
Unbounded Inner-Product Functional Encryption with Succinct
Keys

Edouard Dufour-Sans1,2 and David Pointcheval1,2

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
2 INRIA, Paris, France

{edufoursans,david.pointcheval}@ens.fr

Abstract. In 2015, Abdalla et al. introduced Inner-Product Functional Encryption, where both
ciphertexts and decryption keys are vectors of fixed size n, and keys enable the computation of an
inner product between the two. In practice, however, the size of the data parties are dealing with
may vary over time. Having a public key of size n can also be inconvenient when dealing with very
large vectors.
We define the Unbounded Inner-Product functionality in the context of Public-Key Functional
Encryption, and introduce schemes that realize it under standard assumptions. In an Unbounded
Inner-Product Functional Encryption scheme, a public key allows anyone to encrypt unbounded
vectors, that are essentially mappings from N∗ to Zp. The owner of the master secret key can generate
functional decryption keys for other unbounded vectors. These keys enable one to evaluate the inner
product between the unbounded vector underlying the ciphertext and the unbounded vector in
the functional decryption key, provided certain conditions on the two vectors are met. We build
Unbounded Inner-Product Functional Encryption by introducing pairings, using a technique similar
to that of Boneh-Franklin Identity-Based Encryption. A byproduct of this is that our scheme can be
made Identity-Based "for free". It is also the first Public-Key Inner-Product Functional Encryption
Scheme with a constant-size public key (and master secret key), as well constant-size functional
decryption keys: each consisting of just one group element.

Keywords. Unbounded Vectors, Functional Encryption, Inner Product.

1 Introduction

Functional Encryption (FE) [8, 10, 13, 17] is a new paradigm for encryption that does away
with the “all-or-nothing” requirement of traditional Public-Key Encryption. FE allows users to
learn specific functions of the encrypted data: for any function f from a class F , a functional
decryption key dkf can be computed such that, given any ciphertext c with underlying plaintext
x, using dkf , a user can efficiently compute f(x), but does not get any additional information
about x. This is the most general form of encryption as it encompasses identity-based encryption,
attribute-based encryption, broadcast encryption.

FE schemes for general functionalities have been introduced [4, 5, 12–14,16, 19] but have thus
far always been based on non-standard assumptions such as indistinguishability obfuscation or
multilinear maps.

Inner-Product Functional Encryption. In 2015, Abdalla, Bourse, De Caro, and Pointcheval [1]
(ABDP) suggested it might be worthwhile to instead give FE schemes for more restricted
functionalities, but with reasonable efficiency and security proofs relying on better understood
assumptions. They built FE schemes for the Inner-Product functionality which they proved
selectively secure under the Decisional Diffie-Hellman and Learning-with-Errors assumptions.
There are now variants with adaptive security [3].

1.1 Motivation

Inner-Product Functional Encryption (IPFE) enables many interesting applications, such as the
computation of aggregate statistics or the evaluation of regression models, but, unfortunately, it
until now required that the data being processed have a fixed size. The public and secret keys

2 Edouard Dufour-Sans and David Pointcheval

also scale with this size, which can prove an inconvenience. We would like to construct schemes
in which the public key is of constant, small size (ideally, a single group element), but where
encrypting large vectors —in fact, arbitrarily large vectors— remains possible.

Let us go back to one of the motivating examples of IPFE: that of a school encrypting all the
grades of each student, by discipline, as part of a single ciphertext every quarter. An authority
can then distribute keys that enable one to compute a specific student’s average grade (weighted
by coefficients or by class hours), or the average over a class. It can also give keys that reveal the
average grade in Mathematics or in Physics, always without jeopardizing the confidentiality of
individual data, beyond what one can learn about the individuals from their aggregate. Now
assume that a new student joins the school from one quarter to another. We would like to avoid
the school having to query the authority for a new, readjusted public key (or for an extension of
the current one). Whether the old keys should still work on the new, larger ciphertexts is to be
decided on a case by case basis, and justifies our introducing multiple definitions: our strict and
permissive notions.

One may wonder why the new keys could not be derived by a hash function (in the random
oracle model, as we will use) in previous IPFE schemes. This would be for the public key, but
with no way to derive the private keys required to generate the functional decryption keys.

1.2 Our Results

We introduce the first Unbounded Inner-Product Functional Encryption schemes (UIPFE). Both
schemes share the following features:

1. Unboundedness: They enable the encryption of, and the generation of functional decryption
keys for, unbounded vectors;

2. Succinct keys: In both cases the master secret key is a single secret scalar s ∈ Zp, and the
public key is a corresponding group element gs1 ∈ G1. Furthermore, the functional decryption
keys simply consist of a group element d ∈ G2, in addition to the public vector describing the
function evaluated by the functional decryption key;

3. Identity-Based Access Control: We consider both the computation on encrypted data
aspect and the access control aspect of FE by letting users specify an identity in their
ciphertext. The master authority gives functional decryption keys that limit evaluations
of the unbounded inner product to ciphertexts of a given identity. This only expands the
possible applications of our schemes, as the naive behavior can always be achieved by using
the constant null identity.

