R2 f: Set flag1 = 1 and Y1
2 = ⊥ on behalf

of P2 if P1 ∈ C3 (equivalent to receiving
nOK from P3) or P1 /∈ C3 but P1 sends
something other than D1 (known to P2 as
simulator runs on behalf of P3)

R2 f: Set flag3 = 1 and Y3
2 = ⊥ on behalf

of P2 if P1 sends nOK or sends OK with
something other than D3 (known to P2 as
simulator runs on behalf of P3).

R2 f: If flag1 = flag3 = 0 wrt P2, set C2 = P1

if any of the decommitments (correspond-
ing to C3 or encoded inputs corresponding
to C1,C3) sent by P ∗1 opens to something
other than what was originally committed
(known on behalf of P3)

56

Fig. 17: Description of Sfair (contd.)

R2 F: Set flag1 = 1 on behalf of both
P2, P3 if either P1 ∈ C2 or P1 ∈ C3
or {pp1, c12, c13} received on behalf of
P2, P3 are not identical.

R2 F: Send ciphertext ct on dummy mes-
sage on behalf of Pi if P1 /∈ Ci (i ∈
{2, 3}).

R2 F: If P1 /∈ Ci, γi = {D1
1,D3

1,W2, pp1,
c12, c13} received from P1 on behalf of
Pi (i ∈ {2, 3}).

R2 c: If P1 /∈ C2, send o1,W1 (same as
computed on behalf of P3 in Round 1)
and (opening of) encoding of γ2 to P1

on behalf of P2 as per the protocol.
R2 c: If P1 /∈ C3, send (opening of)

encoding of γ3 to P1 on behalf of P3.

R2 F: Set C2 = P1 if m11 6= x12
R2 F: Send {pp2, c21, c23} (as sent on be-

half of P2) to P ∗1 on behalf of P3. Set
flag2 = 1 wrt P3 if nothing / other than
{pp2, c21, c23} received from P ∗1 .

R2 c: Set cert2 = ⊥ and flag1 = 1 on behalf
of P2 if either P1 ∈ C3 (equivalent to re-
ceiving nOK from P3) or C3 = ∅ but P ∗1
sends W2 different from one received on
behalf of P3 in Round 1.

R2 F: Else, set C2 = P1 if P1 sends
opening of encoded input (known on
behalf of P3) that opens to anything
other than the encoding of value γ1 =
{D1

2,D3
2,W3, (pp2, c21, c23)} sent on be-

half of P2 during fair1, fair3, cert3 and fair
respectively.

Sfair during Round 3:

R3 Suppose C2 = ∅, flag1 = flag3 = 0 wrt P2: If P1 sends encoded inputs corresponding
to mismatched input bit across C1,C3 during fair2 (known on behalf of P3), mark P2

as being in st1. Invoke Ffair with (sid, Input, x1) to obtain y where x1 = x12 ⊕ x13.
Send (y, o13) to P1 on behalf of P2. Similar steps are executed on behalf of P3 if
C3 = ∅, flag1 = flag2 = 0.

R3 For every input bit of P3, choose s bits uniformly at random, say b1, . . . bs. Using
key based on P3’s consistent input bα (α ∈ [s]) used in C1,C3 during fair2, try to
decrypt ciphertext ctβ1α for (β ∈ {0, 1}) received from P1 in Round 2. If the decryption
is successful and the openings retrieved are same as (o13, o31), mark P2 as being in
st1 and do the following: invoke Ffair with (sid, Input, x1) to obtain y where x1 =
x12 ⊕ x13. Send (y, o13) to P1 on behalf of P2. Similar steps are executed by the
simulator on behalf of P3

R3 If P2 or P3 is in st2, let x1 = x12⊕x13. Invoke Ffair with (sid, Input, x1) to obtain y.
R3 If P2 in st2, to retrieve decoding information odec3 : Run (C3, d

1
3) ← Spriv

(1κ, C, y,X = {em
α
i2

3α , e
mαi3
3(`+α), e

xα12
3(2`+α), e

xα13
3(3`+α)}α∈[`]). Equivocate the commit-

ment on decoding information in fair1 (cdec3) to get odec3 = Equiv(cdec3 , d13, t3). Send
(Y2, cert2, o

dec
3) to P ∗1 on behalf of P2. Here cert2 is set as encoding of 1 on output

wire of C2 during cert2 and Y2 is the encoding corresponding to output y of C1,C3

during fair2; both of which are known as simulator acts on behalf of P3.
R3 Similar steps as above if P3 is in st2.
R3 Invoke Ffair with (sid, Input, abort) if neither P2 nor P3 belong to {st1, st2}.
R3 Send dummy ciphertext z1 toP ∗1 on behalf ofPi, i ∈ {2, 3} ifPi in st4 with flag1 = 1.

{em
α
32

3α , e
mα33
3(`+α), e

xα12
3(2`+α), e

xα13
3(3`+α)}α∈[`]). The commitment c3 is later equiv-

57

ocated to C′3 using o3 computed via o3 ← Equiv(c3,C
′
3, t3). The commitment

to the decoding information is created for a dummy value.
- HYB4.2: When the execution results in P1 evaluating GCs during fair1

and output y, the GC is created as (C′3, d3) ← Sprv(1κ, C, y,X3 =

{em
α
32

3α , e
mα33
3(`+α), e

xα12
3(2`+α), e

xα13
3(3`+α)}α∈[`]). The commitment c3 is later equiv-

ocated to C′3 using o3 computed via o3 ← Equiv(c3,C
′
3, t3). The commitment

cdec3 to the decoding information is created for a dummy value and later equiv-
ocated to d3 using od3 computed via od3 ← Equiv(cdec3 , d3, t3). The set of
ciphertexts ct and z1 (if) generated uses d3.

– HYB5: Same as HYB4, except that during fair2, C2 is set to P1 if P2 receives o3 that
opens to a value other than the originally committed C3.

