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Abstract. We propose definitions and constructions of authenticated encryption (AE) schemes that offer security
guarantees even in the presence of side-channel leakages and nonce misuse. This is part of an important ongoing effort
to make AE as robust as possible, while preserving appealing efficiency properties. In order to achieve this efficiency, we
aim at modes of operation that support leveled implementations such that the encryption and decryption operations
require the use of a small constant number of evaluations of an expensive and heavily protected component, while
the bulk of the computation can be performed by cheap and weakly protected blocks.
Our definitions offer various insights on the effect of leakages in the security landscape. In particular, we show that,
in contrast with the black-box setting, leaking variants of INT-CTXT and IND-CPA security do not imply a leaking
variant IND-CCA security, and that leaking variants of INT-PTXT and IND-CCA do not imply a leaking variant of
INT-CTXT. Eventually, we propose FEMALE, a new mode of operation that satisfies our security definitions and
supports efficient leveled implementations, and AEDT, another efficient mode of operation that offers the strongest
form of misuse resistance that can be achieved in the presence of leakages, while not being fully misuse resistant in
the black-box setting.

1 Introduction

1.1 Authenticated Encryption

Authenticated encryption (AE) has become the de-facto standard primitive for the protection of secure com-
munications, by offering a robust and efficient alternative to the combination of encryption and MACs, a
combination that is challenging enough to have been the source of security issues in numerous high-profile
systems [1,13,31]. This effort towards robustness has been intensely pursued and, as a result, a number of
strengthened requirements for AE schemes have been proposed.

A first focus has been on reducing functional requirements, in order to protect users from their failure to
provide appropriate inputs to the system. The typical requirement of using a random IVs has been lowered
to the requirement of providing unique nonces. Further efforts have then been made to reduce the impact of
a repeated nonce, by requiring that such a repetition only makes it possible to recognize the repetition of a
message, which is the strict minimal consequence. These considerations led Rogaway and Shrimpton to define
the central notion of misuse-resistant nonce-based authenticated encryption [35], which goes even one step
further, by requiring ciphertexts to be indistinguishable of random strings. An encryption scheme satisfying
this notion of misuse resistance is extremely appealing, as it is going as far as possible in protecting users from
their own mistakes or from devices offering poor sources of randomness.

A second line of efforts then came, aiming at also protecting from weaknesses that implementers could
introduce in the scheme, by creating observable behaviors that are not part of the AE scheme specification.

One type of implementation weakness comes from the decryption of invalid ciphertexts [10,3,21,28,4]. While
security models usually assume that the decryption of an invalid ciphertext returns an error signal, the reality is
often different, and some implementations return different messages depending on the step at which decryption
fails, or would even go as far as releasing the partially decrypted message to the adversary, either explicitly, or
by treating it as public garbage. Another source of weakness coming from implementations is the possibility of
side-channel attacks [8,5,9]. Here, the attacker does not (only) exploit explicit software messages, but extracts
information from side-effects such as the computation time, the power consumption, or the electromagnetic
radiation of the device performing cryptographic operations. In this context, the previous focus on decryption
failures must be broadened, as side-channel leakages happen at encryption and decryption times, and happen
at decryption time whether a ciphertext is valid or not.

What can be achieved in the presence of leakages of course depends on the implementations and measurement
devices that are at hand. The leakage of all secrets makes cryptography impossible. But the full protection
against leakages at the implementation level brings us back to a situation in which we must completely trust
the implementer to not make any mistake and, even in that case, this will come at high cost in terms of extra



computation time, energy, or circuit area: strong protections increase the usual “code size × cycle count” metric
by 2 or 3 orders of magnitude compared to a non-protected implementation [6]. As a result, various types of
limitations on leakages have been proposed – see Fuller and Hamlin [17] for a review and a comparison. For
instance, leakages may be required to be limited in size, either in total life-time of the device [2], or at each
round of computation [14], or required to be simulatable [37].

Leakages can also be considered to be uniform in the device – we call this a uniform implementation (or an
implementation in the uniform leakage setting), or different levels of security can be required in different parts
of the device: some components must be well protected, while a weak protection would be sufficient for others
– we call this a leveled implementation (or an implementation in the leveled leakage setting) [32]. For example,
in the context of AE, Barwell et al. [5] design leakage-resilient AE modes that require a uniformly protected
implementation. This leads to strong feasibility results, but also to a high expected implementation cost: they
suggest implementing the PRF that processes each message block using a pairing-based leakage-resilient PRF.
In the area of leveled implementations, Berti et al. [8,9] propose AE modes in which each message encryption
requires running for a small constant number of times a well-protected PRF implementation (which could be the
pairing-based PRF mentioned above, or a block cipher implementation taking advantage of countermeasures
like masking and shuffling [27]), then running a weakly protected block cipher implementation a number of
times that is linear in the number of message blocks.

When messages are long, the cost of an encryption is expected to be close to the one of an unprotected
implementation. As a result, leveled implementations offer an appealing setting for the design of leakage-resilient
schemes, as they offer a good matching with practical engineering constraints, both in terms of efficiency and
design strategy, while taking as much as possible from the benefits that a specific mode of operation can offer
compared to strategies in which black-box security aspects and implementation issues are considered separately.

1.2 Contributions

Our main contributions are as follows. We define:

1. Security for authenticated encryption in the presence of nonce misuse and leakages (AEML).

2. New block cipher modes of operation for AEML that satisfy our definitions under relatively mild assumptions.

Security definition. Our definition of AEML security is a combination of three requirements: 1. The AE scheme
must be misuse resistant (MR) in the black-box setting (without leakage), in the usual sense of Rogaway and
Shrimpton [35]. 2. The AE scheme must offer CIML2 security, which is a form of ciphertext integrity in the
presence of nonce misuse and leakage introduced by Berti et al. [8,9]. 3. The AE scheme must offer CCAML2
security, which is an extension of CCA security in the presence of misuse and leakage that we propose here.

The first requirement is there to ensure that, for someone who does not have access to leakages, an AEML
scheme is also a traditional MR AE scheme.

In the presence of leakages, we unfortunately cannot just extend the RS notion in any natural way, as it
would lead to an overly strong requirement. The RS definition of MR requires that ciphertexts look random as
soon as they are produced from a fresh pair of nonce and message. This, in effect, requires that the message is
processed in full before the first bit of ciphertext is released. However, as observed by Berti et al. [8,9], this is
extremely/overly demanding as soon as leakages happen. For example, in an implementation all the message
blocks cannot be expected to be processed in parallel (especially for large messages), which means that leakages
will happen during the processing of some of the blocks before others. If encryption queries are made in such a
way that those first processed blocks are identical (but other blocks differ), the leakages about these first blocks
will be identical, which is something that an adversary will be able to observe, unless strong randomized leakage
protections are implemented for each processed block. This prompts the exploration of the best possible form
of MR that could be achieved by a leveled implementation.

To this purpose, we turn back to the older formulation of authenticated encryption as a combination of IND-
CPA and INT-CTXT security [7], a combination that is known to imply CCA security in the black-box setting.
An important benefit of this style of formulation is that it removes the requirement of pseudorandom ciphertexts
introduced by RS, a requirement that is known to be problematic since the early works on leakage-resilience
by Micali and Reyzin on pseudorandom generators [29].

2



The extension of INT-CTXT to the setting of misuse and leakages has been recently proposed as the CIML2
notion [9]. (The same notion excluding decryption leakages has been proposed beforehand in [8]).

It would be tempting to complete this picture with an extension of CPA security to the misuse and leakage
setting, e.g., based on the LMCPA notion [37]. However, this leads to a notion that is much weaker than one
would expect, and arguably too weak. In particular, the implication towards a leaking variant of CCA security
does not hold anymore. In a similar way, starting from the alternate definition of AE as INT-PTXT and IND-CCA
security [24], we show that leaking variants of INT-PTXT and IND-CCA security do not imply CIML2 security.

So, the usual implications that hold in the black-box setting do not hold anymore in the leveled leaking
setting and, as a result, we introduce the notion of CCAML2 security, which we propose to use in combination
with CIML2 (and MR) to define AEML security. CCAML2 security offers strong confidentiality properties, even
in the presence of leakages: all encryption and decryption oracles leak, including during the “challenge” query
that the adversary can use to win the game. It also aims at the strongest possible form of misuse resistance in
the presence of leakage: as long as the nonce used in the test query is fresh, confidentiality must hold. We will
elaborate on CCAML2 and its motivations in Section 3.

New modes of operation. Our second contribution is the definition of two new modes of operation. The first
mode, FEMALE (for Feedback-based Encryption with Misuse, Authentication and LEakage), offers AEML se-
curity. The second mode, AEDT, is not AEML secure, but still CIML2 and CCAML2 (hence, it is not MR). This
scheme is proposed for situations in which full misuse is not a concern and side-channel attackers are present
anyway (i.e., the mode will never be used without leakage), making the black-box MR property irrelevant.

FEMALE is a two-pass encryption scheme offering traditional AE security which is compatible with a leveled
implementation: independently of the length of the message and associated data, a strongly protected (leak-free)
block cipher (BC) must be called only twice. Apart from that, a weakly protected BC must be called 4` + 5
times for a message of ` blocks. The MR security of FEMALE holds in the standard model. The CIML2 security
holds in the unbounded leakage model [9], which lets weakly protected component leak their state completely,
hence only relying on the two heavily protected blocks. The CCAML2 security holds based on the assumption
that leakages are simulatable [37] (which we discuss later in this section). More precisely, our reduction shows
that any attacker that breaks the CCAML2 security of FEMALE is either violating the simulatable leakage
assumption, or able to break the eavesdropper security of a very simple encryption scheme that can only
encrypt one single block and has no leak-free component. The single block security cannot be derived from the
simulatable leakage assumption: the leakage of a few bits of the internal state of a device may not contradict
simulatability, while the leakage of one single bit of a secret message is enough to break confidentiality [32]. Still,
testing the eavesdropper security of a single block encryption scheme is a much simpler target for a side-channel
evaluation laboratory than evaluating the CCAML2 security of a fully fledged scheme. The latter motivates our
approach of reducing the security of our schemes for multiple long messages to the security of a single message
block, which is as far as one can go based on the current understanding of leakage-resilience and the fact that
accurately defining the confidentiality guarantees offered by this single message block remains an open problem.

AEDT is a simple variant of the EDT scheme of Berti et al. [9] which was designed to support a leveled
implementation. It is already known to be CIML2 secure, and we show that AEDT also offers CCAML2 security.
Giving up on black-box MR security leads to efficiency improvements: AEDT still requires two calls of leak-free
BC, but only 2`− 1 calls of a weakly protected BC, and the evaluation of a hash function on public values. We
note that, if the hash function proceeds by blocks (as any function based on the Merkle-Damg̊ard transformation
or sponge constructions), then AEDT does not require any latency for producing ciphertexts, and reduces the
memory complexity for encryption to constant instead of requiring the storage of the message in full as for
traditional MR. Still, as in traditional MR AE modes, the full ciphertext is needed before decryption can start.
Combining leakage-resilience with modes like in the works of Fleischmann et al. [16] and Hoang et al. [22] on on-
line misuse resistance, which explore weakened notions of misuse resistance that are compatible with single-pass
encryption (but do not consider the presence of leakages) is an interesting scope for further research.

1.3 Related Works

Recently, Barwell et al. [5] introduced notions of leakage-resilient authenticated encryption, and proposed modes
of operation satisfying their definitions. We will refer to this work as BMOS, by the initial of its authors.
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Our work includes two main differences with BMOS. First, we aim at stronger security requirements. In
particular, the BMOS definition captures leakage-resilient AE security as follows (we just focus on encryption
queries for simplicity): they first follow the RS strategy by challenging the adversary to distinguish between
non-leaking real or random encryption oracles, then augment the power of the adversary by giving him access
to a leaking encryption oracle that cannot be queried with inputs identical to those of the non leaking oracles.
As a result, no distinction can be made based on the content of leakages. On the positive side, they can
show that their definition is compatible with strong composition results. However, according to this definition,
an implementation that leaks plaintexts in full during encryption may be considered as a perfectly secure
implementation of an AE scheme: this is a direct consequence of the separation between the black-box real or
random oracles and the leaking oracle. On the contrary, our definition would hold such an implementation as
completely insecure, which we think to be a reasonable conclusion.

The second difference is on the modes of operation, which target a uniform implementation: all components
in the BMOS constructions are required to offer the same strong level of protection against side-channel attacks.
This is expected to lead to a considerably more expensive implementation and, in particular, the proposed
implementation strategy requires the evaluation of pairings for each message block.

Berti et al. [8,9] also investigate AE in the presence of nonce misuse and leakages, but focus on authentication,
proposing the CIML2 definition that we are using here. Regarding confidentiality, they only us a leakage-resilient
version of CPA security (without considering the case with both leakages and misuse).

Our AEML definition shares some features with the notion of misuse resilience introduced by Ashur, Dunkel-
man and Luykx [4]. Misuse resilience is introduced as a weakening of misuse resistance, that tolerates sub-
optimal security degradation when nonces are reused, but requires that this security degradation does not
“spill” on other uses of the AE scheme with fresh nonces. In a similar spirit, our CCAML2 security definition
focuses on the confidentiality of messages that are encrypted with a fresh pair of nonce and associated data.
The actual definitions and their motivations are quite different, though. Ashur et al. introduce misuse resilience
to offer a finer grained evaluation of several standard AE schemes that are not misuse resistant. They do not
consider side-channel leakages. In contrast, these leakages are the central concern of our security definitions,
and they are precisely our motivation for departing from traditional misuse resistance, as it is unlikely that full
misuse resistance can hold in the presence of side-channel leakages on challenge ciphertexts [8,9].

Eventually, we mention the line of works about “after-the-fact” leakages which is complementary to ours [20]
and allows the adversary to obtain leakage information after the challenge ciphertext. While the latter is
meaningful in certain scenarios (e.g., in the context of a cold boot attack [19], the adversary could first see the
encrypted disk – hence getting access to the ciphertext – and then try to design a method of measuring the
memory for the purpose of decrypting this ciphertext), it still excludes the leakage during the challenge phase,
as will be available in the context of a side-channel attack based on power consumption leakages, which is our
main concern here. The latter allows us to design schemes that combine strong (long-term) security guarantees
against key leakages, and the best possible guarantees against plaintext leakages obtained “on-the-fly”.

1.4 Leakage Assumptions

Fuller and Hamlin recently surveyed leakage assumptions [17] (excluding idealized assumptions such as used
in [38]). Among the weaker assumptions that have been used for proving symmetric constructions, one can
choose between indistinguishability-based notions, typically used by Dziembowski and Pietrzak [14] and follow
up works [33,12,15], and the simulatability assumption introduced in [37] that we also exploit here. As later
argued in [26], none of them is perfect: the first one are hard to validate empirically while it remains an
open problem to design efficient instances of simulators. In this respect, we insist that the part of our results
related to the definition of AEML is independent of this choice of assumptions (it only relates to our choice to
work in a leveled setting and to provide the leakage of the challenge ciphertexts). Only the proofs of our two
constructions require the simulatability assumption and we leave as an open problem to analyze (tweaks of)
these constructions using an indistinguishability-based notion.

2 Preliminaries

Throughout the paper n denotes the security parameter. Cryptographic primitives specify some family of sets:
key-space family, message-space family, . . . We implicitly assume that n pinpoints a member within these
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family: a key-space, a message-space, . . . For any set S, we define S∗ = ∪∞i=1S
i so that s ∈ S∗ if and only

if it exists a non negative integer ` such that s ∈ S`. This notation is convenient for instance for variable
block-length (authenticated) encryption with message space M∗, where messages of M consist of one block.

2.1 Notations

Adversary. We denote by a (q1, . . . , qω, t)-bounded adversary a probabilistic algorithm that has access to ω
oracles, can make at most qi queries to its i-th oracle, and can perform computation bounded by running
time t. For algorithms that have no oracle to access, we simply call them t-bounded. In this paper, we use
subscripts to make a clear distinction between the number of queries to different oracles: the number of queries
to the (authenticated) encryption oracle, decryption oracle, and leakage oracle L are denoted by qe, qd, and ql
respectively. E.g., a (qe, qd, ql, t)-bounded adversary runs in time t, makes qe and qd queries to the encryption
and decryption oracles of the Authenticated Ancryption with Associated Data (AEAD) scheme respectively,
and makes ql additional queries to the leakage oracle L.

Leaking algorithm. Let Algo be an efficient algorithm. A leaking version of Algo is denoted LAlgo. It runs both
Algo and a leakage function Lalgo which captures the additional information given by an implementation of Algo
during its execution. LAlgo simply returns the outputs of both Algo and Lalgo which all take the same input.

2.2 Security Definitions

Standard definitions of collision-resistant hash functions, range-oriented preimage-resistance, pseudorandom
permutations, strong tweakable pseudorandom permutations and nonce-based AEAD are given in Appendix A.
We next recall the definition of Misuse-Resistance (MR) that we use, as formalized in [35].

Definition 1 (MR). A nonce-based authenticated encryption scheme with associated data AEAD = (Gen,Enc,Dec)
is (qe, qd, t, ε) misuse resistant for a security parameter n if, for all (qe, qd, t)-bounded adversaries A,∣∣∣Pr

[
k $← Gen(1n) : AEnck,Deck(1n)⇒ 1

]
− Pr

[
A$,⊥(1n)⇒ 1

]∣∣∣ ≤ ε,
where $(N,A,M) outputs and associates a fresh random ciphertext C ← C to fresh inputs1, and the associated
C otherwise, and ⊥(N,A,C) outputs ⊥ except if C was associated to (N,A,M) for some message M , in which
case it returns M .

Ciphertext integrity with misuse and leakage (in encryption), denoted CIML, was introduced in [8] as a
strong integrity guarantee of authenticated encryption in the leaking setting. This notion was enhanced in [9]
into the so-called CIML2 notion to further capture leakage in decryption. To formalize the leakage depending on
an implementation, AEAD is associated to both an encryption leakage function Lenc and a decryption leakage
function Ldec, leading to the following definition:

Definition 2 (CIML2). An authenticated encryption AEAD = (Gen,Enc,Dec) with leakage function pair L =
(Lenc, Ldec) provides (qe, qd, ql, t, ε)-ciphertext integrity with (nonce) misuse and leakage (on encryption and
decryption) for security parameter n if, for all (qe, qd, ql, t)-bounded adversaries AL, we have:

Pr
[
PrivKCIML2

A,AEAD,L(1n)⇒ 1
]
≤ ε,

where the security game PrivKCIML2
A,AEAD,L is defined in Table 1 (left part) when AL makes at most qe leaking

encryption queries, qd leaking decryption queries and ql leakage evaluation queries.2

To ease comparison, Table 1 also contains a new PrivKPIML2
A,AEAD,L(1n) game (right part) which is the plaintext-

integrity counterpart of the ciphertext-integrity game (left part). This will lead to the notion of plaintext
integrity with misuse and leakage (in encryption and decryption) given in Section 3.1.

1 This slight extension allows AEAD with polynomial size C to be misuse resistant.
2 The meaning of AL is given in Subsection 2.3, here it indicates that the adversary may query L with at most ql chosen keys. This

is not reminded in the security games.
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PrivKCIML2
A,AEAD,L(1n) experiment PrivKPIML2

A,AEAD,L(1n) experiment

Initialization:
1. k ← Gen(1n), S ← ∅

Finalization:
1. (N,A,C)← ALEnck,LDeck,L(1n);
2. If (N,A,C) ∈ S, return 0
3. If Deck(N,A,C) = ⊥, return 0
4. Return 1

Leaking encryption: LEnck(N,A,M)
1. C ← Enck(N,A,M)
2. S ← S ∪ {(N,A,C)}
3. Return (C, Lenc(k,N,A,M))

Leaking decryption: LDeck(N,A,C)
1. Return (Deck(N,A,C), Ldec(k,N,A,C))

Initialization:
1. k $←K, S ← ∅

Finalization:
1. (N,A,C)← ALEnck,LDeck,L(1n)
2. M ← Deck(N,A,C)
3. If M = ⊥ or (A,M) ∈ S, return 0
4. Return 1

Leaking encryption: LEnck(N,A,M)
1. C ← Enck(N,A,M)
2. S ← S ∪ {(A,M)}
3. Return (C, Lenc(k,N,A,M))

Leaking decryption: LDeck(N,A,C)
1. Return (Deck(C), Ldec(k,N,A,C))

Table 1. The CIML2 and PIML2 security games.

2.3 The Leveled Leakage Setting

The leveled leakage implementation setting considers different types of implementations for the components
(e.g., block ciphers) used in a mode of operation.

On the one hand, it relies on a limited number of highly protected or, in effect, leak-free components.
As previously discussed [32], these components are expected to be protected using strong protections against
side-channel attacks: they could be a block cipher masked at very high security orders [18,23] for instance.

On the other hand, the rest of the components will continuously leak a certain amount of information to
the adversary every time they are used. Conceptually, we would like to avoid any unnecessary restrictions on
the leakage function L. In particular, it is an open problem to determine the complexity of such a function,
and whether it can be computed efficiently. So, in order to abstract the complexity of the leakage function, we
model it as a leaking oracle L, and we allow the adversary AL to make ql leakage queries to L. Note that these
ql leakage queries are quite different from the leaking encryption and decryption queries to the AEAD schemes:
when querying L, A must select the key himself for the computations, while the encryption and decryption
oracles provide A with leakages about a key k that A is not expected to know. Those L queries actually
correspond to an offline training phase that A can perform as part of his attack of the circuit, a practice that
is common in (profiled) side-channel attacks [11].

Our analyses put two types of requirements on the leaking parts of our constructions, depending on whether
we are aiming at confidentiality or integrity properties. With respect to integrity guarantees, we prove security
in the unbounded leakage model [8]: it assumes that, when queried, oracles return, in addition to the usual
output values, a function L∗ yielding all keys and random coins generated or used during the computation of the
oracle’s answer. Regarding confidentiality guarantees, we reduce the security of multiple blocks to the security
of a single message block under an assumption of leakage simulatability that will be introduced in Section 4.3.

3 Authenticated Encryption against Misuse and Leakage

To define the security of authenticated encryption in the presence of misuse and leakage we start by extending
the existing black-box security notions to the leakage setting. Surprisingly, the combination of our strongest
extensions of confidentiality and integrity is separated from any other combinations unlike the situation without
misuse and leakage. This motivates our definition to be at least as secure as this strongest combination.