Our main scheme is:

1. Strict: It only allows decryption when the domain of the ciphertext matches that of the key.
In a sense, it may thus be thought of as operating infinitely many IPFE schemes in parallel.

2. Selectively secure under a standard assumption: We prove the security of our first
scheme under the classical DBDH assumption, in the random oracle model.

We also introduce a scheme which is:

1. Permissive: It allows decryption when the support of the key (see Section 3.3) is included
in the domain of the ciphertext.

2. Selectively secure: We prove the security of our second scheme in the random oracle model
under `eDBDH, an interactive assumption we introduce. It resembles the DBDH assumption,
except for the fact that the adversary can query linear combinations that depend on the CDH
of the elements of one group, on condition that they never fully reveal it.

Unbounded Inner-Product Functional Encryption with Succinct Keys 3

1.3 Concurrent Work

In concurrent and independent work, [18] also showed how to build Unbounded Inner-Product
Functional Encryption from Bilinear Maps. Remarkably, their constructions do not require
random oracles, and they prove full security under the SXDH assumption. Their constructions,
however, are significantly less suited to practical use, since public keys require 28 group elements,
ciphertexts 7 per coordinate and decryption keys 7 per coordinate (note that our decryption
keys only require one group element regardless of the size of the function). Moreover, when
decrypting, their schemes require a number of pairing evaluations that scales linearly with the
sizes of the vectors, while ours compute a single pairing per decryption. Their constructions
(ct-dominant) are what we call permissive, with the additional strong restriction that indices in
the ciphertext must be contiguous (their E:con notion which requires the indices of the ciphertext
to be consecutive). Moreover, they do not explicitly consider access control, while our schemes
operate in the Identity-Based framework.

1.4 Related Work: Private-Key Multi-Input Inner-Product Functional Encryption
for Unboundedly Many Inputs

Goldwasser et al. [11] introduced the notion of Multi-Input Functional Encryption for cases
where we want the functions being evaluated on encrypted data to take multiple inputs, with
each input corresponding to a different ciphertext. Abdalla et al. gave the first construction of
Multi Input Functional Encryption for Inner Products [2], and Datta, Okamato and Tomida [9]
recently showed how to achieve what they call Unbounded Private-Key Multi-Input Inner-Product
Functional Encryption. While this is an important result, we must stress that they tackle a
problem which significantly differs from ours: they encrypt vectors of constant size, and the
Unbounded adjective applies to the number of inputs: they can generate keys which enable
the evaluation of an inner product on a number of ciphertexts (inputs) which is not a priori
bounded, while in our work it is the individual ciphertext (input) which has unbounded length.
A perhaps more striking difference is that their scheme is Private-Key, with the encryption
procedure requiring the master secret key, while we tackle the Public-Key setting.

1.5 Paper Organization

In Section 2, we define unbounded vectors, inner products between them and a pseudo-norm on
them. We also recall the setting of pairing groups and the DBDH assumption. Section 3 defines
FE, its security, and the different functionalities we are interested in. We build the first Strict
Identity-Based Unbounded IPFE from standard assumptions in Section 4, and prove it selectively
secure in the random oracle model under the DBDH assumption. Finally, in Section 5, we give a
construction for Permissive Identity-Based Unbounded IPFE which we prove selectively secure in
the random oracle model under an interactive variant of DBDH.

2 Notations

2.1 Unbounded Vectors

Both the plaintexts we are encrypting and the functions for which we will be generating keys
will be referred to as unbounded vectors or lists. We write them as x = (xi)i∈D or y = (yi)i∈D′ ,
respectively, where both D and D′ are finite subsets of N∗, and xi, yj ∈ Zp for i ∈ D, j ∈ D′. The
vectors x and y are thus mappings from N∗ to Zp, and D (resp. D′) is the explicit domain of x (resp.
y). When the context is clear, we will sometimes assimilate the vector space {(zi)i∈D|zi ∈ Zp}
and the isomorphic space Zn

p where n = |D|, the latter being more convenient for discussing
changes of bases.

4 Edouard Dufour-Sans and David Pointcheval

Inner Products. For x = (xi)i∈D and y = (yi)i∈D′ we define the inner product as:

〈x,y〉 =
∑

i∈D∩D′

xiyi.

This comes from the fact that for indices i 6∈ D, implicitly xi = 0.