– HYB6: Same as HYB5, except that during fair3, C3 is set to P1 if P3 receives o2 that
opens to a value other than the originally committed C2.

– HYB7: Same as HYB6, except that during fair2, C2 is set to P1 if P2 accepts any
encoded input not consistent with C1,C3

– HYB8: Same as HYB7, except that during fair3, C3 is set to P1 if P3 accepts any
encoded input not consistent with C1,C2

– HYB9: Same as HYB8, except that when the execution does not result in P1 getting
access to the opening of commitment c23 (corresponding to x23) sent by P2 during
fair2, the commitment is replaced with commitment of dummy value.

– HYB10: Same as HYB9, except that when the execution does not result in P1 getting
access to the opening of commitment c32 (corresponding to x32) sent by P3 during
fair3, the commitment is replaced with commitment of dummy value.

– HYB11: Same as HYB10, except that when the execution fair1 does not result in
P1 getting encoded inputs corresponding to mismatched input bit across the two
garbled circuits corresponding to any garbler, the set of ct is replaced by encryption
of a dummy message.

– HYB12: Same as HYB11, except that during cert2, P2 (with flag1 = 0) adds P1 to
C2 if (opening of) encoded input sent by P1 corresponding to C2 is anything other
than the opening of the originally committed encoded information corresponding
to value γ = {D1

2,D3
2,W3, (pp2, c21, c23)} sent by P2 in Round 1.

– HYB13: Same as HYB12, except that during cert3, P3 (with flag2 = 0) adds P1 to
C3 if (opening of) encoded input sent by P1 corresponding to C3 is anything other
than the opening of the originally committed encoded information corresponding
to value γ = {D1

3,D2
3,W1, (pp3, c31, c32)} sent by P3 in Round 1.

– HYB14: Same as HYB13, except that during cert1, when P1’s evaluation of C1 does
not result in output 1, z1 (if) sent to P1 is replaced with encryption of dummy
message.

– HYB15: Same as HYB14, except that Y1
2,Y

3
2 is computed via De(Y1

2, d1) = y,
De(Y3

2, d3) = y, (where d1, d3 correspond to decoding information of C1,C3

during fair2) rather than Y1
2 = Ev(C1,X), Y3

2 = Ev(C3,X).
– HYB16: Same as HYB15, except that Y1

3,Y
2
3 is computed via De(Y1

3, d1) = y,
De(Y2

3, d2) = y (where d1, d2 correspond to decoding information of C1,C2 dur-
ing fair3) rather than Y1

3 = Ev(C1,X), Y2
3 = Ev(C2,X).

– HYB17: Same as HYB16, except that during cert2, if P2 gets access to Y2 ←
(C2,X) such that sDe(Y2) = 1, cert2 = Y2 is computed via De(Y2, d2) = 1

58

(where d2 corresponds to decoding information of C2 during cert2) rather than
Y2 = Ev(C2,X)

– HYB18: Same as HYB17, except that during cert3, if P3 gets access to Y3 ←
(C3,X) such that sDe(Y3) = 1, cert3 = Y3 is computed via De(Y3, d3) = 1
(where d3 corresponds to decoding information of C3 during cert3) rather than
Y3 = Ev(C3,X)

– HYB19: Same as HYB18, except that P2 sends (y, o13) to P1 if decryption of ct sent
by P1 during fair2 is successful (and includes openings of x13, x31 corresponding
to original commitments) using P3’s encoding corresponding to random input.

– HYB20: Same as HYB19, except that P3 sends (y, o12) to P1 if decryption of ct sent
by P1 during fair3 is successful (and includes openings of x12, x21 corresponding
to original commitments) using P2’s encoding corresponding to random input.

Since HYB20 := IDEALFfair,Sfair , we show that every two consecutive hybrids are
computationally indistinguishable which concludes the proof.
HYB0

c
≈ HYB1: The difference between the hybrids is that P2, P3 in fair1 use uniform

randomness in HYB1 rather than pseudorandomness as in HYB0. The indistinguishabil-
ity follows via reduction to the security of the PRG G.
HYB1

c
≈ HYB2: The difference between the hybrids is some of the commitments of

encoded inputs which will not be sent to P1 during fair1 are replaced with commitments
on dummy values. The indistinguishability between the hybrids follows from the hiding
property of NICOM.
HYB2

c
≈ HYB3.1: The difference between the hybrids is in the way (C2,X) is gener-

ated when the execution results in abort. In HYB2, (C2, e, d) ← Gb(1κ, C) is run,
which gives (C2,En(x, e)). In HYB3.1, it is generated as C′2 ← Sobv(1κ, C,X2 =

{em
α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]). The commitment to the garbled circuit is

later equivocated to C′2 using o2 computed via o2 ← Equiv(c2,C
′
2, t2). Addition-

ally, the commitment to the decoding information is created for a dummy value in
HYB3.1. The indistinguishability follows via reduction to the obliviousness of the gar-
bling scheme and the usual hiding property of commitment schemes which is implied
by the hiding property of eCom.
HYB2

c
≈ HYB3.2: The difference between the hybrids is in the way

(C2,X, d) is generated. In HYB2, (C2, e, d) ← Gb(1κ, C) is run, which gives
(C2,En(x, e), d). In HYB3.2, it is generated as (C′2, d

1
2) ← Sprv(1κ, C, y,X2 =

{em
α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]). The commitment to the garbled circuit is

later equivocated to C′2 using o2 computed via o2 ← Equiv(c2,C
′
2, t2). Additionally,

the commitment to the decoding information is created for a dummy value and later
equivocated to d12 using odec2 computed via odec2 ← Equiv(cdec2 , d12, t2). The indistin-
guishability follows via reduction to the privacy of the garbling scheme and the hiding
property of eCom.
HYB3

c
≈ HYB4: Similar argument as above with respect to C3.

