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Abstract

Extensive efforts are currently put into securing messaging platforms, where a key challenge
is that of protecting against man-in-the-middle attacks when setting up secure end-to-end chan-
nels. The vast majority of these efforts, however, have so far focused on securing user-to-user
messaging, and recent attacks indicate that the security of group messaging is still quite fragile.

We initiate the study of out-of-band authentication in the group setting, extending the user-to-
user setting where messaging platforms (e.g., Telegram and WhatsApp) protect against man-in-
the-middle attacks by assuming that users have access to an external channel for authenticating
one short value (e.g., two users who recognize each other’s voice can compare a short value).
Inspired by the frameworks of Vaudenay (CRYPTO ’05) and Naor et al. (CRYPTO ’06) in the
user-to-user setting, we assume that users communicate over a completely-insecure channel, and
that a group administrator can out-of-band authenticate one short message to all users. An
adversary may read, remove, or delay this message (for all or for some of the users), but cannot
undetectably modify it.

Within our framework we establish tight bounds on the tradeoff between the adversary’s
success probability and the length of the out-of-band authenticated message (which is a cru-
cial bottleneck given that the out-of-band channel is of low bandwidth). We consider both
computationally-secure and statistically-secure protocols, and for each flavor of security we con-
struct an authentication protocol and prove a lower bound showing that our protocol achieves
essentially the best possible tradeoff.

In particular, considering groups that consist of an administrator and k additional users,
for statistically-secure protocols we show that at least (k + 1) · (log(1/ε) − Θ(1)) bits must be
out-of-band authenticated, whereas for computationally-secure ones log(1/ε) + log k bits suffice,
where ε is the adversary’s success probability. Moreover, instantiating our computationally-secure
protocol in the random-oracle model yields an efficient and practically-relevant protocol (which,
alternatively, can also be based on any one-way function in the standard model).
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1 Introduction

Instant messaging is gaining extremely-increased popularity as a tool enabling users to communicate
with other users either individually or within groups. A variety of available messaging platforms hold
an overall user base of more than 1.5 billion active users (e.g., WhatsApp, Signal, Telegram, and
many more [Wik]), and recognize user authentication and end-to-end encryption as key ingredients
for ensuring secure communication within them.

Extensive efforts are currently put into securing messaging platforms, both commercially (e.g.,
[PM16, Telb, Wha]) and academically (e.g., [FMB+16, BSJ+17, CCD+17, KBB17]). The vast major-
ity of these efforts, however, have so far focused on securing user-to-user messaging, and substantially
less attention has been devoted to securing group messaging. Unfortunately, it recently turned out
that whereas the security of user-to-user messaging is gradually reaching a stable ground, the security
of group messaging is still quite fragile [CGCG+17, RMS18, Gre18a, Gre18b].

Out-of-band authentication. A key challenge in securing messaging platforms is that of protect-
ing against man-in-the-middle attacks when setting up secure end-to-end channels. Such attacks are
enabled by the inability of users to authenticate their incoming messages given the somewhat ad-hoc
nature of messaging platforms.1 To this end, various messaging platforms enable “out-of-band” au-
thentication, assuming that users have access to an external channel for authenticating short values.
These values typically correspond to short hash values that are derived, for example, from the public
keys of the users, or more generally from the transcript of any key-exchange protocol that the users
execute for setting up a secure end-to-end channel.

For example, in the user-to-user setting, some messaging platforms offer users the ability to
compare with each other a value that is displayed by their devices (e.g., Telegram [Tela], WhatsApp
[Wha] and Viber [Vib]).2 This may rely on the realistic assumption that by recognizing each other’s
voice, two users can establish a low-bandwidth authenticated channel: A man-on-the-middle adversary
can view, delay or even remove any message sent over this channel, but cannot modify its content
in an undetectable manner.

Such an authentication model was initially proposed back in 1984 by Rivest and Shamir [RS84].
They constructed the “Interlock” protocol which enables two users, who recognize each other’s voice,
to mutually authenticate their public keys in the absence of a trusted infrastructure.3 More recently,
motivated by the task of securely pairing wireless devices (e.g., wireless USB or Bluetooth devices),
this model was formalized by Vaudenay [Vau05] in the computational setting and extended by
Naor et al. [NSS06, NSS08] to the statistical setting (considering computationally-bounded and
computationally-unbounded adversaries, respectively).

Given that the out-of-band channel is of low bandwidth, it is of extreme importance to construct
out-of-band authentication protocols with an essentially optimal tradeoff between the length of their
out-of-band authenticated value and the adversary’s success probability. Vaudenay and Naor et al.
provided a complete characterization of this tradeoff, resulting in optimal computationally-secure
and statistically-secure protocols.

1Despite the significant threats posed by man-in-the-middle attacks, research on the security of group messaging
has so far assumed an initial authenticated setup phase (e.g., [CGCG+17, RMS18]), and did not address this security-
critical assumption.

2For example, as specified in WhatsApp’s security whitepaper [Wha, p. 10]: “WhatsApp users additionally have
the option to verify the keys of the other users with whom they are communicating so that they are able to confirm
that an unauthorized third party (or WhatsApp) has not initiated a man-in-the-middle attack. This can be done by
scanning a QR code, or by comparing a 60-digit number. [...] The 60-digit number is computed by concatenating the
two 30-digit numeric fingerprints for each user’s Identity Key”.

3Unfortunately, potential attacks on the Interlock protocol were identified later on [BM94, Ell96].
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Out-of-band authentication: The group setting. Motivated by the insufficiently explored
security of group messaging, we initiate the study of out-of-band message authentication protocols
in the group setting. We extend the user-to-user setting to consider a group of users that consists
of a sender (e.g., the group administrator) and multiple receivers (e.g., all other group members):
All users communicate over an insecure channel, and we assume that the sender can out-of-band
authenticate one short message to all receivers.4 As in the user-to-user setting, this can be based,
for example, on the assumption that each user can identify the administrator’s voice, and having the
administrator record and broadcast a short voice message. As above, we assume that an adversary
may read or remove any message sent over the out-of-band channel for some or all receivers, and may
delay it for different periods of time for different receivers, but cannot modify it in an undetectable
manner.

Equipped with such an authentication protocol, the users of a group can now authenticate their
public keys, or more generally, authenticate the transcript of any group key-exchange protocol of
their choice. As in the user-to-user setting, given that the out-of-band channel is of low bandwidth,
we aim at identifying the optimal tradeoff between the length of the out-of-band authenticated value
and the adversary’s success probability, and at constructing protocols that achieve this best-possible
tradeoff.

1.1 Our Contributions

Modeling out-of-band authentication in the group setting. In this work we first put for-
ward a realistic framework and strong notions of security for out-of-band message authentication
protocols in the group setting. We consider a group of users that consists of a sender (e.g., the group
administrator) and k receivers (e.g., all other group members), where for every i ∈ [k] the sender
would like to authenticate a message mi to the ith receiver. We assume that all users are connected
via an insecure channel (over which a man-in-the-middle adversary has complete control), and via
a low-bandwidth “out-of-band” authenticated channel that enables the sender to authenticate one
short message to all receivers. Adversaries may read or remove this message for some or all receivers,
and may delay it for different periods of time for different receivers, but cannot modify it in an
undetectable manner (we refer the reader to Section 3 for a formal description of our communication
model and notions of security).

Identifying the optimal tradeoff: Protocols and matching lower bounds. Within our
framework we then construct out-of-band authentication protocols with an optimal tradeoff be-
tween the length of their out-of-band authenticated value and the adversary’s success probability.
We consider both the computational setting where security is guaranteed against computationally-
bounded adversaries, and the statistical setting where security is guaranteed against computationally-
unbounded adversaries. In each setting we construct an authentication protocol, and then prove a
lower bound showing that our protocol achieves essentially the best possible tradeoff between the
length of the out-of-band authenticated value and the adversary’s success probability. Our results
are briefly summarized in Table 1, and we refer the reader the following section for a more detailed
overview and theorem statements.

Computational vs. statistical security. Our tight bounds reveal a significant gap between
the possible length of the out-of-band authenticated value in the computational setting and in the

4Clearly, one may consider a less-minimal extension where several users are allowed to send out-of-band authenti-
cated values (i.e., not only the group administrator that we denote as the sender), but as our results show this is in
fact not required.
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Our Protocols Our Lower Bounds

Computational
Security

log(1/ε) + log k log(1/ε) + log k − Θ(1)

Statistical
Security

(k + 1) · (log(1/ε) + log k + Θ(1)) (k + 1) · log(1/ε) − k

Table 1: The length of the out-of-band authenticated value in our protocols and lower bounds. We
denote by k the number of receivers (i.e., we consider groups of size k+1), and by ε the adversary’s forgery probability.
Our computationally-secure protocol relies on the existence of any one-way function (see Theorem 1.1), whereas our
statistically-secure protocol and our two lower bounds do not rely on any computational assumptions (see Theorems
1.2, 1.3 and 1.4).
Note that our upper bound and lower bound in the computational setting match within an additive constant term,
whereas in the statistical setting they match within an additive (k+1) log k+Θ(k) term (however, whenever ε = o(1/k)
as one would typically expect when setting a bound on the adversary’s forgery probability, this difference becomes a
lower-order term).

statistical setting: Whereas in the statistical setting we prove a lower bound that depends linearly on
the size of the group, the length of the out-of-band authenticated value in our computationally-secure
protocol depends very weakly on the size of the group. Moreover, when instantiating its cryptographic
building block (a concurrent non-malleable commitment scheme) in the random-oracle model, our
approach yields an efficient and practically-relevant protocol (which, alternatively, can also be based
on any one-way function in the standard model).5

1.2 Overview of Our Contributions

A naive approach to constructing an out-of-band authentication protocol in the group setting is
to rely on any such protocol in the user-to-user setting: Given a sender and k receivers, we can
invoke a user-to-user protocol between the sender and each of the receivers. Thus, if the length of
the out-of-band authenticated value in the underlying user-to-user protocol is `(ε) bits (where ε is
the adversary’s forgery probability), then the length of the out-of-band authenticated value in the
resulting group protocol is k ·`(ε/k) bits.6 Thus, the naive approach yields out-of-band authenticated
values whose length is linear in the size of the group, and the key technical challenge underlying our
work is understanding whether or not this is the best possible.

Concretely, the user-to-user protocols of Vaudenay [Vau05] and Naor et al. [NSS06] have out-
of-band authenticated values of lengths `(ε) = log(1/ε) and `(ε) = 2 log(1/ε) + Θ(1), respec-
tively. Thus, instantiating the naive approach with their protocols yields computationally-secure
and statistically-secure protocols where the sender out-of-band authenticates k · (log(1/ε) + log k)
bits and 2k · (log(1/ε) + log k + Θ(1)) bits, respectively.

Our results show that, unlike in the user-to-user setting, in the group setting computationally-
secure and statistically-secure protocols exhibit completely different behaviors. First, we show that
for computationally-secure protocols it is possible to do dramatically better compared to the naive
approach and completely eliminate the linear dependency on the size of the group. We prove the fol-
lowing two theorems providing an out-of-band authentication protocol and a matching lower bound:

5Concretely, when setting the adversary’s forgery probability ε to 2−30 in a group that consists of k = 210 users,
then in any statistically-secure protocol more than k · log(1/ε) = 210 · 30 bits must be out-of-band authenticated,
whereas in our computationally-secure protocol only log(1/ε) + log k = 40 bits are out-of-band authenticated.

6Note that if the adversary’s forgery probability in the group protocol should be at most ε, then the user-to-user
protocol should be parameterized, for example, with ε/k as the adversary’s forgery probability (enabling a union bound
over the k executions).
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Theorem 1.1. Assuming the existence of any one-way function, for any k ≥ 1 there exists a
computationally-secure constant-round k-receiver out-of-band message authentication protocol in which
the sender out-of-band authenticates log(1/ε) + log k bits, where ε is the adversary’s forgery probabil-
ity.

Theorem 1.2. In any computationally-secure k-receiver out-of-band message authentication protocol,
the sender must out-of-band authenticate at least log(1/ε)+log k−Θ(1) bits, where ε is the adversary’s
forgery probability.