2.2 (Pseudo)Norm
Our proofs will require that given xb ∈ Zn

p for b ∈ {0, 1} with x0 6= x1 (with the same domain)
and y ∈ Zn

p , if we pick a basis (z1, . . . , zn−1) of (x0 −x1)⊥ and use ζ to denote the coefficient of
(x0 − x1) in the decomposition of y in basis (x0 − x1, z1, . . . , zn−1),

〈y,x0〉 = 〈y,x1〉 =⇒ ζ = 0.

This is not true in general. From 〈y,x0〉 = 〈y,x1〉 we can deduce that ζ · 〈x0 − x1,x0 − x1〉 = 0,
but we can only conclude if 〈x0 − x1,x0 − x1〉 6= 0 mod p. Previous works achieve this by
bounding the individual components of x0 and x1, but this is not sufficient for unbounded vectors
since we do not know n a priori. Instead, for any x = (xi)i∈D we define

||x|| = min
{(x′

i)i∈D∈ZD|x′
i≡xi(mod p) ∀i∈D}

√∑
i∈D

x′2i

where squaring and summation take place in Z. It is easy to verify that for all vectors a and
b, ||a− b|| ≤ ||a||+ ||b|| and ||a|| = 0 =⇒ a = 0 in Zn

p . We will always require that plaintext
vectors being encrypted verify ||x|| <

√
p
2 , so that

||x0 − x1||2 ≤ (||x0||+ ||x1||)2 < (

√
p

2
+

√
p

2
)2 ≤ p

and since 〈x0 − x1,x0 − x1〉 = 0 mod p ⇐⇒ ||x0 − x1||2 = 0 mod p that would imply
||x0 − x1||2 = 0 and thus x0 = x1 in Zn

p , which would contradict our assumption.

2.3 Pairing Group
We use a pairing group generator PGGen, a PPT algorithm that on input 1λ returns a description
PG = (G1,G2, p, P1, P2, e) of asymmetric pairing groups where G1, G2, GT are additive cyclic
groups of order p for a 2λ-bit prime p, P1 and P2 are generators of G1 and G2, respectively,
and e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map. Define
PT := e(P1, P2), which is a generator of GT .

We always use implicit representation of group elements. For s ∈ {1, 2, T} and a ∈ Zp,
define [a]s = aPs ∈ Gs as the implicit representation of a in Gs. Note that from a random
[a]s ∈ Gs it is generally hard to compute the value a (discrete logarithm problem in Gs).
Obviously, given [a]s, [b]s ∈ Gs and a scalar x ∈ Zp, one can efficiently compute [ax]s ∈ Gs and
[a+ b]s = [a]s + [b]s ∈ Gs.

More generally, for s ∈ {1, 2, T} and a matrix A = (aij) ∈ Zn×m
p we define [A]s as the implicit

representation of A in Gs:

[A]s :=

a11Ps ... a1mPs

an1Ps ... anmPs

 ∈ Gn×m
s

Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e. For two matrices A, B
with matching dimensions define e([A]1, [B]2) := [AB]T ∈ GT .

Using these notations, we can recall the seminal Decisional Bilinear Diffie-Hellman Assump-
tion [7], adapted to the asymmetric setting:

Unbounded Inner-Product Functional Encryption with Succinct Keys 5

Definition 1 (Decisional Bilinear Diffie-Hellman Assumption). The Decisional Bilinear
Diffie-Hellman (DBDH) Assumption in the asymmetric setting states that, in a pairing group
G $← PGGen(1λ), no PPT adversary can distinguish between the two following distributions with
non-negligible advantage, where a, b, c, r

$← Zp:

{([a]1, [b]1, [a]2, [c]2, [abc]T)} and {([a]1, [b]1, [a]2, [c]2, [r]T)}.

3 Definitions and Security Models

3.1 Functional Encryption

We give the definition of Functional Encryption as originally defined in [8, 15].

Definition 2 (Functional Encryption). A functional encryption scheme for a functionality
F : K ×X → Z (where we require that the key space K contains the empty key ε) is a tuple of
PPT algorithms SetUp,KeyGen,Enc,Dec defined as follows.

SetUp(λ): takes as input a security parameter 1λ and outputs a master secret key msk and a
public key pk.

KeyGen(msk, k): takes as input the master secret key and a key description k ∈ K, and outputs
a functional decryption key dkk.

Encrypt(pk, x): takes as input the public key pk and a message x ∈ X , and outputs a ciphertext
c.

Decrypt(dkk, c): takes as input a functional decryption key dkk and a ciphertext c, and returns
an output y ∈ Z ∪ {⊥}, where ⊥ is a special rejection symbol.