3.1 Misuse and Leakage Variants of Black-box Notions

We adapt the IND-CPA and the IND-CCA confidentiality notions as well as the INT-PTXT and INT-CTXT
integrity notions of nonce-based authenticated encryption in the setting of nonce-misuse and leakage.
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Confidentiality. Contrary to existing confidentiality notions in a leaking setting [5], our definition includes
leakage during encryption and decryption even on the challenge ciphertext. We first focus on security against
chosen-ciphertext attack with misuse and leakage, denoted CCAML2. Then, we derive the weaker notion of
security against chosen-plaintext attack with misuse and leakage, denoted CPAML2, by removing some of the
adversary’s abilities. The natural extensions of these definitions supporting multiple challenges are deferred to
Appendix B where we show the equivalence between both chosen-ciphertext notions.

Chosen-ciphertext security with misuse and leakage. To capture the CCAML2 security we define the game
PrivKCCAML2,b

A,AEAD,L detailed in Fig 1. This game takes as parameters an adversary A, a nonce-based authenticated
encryption AEAD and a (possibly probabilistic) leakage function pair L = (Lenc, Ldec) resulting from the imple-

mentation of the scheme. During PrivKCCAML2,b
A,AEAD,L, the adversary A has to guess the bit b of which depend the

challenge ciphertext Cb and the encryption leakage leakbenc, computes as a leaking encryption of (Nch, Ach,M
b),

where the nonce Nch, the associated data Ach and the messages M0,M1 are chosen by A under certain condi-
tions. All along this game A is also granted unbounded and adaptive access to three types of oracles: LEnc, a
leaking encryption oracle; LDec, a leaking decryption oracle; and Ldecch, a challenge decryption leakage oracle.

Overall, this definition follows the general pattern of CCA security.
In terms of misuse resistance, it lets the adversary pick the nonces. However, and contrary to black-box

security definitions, the adversary is forbidden to reuse an old nonce Nch in its challenge query. This is consistent
with the reasons outlined in the introduction and for example the fact that it is unrealistic to expect that
leakages will only depend on a full message, while any concrete implementation will not be able to process
all the blocks of a long message in parallel. The freshness requirement on Nch makes it possible that, when
the encryption algorithm starts processing messages, it is already in an internal state that differs from the
one of old queries, hence preventing the direct identification of the leakages. The latter is the only (seemingly
unavoidable) restriction that we impose in our definition.

In terms of leakage-resilience, we observe that all encryption and decryption oracles leak (hence the “2” of
CCAML2 for the two leaking oracles), including during the challenge query. We are going one step further with
the Ldecch oracle, which offers the leakage corresponding to the decryption of the challenge ciphertext (but of
course not the corresponding plaintext, as it would offer a trivial win). This addition captures the fact that the
adversary may be allowed to observe the decryption of this challenge ciphertext through side-channels (imagine
that this challenge ciphertext is a firmware update intended to a device controlled by A). We let the adversary
query the Ldecch oracle multiple times, as leakages can be non-deterministic (e.g., contain measurement noise),
and A may get some benefits from the observation of leakages from multiple decryptions of the same plaintext.

PrivKCCAML2,b
A,AEAD,L(1n) is the output of the following experiment:

Initialization: generates a secret key k ← Gen(1n) and sets E ← ∅.
Pre-challenge queries: AL gets adaptive access to LEnc(·, ·, ·) and LDec(·, ·, ·),

(1) LEnc(N,A,M) computes C ← Enck(N,A,M) and leake ← Lenc(k,N,A,M), updates E ← E ∪ {N} and finally returns
(C, leake);

(2) LDec(N,A,C) computes M ← Deck(N,A,C) and leakd ← Ldec(k,N,A,C) and returns (M, leakd); (We stress that M = ⊥
may occur.)

Challenge query: on a single occasion AL submits a tuple (Nch, Ach,M
0,M1),

If M0 and M1 have different (block) length or Nch ∈ E , return ⊥;
Else compute Cb ← LEnck(Nch, Ach,M

b) and leakbe ← Lenc(k,Nch, Ach,M
b) and return (Cb, leakbe);

Post-challenge queries: AL can keep accessing LEnc and LDec with some restrictions but it can also get an unlimited access to
Ldecch,
(3) LEnc(N,A,M) returns ⊥ if N = Nch, otherwise computes C ← Enck(N,A,M) and leake ← Lenc(k,N,A,M), and finally

returns (C, leake);
(4) LDec(N,A,C) returns ⊥ if (N,A,C) = (Nch, Ach, C

b), otherwise computes M ← Deck(N,A,C) and leakd ←
Ldec(k,N,A,C) and returns (M, leakd);

(5) Ldecch outputs the leakage trace leakbd ← Ldec(k,Nch, Ach, C
b) of the challenge;

Finalization: AL outputs a guess bit b′ which is defined as the output of the game.

Fig. 1: The PrivKCCAML2,b
A,AEAD,L(1n) game.
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Definition 3 (CCAML2). A nonce-based authenticated encryption with associated data AEAD = (Gen,Enc,Dec)
with leakage function pair L = (Lenc, Ldec) is (qe, qd, qc, ql, t, ε)-CCAML2 secure for a security parameter n if, for
every (qe, qd, qc, ql, t)-bounded adversary AL, we have∣∣∣Pr

[
PrivKCCAML2,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKCCAML2,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

when the adversary AL makes at most qe leaking encryption queries, qd leaking decryption queries, qc challenge
decryption leakage queries and ql leakage evaluation queries on arbitrarily chosen keys.

We refer to CCAML2∗ as the security notion defined as CCAML2 except that we drop the challenge decryption
leakage oracle Ldecch from the game in Fig. 1.

Chosen-plaintext security with misuse and leakage. Similarly, CPAML2 is defined from a game PrivKCPAML2,b
A,AEAD,L.

This game is exactly as PrivKCCAML2,b
AL,AEAD

except that we remove A’s access to the leaking decryption oracle LDec

in Figure 1 (Items 2,4). On the other hand, A is still able to get challenge decryption leakage leakbd.

Definition 4 (CPAML2). A nonce-based authenticated encryption with associated data AEAD = (Gen,Enc,Dec)
with leakage function pair L = (Lenc, Ldec) is (qe, qc, ql, t, ε)-CPAML2 secure for a security parameter n if, for
every (qe, qc, ql, t)-bounded adversary A, we have∣∣∣Pr

[
PrivKCPAML2,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKCPAML2,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

when the adversary AL makes at most qe leaking encryption queries, qc challenge decryption leakage queries
and ql leakage evaluation queries on chosen keys.

Integrity. We adopt the natural and strong extensions of INT-CTXT and INT-PTXT to misuse and leakage in
encryption and decryption: CIML2 and PIML2.

Ciphertext integrity with misuse and leakage. The CIML2 notion is defined in Definition 2 based on the security
game PrivKCIML2

A,AEAD,L of Table 1 (left part). We refer to the [8,9] for the rationale supporting this definition.

Plaintext integrity with misuse and leakage. By analogy, we define the PIML2 security except that not only M
is authenticated but also the associated data A.

Definition 5 (PIML2). An authenticated encryption AEAD = (Gen,Enc,Dec) with leakage function pair L =
(Lenc, Ldec) provides (qe, qd, ql, t, ε) plaintext integrity with misuse and leakage for security parameter n if, for
all (qe, qd, ql, t)-bounded adversaries AL, we have:

Pr
[
PrivKPIML2

A,AEAD,L(1n)⇒ 1
]
≤ ε,

where the security game PrivKPIML2
A,AEAD,L(1n) is defined in Table 1 (right part) when AL makes at most qe leaking

encryption queries, qd leaking decryption queries and ql leakage evaluation queries on arbitrarily chosen keys.

3.2 Main Security Definition

By definition, we require that a secure authenticated encryption with misuse and leakage satisfies the strongest
achievable guarantee presented in the paper: an AEML scheme is expected to offer CCAML2 and CIML2 security,
together with being a MR AEAD scheme in the black-box setting. This definition departs from the traditional
ones in the black-box setting, based on the combination of CPA and INT-CTXT security [7] or CCA and
INT-PTXT security [24]. We will actually show that there are important separations between these notions:
CCAML2 + PIML2 + MR 6⇒ CIML2, and CPAML2 + CIML2 + MR 6⇒ CCAML2. Furthermore, even if CCAML2
(resp., CIML2) implies both IND-CCA and CPAML2 (resp., INT-CTXT and PIML2), the combination of CCAML2
and CIML2 security does not imply MR, which is therefore a separate requirement.
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Definition 6 (AEML). An authenticated encryption scheme with security against nonce misuse and leak-
ages, AEML, is an authenticated encryption scheme AEAD = (Gen,Enc,Dec) with a leakage function pair
L = (Lenc, Ldec) satisfying the following assertions: (i) AEAD is misuse resistant; (ii) AEAD is CCAML2 secure
with leakage L; (iii) AEAD is CIML2 secure with leakage L.

In all of our schemes to come, we will actually show that CIML2 security holds in the unbounded leakage
setting, in which we have a function L∗enc (resp., L∗dec) that reveals all the ephemeral values computed during
encryption (resp., decryption). This is a very liberal leakage assumption which just assumes that there exists an
efficient function φ such that L = φ ◦ L∗ even if this function is hard to describe. Therefore, all the information
given by L is given by L∗.

3.3 Separation Results

We now explain why the strong security notions of MR, CCAML2 and CIML2 are needed to define AEML, while
one could be tempted to make a definition as a combination of weaker notions, which may be easier to prove.
Unfortunately, there is no such equivalence as we show that AEML is strictly stronger than any other combi-
nations, assuming that AEML-secure AEAD exists. We summarize even more relations in Figure 2.

CIML2

CCAML2 CIML2 ∧ CPAML2

PIML2 ∧ CCAML2

∧MR

∧MR

Fig. 2: Relations among security notions in the leveled leakage setting. An arrow denotes an implication while
a barred arrow denotes a separation. Dotted (barred) arrows are trivial implied by other relations.

In contrast to the black-box setting, these relations also show that cryptographers do not have to choose
between the different ways to achieve AEML since, for instance, CCAML2 ∧ PIML2 6� CPAML2 ∧ CIML2.

MR ∧ CPAML2 ∧ CIML2 ; CCAML2∗. It is not surprising that MR does not imply CCAML2 since the
leakage function L is simply absent from black-box notion. Contrarily, L appears both in CPAML2 and CIML2.
This claim thus says that leakage in decryption may not alter integrity but may alter confidentiality. To reflect
this intrinsic separation of the leakage setting we show that the implication does not even hold for CCAML2∗

where the challenge decryption leakage oracle Ldecch is unavailable. While the latter leakage is well motivated in
the context of side-channel attacks [9], is is also quite specific to such attacks. So ignoring it in the separation
makes our result stronger and more general.

Theorem 1. Assuming that there exists an authenticated encryption which satisfies misuse resistance, chosen-
plaintext security with misuse and leakage, and ciphertext integrity with misuse and unbounded leakage, then
there exists an authenticated encryption with the same security properties but which fails to achieve the chosen-
ciphertext security with misuse and leakage even without challenge decryption leakage.

The proof is is Appendix C. The leakages “harmful” to CCAML2∗ only appear during invalid decryption
queries, rather than the challenges in CPAML2 game. So the implication does not hold either when starting
from the multiple challenge variant of CPAML2 (defined in Appendix B) and the proof idea remains the same.

MR ∧ CCAML2 ∧ PIML2 ; CIML2. As for the previous assertion, being MR does not say anything about
leakage, so not being CIML2 is obviously compatible. The most interesting part comes from CCAML2 and PIML2
which include leakage. This claim exploits the fact that leakage on repeated queries may degrade ciphertext
integrity but neither confidentiality nor plaintext integrity.

Theorem 2. Assuming that there exists an authenticated encryption which satisfies misuse resistance, chosen-
ciphertext security with misuse and leakage, and plaintext integrity with misuse and unbounded leakage, then

9



there exists an authenticated encryption which satisfies misuse resistance, chosen-ciphertext security with misuse
and leakage, and plaintext integrity with misuse and unbounded leakage but which fails to achieve the ciphertext
integrity with misuse and leakage, so possibly even not with unbounded leakage.

The proof is in Appendix D. It proceeds by building a ¬CIML2 scheme AEAD′ from an MR∧CCAML2∧PIML2
scheme AEAD. An interesting feature is that this counterexample AEAD′ preserves the tidyness of AEAD. This
deviates from Bellare and Namprempre’s well-known approach for establishing INT-PTXT ; INT-CTXT, which
did utilize non-tidy counterexamples [7]. It is possible in our case due to the presence of leakages.

Further Security Definitions. In appendix B we extend our confidentiality notion to support multiple
challenge ciphertexts. In both the single and multiple challenge settings, we also define several other variants of
CCAML2 and CIML2 security and explore their relations in Appendix E. We finally discuss relations with the
Eavesdropper Security with Decryption Leakage introduced in [9] (which is implied by AEML) in Appendix F.

4 FEMALE: an AEML-Secure Realization

We design FEMALE, an AEML scheme that can be implemented in the leveled leakage setting. FEMALE is
named after Feedback-based Encryption with Misuse, Authentication and LEakage as it starts processing the
message blocks using the (ciphertext) feedback mode of operations during their encryption. It makes only two
calls to a leak-free tweakable block cipher. Relying on the leveled leakage setting, all the other computations
can be less protected and then much more efficient. The intuition behind the design of FEMALE is given in
Section 4.1 followed by the full specifications of the scheme in Section 4.2. To prove the CCAML2 security, we
rely on an extension of the leakage simulatability model [37]. This model and related discussions are provided
in Section 4.3, and the security analysis is in Section 4.4.

4.1 Intuition

FEMALE is an improvement of the following blueprint named 3LF. The 3LF blueprint has three parts which
all use the secret key: (i) Ephemeral IV generation: on input (N,A,M), derives a pseudorandom value V ;
(ii) IV-based encryption: on input (V,M) computes an encryption c of M with initialized vector V ; (iii) Au-
thentication: compute a tag T on (N,A, V, c). The ciphertext is C = (V, c, T ). On (N,A,C), the 3LF decryption
first checks (iii) before extracting M from (ii) in the obvious way. We observe that, on the one hand, even if V
looks independent of M it guarantees that nonce misuse will not affect the pseudorandomness of ciphertexts in
the MR game as long as the messages change, on the other hand, the CIML2 security can be achieved exactly
as [9] from a strong (tweakable) PRP at the end: the validity of T can be verified by evaluating its pre-image,
which avoids leaking extra valid tags. Satisfying the CCAML2 notion deeply depends on the leakage filtering
from a 3LF implementation of these three parts.

While some 3LF implementations could be AEML-secure if all the computations involving the secret key were
leak-free, leading to a total of at least three leak-free calls (hence the name 3LF), it is not straightforward to
identify sufficient conditions in the leveled leakage setting to come up with a generic composition with a single
secret key. Anyway, FEMALE meets the desired AEML security with the following advantages. First, it processes
the key only twice and then only requires two leak-free calls. Second, it processes the message blocks only once.
From a leakage point of view, we stress that the less the sensitive data are manipulated, the less information
would leak about them. To achieve this, FEMALE slightly modifies the 3LF blueprint into: (i) Ephemeral key-IV
generation: on input (N,A,M), derives a pair (U, V ) where the session key U is pseudorandom on (N,A) and
V is pseudorandom on (N,A,M) so that this process also pre-encrypts M into d; (ii) One-time encryption:
on input (V, d) and the ephemeral key U , produces a one-time encryption c of d with initialized vector V ;
(iii) Authentication: on input (N,A, V, c), computes a pseudorandom tag T . The ciphertext C = (V, c, T ) does
not include d. To encrypt d into c at step (ii) FEMALE no more uses the (long-term) secret key. To decrypt
(N,A,C), FEMALE first checks (iii) before deriving U from (N,A) as in step (i) in order to reverse the process
at step (ii) to extract d. Eventually, (N,A, d) allows retrieving M at step (i).
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4.2 Specification

Given (N,A,M) with an `-block message M , the ephemeral key-IV generation first computes the hash R =
H(N,A) and sequentially derives a random key stream (s0, s1, . . . , s`, s`+1, w, U). Then it pre-encrypts M‖0
as d‖W in a CFB mode except that each block are processed with different keys, from s1 to s`+1. As long
as W remains secret this value can be seen as a hash of (N,A,M) so that it is safe to set V = Ew(W ).
Without leakage, V is a pseudorandom IV uses to encrypt d in the next step and before authenticate all the
computations. From that point, (black-box) misuse resistance easily follows. With leakage, as long as (N,A)
is fresh the challenge ciphertext will get the desired indistinguishability notion thanks to our careful re-keying
schedule. The scheme is depicted in Fig. 3 and the full description is in Fig. 4.
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Fig. 3: (Top) The initialization and encryption parts of FEMALE, with the notations to be used in its specification
and security analysis. (Bottom) The authentication part of FEMALE. The final output is C = (V, c, T ).

Description of FEMALE:

Gen(1n) picks a random key k $←{0, 1}n.
Enck(N,A,M) parses M ∈ M∗ into as many blocks as needed as M = (m1, . . . ,m`) for some `. Computes R← H(0‖N‖A) and

proceeds in three steps:
1. Ephemeral key-IV generation: (step (b) will be essentially skipped when ` = 0)

(a) Computes s0 ← E∗,0k (R), w ← Es0(pB), s1 ← Es0(pA), and sets d0 ← pB ;
(b) Computes si+1 ← Esi(pA), yi ← Esi(di−1), di ← yi ⊕mi, for i = 1 to `;
(c) Computes U ← Es`+1(pA), W ← Es`+1(d`), V ← Ew(W ).

2. One-time encryption: first computes k1 ← EU (V ) and then, for i = 1 to ` − 1, computes ki+1 ← Eki(pA), zi ← Eki(pB),
and ci ← zi ⊕ di.

3. Authentication: sets c = c1‖ . . . ‖c`, and computes T ← E∗,1k (H(1‖R‖V ‖c)).
Eventually, returns the ciphertext C = (V, c, T ).

Deck(N,A,C) parses C = (V, c, T ), c = c1‖ . . . ‖c`, then proceeds in four phases:
1. Integrity Checking: computes R = H(0‖N‖A) and h∗ ← (E∗,1k )−1(T ). Then, if h∗ = H(1‖R‖V ‖c), it enters the next phase,

and returns ⊥ otherwise.
2. Ephemeral key extraction: first computes s0 ← E∗,0k (R) and si+1 ← Esi(pA), for i = 0 to `, and finally U ← Es`+1(pA).
3. One-time decryption: first computes k1 ← EU (V ) and then, for i = 1 to ` − 1, computes ki+1 ← Eki(pA), zi ← Eki(pB),

and di ← zi ⊕ ci; Set d0 ← pB .
4. Message recovery: for i = 1 to `, computes yi ← Esi(di−1) and mi ← yi ⊕ di.

Eventually, returns the message M = (m1, . . . ,m`).

Fig. 4: The FEMALE AEAD scheme.

4.3 Recyclable Leakage Simulatability

The leakage-resilience of FEMALE relies on the assumption that leakages satisfy (p, q)-recyclable-simulatability
defined below, and based on the (p, q)-rsim-game in Table 2. This assumption is an extension of the q-
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simulatability notion [37]: (p, q)-recyclable-simulatability is simply q-simulatability, in which each of the q
leakages can be obtained p times.

Game (p, q)-rsim(A,E, L,S, b).
The challenger selects two random keys k, k∗ $←K. The output of the game is a bit b′ computed by AL based on the
challenger responses to a total of at most q adversarial queries of the following type, each repeated at most p times:

Query Response if b = 0 Response if b = 1

Enc(x) Ek(x), L(k, x) Ek(x),SL(k∗, x,Ek(x))

and one query of the following type, repeated at most p times:

Query Response if b = 0 Response if b = 1

Gen(kpre, x) SL(kpre, x, k) SL(kpre, x, k
∗)

Table 2. The (p, q)-rsim-game.

Definition 7 ((p, q)-recyclable-simulatability of leakages). Let E be a PRP with L as its leakage function.
Then the leakages of E are said to have (qS , tS , ql, t, ε(p,q)-rsim) (p, q)-recyclable-simulatability, if there exists a

(qS , tS)-bounded simulator SL such that, for every (ql, t)-bounded adversary AL (making at most ql queries to L
and running in time t), we have∣∣∣Pr[(p, q)-sim(A,E, L,S, 1)⇒ 1]− Pr[(p, q)-sim(A,E, L,S, 0)⇒ 1]

∣∣∣ ≤ ε(p,q)-rsim.
Throughout the remaining, we would simply call such leakages R-simulatable.

The Necessity of the Recyclable Assumption completely stems from the fact that our CCAML2 game
offers the challenge decryption leakage oracle Ldecch, which in cooperation with the challenge encryption leakage
may result in the same set of leakage traces being generated more than once. For example, consider using
FEMALE to encrypt a single block challenge mb, and assume that the corresponding intermediate values are s0,
s1, s2, y1, U , V , k1, and z1. Then the calls Es0(pA), Es1(pA), Es1(pB), Es2(pA), EU (V ), and Ek1(pB) are made
during both the encryption and the decryption. Therefore, by querying Ldecch, A could obtain the corresponding
leakage traces many times. Consequently, merely assuming 2-simulatability would not suffice. Concretely, recy-
clable simulatability is admittedly a stronger assumption than q-simulatability, since the typical q one considers
in leakage-resilient constructions is 2 and the p values allowed by decryption leakages are polynomial. In this
respect, the following remarks are important:

First, in case only a weakened CCAML2∗ security is required, in which only challenge encryption leakages
are generated, the original q-simulatability is sufficient. Overall, what our proofs demonstrate is that security
with only challenge encryption leakages for multiple blocks can be reduced to the security of a single block
with (noisy, unrepeated) leakages under the assumption that 2 (noisy) leakages can be simulated. By contrast,
security with challenge decryption leakages for multiple blocks can only be reduced to the security of a single
block with (noise-free, repeated) leakages under the assumption that 2 (noise-free) leakages can be simulated.

Second, as usual in discussions of confidentiality where challenges with leakages are made available to the
adversary, our expectation is not that the adversarial advantages will be negligible as in the classical (black
box) setting. By contrast, we aim for (i) the ability to discriminate constructions where the confidentiality is
trivially minimum (e.g., the plaintext is leaked in full) and constructions where some leakage is available but
still bounded in some sense, and (ii) definitions that allows the specification of useful guidelines for the design
of leveled implementations. The latter is exactly where the introduction of recyclable simulatability comes in
handy: we argue that for implementers, the design of R-simulatable gadgets will fall between the design of a leak-
free component and the design of a q-simulatable one as follows. As already mentioned, leak-free components
will typically be implemented with very high-order masking to resist DPA (and thus be very expensive).3

On the other hand, q-simulatability is expected to be achievable with weakly protected implementations and
essentially requires resistance against SPA with noisy measurements [37,32].4 R-simulatability would rather
require resistance against SPA with noise-free measurements and could for example be efficiently obtained with
very low latency hardware (e.g., a parallel and unrolled AES implementation in one or two clock cycles [25],
limiting the number of noise-free samples that the adversary can collect).

