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Abstract

The Ring Learning with Errors problem (RLWE) introduced by Lyubashevsky, Peikert and
Regev (LPR, Eurocrypt 2010, Eurocrypt 2013) quickly became a central element in crypto-
graphic literature and a foundation to numerous cryptosystems. RLWE is an average case
problem whose hardness is provably related to the worst case hardness of ideal lattice problems.
However, in many cases optimizations and other considerations necessitate generating RLWE
instances from distributions for which the worst case reduction does not apply, thus leaving the
resulting cryptosystem secure only by heuristic reasons.

The focus of this work is RLWE with non-uniform distribution on secrets. A legal RLWE
secret is (roughly) a uniform element in the ring of integers of a number field, modulo an integer
q. We consider two main classes of “illegal” distributions of secrets.

The first is sampling from a subring of the intended domain. We show that this translates
to a generalized form of RLWE that we call Order-LWE, we provide worst case hardness results
for this new problem, and map out regimes where it is secure and where it is insecure. Two
interesting corollaries are a (generalization of) the known hardness of RLWE with secrets sam-
pled from the ring of integers of a subfield, and a new hardness results for the Polynomial-LWE
(PLWE) problem, with different parameters than previously known.

The second is sampling from a k-wise independent distribution over the CRT representation
of the secret. We cannot show worst case hardness in this case, but instead present a single
average case problem (specifically, bounded distance decoding on a fixed specific distribution
over lattices) whose hardness implies the hardness of RLWE for all such distributions of secrets.

1 Introduction

The introduction of the learning with errors (LWE) problem by Regev [Reg05] provided a con-
venient way to construct cryptographic primitives whose security is based on the hardness of
lattice problems. LWE was used to construct various cryptographic primitives, including cut-
ting edge primitives such as fully homomorphic encryption (FHE) [BV11b], and ones that are
not known under other assumptions, such as attribute based encryption (ABE) for general poli-
cies [GVW13, BGG+14]. Two of the most appealing properties of LWE are the existence of a
reduction from worst-case lattice problems [Reg05, Pei09, BLP+13, PRSD17] (which is most rele-
vant to this work), and its conjectured post-quantum security.

∗Supported by the Israel Science Foundation (Grant No. 468/14), Binational Science Foundation (Grants No.
2016726, 2014276), and by the European Union Horizon 2020 Research and Innovation Program via ERC Project
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On the other hand, one of the shortcomings of LWE is its relatively high computational com-
plexity and large instance size (as a function of the security parameter). This leads, for exam-
ple, to LWE-based encryption having long keys and ciphertexts, and also high encryption com-
plexity. It was known since the introduction of the NTRU cryptosystem [HPS98] (even before
LWE was introduced) and more rigorously in [LM06, PR06] that these aspects can be greatly im-
proved by relying on lattices that stem from algebraic number theory. Lyubashevsky, Peikert and
Regev [LPR10, LPR13] defined an algebraic number theoretic analog of LWE, called Ring-LWE
(RLWE), which similarly to Regev’s original result, is shown to be as hard as solving worst-case
ideal lattice problems.

Ring-LWE and extensions quickly became a useful resource for the construction of various
cryptographic primitives [BF11, BV11a, BGV12, GHS12, DDLL13, AP13, HS14, BKLP15, ADPS16,
BVWW16] (an extremely non-exhaustive list of examples). Using RLWE is appealing due to its
improved efficiency and its promise of security based on the hardness of worst case (ideal) lattice
problems. However, as it often happens in concrete instantiations, in many cases achieving the best
possible efficiency requires setting the parameters in a regime where the worst-case hardness proof
of [LPR10, LPR13] does not apply, and the only guarantee is the lack of known attacks. In other
cases (e.g. [BVWW16]) the extreme parameter setting was required for functionality purposes.
While a gap between the provable and concrete security properties of a cryptosystem is expected,
one would like to at least make sure that changing the distribution did not make the problem
qualitatively easy. That is, we would like to show that the problem remains at least asymptotically
hard even with the new distribution.

In the case of LWE, it has been shown over the years that the problem is quite robust to
changes in the prescribed LWE distribution. In particular, it was shown that even if the LWE
secret (a vector that, very roughly, represents the coordinates of a hidden lattice point) is not
sampled uniformly as prescribed, but rather is leaked on [AGV09,DGK+10] or is just chosen from
a binary distribution of sufficient entropy [GKPV10,BLP+13], then similar hardness to the original
problem is preserved (with the obvious loss coming from the secret having smaller entropy). It is
also almost trivial to verify that if the LWE secret is chosen uniformly from a linear subspace of
its prescribed space, then security degrades gracefully with the dimension of the space.1

Much less is known for RLWE since its algebraic structure (which is the very reason for the
efficiency gain) prevents using techniques such as randomness extraction that are instrumental to
the aforementioned LWE robustness results.

In this work, we investigate the behavior of the RLWE problem on imperfect distributions of
secrets, proving security in some cases and showing insecurity in others. Specifically we present
some robustness results that can be interpreted as partial analogs to those known for LWE. We
hope that these results will lead to better guidelines on what RLWE secret distributions should
be considered secure. We believe that the framework we establish may find other uses in the
investigation of the properties of RLWE and its variants.

1.1 Our Results

In the LWE problem, a secret vector s is sampled from Znq for some modulus q. The adversary
gets oracle access to samples of the form (ai, bi = 〈ai, s〉 + ei (mod q)) where the ai ∈ Znq are

1We note that there has also been much work on modifying the noise distribution of LWE, e.g. [BPR12, MP13].
However the focus of this work is the distribution of secrets.
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uniform and ei are small integers (say sampled from a discrete Gaussian with parameter� q). The
adversary’s goal is to distinguish this oracle from one where bi is random.

For RLWE, we consider an extremely simplified setting for the sake of this high level overview.
Concretely, we consider the 2n cyclotomic number field for n a power of two: K = Q[x]/〈xn + 1〉. In
this setting, the ring of integers is R = Z[x]/〈xn + 1〉, and the RLWE problem with modulus q can
be simplified as follows. Sample a random secret s ∈ R/qR,2 and provide the adversary with oracle
access to samples of the form (ai, ais+ei), where ai ∈ R/qR is uniform and ei is sampled from some
“small” noise distribution (for the purpose of this outline, a polynomial with integer coefficients
much smaller than q, say sampled from a Gaussian). The arithmetics is over Rq = R/qR, and the
goal is to distinguish the samples from uniform. We would like to consider the case where q may
be reducible in R, so for simplicity we consider the setting where q is prime s.t. q = 1 (mod 2n).
In this case q factors into n ideals in R. This allows to apply the Chinese Remainder Theorem and
conclude that any element in Rq can be represented as a vector of n elements in Zq = Z/qZ, so
that addition and multiplication in Rq are performed point-wise on these vectors. This is called
the CRT representation of elements in Rq. Let us denote the CRT representation of an element c
by c[1], . . . , c[n].

We investigate the properties of RLWE when s is sampled from special distributions rather
than uniformly.

Sampling from an ideal. In LWE, it is almost immediate that if q is not prime, e.g. q = p1p2,
the secret vector s is a multiple of p1, and the ei magnitude is sufficiently smaller than p1, then
LWE becomes easy to solve. One can just taking the quotient of bi divided by p1 and rounded
to the nearest integer, thus getting a noiseless set of equations modulo p2. However, if the noise
magnitude is sufficiently larger than p1, then the instance is secure (one can think about dividing
the entire instance by p1).

We show that in the ring setting a similar phenomenon occurs even when q is prime. Specifically,
the analog is that the ideal generated by q splits in R, and s is sampled from an ideal which is
a factor of qR. Contrary to the LWE setting, it is not obvious that this distribution leads to an
insecure instance, since we cannot just round to the nearest integer. Instead, we show that the
factors of q, interpreted as lattices, have a good decoding basis, and then rely on this basis to
recover e if it is small enough. We complement this result by showing that if the noise is sufficiently
large then RLWE hardness holds. This requires to define a version of RLWE modulo an arbitrary
ideal (instead of modulo qR). This is a simple special case of a more general problem that we call
Order-LWE (which is outlined below). See Section 5 for more details.

Sampling from a subring. In LWE, if we sample s from a k-dimensional linear subspace of Znq ,
then the problem quite easily translates to an instance of LWE where the dimension n is replaced
with k. In the ring setting there is much more structure that makes such transformations harder to
define and analyze. Previous works [BGV12,GHPS13,AP13] considered the notion of ring-switching
which implies the hardness of RLWE even when s is sampled from the ring of integers of a sub-field
of the field K. However, such transformations do not apply when K has no subfields or when it
has no subfields of dimension k.

2An informed reader may notice that in the actual RLWE definition s needs to be sampled from the dual of
this ring, but in the cyclotomic setting this distinction makes little difference and our choice makes the presentation
simpler. Another simplifying choice for the exposition is to consider discrete noise distributions.
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We propose wider range of distributions, in particular ones where s is sampled from a subring
of Rq which is isomorphic to Zkq . We notice that since the entire RLWE instance is taken modulo q,
then we should only consider q-periodic subrings, such subrings have full rank and therefore comply
with the algebraic definition of order. In terms of CRT representation, such subrings correspond to
an onto mapping α : [n]→ [k], and the sampling process is done by sampling k elements r1, . . . , rk
from Zq uniformly, and then setting s[j] = rα(j). Note that this set indeed constitutes a subring.3

Using our Order-LWE formulation (see below), we can prove that when sampling s uniformly
from such order, the resulting RLWE instance is at least as hard as worst case ideal lattice problems,
for a restricted set of rank-k ideals that lie in a specific linear subspace of dimension k. More
formally, these ideals are all submodules of some rank k module that is induced by the chosen
distribution of secrets. See Section 6 for more details.

Formulating Order-LWE and proving worst-case hardness. The two results mentioned
above are proven using a generalization of the RLWE problem that we call Order-LWE. We believe
that this generalization is natural and quite useful (and our aforementioned applications are just an
example), but perhaps equally importantly shows that the techniques developed in previous works
[LPR10, LPR13, PRSD17] can be extended even beyond the current state of the art. Technically,
Order-LWE is simply RLWE but with the ring of integers of the field replaced with an arbitrary
order in the field, and the modulus q replaced with some ideal in that order. An order is a full
rank subring of the field, and in particular of the ring of integers (which is the maximal order in a
number field). An example of an order in the 2n cyclotomic number field was given above.

Our worst-case hardness result asserts that when solving Order-LWE with respect to some
order O (with a properly defined Gaussian noise distribution), is at least as hard as solving worst-
case lattice problems (specifically Discrete Gaussian Sampling, which in turn implies solutions
to problems such as the Shortest Independent Vector Problem) on all ideal lattices induced by
invertible ideals of the order O. The meaning of this result is of course subject to interpretations
since it is not impossible that the set of invertible ideals relative to certain orders only contains
“easy” lattices, rendering the result meaningless. As a sanity check we note that instantiating our
result with O being the ring of integers implies the same RLWE hardness proven in [LPR10,LPR13,
PRSD17]. See Section 3 for more details.

A Corollary: New Hardness for Polynomial-LWE. We notice that Order-LWE gives in-
sight on the hardness of other computational problems underlying cryptographic constructions.
Specifically, the Polynomial-LWE problem (PLWE) [SSTX09, BV11a] provides perhaps the sim-
plest interface for LWE over polynomial rings. In PLWE, s, a are simply random polynomials with
integer coefficients modulo a polynomial f and modulo q, and the noise e is just a polynomial with
small coefficients. Indeed, in many useful cases (as in our running example above) it is straight-
forward to relate PLWE and RLWE, however for general ambient polynomials f the connection is
far from immediate. Recently Rosca, Stehlé and Wallet [RSW18] showed a reduction relating the
hardness of PLWE in the general case to RLWE and thus to worst-case lattice problems. However,
their reduction incurs a penalty in the resulting approximation ratio of the worst-case problem.
This penalty is a function of f and might be unbounded for an arbitrary f . Indeed, [RSW18] show

3Let us point out again that most formally the secret is sampled from the dual of the order but we neglect this
distinction for the sake of simplicity.
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that in many useful cases this penalty is polynomially bounded, but the question for the general
case remains.