Then, we show that for statistically-secure protocols the naive approach is in fact asymptotically
optimal, but it can still be substantially improved by a multiplicative constant factor (which is of
key importance given that the out-of-band channel is of low bandwidth). We prove the following
two theorems, once again providing an out-of-band authentication protocol and a lower bound:

Theorem 1.3. For any k ≥ 1 there exists a statistically-secure k-receiver out-of-band message
authentication protocol in which the sender out-of-band authenticates (k+1) ·(log(1/ε)+log k+Θ(1))
bits, where ε is the adversary’s forgery probability.

Theorem 1.4. In any statistically-secure k-receiver out-of-band message authentication protocol, the
sender must out-of-band authenticate at least (k + 1) · log(1/ε) − k bits, where ε is the adversary’s
forgery probability.

As discussed above, note that here our upper bound and lower bound differ by an additive
(k+ 1) log k+ Θ(k) term. However, whenever ε = o(1/k) as one would typically expect when setting
a bound on the adversary’s forgery probability, this difference becomes a lower-order term.

In the remainder of this section we overview the main ideas underlying our protocols and lower
bounds, first describing our contributions in the computational setting, and then describing our
contributions in the statistical setting.

Computational security: Our protocol. Our computationally-secure protocol is inspired by
the user-to-user protocol proposed by Vaudenay [Vau05]. In his protocol the sender S first commits
to the value (m, rS), where m is the message to be authenticated, and rS is a random `-bit string.
The receiver R then replies with a random string rR, followed by S revealing rS and out-of-band
authenticating rS⊕rR. Finally, the receiver R accepts m if and only if the out-of-band authenticated
value is consistent with his view of the protocol.

When moving to the group setting, however, a man-in-the-middle adversary has many more pos-
sible ways to interleave its interactions with the parties, thus providing security becomes a much more
intricate task. For instance, a naive attempt to generalize Vaudenay’s protocol to the group setting
(while keeping the out-of-band authenticated value short) might naturally rely on the following idea:
Have the sender choose a single value rS and send each receiver a commitment to (mi, rS),7 and then
have each receiver Ri reply with a string rRi to all other parties.8 The out-of-band authenticated
value is then rS ⊕ rR1 ⊕ . . . ⊕ rRk , and each receiver Ri accepts the message mi if and only if this
value is consistent with his view of the protocol. Alas, this protocol is completely insecure – even
when considering just one additional receiver. For example, an adversary can send R1 a commitment
to (m̂1, r̂S) for a message m̂1 6= m1 and an arbitrary r̂S . After learning rS and rR2 , the adversary

7Of course, a commitment scheme may be interactive, but we use this terminology for ease of presentation in the
overview.

8We do not go into details regarding the possible models of insecure communication in this high-level overview,
and we refer the reader to Section 3 for an in-depth discussion.
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can simply send R1 the value r̂R2 = rR2 ⊕ rS ⊕ r̂S instead of rR2 . Since rS ⊕ rR2 = r̂S ⊕ r̂R2 , the
attack will go undetected and the receiver R1 will accept a fraudulent message m̂1.

To immune our protocol from attacks as the one described above, the receivers in our protocol
must avoid sending their random strings in the clear. Rather, they too send commitments of these
strings at the beginning of the protocol. Informally, our protocol proceeds as follows: (1) Each
Ri sends a commitment to a random `-bit string rRi ; (2) S chooses a random string rS and sends
a commitment to (mi, rS) to each Ri; (3) The receivers open their commitments; (4) S opens her
commitments; (5) S out-of-band authenticates rS⊕rR1⊕. . .⊕rRk . One can verify that the additional
commitments indeed prevent the aforementioned attack, but there are clearly many additional attacks
to consider given that an adversary has many possible ways to interleave its interactions with the
parties.

The multitude of commitments in our protocol, and the many possible synchronizations an ad-
versary may impose on them in the group setting, make proving the security of our protocol a
challenging task. Nonetheless, we are able to show that when the commitment scheme being used is
a concurrent non-malleable commitment scheme (see Section 2 for a formal definition), our protocol
is indeed secure: Setting ` = log(1/ε) + log k guarantees that the adversary’s forgery probability is
at most ε.

Technical details omitted, the intuition behind the security of the protocol is the following. An
adversary A wishing to cause some Ri to accept a fraudulent message, essentially has to choose
between two options. If A delivers all commitments to S and to Ri before Ri reveals rRi , then Ri
accepting a fraudulent message implies breaking the concurrent non-malleability of the commitment
scheme: The 2k commitments delivered to S and to Ri by the adversary must define values whose
exclusive-or is equal to rRi ⊕ rS . These commitments thus satisfy a “non-trivial” relation which
violates the concurrent non-malleability of the commitment scheme. On the other hand, if rRi is
revealed before all commitments were delivered to S, then rS is chosen after all commitments were
delivered to S and to Ri. Hence, all other values contributing to the authenticated value sent by S,
and to the value Ri is expecting to see as the out-of-band authenticated value, have already been
determined, so the exclusive-or of all relevant values guarantees that the probability of the chosen
rS to result in equality is 2−`.

Computational security: Lower bound. Already in the user-to-user setting, at least log(1/ε)
bits must be out-of-band authenticated, where ε is the adversary’s forgery probability. This can be
proved, for example, by analyzing the collision entropy of the random variable corresponding to the
out-of-band authenticated value (see, for example, [PV06]). We show that such an analysis can be
extended to the group setting, resulting in a stronger lower bound which depends on the size of the
group (and is in fact optimal given our above-described protocol).

Specifically, we show an efficient attack against any k-receiver protocol that succeeds with prob-
ability roughly k · 2−`, where ` is the number of bits the sender authenticates out-of-band. Given
such a protocol π involving a sender and k receivers, our attacker runs k+ 1 independent executions
of π, one with each party taking part in the protocol. In each execution, the attacker independently
chooses k random messages as the input to the sender (the true sender in the execution with the
sender, and the simulated one in the executions with each of the receivers), and honestly simulates
the roles of all other parties. Now, if the out-of-band authenticated value in the execution with the
sender is equal to the out-of-band authenticated value in one of the k executions with the receivers,
then the attacker combines these two executions by forwarding the out-of-band authenticated value
that is sent by the true sender for replacing the simulated value in the execution with that receiver.

Observe that the probability of a successful forgery is roughly the probability that the out-of-band
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authenticated value in the execution with the sender is indeed equal to the out-of-band authenticated
value in one of the k executions with the receivers.9 Hence, in order to analyze the effectiveness of
this attack, it is sufficient to bound the probability of this event. We manage to provide a Θ(k · 2−`)
lower bound on the probability of this event, which yields Theorem 1.2.

Statistical security: Our protocol. The starting point of our statistically-secure protocol is
the iterative hashing protocol of Naor et al. [NSS06]. Loosely speaking, in their protocol the parties
maintain a joint sequence of values of decreasing length, starting with the input message of the sender
and ending up with the out-of-band authenticated value. In each round, the parties apply to the
current value a hash function that is cooperatively chosen by both parties: Half of the randomness
for choosing the function is determined by the sender, and the other half by the receiver.

As noted above, when moving to the group setting, a naive generalization of the Naor et al.
protocol in which the sender executes the user-to-user protocol with each receiver independently,
will result in a blow-up of factor k in the length of the out-of-band authenticated value. However, we
show that it is possible to exploit the specific structure of the Naor et al. protocol, and in particular
of the out-of-band authenticated value, in order to cut its length in the group setting roughly by
half (compared to the naive generalization). The main observation underlying our approach is that
the k executions of the user-to-user protocol need not be completely independent. More concretely,
we show that if in the last round (before sending the out-of-band authenticated value), the sender
contributes the same randomness for all k hash functions, then all k executions are “tied together” in
a way that permits a significant reduction in the number of bits that are authenticated out-of-band.
Security is now of course not trivially guaranteed, as this change introduces heavy dependencies
between the executions. We nevertheless manage to prove, carefully adjusting the structure of our
protocol, that the resulting protocol provides an essentially optimal tradeoff between the length of
the out-of-band authenticated value and its security.

Statistical security: Lower bound. We prove our lower bound in the statistical security setting
by providing a lower bound on the Shanon entropy of the random variable corresponding to the
out-of-band authenticated value in any out-of-band authentication protocol. Intuitively speaking, at
the beginning of any such protocol, the out-of-band authenticated value is completely undetermined,
while at the end of the execution it is fully determined. We show that if the forgery probability is to
be bounded by ε, this decline in entropy must adhere to a specific structure: Each party must decrease
the entropy of the out-of-band authenticated value – via the messages it sends during the execution
of the protocol – by at least log(1/ε)−1 bits on average. It follows that H(Σ) ≥ (k+1) · log(1/ε)−k,
where Σ is the afore-defined random variable and k is the number of receivers.

We formalize and prove this intuition by presenting a collection of k + 1 attacks against any
k-receiver out-of-band authentication protocol, one per each participating party. Loosely speaking,
the attack corresponding to party P (where P may be the sender or any of the receivers) consists
of running two executions of the protocol. First, our adversary plays the role of P in an honest
execution of the protocol with all other parties, and obtains the out-of-band authenticated value σ
to be sent at the end of this execution. Then, the adversary runs an execution of the protocol with P ,
playing the role of all other parties, while choosing their messages throughout the protocol not only
conditioned on their views, but also conditioned on the out-of-band authenticated value being σ. We
show in our analysis that if we denote by εP the success probability of the attack corresponding to
party P , then it holds that

∏
P εP ≥ 2−H(Σ)−k. Hence, if the probability of a successful forgery in

9A successful forgery also requires that the input message for that particular receiver is different in the two execu-
tions, but this has little effect on the probability of forgery when the input messages are not too short.
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any attack (and in particular in our k + 1 attacks) is at most ε, then it holds that

2−H(Σ)−k ≤
∏
P

εP ≤ εk+1,

and our lower bound follows. Our proof technique is inspired by the lower bound of Naor et al.
[NSS06] for statistically-secure user-to-user out-of-band authentication protocols. In the group set-
ting, however, there are many more “independent” attacks to consider, adding to the intricacy of the
proof.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we review the basic notions and
tools that are used in this paper. In Section 3 we put forward our framework for out-of-band message
authentication protocols in the group setting, formally discussing our communication models and
notions of security. Then, in Sections 4 and 5 we present our protocols and prove our corresponding
lower bounds in the computational and statistical settings, respectively.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A function ν : N→ R+

is negligible if for any polynomial p(·) there exists an integer N such that for all n > N it holds that
ν(n) ≤ 1/p(n).

Shannon entropy and mutual information. For random variables X, Y and Z we rely the
following standard notions:

• The entropy of X is defined as H(X) = −
∑

x Pr[X = x] · log Pr[X = x].
• The conditional entropy of X given Y is defined as H(X|Y ) =

∑
y Pr[Y = y] ·H(X|Y = y).

• The mutual information of X and Y is defined as I(X;Y ) = H(X)−H(X|Y ).
• The mutual information of X and Y given Z is defined as I(X;Y |Z) = H(X|Z)−H(X|Z, Y ).

Non-malleable commitment schemes. In this paper we rely on the notion of statistically-
binding concurrent non-malleable commitments (for basic definitions and background on commit-
ment schemes, we refer the reader to [Gol01]). We follow the indistinguishability-based definition
of Lin and Pass [LP11], though we find it convenient to consider non-malleability with respect to
content, other than with respect to identities. For simplicity, the definition below only addresses the
one-many setting (which is equivalent to the general many-many setting [PR05]), as this is enough
for our needs. Lin and Pass [LP11] and Goyal [Goy11] have shown that constant-round concurrent
non-malleable commitment schemes can be constructed from any one-way function (the round com-
plexity was further improved by Ciampi et al. [COS+17] to just 4 rounds). From a more practical
perspective, such schemes can be constructed efficiently in the random-oracle model [BR93]. For fur-
ther information regarding non-malleable and concurrent non-malleable commitment schemes see,
for example, [DDN00, CIO98, FF00, CF01, PR05, PR08, LPV08] and the references therein.