3 Informally, DPA is a side-channel attack taking advantage of the leakage of multiple (different) inputs.
4 Informally, SPAs are side-channel attacks taking advantage of the leakage of a single input.
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4.4 Security Analysis

We focus on CCAML2 security first. To make it formal, we define the leakage function L = (Lenc, Ldec) of FEMALE
as:

– Lenc consists of the follows that are generated during the encryption:
• the leakages LE(s, x) generated by all the internal calls to Es(x), and
• the leakages L⊕(a, b) generated by all the internal actions a⊕ b, and
• all the intermediate values involved in the computations of the hash functions (i.e., hash functions are

non-protected, and leak everything).
– Ldec consists of the above that are generated during the decryption.

Our security reduction is made against (i) the simulatability of the leaking blocks, (ii) the security of the
encryption of one single block with a fresh key. As mentioned in introduction, if a single XOR of the message
leaks enough to win the CCAML2 game, then nothing can be done, and the natural conclusion would be that
an implementation offering stronger protections is needed. Otherwise, using this block in FEMALE offers the
best possible confidentiality guarantees.

Description of LRSE scheme: (tool for the proof and for establishing confidentiality conclusion)

RSGen(1n) picks kch $←{0, 1}n, M, C = {0, 1}n (pA, pB ∈ {0, 1}n)
RSEnckch(m) returns (kup, c), where c = ych ⊕m, ych = Ekch(pB), and kup = Ekch(pA). (The term “up” is short for “update”.)
RSDeckch(c) proceeds in the natural way.

The leakage LRSE = (Lrsenc, Lrsdec, kpre) resulting from the LRSE implementation is defined as Lrsenc(kch,m) =
(LE(kch, pA), LE(kch, pB), L⊕(ych,m),SL(kpre, pA, kch)), Lrsdec(kch, c) = (LE(kch, pA), LE(kch, pB), L⊕(ych, c),SL(kpre, pA, kch)) for a
fixed random kpre $←{0, 1}n. As usual we denote LRSEnckch(m) = (RSEnckch(m), Lrsenc(kch,m)).

Fig. 5: Basic unit: the single-block encryption scheme LRSE.

In detail, following Pereira et al.’s approach [32], we consider a Leaking Real Single-block Encryption
scheme LRSE defined in Fig. 5 as the basic unit of FEMALE. The LRSE scheme is introduced to determine the
CCAML2 security bound of FEMALE. Due to the re-keying process of FEMALE we only need LRSE to be “secure
enough” against eavesdropper adversaries in the presence of both encryption and decryption leakages (the last
requirement being necessary to bound the information the adversary will get from the Ldecch oracle). Since for
each generated key kch LRSE will be used to encrypt a single message m composed of a single block, we assume
that given a security parameter n, LRSE is (p, ql, t, εs-block) secure in the following sense: for any (ql, t)-bounded
eavesdropper adversary ALRSE choosing m0,m1 ∈ {0, 1}n, it holds∣∣∣Pr[ALRSE(LRSEnc+kch(m0))⇒ 1]− Pr[ALRSE(LRSEnc+kch(m1))⇒ 1]

∣∣∣ ≤ εs-block, (1)

where LRSEnc+kch(mb) = (LRSEnckch(mb), [Lrsdec(kch, c
b)]p−1, kpre) for (cb, kup) = RSEnckch(mb). The reason why

the adversary also gets the auxiliary outputs kpre and kup is for composability purpose which will be apparent
in the proof.

Based on the assumption (1), the CCAML2 security bound could be established below. We remark that: (i)
First, the arguments pA, pB can be chosen by the adversary A, but they have to be distinct; (ii) Second, as
discussed before, it might be the case that, as related to an indistinguishability notion with leakage, εs-block is
non negligible.

Theorem 3. Let H : {0, 1}κ×{0, 1}∗ → {0, 1}n be a (0, t′, εcr)-collision resistant and (qd, t
′, εpr)-range-oriented

preimage resistant hash function, E∗ : {0, 1}n×{0, 1}×{0, 1}n → {0, 1}n be a (2qe+2qd+2, t′, εE∗)-strong tweak-
able pseudorandom permutation, and E : {0, 1}n × {0, 1}n → {0, 1}n be a (2, t, εE)-PRP, whose implementation
leakage function LE has (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages. Then the FEMALE implementation
with leakage function L = (Lenc, Ldec) defined before is (qe, qd, p− 1, ql, t, εCCAML2) CCAML2-secure, where

εCCAML2 ≤ 2εE∗ +
qe
2n

+ εcr + εpr + εFEMALE-eav(`),
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` is the number of blocks in the challenge message, and εFEMALE-eav(`) is the upper bound on the eavesdropper
advantage of (ql, t

′)-bounded adversaries on FEMALE on messages with ` blocks—concretely,

εFEMALE-eav(`) ≤ (6`+ 8)(εE + ε(p,2)-rsim) + ` · εs-block +
6`+ 4

2n
.

Here t′ = t + (qe + qd + 1)(t$ + t1−pass), t1−pass is the maximum running time of FEMALE upon a single
(encryption or decryption) query, and t$ is the time needed for randomly sampling a value from {0, 1}n.

Proof. See Appendix G. The proof is quite lengthy, which is the reason to present in another section. ut

On the other hand, the CIML2 and MR security of FEMALE are as follows.

Theorem 4. Let H : {0, 1}n × {0, 1}∗ → {0, 1}n be a (0, t′, εcr)-collision resistant and (qd + 1, t′, εpr)-range-
oriented preimage resistant hash function. Let E∗ : {0, 1}κ×{0, 1}×{0, 1}n → {0, 1}n be a (2qe+2qd+2, t′, εE∗)-
strong tweakable pseudorandom permutation. Then FEMALE provides (qe, qd, t, εciml2)-ciphertext integrity with
coin misuse and unbounded leakage on encryption and decryption as long as t ≤ t′− (qe + qd + 1)t1−pass, where
t1−pass is the maximum running time of FEMALE upon a single (encryption or decryption) query, and

εciml2 ≤ εE∗ + εcr + εpr.

Proof. See Appendix G.3. ut

Theorem 5. Let H : {0, 1}n×{0, 1}∗ → {0, 1}n be a (0, t′, εcr)-collision resistant and (qd, t
′, εpr)-range-oriented

preimage resistant hash function. Let E∗ : {0, 1}κ × {0, 1} × {0, 1}n → {0, 1}n be a (2qe + 2qd, t
′, εE∗)-strong

tweakable pseudorandom permutation, and E : {0, 1}n×{0, 1}n → {0, 1}n be a (qe, t
′, εE)-pseudorandom permu-

tation. Then the FEMALE scheme is (qe, qd, t, εmr)-MR as long as t ≤ t′ − (qe + qd)(t1−pass + (4`+ 4)t$), where
t1−pass is the maximum running time of FEMALE upon a single (encryption or decryption) query, t$ is the time
needed for randomly sampling a value from {0, 1}n, and

εmr ≤ εE∗ + εcr + εpr + (2`+ 4)qeεE +
2(`+ 1)qe + (qe + qd)

2 + q2e
2n+1

.

Proof. See Appendix G.4.

5 AEDT

We finally refer to Appendix H for the description and analysis of the (more efficient but not MR) AEDT scheme.
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A Definitions of Primitives

We first need the following definition of collision-resistant hash function.

Definition 8 (Collision-Resistant Hash Function). A (t, εcr)-collision resistant hash function H : S×M→
B for security parameter n is a function that is such that, for every t-bounded adversary A, the probability that
A(1n, s) outputs a pair of distinct messages (m0,m1) ∈ M2 such that Hs(m0) = Hs(m1) is bounded by εcr,
where s $←S is selected uniformly at random.

We next need the following definition of range-oriented preimage resistance.

Definition 9 (Range-Oriented Preimage-Resistant Hash Function). A (t, εpr)-range-oriented preimage
resistant hash function H : S × M → B for security parameter n is a function that is such that, for every
adversary A running in time t, the probability that A(1n, s, y) outputs a message m ∈M such that Hs(m) = y
is bounded by εpr, where s $←S, y $←B are selected uniformly at random.

In the following, we assume that the key s is not private, and refer to the hash function simply as H for
simplicity, the key s being implicit.

We also need the following definitions of pseudorandom permutation.

Definition 10 (Pseudorandom Permutation). A function E : K ×M → M is a (q, t, εE)-pseudorandom
permutation (PRP) for a security parameter n if, for all (q, t)-bounded adversaries A, we have∣∣∣Pr

[
k $←K : AEk(1n)⇒ 1

]
− Pr

[
P $←P : AP (1n)⇒ 1

]∣∣∣ ≤ εF,
where P denotes the set of all permutations on M.

The tweakable pseudorandom permutation notion is as follows.

Definition 11 (Strong Tweakable Pseudorandom Permutation). A function E : K × T W ×M → M
is a (q, t, εE)-strong tweakable pseudorandom permutation (STPRP) for a security parameter n if, for all (q, t)-
bounded adversaries A, we have:∣∣∣Pr

[
k $←K : AEk,E

−1
k (1n)⇒ 1

]
− Pr

[
P $←T P : AP,P−1

(1n)⇒ 1
]∣∣∣ ≤ εE,

where T P denotes the set of all tweakable permutations on M and with tweak space T W so that for any
tweakable permutation P , and for any tweak tw, P tw = P (tw, ·) and P tw,−1 = P−1(tw, ·) are the inverse of
each other.

We will focus on authenticated encryption with the following formalism.
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Definition 12 (Nonce-Based AEAD). A nonce-based authenticated encryption scheme with associated
data is a tuple AEAD = (Gen,Enc,Dec) such that, for any security parameter n, and keys in K generated from
Gen(1n):

– Enc : K×N ×AD×M→ C maps a key selected from K, a nonce value from N , some blocks of associated
data selected from AD, and a message from M to a ciphertext in C.

– Dec : K ×N ×AD × C →M∪ {⊥} maps a key from K, a nonce from N , some associated data from AD,
and a ciphertext from C to a message in M that is the decryption of that ciphertext, or to a special symbol
⊥ if integrity checking fails.

The sets K,N ,AD,M, C are completely specified by n. Given a key k ← Gen(1n), Enck(N,A,M) := Enc(k,N,A,M)
and Deck(N,A,M) := Dec(k,N,A,M) are deterministic functions whose implementations may be probabilistic.

Since we only focus on nonce-based authenticated encryption with associated data in this paper, we will
simply refer to it as authenticated encryption.

B Multi-Challenge Setting

We revisit the confidentiality against chosen-ciphertext and chosen-plaintext attacks with misuse and leakage
in the multi-challenge setting. While we have the equivalence of the chosen-ciphertext notions in the single-
challenge and the multi-challenge setting it is not the case with our chosen-plaintext notions.

B.1 Multi-challenge chosen-ciphertext case

A natural extension of the CCAML2 experiment of Figure 1 to the multi-challenge setting is given by the
following mCCAML2 experiment.

PrivKmCCAML2,b
A,AEAD,L (1n) is the output of the following experiment:

Initialization: generates a secret key k ← Gen(1n) and sets E , Ech ← ∅.
Leaking encryption queries: AL gets adaptive access to LEnc(·, ·, ·),

LEnc(N,A,M) outputs ⊥ if (N, ∗, ∗) ∈ Ech, else computes C ← Enck(N,A,M) and leake ← Lenc(k,N,A,M), updates E ←
E ∪ {N} and finally returns (C, leake).

Leaking decryption queries: AL gets adaptive access to LDec(·, ·, ·),
LDec(N,A,C) outputs ⊥ if (N,A,C) ∈ Ech, else computes M ← Deck(N,A,C) and leakd ← Ldec(k,N,A,C) and returns
(M, leakd); (Where M = ⊥ may occur.)

Challenge queries: on possibly many occasions AL submits (Nch, Ach,M
0,M1),

If M0 and M1 have different (block) length or Nch ∈ E or (Nch, ∗, ∗) ∈ E , returns ⊥; Else computes Cb ← LEnck(Nch, Ach,M
b)

and leakbe ← Lenc(k,Nch, Ach,M
b), updates Ech ← Ech ∪ {(Nch, Ach, C

b)} and finally returns (Cb, leakbe);

Decryption challenge leakage queries: AL gets adaptive access to Ldecch(·),
Ldecch(i) takes the i-th challenge ciphertext (Nch, Ach, C

b) ∈ Ech and outputs a leakage trace leakbd ← Ldec(k,Nch, Ach, C
b);

Finalization: AL outputs a guess bit b′ which is defined as the output of the game.

Fig. 6: The PrivKmCCAML2,b
A,AEAD,L (1n) game.

Definition 13 (mCCAML2). A nonce-based authenticated encryption with associated data AEAD = (Gen,Enc,Dec)
with leakage function pair L = (Lenc, Ldec) is (qe, qd, qc, qm, ql, t, ε)-mCCAML2 secure for a security parameter n
if, for every (qe, qd, qc, qm, ql, t)-bounded adversary AL, we have∣∣∣Pr

[
PrivKmCCAML2,0

A,AEAD,L (1n)⇒ 1
]
− Pr

[
PrivKmCCAML2,1

A,AEAD,L (1n)⇒ 1
]∣∣∣ ≤ ε,

when the adversary AL makes at most qe leaking encryption queries, qd leaking decryption queries, qc challenge
decryption leakage queries, qm leaking challenge queries and ql leakage evaluation queries on arbitrarily chosen
keys.
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Equivalent notions. If the adversary A in the multi-challenge experiment above is restricted to make at most
qm ≤ 1 challenge query then the mCCAML2 security and the CCAML2 security collide. Therefore, mCCAML2
security trivially implies CCAML2 security. The next theorem states that the both notions are in fact equivalent.

Theorem 6. The CCAML2 security is equivalent to the mCCAML2 security. Formally, for any (qe, qd, qc, qm, ql, t)-
bounded adversary AL against the mCCAML2 security of AEAD for a security parameter n, if AEAD is (qe +
qm − 1, qd + qc, qc, ql, t, εCCAML2)-CCAML2 secure for a security parameter n,∣∣∣Pr

[
PrivKmCCAML2,0

A,AEAD,L (1n)⇒ 1
]
− Pr

[
PrivKmCCAML2,1

A,AEAD,L (1n)⇒ 1
]∣∣∣ ≤ qm × εCCAML2.

Proof. Given an adversary AL against the mCCAML2 security of AEAD making qm leaking challenge queries,
we build qm adversaries A′i against the CCAML2 security of AEAD, for i = 1 to qm. To simulate the mCCAML2

game in front of AL, each A′i has to emulate the responses to the different types of queries in PrivKmCCAML2,b
A,AEAD,L (1n).

Therefore, A′i proceeds as follows with E ′i = ∅:

Leaking encryption queries: when AL queries LEnc(N,A,M),
If (N, ∗, ∗) ∈ E ′i, A′i returns ⊥, else A′i queries LEnc(N,A,M) and gets back either ⊥ or (C, leake) which it
sends to AL.

Leaking decryption queries: when AL queries LDec(N,A,C),
If (N,A,C) ∈ E ′i, A′i returns ⊥, else A′i queries LDec(N,A,C) and gets back either ⊥ or (M, leakd), where
M = ⊥ may occur, and sends it to AL.

Challenge queries: for j = 1 to qm, AL queries (N j
ch, A

j
ch,M

0
j ,M

1
j ),

If (N j
ch, ∗, ∗) ∈ E

′
i, A′i returns ⊥, else

– j < i, A′i queries its leaking encryption oracle LEnc(Nch, Ach,M
1) and gets either ⊥ or (C1

j , leak
1
e,j)

which it sends to AL. A′i updates E ′i = E ′i ∪ (N j
ch, A

j
ch, C

1
j );

– j = i, A′i queries its leaking challenge oracle on (N i
ch, A

i
ch,M

0
i ,M

1
i ) and gets either ⊥ or (Cb, leakbe)

which it sends to AL;

– j > i, A′i queries its leaking encryption oracle LEnc(Nch, Ach,M
0) and gets either ⊥ or (C0

j , leak
0
e,j)

which it sends to AL. A′i updates E ′i = E ′i ∪ (N j
ch, A

j
ch, C

0
j ).

Decryption challenge leakage queries: when AL queries Ldecch(j), for j = 1 to qm,

– j 6= i, if A′i sent ⊥ to the j-th challenge query made by AL it sends ⊥, else it queries its leaking decryption

oracle (N j
ch, A

j
ch, C

[j<i]
j ) and gets leak

[j<i]
d,j which it sends to AL;

– j = i, A′i queries its oracle Ldecch and receives either ⊥ or leakbd which it sends to AL.

Finalization: A′i outputs whatever is the AL’s output bit b′.

The list E ′i = {(N j
ch, A

j
ch, C

[j<i]
j )}qmj=1,j 6=i maintained by A′i serves to identify forbidden query attempts made by

AL that would not be deemed as such in the CCAML2 experiment played by A′i. The conclusion of the proof
easy follows from standard hybrid arguments, the assumption made on AEAD and by evaluating the efficiency
of the adversaries. ut

By removing the decryption challenge leakage oracle Ldecch from the game in Figure 6, we define the security
notion of mCCAML2∗. It is easy to see that CCAML2∗ security is equivalent to mCCAML2∗ security as well.

B.2 Multi-challenge chosen-plaintext case

A natural extension of the CPAML2 experiment to the multi-challenge setting is obtained by removing the
leaking decryption oracle of the above mCCAML2 experiment. The resulting experiment is called the mCPAML2
experiment, where the 2 highlights the access to the decryption challenge leakage oracle.
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Definition 14 (mCPAML2). A nonce-based authenticated encryption with associated data AEAD = (Gen,Enc,Dec)
with leakage function pair L = (Lenc, Ldec) is (qe, qc, qm, ql, t, ε)-mCPAML2 secure for a security parameter n if,
for every (qe, qc, qm, ql, t)-bounded adversary AL, we have∣∣∣Pr

[
PrivKmCPAML2,0

A,AEAD,L (1n)⇒ 1
]
− Pr

[
PrivKmCPAML2,1

A,AEAD,L (1n)⇒ 1
]∣∣∣ ≤ ε,

when the adversary AL makes at most qe leaking encryption queries, qc challenge decryption leakage queries,
qm leaking challenge queries and ql leakage evaluation queries on arbitrarily chosen keys.

Non equivalent notions. In general, while mCPAML2 security obviously implies CPAML2 security, the con-
verse is false.

Theorem 7. Assuming there exists a CPAML2 secure authenticated encryption then there exists CPAML2 secure
authenticated encryption which is not mCPAML2 secure.

Proof. Let AEAD = (Gen,Enc,Dec) be a CPAML2 secure authenticated encryption with leakage function pair
L = (Lenc, Ldec). Then, we build the following authenticated encryption AEAD′ = (Gen′,Enc,Dec) with leak-
age function pairs L′ = (Lenc, L

′
dec), where N0, N1 below are the outputs of a publicly samplable distribution

parametrized by n:

Gen′(1n): runs k ← Gen(1n), k0 ← Gen(1n) and computes k1 = k ⊕ k0. The secret key is defined as (k, k0, k1).
L′dec((k, k0, k1), N,A,C) outputs Ldec(k,N,A,C) and possibly the following additional decryption leakage:

– If N = N0, gives k0;
– If N = N1, gives k1.

Since an adversary against the CPAML2 security of AEAD′ will never receive leakage traces for more than one
ciphertext of the form (N,A,C), it will never get both k0 and k1. Since they are random shares of the key
k, the CPAML2 security still holds from AEAD because we can simulated the additional leakage by picking
k′ ← Gen(1n) and set k0 = k′ or k1 = k′ on-the-fly when needed. However, an mCPAML2 adversary simply has
to make two challenge queries involving N0 and N1 and then to call the decryption challenge leakage oracle
Ldecch on the corresponding challenge ciphertexts received as answers to get k0 and k1, from which the secret
key k = k0 ⊕ k1 can be efficiently computed. ut

By removing the Ldecch oracle as well we find back the equivalence of CPAML := CPAML2∗, for the single
challenge notion, with mCPAML := mCPAML2∗, for the multi challenge notion.

C Proof of Theorem 1

Let AEAD = (Gen,Enc,Dec) with leakage function L = (Lenc, Ldec) be MR, CPAML2 with respect to L and
CIML2 with respect to L∗ as such authenticated encryption exists by assumption. Then we build AEAD′ =
(Gen′,Enc,Dec) with leakage L′ = (L′enc, L

′
dec) such that, for a fixed message M † ∈M:

Gen′(1n): returns k ← Gen(1n) and k′ ← Gen(1n);
L′enc((k, k

′), N,A,M): outputs (leake, C
′, leake′) where leake = Lenc(k,N,A,M) (comes from the computation

of C ← Enck(N,A,M)), the ciphertext C ′ = Enck′(N,A,M) and consequently leake′ = Lenc(k
′, N,A,M);

L′dec((k, k
′), N,A,C): outputs leakd = Ldec(k,N,A,C) if M 6= ⊥ (which comes from the computation of

M ← Enck(N,A,C)) and outputs (leakd, C
†, leak†e′) otherwise, where leakd = Ldec(k,N,A,C), C† ←

Enck′(N,A,M
†) and consequently also leak†e′ = Lenc(k

′, N,A,M †).

From a black-box standpoint, k′ does not even exist so AEAD′ is still MR. Therefore, let us focus on the security
notions involving leakages.

CPAML2. In the PrivKCPAML2,b
A′,AEAD′,L′(1

n) game, the adversary A′ does not have access to L′dec except from the

challenge decryption leakage through L′decch. But since the challenge ciphertext is valid, L′decch = Ldecch which

returns Ldec(k,Nch, Ach, C
b). Consequently, an adversary A in PrivKCPAML2,b

A,AEAD,L can easily simulate the view of A′
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simply by picking k′ ← Gen(1n) transmitting all the queries to its own oracles and just add the encryption
leakage (C ′, leake′) if necessary.

CIML2. In the PrivKCIML2
A′,AEAD′,(L′)∗(1

n) game, the adversary A′ still needs to forge a fresh ciphertext of AEAD

with key k while the additional unbounded leakage given by (L′)∗ only depends k′. Then, it is straightforward
to build a reduction to PrivKCIML2

A,AEAD,L∗(1
n).