We notice that since the ring of polynomials with integer coefficients in a number field is an order
and therefore our results on Order-LWE immediately imply a worst-case hardness result for PLWE.
Perhaps surprisingly, the worst-case hardness result we achieve is quite different from [RSW18].
First of all, we do not incur the aforementioned penalty. Secondly, the class of lattices for which we
show worst-case hardness is different (and in fact disjoint) from the class of lattices from [RSW18].
This is since the hardness Order-LWE refers is with respect to lattices defined by invertible ideals
in the order. Thus our result strengthens previous results on the hardness of PLWE, showing that
solving PLWE will result in efficient algorithm for short vector problems in additional lattices than
those already known, and without incurring a penalty in the approximation factor. See Section 4
for more details.

Sampling from a k-wise Independent distribution. We now consider a class of distributions
that do not adhere to uniform sampling from an algebraic structure. Instead we consider the class
of distributions with the following property. The marginal distribution over any subset of k CRT
coordinates is jointly (statistically close to) uniform.

For such distributions we are unable to prove worst case hardness. However, RLWE with any
k-wise distribution is at least as hard as the following average case problem, that we call decisional
bounded distance decoding on a hidden lattice. In this problem, the adversary needs to distinguish
between a random oracle on Rq and an oracle of the following form. Upon initialization of the
oracle, a set T ⊆ [n] of cardinality k is sampled. Then for every oracle call, sample an element vi
as follows: vi[j] is random if j ∈ T , and 0 otherwise, sample a small noise element ei, and return
(vi + ei). This is similar to a bounded distance decoding (BDD) problem since the elements vi are
sampled from an ideal lattice.

This assumption is similar to one made in [HPS+14], however they only require k = n/2,
whereas we attempt to take k to be very small, e.g. k = n0.1. We note that the hardness of the
problem relies crucially on the set T being chosen at random in the beginning of the experiment
rather than using a fixed set T (in other words, we cannot allow preprocessing that depends on
T ). This is since computing a good basis to the ideal lattice defined by T makes the problem easy.
It is also important to mention that T itself does not need to be known to the adversary, in this
sense this problem also resembles the approximate GCD problem [DGHV10]. Lastly, we note that
it is sufficient for our purposes to limit the adversary of the decisional hidden-lattice BDD to only
make 2 oracle calls. Namely, the problem is to distinguish two samples (v1 + e1, v2 + e2) from two
uniform elements in Rq. Despite our efforts, we were unable to find additional corroboration to
the hardness of this problem and we leave it as an interesting open problem to characterize its
hardness.

While the class of k-wise independent distributions might seem a little weird, it captures the
spirit of some of the heuristic entropic distributions that were considered for RLWE. For example,
consider the representation of the secret s as a formal polynomial modulo q (recall that Rq is a ring
of polynomials), if each coefficient of s is sampled from a Gaussian, so that the total distribution
has sufficient entropy (slightly above the necessary k log q), then this distribution will be k-wise
independent. This shows that sampling secrets with very low norm does not violate security under
our new assumption. While it was previously known that sampling the secret from the distribution
of noise keeps security intact (also known as RLWE in Hermite Normal Form [ACPS09]), we are
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not aware of a proof of security when going below the noise rate. This can be seen as a step
in the direction of matching the robustness of LWE results [GKPV10, BLP+13], that shows that
LWE remains hard even with high entropy binary secrets. We note that low norm secrets are of
importance in the FHE literature (e.g. [BGV12, HS14, HS15]), where it is desirable to reduce the
norm of the secret as much as possible. In fact, in the HElib implementation [HS14,HS15] the secret
is chosen to be a random extremely sparse polynomial. Heuristically, we believe sparse polynomials
should translate into k-wise independent distributions, however we currently do not have a proof
for this speculation.

Another example of an interesting k-wise independent distribution is the “entropic RLWE”
formulation that came up in the obfuscation literature [BVWW16]. That setting consists of a large
number of public elements s1, . . . , sm, sampled from the noise distribution (which is Gaussian in
the polynomial coefficient representation and thus can be shown to be k-wise independent in the
CRT representation). The secret is generated by sampling a binary vector ~z = (z1, . . . , zm) and
outputting s =

∏
szii . Using the leftover hash lemma, one can show that so long as ~z has entropy

sufficiently larger than k log q, the resulting distribution will be k-wise independent as well. It is
worth noting that to achieve the strongest notion of security for their obfuscator, [BVWW16] use
~z with entropy � log q to which our technique does not directly apply.

We believe that tighter results should be achievable by replacing the statistical k-wise inde-
pendence condition with a computational one. Namely that there is no efficient distinguisher that
takes a subset of k CRT coordinates of its choice and distinguishes them from uniform. This avenue
could allow to go below entropy log q and thus allow us to show security for even narrower secret
distributions. See Section 7 for more details.

1.2 Overview of Techniques

We outline the high level technical ideas that underly our various results. Again we relate here to
the simplified RLWE setting described above. For the specific details and more general result refer
to the specific sections.

Sampling from an ideal. In this setting, we can start with a RLWE instance that is provably
secure when s is sampled uniformly, and propose a family of distributions of secrets s which have
very high entropy, but still make the problem easy to solve. Specifically, let T ⊆ [n] and consider
s sampled so that all coordinates s[j] for j ∈ T are uniform in Zq, and s[j] = 0 if j 6∈ T . This
distribution has entropy |T | log q. Now let us consider even a single RLWE sample (a, as + e)
w.r.t this secret distribution. Clearly the CRT coordinates of e that correspond to [n] \ T can be
completely recovered (since for j ∈ [n] \T it holds that (as)[j] = 0 and thus (as+ e)[j] = e[j]), but
that by itself is not sufficient. In fact, even though e can be represented as a polynomial with small
coefficients, its CRT representation is not small, since the marginal distribution of each individual
CRT coordinate is uniform. However, if e is small enough then even by entropy considerations it is
impossible for too many of its CRT slots to be jointly uniform, so at least information theoretically
one could hope that recovering sufficiently many CRT slots of e could allow to reconstruct e and
thus recover s. We show that this is indeed the case. Specifically, we notice that our distribution of
s actually samples from an ideal I of qR. This means that as+ e (mod I) = (e mod I). We now
resort to the representation of I as a lattice, and conclude that so long as we have a sufficiently
good decoding basis for I, we will be able to recover e from (e mod I). Indeed, in this case the ideal
I is a product of factors of q, which behave “nicely”, and a good decoding basis indeed exists. Note
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that this decoding basis may be computationally hard to find given T , so our attack requires to
be provided with the decoding basis for I as advice (computed, e.g., via inefficient preprocessing).
Indeed, as we explained above, our k-wise independent result relies on the assumed hardness of
decoding from I induced by a random T , so preprocessing does not seem to help.

Intuitively, if e is sufficiently large to make (e mod I) completely uniform, plus “a little bit” of
additional entropy, then the uniform (e mod I) should cover up for the CRT coordinates in s that
are set to 0, and there may be sufficient leftover noise entropy to ensure RLWE hardness. We show
that this intuition is indeed correct and so long as e is sampled from a wide enough Gaussian, it is
possible to consider the quotient of the RLWE instance w.r.t I, and get an instance of a problem
similar to RLWE, except q is replaced with a different ideal (essentially, the ideal corresponding to
the set of coordinates T ). This is a simple special case of Order-LWE.

In fact, since I has a good decoding basis, we exhibit a threshold phenomenon where a slight
decrease in the noise can make the problem from provably hard to provably easy. The threshold,
as can be expected from entropy calculations, is approximately when the coefficients of e as a
polynomial are roughly of size q1−|T |/n. This means that even for high-entropy secret distributions,
e.g. |T | = 0.5n, one needs noise coordinates of amplitude ≈ √q in order for the instance not to be
broken.

Sampling from a subring. As explained above, we wish to establish the hardness of RLWE
when the secret is sampled from a subring (actually, an order). To this end we formulate Order-LWE
which is similar to RLWE but with the ambient space being an order. To bridge the gap between
RLWE over Rq with secret coming from an order, and Order-LWE where the entire arithmetics
is over an order and not over Rq, we employ techniques similar to the ring switching described
in [GHPS13]. Specifically, given a RLWE solver with subring secret, we would like to create an
Order-LWE solver. To do this, we take multiple Order-LWE samples {(ai, bi)} and “piece them
together” using a short linear combination v1, . . . , vd s.t.

∑
aivi is uniformly distributed over the

entire Rq. In the case of the power of two cyclotomic from our example, we can consider vi which
are powers of the formal variable x.4 Multiplying by such vi will permute the CRT coefficients, and
summing together sufficiently many of these permutations will destroy the subring structure and
allow us to recover an element from Rq.

The hardness of Order-LWE. To prove the hardness of Order-LWE, we extend the techniques
of [LPR10, LPR13, PRSD17]. Essentially, their outline (which is itself an adaptation of [Reg05])
shows how to translate an instance of the bounded distance decoding problem over the dual of
the ideal into a set of RLWE samples.5 At a high level this is done by looking at the set of
coefficients of the given point, respective to some basis of the lattice in question, and interpreting
it as the secret. Then multiplying by a Gaussian from the dual will result in an LWE sample. In
the algebraic setting, these operations needs to be represented as a multiplication by a single field
element. Showing that there exists a scalar that maps a lattice point into an element in the ring
of integers is an easier task than over orders, due to its being a unique factorization domain. A
more delicate argument needs to be applied in the context of general orders, and we show that this

4Powers of x were also used for the subfield setting in [GHPS13].
5More accurately, we follow in the footsteps of [PRSD17] and directly prove the hardness of the decision version

of the problem. This means that the problem being solved is not exactly bounded distance decoding, but rather a
Gaussian variant.
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indeed can be done.

A Corollary: New Hardness for Polynomial-LWE. The corollary follows almost immedi-
ately. PLWE is not exactly an Order-LWE problem since in Order-LWE the secret s is sampled
from the dual of the order, however a transformation is known and is analyzed in [RSW18]. Given
this transformation, we can just apply our worst-case Order-LWE hardness.

Sampling from a k-wise independent distribution. We start by noticing that it is sufficient
to prove the result for an adversary that takes a single RLWE sample. This is done by using a
rerandomization technique from [LPR13] and assuming the hardness of standard RLWE (which
translates to worst case hardness in ideal lattices). This transformation unfortunately also requires
“noise swallowing”, a technique that uses the fact that adding a Gaussian with super-polynomial
Gaussian parameter will mask any random variable with polynomial amplitude. Using this tech-
nique necessitates a super-polynomial modulus q and is therefore undesirable, but we were unable
to remove it from our argument. In fact we will use swallowing again down the line.

Assume there is an adversary that can distinguish between a single RLWE sample (a, b = as+e)
and uniform. We start by replacing a with a decisional hidden-lattice BDD sample (v1 +e1), where
v1 only has k nonzero CRT coordinates (randomly chosen) and e1 is small. The decisional hidden-
lattice BDD assumption asserts that this distribution will be indistinguishable from the original one.
Namely, we now have (v1+e1, b = (v1+e1)s+e). Opening the parenthesis, we have b = v1s+e1s+e.
We again use noise swallowing to argue that b is statistically close to b = v1s + e, i.e. we use e to
swallow e1s, which can be done so long as s is small enough and e is large enough. Now we observe
that since v1 is zero on all but k CRT coordinates, and s is close to uniform in any subset of k
coordinates, it follows that v1s is statistically close to a fresh v2 that is sampled from the same
distribution as v1 (i.e. has the same set of nonzero coordinates, but the value in each coordinate is
randomly chosen). We get b = v2 + e. We can now apply decisional hidden-lattice BDD again to
claim that (a, b) = (v1 + e1, v2 + e) is indistinguishable from uniform, which completes the proof.