Intuitively speaking, a (one-many) concurrent non-malleable commitment scheme has the fol-
lowing guarantee: Any efficient adversary cannot use a commitment to some value v in order to
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produce commitments to values v̂1, . . . , v̂k that are “non-trivially” related to v. More formally, Let
Com = (C,R) be a statistically-binding commitment scheme, and let k = k(·) be a function of the
security parameter λ ∈ N, bounded by some polynomial. Consider an efficient adversary A that
gets an auxiliary input z ∈ {0, 1}∗ (in addition to the security parameter) and participates in the
following “man-in-the-middle” experiment. A takes part in a single “left” interaction and in k “right”
interactions: In the left interaction, A interacts with the committer C, and receives a commitment
to a value v. Denote the resulting commitment (transcript of the interaction) by c. In the right
interactions, A interacts with the receiver R, resulting in k commitments ĉ1, . . . , ĉk. We define k
related values v̂1, . . . , v̂k in the following manner. For every i ∈ [k], if ĉi = c, if ĉi is not a valid
commitment, or if ĉi can be opened to more than one value, we let v̂i = ⊥ (note that by the statistical
binding property of Com, the latter case only happens with negligible probability). Otherwise, v̂i
is the unique value to which ĉi may be opened. Let mimA

Com(v, z) denote the random variable that
includes the values v̂1, . . . , v̂k and A’s view at the end of the afore-described experiment.

Definition 2.1. Let A and D be a pair of algorithms. We define the advantage of (A,D) with
respect to security parameter λ ∈ N as

AdvA,DCom(λ)
def
= max

v,v′∈{0,1}λ

{
Pr
[
D(1λ,mimA

Com(v, z)) = 1
]
− Pr

[
D(1λ,mimA

Com(v′, z)) = 1
]}

.

We say that a statistically-binding commitment scheme is concurrent non-malleable if for any pair
of probabilistic polynomial-time algorithms (A,D) there exists a negligible function ν = ν(·) such
that AdvA,DCom(λ) ≤ ν(λ) for all sufficiently large λ ∈ N.

3 The Communication Model and Notions of Security

We consider the message authentication problem in a setting involving a group of k+1 users: A sender
S and k receivers R1, . . . , Rk. For each i ∈ [k] the sender would like to authenticate a message mi to
the ith receiver Ri. We assume that the users communicate over two channels: An insecure channel
over which a man-in-the-middle adversary has complete control, and a low-bandwidth “out-of-band”
authenticated channel, enabling the sender to authenticate one short message to all receivers. In what
follows we formally specify the underlying communication model as well as the notions of security
that we consider in this work (generalizing those of Vaudenay [Vau05] and Naor et al. [NSS06] to
the group setting).

3.1 Communication Model

Our starting point is the framework of Vaudenay [Vau05] and Naor et al. [NSS06] which considers
a sender who wishes to authenticate a single message to a single receiver using out-of-band authen-
tication. They modeled this interaction by providing the sender and the receiver with two types
of channels: A bidirectional insecure channel that is completely vulnerable to man-in-the middle
attacks, and an authenticated unidirectional low-bandwidth channel from the sender to the receiver
(an “out-of-band” channel).

We extend this model to the group setting in the following manner. Similarly to the framework of
Vaudenay and Naor et al. we assume that the parties are connected via two types of communication
channels: Insecure channels and an authenticated low-bandwidth channel. As for the authenticated
channel, we assume that the sender S is equipped with an out-of-band channel, through which S may
send a short message visible to all receivers in an authenticated manner (e.g., a voice message in group
messaging). The adversary may read or remove this message for some or all receivers, and may delay

8



it for different periods of time for different receivers, but cannot modify it in an undetectable manner.
One may also consider a scenario where S, as well as the receivers, may send multiple messages over
the out-of-band authenticated channel throughout the protocol. However, this is less desirable from
a practical standpoint, and in any case, will not be necessary in our protocols. Furthermore, our
lower bounds readily capture this more general case as well, providing a lower bound on the total
number of bits sent over the authenticated channel throughout the protocol.

As mentioned above, we also assume that the parties are connected among themselves in a
network of insecure channels. These channels are vulnerable to man-in-the-middle attacks, and the
adversary is assumed to have complete control over them: The adversary can read, delay and stop
messages sent by the parties, as well as insert new messages at any point in time. In particular, this
provides the adversary with considerable control over the synchronization of the protocol’s execution.
Nonetheless, the execution is still guaranteed to be “marginally synchronized”: Each party sends her
messages in the ith round of the protocol only upon receiving all due messages of round i− 1.

One may consider various possible networks to define the topology of the insecure channels. Two
extremes of that spectrum are the following:

• The star network model: In this model each receiver Ri is connected to the sender S via
a bidirectional insecure channel. In particular, the receivers cannot send messages directly to
each other, and any communication among them must pass through the sender S.

• The complete network model: In this model every pair of parties (sender and receiver as
well as two receivers) is connected through an insecure channel.

In that respect, our results – both in the computational setting and in the statistical setting –
will be of the strongest form possible. Our protocols will be articulated, and their correctness and
security proven, in the restrictive “star” network model, which in particular means that they can be
implemented in models richer in channels, and namely in the complete network model (in that case,
some communication efficiency optimizations are possible). Our lower bounds on the other hand,
will assume complete communication networks, and will hence apply to weaker network models as
well.

3.2 Notions of Security

In what follows we define the security and correctness requirements of out-of-band authentication
protocols, essentially extending those of Vaudenay [Vau05] and Naor et al. [NSS06] to the group
setting in an intuitive manner. In such protocols, the input to the sender S is a vector of message
m1, . . . ,mk which may be chosen by the adversary. At the end of the execution, each receiver Ri
outputs either a message m̂i or the unique symbol ⊥, implying rejection. Informally, correctness
states that in an honest execution, with high probability all receivers output the correct message;
i.e., m̂i = mi for every i ∈ [k]. As for security, we demand that an adversary (which is efficient in
the computational setting and unbounded in the statistical setting) cannot convince a receiver to
output an incorrect message; i.e., the probability that m̂i 6∈ {mi,⊥} is bounded by a pre-specified
parameter.

For the sake of generality, Definitions 3.1 and 3.2 below are articulated without specific reference
to an underlying communication model, and may be applied to any of the group communication
models discussed above. We begin with a formal definition of out-of-band authentication in the
statistical setting.

Definition 3.1. A statistically-secure out-of-band (n, `, k, r, ε)-authentication protocol is a (k + 1)-
party r-round protocol in which the sender S is invoked on a k-tuple of n-bit messages, and sends
at most ` bits over the authenticated out-of-band channel. The following requirements must hold:
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• Correctness: In an honest execution of the protocol, for all input messages m1, . . . ,mk ∈
{0, 1}n to S and for every i ∈ [k], receiver Ri outputs mi with probability 1.

• Unforgeability: For any adversary and for every adversarially-chosen input messages m1, . . . ,
mk on which S is invoked, the probability that there exists some i ∈ [k] for which receiver Ri
outputs some message m̂i 6= {mi,⊥} is at most ε.

A computationally-secure out-of-band authentication protocol is defined similarly, except that
security need only hold against efficient adversaries, and the probability of forgery is also allowed
to additively grow (with respect to the statistical setting) by a negligible function of the security
parameter λ ∈ N.

Definition 3.2. Let n = n(λ), ` = `(λ), k = k(λ), r = r(λ) and ε = ε(λ) be functions of the security
parameter λ ∈ N. A computationally-secure out-of-band (n, `, k, r, ε)-authentication protocol is a
(k + 1)-party r-round protocol in which the sender S is invoked on a k-tuple of n-bit messages, and
sends at most ` bits over the authenticated out-of-band channel. The following requirements must
hold:

• Correctness: In an honest execution of the protocol, for all input messages m1, . . . ,mk ∈
{0, 1}n to S and for every i ∈ [k], receiver Ri outputs mi with probability 1.

• Unforgeability: For any probabilistic polynomial-time adversary there exists a negligible
function ν = ν(·) such that the following holds: For every input messages m1, . . . ,mk chosen
by the adversary and on which S is invoked, the probability that there exists some i ∈ [k] for
which receiver Ri outputs some message m̂i 6= {mi,⊥} is at most ε + ν(λ) for all sufficiently
large λ ∈ N.

4 The Computational Setting

In this section we prove tight bounds for computationally-secure out-of-band authentication in the
group setting. In Section 4.1 we present our computationally-secure protocol and discuss its possible
instantiations (both in the standard model and in the random-oracle model). In Section 4.2 we prove
the security of our protocol, and in Section 4.3 we prove a matching lower bound on the length of
the out-of-band authenticated value in any computationally-secure protocol.

4.1 Our Protocol and its Instantiations

Let Com = (CCom, RCom) be a concurrent non-malleable commitment scheme that is statistically
binding (see Section 2 and Definition 2.1). Our protocol, denoted πComp, is parameterized by the
security parameter λ ∈ N, by the number k = k(λ) of receivers, by the length ` = `(λ) of the
out-of-band authenticated value, and by the length n = n(λ) of the messages that the user would
like to authenticate. The protocol is defined as follows:

1. For every i ∈ [k] the receiver Ri chooses a random `-bit string ri ← {0, 1}`, and commits to it
to the sender S using Com. For every i ∈ [k] denote the resulting commitment according to
the view of Ri by ci, and denote the commitments received by S by ĉi.10

10As a commitment scheme may be interactive, when referring to a commitment, we mean the transcript of the
interaction between the committer and the receiver during an execution of the commit phase of the commitment
scheme. When the scheme is non-interactive, a commitment is simply a single string sent from the committer to the
receiver.
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2. The sender S chooses a random string rs ← {0, 1}`, and executes k (possibly parallel) execu-
tions of Com to commit to the message (mi, rs) to the receiver Ri for every i ∈ [k]. Denote the
resulting commitments, as seen by the sender S by cis, and denote the commitment received
by Ri by ĉis.
For every i ∈ [k] the sender S also explicitly appends the following information to the first
message it sends Ri as part of the commitment: (1) The message mi, and (2) the (possibly
tampered with) commitments (ĉj)j∈[k]\{i} received from the other receivers in Step 1 of the
protocol. We let m̂i and (ĉj→i)j∈[k]\{i} denote the message and the forwarded commitments as
received by Ri.

3. For every i ∈ [k] the receiver Ri sends a decommitment di of her commitment from Step 1 of
the protocol to reveal ri to the sender S. Let d̂i denote the decommitment received by S from
Ri. For every i ∈ [k] the sender S then checks whether d̂i is a valid decommitment to ĉi. If
so, let r̂i denote the committed value. Otherwise, S sends ⊥ over the authenticated channel,
in which case all receivers output ⊥.

4. For every i ∈ [k], the sender S sends receiver Ri a decommitment dis to the corresponding
commitment from Step 2 of the protocol, and reveals rs to Ri. Denote by d̂is the decommitment
received by Ri. For every i ∈ [k] the receiver Ri checks if d̂is is a valid decommitment to ĉis. If
it is, denote the committed value by (m̂′i, r̂

i
s). If it is not a valid decommitment or if m̂′i 6= m̂i

(where m̂i was received in Step 2), then Ri outputs ⊥ and terminates.

For every i ∈ [k] the sender S also sends Ri the (possibly tampered with) decommitments
(d̂j)j∈[k]\{i} she received in Step 3. We let (d̂j→i)j∈[k]\{i} denote the decommitments received
by Ri. If for some j ∈ [k] \ {i} it holds that d̂j→i is not a valid decommitment to ĉj→i received
by Ri is Step 2, then Ri outputs ⊥ and terminates. Otherwise, denote by (r̂j→i)j∈[k]\{i} the
values obtained by opening the commitments.

5. S computes σ = rs ⊕ r̂1 ⊕ . . . ⊕ r̂k and sends σ over the authenticated out-of-band channel.
Every receiver Ri computes σ̂i = r̂is ⊕ r̂1→i ⊕ . . . ⊕ r̂i−1→i ⊕ ri ⊕ r̂i+1→i ⊕ . . . r̂k→i, and then
outputs m̂i (received in Step 2) if σ̂i = σ and outputs ⊥ otherwise.