¬CCAML2∗. We build a distinguisher A′ against AEAD′. In the security game PrivKCCAML2,b
A′,AEAD′,L′(1

n), the

adversary queries leaking decryption of (Nch, Ach, C) for any chosen Nch, Ach and C. If the ciphertext is

valid, it receives some M 6= ⊥ and it sets (M0, C0) = (M,C). If not, it receives (⊥, (leake, C†, leak†e′)) from
LDeck,k′(Nch, Ach, C) and sets (M0, C0) = (M †, C†). In the challenge phase, A′ sends (Nch, Ach,M

0,M1) for
any distinct M1 than M0. Since the pair (Nch, Ach) has never been queried for (leaking) encryption, A′ does not
receives ⊥. In the answer LEnck(Nch, Ach,M

b), A′ gets Cb. If Cb equals the known C0, A′ outputs 0, otherwise
it outputs 1. Obviously the distinction holds with probability 1.

Now, it is easy to see that AEAD′ with leakage L′ fulfills all the desired requirements of the theorem based
on the existence of AEAD. ut

D Proof of Theorem 2

Let AEAD = (Gen,Enc,Dec) with leakage function L = (Lenc, Ldec) be MR, CCAML2 with respect to L and
PIML2 with respect to L∗ as such authenticated encryption exists by assumption. Then we build AEAD′ =
(Gen′,Enc,Dec) with leakage L′ = (L′enc, Ldec) as follows, where N †, A†,M †, N◦, A◦,M◦ below are the outputs
of a publicly samplable distribution parametrized by n:

Gen′(1n): generates k ← Gen(1n). Then, it selects distinct nonces N †, N◦ ∈ N , distinct A†, A◦ ∈ AD and
distinct messages M †,M◦ ∈ M. It computes the ciphertext C† ← Enck(N

†, A†,M †) and splits it into four
random shares: it samples three |C†|-bit strings R0, R1, S0 and sets S1 = C† ⊕ R0 ⊕ R1 ⊕ S0. It outputs
(k, sh) where sh = (R0, R1, S0, S1).

L′enc((k, sh), N,A,M): outputs leake = Lenc(k,N,A,M) (which comes from the computation of the ciphertext
C ← Enck(N,A,C)) as well as the additional value B but only in four cases:
– Case 1.1: (N,A) = (N †, A◦),M 6= M◦: B = R0;
– Case 1.2: (N,A) = (N †, A◦),M = M◦: B = R1;
– Case 2.1: (N,A) = (N◦, A†),M 6= M †: B = S0;
– Case 2.2: (N,A) = (N◦, A†),M = M †: B = S1.

If we drop the leakage functions AEAD′ shows no deviation from AEAD and thus is still MR. It remains to
establish the desired leakage-related claims:

CCAML2. We prove that if there is a CCAML2 adversary A′ against AEAD′, then there is an adversary A
which uses A′ to break the CCAML2 security of AEAD. In detail, once PrivKCCAML2,b

A,AEAD,L(1n) is setup, A(1n) publicly

sample N †, A†,M †, N◦, A◦,M◦ and sends to A′ whatever is specified by AEAD′. Even if the ciphertext C† =
Enck(N

†, A†,M †) has never been computed its length is fully determined by n and (N †, A†,M †). Therefore, A
picks random |C†|-bit strings R1, S0, S1. Then it runs A′ and simulates PrivKCCAML2,b

A′,AEAD′,L′ using its own interaction

PrivKCCAML2,b
A,AEAD,L. For each query from A′, the actions of A are as follows:

Leaking (non-challenge) encryption queries: On input (N,A,M),
(1) If N = N † appears for the first time in a leaking encryption query (and so not in the challenge query)
A queries a leaking encryption on (N †, A†,M †) to its own oracle and gets back C† and then computes
R0 = C† ⊕R1 ⊕ S0 ⊕ S1;

(2) A queries its own leaking encryption oracle on (N,A,M) and gets back some (C, leake) or possibly ⊥
(for forbidden queries);

(3) A checks whether it should append an additional leakage B to (C, leake) depending on (N,A,M) falls
into one of the four cases described above.

A respectively returns (C, leake) or ⊥ or even (C, leake, B) to A′ according to the above situations.
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Leaking decryption queries: on input (N,A,C), A simply calls its own oracle and reply to A′ with the answer
it received.

Leaking challenge query: on input (Nch, Ach,M
0,M1), A sends it to its leaking challenge oracle and gets the

tuple (Cb, leakbe) or possibly ⊥. If not ⊥,
(1) if (Nch, Ach) = (N †, A◦), A returns (Cb, leakbe, R1). In other words, the additional leakage is always R1

regardless of the messages M0,M1;
(2) if (Nch, Ach) = (N◦, A†), A returns (Cb, leakbe, S0) regardless of M0,M1;
(3) else, A just returns (Cb, leakbe).

Challenge decryption leakage: returns the corresponding decryption leakage of the challenge ciphertext.

Eventually, A outputs the bit returned by A′.
Now we explain why A properly emulates the CCAML2 game in front of A′. First, as long as C† is returned

to A in a leaking encryption queries A′ can not make a leaking challenge query with Nch = N † and then case
(i) in the challenge phase will not occur since A will receive ⊥ and will send it to A′ as expected by the game.
Therefore, B = R0 or B = R1 cannot be among the encryption leakage of the challenge ciphertext. Second, if
N◦ appears at first in a leaking encryption query, case (ii) of the challenge phase will not occur and B = S0
or B = S1 will never be among the encryption leakage of the challenge ciphertext as in AEAD′. We stress that
R0, R1, S0, S1 might appear several times in next responses to leaking encryption queries but exactly as in the
honest run of PrivKCCAML2,b

A′,AEAD′,L′ . Third, if Nch = N † appears for the first time in the challenge phase, case (i) of

the leaking encryption query phase will not occur and A will receive ⊥ and send it to A′ if A′ queries a leaking
encryption involving N † afterwards, which corresponds to the right view of the game. Therefore, R0 will never
be defined and if we also have Ach = A◦ the additional leakage Bb = R1 will be given in the encryption leakage
of the challenge ciphertext. Here it is easy to see, since A′ will receive a single share among those specified
in Case 1.1 and Case 1.2 of L′enc, that this distribution is exactly as the one expected from AEAD′. Four, if
Nch = N◦ appears for the first time in the challenge phase, a similar argument shows that A′ will only get
a single share among those specified in Case 1.1 and Case 1.2 of L′enc and only if Ach = A† independently of
the choice M0,M1. Once again, this is exactly the right distribution where Bb = S0 is random and remains
independent of the rest of the game. Five, all the previous arguments show that in any of these situations the
potential additional leakage B (Bb included) can be perfectly emulated by A so that we have

Pr
[
PrivKCCAML2,b

A,AEAD,L(1n)⇒ 1
]

= Pr
[
PrivKCCAML2,b

A′,AEAD′,L′(1
n)⇒ 1

]
.

Finally, in any other cases the above conclusion obviously holds as well.

PIML2. We prove that if there is a PIML2 adversary A′ against AEAD′, then there is an adversary A which
uses A′ to break the PIML2 security of AEAD. In detail, once PrivKPIML2,b

A,AEAD,L(1n) is setup, A(1n) publicly sample

N †, A†,M †, N◦, A◦,M◦ and sends to A′ whatever is specified by AEAD′. Since it is assumed that the size of
C† = Enck(N

†, A†,M †) is known, A can pick random |C†|-bit strings R0, R1, S0. Then it runs A′ and simulates

PrivKPIML2,b
A′,AEAD′,L′ using its own interaction PrivKPIML2,b

A,AEAD,L such that any query made by A′ is simply relayed by
A to its oracles and answered back with the answer possibly augmented with an additional encryption leakage
according to the different four cases defined in L′enc except in Case 2.2, namely if A′ requests an encryption
of (N◦, A†,M †). In the latter case, A first queries an encryption of (N †, A†,M †) and gets back C†. Then, A
proceeds as in the other cases but adds the leakage S1 = C† ⊕R0 ⊕R1 ⊕ S0.

It should be straightforwards that the simulation is perfect. Furthermore, as long as A′ does not get the
share S1 all the information in its view is exactly the same as the information A gets in its PIML2 view and
therefore any associated-data/plaintext forgery computed by A′ is a valid forgery against AEAD. In order to
get some information about C†, A′ must receive the four shares R0, R1, S0, S1 but it means that it queried
(N◦, A†,M †) but then C† = R0⊕R1⊕S0⊕S1 is no more considered as a valid forgery since the pair (A†,M †)
is already involved in a leaking encryption query. As a conclusion A never makes a leaking encryption query
involving (A,M) which has never been among a leaking encryption query made by A′ at the first place.

Note that this reduction works in the unbounded leakage setting as well.

¬CIML2. We mount a ciphertext forgery attack against AEAD′. LetA′ be an adversary which givenN †, A†,M †, N◦,
A◦,M◦ sequentially queries a leaking encryption on (N †, A◦,M †), (N †, A◦,M◦), (N◦, A†,M◦), and (N◦, A†,M †)
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which fall into the four cases where each one of the shares R0, R1, S0, S1 are additionally given in the encryption
leakage. Then, A′ output C† = R0 ⊕R1 ⊕ S0 ⊕ S1 which is a valid encryption of (N †, A†,M †) which has never
been received as an answer to some leaking encryption query. ut

As a side note, (i) it can be seen the leakage functions L′ = (L′enc, L
′
dec) of the counterexample AEAD′

preserves the deterministicness of the original one L = (Lenc, Ldec); (ii) we never require that |M| > 2.

E Completing the Definitions’ ZOO

To give a full picture of the different security flavors of authenticated encryption with misuse and leakage, we
list all the security definitions that can be derived from our confidentiality and integrity notions. The study of
all their relations shows that, apart from the obvious implications between the different flavors of confidentiality
(resp., integrity), all the notions are separated from each other.

In the remaining, we first concentrate on the single challenge notions in E.1 and E.2, then extend the
discussion to the multi-challenge setting in E.3.

E.1 Security Definition List: Single Challenge Setting

The CCAML2 security game PrivKCCAML2,b
A,AEAD,L is defined in Figure 1, Section 3.1. By dropping some accesses to

the distinct oracles of this game we naturally derive other confidentiality notions. For instance this is how
we defined CPAML2 by removing items (2) and (4) from the security game. By doing similar modifications
we can find many different integrity notions from the CIML2 security game PrivKCIML2

A,AEAD,L defined in Table 1,
Section 2.2.

Prefix-Suffix Definitions. In all the notions derived from CCAML2 and CIML2 we only focus on those
capturing leakage. Therefore all the definitions below keep the “L” in their notation. This leads to considering
16 different notions denoted as “pre-suf” with prefix pre ∈ {CCA,CPA,CI,PI} and suffix suf ∈ {ML2,ML, L2, L}.
We recall that when there is no “M” in suf the security game is nonce-respecting, which only restricts leaking
encryption queries.

Zoo of Confidentiality. For pre ∈ {CCA,CPA} we obtain the following 8 notions, by starting from CCAML2 and
by removing one security layer at a time:

CCAML2 → CCAML,CCAL2,CPAML2 → CPAML,CPAL2,CCAL→ CPAL

Definition 15. A nonce-based authenticated encryption with associated data AEAD = (Gen,Enc,Dec) with
leakage L = (Lenc, Ldec) is (qpre-suf , ql, t, ε)-pre-suf secure for a security parameter n if, for every (qpre-suf , ql, t)-
bounded adversary AL, we have pre ∈ {CCA,CPA} and∣∣∣Pr

[
PrivKpre-suf,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKpre-suf,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

when the adversary AL makes at most qpre-suf queries defined in PrivKpre-suf,b
A,AEAD,L below, and ql leakage evaluation

queries on arbitrarily chosen keys.

(i) PrivKCCAML2,b
A,AEAD,L: qCCAML2 = (qe, qd, qc), the CCAML2 game, see Figure 1.

(ii) PrivKCCAML,b
A,AEAD,L: qCCAML = (qe, qd) and the CCAML security game “removes 2” from the CCAML2 game

meaning that Ldec is removed from all the oracles. In other words items (2),(4) become black-box and (5)
disappears with Ldecch.

(iii) PrivKCCAL2,b
A,AEAD,L: qCCAL2 = (qe, qd, qc) and the CCAL2 security game “removes M” from the CCAML2 game,

i.e., a nonce-respecting version of CCAML2.
(iv) PrivKCPAML2,b

A,AEAD,L: qCPAML2 = (qe, qc) and no decryption oracle access is given in Figure 1: items (2) and (4) are
removed but not item (5), hence the 2.
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(v) PrivKCPAML,b
A,AEAD,L: qCPAML = (qe) and the CPAML game only keeps items (1) and (3) from the CCAML2 game,

i.e., like the CPAML2 game without Ldecch.

(vi) PrivKCPAL2,b
A,AEAD,L: qCPAL2 = (qe, qc), the CPAL2 game is a nonce-respecting version of the CPAML2. Ldecch is still

available in item (5).

(vii) PrivKCCAL,b
A,AEAD,L: qCCAL = (qe, qd) and the CCAL is a nonce-respecting version of CCAML, i.e., black-box

decryption and nonce-respecting leaking encryption.

(viii) PrivKCPAL,b
A,AEAD,L: qCPAL = (qe) and the CPAL game only keeps nonce-respecting leaking encryption.

Zoo of Integrity. For pre ∈ {CI,PI} we obtain the following 8 notions, by starting from CIML2 and by removing
one security layer at a time:

CIML2 → CIML,CIL2,PIML2 → PIML,PIL2,CIL→ PIL

Definition 16. A nonce-based authenticated encryption with associated data AEAD = (Gen,Enc,Dec) with
leakage L = (Lenc, Ldec) is (qe, dd, ql, t, ε)-pre-suf secure for a security parameter n if, for every (qe, qd, ql, t)-
bounded adversary AL, we have pre ∈ {CI,PI} and

Pr
[
PrivKpre-suf

A,AEAD,L(1n)⇒ 1
]
≤ ε,

when the adversary AL makes at most qe encryption queries and qd decryption queries defined in PrivKpre-suf
A,AEAD,L

below, and ql leakage evaluation queries on arbitrarily chosen keys.

(i) PrivKCIML2
A,AEAD,L: the CIML2 game, see Table 1.

(ii) PrivKCIML
A,AEAD,L: the CIML game removes Ldec, i.e., decryption is black-box.

(iii) PrivKCIL2
A,AEAD,L: the CIL2 game is a nonce-respecting version of CIML2.

(iv) PrivKPIML2
A,AEAD,L: in the PIML2 game the winning condition changed (Table 1).

(v) PrivKPIML
A,AEAD,L: the PIML game removes Ldec from PIML2.

(vi) PrivKPIL2
A,AEAD,L: the PIL2 game is a nonce respecting version of PIML2.

(vii) PrivKCIL
A,AEAD,L: the CIL game is a nonce-respecting version of CIML2 free of Ldec.

(viii) PrivKPIL
A,AEAD,L: the PIL game is a nonce-respecting version of PIML2 free of Ldec.

Equivalence with Existing Notions. Among the above 16 notions 3 of them are equivalent to pre-existing
ones: somehow CPAL appeared in [32] under the name of LMCPA, CIML was introduced in [8] and CIML2 was
introduced in [9].

CPAL is our weakest confidentiality notion. In [32], LMCPA, after leakage-resilient, multiple-block chosen-
plaintext security, was defined for IV-based encryption schemes, and was actually an artifact of their security
analysis approach rather than a general security definition. However, by tweaking their security game, the
notion could be used as the general definition for IND-CPA security with leakage corresponding to our CPAL
notion.

The notions of CIML2 and CIML that we define in this paper consist of a rewriting of the definitions
introduced in [8]. We simply adapt the definition to a general and coherent formalism.

E.2 Relations Within The Zoo: Single Challenge Setting

We picture all the 16 notions with their natural implications in Fig. 7.

Theorem 8 (Long diagonals (informal)). There exist authenticated encryptions AEAD = (Gen,Enc,Dec)
showing that

CCAML 6� CPAL2 CCAL2 6� CPAML CPAML2 6� CCAL

CIML 6� PIL2 CIL2 6� PIML PIML2 6� CIL
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CPAML2CCAML2

CPAMLCCAML

CPAL2CCAL2

CPALCCAL

PIML2CIML2

PIMLCIML

PIL2CIL2

PILCIL

Fig. 7: Cubes for all the single-challenge security notions with different combinations of C/P (Cipher-
text/Plaintext), M (Misuse), and 1 or 2 (the number of leaking oracles). (Top) the cube for the confidentiality
notions. (Bottom) the cube for the integrity notions. Each arrow indicates an implication (to make it clearer,
we picture some arrows in dashed form). As will be seen, these implications are all strict.

As a corollary all the arrows of Figure 7 are strict. To prove the theorem we only have to show 2 of the 3
assertions for confidentiality (resp., integrity).

Proof (Sketch). We first show that a security notion X without decryption leakages cannot imply the correspond-
ing notion X2 with decryption leakages. This would in particular establish six separations: CCAML ; CPAL2,
CPAML ; CCAL2, CCAL ; CPAML2, CIML ; PIL2, PIML ; CIL2, and CIL ; PIML2. For this, assume that
AEAD is a X secure scheme with master-key K. We define a new scheme AEAD∗, which is the same as AEAD
except that its leakages for decryption queries explicitly include the master-key K. In this way, AEAD∗ is clearly
not X2 secure (as the key is leaked). But it remains X secure, since this enhancement of decryption leakage
cannot be observed in the X security game.

We then show that a security notion X without supporting nonce-misuse resistance/resilience cannot imply
the corresponding notion XM with misuse resilience. This would establish four separations: CPAL2 ; CCAML,
CCAL2 ; CPAML, PIL2 ; CIML, and CIL2 ; PIML. For this, assume that AEAD = (Gen,Enc,Dec) with
leakage L = (Lenc, Ldec) is a X secure scheme. We define a new scheme AEAD∗ = (Gen′,Enc,Dec) with leakage
L = (L′enc, L

′
dec) as follows:

Gen′(1n): generates two keys k ← Gen(1n) and k′ ← Gen(1n), and selects a public pair (N †, A†).

L′enc((k, k
′), N,A,M): outputs leake = Lenc(k,N,A,M) as well as the additional value B but in only two cases:

– if N = N † and A = A†, B = k ⊕ k′;
– if N = N † and A 6= A†, B = k′;

Clearly, when multiple encryption queries with the same nonce N † is made, then both k ⊕ k′ and k′ could
be leaked, and the key of the underlying scheme AEAD could be recovered. Therefore, AEAD∗ is not misuse-
resistant in any security setting. This is not the case in the nonce-respecting setting, and it thus remains X
secure.

We finally consider the two remaining ones CPAML2 ; CCAL and PIML2 ; CIL: the proofs follow the
standard idea of showing CCA;CPA and INT-PTXT ; INT-CTXT. In detail, consider CPAML2 ; CCAL first,
and assume that AEAD = (Gen,Enc,Dec) is CPAML2 secure. We define a new scheme AEAD∗ = (Gen,Enc,Dec′)
as follows:

Dec′k(N,A,C): outputs Deck(N,A,C)‖k, i.e. the main key k is appended to the decrypted plaintext.

This very artificial scheme “gives up” by appending its key to the decrypted message upon any decryption
query. Therefore, it cannot be CCA secure under any reasonable definition. Thus CPAML2 ; CCAL.

For PIML2 ; CIL, assume that AEAD = (Gen,Enc,Dec) is PIML2 secure. We define a new scheme AEAD∗ =
(Gen,Enc′,Dec′) as follows:

Enc′k(N,A,M): outputs Enck(N,A,M)‖0‖0, i.e., two bits are appended to the ciphertext.

Dec′k(N,A,C): parses C = C ′‖b‖b′, and outputs Deck(N,A,C
′) if and only if b = b′.

Then it’s clear that AEAD∗ is not CIL since from any valid ciphertext (N,A,C‖0‖0) obtained before the
adversary could use (N,A,C‖1‖1) as a forgery. Yet, it remains PIML2 secure. ut
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Remark. By revisiting the proof for MR∧CCAML2∧PIML2 ; CIML2 in subsection 3.3, it can be seen that the
exhibited CIML2 adversary only rely on the leaking encryption. This means it also breaks the CIML security.
Therefore, we already know that MR ∧ CCAML2 ∧ PIML2 ; CIML.

E.3 Extending to the Multi-challenge Setting

Please recall the definition of PrivKmCCAML2,b
A,AEAD,L from B. Similarly to E.1, by dropping some accesses to the distinct

oracles of this game we derive the other confidentiality notions. Formally,

Definition 17. A nonce-based authenticated encryption with associated data AEAD = (Gen,Enc,Dec) with
leakage L = (Lenc, Ldec) is (qmpre-suf , ql, t, ε)-pre-suf secure for a security parameter n if, for every (qmpre-suf , ql, t)-
bounded adversary AL, we have pre ∈ {CCA,CPA} and∣∣∣Pr

[
PrivKmpre-suf,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKmpre-suf,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

when the adversary AL makes at most qmpre-suf queries defined in PrivKmpre-suf,b
A,AEAD,L below, and ql leakage evaluation

queries on arbitrarily chosen keys.

(i) PrivKmCCAML2,b
A,AEAD,L : qmCCAML2 = (qe, qd, qc, qm), the mCCAML2 game, see Figure 1.

(ii) PrivKmCCAML,b
A,AEAD,L : qmCCAML = (qe, qd, qm) and the mCCAML security game “removes 2” from the mCCAML2

game meaning that Ldec is removed from all the oracles.

(iii) PrivKmCCAL2,b
A,AEAD,L: qmCCAL2 = (qe, qd, qc, qm) and the mCCAL2 security game “removes M” from the mCCAML2

game, i.e., a nonce-respecting version of mCCAML2.

(iv) PrivKmCPAML2,b
A,AEAD,L : qmCPAML2 = (qe, qc, qm) and no decryption oracle access is given.

(v) PrivKmCPAML,b
A,AEAD,L : qmCPAML = (qe, qm). This game is like the mCPAML2 game without Ldecch.

(vi) PrivKmCPAL2,b
A,AEAD,L: qmCPAL2 = (qe, qc, qm), the mCPAL2 game is a nonce-respecting version of the mCPAML2.

(vii) PrivKmCCAL,b
A,AEAD,L: qmCCAL = (qe, qd, qm) and the mCCAL is a nonce-respecting version of mCCAML.

(viii) PrivKmCPAL,b
A,AEAD,L: qmCPAL = (qe, qm) and the mCPAL game only keeps nonce-respecting leaking encryption.

Relations Among Multi-challenge Notions. Obviously, if mpre − suf ⇔ pre − suf for every combination
of pre ∈ {CCA,CPA} and suf, then the relations proved in E.2 trivially extends to the multi-challenge setting.
However, this is not always the case: for CPA notions with (challenge) decryption leakages the single-challenge
notion does not imply the corresponding multi-challenge notion, see Theorem 7 for CPAML2 ; mCPAML2. In
a similar vein, it can be seen CPAL2 ; mCPAL2.

We thus reconsider the relations around mCPAML2 and mCPAL2. The equivalence relations shown in does
establish

mCCAL2 6� mCPAML.