We implicitly assume that mpk is included in msk and in all the encryption keys eki as well as
the functional decryption keys dkk.

Correctness. The correctness property states that, given (pk,msk) ← SetUp(λ), for any key
description k ∈ K and any message x ∈ X , if c ← Encrypt(pk, x) and dkk ← DKeyGen(msk, k),
then Decrypt(dkk, c) = F (k, x).

Security. For any stateful adversary A, and any functional encryption scheme, we define the
following advantage.

AdvA(λ) := Pr

β′ = β :

(pk,msk)← SetUp(1λ)

(x0, x1)← AKeyGen(msk,·)(pk)

β
$← {0, 1}

c← Encrypt(pk, xβ)

β′ ← AKeyGen(msk,·)(c)

− 1

2
,

with the restriction that F (ε, x0) = F (ε, x1) and that for all key descriptions k queried to
KeyGen(msk, ·), the equation F (k, x0) = F (k, x1) must hold. We say the scheme is IND-CPA
secure if for all PPT adversaries A, AdvA(λ) = negl(K).

A Weaker Notion. One may define a weaker variant of indistinguishability, called Selective
Security or sel-IND security: the encryption queries are sent before the initialization.

6 Edouard Dufour-Sans and David Pointcheval

3.2 The Unbounded Inner-Product Functionality

Inner-Product Functional Encryption as defined in [1], and later works, takes messages of fixed
length and outputs ciphertexts of the same fixed length. Messages are vectors of n scalars,
indexed from 1 to n. We will show how to build Inner-Product Functional Encryption schemes
for arbitrary-size vectors.

While bounded message IPFE only considers vectors with contiguous indices we do not require
this in our definitions to make them more general.

We give four definitions of Inner-Product Functional Encryption for Unbounded Vectors. The
first two differ in their requirement on the domains of the ciphertexts and the keys for encryption
to be successful. The last two are Identity-Based variants of the first two.

Definition 3 (Strict Unbounded IPFE).

– K = {ε} ∪ {(yi)i∈D′ |D′ ⊂ N∗ finite, yi ∈ Zp ∀i ∈ D′};
– X = {x = (xi)i∈D|D ⊂ N∗ finite, xi ∈ Zp ∀i ∈ D and ||x|| <

√
p
2 };

– Z = Zp;
– F (ε, (xi)i∈D) = D and

F ((yi)i∈D′ , (xi)i∈D) =

{
〈y,x〉 if D′ = D;
⊥ otherwise.

Definition 4 (Permissive Unbounded IPFE).

– K = {ε} ∪ {(yi)i∈D′ |D′ ⊂ N∗ finite, yi ∈ Zp ∀i ∈ D′};
– X = {x = (xi)i∈D|D ⊂ N∗ finite, xi ∈ Zp ∀i ∈ D};
– Z = Zp;
– F (ε, (xi)i∈D) = D and

F ((yi)i∈D′ , (xi)i∈D) =

{
〈y,x〉 if D′ ⊂ D;
⊥ otherwise.

Definition 5 (Strict Identity-Based Unbounded IPFE).

– K = {ε} ∪ {(id’, (yi)i∈D′)|id’ ∈ {0, 1}∗,D′ ⊂ N∗ finite, yi ∈ Zp ∀i ∈ D′};
– X = {(id,x = (xi)i∈D)|id ∈ {0, 1}∗,D ⊂ N∗ finite, xi ∈ Zp ∀i ∈ D};
– Z = Zp;
– F (ε, (id, (xi)i∈D)) = (id,D) and

F ((id’, (yi)i∈D′), (id, (xi)i∈D)) =
{
〈y,x〉 if D′ = D and id = id’;
⊥ otherwise.

Definition 6 (Permissive Identity-Based Unbounded IPFE).

– K = {ε} ∪ {(id’, (yi)i∈D′)|id’ ∈ {0, 1}∗,D′ ⊂ N∗ finite, yi ∈ Zp ∀i ∈ D′};
– X = {(id,x = (xi)i∈D)|id ∈ {0, 1}∗,D ⊂ N∗ finite, xi ∈ Zp ∀i ∈ D};
– Z = Zp;
– F (ε, (id, (xi)i∈D)) = (id,D) and

F ((id’, (yi)i∈D′), (id, (xi)i∈D)) =
{
〈y,x〉 if D′ ⊆ D and id = id’;
⊥ otherwise.