1.3 Paper Organization

Section 2 contains preliminaries and definitions. The Order-LWE problem is formally defined in
Section 3, where the worst case hardness reduction is provided as well. The new hardness result
for PLWE appears in Section 4. We then present our results on sampling secrets from ideals in
Section 5, on sampling secrets from subrings in Section 6 and finally on sampling secrets from
k-wise independent distributions in Section 7.

2 Preliminaries

2.1 Lattices and Gaussians

2.1.1 The Space H

When working with number fields from a geometric perspective, we usually work with the following
space H ⊆ Rs1 × C2s2 for some numbers s1 + 2s2 = n, defined as

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 | xs1+s2+j = xs1+j ,∀j ∈ [s2]} .
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Note that H, equipped with the inner product induced by Cn, is isomorphic to Rn, as an inner
product space. This can be seen via the orthonormal basis {hi}i∈[n], defined as follows: for j ∈ [n],
let ej ∈ Cn be the vector with 1 in its jth coordinate, and 0 elsewhere; then for j ∈ [s1], we take
hj = ej ∈ Cn, and for s1 < j ≤ s1 + s2 we take hj = 1√

2
(ej + ej+s2) and hj+s2 = hj .

We will also equip H with the `p norm induced on it from Cn.

2.1.2 Lattices

We define a lattice as a discrete additive subgroup of H. Equivalently, a lattice is the Z-span of
some set of k linearly independent basis vectors B = {b1, . . . ,bk} ⊆ H:

L =
{∑

zibi | zi ∈ Z
}
.

We refer to k as the rank of the lattice, and to n as its dimension. If k = n, we say that the lattice
is full-rank.

The minimum distance λ1(L) os a lattice L in a given norm ‖·‖ is the length a the shortest
nonzero lattice vector. More generally, we define the ith successive minimum as

λi(L) := inf{r > 0 | dim(span(L ∩B(0, r))) ≥ i} ,

where B(0, r) is the closed ball of radius r around 0.
The dual lattice of L ⊂ H is defined as L∗ = {x ∈ H | 〈L,x〉 ⊆ Z}. Notice that L∗ has the

same rank as λ.

2.1.3 Gaussians

For r > 0, define the Gaussian function ρr : H → (0, 1] as ρr(x) := exp(−π ‖x‖2 /r2). By
normalizing this function, we obtain the continuous Gaussian probability distribution of width r,
denoted by Dr, whose density is given by r−n · ρr(x). We extend this to elliptical (non-spherical)
Gaussian distributions in the basis {hi}i∈[n] as follows. Define G = {r ∈ (R+)

n | rs1+s2+i =
rs1+i, ∀i ∈ [s2]}; not this has symmetry mirroring that of H. For consistency with prior works, we
sometimes use r ∈ R+ as shorthand for the all-rs vector r1 ∈ G. For r ∈ G, a sample from Dr

is given by
∑
xihi, where each xi is chosen independently from the (one-dimensional) Gaussian

distribution Dri over R. We equip partial ordering on G defined by r′ ≥ r if r′i ≥ ri for all i.
Micciancio and Regev [MR07] introduced a lattice quantity called the smoothing parameter,

and related to it various lattice quantities.

Definition 2.1 (Smoothing Condition). For a lattice L ⊂ H, positive real ε > 0 and r ∈ G, we
write r ≥ ηε(L) if ρ1/r(L∗\{0}) ≤ ε, where 1/r = (1/r1, . . . , 1/rn).

The following lemma justifies the name “smoothing parameter”, and is an immediate general-
ization of [MR07, Lemma 4.1] to elliptical Gaussians.

Lemma 2.1. For any lattice L ⊂ H, positive real ε > 0, and r ≥ ηε(L), the statistical distance
between Dr mod L and the uniform distribution over H/L is at most ε/2.

Another application of the smoothing parameter is as follows.
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Theorem 2.2 (Theorem 3.1 [Pei10]). Let L1,L2 ⊂ H be lattices, and let r1, r2 ∈ G. Define
r = r1 + r2, and r3 ∈ G by 1/(r3)i := 1/(r1)i + 1/(r2)i. Assume that

√
r1 ≥ ηε(L1) and that√

(r3) ≥ ηε(L2) for some positive ε ≥ 1/2, and let c1, c2 ∈ H be arbitrary. Consider the following
probabilistic experiment:

Choose x2←DL2+c2,
√
r2 , then choose x1←x2 +DL1+c1−x2,

√
r1 .

Then the marginal distribution of x1 is within statistical distance of 8ε of DL1+c1,
√
r.

The following is a standard fact from [Reg05, Claim 2.13].

Lemma 2.3. For any lattice L ⊂ H and ε ∈ (0, 1), we have ηε(L) ≥
√

log(1/ε)/λ1(L∗).

2.1.4 Computational Problems

In the following computation problems, a lattice L is represented by an arbitrary basis B, and a
lattice coset e + L is represented by its distinguished representative e = (e + L) ∩ P(B), where
P(B) := B · [−1/2, 1/2)n is the fundamental parallelepiped of B. We sometimes omit the family
of lattices when it is the family of all latices in H.

Definition 2.2 (Gap Shortest Vector Problem). For an approximation factor γ = γ(n) ≥ 1 and
a family of lattices L, the L-GapSVPγ is: given a lattice L ∈ L and length d > 0, output YES if
λ1(L) ≤ d and NO if λ1(L) ≥ γd.

Definition 2.3 (Discrete Gaussian Sampling). For a family of lattices L and a function γ that
maps lattices from L to G, the L-DGSγ is: given a lattice L ∈ L and a parameter r ≥ γ(L), output
an independent sample from a distribution that is within negligible statistical distance of DL,r.

Definition 2.4 (Bounded Distance Decoding). For a family of lattices L and a function δ that
maps lattices from L to positive reals, the L-BDDδ is: given a lattice L ∈ L, a distance bound
d ≤ δ(L), and a coset e + L where ‖e‖ ≤ d, output e.

Lemma 2.4 (Babai’s round-off algorithm [Bab86]). For every family of lattices L, then there is
an efficient algorithm that solves L-BDDδ, for δ(L) = 1/2λn(L∗).

Definition 2.5 (Gaussian Decoding Problem [PRSD17]). For a lattice L ⊂ H and a Gaussian
parameter g > 0, the GDPL,g is: given a coset e + L where e ∈ H was drawn from Dg, find e.

2.2 Learning with Errors (LWE)

We recall the Learning With Errors (LWE) problem and its hardness. Let n, q be positive integers
with q ≥ 2, and α > 0 a Gaussian parameter. We denote Zq = Z/qZ, and the torus by T = R/Z.

Definition 2.6 (LWE Distribution). For s ∈ Znq , the LWE distribution As,α over Znq ×T is sampled

by independently choosing uniformly random a
$← Znq and an error term e←Dα, and outputting

(a, b = 〈a, s〉/q + e mod Z).

Definition 2.7 (Decisional Average-Case LWE Problem). For an integer q = q(n) ≥ 2, a distri-
bution ϕ over Znq , and a Gaussian parameter α = α(n) ∈ (0, 1). The (average-case) decision version
of the LWE problem, denoted by LWEn,q,ϕ,α is to distinguish between the distribution As,ψ and the
uniform one over Znq × T, where s←ϕ.
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When ϕ is the uniform distribution over Znq we sometimes omit it from the subscript for con-
sistency with prior works. From the same reason, we sometimes omit n from the subscript when it
is clear from the context.

Theorem 2.5 (Theorem 3.1 [Reg05], Theorem 5.1 [PRSD17]). Let q = q(n) ≥ 2 be an integer and
let α = α(n) ∈ (0, 1) be a Gaussian parameter such that αq ≥ 2

√
n. There is a polynomial-time

quantum reduction from DGSγ to LWEq,α where γ :=
√

2nη(L)/α.

Though the theorem above gives evidence to the hardness of the LWE problem, it only considers
the case where ϕ is the uniform distribution. This question was answered in [GKPV10, BLP+13]
for distributions over {0, 1}n, showing a reduction based on the min-entropy of ϕ.

Theorem 2.6 (Theorem 4 [GKPV10]). Let q ≥ 2 be a prime integer and let α, β ∈ (0, 1) be
Gaussian parameters such that α/β = negl(n). Let ϕ be a distribution over {0, 1}n having min-

entropy k. Then for ` = k−ω(logn)
log q there is a (classical) probabilistic polynomial time reduction from

LWE`,q,α to LWEn,q,ϕ,β.

2.3 Algebraic Number Theory

In this subsection we review the necessary algebraic background, with emphasis on orders in number
fields, and their differences from the ring of integers. For a broader background, that also emphases
orders, we refer to [Ste08].

2.3.1 Number Fields, Orders and Ideals

A number field is a field extension K = Q(ζ) obtained by adjoining an element ζ to the rationals Q,
where ζ satisfies the relation f(ζ) = 0 for some irreducible polynomial f(x) ∈ Q[x], called minimal
polynomial of ζ, which is monic without the loss of generality. The degree n of th number field is
the degree of f .

Let K be some number field of degree n. An order O ⊂ K is a ring that is generated by n

elements over Z, i.e. O =
n⊕
i=1

Zgi for some {g1, . . . , gn} ⊂ O. It follows that the set of orders in K

has a unique maximal element (under inclusion), which is called the maximal-order, and is denoted
by OK . An element in a number field x ∈ K is said to be integral if it is the root of some monic
polynomial with (rational) integer coefficients. The set of all integral elements in K form a ring,
called the ring of integers and it turns out to be OK .

Let O be some order in K. An ideal I ⊆ O is an additive subgroup that is closed under
multiplication by O, i.e. x · a ∈ I for every x ∈ O and a ∈ I. Ideals in OK are sometimes called
integral. Every ideal in O could be generated by n elements over Z.

The sum of two ideals I,J ⊆ O is defined by I + J := {x + y | x ∈ I, y ∈ J }, and
their product is defined by I · J := {

∑
xiyi | xi ∈ I, yi ∈ J }. Their quotient is defined by

(I : J ) := {x ∈ K | xJ ⊆ I}, and their intersection is simply their set theoretic intersection. Each
of the former sets forms an ideal in O.

An integral ideal p ⊂ O is prime if whenever xy ∈ p then either x ∈ p or y ∈ p. Every integral
ideal I of O contains a product of prime ideals I ⊇

∏
pi. Fractional ideals I,J of O are coprime,

if I + J = O. For an integral ideal I ⊆ O, the set of associated primes of I is the set of all prime
ideal of O that contains J .
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The norm of an ideal I ⊂ O is its index as a subgroup of, i.e. N(I) := [O : I] = |O/I|. We note
that the norm of an ideal is consistent with the norm for field element, specifically N(aO) = |N(a)|
for every a ∈ O. For the special case where O = OK is the maximal order, the norm is a
multiplicative function, i.e. N(IJ ) = N(I) ·N(J ) for any integral I,J .

A fractional ideal I ⊂ K of O is a set such that dI ⊂ O for some d ∈ O. We define its norm to
be N(I) := N(dI)/ |N(d)|. Note that for any fractional ideals I,J , their sum, product, quotient
and intersection is again a fractional ideal.