HYB4
c
≈ HYB5: The difference between the hybrids is that in HYB4, P2 sets C2 = P1

if the o3 sent by P1 in fair2 output ⊥ while in HYB5, P2 sets C2 = P1 if o3 sent by
P1 in fair2 opens to any value other than C3. Since the commitment scheme eCom

59

is binding, in HYB4, P1 could have decommitted successfully to a different garbled
circuit than what was originally committed, only with negligible probability. Therefore,
the hybrids are indistinguishable.

HYB5
c
≈ HYB6: Similar argument as above with respect to P3 in fair3.

HYB6
c
≈ HYB7: The difference between the hybrids is that in HYB6, P2 sets C2 = P1 if

the encoded inputs sent by P1 in fair2 is inconsistent with D1, D3, while in HYB7 C2 is
set to P1 if P2 accepts any encoded input not consistent with C1,C3. It follows from
the biding property of NICOM that in HYB6, P1 could have sent an encoded input not
consistent with C1,C3 but consistent with D1, D3, only with negligible probability.
Therefore, the hybrids are indistinguishable.

HYB7
c
≈ HYB8: Similar argument as above with respect to P3 in fair3.

HYB8
c
≈ HYB9: The difference between the hybrids is that when the execution does not

result in P1 getting access to the opening of commitment c23 (corresponding to x23)
sent by P2, c23 corresponds to the actual input share x23 in HYB8 while it corresponds
to dummy value in HYB9. The indistinguishability follows from the hiding property of
NICOM.
HYB9

c
≈ HYB10: Similar argument as above with respect to commitment c32 sent by

P3.

HYB10
c
≈ HYB11: The difference between the hybrids is that when the execution fair1

does not result in P1 getting encoded inputs corresponding to mismatched input bits
of any garbler on two garbled circuits, in HYB10, the set of ct is the encryption of
a opening of input shares while in HYB11, it is replaced with encryption of dummy
message. Assuming the encryption key is unknown to P1 (holds except with negligible
probability due to privacy of garbling scheme), indistinguishability follows from the
security of the encryption scheme with special correctness.

HYB11
c
≈ HYB12: The difference between the hybrids is that while in HYB11, during

cert2, P2 adds P1 to C2 if opening of encoded input sent by P1 results in ⊥ or C2 eval-
uates to 0 revealing P1’s input being not equal to γ = {D1

2,D3
2,W3, pp2, c21, c23};

while in HYB12 P1 is added to C2 if he sends anything other than opening of
the originally committed encoded information of C2 corresponding to value γ =
{D1

2,D3
2,W3, pp2, c21, c23}. The indistinguishability follows from the binding of

NICOM and the correctness of the privacy-free garbling scheme (used during cert2).

HYB12
c
≈ HYB13: Similar argument as above with respect to P3 during cert3.

HYB13
c
≈ HYB14: The difference between the hybrids is that in HYB12, z1 is set as

encryption of the decoding information of fair1 while in HYB13, z1 is replaced with
encryption of a dummy message when P1’s evaluation of C1 during cert1 does not
lead to output 1. Assuming the encryption key is unknown to P1 (holds except with
negligible probability due to authenticity of privacy-free garbling scheme used in cert1),
indistinguishability follows from the security of the encryption scheme.

HYB14
c
≈ HYB15: The difference between the hybrids is that in HYB14, P2 computes

Y2 = (Y1
2,Y

3
2) via Ev(C1,X), Y3

2 = Ev(C3,X), while in HYB15, Y1
2,Y

3
2 is com-

puted such that De(Y1
2, d1) = y, De(Y3

2, d3) = y (where d1, d3 is the decoding infor-
mation corresponding to C1,C3 during fair2). Due to the correctness of the garbling

60

scheme, the equivalence of Y1
2,Y

3
2 computed via Ev(C1,X), Ev(C3,X) or such that

De(Y1
2, d1) = y, De(Y3

2, d3) = y holds.
HYB15

c
≈ HYB16: Similar argument as above with respect to Y3 computed by P3 during

fair3.
HYB16

c
≈ HYB17: The difference between the hybrids is that in HYB16, if P2 obtains

Y2 ← Ev(C2,X) such that sDe(Y) = 1, then P2 sets cert2 = Y2 while in HYB15,
in this case cert2 is set to Y2 computed such that De(Y2, d2) = 1 (where d2 is the
decoding information corresponding to C2 during cert2). Due to the correctness of the
privacy-free garbling scheme, the equivalence of Y2 computed via Ev(C2,X) or such
that De(Y2, d2) = y holds.
HYB17

c
≈ HYB18: Similar argument as above with respect to cert3 computed by P3

during cert3.
HYB18

c
≈ HYB19: The difference between the hybrids is that in HYB18, P2 sends (y, o13)

to P1 if decryption of ct sent by P1 during fair2 is successful using keys based on P3’s
encoding of actual input, whereas in HYB19, P2 sends (y, o13) to P1 if decryption of
ct sent by P1 during fair2 is successful using keys based on P3’s encoding of random
input. The indistinguishability between the hybrids follows from the following claim:
Consider single bit input for simplicity. For any two different inputs x and x′ of P3,
the difference between the probability that P2 sends (y, o13) to P1 when P3’s input is
x and when P3’s input is x′ is at most 2−s+1. The argument can be divided into three
cases (similar to [LP07]). (1) Suppose for some α ∈ [s], P1 replaces both ciphertexts
ct01α, ct11α : one based on consistent input 0 of P3 and other based on consistent input 1
of P3 (say, sk0α = X0

1(s+α) ⊕X0
3(s+α) and sk1α = X1

1(s+α) ⊕X1
3(s+α)). In this case,

P2 would be able to decrypt the ciphertext successfully regardless of P3’s input with
probability 1 and would send (y, o13) to P2. (2) Suppose P1 replaces exactly one of
the two ciphertexts with consistent input corresponding to 1 ≤ j < s. Since the values
assigned (in encoding) by P3 to any proper subset of the s bits are independent of P3’s
actual input, P2 would be able to decrypt the ciphertext successfully with probability
1− 2−j regardless of the actual value of its original input. (3) Suppose P1 replaces one
ciphertext based on consistent input for each of the α ∈ [s] (say all based on consistent
value ‘1’). Then if x had encoding with any one such value (‘1’ in the example), the ci-
phertext would be decrypted successfully with probability 1, whereas decryption would
be successful with probability 1 − 2−s+1 if x′ had the other value (in the example, P2

will be unable to decrypt if x′ = 0 and the encoding of x′ = 0 was chosen as x′α = 0
for all α ∈ [s] (where x′ = ⊕sα=1xα) which occurs with probability 2−s+1).
HYB19

c
≈ HYB20: Similar argument as above with respect to ct received by P3 during

fair3.