Unbounded Inner-Product Functional Encryption with Succinct Keys 7

3.3 An Alternative Security Definition

To prove our permissive scheme secure, we will require a slightly different definition of security
than the standard one, so we introduce it here. Like ABDP and later works on practical
IPFE, key generation in our scheme is homomorphic: KeyGen(msk,y1) + KeyGen(msk,y2) =
KeyGen(msk,y1 + y2). Moreover, ciphertexts are not required for inactive slots in the key. For
instance, from KeyGen(msk,y) where y = (yj)j∈D and for some i ∈ D, yi = 0, one can evaluate∑

j∈D xjyj from (Encrypt(pk, (xj))j∈D,j 6=i. The standard security game of Functional Encryption
does not take this into account as it only considers the domain of the vector y. Let us first
define, for any unbounded vector z = (zi)i∈D, its domain as Domain(z) = D and its support as
Support(z) = {i ∈ D|zi 6= 0}. The support is thus the set of the active slots.

Definition 7 (Homomorphic Key Security).
In Homomorphic Key IND (and sel-IND) security, we modify the conditions for ignoring the
adversary’s guess as follows:

If for some m ∈ N∗ and y1, ...,ym queried to KeyGen(msk, ·),
there are ωi ∈ Zp, for all i ∈ [m] such that, having defined y ←

∑
i ωiy

i,
Support(y) ⊆ Domain(x0) = Domain(x1) and 〈y,x0〉 6= 〈y,x1〉,

then, ignore the adversary’s guess.

Indeed, if the adversary can find a linear combination of the keys that make an inactive slot
critical on the challenge ciphertext, then it can trivially win the game. This is very specific to
the permissive constructions that allow any D′ ⊂ D.

4 A Strict Identity-Based Unbounded IPFE

4.1 Description of the Scheme

We first present a selectively-secure strict identity-based UIPFE:

– SetUp(λ): Pick a pairing group PG = (G1,G2,GT , g1, g2, e) of prime order p. Pick a full-
domain hash function H into G2. Pick s

$← Zp and publish pk = [s]1. Set msk = (s, pk).
– Encrypt(pk, id,x): Take as input an unbounded vector x = (xi)i∈D where D ⊂ N∗ is finite,

an identity id and the public key pk. Pick r
$← Zp, and output C = ([r]1, (ci)i∈D) where

ci = [xi]T + e([s]1, r[uid||D||i]2) and [uid||D||i]2 := H(id||D||i) for all i ∈ D.
– KeyGen(msk, id’,y): Take as input an unbounded vector y = (yi)i∈D′ (where D′ ⊂ N∗ is finite)

representing its associated inner-product function, an identity id’ and the master secret key
msk = (s, pk). Output

dky = (y,−s
∑
i∈D′

yi[uid’||D′||i]2)

where [uid’||D′||i]2 := H(id’||D′||i) for all i ∈ D′.
– Decrypt(dky,C): Take as input a ciphertext C = (c0, (ci)i∈D) and a decryption key dky =
((yi)i∈D = y, d). Compute

[α]T = e(c0, d) +
∑
i∈D

yici

and recover the discrete logarithm to output α.

We clarify that ·||· denotes an efficient injective encoding into the set of binary strings.

8 Edouard Dufour-Sans and David Pointcheval

Correctness. When id = id’ we have:

[α]T = e(c0, d) +
∑
i∈D

yici

= e([r]1,−s
∑
i∈D

yi[uid||D||i]2)) +
∑
i∈D

yi([xi]T + e([s]1, r[uid||D||i]2))

= [
∑
i∈D
−sryiuid||D||i + yixi + sryiuid||D||i]T = [

∑
i∈D

yixi]T = [〈y,x〉]T .

4.2 Security Analysis

Theorem 8 (sel-IND Security). The Strict Identity-Based UIPFE scheme described above is
sel-IND-secure under the DBDH assumption, in the random oracle model for H.

Proof. Given an adversary A that breaks the sel-IND security of our scheme, we construct an
adversary B that breaks the DBDH assumption.
B receives a DBDH tuple ([a]1, [b]1, [a]2, [c]2, [d]T). B’s goal is to guess whether d = abc or d

is uniformly random. A chooses a pair of challenge vectors (x0 = (x0i)i∈D∗ ,x1 = (x1i)i∈D∗) to be
encrypted under identity id∗ and sends them to B.

From now on, we write |D∗| = n and assimilate {(wi)i∈D∗ |wi ∈ Zp ∀i ∈ D∗} with the vector
space Zn

p , where m : D∗ → [n] maps the original indices to those in Zn
p .

Then, we follow the proof technique from [1], with a basis (z1, . . . , zn−1) of (x0 − x1)⊥. B
also picks n − 1 random scalars (r1, . . . , rn−1) ∈ Zn−1

p . The family (x0 − x1, z1, . . . , zn−1) is a
basis of Zn

p and we can write the canonical vectors ei as

ei = αi · (x0 − x1) +
∑

j∈[n−1]

λi,j · zj

for some αi ∈ Zp, λi,j ∈ Zp, for all i ∈ [n], j ∈ [n− 1]. B can now simulate A’s view:

– Public Key. B simply sets pk = [a]1 (implictly setting the master secret key msk to be the
unknown scalar a) and sends it to A.

