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Abstract

We propose a generalization of the celebrated Ring Learning with Errors (RLWE) problem
(Lyubashevsky, Peikert and Regev, Eurocrypt 2010, Eurocrypt 2013), wherein the ambient ring
is not the ring of integers of a number field, but rather an order (a full rank subring). We show
that our Order-LWE problem enjoys worst-case hardness with respect to short-vector problems
in invertible-ideal lattices of the order.

The definition allows us to provide a new analysis for the hardness of the abundantly used
Polynomial-LWE (PLWE) problem (Stehlé et al., Asiacrypt 2009), different from the one re-
cently proposed by Rosca, Stehlé and Wallet (Eurocrypt 2018). This suggests that Order-LWE
may be used to analyze and possibly design useful relaxations of RLWE.

We show that Order-LWE can naturally be harnessed to prove security for RLWE instances
where the “RLWE secret” (which often corresponds to the secret-key of a cryptosystem) is not
sampled uniformly as required for RLWE hardness. We start by showing worst-case hardness
even if the secret is sampled from a subring of the sample space. Then, we study the case where
the secret is sampled from an ideal of the sample space or a coset thereof (equivalently, some
of its CRT coordinates are fixed or leaked). In the latter, we show an interesting threshold
phenomenon where the amount of RLWE noise determines whether the problem is tractable.

Lastly, we address the long standing question of whether high-entropy secret is sufficient for
RLWE to be intractable. Our result on sampling from ideals shows that simply requiring high
entropy is insufficient. We therefore propose a broad class of distributions where we conjecture
that hardness should hold, and provide evidence via reduction to a concrete lattice problem.

1 Introduction

The Learning with Errors (LWE) problem, as introduced by Regev [Reg05], provides a convenient
way to construct cryptographic primitives whose security is based on the hardness of lattice prob-
lems. The assumption that LWE is intractable was used as a basis for various cryptographic designs,
including some cutting edge primitives such as fully homomorphic encryption (FHE) [BV11b], and
attribute based encryption (ABE) for general policies [GVW13, BGG+14]. Two of the most ap-
pealing properties of the LWE problem are the existence of a reduction from worst-case lattice
problems [Reg05, Pei09, BLP+13, PRSD17] (which is most relevant to this work), and its conjec-
tured post-quantum security.
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On the other hand, one of the shortcomings of the LWE assumption is the relatively high
computational complexity and large instance size (as a function of the security parameter) that
it induces. This results, for example, in LWE-based encryption schemes having long keys and
ciphertexts, and also high encryption complexity. It was known since the introduction of the NTRU
cryptosystem [HPS98] and more rigorously in [LM06, PR06] that these aspects can be significantly
improved by relying on lattices that stem from algebraic number theory.1 In[LPR10, LPR13],
Lyubashevsky, Peikert and Regev defined an algebraic number theoretic analog of the LWE problem,
called Ring-LWE (RLWE). Similar to Regev’s original result, they showed that RLWE is as hard
as solving worst-case ideal lattice problems.

Ring-LWE and its extensions quickly became a useful resource for the construction of vari-
ous cryptographic primitives [BF11, BV11a, BGV12, GHS12, DDLL13, AP13, HS14, BKLP15,
ADPS16, BVWW16] (an extremely non-exhaustive list of examples). RLWE is appealing due to
its improved efficiency, and its provable security guarantee based on the hardness of worst case
(ideal) lattice problems. However, in concrete instantiations, parameters are not set based on
provable hardness guarantees, but rather on the minimal parameters that prevent known and con-
ceivable attacks, in order to achieve the best possible efficiency. In the case of RLWE, parameters
are set way beyond the regime where we have provable guarantee in terms of choice of security
parameter and, most relevant to this work, in terms of sampling secrets from different distributions
than those for which provable security applies.2 While a gap between the provable and concrete
security properties of a cryptosystem is expected, one would at least like to make sure that changing
the distribution does not make the problem qualitatively easy. In other words, we would like to
show that the problem remains at least asymptotically hard with the new distributions.

Over the years, it has been shown that the LWE problem is quite robust to changes in the
prescribed distribution, thus providing desired evidence for the safety of using the assumption in
various settings. More precisely, it was shown that LWE hardness holds even if the secret (a vector
that, very roughly, represents the coordinates of a hidden lattice point) is not sampled uniformly, as
tradition, but is rather leaked [AGV09, DGK+10] or is chosen from a binary distribution of sufficient
entropy [GKPV10, BLP+13] (with obvious loss coming from the secret having lower entropy). It
is almost trivial to verify that if the LWE secret is chosen uniformly from a linear subspace of
its prescribed space, then security degrades gracefully with the dimension of the space of secrets.
(We note that there has also been much work on modifying the noise distribution of LWE, e.g.
[BPR12, MP13]. However, the focus of this work is the distribution of secrets.)