E Proof of Security for Protocol ua

In this section, we present the proof of security of ua relative to the ideal functionality
for unanimous abort (Figure 11) shown in Appendix B. For clarity, we assume without
loss of generality that P1 is corrupt (denoted as P ∗1) and describe the simulator Sua.
Since the roles of the parties are symmetric in ua, similar proof would hold in case of

61

corrupt P2, P3 as well. The simulator plays the role of the honest parties P2, P3 and
simulates each step of the protocol ua.

We divide the description of Sua as follows: We describe Sua during ua1 where cor-
rupt P ∗1 is the evaluator and during ua2 when corrupt P ∗1 acts as a garbler. The steps
corresponding to ua3, would follow symmetrically from that described corresponding
to ua2. The simulator Sua appears in Figure 18-19 with R1/R2 indicating simulation
for round 1 and 2 respectively and a/A denoting the steps corresponding to subprotocol
uai, ua respectively. When simulating ua1, the commitments for GC and encoding in-
formation need to be simulated and sent in Round 1 itself, while the privacy simulator
Sprv can only be invoked on noting the adversary’s behaviour in Round 1 that decides
what input it commits and whether it obtains output or ⊥. Using equivocality of the
commitment of GC, we can equivocate the GC as returned by the simulator. But since
commitments on the encoding information are committing and the simulator didn’t have
access to X during simulation of Round 1, the encoded input X returned by Sprv cannot
be explained. So we use a slightly modified version of Sprv which takes an encoded
input (correspond to what will be opened to corrupt P1) as parameter and returns just
the fake GC compatible with it. Yao’s privacy simulator can be made to work as above
for any encoded input and the indistinguishability will hold with respect to the fake GC
and given encoded input.

We now argue that IDEALFua,Sua
c
≈ REALua,A, when A corrupts P1. The views are

shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALua,A.
– HYB1: Same as HYB0, except that P2, P3 in ua1 use uniform randomness rather

than pseudo-randomness for the garbled circuit construction.
– HYB2: Same as HYB1, except that some of the commitments of encoded in-

puts which will not be sent to P1 during ua1 are replaced with commitment
on dummy values. Specifically, these are corresponding to indices not equal to
m22,m23, r2, r3, z2, z3 for C2 and not equal to m32,m33, r2, r3, z2, z3 for C3.

– HYB3 : Same as HYB2, except that when the execution results in P1 evaluat-
ing GCs during ua1, the GC C2 is created as (C′2, d2) ← Sprv(1κ, C, y,X2 =

{em
α
22

2α , e
mα23
2(`+α), e

rα2
2(2`+α), e

rα3
2(3`+α), e

zα2
2(4`+α), e

zα3
2(5`+α)}α∈[`]). The commitment c2

is later equivocated to C′2 using o2 computed via o2 ← Equiv(c2,C
′
2, t2). The set

of ciphertexts ct generated uses d2 in their keys.
– HYB4 : Same as HYB3, except that when the execution results in P1 evaluat-

ing GCs during ua1, the GC C3 is created as (C′3, d3) ← Sprv(1κ, C, y,X3 =

{em
α
32

3α , e
mα33
3(`+α), e

rα2
3(2`+α), e

rα3
3(3`+α), e

zα2
3(4`+α), e

zα3
3(5`+α)}α∈[`]). The commitment c3

is later equivocated to C′3 using o3 computed via o3 ← Equiv(c3,C
′
3, t3). The set

of ciphertexts ct generated uses d3 in their keys.
– HYB5: Same as HYB4, except that during ua2, flag2 is set to 1 ifW1 broadcast by
P1 has anything other than (opening of) encoded input corresponding to z1 in C1.

– HYB6: Same as HYB5, except that during ua3, flag3 is set to 1 ifW1 broadcast by
P1 has anything other than (opening of) encoded input corresponding to z1 in C1.

– HYB7: Same as HYB6, except that when the execution does not result in P1 getting
access to the opening of commitment c23 (corresponding to x23) broadcast by P2

during ua2, the commitment is replaced with commitment of dummy value.

62

Fig. 18: Description of Sua

(a) Sua during ua1, ua

P2

p22 = x23
p33 = x32

P ∗1
m22 = x21
m33 = x31P3

x12

x13

R1 a: Receive (x12, x13) privately from P ∗1 on the
behalf of P2, P3.

R1 A: Receive (pp1, c12, c13) via broadcast and
o12, o13 privately from P ∗1 on behalf of
P2, P3. Set flag1 = 1 on behalf of Pi if
Open(c1i, o1i) 6= x1i for i ∈ {2, 3}.

R1 a: Sample epp2, epp3 for eCom, having trap-
door t2, t3. Choose m22 = x21 (sent during
ua2), m33 = x31 (sent during ua3), m23, m32,
r2, r3 at random. On behalf of Pi (i ∈ {2, 3})
compute (Ci, ei, di) ← Gb(1κ, C) using uni-
form randomness. Broadcast Di = (ppi, eppi,

ci, {cbiα}α∈[6`],b∈{0,1}) where ci, {cm
α
i2

iα ,

c
mαi3
i(`+α), c

rα2
i(2`+α), c

rα3
i(3`+α), c

0
i(4`+α), c

1
i(4`+α),

c0i(5`+α), c
1
i(5`+α)}α∈[`] be computed as per

the protocol. (If Naor-based eNICOM is used,
ci should be set to the specific commitment
that suppports equivocation as per eppi.) Let
the remaining {cbiα} commit to dummy values.