This means we need to reconsider the two claims

mCCAML 6� mCPAL2, and mCPAML2 6� mCCAL.

However, their proofs have been included in the proof of Theorem 8 as well: recall that

– We first showed that a notion X without decryption leakages cannot imply the corresponding notion X2 with
decryption leakages. This is independent of the number of challenges, thus showing mCPAML ; mCCAL2
and mCCAL ; mCPAML2 as well.

– We then showed that a notion X without supporting nonce-misuse resistance/resilience cannot imply the
corresponding notion XM with misuse resilience. So mCCAL2 ; mCPAML.

– We finally showed IND-CPA variants cannot imply IND-CCA variants. This covers mCPAML2 ; mCCAL.

So the cube in Fig. 7 (left) holds for the multi-challenge setting as well.
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F EavDL and AEML

The notion EavDL was introduced by Berti et al. [8]. It formalizes message confidentiality in a context where
an adversary can observe decryption leakages but not the corresponding messages. This setting is motivated
by applications such as secure bootloading and bitstream decryption. In this section, we recall this notion, and
make discussion on the links between this notion and the other ones.

F.1 mEavDL and Its Extension mEavDL2

The original definition given by Berti et al. is of a single-challenge form. To save space, we concentrate on its
multi-challenge variant mEavDL, which is based on the experiment in Fig. 8.

PrivK
mEavDL(2),b

AL,AEAD
(1n) is the output of the following experiment.

Initialization: generates a secret key k ← Gen(1n) and sets Ech ← ∅.
Challenge queries: on possibly many occasions AL submits (Nch, Ach,M

0,M1),
If M0 and M1 have different (block) length or Nch ∈ E , returns ⊥; Else updates Ech ← Ech ∪ {Nch} and finally
– PrivKmEavDL,b

AL,AEAD
: computes and returns Cb ← Enck(Nch, Ach,M

b);

– PrivKmEavDL2,b

AL,AEAD
: computes and returns (Cb, leakbe)← LEnck(Nch, Ach,M

b).

Decryption leakage queries: AL gets adaptive access to LDec(·, ·, ·),
LDec(N,A,C) outputs leakd ← Ldec(k,N,A,C).

Finalization: AL outputs a guess bit b′. If b = b′, return 1, else return 0.

Fig. 8: The PrivKmEavDL,b
AL,AEAD

and PrivKmEavDL2,b
AL,AEAD

games.

Note that the challenge nonce has to be respecting for both mEavDL and mEavDL2. If we restrict the number
of challenges to 1 in mEavDL then we recover the original EavDL notion of Berti et al. [8]

Definition 18 (mEavDL: Eavesdropper Security with Decryption Leakage). An authenticated encryp-
tion AEAD = (Gen,Enc,Dec) with decryption leakage function Ldec provides (qm, qd, t, ε)-indistinguishability of
ciphertexts against eavesdropping with differential leakage attacks for a security parameter n, or is (qm, qd, t, ε)-
mEavDL secure for short, if for any adversary A that makes at most qm challenge queries, qd queries to Ldec,
and runs in time t,

Pr
[
PrivKmEavDL,b

AL,AEAD
(1n)⇒ 1

]
≤ 1

2
+ ε

for the PrivKmEavDL,b
AL,AEAD

game defined in Fig. 8.

Stronger Variant: mEavDL2. We define a strengthened variant mEavDL2, which is mEavDL enhanced with
challenge encryption leakages so that the “2” means that both the leaking oracles in encryption and decryption
are available.

Definition 19 (mEavDL2: Eavesdropper Security with Encryption & Decryption Leakage). An au-
thenticated encryption AEAD = (Gen,Enc,Dec) with leakage function pair L = (Lenc, Ldec) provides (qm, qd, t, ε)-
indistinguishability of ciphertexts against eavesdropping with differential leakage attacks in encryption and de-
cryption for a security parameter n, or is (qm, qd, t, ε)-mEavDL2 secure for short, if for any adversary A that
makes at most qm leaking challenge queries, qd queries to Ldec, and runs in time t,

Pr
[
PrivKmEavDL,b

AL,AEAD
(1n)⇒ 1

]
≤ 1

2
+ ε

for the PrivKmEavDL2,b
AL,AEAD

game defined in Fig. 8.

mCCAML2 ⇒ mEavDL2. Our definition of mCCAML2 almost explicitly incorporates the elements of mEavDL2,
and thus mCCAML2⇒ mEavDL2. This means CCAML2 captures all pre-existing confidentiality notions.
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F.2 mCCAML2∗ ; EavDL

In this subsection, we show the necessity of including challenge decryption leakage, by showing that the weakened
version mCCAML2∗ does not imply EavDL (neither EavDL2, of course). The idea is that if the decryption leakages
always leak the decrypted plaintext, then it remains possible to retain mCCAML2∗ security; yet, this feature
immediately ruins out the possibility of EavDL, since in the EavDL security game, the challenge plaintext M b

has to be hidden from A.
More clearly, let AEAD = (Gen,Enc,Dec) with leakage function L = (Lenc, Ldec) be mCCAML2∗ secure with

respect to L. Then we build AEAD′ = (Gen,Enc,Dec) with leakage L′ = (Lenc, L
′
dec) such that:

L′dec(k,N,A,C): outputs leakd = Ldec(k,N,A,C) if Deck(N,A,C) = ⊥ and outputs (leakd,M) otherwise, where
leakd = Ldec(k,N,A,C), M = Deck(N,A,C).

It’s not hard to see AEAD∗ remains mCCAML2∗ secure, since the additional decryption leakage (the correct
message) essentially contains no new information. However, during the EavDL security game, the challenge
plaintext M b is directly given by this leakage, allowing to precisely determine the value of b.

F.3 MR ∧ mCPAML2 ∧ CIML2 ∧ mEavDL2 ; CCAML2∗

In subsection 3.3 we have proved MR ∧ CPAML2 ∧ CIML2 ; CCAML2∗. In this subsection we prove an even
stronger claim of MR ∧ mCPAML2 ∧ CIML2 ∧ mEavDL2 ; CCAML2∗. The idea stems from the following
observations:

– in the MR game, no leakage traces are given;
– in the mCPAML2 game, decryption leakage is only available for challenge ciphertexts, and thus “nonce

respecting”;
– in the CIML2 game, additional information unrelated to the key k but only to messages M are irrelevant;
– in the mEavDL2 game, assuming CIML2 holds, the decryption leakage oracle will essentially be “nonce

respecting”;
– on the other hand, in the CCAML2∗ game, many valid decryption leakages with respect to a single are

available through trivial leaking decryption query, i.e. from ciphertext returned by the leaking encryption
oracle.

Let AEAD = (Gen,Enc,Dec) be MR, mCPAML2 ∧ mEavDL2 with respect to leakage function L = (Lenc, Ldec)
and CIML2 with respect to L∗. Then we build AEAD′ = (Gen′,Enc,Dec) with leakage function L′ = (L′enc, L

′
dec)

as follows, where N †, N◦,M † below are the outputs of a publicly samplable distribution parametrized by n:

Gen′(1n): generates k ← Gen(1n) and samples two random bits t0, t1. It returns (k, sh) where sh = (t0, t1).

L′enc((k, sh), N,A,M): outputs leake = Lenc(k,N,A,M) as well as the additional value B but only in two cases:
– Case 1: N = N † and M = M †, then B = t0 ⊕ t1 ⊕ 1;
– Case 2: N = N † and M 6= M †, then B = t0 ⊕ t1.

L′dec((k, sh), N,A,C): outputs leakd = Ldec(k,N,A,C) as well as the additional value B if Deck(N,A,C) =
M 6= ⊥ and:
– Case 1: N = N◦ and M = M †, then B = t0;
– Case 2: N = N◦ and M 6= M †, then B = t1.

We establish the desired claims in turn:

MR. Both scheme are the same from a black-box perspective.
CIML2. Given a CIML2 adversary A′ against AEAD′, it’s not hard to see a CIML2 adversary A could use the

oracles of AEAD and internally sampled bits t0 and t1 to perfectly simulate the oracles of AEAD′ in front of A′.
By this, AEAD′ is CIML2 as long as AEAD is CIML2.

mCPAML2. we show that if there is a mCPAML2 adversary A′ against AEAD′, then there is an adversary
A which uses A′ to break the mCPAML2 security of AEAD. In detail, once PrivKCCAML2,b

A,AEAD,L(1n) is setup, A(1n)

publicly samples N †, N◦,M † and sends to A′ whatever is specified by AEAD′. A also picks two random bits
t0, t1. Then it runs A′ and simulates PrivKmCPAML2,b

A′,AEAD′,L′ using its own interaction PrivKmCPAML2,b
A,AEAD,L . For each query

from A′, the actions of A are as follows:
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Leaking (non-challenge) encryption queries: On input (N,A,M),

(i) A queries its own leaking encryption oracle on (N,A,M) and gets back some (C, leake) or possibly ⊥;

(ii) If not ⊥, A checks whether it should append an additional leakage B to (C, leake) in the case (N,A,M)
falls into one of the two cases described above.

A respectively returns (C, leake) or ⊥ or even (C, leake, B) to A′ according to the above situations.

Leaking challenge query: on input (Nch, Ach,M
0,M1), A sends it to its leaking challenge oracle and gets the

tuple (Cb, leakbe) or possibly ⊥. In the latter case it returns ⊥ as well, otherwise

(i) if Nch = N †, regardless of what is encrypted by the challenge oracle, A uniformly samples a new random
bit s∗ and returns (Cb, leakbe, s

∗);

(ii) else, A just returns (Cb, leakbe).

Challenge decryption leakage: on input i, A sends i to its challenge decryption leakage oracle and gets leakbd.
Then,

(i) if the i-th challenge ciphertext contains Nch = N◦, A returns (leakbd, t0);

(ii) else, A just returns leakbd.

Eventually, A outputs the bit returned by A′.

Now we explain why A properly emulates the mCPAML2 game in front of A′. As long as N † is never involved
in a challenge query, the additional decryption leakage associated to the nonce N◦ is independent of the involved
message. Therefore, the simulation is of no deviation.

We next concentrate on the case N † is first involved in a challenge query. Since N † can only appear once
there it means that A will never sees either t0 ⊕ t1 ⊕ 1 or t0 ⊕ t1. By the definition of mCPAML2 we know
there is at most one challenge query under the nonce N◦. This means that even A′ would have been received
either t0 or t1 in the real game both equally remains uniform. So when A always gives t0 it makes no difference
in the view of A′. Therefore, the distributions of the transcript of queries and answers obtained in the game
PrivKmCPAML2,b

A,AEAD′,L (1n) and the game simulated by A are the same, and thus

Pr
[
PrivKmCPAML2,b

A,AEAD,L (1n)⇒ 1
]

= Pr
[
PrivKmCPAML2,b

A′,AEAD′,L′(1
n)⇒ 1

]
.

mEavDL2. The proof just follows the same line as the proof for mCPAML2, except that the adversary A
aborts if the internally ran A′ manages to call the decryption leakage oracle on a valid ciphertext which is not a
challenge ciphertext. Since the probability to abort is bounded by the probability to create a forgery, the abort
probability is at most Pr[PrivKCIML2

A,AEAD,L(1n) ⇒ 1], which is small since AEAD is CIML2 secure. Now, assuming
that abort does not occur we are in the same situation than in the mCPAL argument above.

¬CCAML2∗. Let A′ be an adversary which given N †, N◦,M † sequentially makes the following queries for
M 6= M †:

(i) (N◦, A,M †) to the leaking encryption oracle and get C†;

(ii) (N◦, A,M) to the leaking encryption oracle and get C;

(iii) (N◦, A,C†) to the leaking decryption oracle and get t0;

(iv) (N◦, A,C) to the leaking decryption oracle and get t1.

A′ finally submits (N †, A,M †,M) and obtains ciphertext Cb and (the additional) leakage bit B. Now whether
B = t0 ⊕ t1 or not allows distinguishing.

This concludes our proof for MR ∧mCPAML2 ∧ CIML2 ∧mEavDL2 ; CCAML2∗.

G FEMALE Security Proofs

We first analyze the CCA security of FEMALE in sections G.1 and G.2, and then prove CIML2 and MR in
sections G.3 and G.4 resp.
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G.1 Preparations for CCAML2 Proof

We are also interested in the mCCAML2 security, namely our strongest confidentiality notion in the multi-
challenge setting introduced in Appendix B. An approach is to first prove the CCAML2 bound claimed in
Theorem 3 and then use the generic result of Theorem 6 to derive the mCCAML2 bound. However, we prefer
an “inverse” direction: we directly prove a mCCAML2 bound, and then obtain the CCAML2 bound by setting
qm = 1. This approach could produce a slightly better bound, without the factor qm in some terms. Formally,
sections G.1 and G.2 devote to prove the following theorem.

Theorem 9. Let H : {0, 1}κ×{0, 1}∗ → {0, 1}n be a (0, t′, εcr)-collision resistant and (qd, t
′, εpr)-range-oriented

preimage resistant hash function, E∗ : {0, 1}n × {0, 1} × {0, 1}n → {0, 1}n be a (2qe + 2qd + 2qm, t
′, εE∗)-strong

tweakable pseudorandom permutation, and E : {0, 1}n×{0, 1}n → {0, 1}n be a (2, t, εE)-PRP, whose implementa-
tion leakage function LE has (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages. Then the FEMALE implemen-
tation with leakage function L = (Lenc, Ldec) defined before is (qe, qd, p−1, qm, ql, t, εmCCAML2) mCCAML2-secure,
where

εmCCAML2 ≤ 2εE∗ +
qe + qm − 1

2n
+ εcr + εpr +

∑qm
i=1 εFEMALE-eav(`i),

and εFEMALE-eav(`i) is as defined in Theorem 3 but where `i corresponds to the block-length of the i-th challenge
messages. Here t′ = t+ (qe + qd + qm)(t$ + t1−pass), t1−pass is the maximum running time of FEMALE upon a
single (encryption or decryption) query, and t$ is the time needed for randomly sampling a value from {0, 1}n.

As mentioned, setting qm = 1 recovers Theorem 3. It will be apparent in the proof that FEMALE actually
satisfies an even stronger notion of CCAML2. Since the encryption starts with R ← H(0‖N‖A), only the pairs
(N,A)’s must be fresh in the challenge phase to derive the security instead of each of these nonces N ’s.

The analysis proceeds in five steps, each corresponding to a subsubsection. As the first step, we prove
a useful “indistinguishablity-like” lemma for our leaking setting. Then is a preparation: we define a model
named Leaking, Idealized, Single-block Encryption scheme LISE with encryption and decryption leakages. This
is actually the idealized version of the LRSE scheme defined in Fig. 5, and could be proved indistinguishable
from LRSE (Lemma 2). It will be used in the 4th step (see below), constituting a bridge in the reduction.

Third, (informally speaking) we prove indistinguishability for the two systems (FEMALE(M), LFEMALE(M))
and ($,SFEMALE(M)), for a single message M (Lemma 3). In other words, (FEMALE(M), LFEMALE(M)), the
process of using FEMALE to encrypt a single message, is indistinguishable from an idealized process that
produces random outputs $ and simulated leakages SFEMALE(M). This shows the design of FEMALE is good in
the sense that it achieves nice confusion and diffusion (so that it produces somewhat pseudorandom outputs).

Yet, the conclusion of step 3 says nothing about the message confidentiality—or eavesdropper security—
of FEMALE(M), since the leakages LFEMALE(M) or its indistinguishable counterpart SFEMALE(M) may leak M
completely. To remedy this, we focus on the idealized process ($,SFEMALE(M)), and show how to relate its
eavesdropper security to the eavesdropper security of applying LISE—the single-block encryption scheme—
to independently encrypt |M | blocks. Since we’ve established the indistinguishability of LISE and LRSE, the
eavesdropper security of (FEMALE(M), LFEMALE(M)) can be established via the following chain:

eavesdropper security of LRSE (our assumption, see (1))

⇒eavesdropper security of LISE (using indistinguishability of LRSE and LISE)

⇒eavesdropper security of the idealized process ($,SFEMALE(M))

⇒eavesdropper security of (FEMALE(M), LFEMALE(M)).

Eventually, based on the eavesdropper security of (FEMALE(M), LFEMALE(M)), we establish the mCCAML2
security (this step is in subsection G.1). Roughly, the proof relies on the following features of FEMALE:

(i) Every invalid decryption query only leaks a pseudorandom value, i.e. E∗,1k (T ) for some T . So the encryption
can be seen as independent from these values;
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(ii) For each challenge encryption query, since the nonce is used only once during the experiment, the process
starts from a ephemeral key s0 that is different from any other ephemeral key of the other encryption
queries. By this, encryption of this challenge is quite independent from the other encryption queries, and
we can view the entire experiment as an eavesdropper adversary against (FEMALE(M), LFEMALE(M)) with
a lot of offline computations (i.e. all the other encryptions are turned into offline computations).

Indistinguishability of Real-Leaking World and Ideal-Simulating World. Standaert et al. proved that
based on the pseudorandom security of E and the simulatability of the leakage, (roughly) the “real-leaking world”
(Ek(p), L(k, p)) is indistinguishable from the “ideal-simulating” world ($,SL(k, p, $)) [37]. A similar intermediate
result could be obtained in our R-simulatability framework. For convenience of applying later in our analysis,
we focus on the case q = 2. Moreover, we write [leak1, . . . , leak`]

p for the vector of `p leakages, which consist of
` (probably distinct) leakages, and each is obtained p times. We stress that trying to obtain the same leakage
for p times would not result in completely identical traces: each time L(x) is queried for some input x, the trace
would be mixed with random noise, and would probably deviate from the traces generated by previous queries
to L(x).

Lemma 1. Let E : {0, 1}n×{0, 1}n → {0, 1}n be a (2, t, εE)-PRP, whose implementation has a leakage function
LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-bounded

leakage simulator. Then, for every kpre, pA, pB, z ∈ {0, 1}n and every (ql − q∗, t− t∗)-bounded distinguisher DL,
the following holds:∣∣Pr[kch

$←{0, 1}n : DL(Ekch(pA),Ekch(pB), [LE(kch, pA), LE(kch, pB),SL(kpre, z, kch)]p)⇒ 1]

− Pr[kch, cA, cB
$←{0, 1}n, cA 6= cB iff. pA 6= pB :

DL(cA, cB, [SL(kch, pA, cA),SL(kch, pB, cB),SL(kpre, z, kch)]p)⇒ 1]
∣∣ ≤ εE + ε(p,2)-rsim.

Here q∗ = 3p · qS , while t∗ = Max{tr, tsim}, in which tr is equal to 3p · tS augmented with the time needed to
make 2 oracle queries to the PRP challenger and select a uniformly random key in {0, 1}n, and tsim is the time
needed to relay the content of 2p Enc and p Gen queries from and to a (p, 2)-rsim challenger.

Proof. The proof consists of two simple transitions: we first replace the real leakages by with simulated ones,
relying on the recyclable-simulatability assumption, then replace Ekch(pA) and Ekch(pB) by two distinct random
values to obtain the target inputs, relying on the assumption that E is a PRP.

It’s not hard to see the claim remains valid if E is a PRF rather than PRP. To save space we concentrate
on the latter case (that will be used in our proof). ut

Single-Block One-Time Encryption Scheme. This is actually an extension of the analogue introduced
in [32]. In detail, the use of E for computing kup and ych is replaced by sampling random values. And we adapt
the corresponding leakage traces using SL. The resulted algorithm is defined in Fig. 9.

Description of LISE: (tool for the proof)

ISGen(1n) picks kch $←{0, 1}n, M, C = {0, 1}n (pA, pB ∈ {0, 1}n)
ISEnckch(m) returns (kup, c), where c = ych⊕m, and kup, ych $←{0, 1}n, kup 6= ych as long as pB 6= pA (and kup = ych otherwise).
ISDeckch(c) proceeds in the natural way.

The leakage LISE = (Lisenc, Lisdec, kpre) resulting from the LISE implementation is defined
as Lisenc(kch,m) = (SL(kch, pA, kup),SL(kch, pB , ych), L⊕(ych,m),SL(kpre, pA, kch)), Lisdec(kch, c) =
(SL(kch, pA, kup),SL(kch, pB , ych), L⊕(ych, c),SL(kpre, pA, kch)) for a fixed random kpre $←{0, 1}n.

Fig. 9: The ideal single-block encryption scheme ISEnc.

We also define LISEnc+kch(m) = (LISEnckch(m), [Lisdec(kch, c)]
p−1, kpre) for (c, kup) = ISEnckch(m). Similarly

to Pereira et al. [32], our ISEnc scheme is indistinguishable from its real version RSEnc.

Lemma 2. Let E : {0, 1}n×{0, 1}n → {0, 1}n be a (2, t, εE)-PRP, whose implementation has a leakage function
LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-bounded
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leakage simulator. Then, for every pA, pB ∈ {0, 1}n, pA 6= pB, and every (ql − q∗, t− t∗)-bounded distinguisher
DL, the following holds:

|Pr[DLRSE(m, LRSEnc+kch(m))⇒ 1]− Pr[DLISE(m, LISEnc+kch(m))⇒ 1]| ≤ εE + ε(p,2)-rsim.

Here q∗ = 3p · qS + p, while t∗ = Max{tr, tsim}, in which tr is equal to 3p · tS + 2t⊕ augmented with the time
needed to make 2 oracle queries to the PRP challenger and select a uniformly random key in {0, 1}n, t⊕ is the
time needed to evaluate the ⊕ action on an n-bit input, and tsim is the time needed to relay the content of four
Enc and two Gen queries from and to a (p, 2)-rsim challenger.

Proof. The proof just follows the same line as Lemma 1. Note that to generate the leakage L⊕(ych, c) p − 1
times, one does not need to evaluate ⊕ for that many times; instead, one just needs to make p−1 queries L. ut

It’s not hard to see Lemma 2 actually holds even if pA = pB. However, as we remarked before, when the
input pB equals pA, neither RSEnc not ISEnc ensures eavesdropper security. To highlight this issue and avoid
confusion, we put this restriction in Lemma 2.

On the other hand, for the scheme ISEnc we do not enforce the constraint pB 6= pA, since the case of pB = pA
would be used in some of our arguments below (of course, these arguments do not rely on the eavesdropper
security of ISEnc in the case of pB = pA).

LRFSM and LIFSM: FEMALE on a Single Message, and its Ideal Version. We first formally describe
two algorithms (L)RFSM and (L)IFSM, which denote the processes of using (Leaking) Real/Idealized FEMALE
to encrypt a Single Message respectively (without generating the tag). The algorithm LRFSM is described in
Fig. 10, while LIFSM is in Fig. 11.