A fractional ideal I is invertible if there exists a fractional ideal J such that I ·J = O. If there
exists such J , then it is unique and equal to (O : I), and is denoted by I−1. The set of invertible
ideals of O forms a multiplicative group, with O being the unit element. It is denoted by I(O). In
the special case where O = OK is the maximal order, every fractional ideal is invertible. Moreover,
every fractional ideal I of OK has unique factorization into prime ideals I =

∏
peii for some prime

ideals pi and integers ei ∈ Z. However, this does not hold for non-maximal orders. There are frac-
tional ideals which are not invertible, and there are invertible ideals that are not a product of prime
ideals. In fact, every invertible ideal in O is not invertible in any other order O′. We refer to [Con]
for an introductory for invertible ideals in an order, and to [Ste08] for a more thorough background.

2.3.2 Embeddings and Geometry

A number field K = Q(ζ) of degree n has exactly n ring embeddings (injective homomorphisms)
σi : K → C. Concretely, these embeddings map ζ to each of the complex root of its minimal
polynomial f . An embedding whose images lies in R (corresponding to a real root of f) is called
a real embedding ; otherwise it is called a complex embedding. Because complex roots of f come in
conjugate pairs, so too do the complex embeddings. The number of real embeddings is denoted
s1 and the number of pairs of complex embeddings is denoted s2, so we have n = s1 + 2s2. Be
convention, we let {σj}j∈[s1] be the real embeddings, and we order the complex embeddings so that
σs1+s2+j = σs1+j for j ∈ [s2]. The canonical embedding σ : K → Rs1 × C2s2 is then defined as

σ(x) = (σ1(x), . . . , σn(x)) .

By identifying elements of K with their canonical embeddings on H, we can speak of the norms on
K. For any x ∈ K and any p ∈ [1,∞], the `p-norm of x is simply ‖x‖p = ‖σ(x)‖p.

Using the canonical embedding also allows us to think of the Gaussian distribution Dr over
H, or its discrete analogue over lattice in H, as a distribution over K. Strictly speaking, the
distribution Dr is not over K, but rather over the field tensor product KR := K ⊕Q R, which is
isomorphic to H.

2.3.3 Trace and Norm

The trace Tr = TrK/Q : K → Q, and norm N = NK/Q : K → Q of an element x ∈ K are the sum
an product respectively of the embeddings:

Tr(x) :=
n∑
i=1

σi(x) N(x) :=
n∏
i=1

σi(x) .

12



Moreover, the (absolute) norm of an element coincides with the norm of the ideal generated by it,
in any order O. That is |N(x)| = N(xO). Also, for all x, y ∈ K,

Tr(x · y) =

n∑
i=1

σi(x) · σi(y) = 〈σ(x), σ(y)〉 .

2.3.4 Ideal Lattices

Recall that a fractional ideal I of any order O has a Z-basis U = {u1, . . . , un}. Therefore,
under the canonical embedding σ, the ideal yields a full-rank ideal lattice σ(I) having basis
{σ(u1), . . . , σ(un)} ⊂ H. In particular, orders themselves are ideal lattices.

The (absolute) discriminant ∆(O) of an order O is defined to be the square of the fundamen-
tal volume of σ(O). Equivalently ∆(O) = |det(Tr(bi · bj))|, where b1, . . . , bn is any basis of O.
Consequently, the fundamental volume of any ideal lattice I of O is N(I)

√
∆(O). We denote by

∆K the discriminant of K which is the discriminant of the ring of integers ∆(OK). Moreover, the
discriminant of an order O is related to the discriminant of K by ∆(O) = [OK : O]2∆K .

The following classical lemma gives upper and lower bounds on the minimum distance of an
ideal lattice.

Lemma 2.7. Let K be some number field of degree n, let O be an order, and I a fractional ideal
in it. Then, in any `p norm, for p ∈ [1,∞]:

n1/p ·N(I)1/n ≤ λ1(I) ≤ n1/p ·N(I)1/n · δK

As a corollary we get the following

Lemma 2.8. Let K be some number field of degree n, let O be an order, and I a fractional ideal
in it, then ηε(I) ≤ N(I)1/n · δK , where ε = 2−n.

All the computational problems defined for general lattices are immediately generalized to ideal
lattices.

2.3.5 Duality

Let K be a number field, and O ⊂ K be some order. For any fractional ideal I of O, it dual is
defined as

I∨ = {x ∈ K | Tr(xI) ⊂ Z} .

It follows that I∨ is a fractional ideal, and that σ(I∨) = σ(I)∗. The dual of the order itself O∨ is
called co-different ideal. For the special case where O = OK is the maximal order, we have that
N(O∨K) = ∆K

−1.
We mention some useful properties regarding dual ideals.

Lemma 2.9 ( [Con09, Section 3] [Con, Section 4]). Let K be a number field and O ⊂ K an order.
For any I,J fractional ideals of O the following holds

1. (I∨)∨ = I.

2. I ⊂ J ⇐⇒ J ∨ ⊂ I∨.
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3. (I + J )∨ = I∨ ∩ J ∨.

4. (I ∩ J )∨ = I∨ + J ∨.

5. I · I∨ = O∨.

6. Further assuming that I is invertible, (IJ )∨ = I−1J ∨.

From the last item, the following is an immediate corollary:

Corollary 2.10. Let I be a fractional ideal in K, and let 0 6= α ∈ K be a nonzero field element.
Then

(αI)∨ =
1

α
I∨ .

We give a simple lemma relating the smoothing parameter of product of ideals.

Lemma 2.11. Let K be some number field, and O ⊂ K an order. Let I,J be fractional ideals of
O, where I is invertible. Then, for every ε > 0,

ηε(I · J ) ≤ λ∞1 (I) · ηε(J ) .

Proof. By the definition of the smoothing parameter, and Lemma 2.9,

ηε(I · J ) = arg min
s>0

{
ρ1/s

(
(I · J )∨\{0}

)
≤ ε
}

= arg min
s>0

{
ρ1/s

((
I−1 · J ∨

)
\{0}

)
≤ ε
}

Let v ∈ I be such that ‖v‖ = λ∞1 (I). Since vR ⊆ I, then v−1R ⊇ I−1, and so v−1J ∨ ⊇ I−1 · J ∨.
Hence, we get that,

arg min
s>0

{
ρ1/s

((
I−1 · J ∨

)
\{0}

)
≤ ε
}
≤ arg min

s>0

{
ρ1/s

((
v−1 · J ∨

)
\{0}

)
≤ ε
}
.

For every x ∈ J ∨, we have that∥∥v−1x
∥∥ ≥ min

i∈[n]

∣∣σi(v−1)
∣∣ ‖x‖ = ‖x‖ / ‖v‖∞ = ‖x‖ /λ∞1 (I) .

Thus,

arg min
s>0

{
ρ1/s

((
v−1 · J ∨

)
\{0}

)
≤ ε
}
≤ arg min

s>0

{
ρλ∞1 (I)/s

(
J ∨\{0}

)
≤ ε
}
,

and the Lemma follows.

2.3.6 Cancellation of Ideals

In what follows we describe a generalization of a Lemma 2.15 from [LPR10] which we state below.
Generally speaking it allows us to cancel invertible factors in the quotient IL/IJL onto L/JL by
multiplying by an appropriate “tweak” factor. Before doing so, we recall the Chinese Remainder
Theorem. Throughout, we let K be a number field and let O ⊂ K be some order in it.

Theorem 2.12 (Chinese Remainder Theorem). Let I be a fractional ideal of O, and let p1, . . . , pn ⊂
O be n distinct prime ideals. Then the canonical O-modules homomorphism I/ (

∏
pi) I →

⊕
I/piI

is an isomorphism.
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The generalization of the lemma above for general orders is as follows.

Lemma 2.13. Let I,J be integral ideals in the order O, where I is invertible, and let L be any
fractional ideal in O. Then, given the associated primes p1, . . . , pn of J , there exists an efficiently
computable t ∈ I such that the mapping θt : L/JL → IL/IJL given by θt(x) = t ·x is well-defined,
and induces an isomorphism of OK-modules. Moreover, θt is efficiently computable given I,J ,L
and t. Finally, t could be replaced by any element from I\

⋃n
i=1 piI.

We first show that the mentioned difference I\
⋃n
i=1 piI is nonempty.

Proposition 2.14. Let I be an invertible ideal, and let p1, . . . , pn be n distinct prime ideals.
Then, the difference I\

⋃n
i=1 piI is nonempty. Moreover, an element in the difference can be found

efficiently given I and p1, . . . , pn.

Proof. Since I is invertible, and pi ( O then I/piI 6= 0, for each i ∈ [n]. In particular, there exists
t̄ 6= 0 ∈

⊕
I/piI. By the Chinese Remainder Theorem (Theorem 2.12), there exists a corresponding

t ∈ I, such that t /∈ piI for any i ∈ [n]. In particular, such t is efficiently computable.

The rest of the proof uses the local to global principle, which, loosely speaking, shows that it is
enough to prove the lemma for a class of “simpler” rings, which are called local rings. We give a
short definition and a few facts about localization which we need for the proof.

Definition 2.8. Let p ⊂ O be a prime ideal. The localization of O at p, denoted by Op, is the ring
defined by

Op := {r/s | r ∈ O, s ∈ O\p} ⊂ K .

It is easy to verify that it indeed forms a ring.

It follows that the ideals of Op are exactly

Ip := {i/s | r ∈ I, s ∈ O\p} ⊆ Op ,

for every ideal I of O. As a result, for every ideals I, p, where p is prime, if p is not an associated
prime of I (i.e. I 6⊆ p), then 1 ∈ Ip, or equivalently Ip = Op. Localization also respects various
operation on ideal. In particular, for every fractional ideals I,J of O, and prime ideal p of O, the
following holds: (IJ )p = IpJp, and (I/J )p ' Ip/Jp.

Given a mapping between two fractional ideals f : I → J , we can extend it to a mapping
fp : Ip → Jp between the localizations of those ideals at a prime ideal p. This is done by defining

fp(r/s) := f(r)/s .

We return to the proof. For the next step, we recall two key lemmas. The first, shows that
being an isomorphism is a local property.

Proposition 2.15 ( [Cla11, Proposition 7.14]). For every O-module homomorphism f : I → J ,
f is an isomorphism if and only if for all prime ideals p of O, fp : Ip → Jp is an isomorphism.

The second, is a local characterization of invertible ideals.

Proposition 2.16 ( [Ste08, Proposition 4.4]). A fractional ideal I of O is invertible if and only if
for all prime ideals p of O, Ip is a principal Op-ideal. In this case, every t ∈ I\pI is a generator.
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The proof now follows easily.

Lemma 2.13. Let t ∈ I\
⋃n
i=1 piI, which always exists by Proposition 2.14, and consider the O-

module homomorphism θt. By Proposition 2.15, it is sufficient to prove that (θt)q : (L/JL)q →
(IL/IJL)q is an isomorphism for every prime ideal q of O.

Assume that q 6= pi for each i. Then Jq = Oq, and (L/JL)q = (IL/IJL)q = 0 so the claim
holds trivially. Otherwise, since I is invertible, and since t /∈ qI, then by Proposition 2.16, Ip = 〈t〉,
and therefore (θt)q is an isomorphism.

2.3.7 Submodules of R∨q

Let K be some number field and R it ring of integers. LetM∨ ⊂ R∨q be some R-submodule. By the

Correspondence Theorem, we get that M∨ =M∨/qR∨, for some R-submodule qR∨ ⊂M∨ ⊂ R∨.
By Lemma 2.9 and Corollary 2.10, we can equivalently formulate this as R ⊂ M ⊂ 1/qR, or
qR ⊂ qM ⊂ R. Since qM is an R-submodule of R, then it is an ideal I. Moreover, we have the
following: ∣∣M∨∣∣ =

∣∣M∨/qR∨∣∣ =
∣∣(M−1R∨)/(qMM−1R∨)

∣∣ = |R/I| = N(I)

We deduce the following corollary:

Corollary 2.17. Every R-submodule M∨ of R∨q is of the form qI∨/qR∨ for some ideal qR ⊂ I ⊂
R. Moreover,

∣∣M∨∣∣ = N(I).