R1 a: Send
(
{om

α
22

2α , o
rα2
2(2`+α)}α∈[`],m22, r2

)
to P ∗1 on behalf of P2. Send(
{om

α
33

3(`+α), o
rα3
3(3`+α)}α∈[`],m33, r3

)
pri-

vately to P ∗1 on behalf of P3.
R2 a: If flag1 = 1 for either P2 or P3, invoke Fua

with (sid, Input, abort) on behalf of P ∗1 .
R2 a: Broadcast abort on behalf ofPi (i ∈ {2, 3})

if flag1 = 1 on behalf of Pi.

(b) Sua during ua2, ua

P ∗1
p11 = x13
p33 = x31

P2

m11 = x12
m33 = x32P3

x21

x23

R1 A:Set p33 = x31 (sent during ua3)
R1 a: Compute and broadcast
D3 (using p33) on behalf of
P3 according to the proto-
col. Send {s3, p31, p33, o3, {
ob3α}α∈[6`],b∈{0,1}} to P ∗1 .

R1 a: Choose x21 at random and send
to P ∗1 on behalf of P2.

R1 A: Sample pp2 to compute
(c21, o21) ← Com(pp2, x21).
Broadcast {pp2, c21, c23} where
c23 is commitment of dummy
value and send o21 to P ∗1 on
behalf of P2.

R1 a: Receive {s1, p11, p13, o1,
{ob1α}α∈[6`],b∈{0,1}} from P ∗1
on behalf of P3. Do all the ver-
ifications as an honest P3 would
perform for P1 and update flag2

with respect to (wrt) P3.
R1 A: Set flag2 = 1 on behalf of P3 if

p11 6= x13 (x13 received in ua1)
R1 a: Set flag2 = 1 on behalf of P2 if

P ∗1 sends encoded inputs inconsis-
tent with D1

R1 A: Set flag2 = 1 on behalf of P2 if
Open(c12, o12) 6= x12 or m11 6=
x12 (x12 received during ua1).

– HYB8: Same as HYB7, except that when the execution does not result in P1 getting
access to the opening of commitment c32 (corresponding to x32) broadcast by P3

during ua3, the commitment is replaced with commitment of dummy value.
– HYB9: Same as HYB8, except that when the execution ua1 does not result in P1

getting conflicting output on two garbled circuits, the set of ct is replaced by en-
cryption of a dummy message.

63

Fig. 19: Description of Sua

(a) Sua during ua1, ua (Contd.)

R2 a: If flag1 = 0 wrt Pi for exactly one i ∈ {2, 3},
then act on behalf of Pi as per the protocol open-
ing the garbled circuit (equivocate ci to Ci in case
of Naor-based eNICOM) and encoded input as per
m23 or m32 accordingly chosen as above. Broad-
castWi using zi = ri ⊕ x1i as per the protocol.

R2 a: If flag1 = 0 for both P2 and P3, invoke
Fua with (sid, Input, x1) on behalf of P ∗1 to
obtain output y, where x1 = x12 ⊕ x13.
Let z2 = r2 ⊕ x12 and z3 = r3 ⊕ x13.
For (i ∈ {2, 3}), run (C′i,Xi, di) ←
Sprv(1κ, C, y, {em

α
i2

iα , e
mαi3
i(`+α), e

rα2
i(2`+α), e

rα3
i(3`+α)

e
zα2
i(4`+α), e

zα3
i(5`+α)}α∈[`]). Using trapdoor ti,

compute oi = Equiv(ci,C
′
i, ti). Send OK message

privately to P ∗1 on behalf of P2, P3 as per the pro-
tocol using computed o2, o3. Broadcast W2,W3

on behalf of P2, P3 as per protocol.
R2 A: If flag1 6= 1 wrt Pi, send set of ct on behalf of

Pi (i ∈ {2, 3}) using a dummy message.
R2 a: Set flag1 = 1 on behalf of both P2, P3 if either

(a) abort was sent or received via broadcast in
Round 2 (b) P1 broadcasts z2 6= x12 ⊕ r2 or
z3 6= x13 ⊕ r3

(b) Sua during ua2, ua (Contd.)

R2 a: On behalf of P3: If flag2 =
0 wrt P3, choose random
z3 and broadcast W3 as per
the protocol. Else broadcast
abort.

R2 a: On behalf of P2: If flag2 =
0 wrt P2, broadcast z1, z3
where z1 is computed as per
the protocol as z1 = x21 ⊕ r1,
where x21 sent to P ∗1 in Round
1 and r1 received from P ∗1 . z3
is either same as chosen above
(if flag2 = 0 wrt P3) or ran-
dom (if flag2 = 1 wrt P3).
Else broadcast abort.

R2 a: Set flag2 = 0 on behalf
of both P2, P3 if (a) abort

was sent or received via
broadcast in Round 2 (b) P ∗1
broadcasts anything other
than (z1, o

zα1
1(4`+α)) (oz

α
1

1(4`+α)

known on behalf of P3) where
z1 = x21 ⊕ r1 (r1, x21 known
to P2)

Sua after ua1, ua2, ua3: If flagi = 1 (on behalf of both P2, P3) for any i ∈ [3], invoke Fua

with abort on behalf of P ∗1 . Else invoke Fua with continue on behalf of P ∗1 .

Since HYB9 := IDEALFua,Sua , we show that every two consecutive hybrids are com-
putationally indistinguishable which concludes the proof.

HYB0
c
≈ HYB1: The difference between the hybrids is that P2, P3 in ua1 use uniform

randomness in HYB1 rather than pseudorandomness as in HYB0. The indistinguishabil-
ity follows via reduction to the security of the PRG G.