Description of RFSM:

– Gen picks s0 $←{0, 1}n
– RFSMk0(m1, . . . ,m`) proceeds in four steps:

(i) Initializes an empty list leak for the leakage;
(ii) Computes s1 ← Es0(pA) and w ← Es0(pB), and adds [LE(s0, pA)]p and LE(s0, pB) to the list leak;
(iii) For i = 1, . . . , `, computes si+1 ← Esi(pA), yi ← Esi(di−1), and di ← yi ⊕mi, and adds LE(si, pA), LE(si, di−1), L⊕(yi,mi),

and [LE(si, pA), LE(si, di−1), L⊕(yi, di)]
p−1 to the list leak;

(iv) Computes U ← Es`+1(pA), W ← Es`+1(d`), V ← Ew(W ), and k1 ← EU (V ); and adds LE(s`+1, pA), LE(s`+1, d`), LE(w,W ),
LE(U, V ), and [LE(s`+1, pA), LE(U, V )]p−1 to the list leak;

(v) for i = 1, . . . , `, computes ki+1 ← Eki(pA), zi ← Eki(pB), and ci ← zi ⊕ di, and adds LE(ki, pA), LE(ki, pB), L⊕(zi, di), and
[LE(ki, pA), LE(ki, pB), L⊕(zi, ci)]

p−1 to the list leak.
RFSMk0(m1, . . . ,m`) eventually returns (V, c), where c = (c1, . . . , c`).

We define LRFSMk0(m) = (RFSMk0(m), leak), where leak is the list of traces standing at the end of the computation.

Fig. 10: The RFSM scheme and the involved leakages.

Description of IFSM:

– IFSMk0(m1, . . . ,m`) proceeds in four steps:
(i) Initializes an empty list leak for the leakage;

(ii) Samples s1 $←{0, 1}n, and adds [SL(s0, pA, s1)]p to the list leak;
(iii) For i = 1, . . . , `, samples si+1

$← {0, 1}n and yi $← {0, 1}n such that si+1 6= yi as long as di−1 6= pA (si+1 = yi otherwise),
sets di ← yi ⊕mi, and adds SL(si, pA, si+1), SL(si, di−1, yi), L⊕(yi,mi), and [SL(si, pA, si+1),SL(si, di−1, yi), L⊕(yi, di)]

p−1

to the list leak;
(iv) Samples U $← {0, 1}n, W $← {0, 1}n, U 6= W iff. d` 6= pA; w $← {0, 1}n, w 6= s1; V $← {0, 1}n, and k1 $← {0, 1}n; and adds

SL(s`+1, pA, U), SL(s`+1, d`,W ), SL(s0, pB , w), SL(w,W, V ), SL(U, V, k1), [SL(s`+1, pA, U),SL(U, V, k1)]p−1 to the list leak;
(v) For i = 1, . . . , `, samples ki+1

$←{0, 1}n, zi $←{0, 1}n, and ci ← zi ⊕ di, and adds SL(ki, pA, ki+1), SL(ki, pB , zi), L⊕(zi, di),
and [SL(ki, pA, ki+1),SL(ki, pB , zi), L⊕(zi, ci)]

p−1 to the list leak.
IFSMk0(m1, . . . ,m`) eventually returns (V, c), where c = (c1, . . . , c`).

We define LIFSMk0(m) = (IFSMk0(m), leak) for the list leak standing at the end of the computation.

Fig. 11: The IFSM scheme and the involved leakages.

We then prove that LRFSM and LIFSM are indistinguishable, by relying on the (p, 2)-recyclable-simulatability
assumption and the cryptographic strength of E.
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Lemma 3. Let E : {0, 1}n×{0, 1}n → {0, 1}n be a (2, t, εE)-PRP, whose implementation has a leakage function
LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-bounded
leakage simulator. Then, for every `-block message m, every pA 6= pB, and every (ql − p · qr − q∗, t− p · tr − t∗)-
bounded distinguisher DL (that makes at most ql − p · qr − q∗ queries to L and runs in time t− p · tr − t∗), the
following holds:∣∣Pr[DL(m, LRFSMs0(m))⇒ 1]− Pr[DL(m, LIFSMs0(m))⇒ 1]

∣∣ ≤ 2(`+ 2)(εE + ε(p,2)-rsim) +
2`+ 2

2n
.

Here qr = (4`+ 5)(qS + 1) + 2`, q∗ and t∗ are as defined in Lemma 1, and tr = (4`+ 5)(tE + t$ + tS) + 2` · t⊕,
where tE is the time needed for evaluating E once, t$ is the time needed for randomly sampling a value from
{0, 1}n, and t⊕ is the time needed for evaluating ⊕ once.

Proof. We define G0,1 as the security game in which DL receives LRFSMs0(m) as the input, and G∗` as the game
in which DL receives LIFSMs0(m) as the input.

We show that G0,1 could be transited to G∗` via a sequence of games

G0,G1, . . . ,G`,G`+1,G`+2,G`+3 = G∗0,G
∗
1, . . . ,G

∗
`−1.

The first half of the sequence G0, . . . ,G`,G`+1,G`+2, and G`+3 “idealizes” the Ephemeral key-IV generation
phase of the encryption. In detail, we first consider G0,1, and replace the two intermediate values Es0(pA) and
Es0(pB) by two distinct random values s1 and w. We also replace the leakages [LE(s0, pA)]p and LE(s0, pB) with
[SL(s0, pA, s1)]

p and SL(s0, pB, w). This yields the game G0.
We next derive an upper bound for |Pr[(DL)G0 ⇒ 1]−Pr[(DL)G0,1 ⇒ 1]|. For this, we assume a (ql− p · qr−

q∗, t − p · tr − t∗)-bounded distinguisher DL against G0 and G0,1, and we build a distinguisher DL′ against the
real-leaking-world and the ideal-simulation-world. Assume that DL′ receives the tuple

(cA, cB, [leak1, leak2,SL(·, pA, kch)]p)

as inputs, with cA 6= cB. DL′ proceeds in two steps:

(1) DL′ first uses [leak1]
p and leak2 as the leakages of the first iteration;

(2) DL′ then sets s1 ← cA and w ← cB, and emulates all the remaining actions of LRFSM encryption. Eventually,
it serves the obtained ciphertext V ‖c1‖ . . . ‖c` as well as the leakage traces to DL, and outputs whatever DL

outputs.

It can be seen depending on whether the inputs to DL′ follow real-leaking or ideal-simulating distribution, DL is
eventually interacting with G0,1 or G0. We show that to perform the additional operations, DL′ makes at most
p · sr additional queries to L and spend p · tr additional time. To this end, we note that the encryption process
of LRFSM involves 4`+ 5 calls to E and 2` xor operations. Moreover,

– in the real world, each call to E costs 1 query to L and tE running time;
– in the ideal world, each “idealized” call to E is translated into sampling a random value and making a call

to S, which costs qS queries to L and (t$ + tS) running time;
– each xor operation costs 1 query to L and t⊕ running time.

Therefore, to emulate the “hybrid” encryption process once, DL′ needs at most (4`+5)(qS+1)+2` = qr queries
to L and (4` + 5)(tE + t$ + tS) + 2` · t⊕ = tr running time. To obtain the required decryption leakage traces,
DL′ has to additionally perform the “hybrid” decryption process for p− 1 times, which contributes to (p− 1)qr
more queries and (p − 1)tr more time. Therefore, as claimed, DL′ makes at most p · qr additional queries to L
and spends p · tr additional time for the additional operations. By the above and Lemma 1 we have

|Pr[(DL)G0 ⇒ 1]− Pr[(DL)G0,1 ⇒ 1]| ≤ εE + ε(p,2)-rsim.

Then, for 1 ≤ i ≤ `, to obtain Gi, we modify the game Gi−1 by replacing the two intermediate values Esi(pA)
and Esi(di−1) with two values si+1 and yi, such that si+1 is uniform, and yi is uniform and yi 6= si+1 when di−1 6=
pA, and yi = si+1 otherwise; and further replacing the leakages [LE(si, pA), LE(si, di−1)]

p, L⊕(Esi(di−1),mi),
and [L⊕(Esi(di−1), di)]

p−1 with [SL(si, pA, si+1),SL(si, di−1, yi)]
p, L⊕(yi,mi), and [L⊕(yi, di)]

p−1. To show the
indistinguishability of Gi and Gi−1, assume that DL′ receives (cA, cB, [leak1, leak2,SL(·, pA, kch)]p) as inputs,
with cA 6= cB. DL′ proceeds in five steps (to ease description, we define d−1 = pB and y0 = w):
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(1) DL′ first uniformly samples s0;
(2) For j = 0, . . . , i − 2, DL′ uniformly samples random values sj+1, yj such that sj+1 6= yj iff. dj−1 6= pA,

simulates the traces [SL(sj , pA, sj),SL(sj , dj−1, yj)]
p,5 computes dj ← yj ⊕ m0

j and m0
j ← yj ⊕ dj and

obtains the traces L⊕(yj ,m
0
j ) and [L⊕(yj , dj)]

p−1;6

(3) Then, if di−2 6= pA, it uniformly samples yi−1, computes di−1 ← yi−1 ⊕mi−1, mi−1 ← yi−1 ⊕ di−1, and uses
[SL(si−1, pA, kch),SL(si−1, di−2, yi−1)]

p, L⊕(yi−1,mi−1), [L⊕(yi−1, di−1)]
p−1 as the traces of the i-th iteration

in the first pass;7

(4) Sets si+1 ← cA and yi ← cB, computes di ← yi ⊕mi, and uses [leak1, leak2]
p, L⊕(yi,mi), [L⊕(yi, di)]

p−1 as
the corresponding leakages;

(5) Takes si+1 and di as the starting points and emulates the remaining part of the execution of LRFSM
encryption. Eventually, DL′ serves the obtained ciphertext V ‖c1‖ . . . ‖c` as well as the leakage traces to DL,
and outputs whatever DL outputs.

It can be seen that depending on the input tuple received by DL′ is real-leaking or ideal-simulation, DL is
interacting with Gi−1 or Gi, unless:

– di−2 6= pA, yet yi−1 = kch, or
– di−2 = pA.

Therefore, denoting this event by Badi, we have

Pr[(DL)Gi ⇒ 1]− Pr[(DL)Gi−1 ⇒ 1] ≤ Pr[Badi] + εE + ε(p,2)-rsim.

It can be seen that:

– for i = 3, . . . , `, Pr[di−2 = pA] = 1
2n , and Pr[yi−1 = kch] = 1

2n . Therefore, Pr[Badi] = 2
2n ; and

– for i = 1, 2, di−2 = pB 6= pA, while Pr[yi−1 = kch] = 1
2n . So Pr[Badi] = 1

2n .

The hop from G` to G`+1 is slightly different, as no message block would be xored with Es`+1
(d`). In detail, we

replace the two intermediate values Es`+1
(pA) and Es`+1

(d`) by two random values U and W such that W = U iff.
d` = pA, and replace the leakage [LE(s`+1, pA)]p and LE(s`+1, d`) by [SL(s`+1, pA, U)]p and SL(s`+1, d`,W ). By
an analysis similar to the argument above, DL′ could consistently simulate Gi−1/Gi against DL unless d`−1 = pA
or y` = kch (denoted Bad`+1). Therefore,

|Pr[(DL)G`+1 ⇒ 1]− Pr[(DL)G` ⇒ 1]| ≤ Pr[Bad`+1] + εE + ε(p,2)-rsim ≤
2

2n
+ εE + ε(p,2)-rsim.

We then replace the intermediate value Ew(W ) by a random V , and replace the leakage LE(w,W ) by
SL(w,W, V ). This yields Gl+2. In a similar vein to the above, we have

|Pr[DG`+2 ⇒ 1]− Pr[DG`+1 ⇒ 1]| ≤ Pr[d−1 = pA ∨ w = kch] + εE + ε(p,2)-rsim ≤
1

2n
+ εE + ε(p,2)-rsim.

We then replace the intermediate value EU (V ) by a random k1, and replace the leakage [LE(U, V )]p by
[SL(U, V, k1)]

p. This yields Gl+3 = G∗0. We have

|Pr[DG`+3 ⇒ 1]− Pr[DG`+2 ⇒ 1]| ≤ Pr[d` = pA] + εE + ε(p,2)-rsim ≤
1

2n
+ εE + ε(p,2)-rsim.

Therefore,

|Pr[(DL)G`+3 ⇒ 1]− Pr[(DL)G0,1 ⇒ 1]| ≤ 2`+ 2

2n
+ (`+ 4)(εE + ε(p,2)-rsim).

5 When j = 0 the second part of the leakages is SL(s0, pB , w) without repeating.
6 These xor actions are omitted when j = 0.
7 When i = 1, these xor operations are omitted. More clearly, DL′ uniformly samples w, and uses [SL(s0, pA, kch)]p and SL(s0, pB , w)

as the traces of the 1st iteration.
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Then, for j from 1 to `, we modify the game G∗j−1 to obtain G∗j . The modifications are similar to those
made for Gj−1: we replace the two intermediate values Ekj (pA) and Ekj (pB) by two distinct random values kj+1

and zj (note that we always have pB 6= pA), and replace the leakage [LE(kj , pA), LE(kj , pB)]p, L⊕(Ekj (pB), dj),

and [L⊕(Ekj (pB), cj)]
p−1 by [SL(kj , pA, kj+1),SL(kj , pB, zj)]

p, L⊕(zj , dj), and [L⊕(zj , cj)]
p−1. We again have

|Pr[DG∗j ⇒ 1]− Pr[DG∗j−1 ⇒ 1]| ≤ εE + ε(p,2)-rsim. By these, we eventually obtain the ideal game G∗l .

Gathering all the above, we have

|Pr[DG∗` ⇒ 1]− Pr[DG0,1 ⇒ 1]|
=(|Pr[DG∗` ⇒ 1]− Pr[DG∗0 ⇒ 1]|) + (|Pr[DG`+3 ⇒ 1]− Pr[DG0,1 ⇒ 1]|)

≤`(εE + ε(p,2)-rsim) +
2`+ 2

2n
+ (`+ 4)(εE + ε(p,2)-rsim)

≤2(`+ 2)(εE + ε(p,2)-rsim) +
2`+ 2

2n

as claimed. ut

From 1-Block to `-Block Security. We now evaluate the (eavesdropper) security of an `-block encryption
with LIFSM by comparison with the security of ` encryptions with LISEnc performed with independent keys,
block by block.

Lemma 4. For every pair of `-block messages m0 and m1 and (ql, t)-bounded adversary AL, there exists a
(ql + p · qr, t+ p · tr)-bounded adversary AL′ such that

|Pr[AL(LIFSMs0(m0))⇒ 1]− Pr[AL(LIFSMs0(m1))⇒ 1]|

≤ 2`

2n
+
∑̀
i=1

|Pr[AL′(LISEnc+si−1
(m0

i ))⇒ 1]− Pr[AL′(LISEnc+si−1
(m1

i ))⇒ 1]|,

where s0, . . . , s`−1 are chosen uniformly at random, the pB value of LISEnc+si−1
(mb

i) is di−1, d0 = pB, d1, . . . , d`−1
are chosen uniformly at random and d1, . . . , d`−1 6= pA, and m0

i and m1
i are the i-th block of m0 and m1

respectively. Here qr = (4`+ 5)qS + 2` and tr = (4`+ 5)(t$ + tS) + 2` · t⊕, where tE, t$, and t⊕ are as assumed
in Lemma 3.

Proof. We start by building a sequence of ` + 1 messages mh,0, . . . ,mh,` starting from m0 and modifying its
blocks one by one until obtaining m1. That is, mh,i := m0

1‖ . . . ‖m0
`−i‖m1

`−i+1‖ . . . ‖m1
` .

We proceed to argue there exists a (ql + p · qr, t+ p · tr)-bounded adversary A′ such that

|Pr[AL(LIFSMs0(mh,i−1))⇒ 1]− Pr[AL(LIFSMs0(mh,i))⇒ 1]|

≤ 2

2n
+ |Pr[AL′(LISEnc+s`−i

(m0
`−i+1))⇒ 1]− Pr[AL′(LISEnc+s`−i

(m1
`−i+1))⇒ 1]|.

This along with a simple summation would imply the main claim.

The arguments on mh,i−1 and mh,i for all i are similar in general. To make it clearer, we take the first two
messages, i.e.,

mh,0 = m0
1‖ . . . ‖m0

`−1‖m0
` , and mh,1 = m0

1‖ . . . ‖m0
`−1‖m1

` ,

as example. For this, assuming a (ql, t)-bounded adversary AL against LIFSMs0(mh,0) and LIFSMs0(mh,1), we
build a (ql + p · qr, t+ p · tr)-bounded adversary AL′ against LISEnc. In detail, AL′ proceeds in six steps:

(1) AL′ uniformly samples s0, s1, w, such that s1 6= w, and obtains the simulated leakage traces [SL(s0, pA, s1)]
p,SL(s0, pB, w);

(2) for j = 1, . . . , ` − 3, AL′ uniformly samples random values sj+1, yj such that sj+1 6= yj iff. dj−1 6= pA,
obtains traces [SL(sj , pA, sj),SL(sj , dj−1, yj)]

p, computes dj ← yj ⊕m0
j and obtains the traces L⊕(yj ,m

0
j )

and [L⊕(yj , dj)]
p−1;
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(3) AL′ samples d`−1 6= pA, and computes y`−1 ← d`−1 ⊕m0
`−1. AL′ then sets the pB value of its eavesdropper

security challenger of LISEnc to d`−1, and submits m0
` , and m1

` to the challenger to obtain the tuple

((kup, c
b
ch), ([leak1, leak2]p, L⊕(ych,m

b
ch), [L⊕(ych, c

b
ch)]p−1, [SL(kpre, pA, kch)]p, kpre)

as outputs (which is produced by either LISEnc+kch(m0
` ) or LISEnc+kch(m1

` )).

(4) if d`−3 = pA then AL′ sets y`−2 ← kpre, otherwise samples y`−2 such that y`−2 6= kpre. It then computes
d`−2 ← y`−2 ⊕m0

`−2. At this stage, AL′ aborts, if either of the following two conditions is fulfilled:

– d`−2 = pA, yet y`−1 6= kch;

– d`−2 6= pA, yet y`−1 = kch.

Otherwise,AL′ uses the leakage traces [SL(s`−2, pA, kpre),SL(s`−2, d`−3, y`−2)]
p, L⊕(y`−2,m

0
`−2), [L⊕(y`−2, d`−2)]

p−1

[SL(s`−2, pA, kpre),SL(s`−2, d`−3, y`−2)]
p, L⊕(y`−2,m

0
`−2), [L⊕(y`−2, d`−2)]

p−1 as the leakages of the ` − 1 th

iteration, [SL(kpre, pA, kch),SL(kpre, d`−2, y`−1)]
p, L⊕(y`−1,m

0
`−1), [L⊕(y`−1, d`−1)]

p−1 as the leakages of the
` th iteration in the first pass;

(5) sets s`+1 ← kup and d` ← cbch, and uses [leak1, leak2]
p, L⊕(ych,m

b
ch), and [L⊕(ych, c

b
ch)]p−1 as the corresponding

leakage traces (now the message absorbing phase of the first pass has been completed);

(6) Then, AL′ takes s`+1 and d` as the starting points, and emulates the remaining actions of LIFSM encrypting
the message m0

1‖ . . . ‖m0
`−1‖mb

ch to obtain c01‖ . . . ‖c0`−1‖cb`. Note that this requires AL′ to uniformly sample

z` and further compute cb` ← z`⊕d` = z`⊕ cbch and generates the traces L⊕(z`, c
b
ch) and [L⊕(z`, c

b
`)]

p−1 at the
end of the second pass. Eventually, AL′ serves the ciphertext V ‖c01‖ . . . ‖c0`−1‖cb` as well as all the generated

simulated leakages to AL, and outputs whatever AL outputs.

It can be seen that as long as AL′ does not abort (the probability of which is at most 2/2n since both d`−2
and y`−1 are uniform), depending on whether the input tuple received by AL′ captures LISEnc encrypting m0

`

or m1
` , the inputs to AL capture LIFSM encrypting m0

1‖ . . . ‖m0
`−1‖m0

` or m0
1‖ . . . ‖m0

`−1‖m1
` . Moreover, AL′ is

indeed (ql + p · qr, t+ p · tr)-bounded if AL is (ql, t)-bounded. These complete the proof. ut

Gathering Lemmas 2, 3, and 4, we obtain Lemma 5 which shows the eavesdropper security bound of LRFSM
(which, in fact, is also the eavesdropper bound of FEMALE).

Lemma 5. Let E : {0, 1}n×{0, 1}n → {0, 1}n be a (2, t, εE)-PRP, whose implementation has a leakage function
LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-bounded
leakage simulator. Then, for every pair of `-block messages m0 and m1 and (ql−p ·qr−q∗, t−p · tr− t∗)-bounded
adversary AL, it holds

∣∣Pr[AL(LRFSMs0(m0))⇒ 1]− Pr[AL(LRFSMs0(m1))⇒ 1]
∣∣ ≤ (6`+ 8)(εE + ε(p,2)-rsim) + ` · εs-block +

6`+ 4

2n
,

where qr, tr are as defined in Lemma 3, and q∗, t∗ are as defined in Lemma 2.

Proof.

|Pr[AL(LRFSMs0(m0))⇒ 1]− Pr[AL(LRFSMs0(m1))⇒ 1]|
≤ |Pr[AL(LIFSMs0(m0))⇒ 1]− Pr[AL(LIFSMs0(m1))⇒ 1]|︸ ︷︷ ︸

A

+
∑
b=0,1

|Pr[AL(LRFSMs0(mb))⇒ 1]− Pr[AL(LIFSMs0(mb))⇒ 1]|

︸ ︷︷ ︸
≤2

(
(2`+4)(εE+ε(p,2)-rsim)+ 2`+2

2n

)
(by Lemma 3)

.
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For the involved term A, by Lemma 4 there exists a (ql − q∗, t− t∗)-bounded adversary AL′ that satisfies

A ≤ 2`

2n
+

∑̀
i=1

|Pr[AL′(LISEnc+si−1
(m0

i ))⇒ 1]− Pr[AL′(LISEnc+si−1
(m1

i ))⇒ 1]|

≤
∑̀
i=1

|Pr[AL′(LRSEnc+si−1
(m0

i ))⇒ 1]− Pr[AL′(LRSEnc+si−1
(m1

i ))⇒ 1]|︸ ︷︷ ︸
≤`·εs-block (by (1))

+
2`

2n
+ 2`(εE + ε(p,2)-rsim) (by Lemma 2).

The claim thus follows. ut

Theorem 3, the CCAML2 security of FEMALE, could then be derived from Lemma 5. The argument is in
the next subsection.