The following theorem (when combined with the existence of a constant-round concurrent non-
malleable statistically-binding commitment scheme based on any one-way function – see Section 2)
implies Theorem 1.1 as an immediate corollary:

Theorem 4.1. Let k = k(·), ` = `(·), r = r(·) and n = n(·) be functions of the security parameter
λ ∈ N and let Com be an r-round concurrent non-malleable commitment scheme. Then, protocol
πComp is a computationally-secure out-of-band (n, `, k,O(r), k · 2−`)-authentication protocol.

Possible instantiations. Our protocol πComp can be instantiated with Com being any concurrent
non-malleable statistically-biding commitment scheme. From a theoretical point of view, Lin and
Pass [LP11] and Goyal [Goy11] gave constant-round constructions of such schemes from any one-way
function (and the round complexity was further improved by [COS+17]). Hence, our protocol can also
be instantiated as a constant-round protocol, assuming only the existence of one-way functions. This
assumption is minimal and necessary, since Naor et al. [NSS06] showed that even in the user-to-user
setting, any computationally-secure out-of-band authentication protocol for which ` < 2 log 1/ε −
Θ(1) implies the existence of one-way functions.
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From a more practical standpoint, a non-interactive concurrent non-malleable statistically-biding
commitment scheme can be very efficiently constructed in the random oracle model [BR93]. Thus,
instantiating πComp with a cryptographic hash function (e.g., SHA-2) as the random oracle yields a
highly efficient protocol. Given a random oracle H, in order to commit to a value v, one simply has
to send c = H(v, r) for a sufficiently long random string r. Decommitment is done by revealing v and
r, and the receiver asserts that c = H(v, r). Consider a pair of poly-query algorithms (A,D), where
A is the man-in-the-middle adversary and D is the distinguisher (see Definition 2.1). Informally
speaking, assume H is sufficiently length-increasing (say, length-doubling) so that it is difficult to
find an element y in its image without querying H on a pre-image of y. So the algorithm A,
that receives c = H(v, r) and produces c1 = H(v1, r1), . . . , ck = H(vk, rk), knows v1, . . . , vk with
overwhelming probability. Hence, it can distinguish between the case that c = H(v, r), and the case
that c = H(v′, r′) where the value v′ – when taken together with v1, . . . , vk and the view of A – does
not satisfy the polynomial time relation defined by the distinguisher D. By a standard argument,
this is hard for any adversary making a polynomial number of queries to the random oracle.

Non-malleable commitment schemes also exist in the common reference string (CRS) model (see,
for example, [CIO98, CKO+01, FF00, CF01, DG03]). However, assuming a trusted CRS may be
somewhat incompatible with the ad-hoc nature of instant messaging platforms and applications.

4.2 Proof of Security

In this section, we prove the unforgeability of protocol πComp, proving Theorem 4.1. For simplicity
of presentation, we start by assuming that the commitment scheme Com, with which the protocol is
instantiated, is a non-interactive commitment scheme (in addition to being statistically-binding and
concurrent non-malleable), as this already captures the gist of the proof. We then discuss how to
make the proof compatible with multiple-round commitment schemes.

Let λ ∈ N be the security parameter, and let k = k(λ), ` = `(λ) and n = n(λ). For an adversary
A, let ForgeA,i denote the event in which A fools Ri (i.e., Ri outputs m̂i 6∈ {mi,⊥}) in an execution of
πComp and let ForgeA =

⋃
i∈[k] ForgeA,i. The following Lemma captures the unforgeability of πComp.

Lemma 4.2. For any probabilistic polynomial-time adversary A, there exists a negligible function
ν = ν(·) such that

Pr [ForgeA] ≤ k · 2−` + ν(λ)

for all sufficiently large λ ∈ N.

Proof. We will prove that for every efficient adversary A and for every i ∈ [k] there exists a negligible
function ν ′(·) such that Pr

[
ForgeA,i

]
≤ 2−` + ν ′(n). The Lemma will then follow by taking a union

bound over all i ∈ [k].
For a message m sent in the execution of the protocol, denote by T (m) the time in which m

was sent. By the definition of the protocol, for every i ∈ [k], it always holds that T (ci) < T
(
ĉis

)
<

T (di) < T
(
d̂is

)
, as well as T (ĉi) < T

(
cis
)
< T

(
d̂i

)
< T

(
dis
)
. We also assume the following

assumptions without loss of generality:

1. Whenever a party (either S or one of the receivers) is due to send a message according to the
protocol, the adversary waits until this message is sent before deciding on its next action. In
particular, for instance, this implies T (ci) < T (ĉj) for every i, j ∈ [k].

2. The adversary delays sending d̂is until the end of the execution; i.e., T
(
dis
)
< T

(
d̂is

)
.
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Note that these two assumptions do not hamper a potential adversary’s efforts, as any adversary
can be turned into an adversary that is consistent with the above assumptions without damaging
the probability of a successful forgery.

We now turn to bound the probability of such a forgery. First, consider the event in which at
least one of the commitments in the execution (either a commitment that was sent by the adversary
A or by one of the honest parties) does not uniquely define (information-theoretically speaking) a
committed value v, and denote this event by Coll. By the statistical binding property of Com, there
exists a negligible function ν1 such that Pr [Coll] ≤ ν1(n). So for the remainder of the proof we
will condition our analysis on the event Coll. We differentiate in our analysis between two cases:
The event that T

(
cis
)
< T (di), which we denote by Synci, and that of T

(
cis
)
> T (di), which will

be denoted by Synci. The bound thus follows by the following two claims. Claim 4.3 bounds the
probability of forgery in case event Synci occurs, and Claim 4.4 bounds it in case of event Synci.

Intuitively speaking, in case event Synci occurs, S chooses rs after the other variables that
contribute to the authenticated string σ and to the string σ̂i (which Ri is expecting to see over the
authenticated channel) have all already been fixed. Hence, there is exactly one value for rs that
will result in Ri accepting, which is obtained with probability 2−`. This intuition is captured by the
following claim.

Claim 4.3. For any adversary A and for any i ∈ [k], it holds that

Pr
[
ForgeA,i|Synci ∧ Coll

]
≤ 2−`.

Proof of Claim 4.3. Fix i ∈ [k]. By the definition of the protocol, it holds that T
(
cis
)
> T (ci)

and T
(
cis
)
> T (ĉj) for every j ∈ [k] \ {i}; i.e., cis is sent after Ri sends ci and after S receives ĉj .

Conditioned on Synci, it also holds that T
(
cis
)
> T (ĉis) and T

(
cis
)
> T (ĉj→i) for every j ∈ [k] \ {i}.

Moreover, conditioned on Coll, each of these commitments can uniquely be opened to (at most) a
single value. Meaning, in that case, the values ri, r̂s and r̂j and r̂j→i for every j ∈ [k] \ {i} are
determined before cis is sent. Since S chooses rs just before the sending cis, and once the above listed
values are already fixed (recall Step 2 of the protocol), it holds that

Pr
[
ForgeA,i|Sync ∧ Coll

]
≤ Pr

rs ⊕
⊕
j∈[k]

r̂j

 = r̂s ⊕ ri ⊕

 ⊕
j∈[k]\{i}

r̂j→i


= Pr

rs =

⊕
j∈[k]

r̂j

⊕ r̂s ⊕ ri ⊕
 ⊕
j∈[k]\{i}

r̂j→i


= 2−`.

The following claim shows that for any i ∈ [k], conditioned on Synci, any adversary that breaks
the unforgeability of πComp with respect to Ri can be transformed into an adversary breaking the
concurrent non-malleability of Com.

Claim 4.4. For any probabilistic polynomial-time adversary A and for any i ∈ [k], there exists a
pair of probabilistic polynomial-time algorithms (ANM, D) such that

AdvANM,D
Com ≥ Pr

[
ForgeA,i|Synci ∧ Coll

]
− 2−`.
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We start by giving an intuitive overview of the reduction, and then continue to the formal proof.
In broad brush strokes, ANM gets as an auxiliary input a random value z ← {0, 1}`, and runs a
single left interaction with a committer CCom and 2k right interactions with a receiver RCom. In
the left interaction, CCom sends a commitment c to a value v ∈ {0, 1}`. ANM runs A and passes
forward c to A as the commitment of Ri to the value ri in Step 1 of the protocol. ANM also
simulates honestly the sender and all other receivers by itself (choosing random `-bit strings and
producing commitments/decommitments when necessary). Indeed, when A expects to receive the
decommitment to c, the simulation will get “stuck”, as ANM does not know how to open c. However,
conditioned on Synci, by the time A expects to receive the decommitment to c, A and ANM have
already issued commitments to all other values that make up σ and σ̂i, yielding enough information
to break the concurrent non-malleability of Com. Consider two cases: When v = z, the view of A is
exactly as in an execution of πComp up to T (di), and a distinguisher D that gets as input ANM’s view
as well as {r̂j}j∈[k], {r̂j→i}j∈[k]\{i} and r̂is can check if σ = σ̂i (where ri is substituted with z when
computing σ̂i), and the probability for that will be at least that of ForgeA,i. On the other hand,
when v is fixed to be some arbitrary value (e.g., 0`), the commitments issued by ANM and by A are
independent of z, and hence the probability that σ = σ̂i is 2−`. We now move on to the formal proof.

Proof of Claim 4.4. Fix i ∈ [k]. On input 1λ and auxiliary input z, the adversary ANM is defined
by the following steps:

1. In the left interaction, ANM gets a commitment c to a value v.

2. ANM chooses k random `-bit strings rs ← {0, 1}` and rj ← {0, 1}` for every j ∈ [k] \ {i}. It
then runs A(1λ), and simulates a partial execution of πComp in the following manner:

(a) ANM forwards c to A as the commitment of Ri to value ri. For every j ∈ [k] \ {i}, ANM

computes a commitment cj for ri and a corresponding decommitment dj according to
Com, and sends cj to A as the commitment of Rj in the Step 1 of the protocol.

(b) After A outputs a commitment ĉj for every j ∈ [k], along with a message mj as the input
message to S to be authenticated to Rj , ANM replies (simulating S) as follows. For every
j ∈ [k], ANM computes a commitment cjs to (mj , rs) and a corresponding decommitment
djs according to Com. ANM then sends the message

(
cjs,mj , (ĉt)t∈[k]\{j}

)
as the message

from S to Rj in step 2 of the protocol, for every j ∈ [k].

(c) Similarly, in each of the interactions of πComp, whenA outputs the tuple
(
ĉjs, m̂j , (ĉt→j)t∈[k]\{j}

)
as the message delivered to Rj in Step 2 of the protocol, ANM differentiates between two
cases:

• If j 6= i, then ANM replies (simulating Rj) with dj as computed in Step (a) of the
simulation.
• If j = i, A terminates the simulation.

(d) In each interaction of πComp other then with receiver Ri, when A outputs d̂j as the
decommitment received by S from Rj in Step 3 of πComp, ANM replies (simulating S) with
djs computed in Step (b) of the simulation.

3. When the simulation is terminated, ANM sends ĉis, {ĉj}j∈[k] and {ĉj→i}j∈[k]\{i} to RCom as the
commitments in its right interactions.
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The distinguisher D gets as input the random variable mimANM
Com(v, z), which includes in particular

the following variables:

• The auxiliary input z.

• The random string rs drawn by A in the beginning of the simulation.

• The values {r̂j}j∈[k], {r̂j→i}j∈[k]\{i} and r̂is which are the values to which the commitments
{ĉj}j∈[k], {ĉj→i}j∈[k]\{i} and ĉis may be opened to, respectively, or ⊥. First, note that since
we are conditioning on the event Synci, all these commitments were indeed produced by the
simulated adversary A, before ANM had to terminate the simulation. Furthermore, conditioned
on Coll, each of the values D gets is ⊥ either in the case that the corresponding commitment is
not a valid one (and cannot be opened to any value) or that it is identical to c (the commitment
of v received in the left interaction). In the latter case, again by conditioning of Coll, this means
that the only value this commitment might be opened to is v.