HYB1
c
≈ HYB2: The difference between the hybrids is some of the commitments of

encoded inputs which will not be sent to P1 during ua1 are replaced with commit-
ment on dummy messages. The indistinguishability follows from the hiding property of
NICOM.
HYB2

c
≈ HYB3: The difference between the hybrids is in the way (C2,X, d2)

is generated. In HYB2, (C2, e2, d2) ← Gb(1κ, C) is run, which gives

64

(C2,En(x, e), d2). In HYB3, it is generated as (C′2, d2) ← Sprv(1κ, C, y,X2 =

{em
α
22

2α , e
mα23
2(`+α), e

rα2
2(2`+α), e

rα3
2(3`+α), e

zα2
2(4`+α), e

zα3
2(5`+α)}α∈[`]). The commitment to the

garbled circuit is later equivocated to C′2 using o2 computed via o2 ←
Equiv(c2,C

′
2, t2). The indistinguishability follows via reduction to the privacy of the

garbling scheme and the hiding property of eCom.
HYB3

c
≈ HYB4: Similar argument as above with respect to C3.

HYB4
c
≈ HYB5: The difference between the hybrids is that in HYB4, flag2 is set to 1

if W1 broadcast by P1 during ua2 has (opening of) encoded input that is inconsistent
with commitment corresponding to z1 in D1, while in HYB5, flag2 is set to 1 if W1

broadcast by P1 has (opening of) encoded input anything other than encoding of z1
corresponding to C1. It follows from the binding property of NICOM that P1 could
have sent an encoded input not consistent with C1 but consistent with D1, only with
negligible probability. Therefore, the hybrids are indistinguishable.
HYB5

c
≈ HYB6: Similar argument as above with respect toW1 broadcast by P1 during

ua3.
HYB6

c
≈ HYB7: The difference between the hybrids is that when the execution does

not result in P1 getting access to the opening of commitment c23 (corresponding to
x23) broadcast by P2 during ua2, c23 corresponds to the actual input share x23 in HYB8

while it corresponds to dummy value in HYB9. The indistinguishability follows from
the hiding property of NICOM Com.
HYB7

c
≈ HYB8: Similar argument as above with respect to commitment c32 broadcast

by P3 during ua3.
HYB8

c
≈ HYB9: The difference between the hybrids is that when the execution ua1 does

not result in P1 getting conflicting output on two garbled circuits, in HYB8, the set of
ct is the encryption of opening of shares of input while in HYB9, it is replaced with
encryption of dummy message. Assuming the encryption key is unknown to P1 (holds
except with negligible probability due to authenticity), indistinguishability follows from
the CPA security of the encryption scheme.

F Proof of Security for Protocol god

In this section, we present the proof of security of god relative to the ideal functionality
for guaranteed output delivery shown in Appendix B. For better clarity, we assume
without loss of generality that P1 is corrupt (denoted as P ∗1) and describe the simulator
Sgod. Since the roles of the parties are symmetric in god, similar proof would hold in
case of corrupt P2, P3 as well. The simulator plays the role of the honest parties P2, P3

and simulates each step of the protocol god.
Similar to Sua, we divide the description of Sgod as follows: We describe Sgod dur-

ing god1 where corrupt P ∗1 is the evaluator and during god2 when corrupt P ∗1 acts
as a garbler. The steps corresponding to god3, would follow symmetrically from that
described corresponding to god2. We then describe the steps of the simulator Sgod cor-
responding to the third round. In the protocol god, the behavior of corrupt P1 in Round
1, 2 determines his committed input. Hence, the privacy simulator can only be invoked
earliest after the simulation of the first round. Similar to Sua, since the commitments on

65

encoding information is sent in the first round itself, we use a modified version of the
privacy simulator of the garbling scheme which additionally takes an encoded input as
parameter (see Section E). The simulator Sgod appears in Figure 20-21 with R1/R2/R3
indicating simulation for round 1, 2 and 3 and and g/G denoting the steps corresponding
to subprotocol godi, god respectively.

We now argue that IDEALFgod,Sgod
c
≈ REALgod,A, when A corrupts P1. The views

are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALgod,A.
– HYB1: Same as HYB0, except that P2, P3 in god1 use uniform randomness rather

than pseudo-randomness for the garbled circuit construction.
– HYB2: Same as HYB1, except that some of the commitments that will not be opened

by P1 during god1 are replaced with commitment on dummy values. Specifically,
these are corresponding to indices not equal to m22,m23, x12, x13 for C2 and not
equal to m32,m33, x12, x13 for C3.

– HYB3 : Same as HYB2, except that when the execution results in P1 evaluat-
ing GCs during god1, the GC C2 is created as (C′2, d2) ← Sprv(1κ, C, y,X2 =

{em
α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]). The commitment c2 is later equivocated

to C′2 using o2 computed via o2 ← Equiv(c2,C
′
2, t2). The set of ciphertexts ct

generated uses d2 in their keys.
– HYB4 : Same as HYB3, except that when the execution results in P1 evaluat-

ing GCs during god1, the GC C3 is created as (C′3, d3) ← Sprv(1κ, C, y,X3 =

{em
α
32

3α , e
mα33
3(`+α), e

xα12
3(2`+α), e

xα13
3(3`+α)}α∈[`]). The commitment c3 is later equivocated

to C′3 using o3 computed via o3 ← Equiv(c3,C
′
3, t3). The set of ciphertexts ct

generated uses d3 in their keys.
– HYB5: Same as HYB4, except that during god2, C2 is set to P1 if P2 receives o3 that

opens to a value other than the originally committed C3.
– HYB6: Same as HYB5, except that during god3, C3 is set to P1 if P3 receives o2 that

opens to a value other than the originally committed C2.
– HYB7: Same as HYB6, except that during god2, C2 is set to P1 if P2 accepts any

encoded input not consistent with C1,C3

– HYB8: Same as HYB7, except that during god3, C3 is set to P1 if P3 accepts any
encoded input not consistent with C1,C2

– HYB9: Same as HYB8, except that when the execution does not result in P1 getting
access to the opening of commitment c23 (corresponding to x23) broadcast by P2

during god2, the commitment is replaced with commitment of dummy value.
– HYB10: Same as HYB9, except that when the execution does not result in P1 getting

access to the opening of commitment c32 (corresponding to x32) broadcast by P3

during god3, the commitment is replaced with commitment of dummy value.
– HYB11: Same as HYB10, except that when the execution god1 does not result in
P1 getting conflicting output on two garbled circuits, the set of ct is replaced by
encryption of a dummy message.