G.2 Proof of Theorem 9

We introduce a notion of trivial decryption queries: if the adversary queries Enck(N,A,M) → C and makes
the decryption query Deck(N,A,C) later on, the latter is called trivial. Trivial decryption queries are usually
deemed useless in black-box models. However, with leakage, such queries may give new information to the
adversary. We will have explicit arguments for handling such queries.

Then we step into the proof. We start by defining G0 as the game PrivKCCAML2,0
AL,FEMALE

, and G∗0 as the game

PrivKCCAML2,1
AL,FEMALE

. We show that they are indistinguishable from two games G1 and G∗1 respectively, the gap
between which is the eavesdropper security bound of LRFSM plus an additional loss.

To this end, we first introduce the game G1, which is obtained from G0 by replacing all the occurrences
of E∗k and its inverse function by a truly tweakable random permutation P̃ and its inverse. To upper bound
|Pr[G1 ⇒ 1] − Pr[G0 ⇒ 1]|, we build a (2qe + 2qd + 2qm, tB)-bounded adversary BSTPRP against the STPRP
security of E∗. The challenger BSTPRP picks all the necessary constants itself, and emulates the encryption and
decryption oracles to interact with AL as follows. On each query made by AL, BSTPRP emulates all the actions
described by FEMALE, except for the computations involving the tweakable permutation E∗, which is replaced
by calls to its own tweakable permutation oracle O (which is either E∗k or P̃ ). When AL outputs its guess bit,
BSTPRP returns that bit as its own guess. It’s clear that depending on whether BSTPRP is interacting with
E∗k or P̃ , AL is playing G0 or G1. Therefore, any difference between Pr[G1 ⇒ 1] and Pr[G0 ⇒ 1] leads to the
same difference in BSTPRP distinguishing E∗k from P̃ . During the emulation, the simulated FEMALE scheme
receives qe + qm encryption queries and qd decryption queries. Therefore, BSTPRP is a (2qe + 2qd + 2qm, t

′)-
bounded adversary against E∗, making at most 2qe + 2qd + 2qm queries to O and running in time at most
t+ (qe + qd + qm)t1−pass ≤ t′. Thus |Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ εE∗ follows from the assumption that E∗ is a
(2qe + 2qd + 2qm, t

′, εE∗)-secure TPRP.

Similarly, we replace E∗ by P̃ to turn G∗0 into G∗1, which also introduces a gap of εE∗ .

We then prove∣∣Pr[(AL)G1 ⇒ 1]− Pr[(AL)G
∗
1 ⇒ 1]

∣∣ ≤ qe + qm − 1

2n
+ εcr + εpr +

∑qm
i=1 εFEMALE-eav(`i),

where `i is the number of blocks in the ith challenge message, and and the bound on εFEMALE-eav(`i) is as
defined in Theorem 5 but where `i corresponds to the block-length of the i-th challenge messages. This plus
the above gap 2εE∗ yields the claimed bound. To this end, we denote the qm challenge tuples by

(Nc1, Ac1,Mc01,Mc11), . . . , (Ncqm , Acqm ,Mc0qm ,Mc1qm).

Then, we note that in G1, the qm messages being encrypted by the challenge encryption oracle areMc01, . . . ,Mc0qm ,
while those encrypted in G∗1 are Mc11, . . . ,Mc1qm . We use qm hops to replace Mc01, . . . ,Mc0qm by Mc11, . . . ,Mc1qm

36



in turn, to show that G1 can be transited to G∗1. For convenience, we define G2,0 = G1, and define a sequence of
games

G2,1,G2,2, . . . ,G2,qm ,

such that in the i-th system G2,i, the first imessages processed by the challenge encryption oracle areMc01, . . . ,Mc0i ,
while the remaining qm− i messages being processed are Mc1i+1, . . . ,Mc1qm . It can be seen actually G2,qm = G∗1.

We then show that for i = 1, . . . , qm, G2,i−1 and G2,i are indistinguishable for AL. For this, from AL we
build an adversary AL′ , such that if AL distinguishes G2,i−1 and G2,i then AL′ breaks the eavesdropper security
of LRFSM. In detail, AL′ keeps two pairs of tables (P0, P

−1
0 ) and (P1, P

−1
1 ) to simulate the tweakable random

permutation P̃ (via lazy sampling). And it runs AL, and reacts as follows:

– Upon an encryption query (Ni, Ai,Mi) from AL, AL′ first computes Ri ← H(0‖Ni‖Ai). Then:

• if Ri /∈ P0, AL′ samples s
(i)
0

$← {0, 1}n\P−10 , sets P0(Ri) ← s
(i)
0 and P−10 (s

(i)
0 ) ← Ri, and then runs

LRFSM
s
(i)
0

(Mi) to get the ciphertext (Vi, ci) and leakages. AL′ then computes hi ← H(1‖Ri‖V ‖ci) and

Ti ← P1(hi) (if hi /∈ P1 then AL′ defines P1(hi) as a value newly sampled from {0, 1}n\P−11 ). Finally,
AL′ returns the outputs (Vi, ci, Ti) and the leakages to AL;

• if Ri ∈ P0, AL′ simply runs LRFSMP0(Ri)(Mi), performs the tag generation action hi ← H(1‖Ri‖Vi‖ci)
and Ti ← P1(hi) on the obtained Vi and ci, and returns (Vi, ci, Ti) and the leakages to AL.

– Upon a trivial decryption query (Nj , Aj , Cj) from AL (cf. the beginning of this subsection for the meaning
of “trivial”), AL′ computes Rj ← H(0‖Nj‖Aj). Since (Nj , Aj , Cj) is trivial, Rj ∈ P0 necessarily holds.
Therefore, AL parses Cj = (Vj , cj , Tj), runs LRFSM.Dec(P0(Rj), cj), and relays the outputs to AL.

– Upon a non-trivial decryption query (Nj , Aj , Cj) from AL, AL′ parses Cj = (Vj , cj , Tj), and computes
Rj ← H(0‖Nj‖Aj) and hj ← H(1‖Rj‖Vj‖cj). Then,

• if Tj /∈ P−11 , AL′ samples h∗j
$←{0, 1}n\P1, and sets P1(h

∗
j )← Tj and P−11 (Tj)← h∗j ;

• if Tj ∈ P−11 , AL′ simply sets h∗j ← P−11 (Tj).

Now AL′ aborts if hj = h∗j (this type of abortion is defined as BadDec), and returns (⊥, h∗j ) to AL.

– Upon AL submitting the j-th challenge tuple (Ncj , Acj ,Mc0j ,Mc1j ), AL′ computes Rcj ← H(0‖Ncj‖Acj).
Then, if Rcj ∈ P0, AL′ aborts (this type of abortion is defined as BadChall+); otherwise, its action depends
on j:

• When j < i, it simply encrypts Mc0j and returns. In detail, AL′ samples sc
(j)
0

$← {0, 1}n\P−10 , sets

P0(Rcj) ← sc
(j)
0 and P−10 (sc

(j)
0 ) ← Rcj , and then runs LRFSMP0(Rcj)(Mc0j ), performs the tag gener-

ation action hcj ← H(1‖Rcj‖V cj‖ccj) and Tcj ← P1(hcj) on the obtained V cj and ccj , and returns
(V cj , ccj , T cj) and the leakages to AL.

• When j = i, it relays Mc0j and Mc1j to its eavesdropper security challenger to obtain (V cbj , cc
b
j) and

leakages leakenc and [leakdec]
p−1, and then computes Tcj ← P1(H(1‖Rcj‖V cbj‖ccbj)) (possibly defines a

new entry in P1) and returns Cbch = (V cbj , cc
b
j , T cj) to AL. Note that this means the relation P0(Rci) = sch0

is implicitly fixed, where sch0 is the secret key generated inside the eavesdropper security challenger;

• When j > i, it simply encrypts Mc1j and returns. The details are similar to the described case j < i.

– Upon AL making the λ-th query to Ldecch(j) (1 ≤ λ ≤ p− 1),

• When j 6= i, AL′ performs a corresponding decryption process (decrypting (Ncj , Acj , Cc
0
j ) when j < i,

and (Ncj , Acj , Cc
1
j ) when j > i) and returns the obtained leakages to AL;

• When j = i, AL′ simply returns the λ-th trace in the vector [leakdec]
p−1 as the answer.

Moreover, whenever new entries are added to P0, AL′ aborts if Rcj ∈ P0 (so that the implicit relation P0(Rci) =
sch0 never causes inconsistency).

It can be seen that the whole process is the same as either G2,i−1 or G2,i depending on whether b = 0 or 1,
given that:

(i) BadDec never occurs, and

(ii) BadChall+ never occurs, and
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(iii) BadChall− never occurs: it never holds sch0 ∈ P−10 . Recall that entries in P−10 are the initial session keys
generated by AL′ itself. This is crucial because the relation P0(Rci) = sch0 is implicitly fixed (as mentioned),
and thus sch0 ∈ P

−1
0 would cause inconsistency.

On the other hand, besides running AL, AL′ samples at most 2(qe + qd + qm) random values (to emulate
P̃ ) and internally processes qe + qd + qm queries. Therefore, the running time of AL′ is at most tAL′ ≤
t+ (qe + qd + qm)(2t$ + t1−pass) (while AL′ makes ql queries to L, which is the same as AL).

We need to bound the probabilities of the defined events to complete the proof. They are as follows.

Lemma 6. Pr[BadDec ∨ BadChall+] ≤ εcr + εpr.

Proof. To show this, we introduce two other events as follows:

– CollH: during the interaction between AL′ and the eavesdropper security challenger, there appears two calls
to H(x) and H(x′) such that x 6= x′ while H(x) = H(x′);

– PreimgH: during the interaction between AL′ and the eavesdropper security challenger, there appears a de-
cryption query (Nj , Aj , (Vj , cj , Tj)) such that Tj /∈ P−11 before this query is made, yet it holds H(1‖Rj‖Vj‖cj) =
P−11 (Tj) after P−11 (Tj) is defined later (Rj = H(0‖Nj‖Aj)).

If CollH happens, then from AL we are able to build a collision adversary Bcr against H: Bcr just simulates
the eavesdropper security challenger and interacts with AL′ , and waits for CollH to occur. It’s clear that the
running time of Bcr is no more than tAL′ plus the time needed to emulate the eavesdropper challenger, which
turns out t+ (qe + qd + qm)(2t$ + t1−pass) = t′ in total. Therefore, by the assumption on the collision resistance
of H, we obtain Pr[CollH] ≤ εcr.

On the other hand, if PreimgH happens, then from AL′ we are able to build a preimage adversary against
H. To this end, note that by the definition of PreimgH, if it happens with respect to a decryption query
(Nj , Aj , (Vj , cj , Tj)), then Tj /∈ P−11 before this query is made. According to the description of AL′ , P−11 (Tj)
will be defined to a randomly sampled value, and thus H(1‖Rj‖Vj‖cj) = P−11 (Tj) exactly fits into the definition
of range-oriented preimage resistance. Therefore, we could use an adversary Bpr to emulate the interaction
between AL′ and the eavesdropper security challenger, and if PreimgH happens then Bpr turns out a preimage
adversary against the hash function H(1‖·). Since Bpr’s running time is also at most t′, and there are at most
qd such decryption queries, we have Pr[PreimgH] ≤ εpr by the assumption that H is (qd, t

′, εpr)-range-oriented
preimage resistance. This further yields Pr[CollH ∨ PreimgH] ≤ εcr + εpr.

We now prove Pr[BadDec ∨ BadChall+ | ¬(CollH ∨ PreH)] = 0 to complete the proof. Assume that BadDec
occurs, and let (Ni, Ai, (Vi, ci, Ti)) be the decryption query with the smallest index that passes the integrity
checking. We distinguish several cases:

(i) Case 1: Ti appears in a response to some previous encryption query (Nj , Aj ,Mj) where j is the smallest
index satisfying this property. Assume that the corresponding response was Cj = (Vj , cj , Tj). Then we
further distinguish two subcases:
– Case 1.a: (Nj , Aj , Vj , cj) = (Ni, Ai, Vi, ci). This means Rj = Ri. Then it has to be Tj 6= Ti, as otherwise

(Ni, Ai, (Vi, ci, Ti)) is trivial. Then since we have H(1‖Rj‖Vj‖cj) = P−11 (Tj) and P1 is a permutation, we
cannot further have H(1‖Ri‖Vi‖ci) = P−11 (Ti);

– Case 1.b: (Nj , Aj , Vj , cj) 6= (Ni, Ai, Vi, ci). If Vj‖cj 6= Vi‖ci then it holds Rj‖Vj‖cj 6= Ri‖Vi‖ci; other-
wise, either Nj 6= Ni or Aj 6= Ai would imply Rj 6= Ri by ¬CollH, which by ¬CollH further implies
H(1‖Rj‖Vj‖cj) = P−11 (Tj) 6= H(1‖Ri‖Vi‖ci).

(ii) Case 2: Ti does not appear in any response to earlier encryption query. Then the entry P−11 (Ti) was neces-
sarily defined to a randomly sampled value. Therefore, H(1‖Ri‖Vi‖ci) = P−11 (Ti) implies the occurrence of
PreimgH.

Finally, conditioned on that BadDec does not occur, entries can only be added to P0 upon AL making
encryption queries. Therefore, if BadChall+ happens, then there necessarily exists an encryption query (N,A,M)
such that H(0‖N‖A) = H(0‖Nci‖Aci). According to the requirements of the CCAML2 security game, it has
to be (N,A) 6= (Nci, Aci); therefore, H(0‖N‖A) = H(0‖Nci‖Aci) would contradict either ¬BadDec or ¬CollH.
Thus the claim. ut
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Lemma 7. Pr[BadChall− | ¬BadDec] ≤ qe+qm−1
2n .

Proof. The bound follows from the following observations:

(i) conditioned on ¬BadDec, AL′ only samples new initial session keys upon AL makes new encryption queries,
and

(ii) except for the initial session key for the i-th challenge encryption, all the other initial session keys are
randomly sampled by AL′ .

Thus we have Pr[BadChall− | ¬BadDec] ≤ qe+qm−1
2n . ut

By all the above, define

Bad = BadDec ∨ BadChall+ ∨ BadChall−,

then we have

Pr[(AL)G2,i ⇒ 1]− Pr[(AL)G2,i−1 ⇒ 1] ≤ Pr[(AL)G2,i ⇒ 1 ∧ Bad]− Pr[(AL)G2,i−1 ⇒ 1 ∧ Bad] + εFEMALE-eav(`i).

This means

|Pr[(AL)G
∗
1 ⇒ 1]− Pr[(AL)G1 ⇒ 1]| ≤ Pr[(AL)G2,qm ⇒ 1]− Pr[(AL)G2,0 ⇒ 1]

≤
qm∑
i=1

(
Pr[(AL)G2,i ⇒ 1]− Pr[(AL)G2,i−1 ⇒ 1]

)
≤ qe + qm − 1

2n
+ εcr + εpr +

∑qm
i=1 εFEMALE-eav(`i).

These complete the proof.

Influence of Empty Message. It’s meaningless to use empty message for the CCAML2 challenge message, as
otherwise it’s not possible to pick two distinct challenges. Therefore, in the CCAML2 game, they can only appear
in decryptions and non-challenge encryptions. Our proof has covered both cases (without specific treatment):
for such decryptions, it can be seen the arguments around the bad events (in particular, BadDec) remains valid;
for such non-challenge encryptions, the adversary AL′ remains able to simulate the corresponding actions.

G.3 Proof of Theorem 4

The claim can be established by some intermediate results obtained during the proof of Theorem 3. To see this,
let’s revisit these results:

– First, define G0 as the real CIML2 security game between the adversary and FEMALE. Then replacing E∗k
by a tweakable random permutation P̃ , we obtain a game G1, with a gap of εE∗ ;

– Second, as long as neither of the two bad events CollH and PreimgH happens during the execution of G1,
every non-trivial decryption query would yield ⊥ as the answer. And we have Pr[CollH∨PreimgH] ≤ εcr+εpr.

Note that the above steps do not rely on additional leakage assumptions. Therefore, the claim holds in the
unbounded leakage model. And as remarked in the previous subsection, our proof has covered empty messages.

G.4 Proof of Theorem 5

Let A be a (qe, qd, t, εmr)-bounded adversary against the misuse resistance of FEMALE, and assume A never
makes “redundant” queries, i.e.

– A never repeats queries, and

– A never decrypts the ciphertext produced by previous encryption queries.
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Furthermore, we write the encryption queries as

(N1, A1,M1), (N2, A2,M2), . . . , (Nqe , Aqe ,Mqe);

and we assume the length of Mi is `i ≤ `. We stress that N1‖A1, . . . , Nqe‖Aqe are not necessarily distinct since
we are in misuse setting.

We will use a sequence of hybrid games, beginning with the real game, named G0, where A interacts with
Enck and Deck, and ending with random-and-invalid game, named Gqe+1, where A interacts with $ and ⊥.
Then, using the adversary A we show that any transition can be reduced to an efficient adversary against one
of the assumptions. For convenience, we name Ei the event that A outputs 1 at the end of Gi.

We start from G0 = AEnck,Deck . The first two steps are similar to those appeared in the proof of Theorem 3:

(i) we first replace all the occurrences of E∗k by a tweakable random permutation P̃ to obtain the first interme-
diate game G0,1. And we introduce two abort conditions CollH and PreimgH into G0,1: the former is fulfilled
if there exists two calls to H(x) and H(x′) such that x 6= x′ yet H(x) = H(x′), while the latter is fulfilled if
there exists a decryption query (Nj , Aj , Cj) with Cj = (Vj , cj , Tj) such that Tj never appeared in answers

to earlier encryption queries and H(1‖Rj‖Vj‖cj) = (P̃ 1)−1(Tj). It can be seen Pr[G0,1 aborts] ≤ εcr + εpr,
otherwise a corresponding adversary running in time at most t′ ≤ t + (qe + qd)t1−pass can be built against
H;

(ii) It holds |Pr[E0]−Pr[E0,1 | G0,1 does not abort]| ≤ εE∗ , otherwise from A we can build an STPRP adversary
B1 against E∗k, and B1 makes at most 2(qe + qd) queries and runs in time at most t′.

We next define `0 = 1, and consider the second intermediate game G∗0,`0 , which is the same as G0,1 except
that all decryption queries are simply answered by ⊥. In a similar vein to the proof of Theorem 3, we know that if
neither of the two games abort, then they would have no difference. Therefore, Pr[E0,1 | G0,1 does not abort] =
Pr[E∗0,`0 | G

∗
0,`0 does not abort].

We then consider the encryption queries in turn, and use a sequence of games

G1,−1 = G∗0,`0 ,G1,1, . . . ,G1,`1 ,G1,`1+1,G1,`1+2 = G∗1,0,G
∗
1,1, . . . ,G

∗
1,`1 ,G2,−1,

. . .

Gqe,−1 = G∗qe−1,`qe−1
, . . . ,Gqe,`qe ,Gqe,`qe+1,Gqe,`qe+2 = G∗qe,0,G

∗
qe,1, . . . ,G

∗
qe,`qe

,

to show that the ciphertexts are indistinguishable from uniform. In detail, for i = 1, . . . , qe, we start from
G∗i−1,`i−1

= Gi,−1, and transit to G∗i,`i . In this game, the tuple (Ni, Ai) would give rise to Ri = H(0‖Ni‖Ai) and

s
(i)
0 = P̃ 0(Ri). We distinguish two cases:

Non-reuse Case: (Ni, Ai) never appeared before. Then conditioned on ¬CollH, Ri never appeared before, and

thus s
(i)
0 must be distinct from all the already appeared intermediate values s

(1)
0 , . . . , s

(i−1)
0 since P̃ 0 is a permu-

tation. In the first phase of the transition, for j = 0, . . . , `i + 1, we consider the game Gi,j−1, and replace all the
subsequently appearing calls of the form E

s
(i)
j

(x) by calls to a new random permutation Pi,j(x). This yields Gi,j .

It holds |Pr[Ei,j ]− Pr[Ei,j−1]| ≤ εE, otherwise a PRP adversary BE against E could be built by emulating the
common part of Gi,0 and Gi,−1. In detail, BE interacts with A, and simulates the previously appeared random

permutations P1,0, P1,1, . . . , Pi,0, . . . , Pi,j−1 by lazy sampling, till the intermediate values s
(i)
j and d

(i)
j−1 being

computed.8 Then, BE supplies pA and d
(i)
j−1 to its challenge oracle O (which is either Ek for a secret key k

or the random permutation Pi,j), and uses the obtained s
(i)
j+1 ← O(pA) to continue emulating the process of

real FEMALE encryption. Moreover, to ensure consistency, for queries received in future with (Ni, Ai) as the
involved nonce, BE uses Pi,0, . . . , Pi,j−1,O for the first j + 1 calls to E. To emulate these, BE makes at most 2qe
queries to O, and the running time of BE is clearly at most t′. Thus BE’s advantage does not exceed εE.

Then, consider the game Gi,`i+1, and let w(i) = Pi,0(pB). We replace all the subsequently appearing calls
of the form Ew(i)(x) by calls to a new random permutation Pi,`i+2(x), to obtain the game Gi,`i+2. Similarly

8 Similarly to the proof of Lemma 3, when j = 0 we take d
(i)
−1 = pB and w(i) as the corresponding output to ease the language.
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to the above, |Pr[Ei,`+2] − Pr[Ei,`+1]| ≤ εE. We further replace all the subsequently appearing calls of the
form EU(i)(x) by calls to a new random permutation Pi,`i+3(x), to obtain the game Gi,`i+3 = G∗i,0, with

|Pr[Ei,`+3] − Pr[Ei,`+2]| ≤ εE. By this, the newly derived initial key k
(i)
1 = Pi,`i+3(V

(i)) for the one-time
encryption is uniform.

Then in the second phase, for j = 1, . . . , `i, we replace all the subsequently appearing calls to E
k
(i)
j

by

corresponding calls to a new random permutation P ′i,j , and this yields G∗i,j . The gap between each pair of games
(G∗i,j−1,G

∗
i,j) is at most εE. We also have |Pr[E∗i,j ]− Pr[E∗i,j−1]| ≤ εE.

It can be seen that in the last game G∗i,`i , the intermediate value V (i) as well as the ciphertext blocks

c
(i)
1 , . . . , c

(i)
` resulted from the encryption query (Ni, Ai,Mi) are random. The next paragraph would discuss the

nonce-reuse case.

Reuse Case: (Ni, Ai) has appeared before. Assume that α is the smallest index such that (Nα, Aα) = (Ni, Ai).
We further distinguish two cases:

– Case 1: the length `i does not exceed the maximum length of the messages already processed with the pair
(Ni, Ai). Then it can be seen that in the game Gi,−1, when processing the encryption query (Ni, Ai,Mi), all
the calls to E during the first pass have been replaced by calls to random permutations Pα,0, . . . , Pα,`i+3.
Therefore, we simply let G∗i,0 = Gi,−1.