– Random Oracle Calls. On any fresh input str = id||D||i, if id||D 6= id∗||D∗ or i 6∈ D∗, B
returns a random group element in G2, the discrete logarithm of which it stores as hstr and
reuses upon a later request for the same input. On input id∗||D∗||i for some i ∈ D∗, B returns

αm(i)[c]2 +
∑

j∈[n−1]

λm(i),j [rj]2

which it doesn’t need to store because the above formula is deterministic.
– Ciphertext. B picks β ∈ {0, 1} and generates a ciphertext for xβ from [b]1, [a]2 and [d]T as

c0 = [b]1 and:

ci = [xβi]T + αm(i)[d]T +

 ∑
j∈[n−1]

λm(i),jrj

 e([b]1, [a]2)

for all i ∈ D∗.
– Decryption Keys. A will input id’,y = (yi)i∈D′ . Make those calls to the random oracle

that haven’t been made for inputs id’||D′||i for i ∈ D′. If id’ 6= id∗ or D′ 6= D∗ simply return
(y,−

∑
i∈D′ hid’||D′||iyi[a]2). Otherwise write (yi)i∈D∗ = ζ · (x0 − x1) +

∑
i∈[n−1] νi · zi for

ζ ∈ Zp, νi ∈ Zp, for all i ∈ [n− 1]. Then, return

dky =

y,−

 ∑
i∈[n−1]

νi

 ∑
j∈[n−1]

λi,jrj

 [a]2

 .

Unbounded Inner-Product Functional Encryption with Succinct Keys 9

At the end of the simulation if A correctly guesses β, B guesses that d = abc (the tuple is a
proper BDH tuple), otherwise it guesses that d is uniformly random. It remains to be verified
that B correctly simulates A’s environment:

– The master public key and the random oracle responses are clearly uniformly random, thus
properly distributed, despite the change of basis.

– From Section 2.2 we know that the coefficient ζ of x0 − x1 in the decomposition of a y
for which a key has been queried is zero, otherwise the adversary A will not pass the final
condition and its guess will be ignored. Hence, this contribution disappears from the functional
key. The simulation of this key is perfect unless the attack is not legitimate;

– Now, notice that when B receives a true BDH tuple, it properly returns an encryption of xβ ,
but when [d]T is uniformly random, the bit β is perfectly hidden.

Under the DBDH assumption, A cannot distinguish between these situations and thus, as in the
latter, has no information on β. This concludes the proof. ut

5 A Permissive Identity-Based Unbounded IPFE

5.1 Description of the Scheme

We now present a selectively-secure permissive identity-based UIPFE:

– SetUp(λ): Pick a pairing group PG = (G1,G2,GT , g1, g2, e) of prime order p. Pick a full-
domain hash function H into G2. Pick s

$← Zp and publish pk = [s]1. Set msk = (s, pk).
– Encrypt(pk, id,x): Take as input an unbounded vector x = (xi)i∈D where D ⊂ N∗ is finite,

an identity id and the public key pk. Pick r
$← Zp, and output C = ([r]1, (ci)i∈D) where

ci = [xi]T + e([s]1, r[uid||i]2) and [uid||i]2 := H(id||i) for all i ∈ D.
– KeyGen(msk, id’,y): Take as input an unbounded vector y = (yi)i∈D′ (where D′ ⊂ N∗ is finite)

representing its associated inner-product function, an identity id’ and the master secret key
msk = (s, pk). Output

dky = (y,−s
∑
i∈D′

yi[uid’||i]2)

where [uid’||i]2 := H(id’||i) for all i ∈ D′.
– Decrypt(dky,C): Take as input a ciphertext C = (c0, (ci)i∈D) and a decryption key dky =
((yi)i∈D′ = y, d). Compute

[α]T = e(c0, d) +
∑
i∈D′

yici

and recover the discrete logarithm to output α.

Correctness. When id = id’ we have:

[α]T = e(c0, d) +
∑
i∈D

yici

= e([r]1,−s
∑
i∈D′

yi[uid||i]2)) +
∑
i∈D′

yi([xi]T + e([s]1, r[uid||i]2))

= [
∑
i∈D′

−sryiuid||i + yixi + sryiuid||i]T = [
∑
i∈D′

yixi]T = [〈y,x〉]T .