Since HYB11 := IDEALFgod,Sgod , we show that every two consecutive hybrids are
computationally indistinguishable which concludes the proof.

66

Fig. 20: Description of Sgod

(a) Sgod during god1, god

P2

p22 = x23
p33 = x32

P ∗1
m22 = x21
m33 = x31P3

x12

x13

R1 g: Receive x12, x13 from P ∗1 on behalf of P2, P3.
R1 G: Receive (pp1, c12, c13) via broadcast and

(o12, o13) privately from P ∗1 on behalf of P2, P3.
Set Ci = {P1} if Open(c1i, o1i) 6= x1i for
i ∈ {2, 3}

R1 g: Sample epp2, epp3 for eCom, having trapdoor
t2, t3. Choose m22 = x21 (sent during god2),
m33 = x31 (sent during god3), m23, m32

at random. On behalf of Pi (i ∈ {2, 3})
compute (Ci, ei, di) ← Gb(1κ, C) us-
ing uniform randomness. Broadcast Di =
(eppi, ppi, ci, {cbiα}α∈[4`],b∈{0,1}) where ci,

{cm
α
i2

iα , c
mαi3
i(`+α), c

0
i(2`+α), c

1
i(2`+α), c

0
i(3`+α),

c1i(3`+α)}α∈[`] be computed as as per the
protocol. Let the remaining {cbiα} commit to
dummy values. (For Naor-based eNICOM, ci
set to the specific commitment that suppports
equivocation)

R2 g: If P1 6∈ C2, C3, invoke Fgod with
(sid, Input, x1) on behalf of P ∗1 to obtain out-
put y, where x1 = x12 ⊕ x13. For (i ∈
{2, 3}), run (C′i, di) ← Sprv(1κ, C, y,Xi =

{em
α
i2

iα , e
mαi3
i(`+α), e

xα12
i(2`+α), e

xα13
i(3`+α)}α∈[`]). Using

trapdoor ti, compute oi = Equiv(ci,C
′
i, ti).

Send OK msg on behalf of P2, P3 as per the pro-
tocol using computed o2, o3.

R2 g: Else if P1 6∈ Ci for i ∈ {2, 3}, act on behalf of
Pi as per the protocol opening the garbled circuit
(equivocate ci to Ci in case of Naor-based eNI-
COM) and encoded input as per m23 and m32

R2 g: If P1 /∈ Ci (i ∈ {2, 3}), send set of ct on
behalf of Pi using a dummy message.

(b) Sgod during god2, god

P ∗1
p11 = x13
p33 = x31

P2

m11 = x12
m33 = x32P3

x21

x23

R1 G: Set p33 = x31 (sent during
god3) on behalf of P3.

R1 g: Compute and broadcast D3

(using p33) on behalf of P3 and
send private information to P ∗1
as per protocol

R1 G: Compute (c21, o21) ←
Com(pp2, x21) with ran-
domly chosen x21. Broadcast
{pp2, c21, c23} where c23 is
commitment of dummy value

R1 g: Send {x21, o21} to P ∗1 on be-
half of P2.

R1 g: Do all the verifications wrtD1

as an honest P3 would perform
for P1 and update C3.

R1 G: Add P1 to C2 if m11 6= x12.
R2 g: Add P1 to C2 if any of the

openings sent by P1 (for C3

or encoded inputs) is anything
other than originally committed
(known on behalf of P3).

R2 g: If P1 /∈ C2 and P1 ∈ C3:
Extract P1’s input x1 if commit-
ted: (a) either on clear with nOK
(b) or in encoded form as x1 =
m31 ⊕ p31. Invoke Fgod with
(sid, Input, x1) on behalf of P ∗1
to obtain output y. Else, (P1’s in-
put not committed) invoke Fgod

with (sid, Input, x1) on behalf of
P ∗1 to obtain output y for default
x1.

HYB0
c
≈ HYB1: The difference between the hybrids is that P2, P3 in god1 use uniform

randomness in HYB1 rather than pseudorandomness as in HYB0. The indistinguishabil-
ity follows via reduction to the security of the PRG G.

67

Fig. 21: Description of Sgod (contd.)

Sgod during R3: If P1 ∈ C2, C3 at the end of round 1, invoke Fgod with (sid, Input, x1)
on behalf of P ∗1 to obtain y for a default x1. Send y to P ∗1 on behalf of both P2 and P3 if
P1 ∈ C2, C3 in the end of round one. Send y to P ∗1 on behalf of only P2 (P3) if P1 ∈ C3 (C2)
in the end of round one.

HYB1
c
≈ HYB2: The difference between the hybrids is some of the commitments that

will not be opened byP1 during god1 are replaced with commitments on dummy values.
The indistinguishability follows from the hiding property of the commitment scheme.

HYB2
c
≈ HYB3: The difference between the hybrids is in the way (C2,X, d2)

is generated. In HYB2, (C2, e2, d2) ← Gb(1κ, C) is run, which gives
(C2,En(x, e), d2). In HYB3, it is generated as (C′2, d2) ← Sprv(1κ, C, y,X2 =

{em
α
22

2α , e
mα23
2(`+α), e

xα12
2(2`+α), e

xα13
2(3`+α)}α∈[`]). The commitment to the garbled circuit is

later equivocated to C′2 using o2 computed via o2 ← Equiv(c2,C
′
2, t2). The indistin-

guishability follows via reduction to the privacy of the garbling scheme and the hiding
property of eCom.