2.4 The Ring-LWE Problem

Let K be number field having s1 real embeddings, s2 pairs of complex ones, and degree n = s1+2s2.
We denote its ring of integers by R = OK , and the torus by T = KR/R

∨. Let q ≥ 2 be a (rational)
integer, and for any fractional ideal I of K, let Iq = I/qI.

Definition 2.9 (Ring-LWE Distribution). For s ∈ R∨q , referred to as “the secret”, and an error
distribution ψ over KR, a sample from the R-LWE distribution As,ψ over Rq × T is generated by

sampling a
$← Rq, e← ψ, and outputting (a, b = a · s/q + e mod R∨).

Definition 2.10 (Ring-LWE, Average-Case Decision Problem). Let ϕ be a distribution over R∨q ,
and let Υ be a distribution over a family of error distributions, each over KR. The average-case
Ring-LWE decision problem, denoted R-LWEq,ϕ,Υ, is to distinguish between independent samples
from As,ψ for a random choice of a “secret” s←ϕ, and an error distribution ψ←Υ, and the same
number of uniformly random and independent samples from Rq × T.

We recall here the error distribution defined in [PRSD17].

Definition 2.11. Fix an arbitrary f(n) = ω(
√

log n). For a real α > 0, a distribution sampled from
Υα is an elliptical Gaussian Dr, where r ∈ G is sampled as follows: for each 1 ≤ i ≤ s1, sample
xi ← D1 and set r2

i = α2(x2
i + f2(n))/2. For each s1 + 1 ≤ i ≤ s1 + s2, sample xi, yi ← D1/

√
2 and

set r2
i = r2

i+s2
= α2(x2

i + y2
i + f2(n))/2.

Theorem 2.18 ( [PRSD17, Theorem 6.2]). Let K be an arbitrary field of degree n and R = OK
its ring of integers. Let α = α(n) ∈ (0, 1), and let q = q(n) ≥ 2 be a (rational) integer such that
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αq ≥ 2ω(1). There is a polynomial-time quantum reduction from I(R)-DGSγ to R-LWEqΥα for
any

γ = max
{
η (L) ·

√
2/α · ω(1),

√
2n/λ1

(
L∨
)}

.

3 Order-LWE and Its Hardness

In this section we present a natural generalization of the Ring-LWE problem, which we call “Order-
LWE”. Then we state and prove a reduction from worst-case ideal-lattice problems to it.

3.1 The Order-LWE problem

In the Order-LWE problem, elements are sampled from an order in a number field, rather than the
field’s ring of integers (the ring of integers is the maximal order in the field). Our definition also
considers different (ideal) moduli.

Let K be some number field, O ⊂ K an order, and let Q, I ⊂ K be ideals of O with u ∈ (I : Q),
where Q is integral. We denote the torus by T = KR/IO∨. For ideals J ,L of O, we denote
JL = J /JL.

Definition 3.1 (Order-LWE Distribution). For s ∈ O∨Q and an error distribution ψ over KR, the
O-LWE distribution As,ψ,u over OQ×T is sampled by independently choosing a uniformly random

a
$← OQ and an error term e← ψ, and outputting (a, b = u · (a · s) + e mod IO∨).

Note that this is well-defined by our choice of u, since we have that

(I : Q) · Q · O∨ ⊆ IO∨ ,

(I : Q) · O · (QO∨) = (I : Q) · Q · O∨ ⊆ IO∨ .

Note that the Ring-LWE is a special case, where O = OK is the ring of integers, Q = qOK
for some rational integer q ∈ Z, I = OK , and u = 1/q (since OK is a maximal order, then
(I : Q) = IQ−1, which is 1/qR for the Ring-LWE setting).

Definition 3.2 (Order-LWE, Average-Case Decision Problem). Let ϕ be a distribution over O∨Q,
and let Υ be a distribution over a family of error distributions, each over KR. The average-case
Order-LWE decision problem, denoted O-LWE(Q,I,u),ϕ,Υ, is to distinguish between independent sam-
ples from As,ψ,u for a random choice of a “secret” s←ϕ, and an error distribution ψ←Υ, and the
same number of uniformly random and independent samples from OQ × T.

When ϕ is the uniform distribution, we sometimes omit it from the subscript. We also omit I
when it is equal to O. If in addition Q = nO for some rational integer n ∈ Z, we simply write n
for the subscript, and implicitly assume that u = 1/n. Using those notations gives us consistency
with the usual notation, i.e. O-LWEq,Υ=R-LWEq,Υ.

3.2 Hardness of Order-LWE

We now state the hardness result of the Order-LWE problem, and compare it to the hardness of
Ring-LWE (see Theorem 2.18).

First, we generalize the error distribution Υα from Definition 2.11 to be elliptical according to
u.
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Definition 3.3. Fix an arbitrary f(n) = ω(
√

log n). For α > 0 and u ∈ K, a distribution sampled
from Υu,α is an elliptical Gaussian Dr, where r ∈ G is sampled as follows: for i = 1, . . . , s1, sample
xi ← D1 and set r2

i = α2(x2
i + (f(n) · |σi(u)| / ‖u‖∞)2)/2. For i = s1 + 1, . . . , s1 + s2, sample

xi, yi ← D1/
√

2 and set r2
i = r2

i+s2
= α2(x2

i + y2
i + (f(n) · |σi(u)| / ‖u‖∞)2)/2.

Note that for any u ∈ K satisfying σ1(u) = . . . = σn(u) (and therefore rational), Υu,α degener-
ates to Υα. Otherwise, Υu,α is strictly narrower than Υα.

We now present the main theorem for the Order-LWE problem. Recall the definition of the
group of invertible ideals of an order O, denoted by I(O), and the DGSγ problem (Definition 2.3).

Theorem 3.1. Let K be an arbitrary number field of degree n and O ⊂ K an order. Let Q, I ⊂ K
be ideals of O with u ∈ (I : Q), where Q is integral, and let α ∈ (0, 1) be such that α/ ‖u‖∞ ≥ 2·ω(1).
There is a polynomial-time quantum reduction from I(O)-DGSγ to O-LWE(Q,I,u),Υu,α, and

γ = max
{
η(QL) ·

√
2 ‖u‖∞ /α · ω(1),

√
2n/λ1

(
L∨
)}

.

One can verify that Theorem 2.18, follows from the above as a special case. More generally,
consider the case where we choose Q = qO for some rational integer q 6= 0, I = O, and u = 1/q.
Then η(QL) ‖u‖∞ = η(L), and the parameters γ from Theorem 2.18 and Theorem 3.1 are equal.

As another special-case, we consider the simple extension of R-LWE where q is replaced by
some other ideal in OK . Formally, consider I = O = OK , and u to be the shortest vector, in
`∞-norm, in (OK : Q) = Q−1. Using Lemma 2.11 and Lemma 2.7, we get that the first term in γ
is at-most δ2

k · η(L) ·
√

2/α · ω(1). By Lemma 2.3, η(L) > ω(
√

log n)/λ1 (L∨), so γ is equal to the

first term for α <
√

log n/n. In this case, our result gives γ that is larger by at most δ2
k than when

using modulus Q = qO. Finally, recall that when O = OK is a maximal order, then any fractional
ideal L ⊂ K is invertible, so I(OK) is the set of all fractional ideals in OK .

We turn to a high level proof of Theorem 3.1, which follows the blueprint analogous proofs in
the context of LWE [Reg05], and R-LWE [LPR10,PRSD17]. The proof follows from the following
iterative step. Let r > 0 be some real, we let Wr ⊂ G be some subset of polynomial size, where
each coordinate is at least by r. For the exact definition we refer to [PRSD17].

Lemma 3.2. There exists an efficient quantum algorithm that given an oracle that solves O-
LWE(Q,I,u),Υu,α and the following input:

• ideals Q, I ⊂ K of O with u ∈ (I : Q), where Q is integral and contains a product of known
prime ideals,

• a number α ∈ (0, 1),

• a fractional ideal L ∈ I(O),

• a real r ≥
√

2 · η(QL) such that r′ := r · ‖u‖∞ /α · ω(1) ≥
√

2n/λ1 (L∨),

• polynomially many samples from the discrete Gaussian distribution DL,r for each r ∈Wr,

• and a vector r′ ∈ G where r′ ≥ r′,

it outputs an independent sample from DL,r′.
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Using Lemma 3.2, Theorem 3.1 follows in the same way as in previous works. We sketch the
outline here for the sake of completeness.

We begin with sampling from wide enough Gaussian for each r ∈ Wr, where r ≥ 22nλn(L) is
large enough so that sampling from DL,r can be done efficiently (see [Reg05, Lemma 3.2]). Then,
given those samples, we apply the iterative step from Lemma 3.2 to generate samples from DL,r′

for each r′ ∈ Wr′ . We repeat this step until we get the desired Gaussian parameter s ≥ γ. Note
that γ from the statement of the theorem, corresponds to values of r, r′ satisfying the conditions of
Lemma 3.2.

The proof of Lemma 3.2 itself follows from a combination of the two following lemmas. The
first is a classical reduction from GDP (see Definition 2.5) to O-LWE, which uses Gaussian samples.
This is a generalization of [PRSD17, Lemma 6.6].

Lemma 3.3. There exists a probabilistic polynomial-time (classical) algorithm that given an oracle
that solves O-LWE(Q,I,u),Υu,α, and the following input:

• ideals Q, I ⊂ K with u ∈ (I : Q), where Q is integral and contains a product of known prime
ideals,

• a number α ∈ (0, 1),

• an invertible fractional ideal L ∈ I(O),

• a real r ≥
√

2 · η(QL),

• and polynomially many samples from the discrete Gaussian distribution DL,r for each r ∈Wr,

it solves GDPL∨,g for any g = o(1) · α/(
√

2r · ‖u‖∞).

The second is a quantum algorithm that produces narrower Gaussian samples given a GDP
oracle.

Lemma 3.4 ( [PRSD17, Lemma 6.7]). There is an efficient quantum algorithm that, given any
n-dimensional lattice L, a real g < λ1(L∨)/(2

√
2n), a vector r ≥ 1, and an oracle that solves

GDPL∨,g (with all but negligible probability), outputs an independent sample from DL,r/(2g).

3.3 Proof of Lemma 3.3

The proof of the lemma is similar to the one of [PRSD17, Lemma 6.6], and is based on parts of it.
We begin with a reduction that translates BDD instances into O-LWE samples. The Lemma is an
adaptation of [PRSD17, Lemma 6.8] (which in turn is an adaptation of [LPR10, Lemma 4.7]).

Lemma 3.5. There is a probabilistic polynomial time algorithm that takes as input

• ideals Q, I ⊂ K with u ∈ (I : QO∨), where Q is integral and contains a product of known
prime ideals,

• an invertible fractional ideal L ∈ I(O),

• a coset e+ L∨ and a bound d ≥ ‖e‖∞,

• a real r ≥
√

2 · η(QL),
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• and polynomially many samples from the discrete Gaussian distribution DL,r for some r ≥ r.
It outputs samples that are statistically close to the Order-LWE distribution As,u,Dr′ , where the
coordinates of r′ are given by (r′i)

2 := (ri |σi(e)σi(u)|)2 + (rd ‖u‖∞)2.

Proof. By a scaling argument, we can assume without the loss of generality that L ⊆ O is an
integral ideal. Denote y = x+ e, where x ∈ L∨, such that y mod L∨ = e+ L∨ is the input coset.

On inputs as in the statement of the Lemma, the algorithm works as follows:

1. Compute an element t ∈ L as in Lemma 2.13 for the ideal L,Q. In particular, the mapping
θt : x 7→ t · x induces isomorphisms θt : O/Q ∼−→ L/QL, and θt : L∨/QL∨ ∼−→ O∨/QO∨.