5.2 New Assumption

Unfortunately, we will not be able to prove the security of this new scheme under a standard
assumption. We thus define a new interactive one, that allows the adversary to see some linear
combinations:

10 Edouard Dufour-Sans and David Pointcheval

Definition 9 (Linearly Extended Decisional Bilinear Diffie-Hellman Assumption).
The Linearly Extended Decisional Bilinear Diffie-Hellman (`eDBDH) Assumption states that
no PPT adversary A should be able to win the following game against a challenger C with
non-negligible advantage:
– Initialize: C picks a, b, c, r

$← Zp and δ
$← {0, 1}. If δ = 0, C sends

([a]1, [b]1, [a]2, [c]2, [abc]T)

to A, otherwise it sends
([a]1, [b]1, [a]2, [c]2, [r]T).

– Extension Queries: A has unlimited access to an oracle that, on input i ∈ N∗:
• if it stored a value hi for i, reuses it;
• otherwise, picks hi

$← Zp, sends it to A and stores it;
– Linear Extension Queries: A has unlimited access to an oracle that, on input (yi)i∈D for

some finite S ⊂ N:
1. For each i ∈ D \ {0}:
• if it stored a value hi for i, reuses it;
• otherwise, picks hi

$← Zp and stores it;
2. stores (yi)i and sends [y0ac+

∑
i∈D,i 6=0 yihia]2 to A.

– Finalize: A provides its guess δ′ on C’s bit δ. C uses the stored ((y
(k)
i)i)k to check that

e0 6∈ Span((y(k))k), and if so it outputs β := δ′, otherwise it outputs β
$← {0, 1}.

5.3 Security Analysis
Theorem 10 (Homomorphic Key sel-IND Security). The Permissive Identity-Based
UIPFE scheme described above is Homomorphic Key sel-IND-secure under the `eDBDH as-
sumption, in the random oracle model for H.

Proof. Given an adversary A that breaks the sel-IND security of our scheme, we construct an
adversary B that breaks the `eDBDH assumption.
B receives a DBDH tuple ([a]1, [b]1, [a]2, [c]2, [d]T) from a `eDBDH oracle. B’s goal is to

guess whether d = abc or d is uniformly random. A chooses a pair of challenge vectors (x0 =
(x0i)i∈D∗ ,x1 = (x1i)i∈D∗) to be encrypted under identity id∗ and sends them to B.

From now on we write |D∗| = n and assimilate {(wi)i∈D∗ |wi ∈ Zp ∀i ∈ D∗} with the
vector space Zn

p , and define m : D∗ → [n] which maps the original indices to those in Zn
p and

m⊥ : N \ D∗ → N∗ which maps the other indices into N∗.
B picks a basis (z1, . . . , zn−1) of (x0 − x1)⊥ as well as n− 1 random scalars (r1, . . . , rn−1) ∈

Zn−1
p . (x0 − x1, z1, . . . , zn−1) is a basis of Zn

p and we can write the canonical vectors ei as

ei = αi · (x0 − x1) +
∑

j∈[n−1]

λi,j · zj

for some αi ∈ Zp, λi,j ∈ Zp, for all i ∈ [n], j ∈ [n− 1].B can now simulate A’s view:

– Public Key. B simply sets pk = [a]1 (implictly setting the master secret key msk to be the
unknown scalar a) and sends it to A.

– Random Oracle Calls. On any fresh input str = id||i, if id 6= id∗, B returns a random
group element in G2, the discrete logarithm of which it stores as hstr and reuses upon a later
request for the same input. On input id∗||i for some i 6∈ D∗, B makes an Extension Query to
the `eDBDH oracle with input m⊥(i) and forwards its ouput to A. On input id∗||i for some
i ∈ D∗, B returns

αm(i)[c]2 +
∑

j∈[n−1]

λm(i),j [rj]2

which it doesn’t need to store because the above formula is deterministic.

Unbounded Inner-Product Functional Encryption with Succinct Keys 11

– Ciphertext. B picks β ∈ {0, 1} and generates a ciphertext for xβ from [b]1, [a]2 and [d]T as
c0 = [b]1 and:

ci = [xβi]T + αm(i)[d]T +

 ∑
j∈[n−1]

λm(i),jrj

 e([b]1, [a]2)

for all i ∈ D∗.
– Decryption Keys. A will input id’,y = (yi)i∈D′ . Make those calls to the random oracle

that haven’t been made for inputs id’||i for i ∈ D′. If id’ 6= id∗ or D′ 6= D∗ simply return
(y,−

∑
i∈D′ hid’||iyi[a]2). Otherwise write D1 = D∗ \ {0}∩D′ and D2 = D′ \D1. Decompose y

as (yi)i∈D∗ = ζ(x0−x1)+
∑

i∈[n−1] νizi for ζ ∈ Zp, νi ∈ Zp, for all i ∈ [n− 1]. Make a Linear
Extension Query to the `eDBDH oracle for input (y′i)i∈{0}∪m⊥(D2) such that y′

m⊥(i)
= yi for

all i ∈ D2 and y′0 = ζ, which returns D ∈ G2. Then, return

dky =

y,−D −

 ∑
i∈[n−1]

νi

 ∑
j∈[n−1]

λi,jrj

 [a]2

 .