On input the security parameter 1λ and mimANM
Com(v, z), D is defined as follows:

1. If r̂is = ⊥, output 0.

2. Otherwise, let parS denote the parity of the number of ⊥ symbols among the values {r̂j}j∈[k].
That is, parS = 1 if the number of ⊥ symbols among these values is odd, and parS = 0
otherwise. Let pari be defined similarly as the parity of ⊥ symbols among {r̂j→i}j∈[k]\{i}.

D then computes σ = rs⊕
(⊕

j∈[k] r̂j

)
⊕(parS · z) and σ̂i = r̂si⊕z⊕

(⊕
j∈[k]\{i} r̂j→i

)
⊕(pari ·z),

where parS · z = 0` if parS = 0 and parS · z = z if parS = 1.11 Finally, D outputs 1 if σ = σ̂i,
and 0 otherwise.

For the analysis of the attack, consider two cases:

Case 1: When v = z (in particular, v is also a uniformly chosen `-bit string), ANM perfectly
simulates protocol πComp to A until it terminates. Conditioned on Coll, by the time the simulation
terminates, A cannot open the commitments it sent in a way that will result in (the simulated)
S sending a string other than σ (as computed by D) over the authenticated channel, or in (the
simulated) Ri expecting a string other than σ̂i (as computed by D). It follows that only when
the authentication values computed by D are equal (i.e., σ = σ̂i), can the execution of πComp be
completed such that Ri does not output ⊥. In particular, this means that D outputting 1 is a
necessary condition for ForgeA,i. This yields

Pr
[
D(1λ,mimANM

Com(z, z)) = 1
]
≥ Pr

[
ForgeA,i|Synci ∧ Coll

]
.

Case 2: When v = 0`, all values that go into the computation of σ and σ̂i by D are independent
of z. Namely, the view of the simulated adversary A is independent of z, as z does not affect the

11This has the effect of replacing every ⊥ symbol in {r̂j}j∈[k] and {r̂j→i}j∈[k]\{i} with z when computing σ and σ̂i,
respectively.
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computation of any of the messages ANM “feeds” it. Thus, it holds that

Pr
[
D(mimANM

Com(0`, z)) = 1
]

= Pr

z = rs ⊕

⊕
j∈[k]

r̂j

⊕ (parS · z)⊕ r̂is ⊕

 ⊕
j∈[k]\{i}

r̂j→i

⊕ (pari · z)


= 2`.

Combining the above cases, it holds that

Pr
z←{0,1}`

[
Pr
[
D(mimANM

Com(z, z)) = 1
]
− Pr

[
D(mimANM

Com(0`, z)) = 1
]]
≥ Pr

[
Forgei|Sync ∧ Coll

]
− 2`.

By an averaging argument, there exists some z∗ ∈ {0, 1}` such that

AdvANM,D
Com ≥ Pr

[
D(mimANM

Com(z∗, z∗)) = 1
]
− Pr

[
D(mimANM

Com(0`, z∗)) = 1
]

≥ Pr
[
Forgei|Sync ∧ Coll

]
− 2`.

and the claim follows.

By Claim 4.4 and the concurrent non-malleability of Com, for every probabilistic polynomial-time
adversary A, there exists a negligible function ν2(·) such that for every i ∈ [k],

Pr
[
ForgeA,i|Synci ∧ Coll

]
≤ 2−` + ν2(λ)

for all sufficiently large λ ∈ N. Combined with Claim 4.3 and the statistical binding property of
Com, this yields that

Pr
[
ForgeA,i

]
≤ Pr [Coll] + Pr

[
ForgeA,i|Synci ∧ Coll

]
· Pr [Synci]

+ Pr
[
ForgeA,i|Synci ∧ Coll

]
· Pr

[
Synci

]
≤ ν1(n) + 2−` + ν2(n).

Taking a union bound over all i ∈ [k] and denoting ν(n) = k · (ν1(n) + ν2(n)), it holds that

Pr [ForgeA] ≤ k · 2−` + ν(n).

This concludes the proof of Lemma 4.2.

Supporting interactive commitments. The proof of Lemma 4.2 can be easily extended to
support the use of concurrent non-malleable commitment schemes which are interactive. First, let’s
observe that any such commitment scheme can be converted into a scheme in which the sender’s
first message is in and of itself statistically biding; i.e., with overwhelming probability, once this
message is sent, even a computationally unrestricted adversary cannot complete the commitment
phase in two different ways, generating two different commitments c1 and c2, such that it is possible
to open them into two distinct messages. This can be done by first having the sender committing to
the message using Naor’s statistically-binding two-message commitment scheme [Nao91], and then
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committing to the same message using the original non-malleable scheme. It is not hard to see that
this transformation achieves the afore-described property, while retaining non-malleability that is
sufficient for our needs; i.e., an efficient adversary cannot produce a commitment for a related yet
different value.12 Further observe that we can have each of the receivers R1, . . . , Rk append a random
string of the appropriate length to its last message to S in Step 1 of the protocol, to be used as the
first message of Naor’s scheme, when S commits to the messages {(mi, rs)}i∈[k] in Step 2. Meaning,
S waits until completing all commitments c1, . . . , ck of stage 1, and only then chooses rs and initiates
the commitments of stage 2 in parallel, by sending a “binding message” to each receiver.

Now, for a commitment c, we denote by T (c) the time of the first message sent by the committer
as part of the commitment. In particular this means that for every i ∈ [k], T (cis) is the time the
first message is sent by S to Ri in Step 2 of the protocol. The event Synci, in which T (cis) < T (di),
now captures executions in which di is sent after the first and “binding” message of cis. Under this
notation, Claim 4.3 still holds as conditioned on Synci, it is still true that rs is sampled after all other
variables contributing to the computation of σ and of σ̂i are uniquely determined. Claim 4.4 still
holds since it is still the case that conditioned on Synci, the distinguisher D has sufficient information
to compute σ and σ̂i by the time di is due in the simulation of πComp described in the proof.

A final, rather technical modification to the proof, is that in the proof of Claim 4.4, the adversary
ANM cannot simply complete the (partial) simulation of the protocol and then output ĉis, {ĉj}j∈{k}
and {ĉj→i}j∈[k]\{i} as the commitments in the right interactions. Rather, it has to execute the
commitments in the right interactions in parallel to the aforementioned commitments, which the
adversary A issues in the simulation (simply forwarding A’s corresponding messages to RCom as they
come, and vice versa).

4.3 Lower Bound

In this section, we prove a lower bound on the length of out-of-band authenticated value in any out-
of-band authentication protocol, as a function of the desired security level ε and of the number of
receivers k. Our bound shows that the length of the out-of-band authenticated value in our protocol
πComp of Section 4.1 is optimal (up to an additive constant). The lower bound is stated by the
following Theorem, which yields Theorem 1.2.

Theorem 4.5. For any computationally-secure (n, `, k, r, ε)-authentication protocol where n ≥ log(1/ε)
+ log k + 3 and ε < 1/6, it holds that ` ≥ log 1/ε+ log k − 3.

Proof. Let π = (S,R1, . . . , Rk) be a k-receiver out-of-band authentication protocol for messages of
length n in the complete network communication model. We present an efficient adversary A that
succeeds in fooling at least one of the reveivers with probability at least k · 2−`−3, and the theorem
follows (for an intuitive overview of the attack and analysis, see Section 1.2).

On input 1λ, A runs the following steps:

1. A samples k input messages (m1, . . . ,mk)← {0, 1}m×k as the input to the sender S, and runs
an execution with S in which A plays the role of all receivers. Denote by σ ∈ {0, 1}` the value
that S sends over the authenticated channel at the end of this execution.

2. For every i ∈ [k], A samples k input messages (m̂i
1, . . . , m̂

i
k)← {0, 1}

m×k uniformly at random
(independently from the messages sampled in the other executions), and runs an execution
of π with Ri in which A plays the role of the sender (with input (m̂i

1, . . . , m̂
i
k)) and all other

12The adversary might be able to produce a different commitment for the same value, but it is easy to see that this
is benign in our protocol, and our proof of security still holds.
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receivers. For every i ∈ [k] denote the out-of-band authenticated value the (simulated) sender
sends in the end of the execution with the true receiver Ri by σ̂i.

We first wish to lower bound the probability that there exists some receiver Ri that outputs m̂i
i.

By the correctness of π, this is at least the probability that σ̂i = σ. Thus, for every i ∈ [k], it holds
that

Pr
[
Ri outputs m̂i

i

]
≥ Pr [σ̂i = σ] =

∑
v∈{0,1}`

Pr [σ = v] · Pr [σ̂i = v] .

More generally, for any subset I ⊆ [k] of the receivers, it holds that

Pr
[
∀i ∈ I : Ri outputs m̂i

i

]
≥

∑
v∈{0,1}`

Pr [σ = v] ·
∏
i∈I

Pr [σ̂i = v]

=
∑

v∈{0,1}`
(Pr [σ = v])|I|+1 .

The inequality follows by the fact that the executions A conducts with the receivers are independent
from each other, and the equality holds since σ and σ̂i are identically distributed for every i ∈ [k].
The inclusion-exclusion principle now yields that the probability that for at least one receiver it holds
that σ̂i = σ is

Pr
[
∃i ∈ [k] s.t. Ri outputs m̂i

i

]
≥

k∑
i=1

(−1)i+1 ·
(
k

i

)
·

 ∑
v∈{0,1}`

(Pr [σ = v])i+1

 .

The above probability is minimized when the distribution of σ over a random execution of the
protocol as described above is uniform; i.e., when Pr [σ = v] = 2−` for all v ∈ {0, 1}`. Hence, it holds
that

Pr
[
∃i ∈ [k] s.t. Ri outputs m̂i

i

]
≥

k∑
i=1

(−1)i+1 ·
(
k

i

)
· 2−i·`.

In what follows, we make use of the following claim which bounds the above expression.

Claim 4.6.
∑k

i=1(−1)i+1 ·
(
k
i

)
· 2−i·` ≥ min

{
1/3, k · 2−`/4

}
.

Proof of Claim 4.6. In order to bound this expression, we differentiate between two cases. First,
consider the case where k ≥ 3·2`−1. The above expression can be thought of in the following manner:
k balls are independently thrown into 2` bins uniformly at random. Let B be the random variable
denoting the number of balls in the first bin at the end to the experiment. Then, the expression we
wish to bound is exactly Pr [B > 0]. Let N be a geometric random variable denoting the number of
balls thrown until a ball hits the first bin.13 Then, by Markov’s bound it holds that

Pr
[
∃i ∈ [k] s.t. Ri outputs m̂i

i

]
≥ Pr [B > 0]

= Pr [N ≤ k]

= 1− Pr [N > k]

≥ 1− E [N ]

k

≥ 1− 2`

3 · 2`−1
=

1

3
.

13For the sake of defining N , balls are thrown until a ball is thrown into the first bin.
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Now consider the case where k < 3 · 2`−1. In this case, it holds that

Pr
[
∃i ∈ [k] s.t. Ri outputs m̂i

i

]
≥

k∑
i=1

(−1)i+1 ·
(
k

i

)
· 2−i·`

≥
bk/2c∑
i=1

((
k

2i− 1

)
· 2−(2i−1)·` −

(
k

2i

)
· 2−2i·`

)

=

bk/2c∑
i=1

(
1−

(
k
2i

)
· 2−2i·`(

k
2i−1

)
· 2−(2i−1)·`

)
·
(

k

2i− 1

)
· 2−(2i−1)·`

=

bk/2c∑
i=1

(
1− k − 2i+ 1

2i
· 2−`

)
·
(

k

2i− 1

)
· 2−(2i−1)·`

>

bk/2c∑
i=1

(
1− k

2
· 2−`

)
·
(

k

2i− 1

)
· 2−(2i−1)·`

>
1

4
·
bk/2c∑
i=1

(
k

2i− 1

)
· 2−(2i−1)·` >

k

4
· 2−`.