2. Sample z ← DL,r and e′ ← Drd‖u‖∞ .

3. Output a = θt
−1(z mod QL) and b = u · (zy) + e′ mod IO∨.

Clearly the algorithm is efficient. Therefore we need to show that the output satisfies the statement
of the Lemma.

Since r ≥ η(QL), then the distribution DL,r mod QL is statistically close to uniform over LQ.
Since θt : O/Q ∼−→ L/QL is an isomorphism, and in particular a bijection, then a is distributed
uniformly close to uniform over OQ.

We turn to analyze the marginal distribution of b conditioned on some value of a. We have that

b = u · z · y + e′ = u · z · x+ u · z · e+ e′ mod IO∨ .

Consider the first term uzx mod IO∨. By the way we choose a, we have that

z = θt(a) = t · a mod QL .

Since u ∈ (I : Q), x ∈ L∨ = L−1O∨, and z ∈ L, then

u · z · x = u · t · a · x mod IO∨ .

Similarly, we have that
t · x = θt(x) = s mod QO∨ ,

so
u · a · t · x = u · (a · s) mod IO∨ .

Finally, we analyze the error term u ·z ·e+e′. Conditioned on a, the distribution of z is DQL+c,r

for c = θt
−1(a). Since r ≥ η(QL), then by Lemma 2.2 the distribution of u · z · e+ e′ is statistically

close to an elliptical Gaussian distribution with parameter

(r′i)
2 = (riσi(e)σi(u))2 + (rd ‖u‖∞)2

Note that when y is sampled as in GDPL∨,g with g := α/(
√

2 · r · ‖u‖∞) and then apply the
lemma with d := g · f(n), we get the error distribution as in definition 3.3.

The final part of the proof follows from the following lemma.

Lemma 3.6 ( [PRSD17, Adaptation of Lemma 6.6]). There exists a probabilistic polynomial-
time algorithm that given an oracle and inputs as in Lemma 3.3, and additionally an oracle that
transforms a GDPL∨,g into samples from As,u,Dr′ for some s ∈ R∨Q, and r′ satisfying r′i = ti ·
|σi(e)|2 + v, where g = o(1) · α/(

√
2r · ‖u‖∞), ti depends on ri and v is independent of i, it solves

GDPL∨,g.
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4 New Hardness for Polynomial-LWE

The polynomial learning with errors problem, or PLWE in short, introduced by Stehlé et al. [SSTX09]6

is closely related to both the Ring-LWE and Order-LWE problems. PLWE has an advantage of
having very simple interface which is useful for manipulations and thus also for applications and
implementations. In a recent work, Rosca, Stehlé and Wallet [RSW18] showed a reduction from
worst-case ideal-lattice problems to PLWE. In this section, we show that the hardness of Order-LWE
that we proved in Section 3, implies a different worst-case hardness result for PLWE, essentially
by relating it to a different class of lattices than those considered in [RSW18] while avoiding a loss
incurred in their reduction which in some number fields could be large or even unbounded. In what
follows we start with an informal description of the PLWE problem, the [RSW18] result, our result
and a comparison. This is a followed by a more detailed and formal treatment.

Consider a number field K defined by an irreducible polynomial f , so that K = Q(x)/f . Recall
that the Ring-LWE distribution is defined with respect to some “secret” element s from the dual
of the ring of integers of K (denoted O∨K). The Order-LWE distribution is defined similarly, but
with s coming from an arbitrary order in K. In the PLWE setting, s is an element of the ring
O := Z[x]/f , i.e. a polynomial with integer coefficients in the number field. There are number
fields for which OK 6= O, however it is always true that O is an order of K. We highlight that in
PLWE, unlike Ring-LWE and Order-LWE, s is an element of the order itself, and not its dual. In
particular, PLWE can be seen as a dual version of Order-LWE.7

The aforementioned [RSW18] presented a reduction from Ring-LWE to PLWE, and as an im-
mediate corollary (using the worst case hardness of RLWE) they show a reduction from worst-case
ideal-lattice problems to PLWE. Their reduction depends on properties of the polynomial f and
consists of two steps. First, going from Ring-LWE to a problem they call “dual-PLWE”, but in
our terminology is simply Order-LWE over the order O := Z[x]/f . The second is a reduction from
that specific instance of Order-LWE with order O to PLWE.

Combing the second step of [RSW18] (going from Order-LWE to PLWE) with our Theorem 3.1,
we get an alternative reduction from worst-case ideal-lattice problems to PLWE. Whereas in the
worst-case reduction of [RSW18] the approximation factor increase by a factor that depends on f ,
and could be unbounded in general, our hardness result avoids this increment. To compare, while
incurs a smaller loss in the approximation factor for the worst-case problem, it applies to a different
class of lattices. The two classes of lattices are disjoint (see further explanation after the formal
result statement), thus our result provides independent corroboration to the hardness of PLWE
while relying on a different worst-case problem.

The formal definitions and hardness result follow, along with a more detailed and formal com-
parison of the results. We let K be a number field of degree n defined by a polynomial f . We
denote O := Z[x]/f , and R := OK . The PLWE distribution and problem are defined as follows.

Definition 4.1 (PLWE Distribution and Problem [SSTX09]). For a rational integer q ≥ 2, a ring
element s ∈ Oq, and an error distribution ϕ over KR/O, the PLWE distribution over Oq ×KR/O,

denoted by Bs,ϕ, is sampled by independently choosing a uniformly random a
$← Oq and an error

term e←ϕ, and outputting (a, b = (a · s)/q + e mod O).

6As “ideal-LWE”. The name PLWE was used in [BV11a].
7Another difference between Ring/Order-LWE and PLWE is that in the latter, the error distribution is specified

using the so called coefficients embedding, and not the canonical embedding. This is immaterial for this section and
we avoid this distinction for the sake of simplicity.
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The PLWE decision problem, denoted PLWEq,Υ, is to distinguish between independent samples
from Bs,ψ for a random choice of s←Oq, and an error distribution ψ←Υ, and the same number of
uniformly random and independent samples from Oq ×KR/O.

We now turn to present and compare the two worst-case to average-case reductions.

Theorem 4.1 (Adapted from Theorem 4.2 of [RSW18]). Let q ≥ 2 be some rational integer,8 and
let r be a Gaussian parameter. Then, there exists a probabilistic polynomial time reduction from
R-LWEq,r to O-LWEq,t2r, where t is some element in R∨ whose size is bounded as a function of f .

The factor term t in the theorem depends on f and could be arbitrarily large, however [RSW18]
show that there are families of f (in particular ones that frequently occur in cryptographic con-
structions) for which t is polynomially bounded.

Combined with Theorem 2.18 we get the following.

Corollary 4.2 (The [RSW18] Worst-Case Hardness for PLWE). With the same notations as above,
let α ∈ (0, 1) such that α ‖t‖2∞ q ≥ 2ω(1). There is a reduction from I(R)-DGSγ to O-LWEq,Υα for
any

γ = max
{
η (L) ·

√
2/(α ‖t‖2∞) · ω(1),

√
2n/λ1

(
L∨
)}

.

Using Order-LWE (Theorem 3.1) we get the following.

Corollary 4.3 (Worst-Case Hardness of PLWE from Order-LWE). Let q ≥ 2 be some rational
integer, and let α ∈ (0, 1) be such that αq ≥ 2ω(1). Then there is a reduction from I(O)-DGSγ to
O-LWEq,Υα for any

γ = max
{
η (L) ·

√
2/α · ω(1),

√
2n/λ1

(
L∨
)}

.

In Corollary 4.3 the parameter α can be smaller by a factor of ‖t‖2∞. As a result, one gets
hardness based on the worst-case hardness with a smaller approximation factor γ. Another differ-
ence between the two results is that the ideal-lattices in Corollary 4.2 are the invertible ideals in
R = OK . In comparison, the ideal lattices in Corollary 4.3 are the invertible ideals in O = Z[x]/f .
Note that those families are disjoint, as any ideal can be invertible in at most a single order. Despite
being disjoint, the two families can be related by an ideal of both O and OK called the conductor
ideal, see [Con] for reference.

5 Sampling RLWE Secrets From Ideals

This section focuses on sampling the secret distribution from a (fractional) ideal of the ring of
integers. We show in Section 5.1 that even if the ideal from which the secret is sampled has
high entropy, this is not necessarily sufficient to guarantee security. In fact, noise levels that are
sufficient to guarantee security for uniform secrets fail for secrets from high entropy ideals. Then
in Section 5.2, we show that increasing the noise level even slightly above the level that we prove
insecure is sufficient to restore security.

Throughout this section, let K be some number field of degree n, R = OK its ring of integers,

∆K its (absolute) discriminant, and δk = ∆
1/n
K its root discriminant.

8The integer q needs to satisfy some property which is satisfied by all but finitely many integers and is immaterial
for our purposes.
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5.1 Insecure Instantiations

We show that when the secret is sampled from an ideal, even with high min-entropy, RLWE can
become insecure. To this end, we present a family of high min-entropy distributions Φ, such that
the search version of R-LWEq,ϕ,Υ is solvable in polynomial time, for every ϕ ∈ Φ and q,Υ for which
the “standard” RLWE (from Theorem 2.18) is secure.

We first present a general theorem and then explain how it is instantiated in the interesting
special case of cyclotomic fields.

Theorem 5.1. Let Q ⊆ qR be some integral ideal. Then, there exists a non-uniform polynomial
time algorithm that solves search-R-LWEq,ϕ,Υ with non-negligible probability for any distribution ϕ
over qQ∨/qR∨ and any distribution Υ over a family of error distributions, each over KR and is
(1/(2λn(Q)), ε)-bounded, for some non-negligible ε = ε(n). Moreover, the algorithm can recover s
given a single sample from As,ψ.

Proof. Let {v1, . . . , vn} ⊂ Q be a set of short independent set of vectors in the lattice Q. Namely,
a linearly independent set (over Z) such that ‖vi‖ ≤ λn(Q) for every 1 ≤ i ≤ n.

Consider a sample b = as/q + e mod R∨. Since s ∈ qQ∨/qR∨, and a ∈ R/qR, it follows that
as/q ∈ Q∨/R∨. Condition on the event that ‖e‖ ≤ 1/(2λn(Q), which occurs with non-negligible
probability. Viewing b as a BDDQ∨,1/(2λn(Q)) instance, and since for every i ∈ [n]

‖e · vi‖ ≤ ‖e‖ · ‖vi‖ ≤ 1/2 ,

we get, by Lemma 2.4, that Babai’s round-off algorithm outputs as/q. With non-negligible proba-
bility, a is invertible, so we can recover s.

Consider the case where K is a cyclotomic field. Hence, by Lemma 2.7, λn(Q) = λ1(Q) ≥√
nN(Q)1/n. Therefore, for α ≤ O(N(Q)−1/n), the distribution Υα matches the condition from

Theorem 5.1 (every distribution in Υα is (O(α
√
n), negl(n))-bounded). Assuming that q is prime,

and splits completely over R, which is a useful case for applications, it follows that N(Q) = qk,
and therefore the uniform distribution over qQ∨/qR∨ has entropy k log q, by Corollary 2.17. In
particular, the ranges for α from Theorem 2.18 and Theorem 5.1 intersect whenever k ≤ (1−o(1)) ·
n log q. We summarize in below.

Corollary 5.2. Let K be a cyclotomic number field of degree n. For every ε > 0 there exists a
family of distribution Φ, each over R∨q and with min-entropy (1−ε)n log q, such that R-LWEq,ϕ,Υα is
solvable in polynomial time for every ϕ ∈ Φ, whereas R-LWEq,Υα has hardness as in Theorem 2.18,
where α = ω(1/q) and q = nO(1/ε).