At the end of the simulation if A correctly guesses β, B guesses that d = abc (the tuple is a
proper BDH tuple), otherwise it guesses that d is uniformly random. It remains to be verified
that B correctly simulates A’s environment:

– The master public key, functional decryption key and the random oracle responses are clearly
uniformly random, thus properly distributed, despite the change of basis;

– From Section 3.3, we know that the span of all queried keys will not contain a key with
domain included in D∗ with a non zero component on x0 −x1, which guarantees that B does
not break the condition that bars trivial victories in the `eDBDH game;

– Now, notice that when B receives a true BDH tuple, it properly returns an encryption of xβ ,
but when [d]T is uniformly random, the bit β is perfectly hidden.

Under the `eDBDH assumption A cannot distinguish between these situations and thus, as in
the latter, has no information on β. This concludes the proof. ut

6 Open Problems

We have introduced constructions that are quite efficient in terms of size, since every key involved
consists of a single group element, and thus the computational load is also much lower than
in [18]. In addition, the vector ciphertexts do not need their domain to be a unique interval as
in [18]. Still, several interesting problems remain open, and we now list promising directions for
future research:

– Building Unbounded IPFE for any behavior without pairings, either groups without multilin-
earity or from other assumptions.

– Building Unbounded Functional Encryption schemes for different functionalities, such as
Quadratic Polynomials (which already require pairings in the bounded setting [6]).

– Achieving adaptive security or removing random oracles with minimal overhead.

Acknowledgments

We would like to thank the anonymous reviewers for detailed comments. This work was supported
in part by the European Communitys Seventh Framework Programme (FP7/2007-2013 Grant
Agreement no. 339563 – CryptoCloud) and the European Communitys Horizon 2020 Project
FENTEC (Grant Agreement no. 780108).

12 Edouard Dufour-Sans and David Pointcheval

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (Mar / Apr 2015) (Pages 1,
6, and 8.)

2. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings.
In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 601–626. Springer,
Heidelberg (Apr / May 2017) (Page 3.)

3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer,
Heidelberg (Aug 2016) (Page 1.)

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional
encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657–677.
Springer, Heidelberg (Aug 2015) (Page 1.)

5. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 557–587. Springer, Heidelberg (Dec 2016) (Page 1.)

6. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic functions with
applications to predicate encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 67–98. Springer, Heidelberg (Aug 2017) (Page 11.)

7. Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM Journal on Computing
32(3), 586–615 (2003) (Page 4.)

8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (Mar 2011) (Pages 1 and 5.)

9. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner product functional encryption
from the k-linear assumption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp.
245–277. Springer, Heidelberg (Mar 2018) (Page 3.)

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. In: 54th FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013)
(Page 1.)

11. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A., Shi, E., Zhou, H.S.: Multi-input
functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602.
Springer, Heidelberg (May 2014) (Page 3.)

12. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on
encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553.
Springer, Heidelberg (Aug 2013) (Page 1.)

13. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and
succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp.
555–564. ACM Press (Jun 2013) (Page 1.)

14. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party
computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (Aug 2012) (Page 1.)

15. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010),
http://eprint.iacr.org/2010/556 (Page 5.)

16. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 10. pp. 463–472. ACM Press (Oct 2010) (Page 1.)

17. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 457–473. Springer, Heidelberg (May 2005) (Page 1.)

18. Tomida, J., Takashima, K.: Unbounded inner product functional encryption from bilinear maps. In: Peyrin,
T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 609–639. Springer, Heidelberg (Dec
2018) (Pages 3 and 11.)

19. Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R.,
Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (Aug
2015) (Page 1.)

http://eprint.iacr.org/2010/556

	Unbounded Inner-Product Functional Encryption with Succinct Keys
	Introduction
	Motivation
	Our Results
	Concurrent Work
	Related Work: Private-Key Multi-Input Inner-Product Functional Encryption for Unboundedly Many Inputs
	Paper Organization

	Notations
	Unbounded Vectors
	(Pseudo)Norm
	Pairing Group

	Definitions and Security Models
	Functional Encryption
	The Unbounded Inner-Product Functionality
	An Alternative Security Definition

	A Strict Identity-Based Unbounded IPFE
	Description of the Scheme
	Security Analysis

	A Permissive Identity-Based Unbounded IPFE
	Description of the Scheme
	New Assumption
	Security Analysis

	Open Problems