HYB3
c
≈ HYB4: Similar argument as above with respect to C3.

HYB4
c
≈ HYB5: The difference between the hybrids is that in HYB4, P2 sets C2 = P1 if

the o3 sent by P1 in god2 output ⊥ while in HYB5, P2 sets C2 = P1 if o3 sent by P1 in
god2 opens to any value other than C3. Since the commitment scheme eCom is binding
and epp was chosen uniformly at random by P3, in HYB4, P1 could have decommitted
successfully to a different garbled circuit than what was originally committed, only with
negligible probability. Therefore, the hybrids are indistinguishable.

HYB5
c
≈ HYB6: Similar argument as above with respect to P3 in god3.

HYB6
c
≈ HYB7: The difference between the hybrids is that in HYB6, P2 sets C2 = P1 if

opening of commitment on the encoded inputs sent by P1 in god2 results in ⊥ while in
HYB7, C2 is set to P1 if P2 accepts the opening of any commitment to a value other than
what was originally committed. The indistinguishability between the hybrids follows
from the binding property of NICOM.

HYB7
c
≈ HYB8: Similar argument as above with respect to P3 in god3.

HYB8
c
≈ HYB9: The difference between the hybrids is that when the execution does not

result in P1 getting access to the opening of commitment c23 (corresponding to x23)
broadcast by P2 during god2, c23 corresponds to the actual input share x23 in HYB8

while it corresponds to dummy value in HYB9. The indistinguishability follows from
the hiding property of Com.

HYB9
c
≈ HYB10: Similar argument as above with respect to commitment c32 broadcast

by P3 during god3.

HYB10
c
≈ HYB11: The difference between the hybrids is that when the execution god1

does not result in P1 getting conflicting output on two garbled circuits, in HYB10, the set

68

of ct is the encryption of an input and a share of input while in HYB11, it is replaced with
encryption of dummy message. Assuming the encryption key is unknown to P1 (holds
except with negligible probability due to authenticity), indistinguishability follows from
the CPA security of the encryption scheme.

G Authenticated Conditional Disclosure of Secret

The subprotocol certi (Figure 2) used in our protocol fair is reminiscent of the notion
of ‘conditional disclosure of secrets (CDS)’ which was first introduced in [GIKM00].
Informally, the problem of conditional disclosure of secrets involves two parties Alice
and Bob, who hold inputs x and y respectively and wish to release a common secret s
to Carol (who knows both x and y) if only if the input (x, y) satisfies some predefined
predicate f . The model allows Alice and Bob to have access to shared random string
(hidden from Carol) and the only communication allowed is a single unidirectional mes-
sage sent from each player (Alice and Bob) to Carol. Traditionally, CDS involves two
properties, namely correctness (if f(x, y) is true, then Carol is always able to recon-
struct s from her input and the messages she receives) and privacy (if f(x, y) is false,
Carol obtains no information about the secret s). Formally,

Definition 8 (Conditional Disclosure of Secret). [AARV17] Let f : X × Y → {0, 1}
be a predicate. Let F1 : X × S ×R → T1 and F2 : Y × S ×R → T2 be deterministic
encoding algorithms, where S is the secret domain. Then, the pair (F1, F2) is a CDS
scheme for f if the function F (x, y, s, r) = (F1(x, s, r), F2(y, s, r)) that corresponds
to the joint computation of F1 and F2 on a common s and r, satisfies the following:

– δ-correctness: There exists a deterministic algorithm Dec, called a decoder, such
that for every 1-input (x, y) of f and any secret s ∈ S, the following holds:
Prr←R[Dec(x, y, F (x, y, s, r)) 6= s] ≤ δ

– ε-privacy: There exists a simulator S such that for every 0-input (x, y) of f and any
secret s ∈ S, it holds that |Pr[D(S(x, y) = 1)] − Pr[D(F (x, y, s, r)) = 1]| ≤
ε for every distinguisher D. (S, D assumed to be poly-time or computationally
unbounded depending on computational / information-theoretic setting).

Interestingly, we find that the functionality realized by subprotocol certi subsumes
the above properties under computational variant adapted to tolerate active corruption
of single party and gives some stronger guarantees. We thus formally define a variant
of CDS known as ‘Authenticated Conditional Disclosure of Secret’ below and show
realization of the same by certi.

Definition 9 (Authenticated Conditional Disclosure of Secret). Let A, B denote two
parties holding inputs x ∈ X and y ∈ Y respectively and having access to common
secret s ∈ S and C denote an external party. We assume a PPT adversary A who can
actively corrupt at most 1 party among A, B and C. An authenticated CDS protocol is
secure against A if the following properties hold:

– δ-correctness holds for honest A, B, and C where δ = negl(κ).
– ε-privacy holds against A corrupt C, where ε = negl(κ).

69

– Authenticity: For 1-input (x, y) of f and any secret s, Dec may result in ⊥ when
either A or B is corrupt, in which case C either identifies a corrupt party or a pair
of parties in conflict that includes the corrupt party.

Our certi gives an authenticated CDS as follows. The garblers Pj , Pk take the role
of A and B and the evaluator takes the role of C. The common randomness r is the
seed for the PRG used for generating the entire randomness for GC generation etc. The
secret s is the key corresponding to 1 in the circuit. The predicate is the circuit that
we garble in certi. While for the purpose of our 3-round fair protocol, the predicate is
equality checking, in theory, we can garble any predicate. F1 and F2 are the codes of
Pj and Pk respectively. Dec is the code that Pi executes. The correctness and privacy
follow from the correctness and authenticity of the garbling scheme. The authenticity
follows from the fact that Pi either receives the correct secret or detects a conflict or
corrupt.

70