5.2 Secure Instantiations

We begin with some notations for this subsection. Let q ≥ 2 be a rational integer, and let Q ⊃ qR.
Consider the integral ideal P := qQ−1, and note that Q and P are coprime and satisfy QP =
Q ∩ P = qR. Using the identities from Lemma 2.9, we get that R∨ = qQ∨ + qP∨ and that qR∨ =
qQ∨ ∩ qP∨, and therefore, by the Chinese Remainder Theorem, we get that R∨q ' R∨qQ∨ × R∨qP∨ ,
given by x 7→ (x mod qQ∨, x mod qP∨) (see Theorem 2.12). For compactness of notations, we
denote [x]qQ∨ := x mod qQ∨. Finally, we extend the operators [·]qQ∨ , [·]qP∨ to distributions over
KR naturally.
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Theorem 5.3. Let q,Q,P be as described above, and let α ∈ (0, 1). There is a polynomial time
reduction from R-LWE(Q,u),Υα to R-LWEq,U(qQ∨/qR∨),Υα, where u ∈ Q−1 is a vector of norm

‖u‖∞ ≤ O
(

nδK
N(Q)1/n

)
.

Denote the uniform distribution U(qQ∨/qR∨) by ϕ. Combined with Theorem 3.1, we get that

for error parameter α ≥ ω(nδKN(Q)−1/n), solving R-LWEq,ϕ,Υα is at least as hard as solving worst
case ideal-lattice problems. On the other hand, in the special case where K is a cyclotomic number
field, by Corollary 5.2, for error parameter α ≤ O(N(Q)−1/n), R-LWEq,ϕ,Υα becomes solvable in
polynomial time. We summarize in below.

Corollary 5.4. Let K be a cyclotomic number field of degree n, R = OK it ring of integers, let
k = k(n) ∈ [n] be an integer, and let q = q(n) ≥ 2 be an integer prime that splits completely
over R. Let Q ⊃ qR be an integral ideal with norm qk, and let ϕ be the uniform distribution
over qQ∨/qR∨ (which has min-entropy k log q). Then, there exists a threshold T = q−k/n such
that for every α ≤ O(T ), R-LWEq,ϕ,Υα is solvable in polynomial time using a single sample. But,
if α ≥ ω(nδKT ) then R-LWEq,ϕ,Υα is indistinguishable from uniform assuming the hardness of
I(R)-DGSγ where

γ = max
{
n · δ2

K · η(L) ·
√

2/α · ω(1),
√

2n/λ1

(
L∨
)}

.

Theorem 5.3. The reduction is quite straightforward. Given samples (ai, bi) ∈ RQ × KR/R
∨, do

the following for each one. Sample uniformly at random an element a′i
$← RP , and compute the

unique ãi ∈ Rq such that [ãi]Q = ai and [ãi]P = a′i. Then, output (ãi, bi).
First, note that if (ai, bi) are distributed uniformly, then so does (ãi, bi). Thus, it remains to

prove that if (ai, bi) are sampled from As,ϕ,u (a distribution over RQ×KR/R
∨), where s

$← R∨Q, and
ϕ←Υα, then the resulting distribution of (ãi, bi) is As̃,ϕ (a distribution over Rq ×KR/R

∨) where

s̃
$← qQ∨/qR∨, and ϕ←Υα.
We prove using a hybrid argument.

Hybrid H0. This hybrid’s distribution is the distribution of the outputs of the reduction. That is,

we first sample s
$← R∨Q and ϕ←Υα. Then, for each i, we sample ai

$← RQ, a′i
$← RP , and compute

ãi to be the unique element satisfying [ãi]Q = ai and [ãi]P = a′i. Sample e←ϕ, set bi = (ais)u+ e
mod R∨ and output (ãi, bi).

Hybrid H1. In this hybrid, instead of sampling s over R∨Q, we sample s̃
$← qQ∨/qR∨. Moreover,

we set bi = (ais̃)/q + e mod R∨, where e←ϕ. To show that those hybrids are equivalent, we use
the following technical claim.

Claim 5.4.1. Let p1, . . . , pk be the prime factors of Q. Assuming that u ∈ Q−1\
⋃
iQ−1pi, the

following distributions are equivalent:

1. Sample s̃
$← qQ∨/qR∨, and output s̃/q mod R∨.

2. Sample s
$← R∨/QR∨, and output u · s mod R∨.
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Proof. Denote t := q · u ∈ P, and note that since qQ−1 = P, then t ∈ P\
⋃
i Ppi. Therefore, by

Lemma 2.13, we have that the mapping θt : x 7→ t · x induces an isomorphism from R∨/QR∨ to
qQ∨/qR∨. For every s ∈ R∨/QR∨, letting s̃ = θt(s̃) ∈ qQ∨/qR∨, we have that

s̃/q mod R∨ = (t · s)/q mod R∨ = u · s mod R∨ .

Since θt is a bijection, then both s and s̃ are distributed uniformly over their respective domain. �

Assume for now that u satisfies the condition above. We get that H0 ≡ H1.

Hybrid H2. In this hybrid, instead of setting bi = (ais̃)/q + e mod R∨, we set bi = (ãis̃)/q + e
mod R∨. We claim that H1 ≡ H2. Indeed, fix the values of ai, a

′
i. By the Chinese Remainder

Theorem, the value of ãis̃ is determined by [ãis̃]qP∨ and [ãis̃]qQ∨ . Since s̃ ∈ qQ∨, then [ãis̃]qQ∨ = 0.
Moreover, by our choice of ãi, we get that [ãi]qP∨ = [ãi]QR∨ = ai (since qQ∨ = PR∨).

Note that the distribution from the last hybrid is exactly As̃,ϕ. Thus, to conclude the proof, we
have to show that there such u as required by the previous claim.

Lemma 5.5. There exists u ∈ Q−1\
⋃
iQ−1pi of norm ‖u‖∞ ≤ O

(
nδK

N(Q)1/n

)
.

We prove using a counting argument. We show that the number of elements in Q−1 with
bounded `∞-norm is larger than the total number of elements in the union

⋃
iQ−1pi. This gives

an existential proof, which is sufficient for our use.
We denote by Cr the hypercube (of dimension n) with edge length r, i.e. Cr = {(±r, . . . ,±r)}.

Note that a point x ∈ Cr if and only if ‖x‖∞ ≤ r. We turn to bound the number of lattice points
with bounded `∞-norm, or equivalently the number of lattice points that intersect the hypercube.

Claim 5.5.1. For every r > 0, and lattice L, we have that

(2(r −
√
nλn(L)))n

det(L)
≤
∣∣∣L ⋂ Cr

∣∣∣ ≤ (2(r +
√
nλn(L)))n

det(L)
.

Proof. Let {v1, . . . , vn} ⊂ L be a set of short independent set of vectors in the lattice L. Namely, a
linearly independent set (over Z) such that ‖vi‖ ≤ λn(L) for every 1 ≤ i ≤ n. Let {ṽ1, . . . , ṽn} be
the Gram-Schmidt orthogonalization of this set, and recall that ‖ṽi‖ ≤ ‖vi‖ ≤ λn(L). We denote
the box defined by {ṽ1, . . . , ṽn} by B~v. Note that its volume is det(L) and that it is contained in
C√nλn(L).

Starting from the upper bound, we take the box B~v around each lattice point. We get that⋃
x∈L∩Cr

x+ B~v ⊆ Cr+√nλn(L) .

Indeed, for every x ∈ L∩Cr and y ∈ x+B~v, we have that ‖y‖∞ ≤ ‖x‖∞+
√
nλn(L) ≤ r+

√
nλn(L),

therefore y ∈ Cr+√nλn(L). Hence,∣∣∣L ⋂ Cr
∣∣∣ · det(L) ≤ 2(r +

√
nλn(L)))n ,

and the upper bound follows.
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For the lower bound, we use the same covering, and note that

Cr−√nλn(L) ⊆
⋃

x∈L∩Cr

x+ B~v .

Let y ∈ Cr−√nλn(L) and let x ∈ L be the lattice point such that y ∈ x + B~v. Since ‖x‖∞ ≤
‖y‖∞ +

√
nλn(L) ≤ r, then x ∈ Cr. We get that

(2(r −
√
nλn(L)))n ≤

∣∣∣L ⋂ Cr
∣∣∣ · det(L) ,

which concludes the proof. �

We now use those bound to count the number of lattice points. Indeed, we get that,∣∣∣Q−1
⋂
Cr
∣∣∣ ≥ (2(r −

√
nλn(Q−1)))n

det(Q−1)

≥ (2(r − nδKN(Q−1)1/n))n

det(Q−1)
,

where the last inequality is by Lemma 2.7. On the other hand, we have∣∣∣∣∣
k⋃
i=1

Q−1pi
⋂
Cr

∣∣∣∣∣ ≤
k∑
i=1

∣∣∣Q−1pi
⋂
Cr
∣∣∣

≤
k∑
i=1

(2(r +
√
nλn(Q−1pi)))

n

det(Q−1pi)

=

k∑
i=1

(2(r +
√
nλn(Q−1pi)))

n

N(pi) det(Q−1)

≤
k∑
i=1

(2(r + nδKN(pi)
1/nN(Q−1)1/n))n

N(pi) det(Q−1)

≤ k · (2(r/q1/n + nδKN(Q−1)1/n))n

det(Q−1)

where the first inequality is the union bound, and the last is since each pi has norm at least q.

Comparing the two inequalities with get that for r ≥ nδK
N(Q)1/n

· 1+k1/n

1−2(k/q)1/n
= Ω

(
nδK

N(Q)1/n

)
, there

exists u ∈
(
Q−1\

⋃
iQ−1pi

)⋂
Cr.

6 Sampling Secrets from Orders

Let K be a number field of dimension n, and R = OK its ring of integers. In this section we
consider distributions over orders O ⊆ R, such that s ∈ O/qR ' Zkq . Specifically we assume the
following settings. Let q ≥ 2 be a rational prime that splits completely over R9. Therefore, we

9A similar argument can be stated for the general case. However, this leads to a very cumbersome statement,
which we prefer to avoid.
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have the ring isomorphism Rq ' Znq . Now, assume that S ⊆ Rq is a subring isomorphic to Zkq .
Therefore S = O/qR for some order qR ⊆ O ⊆ R.

Note that R is also an O-module. Therefore, it has a generating set ~v = {v1, . . . , vd} ⊂ R, such
that the mapping ~x = (x1, . . . , xd) 7→ 〈~x,~v〉 =

∑
xivi from Od is onto R. Since O ⊃ Z we can

always take ~v ⊂ R that spans R over Z. We extend 〈·, ~v〉, the inner-product by ~v to distributions
over KR, by sampling d i.i.d. samples and outputting their inner-product with ~v.

Theorem 6.1. Let O ⊂ R be an order as discussed above, and ~v = {v1, . . . , vd} ⊂ R elements that
span R over O. Let Υ be a family of error distributions each over KR/RO∨. Then, there exists a
polynomial time reduction from O-LWE(qR,R,1/q),Υ to R-LWEq,U(O∨/qRO∨),〈Υ,~v〉.

Consider the special case where K is a cyclotomic field of degree n. Therefore, the “powerful-
basis” ~p (see [LPR13, Section 4]) spans R over any order O. In particular, we have that 〈Υα, ~p〉 is
wider by a factor of Õ(

√
n) (see [LPR13, Lemma 4.3]). We conclude below.

Corollary 6.2. Let K be a cyclotomic field of dimension n, R its ring of integers and let q ≥ 2
be a rational prime integer that splits over R. Let α ∈ (0, 1) be such that α · q ≥ 2 · ω̃(

√
n), and let

k ∈ [n] then there exists a distribution ϕ over R∨q with min-entropy k log q such that there exists a

polynomial time reduction from O-LWE(qR,R,1/q),Υα′
to R-LWEq,ϕ,Υα, and α′ = Õ(α/

√
n).