– Case 2: Mi is the longest message among the messages encrypted with the pair (Ni, Ai). Assume that the

calls E
s
(α)
0

, . . . ,E
s
(α)
β

have been replaced by random permutations Pα,0, . . . , Pα,β (note that s
(α)
β = U (j) for

some j < i), and let s
(i)
β+1 = Pα,β(pA). Define Gi,β = Gi,β. Then, for j = β + 1, . . . , `i + 2, we replace

all the subsequently appearing calls of the form E
s
(i)
j

(x) (taking s
(i)
`i+2 = U (i)) by calls to a new random

permutation Pi,j(x). This yields Gi,j+1. For convenience we also write Pα,j for the permutation Pi,j . These
steps eventually yield the game Gi,`i+3 = G∗i,0.

Unlike the non-reuse case, we introduce three abort conditions into the game G∗i,0. In detail, G∗i,0 aborts, if
at least one of the following occurs during its execution:

– the event CollDi, which happens if there exists j < i such that Nj‖Aj = Ni‖Ai and `i = `j for the j-th

encryption query (Nj , Aj ,Mj), and there exists an index γ such that m
(i)
1 ‖ . . . ‖m

(i)
γ 6= m

(j)
1 ‖ . . . ‖m

(j)
γ , yet

d
(i)
γ = d

(j)
γ ;

– the event CollWi, which happens if there exists j < i such that Nj‖Aj = Ni‖Ai for (Nj , Aj ,Mj), and
W (i) = W (j).

To analyze the events, we consider every index j < i. If Nj‖Aj 6= Ni‖Ai, then neither CollDi nor CollWi could
happen with respect to j. If Nj‖Aj = Ni‖Ai and `i 6= `j , then CollDi could happen. In this case, assume that
α is the smallest index such that (Nα, Aα) = (Ni, Ai). Then by our convention, we have

W (i) = Pα,`i+1(d
(i)
`i

), and W (j) = Pα,`j+1(d
(j)
`j

),

with Pα,`i+1 and Pα,`j+1 being two independent random permutations. Moreover, if abortion does not hap-

pen, then conditioned on the transcripts of queries and answers obtained so far, the values Pα,`i+1(d
(i)
`i

) and

Pα,`j+1(d
(j)
`j

) remain uniform, since

– the ciphertexts in the transcript are clearly independent of these two values, and

– the values V (1), . . . , V (i−1) in the transcripts are outputs of the permutations P1,`1+2, . . . , Pi−1,`i−1+2, thus
also independent of these two values.

Therefore, it holds

Pr[W (i) = W (j)] ≤ 1

2n
.
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When Nj‖Aj = Ni‖Ai and `i = `j , then both CollDi and CollWi could happen. In this case, it necessarily be

Mi 6= Mj since A does not repeat queries. Wlog assume that γ is the smallest index such that m
(j)
γ 6= m

(i)
γ . Then

it can be seen d
(j)
γ−1 = d

(i)
γ−1. Moreover, Nj‖Aj = Ni‖Ai implies s

(i)
0 = s

(j)
0 , . . . , sγ(i) = s

(j)
γ , and thus the first

γ random permutations used for processing the two queries are the same ones. Assume that α is the smallest
index such that (Nα, Aα) = (Ni, Ai). Then by our convention, these γ random permutations are Pα,0, . . . , Pα,γ .

Then it can be seen d
(j)
γ 6= d

(i)
γ , since m

(j)
γ 6= m

(i)
γ implies

Pα,γ(d
(j)
γ−1)⊕m

(j)
γ 6= Pα,γ(d

(i)
γ−1)⊕m

(i)
γ .

As discussed, conditioned on the transcripts of queries and answers obtained so far, the values Pα,γ+1(d
(j)
γ ) and

Pα,γ+1(d
(i)
γ ) remain uniform. By these,

Pr[d
(j)
γ+1 = d

(i)
γ+1] = Pr[Pα,γ+1(d

(j)
γ )⊕m(j)

γ+1 = Pα,γ+1(d
(i)
γ )⊕m(i)

γ+1] ≤
1

2n
.

Following the same line, we obtain Pr[d
(j)
γ+2 = d

(i)
γ+2] ≤ 1

2n , . . ., Pr[d
(j)
`j

= d
(i)
`i

] ≤ 1
2n , and Pr[W (j) = W (i)] ≤ 1

2n .

Therefore, for such an index j, the probability that either CollDi or CollWi happens is at most `i+1
2n ≤

`+1
2n .

By the above, in any case, the following holds:

Pr[CollDi ∨ CollWi | ¬CollH] ≤ `+ 1

2n
.

If G∗i,0 does not abort, then the produced intermediate value W (i) is distinct from all the previous value

W (j) for Nj‖Aj = Ni‖Ai. This means the further generated V (i) are also distinct from these V (j), and further

k
(i)
1 6= k

(j)
1 . On the other hand, for the previous queries with Nj‖Aj 6= Ni‖Ai, conditioned on ¬CollH we have

Rj 6= Ri, and thus the subsequent processes utilize completed independent random permutations. This means

for such index j the produced one-time encryption initial key k
(j)
1 is independent from k

(i)
1 . In all, the produced

initial key k
(i)
1 is a new random value independent from all the appeared keys k

(1)
1 , . . . , k

(i−1)
1 . Therefore, we

start from G∗i,0 and make `i hops that are similar to those described in the non-reuse case. These hops yield

G∗i,`i at the end, with |Pr[E∗i,`i ]− Pr[E∗i,0]| ≤ `εE∗ + `+1
2n .

Finally, in the game G∗qe,`qe , it can be seen that every intermediate value is derived via a call to a corre-
sponding random permutation. And it can be seen

Pr[G∗qe,`qe aborts] ≤
qe∑
i=1

Pr[CollDi ∨ CollWi ∨ CollH ∨ PreimgH] ≤ (`+ 1)qe
2n

+ εcr + εpr,

and
Pr[E∗qe,`qe | G

∗
qe,`qe

does not abort]− Pr[E∗0,`0 ] ≤ (2`+ 4)qeεE.

The latter follows from the fact that during the transitions, the number of keys used for calling E is at most
(2`+ 4)qe.

We then consider Pr[Eqe+1] = Pr[A$,⊥ ⇒ 1], and derive an upper bound for Pr[Eqe+1] − Pr[E∗qe,`qe |
G∗qe,`qe does not abort]. First, conditioned on that CollDi never happened for any i, for any two intermediate

values W (i) and W (j) we have:

– if their nonce values are the same, i.e. Ni‖Ai = Nj‖Aj , then W (i) 6= W (j). Therefore, the two further derived
values V (i) = Pi,`i+2(W

(i)) and V (j) = Pi,`j+2(W
(j)) are two random and independent values;

– if Ni‖Ai 6= Nj‖Aj , then W (i) and W (j) are random and independent, since they are the outputs of two
independent random permutations. This also means the further derived V (i) and V (j) are random and
independent.

42



Thus the qe outputs V (1), . . . , V (qe) are random and independent. Yet, some of them may be the outputs of
the same random permutation (in the extreme case, i.e. all the nonce values are identical, all of them are the
outputs of the same random permutation), and will thus be distinct. By this, the statistical distance between
V (1), . . . , V (qe) and uniform is at most q2e/2

n+1.

Following the same line, the further derived qe initial keys k
(1)
1 , . . . , k

(qe)
1 for the one-time encryption are also

uniform and independent. This indicates the
∑qe

i=1 `i blocks in the subsequent qe key streams are given by
∑qe

i=1 `i
independent random permutations, i.e. P ′1,1, . . . , P

′
1,`i

for i = 1, . . . , qe, and thus uniform and independent. Thus

for the qe ciphertexts (c
(1)
1 , . . . , c

(1)
` ), . . . , (c

(qe)
1 , . . . , c

(qe)
` ) the distribution is also uniform.

Finally, we argue that during each encryption query (Ni, Ai,Mi), when the computation proceeds to the
tag generation phase hi ← H(1‖Ri‖Vi‖ci) and Ti ← P̃ 1(hi), the tweakable random permutation query P̃ 1(hi) is
fresh, i.e. it never happened before, and no previous inverse query resulted in hi (in this case, the subsequently
generated tag Ti is not random either). To this end, we exclude two possibilities:

– the query P̃ 1(hi) has been made during encrypting an earlier query (Nj , Aj ,Mj). This means H(1‖Ri‖Vi‖ci) =
H(1‖Rj‖Vj‖cj). If Ri 6= Rj , or ci 6= cj , then this clearly contradicts ¬CollH. Otherwise, if Ni‖Ai 6= Nj‖Aj
then H(0‖Ni‖Ai) = Ri = Rj = H(0‖Nj‖Aj) also contradicts ¬CollH. If Ni‖Ai = Nj‖Aj and ci 6= cj then
(Ni‖Ai‖Mi) = (Nj‖Aj‖Mj), and it contradicts the assumption that A never repeats queries;

– there exists an earlier decryption query (Nj , Aj , (cj , Tj)) such that hi = (P̃ 1)−1(Tj). However, this would
contradict ¬PreimgH.

By these, the qe tags T1, . . . , Tqe are distinct and random values, and deviate from the at most qd tags specified
in the decryption queries. Therefore, the statistical distance between the distribution of T1, . . . , Tqe and uniform
is at most (qe + qd)

2/2n+1.
Gathering the above, we have

Pr[Eqe+1]− Pr[E∗qe,`qe | G
∗
qe,`qe

does not abort] ≤ (qe + qd)
2 + q2e

2n+1
.

To conclude, we summarize the gaps as follows:

(i) |Pr[E0]− Pr[E0,1 | G0,1 does not abort]| ≤ εE∗ ;
(ii) Pr[E0,1 | G0,1 does not abort] = Pr[E∗0,`0 | G

∗
0,`0 does not abort];

(iii) Pr[E∗qe,`qe | G
∗
qe,`qe

does not abort]− Pr[E∗0,`0 | G
∗
0,`0 does not abort] is upper-bounded by (2`+ 4)qeεE;

(iv) Pr[Eqe+1]− Pr[E∗qe,`qe | G
∗
qe,`qe

does not abort] ≤ (qe+qd)
2+q2e

2n+1 ;

(v) Pr[G∗qe,`qe aborts] ≤ (`+1)qe
2n + εcr + εpr.

Thus in total, |Pr[E0]− Pr[Eqe+1]| is bounded by

εE∗ + εcr + εpr + (2`+ 4)qeεE +
2(`+ 1)qe + (qe + qd)

2 + q2e
2n+1

as claimed.

Empty Messages. can be handled by the proof in this subsetion without specific treatment. In detail, for the
empty messages appearing in decryption queries the case resembles subsection G.2. When empty messages
appear in the encryption queries, it can handle as well: for example, in the non-reuse case, with `i = 0 the calls
to Es0 and Es1 would be rightfully replaced by random permutations.

H AEDT and CCAML2 Security

In this section we give an overview of the AEDT scheme as well as our result. The scheme somewhat resembles
a FEMALE variant with only the second pass: given (N,A,M) with an `-block message M , AEDT computes the
hash R = H(N,A), and then just uses E∗,0k (R) as the initial key to “start” the one-time encryption (mentioned
in the previous section). It is depicted in Fig. 12, and the full description is given in Fig. 13.
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Fig. 12: (Top) The initialization and encryption parts of AEDT, with the notations to be used in its specification
and security analysis. (Bottom) The authentication part of AEDT, with notations consistent with those in the
top half. The final output is C = (c, T ).

Description of AEDT:

Gen(1n) picks a random key k $←{0, 1}n, N ,M, C = {0, 1}n.
Enck(N,A,M) parses M ∈ M∗ into as many blocks as needed as M = (m1, . . . ,m`) for some `. Computes R← H(0‖N‖A) and

proceeds in three steps:
1. One-time encryption: First computes k0 ← E∗,0k (R), then, for i = 1 to ` − 1, computes ki ← Eki−1(pA), zi ← Eki−1(pB),

and ci ← zi ⊕mi. Eventually, computes z` ← Ek`−1(pB) and c` ← z` ⊕m`.

2. Authentication: sets c = c1‖ . . . ‖c`, and computes T ← E∗,1k (H(1‖R‖c)).
Eventually, returns the ciphertext C = (c, T ).

Deck(N,A,C) parses C = (c, T ), c = c1‖ . . . ‖c`, then proceeds in four phases:
1. Integrity Checking: computes R = H(0‖N‖A) and h∗ ← (E∗,1k )−1(T ). Then, if h∗ = H(1‖R‖c), it enters the next phase, and

returns ⊥ otherwise.
2. One-time decryption: first computes s0 ← E∗,0k (R), then, for i = 1 to `− 1, computes ki ← Eki−1(pA), zi ← Eki−1(pB), and

mi ← zi ⊕ ci. Eventually, computes z` ← Ek`−1(pB) and m` ← z` ⊕ c`.
Eventually, returns the message M = (m1, . . . ,m`).

Fig. 13: The AEDT AEAD scheme.

AEDT uses 2 leak-free blocks, just as FEMALE, but is twice more efficient in terms of number of weakly
protected blocks to be evaluated. This may be a difference for long messages, in which the weakly protected
blocks are the main computational cost. In terms of memory, and if the hash function used to compute the second
hash, at the bottom of Fig. 13, proceeds block-by-block, AEDT is considerably more efficient for encryption
than FEMALE: each ciphertext block ci can be pushed immediately in the hash function and given as output.
As a result, AEDT can be evaluated with constant memory, contrary to FEMALE that requires a memory at
least the size of each encrypted message. The down-side of this is of course that AEDT cannot satisfy black-box
MR, which is natural for a single-pass encryption scheme. But, for someone looking for an AEAD that will be
used in the presence of leakages anyway (hence making black-box security mostly pointless), AEDT can be a
very interesting choice.

Security of AEDT. The leakage function L = (Lenc, Ldec) of AEDT is defined similarly to the one of FEMALE,
i.e., including all the “bounded” leakages generated by the underlying actions.

In this setting, the CIML2 security of AEDT follows immediately from the one of the EDT mode defined
in [9]. Its mCCAML2 security is as follows.

Theorem 10. Let H : {0, 1}κ × {0, 1}∗ → {0, 1}n be a (0, t′, εcr)-collision resistant and (qd, t
′, εpr)-range-

oriented preimage resistant hash function, E∗ : {0, 1}n×{0, 1}×{0, 1}n → {0, 1}n be a (2qe+2qd+2qm, t
′, εE∗)-

strong tweakable pseudorandom permutation, and E : {0, 1}n×{0, 1}n → {0, 1}n be a (2, t, εE)-PRP, whose im-
plementation leakage function LE has (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages. Then the AEDT im-
plementation with leakage function L = (Lenc, Ldec) defined before is (qe, qd, p−1, qm, ql, t, εmCCAML2) mCCAML2-
secure, where

εmCCAML2 ≤ 2εE∗ +
qe + qm − 1

2n
+ εcr + εpr +

∑qm
i=1 εAEDT-eav(`i),
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and εFEMALE-eav(`i) is the upper bound on the eavesdropper advantage of (ql, t
′)-bounded adversaries on AEDT

with `i block messages:

εAEDT-eav(`i) ≤ 4`i(εE + ε(2,2)-rsim) + `i · εs-block,

and `i is the number of blocks in the i-th challenge messages and εs-block is as defined in subsection 4.4. Here
t′ = t+ (qe + qd + qm)(t$ + t1−pass), t1−pass is the maximum running time of AEDT upon a single (encryption
or decryption) query, and t$ is the time needed for randomly sampling a value from {0, 1}n.

The remaining of this section devotes to prove Theorem 10. It follows the same line as subsection 4.4. We
first formally describe the two algorithms RESM and IESM, which denote the processes of using Real/Idealized
AEDT to encrypt a Single Message respectively. They are described in Fig. 14 and 15 respectively.

Description of RESM:

– Gen picks k0 $←{0, 1}n
– RESMk0(m1, . . . ,m`) proceeds in four steps:

(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, computes ki ← Eki−1(pA), zi ← Eki−1(pB), and ci ← zi ⊕ mi, and adds [LE(ki−1, pA), LE(ki−1, pB)]p,

L⊕(zi,mi), and [L⊕(zi, ci)]
p−1 to the list leak.

RESMk0(m1, . . . ,m`) eventually returns (c1, . . . , c`).

We define LRESMk0(m) = (RESMk0(m), leak) for the list leak standing at the end of the above process.

Fig. 14: The RESM scheme.

Description of IESM:

– IESMk0(m1, . . . ,m`) proceeds in four steps:
(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, samples ki $← {0, 1}n and zi $← {0, 1}n such that ki 6= zi, sets ci ← zi ⊕ mi, and adds

[SL(ki−1, pA, ki),SL(ki−1, pB , zi)]
p, L⊕(zi,mi), and [L⊕(zi, ci)]

p−1 to the list leak.
IESMk0(m1, . . . ,m`) eventually returns (c1, . . . , c`).

We define LIESMk0(m) = (IESMk0(m), leak) for the list leak standing at the end of the above process.

Fig. 15: The IESM scheme.

Lemma 8 (Indistinguishability of LRESM and LIESM). Let E : {0, 1}n × {0, 1}n → {0, 1}n be a (2, t, εE)-
PRP, whose implementation has a leakage function LE having (qS , tS , ql, t, ε(2,2)-rsim) (2, 2)-R-simulatable leak-

ages, and let SL be an appropriate (qS , tS)-bounded leakage simulator. Then, for every `-block message m, every
pA, pB, and every (ql − 2qr − q∗, t− 2tr − t∗)-bounded distinguisher DL, the following holds:

|Pr[DL(m, LRESMk0(m))⇒ 1]− Pr[DL(m, LIESMk0(m))⇒ 1]| ≤ `(εE + ε(2,2)-rsim).

Here qr = `(2qS + 3), q∗ and t∗ are as defined in Lemma 2, and tr = 2`(tS + t$ + tE) + ` · t⊕, where tE, t$, and
t⊕ are as assumed in Lemma 3.

Proof. We define G0 as the security game in which AL receives LRFSMs0(m) as the input, and G` as the game
in which AL receives LIFSMs0(m) as the input. We show that G0 could be transited to G` via a sequence of
intermediate games

G1,G2, . . . ,G`−1,

which resemble the games G∗1, . . . ,G
∗
` appeared in the proof of Lemma 3. In detail, for j from 1 to `, we consider

the game Gj−1: we replace the two intermediate values Ekj−1
(pA) and Ekj−1

(pB) by two distinct random values
kj and zj , and replace the leakages [LE(kj−1, pA), LE(kj−1, pB)]p, L⊕(Ekj−1

(pB),mj), and [L⊕(Ekj−1
(pB), cj)]

p−1

by [SL(kj−1, pA, kj),SL(kj−1, pB, zj)]
p, L⊕(zj ,mj), and [L⊕(zj , cj)]

p−1. This yields the game Gj . Clearly,

Pr[DGj ⇒ 1]− Pr[DGj−1 ⇒ 1] ≤ εE + ε(2,2)-rsim.
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Therefore, the ` transitions eventually yield∣∣Pr[DG` ⇒ 1]− Pr[DG0 ⇒ 1]
∣∣ ≤ `(εE + ε(2,2)-rsim)

as claimed. ut

We then show the eavesdropper security of LIESM encrypting an `-block message relies on the security of
ISEnc.

Lemma 9. For every pair of `-block messages m0 and m1 and (ql, t)-bounded adversary AL, there exists a
(ql + 2qr, t+ 2tr)-bounded adversary AL′ such that

|Pr[AL(LIESMk0(m0))⇒ 1]− Pr[AL(LIESMk0(m1))⇒ 1]|

≤
∑̀
i=1

|Pr[AL′(LISEnc+ki−1
(m0

i ))⇒ 1]− Pr[AL′(LISEnc+ki−1
(m1

i ))⇒ 1]|,

where k0, . . . , k`−1 are chosen uniformly at random, the pB value used in the scheme LISEnc+ki−1
(m1

i ) is pB, and

m0
i and m1

i are the i-th block of m0 and m1 respectively. Here qr = `(2qS + 1) and tr = `(2tS + 2t$ + t⊕), where
tE, t$, and t⊕ are as assumed in Lemma 3.

Proof. We start by building a sequence of ` + 1 messages mh,0, . . . ,mh,` starting from m0 and modifying its
blocks one by one until obtaining m1. That is, mh,i := m0

1‖ . . . ‖m0
`−i‖m1

`−i+1‖ . . . ‖m1
` . Following the same line

as the proof of Lemma 3, it can be shown

|Pr[AL(LIESMk0(mh,i−1))⇒ 1]− Pr[AL(LIESMk0(mh,i))⇒ 1]|

≤|Pr[AL′(LISEnc+k`−i(m
0
`−i+1))⇒ 1]− Pr[AL′(LISEnc+k`−i(m

1
`−i+1))⇒ 1]|.

Taking a summation yields the main claim. ut

Lemmas 2, 8, and 9 cinch the eavesdropper security on AEDT.

Lemma 10. Let E : {0, 1}n×{0, 1}n → {0, 1}n be a (2, t, εE)-PRP, whose implementation has a leakage function
LE having (qS , tS , ql, t, ε(2,2)-rsim) (2, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-bounded
leakage simulator. Then, for every pair of `-block messages m0 and m1 and (ql − 2qr − q∗, t− 2tr − t∗)-bounded
adversary AL, it holds

|Pr[AL(LRESMk0(m0))⇒ 1]− Pr[AL(LRESMk0(m1))⇒ 1]| ≤ 4`(εE + ε(2,2)-rsim) + ` · εs-block,

where qr, tr are as defined in Lemma 8, and q∗, t∗ are as defined in Lemma 2.

Proof. In a similar vein to Lemma 5. ut

And then Theorem 10 (the CCAML2 security of AEDT) could be derived. Briefly speaking, we note that the
designs of AEDT and FEMALE share the following in common:

– First, their authentication components are the same;
– Second, their invalid decryption queries only leak some outputs of (E∗k)

−1, which are indistinguishable from
meaningless random values.

Therefore, the proof just follows the same line as that of Theorem 3.

On Empty Message. At the end of this section, we again consider the case the scheme is used on an empty
message M = ⊥. In that case, it can be seen AEDT collapses to a hash-then-MAC function, i.e.,

C = E∗,1k (H(1‖R)),

where R = H(0‖N‖A). Clearly, this provides authentication for A.
On the other hand, although it appears wasting to hash the input twice, it may not be wise to drop the

second call for this special case: on one hand, this would require the scheme to incorporate a sub-mechanism
to handle this case, resulting in an increased complexity; on the other hand, the existing CIML2 security proof
for AEDT may not hold for the “reduced” authentication function.
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