Let ForgeA denote the event in which Ri outputs m̂i
i 6= mi. By Claim 4.6,

Pr [ForgeA] = Pr
[
∃i ∈ [k] s.t. mi 6= m̂i

i ∧Ri outputs m̂i
i

]
≥ Pr

[
∀j ∈ [k],mj 6= m̂j

j ∧ ∃i ∈ [k] s.t. Ri outputs m̂i
i

]
≥ Pr

[
∃i ∈ [k] s.t. Ri outputs m̂i

i

]
− Pr

[
∃j ∈ [k] s.t. mj = m̂j

j

]
≥ min

{
1

3
,
k

4
· 2−`

}
− k · 2−n

≥ min

{
1

6
, k · 2−`−2 − k · 2−n

}
.

The last inequality holds since n ≥ log k + log 1/ε+ 3 > log k + 3 and thus k · 2−n < 1/6. Finally,
since ε < 1/6 and n ≥ log k + log 1/ε, it holds that

ε ≥ k · 2−`−2 − k · 2−n ≥ k · 2−`−2 − ε.

Equivalently, ε ≥ k · 2−`−3, which implies ` ≥ log 1/ε+ log k − 3.

5 The Statistical Setting

In this section we prove tight bounds for statistically-secure out-of-band authentication protocols in
the group setting. First, in Section 5.1 we present our statistically-secure protocol. Then, in Section
5.2 we prove the security of our protocol, and in Section 5.3 we prove a matching lower bound on
the length of the out-of-band authenticated value in any statistically-secure protocol.
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5.1 Our Protocol

Our protocol, denoted πStat, is parametrized by the maximal forgery probability ε ∈ (0, 1), integers
n, k ∈ N denoting the length of each message and the number of receivers, respectively, and an odd
integer r ∈ N denoting the number of rounds (we refer the reader to Section 1.2 for an intuitive
overview of the protocol).

Notation. Denote the Galois field with q elements by GF (q). Then, a message m of length
n can be parsed as a polynomial of degree at most dn/ log qe over GF (q). Namely, a message
m = m1, . . . ,mt ∈ GF (q)t defines a polynomial in the following manner: For every x ∈ GF (q),
we let m(x) =

∑t
i=1mi · xi. Then, for two distinct messages m, m̂ ∈ GF (q)t and any two field

elements y, ŷ ∈ GF (q), it holds that the polynomials m(·) + y and m̂(·) + ŷ are distinct and thus
Prx←GF (q) [m(x) + y = m̂(x) + ŷ] ≤ t/q. Let ε′ = ε/k, and let n1 = n. For every j ∈ [r − 1]
let qj be a prime number chosen in a deterministically and agreed upon manner in the interval[

2r−j ·nj
ε′ ,

2r−j+1·nj
ε′

)
, and let nj+1 = d2 log qje.

Our protocol πStat is then defined by the following steps:

1. For every i ∈ [k], S sends m1
S,i = mi to Ri. Denote by m1

Ri
the string received by Ri.

2. For j = 1 to r − 2:

(a) If j is odd, then for every i ∈ [k]:

i. S chooses yji ← GF (qj) and sends it to Ri.

ii. Ri receives ŷ
j
i , chooses x

j
i ← GF (qj) and sends it to S.

iii. S receives x̂ji and computes mj+1
S,i = x̂ji‖m

j
S,i(x̂

j
i ) + yji .

iv. Ri computes mj+1
Ri

= xji‖m
j
Ri

(xji ) + ŷji .

(b) if j is even, then for every i ∈ [k]:

i. Ri chooses y
j
i ← GF (qj) and sends it to S.

ii. S receives ŷji , chooses x
j
i ← GF (qj) and sends it to Ri.

iii. Ri receives x̂
j
i and computes mj+1

Ri
= x̂ji‖m

j
Ri

(x̂ji ) + yji .

iv. S computes mj+1
S,i = xji‖m

j
S,i(x

j
i ) + ŷji .

3. For every i ∈ [k], Ri chooses yr−1
i ← GF (qj) and sends it to S.

4. S receives ŷr−1
1 , . . . , ŷr−1

k , chooses xr−1 ← GF (qr−1), and for every i ∈ [k] sends xr−1
i = xr−1

to Ri.

5. For every i ∈ [k], Ri receives x̂r−1
i and computes σ̂i = mr−1

Ri
(x̂r−1
i ) + yr−1

i . Denote mr
Ri

=

x̂r−1
i ‖σ̂i.

6. For every i ∈ [k], S computes σi = mr−1
S,i (xr−1) + ŷr−1

i . Denote mr
S,i = xr−1‖σi. S sends

xr−1‖σ1‖ . . . ‖σk over the authenticated channel.

7. For every i ∈ [k], if mr
S,i = mr

Ri
(i.e., if xr−1 = x̂r−1

i and σi = σ̂i), Ri outputs m1
Ri
. Otherwise,

Ri outputs ⊥.
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The following theorem (when the protocol is invoked with at least log∗ n rounds) implies Theorem
1.3 as an immediate corollary:

Theorem 5.1. Let n, k ∈ N, let r ≥ 3, and let ε ∈ (0, 1). Then, protocol πStat is a statistically-secure
out-of-band (n, `, k, r, ε)-authentication protocol, where ` = (k+1)·

(
log 1

ε + log k + log(r−1) n+O(1)
)
.

The correctness of our protocol is straightforward. In Lemma 5.2 we bound the length ` of the
out-of-band authenticated value as stated in Theorem 5.1, and the proof of unforgeability is given in
Section 5.2, yielding Theorem 5.1. A corollary of Lemma 5.2 is that when invoked with r = Ω(log∗ n),
the sender in protocol πStat has to authenticate at most (k + 1) · (log(1/ε) + log k +O(1)) bits.

Lemma 5.2. Let n, k ∈ N, let r ≥ 3, and let ε ∈ (0, 1). Then, in protocol πStat it holds that
` ≤ (k + 1) ·

(
log 1

ε + log k + log(r−1) n+O(1)
)
.

The proof of Lemma 5.2 will make use of the following two claims.

Claim 5.3. If nj > 2r−j/ε′ for every j ∈ [r − 2], then nj+1 ≤ max{4 log(j) n + 4 log 5 + 3, 27} for
every j ∈ [k − 2].

Proof. The proof is by induction on j. Since nj > 2r−j/ε′ for every j ∈ [r − 2], it holds that for
every j ∈ [r − 2],

qj <
2r−j+1

ε′
· nj ≤ 2n2

j .

This implies that for every j ∈ [r − 2], it holds that

nj+1 = d2 log qje < d2 log
(
2n2

j

)
e ≤ 4 log nj + 3.

For j = 1, the claim indeed yields: n2 < 4 log n + 3. For 2 ≤ j ≤ r − 2, if nj ≤ 27, then
nj+1 < 4 log 27 + 3 < 23. Otherwise, by the induction hypothesis, it holds that

nj+1 ≤ 4 log nj + 3 ≤ 4 log
(

4 log(j−1) n+ 4 log 5 + 3
)

+ 3.

Consider the following two cases:

1. If log(j−1) n ≤ 4 log 5 + 3, then nj+1 ≤ 4 log(20 log 5 + 15) + 3 < 27.

2. If log(j−1) n > 4 log 5 + 3, then nj+1 ≤ 4 log
(

5 log(j−1) n
)

+ 3 = 4 log(j) n+ 4 log 5 + 3.

Claim 5.4. If nj ≤ 2r−j/ε′ for some j ∈ [r − 2], then for every j′ ∈ {j, . . . , r − 2}, it holds that
nj′ ≤ 2r−j

′
/ε′.

Proof. Assume nj ≤ 2r−j/ε′ for some j ∈ [r− 3]. We prove nj+1 ≤ 2r−j−1/ε′ and the claim follows.
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By the assumption on nj , it holds that

nj+1 = d2 log qje

≤

⌈
2 log

(
2r−j

ε′
· nj
)⌉

≤

⌈
4 log

(
2r−j

ε′

)⌉

≤ 4 ·
(
r − j + log

1

ε′

)
+ 1

≤ 2r−j+log 1
ε′−1

=
2r−j−1

ε′
.

The last inequality follows by the fact that 4x+1 ≤ 2x−1 for any x ≥ 6 (if r− j+log(1/ε′) < 6 then
the parties can jump to Step 3 of the protocol and complete it, while S only has to send (k+1) ·O(1)
bits over the out-of-band channel, which implies Lemma 5.2).

We are now ready to prove Lemma 5.2.

Proof of Lemma 5.2. Informally speaking, we prove that qr−1 is at most roughly 1/ε′, and then
the lemma follows, since S authenticates to k+ 1 elements in GF (qr−1), which can be encoded using
d(k + 1) · log qr−1e bits.

More formally, we consider two separate cases. First we consider the case where nj > 2r−j/ε′

for every j ∈ [r − 2]. By Claim 5.3, it holds that nr−1 ≤ max
{

4 log(r−2) n+ 4 log 5 + 3, 27
}
. If

nr−1 ≤ 27, then qr−1 < 4 · 27/ε′, and then

` = d(k + 1) · log qr−1e

≤ (k + 1) ·
(

log
1

ε′
+O(1)

)
= (k + 1) ·

(
log

1

ε
+ log k +O(1)

)
.

Otherwise, it holds that nr−1 ≤ 4 log(r−2) n+ 4 log 5 + 3. Hence,

` = d(k + 1) · log qr−1e

=

⌈
(k + 1) · log

(
4

ε′
· nr−1

)⌉

≤ (k + 1) ·
(

log
1

ε
+ log k + log(r−1) n+O(1)

)
.

We now turn to consider the case where there exists some j ∈ [r− 2] such that nj ≤ 2r−j/ε′. By
Claim 5.4, this means that nr−2 ≤ 4/ε′. Therefore,

nr−1 = d2 log qr−2e ≤

⌈
2 log

23

ε′
· nr−2

⌉
≤ 4 log

1

ε′
+ 11.
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Where this is the case, the parties can set qr−1 = Θ(1/ε′), and the security of the protocol is
preserved. This is due to the fact that our proof of security (see Section 5.2) only relies on the fact
that two distinct polynomials over GF (qr−1) defined by nr−1-bit strings evaluate to the same value
on at most ε′/2 field elements; i.e., qr−1

−1 · dnr−1/ log(1/ε′)e ≤ ε′/2. If qr−1 = Θ(1/ε′), then indeed

` ≤ (k + 1) ·
(

log
1

ε
+ log k + log(r−1) n+O(1)

)
,

concluding the proof.

5.2 Proof of Security

In this section, we prove the unforgeability of our protocol πStat, proving Theorem 5.1. For an
adversary A, let ForgeA,i denote the event in which Ri outputs m̂i 6∈ {mi,⊥} in an execution of πStat
with A, and let ForgeA =

⋃
i∈[k] ForgeA,i. The following Lemma captures the unforgeability of πStat.

Lemma 5.5. For any computationally unbounded adversary A, it holds that Pr [ForgeA] ≤ ε.

Proof. We prove that for every i ∈ [k], any computationally unbounded adversary A succeeds in
making Ri output a fraudulent message with probability at most ε′ = ε/k and the theorem thus
follows by union bound. Note that if A fools Ri this in particular means that m1

S,i 6= m1
Ri

but
mr
S,i = mr

Ri
. Hence, there exists a round j ∈ [r− 1] such that mj

S,i 6= mj
Ri

but mj+1
S,i = mj+1

Ri
; denote

this event by Collji . We will prove that for every j, Pr
[
Collji

]
≤ ε′/2r−j , and then by taking a union

bound over all rounds, the probability of ForgeA,i is at most
∑r−1

j=1 Pr
[
Collji

]
≤
∑r−1

j=1 ε
′/2r−j < ε′.

Similarly to Section 4.2, we denote by T (v) the time in which a message v in the protocol is
sent and fixed. We analyze separately the case where the round index j is odd, and the case that
it is even. We start by bounding Pr

[
Collji

]
in case j is odd (Ri picks the evaluation point of the

polynomial and S chooses the shift), and consider three possible attack timings:

1. T (x̂ji ) < T (xji ) : In this case, Ri chooses x
j
i at random from the field only after x̂ji was fixed

and sent to S. Recall that x̂ji is the first part of mj+1
S,i and xji is the first part of mj+1

Ri
. Hence,

Pr
[
Collji

]
≤ Pr

xji←GF (qj)

[
xji = x̂ji

]
=

1

qj
≤ ε′

2r−j
.