The proof of Theorem 6.1 follows from the following lemma, which is a generalization of [GHPS13,
Lemma 3.1] for the Order-LWE problem, instead of the ringed variant.

Lemma 6.3. Let O′ ⊆ O ⊂ K be orders, Q′, I ′ and Q, I ideals in O′ and O respectively, where
Q′ and Q are integral and Q = Q′O, I = I ′O. Let {v1, . . . , vd} ∈ O be elements that span O over
O′. Let ϕ be a distribution over O′Q′, let Υ be a family of distributions, each over KR/I(O′)∨,
and let u ∈ (I ′ : Q′) ∩ (I : Q). Then there is a probabilistic polynomial time reduction from
O′-LWE(Q′,I′,u),ϕ,Υ to O-LWE(Q,I,u),ϕ,〈Υ,~v〉.

Proof. We describe an efficient transformation that takes d elements from O′Q′ ×KR/I ′(O′)∨ and
outputs an element from OQ ×KR/IO∨. Then, we show that this transformation maps uniform
samples to uniform, and As,ψ,u to As,〈ψ,~v〉,u for any s←ϕ, and ψ←Υ.

Given d samples (a′1, b
′
1), . . . , (a′d, b

′
d), the transformation outputs (a =

∑
a′ivi, b =

∑
b′ivi).

Note that since {vi} spans O over O′, then it also spans KR over itself, and maps J ′ to J ′O, for
any fractional ideal J ′ of O′. In particular, it is well-defined over the cosets that arise in those
distributions. We conclude that it maps the uniform distributions over O′Q′ and TI′O′∨ to the
uniform distributions over OQ and TIO∨ , respectively.

Now, assume that (a′1, b
′
1), . . . , (a′d, b

′
d) are sampled from As,ψ,u. As noted before, we get that a

is distributed uniformly over OQ. Turning to b, we have that

b =
∑

b′ivi =
∑

(u · a′i · s+ e′i)vi = u · a · s+ e

where each e′i←ψ, and therefore e is distributed as in 〈ψ,~v〉, which concludes the proof.

Important Special Cases. We now discuss a family of orders O that give rise to particularly
interesting secret distributions, in particular our example generalizes the example of sampling the
secrets from a subfield that was studied in previous works [GHPS13]. Denote qR =

∏
pi the prime
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factorization of q, then the isomorphism Rq ' Znq is given by x 7→ (x mod pi)i∈[n]. Now, let
Ω = (Ω1, . . . ,Ωk) be a partition of [n] into k disjoint subsets. Define

S := {x ∈ Znq | xj = xj′ , ∀j, j′ ∈ Ωi,∀i ∈ [k]} ,

and note that it forms a subring isomorphic to Zkq . It turns out that if K ′ ⊂ K is a subfield, then
its ring of integers R′ = OK′ has this property for some partition of [n], so in this case O = R′+qR.
Let L′ be a fractional ideal of R′. Since R′ is the maximal order, then L′ is invertible in K ′. One
can verify that L := L′O = L′ + qL′R is an invertible fractional ideal of O.

For a general partition Ω of [n], we have that O/qR ' Zkq . It follows that O has index qn−k in
R, and therefore O = M + qR, where M is some Z-module of rank k. Using a similar analysis as
above, one can relate ideals in O to ideals of rank k in M .

7 k-Wise Independent Secrets and Hidden Lattice BDD

In this section we propose a new decisional problem and prove the hardness of a class of secret
distributions based on that assumption. More precisely, our proposed problem is a decisional variant
of the BDD problem, but where the ideal is secretly chosen from a large family of ideals at random.
This allows us to prove the hardness for distributions which their “marginal” over the same family
of ideals is uniform. By a marginal of a distribution ϕ over an ideal Q, we mean ϕ mod Q.

We begin with the exact formulation of the decisional BDD problem, and then state and prove
hardness result for the Ring-LWE problem with entropic secrets.

7.1 Decisional Bounded Distance Decoding

We first define the hidden lattice BDD (HLBDD) distribution, and then the decisional problem
associated with it.

Definition 7.1 (Hidden Lattice BDD Distribution). Let L be some lattice, and let L be a finite
family of lattices, where each L′ ∈ L is a superset L′ ⊇ L. Let r ∈ G be a Gaussian parameter. The
Hidden Lattice BDD Distribution over KR/L, denoted by CL,L,r, is sampled by choosing uniformly at

random a lattice L′ $← L, an element x
$← L′/L, and an error term e←Dr and outputting y = x+e

mod L.

The decisional HLBDD problem is defined as follows.

Definition 7.2 (HLBDD Problem). Let L,L, r be as in Definition 7.1. The HLBDD Problem,
denote by HLBDDL,L,r is to distinguish between 2 samples from the distribution CL,L,r, and the
same number of samples from the uniform distribution over KR/L.

One could also consider a more general variant, where the distinguisher gets polynomially many
samples, instead of just 2. However, the latter is sufficient for our applications.

Remark 7.1. If we modify Definition 7.1 of the Hidden Lattice BDD Distribution, to include a
basis for the chosen lattice, then it is sufficient to sample e←Dr and output e mod L. Moreover,
by a hybrid argument, one can show that in this variant, it is sufficient to distinguish only a single
sample from uniform.
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7.2 k-wise Independent Distributions

In this section we assume that K is the power-of-two cyclotomic field of degree n, and denote its
ring of integers by R. Therefore, R∨ is just a scale of R, so we can assume that the Ring-LWE
distribution is over Rq × KR/R, and has s ∈ Rq. We begin by defining a family of ideal for the
HLBDD problem.

Definition 7.3. Let q ≥ 2 a rational integer prime that splits completely over R. Denote qR =∏n
i=1 pi, where each pi ⊆ R is a prime ideal. For k ∈ [n] we define the following family ideals,

Pk :=

{∏
i∈T

pi | T ⊆ [n], |T | = k

}
,

i.e. the set of all ideals containing qR that split into k prime ideals.

Note that for any k ∈ [n] the sets of lattices Pk and Pn−k are related by the mapping Q 7→
Q−1qR, which is a bijection in both directions. This can be seen since this mapping is equivalent
to
∏
i∈T pi 7→

∏
i/∈T pi.

We now state the main theorem of the section. Recall the notation [·]Q from the beginning of
Subsection 5.2.

Theorem 7.1. Let q ≥ 2 a rational integer prime that splits completely over R. Let k ∈ [n], and let
ϕ be a distribution over Rq that is B-bounded, and that for every P ∈ Pk, the distribution [ϕ]P is

uniform. Let r, r′, t be Gaussian parameters such that B · t/qr = negl(n) and (f · (Br′)2 + qt2)/r =
negl(n), for some super polynomial f = f(n) = nω(1). Then, there exists a polynomial time
reduction from HLBDDR,Pn−k,r′ to R-LWEq,ϕ,Dr, assuming the hardness of R-LWEq,Dt.

First, we reduce from R-LWEq,ϕ,Υ to a variant of Ring-LWE problem, where the distinguisher
gets only a single sample. This is done by noise swallowing and is sketched in [LPR13]

Lemma 7.2. Let ϕ be a distribution over Rq that is B-bounded, and let r, r̃, t ∈ G be Gaussian
parameters such that Bt/r = negl(n) and (r̃2 + qt2)/r = negl(n). Then, assuming the hardness of
R-LWEq,Dt, there is a reduction from R-LWEq,ϕ,Dr̃

where the adversary gets only a single sample,
to R-LWEq,ϕ,Dr with polynomially many samples.

Proof. Given a single sample (ã, b̃) ∈ Rq ×KR/R, we do the following for each requested sample.
Sample an element z←Dqt, and errors e′←Dt and e′′←Dr, and output

(a = ãz + qe′, b = b̃z + e′′) .

If (ã, b̃) is distributed uniformly, then so does (a, b). Now, assume that (ã, b̃) is a single sample from
the R-LWEq,ϕ,Dr distribution, so b̃ = ãs/q + ẽ for some s←ϕ and ẽ← Dr̃. We get that

b− as/q = b̃z + e′′ − ãzs/q − e′s = ãzs/q + ẽz + e′′ − ãzs/q − e′s =: e .

The hardness of R-LWEq,Dt implies the hardness of R-LWEq,Dqt,Dt . Thus, we get that a is in-
distinguishable from uniform. So, (a, b) is distributed as a Ring-LWE sample where s←ϕ, and it
remains to analyze the distribution of e.

We get that the distribution of zẽ is D√
r̃2+qt2

. By our choice of r, t, r̃, we get, by noise

swallowing that the distribution of zẽ + e′′ is statistically close to the one of e′′. Similarly, since
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ϕ is B-bounded, then also the distribution of e′s + e′′ is statistically close to the one of e′′. We
conclude that e is distributed statistically close to Dr, and therefore (a, b) is distributed as in the
distribution of R-LWEq,ϕ,Dr .

Next, we reduce from HLBDD to R-LWE with a single sample. The proof of Theorem 7.1
follows from the combination of Lemma 7.2 and Lemma 7.3 below.

Lemma 7.3. Let ϕ be a distribution over Rq that is B-bounded, and that for every P ∈ Pk, the
distribution [ϕ]P is uniform. Let r̃, r′ ∈ G be Gaussian parameters such that Br′/qr̃ = negl(n).
Then, there is a reduction from HLBDDq,Pn−k,r′ to R-LWEq,ϕ,Dr̃

with a single sample.

Proof. We prove using a hybrid argument.

Hybrid H0. In this hybrid we simply consider the distribution As,Dr̃
, where s←ϕ.

Hybrid H1. In this hybrid, instead of sampling a
$← Rq, we do the following.

1. Sample an ideal Q $← Pn−k.

2. Sample an element x1
$← Q/qR and an error term e1←Dr′ .

3. Output a := x1 + e1 mod qR.

We therefore have

(a = x1 + e1 mod qR, b = (x1 · s)/q + (e1 · s)/q + e mod R) .

Assuming the hardness of HLBDDq,Pn−k,r′ , we get that H0 ≈ H1.

Hybrid H2. In this hybrid we replace the term (e1 · s)/q with e2/q+ e, where e2
$← Dr′ . That is,

(a = x1 + e1 mod qR, b = (x1 · s)/q + e2/q + e mod R) .

Recall that ϕ is B-bounded, and that Br′/qr̃ = negl(n). Therefore, by noise swallowing, we get
that (e1 · s)/q + e is distributed statistically close to the distribution of e, which in turn, by the
same argument, is close to e2/q+e. We conclude that the hybrids H1 and H2 are statistically close.

Hybrid H3. Consider the ideal P = Q−1qR, and note that P+Q = R and that P∩Q = PQ = qR.
Therefore, by the Chinese Remainder Theorem, we have that Rq ' RQ ×RP (see Theorem 2.12).
We examine the distribution of b from the previous hybrid in CRT coordinates

([x1]P · [s]P/q + [e2]P/q + [e]1/qP , [e2]Q/q + [e]1/qQ) ,

where [x1]Q = 0 since x1 ∈ Q/qR. In this hybrid we replace x1 · s by a uniformly random

x2
$← Q/qR. Since [s]P and [x2]P are distributed uniformly, and [x2]Q = 0, we get that the hybrids

H2 and H3 are statistically close.
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Hybrid H4. Note that the resulting distribution from the previous hybrid is

(a = x1 + e1 mod qR, b = (x2 + e2)/q + e mod R) ,

where x1, x2
$← Q/qR, e1, e2←D′r and e←Dr̃. In this hybrid we sample a and b uniformly at random.

Assuming the hardness of HLBDDq,Pn−k,r′ , we can replace x1 + e1 mod qR and (x2 + e2)/q with
the uniform distribution, and thus H3 ≈ H4.

Putting it all together, we get that As,Dr̃
= H0 ≈ H4 = U(Rq ×KR/R).
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