2. T (x̂ji ) ≥ T (xji ) and T (ŷji ) ≥ T (yji ): In this case, if the adversary chooses x̂ji 6= xji , then
Pr
[
Collji

]
= Pr

[
mj+1
S,i = mj+1

Ri

]
= 0. So for the remainder of the analysis of this case, we

assume x̂ji = xji . Since j is odd, it is always the case that T (xji ) > T (ŷji ); i.e., Ri chooses

xji after receiving ŷji . Since we are also in the case where T (ŷji ) ≥ T (yji ), this means that

Ri chooses xji when mj
S,i,m

j
Ri
, yji and ŷji are all fixed. In particular, if mj

S,i 6= mj
Ri
, then

the polynomials mj
S,i(·) + yji and mj

Ri
(·) + ŷji are two distinct polynomials of degree at most

dnj/ log qje. Hence,

Pr
[
Collji

]
= Pr

xji←GF (qj)

[
mj
S,i 6= mj

Ri
∧mj

S,i(x
j
i ) + yji = mj

Ri
(xji ) + ŷji

]
≤ 1

qj
·
⌈ nj

log qj

⌉
≤ ε′

2r−j
.
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3. T (x̂ji ) ≥ T (xji ) and T (ŷji ) < T (yji ): As before, if x̂ji 6= xji , then Pr
[
Collji

]
= 0, so we assume

x̂ji = xji . In this case, S chooses yji and Ri chooses x
j
i when the adversary has already chosen

ŷji . Since yji and xji are chosen independently, we may assume without loss of generality that

T (yji ) > T (xji ), meaning yji is chosen when mj
S,i,m

j
Ri
, ŷji and xji are already fixed (and thus

also x̂ji , since we assume x̂ji = xji ). It follows that

Pr
[
Collji

]
= Pr

yji←GF (qj)

[
yji = mj

Ri
(xji ) + ŷji −m

j
S,i(x

j
i )

]
≤ 1

qj
≤ ε′

2r−j
.

We now turn to bound Pr
[
Collji

]
in case j is even (S picks the evaluation point of the polynomial

and Ri chooses the shift). The proof is very similar to the case where j is odd, and considers the
same three cases:

1. T (x̂ji ) < T (xji ) : In this case, S chooses xji at random when x̂ji is fixed. Therefore,

Pr
[
Collji

]
≤ Pr

xji←GF (qj)

[
xji = x̂ji

]
=

1

qj
≤ ε′

2r−j
.

2. T (x̂ji ) ≥ T (xji ) and T (ŷji ) ≥ T (yji ): As in the analysis for odd values of j, we can assume

x̂ji = xji , and we know that S chooses xji when mj
S,i,m

j
Ri
, yji and ŷji are all fixed (in the last

round, this follows also by the fact that S chooses xr−1 after receiving all ŷr−1
i ’s). In particular,

if mj
S,i 6= mj

Ri
, then the polynomials mj

S,i(·) + ŷji and mj
Ri

(·) + yji are two distinct polynomials
of degree at most dnj/ log qje. Hence,

Pr
[
Collji

]
= Pr

xji

[
mj
S,i 6= mj

Ri
∧mj

S,i(x
j
i ) + ŷji = mj

Ri
(xji ) + yji

]
≤ ε′

2r−j
.

3. T (x̂ji ) ≥ T (xji ) and T (ŷji ) < T (yji ): As before, we assume x̂ji = xji , and we know that Ri
chooses yji and S chooses xji when the adversary has already chosen ŷji . Since yji and xji are
chosen independently, we may assume without loss of generality that T (yji ) > T (xji ), meaning

yji is chosen when mj
S,i,m

j
Ri
, ŷji and xji are already fixed. Hence,

Pr
[
Collji

]
= Pr

yji←GF (qj)

[
yji = mj

S,i(x
j
i ) + ŷji −m

j
Ri

(xji )

]
≤ ε′

2r−j
.

Let Colli =
⋃
j∈[r−1] Coll

j
i . By taking a union bound over all rounds, it follows that for every

i ∈ [k],

Pr [Colli] ≤
r−1∑
j=1

Pr
[
Collji

]
≤

r−1∑
j=1

ε′

2r−j
< ε′.

Since for every i ∈ [k], it is the case that ForgeA,i implies Colli, it holds that for every i ∈ [k],
Pr
[
ForgeA,i

]
≤ Pr [Colli] ≤ ε′. by taking a union bound over all receivers it holds that Pr [ForgeA] ≤

k · ε′ = ε.
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5.3 Lower Bound

In this section we present a lower bound on the number of bits the sender has to out-of-band
authenticate in the group setting. We prove the following theorem:

Theorem 5.6. For any statistically-secure out-of-band (n, `, k, r, ε)-authentication protocol, if n ≥
(k + 2) · log(1/ε) then ` ≥ (k + 1) · log(1/ε)− k.

Proof. Let π = (S,R1, . . . , Rk) be a statistically-secure out-of-band (n, `, k, r, ε)-authentication pro-
tocol. We assume without loss of generality that r ≡ 1 mod (k + 1) and that π has the following
structure. For every j ∈ [r − 1], in round j there exists a single “active” party that sends a mes-
sage (over the insecure channels) to each of the other parties, and all other parties do not send any
messages in that round. If j ≡ 1 mod (k + 1), then the sender S is the active party in round j.
Otherwise, if j ≡ i + 1 mod (k + 1) for some i ∈ [k], then receiver Ri is the active user in round
j. Denote the vector of messages sent in round j by xj−1 and the random variable describing that
vector by Xj−1 (so the vectors of messages sent over the insecure channels are x0, . . . , xr−2). Finally,
in round r, the sender S sends the short out-of-band authenticated value σ, and we denote the
random variable describing it by Σ. We also denote the random variable describing the vector of
input messages to S by M .

Observe, that we can write the Shannon entropy of Σ as

H(Σ) = H(Σ)−H(Σ|M,X0) +
∑

j∈[r−2]

(H(Σ|M,X0, . . . , Xj−1)−H(Σ|M,X0, . . . , Xj))

+H(Σ|M,X0, . . . , Xr−2)

= I(Σ;M,X0) +
∑

j∈[r−2]

I(Σ;Xi|M,X0, . . . , Xi−1) + H(Σ|M,X0, . . . , Xr−2)

= I(Σ;M,X0) +
∑

i∈{0,...,k}

∑
j∈[r−2]:

j≡i mod (k+1)

I(Σ;Xj |M,X0, . . . , Xi−1) + H(Σ|M,X0, . . . , Xr−2).

To bound the above expression, we make use of the following two lemmata, which we will prove
below. Intuitively speaking, Lemma 5.7 shows that the messages of the sender S during the execution
of π need to reduce, on average, roughly log(1/ε) bits of entropy from the out-of-band authenticated
value.

Lemma 5.7. If n ≥ 1/k · log(1/ε), then

I(Σ;M,X0) +
∑

j∈[r−2]:
j≡0 mod (k+1)

I(Σ;Xj |M,X0, . . . , Xj−1) + H(Σ|M,X0, . . . , Xr−2) ≥ log(1/ε)− 1.

In a similar fashion, Lemma 5.8 shows that for any i ∈ [k], the messages of receiver Ri during
the execution of π need to reduce, on average, roughly log(1/ε) bits of entropy from the out-of-band
authenticated value.

Lemma 5.8. If n ≥ (k + 2) · log(1/ε) and ` ≤ (k + 1) · log(1/ε), then for every i ∈ [k],∑
j∈[r−2]:

j≡i mod (k+1)

I(Σ, Xj |M,X0, . . . , Xj−1) ≥ log(1/ε)− 1.
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Now, if ` > (k + 1) · log(1/ε), then the theorem follows. Otherwise, by Lemmata 5.7 and 5.8 it
holds that, ` ≥ H(Σ) ≥ (k + 1) · log(1/ε)− k, concluding the proof of Theorem 5.6.

We now turn to prove the two lemmata used in the proof of Theorem 5.6, starting with the proof
of Lemma 5.7.

Proof of Lemma 5.7. Consider a computationally unbounded adversary A that launches the fol-
lowing attack:

1. A picks k random messages m̂ = (m̂1, . . . , m̂k) ← {0, 1}n×k and runs an honest execution
of π with the receivers (where A simulates S). Denote the authentication string sent in this
execution by σ̂.

2. A chooses m = (m1, . . . ,mk)← {0, 1}n×k as the input to S, and starts an execution of π with
S. Namely, A gets x0 from S.

3. If Pr [m, x0, σ̂] = 0, A quits. Otherwise, it samples (x̂1, . . . , x̂k) from the conditional distri-
bution (X1, . . . , Xk)|(m, x0, σ̂), and sends the corresponding messages to S, who replies with
the messages xk+1. The attack then continues in a similar manner. After each message vector
xj sent by S, A checks if Pr [m, x0, x̂1, . . . , xj , σ̂] = 0. If so, A quits. Otherwise, A samples
(x̂j+1, . . . , x̂j+k) from the distribution (Xj+1, . . . , Xj+k)| (m, x0, x̂1, . . . , xj , σ̂) and sends the
corresponding messages of rounds j + 2, . . . , j + k + 1 to S.

4. In round r, S sends an authentication string σ over the out-of-band channel. If σ 6= σ̂, A quits.
Otherwise, A forwards σ to the receivers.

We first wish to bound the probability that some receiver does not output ⊥. For ease of notation,
we denote by Acc the event in which every receiver Ri outputs m̂i in the above attack. For every
j ∈ [r − 2], we also denote by tj the transcript of the execution with S until (and including) the
messages xj of round j + 1. Then, since the xj ’s are chosen conditioned on m and tj−1, and the
tuples (x̂j+1, . . . , x̂j+k) are chosen conditioned in m, tj−1 and σ̂, it holds that

Pr [Acc] =
∑

σ̂∈{0,1}`
Pr [σ̂] · Pr [Acc|σ̂]

=
∑
σ̂

Pr [σ̂] ·
∑
m,x0

Pr [m, x0] · Pr [Acc|m, x0, σ̂]

=
∑

m,x0,σ̂:
Pr[m,x0,σ̂]>0

Pr [σ̂] · Pr [m, x0] ·
∑

x̂1,...,x̂k

Pr [x̂1, . . . , x̂k|m, x0, σ̂]

·Pr [Acc|m, tk, σ̂]

=
∑

m,tk,σ̂:
Pr[m,tk,σ̂]>0

Pr [σ̂] · Pr [m, x0] · Pr [x̂1, . . . , x̂k|m, x0, σ̂]

·
∑
xk+1

Pr [xk+1|m, tk] · Pr [Acc|m, tk, σ̂]
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=
∑

m,tr−2,σ̂:
Pr[m,tr−2,σ̂]>0

Pr [σ̂] · Pr [m, x0]

·
∏

j∈[r−2]:
j≡0 mod (k+1)

Pr
[
x̂j−k, . . . , x̂j−1|m, tj−k−1, σ̂

]
· Pr [xj |m, tj−1]

·Pr
[
x̂r−k−1, . . . , x̂r−2|m, tr−k−2, σ̂

]
· Pr [Acc|m, tr−2, σ̂] .

By the correctness of π:

Pr [Acc] ≥
∑

m,tr−2,σ̂:
Pr[m,tr−2,σ̂]>0

Pr [σ̂] · Pr [m, x0]

·
∏

j∈[r−2]:
j≡0 mod (k+1)

Pr
[
x̂j−k, . . . , x̂j−1|m, tj−k−1, σ̂

]
· Pr [xj |m, tj−1]

·Pr
[
x̂r−k−1, . . . , x̂r−2|m, tr−k−2, σ̂

]
· Pr [σ̂|m, tr−2]

=
∑

m,tr−2,σ̂:
Pr[m,tr−2,σ̂]>0

Pr [m, x0, σ̂] · Pr [σ̂]

Pr [σ̂|m, x0]

·
∏

j∈[r−2]:
j≡0 mod (k+1)

Pr
[
x̂j−k, . . . , x̂j−1, xj |m, tj−k−1, σ̂

]
· Pr [xj |m, tj−1]

Pr [xj |m, tj−1, σ̂]

·Pr
[
x̂r−k−1, . . . , x̂r−2|m, tr−k−2, σ̂

]
· Pr [σ̂|m, tr−2]

=
∑

m,tr−2,σ̂:
Pr[m,tr−2,σ̂]>0

Pr [m, tr−2, σ̂] · Pr [σ̂]

Pr [σ̂|m, x0]

·

 ∏
j∈[r−2]:

j≡0 mod (k+1)

Pr [xj |m, tj−1]

Pr [xj |m, tj−1, σ̂]

 · Pr [σ̂|m, tr−2]

=
∑

m,tr−2,σ̂:
Pr[m,tr−2,σ̂]>0

Pr [m, tr−2, σ̂]

·2
−

log
Pr[σ̂|m,x0]

Pr[σ̂]
+

∑
j∈[r−2]:

j≡0 mod (k+1)

log
Pr[xj |m,tj−1,σ̂]
Pr[xj |m,tj−1]

+log 1
Pr[σ̂|m,tr−2]


.

By Jensen’s inequality, it holds that

Pr [Acc] ≥ 2

−

I(Σ;M,X0)+
∑

j∈[r−2]:
j≡0 mod (k+1)

I(Σ;Xj |M,X0,...,Xj−1)+H(Σ|M,X0,...,Xr−2)


.
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Finally, denote by ForgeA the event in which A succeeds in making one of the receivers output a
fraudulent message. Then, as in Section 4.3, it holds that

Pr [ForgeA] ≥ Pr [Acc ∧ ∃i ∈ [k] s.t. m̂i 6= mi]

≥ Pr [Acc]− Pr [∀i ∈ [k] : m̂i = mi] = Pr [Acc]− 2k·n.

By the unforgeability of the protocol π and by the assumption that n ≥ 1/k · log(1/ε), the above
yields 2ε ≥ Pr [Acc]. It thus holds that

2ε ≥ 2

−

I(Σ;M,X0)+
∑

j∈[r−2]:
j≡0 mod (k+1)

I(Σ;Xj |M,X0,...,Xj−1)+H(Σ|M,X0,...,Xr−2)


.

Equivalently,

I(Σ;M,X0) +
∑

j∈[r−2]:
j≡0 mod (k+1)

I(Σ;Xj |M,X0, . . . , Xj−1)

+H(Σ|M,X0, . . . , Xr−2) ≥ log(1/ε)− 1.

The proof of Lemma 5.8 is quite similar in nature to that of Lemma 5.7.

Proof of Lemma 5.8. For every i ∈ [k], consider an adversary A, defined by the following attack
aimed at making receiver Ri output a fraudulent message:

1. A picks k random messages m = (m1, . . . ,mk) ← {0, 1}n×k as the input to S and runs an
honest execution of π with the S and with all receivers but Ri (where A simulates Ri). Denote
the authentication string sent in this execution by σ. A reads σ and delays it from being
delivered to Ri.

2. A starts an execution of π with Ri in the following manner. A samples m̂ = (m̂1, . . . , m̂k)
and messages x̂0, . . . , x̂i−1, from the conditional distribution (M,X0, . . . , Xi−1)|σ, sets m̂ as the
input to (the simulated) sender in the execution, and sends to Ri the relevant from x̂0, . . . , x̂i−1

in rounds 1, . . . , i of the execution. Ri replies with xi.

3. If Pr [m̂, x̂0, . . . , x̂i−1, xi, σ̂] = 0, A quits. Otherwise, A samples a tuple (x̂i+1, . . . , x̂i+k) from
the conditional distribution (Xi+1, . . . , Xi+k)|(m̂, x̂0, . . . , x̂i−1, xi, σ̂), and sends the correspond-
ing messages to S, who replies with the messages xk+1+i. The attack then continues in a similar
manner. After each message vector xj sent by Ri, A checks if Pr [m̂, x̂0, . . . , x̂j−1, xj , σ̂] = 0.
If that is the case, A quites. Otherwise, A samples (x̂j+1, . . . , x̂j+k) according to the distribu-
tion (Xj+1, . . . , Xj+k)|(m̂, x̂0, . . . , x̂j−1, xj , σ̂) and sends the corresponding messages of rounds
j + 2, . . . , j + k + 1 to Ri, who replies with xj+k+1.14

4. In round r, A forwards σ to the Ri.

We now denote by Acc the event in which Ri outputs m̂i. We continue similarly to our analysis
in the proof of Lemma 5.7: We note that the xj ’s are chosen conditioned on tj−1, m̂ is chosen
conditioned on σ and the x̂j ’s are chosen conditioned on m̂, tj−1 and σ. Moreover, conditioned on

14If j + k ≥ r − 2, then A samples (x̂j+1, . . . , x̂r−2), and Ri does not reply.
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tj−1, Xj is independent of the choice of m̂, so for any xj , tj−1 and m̂, it holds that Pr [xj |tj−1] =
Pr [xj |m̂, tj−1]. Hence,

Pr [Acc] ≥
∑

m̂,tr−2,σ:
Pr[m̂,tr−2,σ]>0

Pr [m̂, x̂0, . . . , x̂i−1, σ] · Pr [xi|m̂, ti−1]

·
∏

j∈[r−k−3]:
j≡i mod (k+1)

Pr
[
x̂j+1, . . . , x̂j+k|m̂, tj , σ

]
· Pr [xj+k+1|m̂, tj+k]

·Pr
[

̂xr−k−1+i, . . . , x̂r−2|m̂, tr−k−2+i, σ
] 15

=
∑

m̂,tr−2,σ:
Pr[m̂,tr−2,σ]>0

Pr [m̂, tr−2, σ] ·
∏

j∈[r−2]:
j≡i mod (k+1)

Pr [xi|m̂, ti−1]

Pr [xi|m̂, ti−1, σ]

=
∑

m̂,tr−2,σ:
Pr[m̂,tr−2,σ]>0

Pr [m̂, tr−2, σ] · 2
−

∑
j∈[r−2]:

j≡i mod (k+1)

log
Pr[xi|m̂,ti−1,σ]
Pr[xi|m̂,ti−1]


.

By Jensen’s inequality,

Pr [Acc] ≥ 2

−

∑
m̂,tr−2,σ:

Pr[m̂,tr−2,σ]>0

Pr[m̂,tr−2,σ]·
∑

j∈[r−2]:
j≡i mod (k+1)

log
Pr[xi|m̂,ti−1,σ]
Pr[xi|m̂,ti−1]



= 2

−

∑
j∈[r−2]:

j≡i mod (k+1)

I(Σ,Xj |M,X0,...,Xj−1)


.

Similarly to Lemma 5.7, we denote by ForgeA the event in which A succeeds in making Ri output
a fraudulent message. Then, it holds that

Pr [ForgeA] ≥ Pr [Acc ∧ m̂i 6= mi] ≥ Pr [Acc]− Pr [m̂i = mi] .

Unlike in Lemma 5.7, the input messages m̂ – and in particular m̂i – are now chosen conditioned
on σ. So, it holds that

Pr [m̂i = mi] =
∑

σ∈{0,1}`
Pr [σ] ·

∑
mi∈{0,1}n

(Pr [mi|σ])2

≤
∑
σ

Pr [σ] ·max
mi

Pr [mi|σ] ·
∑
mi

Pr [mi|σ]

=
∑
σ

Pr [σ] ·max
mi

Pr [mi|σ] ≤
∑
σ

max
mi

Pr [mi] .

Since mi is chosen uniformly at random from {0, 1}n, it follows that Pr [m̂i = mi] ≤ 2−n+`. Taking
into consideration the assumption that ` ≤ (k + 1) · log(1/ε) and n ≥ (k + 2) · log(1/ε), it follows
that 2 · Pr [ForgeA] ≤ Pr [Acc]. Finally, the unforgeability of π yields

2

−

∑
j∈[r−2]:

j≡i mod (k+1)

I(Σ,Xj |M,X0,...,Xj−1)


≤ 2ε,

15If i = k, then we set Pr
[

̂xr−k−1+i, . . . , x̂r−2|m̂, tr−k−2+i, σ
]

= 1.
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or equivalently, ∑
j∈[r−2]:

j≡i mod (k+1)

I(Σ, Xj |M,X0, . . . , Xj−1) ≥ log(1/ε)− 1.
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A A Concrete Example: Out-of-Band Authenticating a Group Diffie-Hellman
Protocol

In this section we present a possible instantiation of our computationally-secure out-of-band au-
thentication protocol (see Section 4.1) when used for authenticating (the transcript of) a group
key-exchange protocol. The instantiation to be described below illustrates the practicality and effi-
ciency of our protocol, when used to fulfill a very natural task.

Let G be a group of prime order q that is generated by g ∈ G. Consider the following group
key-exchange protocol for a group consisting of k + 1 parties, denoted S and R1, . . . , Rk:

1. For every i ∈ [k], Ri chooses a random bi ← Zq, computes Bi = gbi and sends Bi to S.

2. S chooses a random a← Zq, and for every i ∈ [k] computes Di = Ba
i , and sends Di to Ri.

3. The joint group key is then K = ga. Note that S knows a and can compute K directly, while
each Ri knows bi and can compute K = D

b−1
i
i =

(
gabi

)b−1
i = ga.
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The security of this protocol in the presence of an eavesdropper follows easily from the decisional
Diffie-Hellman (DDH) assumption. However, a man-in-the-middle adversary is capable of devastating
attacks (exactly as in the two-party Diffie-Hellman protocol).

This is where our out-of-band authentication protocol comes into the picture: A group may
employ our protocol on top of the above key-exchange protocol, in order to immune it from man-
in-the-middle attacks. In the example below, we instantiate the commitment scheme used in our
protocol via any off-the-shelf cryptographic hash function H (e.g., SHA-2). As noted in Section 4.2,
security is guaranteed when H is modeled as a random oracle.

The protocol thus has the following form:

1. For every i ∈ [k], Ri randomly chooses bi ← Zq and computes Bi = gbi . Ri also chooses
ri ← {0, 1}` and si ← {0, 1}λ uniformly at random and computes ci = H(ri‖si). Ri sends
(Bi, ci) to S; Ri also sends ci to all other receivers.16 Denote the values received by S by
(B̂i, ĉi) and the value received by receiver Rj by ĉi→j for every j ∈ [k] \ {i}.

2. S chooses a random a← Zq and for every i ∈ [k] computes Di = B̂i
a
; denote mi = (B̂i, ĉi, Di).

S then chooses rS ← {0, 1}` and for every i ∈ [k], she chooses a random siS ← {0, 1}λ and
computes ciS = H(mi‖rS‖siS). S sends (Di, c

i
S) to Ri. Denote the values received by Ri by

(D̂i, ĉiS) and let m̂i = (Bi, ci, D̂i).

3. For every i ∈ [k], Ri sends ri and si to all other parties. Denote the values received by S by
(r̂i, ŝi) and the values received by Rj by (r̂i→j , ŝi→j) for every j ∈ [k] \ {i}. S verifies that
ĉi = H(r̂i‖ŝi) and each Rj for every j ∈ [k] \ {i} verifies that ĉi→j = H(r̂i→j , ŝi→j). If the
verification by a certain party fails, that party outputs ⊥ and terminates.

4. S sends (rS , s
i
S) to receiver Ri, for every i ∈ [k]. Denote the values received by Ri by (r̂iS , ŝ

i
S).

Each Ri then verifies that ĉiS = H(m̂i‖r̂iS‖ŝiS). If the verification by a certain party fails, that
party outputs ⊥ and terminates.

5. S computes σ = rS ⊕ r̂1 ⊕ . . . ⊕ r̂k and sends σ over the out-of-band authenticated channel,
and outputs ga. For every i ∈ [k], Ri verifies that σ is consistent with her view of the protocol.

If so, Ri outputs D̂i
b−1
i . Otherwise, Ri outputs ⊥ and terminates.

16For simplicity of presentation, we assume in this section that each pair of parties is connected via an insecure
channel. The protocol can be easily adjusted to the case where each receiver shares an insecure channel only with the
sender, as in Section 4.1.
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