Much less is known for RLWE. This is because its algebraic structure (which is the very reason
for efficiency gains) prevents the use of techniques like randomness extraction that are instrumental
to the aforementioned LWE robustness results.

This Work. Motivated by the task to investigate the behavior of the RLWE problem on non-
uniform secret distributions, we present new tools to prove security in some cases and insecurity
in others. The main tool that we introduce is a generalization of the RLWE problem that we call
Order-LWE, and prove a worst-case hardness result for this problem.3 We show that the Order-
LWE abstraction naturally implies a new proof for a previous result in the literature [RSW18] with

1This inefficiency is common to cryptographic constructions based on “generic” lattices. Indeed, NTRU was
introduced before the LWE assumption was formulated.

2Sometimes this is done not for efficiency but for functionality purposes, e.g. [BVWW16].
3As a reader with background in algebraic number theory would speculate, this is a setting where RLWE is

instantiated respective to orders in a number field, rather than its ring of integers.
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new and comparable parameters.
We show that the formulation of Order-LWE is quite useful in exploring variants of RLWE

where the distribution of secrets has some algebraic structure (a special case of secrets from a
subfield was studied in [GHPS13]). We show Order-LWE hardness (and thus worst-case hardness)
when the secret is sampled from any subring of the prescribed space. We show that this approach
can also be used to address the fundamental question of whether any distribution of secrets with
sufficiently high entropy implies RLWE hardness. We show that in some settings, RLWE with
uniform secrets is intractable (under conservative worst-case ideal lattice assumptions), but a slight
decrease in entropy leads to a complete break. This is the case when the distribution of secrets is
supported over an ideal (or a coset thereof). On the other hand, we show that increasing the noise
in the RLWE instance can compensate for the deficiency in secret entropy in this setting.

Finally, we address the more ambitious goal of proving security for secrets with no algebraic
structure. Since, as we mentioned above, high entropy is insufficient as condition by itself for secu-
rity, we identify a family of high-entropy distributions that capture (at least approximately) many
of the relaxed variants of RLWE. We show that a particular (average case) hardness assumption
implies hardness for this class of distributions.

We provide an overview of our results and techniques next.

1.1 Background

Recall that in the LWE problem, a secret vector s is sampled from Znq for some modulus q; an
adversary gets oracle access to samples of the form (a, b = 〈a, s〉+ e (mod q)) where each a ∈ Znq is
uniform and e is a small integer, say sampled from a discrete Gaussian with parameter � q. The
adversary’s goal is to distinguish this oracle from the one where b ∈ Zq is random.

In the RLWE problem, the sample spaces are also vector spaces over Zq but with a ring structure.
In this high level overview, for the sake of simplicity of notation and algebraic structure, we restrict
to the case where the ring is the ring of integers in the power-of-two cyclotomic field Q[x]/(xn + 1).
An interested reader may see Section 2 for precise definitions in the general case. The cyclotomics
is a particularly simple case: the so called ring of integers in this case is the ring of polynomials
R = Z[x]/(xn + 1). In this setting, the RLWE problem with modulus q is as follows: sample a
random secret s ∈ Rq = R/qR, and provide the adversary with oracle access to samples of the
form (a, as + e) ∈ R2

q , where a is uniform and e is sampled from some “small” noise distribution
(for our purposes, think of e as polynomial with Gaussian coefficients � q). The arithmetics is
over Rq, and the goal is to distinguish these samples from uniform R2

q samples.4 For this overview,
we will assume for simplicity that q is a prime, and focus on the setting (which is most commonly
used in cryptography) where q splits completely as an ideal in R into a product of n distinct prime
ideals. (In the case of the cyclotomics, this condition amounts to q ≡ 1 (mod 2n).) By the Chinese
Remainder Theorem, the quotient Rq := R/qR ' Z[x]/(xn + 1, q) is isomorphic to Znq and hence
an element in Rq can be represented as a vector of n elements in Zq with pointwise addition and
multiplication. This is called the CRT representation of elements in Rq and for c ∈ Rq, we denote
its CRT coordinates by c[1], . . . , c[n].

4An informed reader may notice that in the formal RLWE definition, s needs to be sampled from the dual of Rq,
and e needs to be small in the so called “canonical embedding”. However, in the cyclotomic setting these distinction
makes little difference and our choice makes the presentation simpler. Another simplifying choice for the exposition
is to only consider discrete noise distributions.
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1.2 Our Results

An overview of our results follows.

The Order-LWE Problem. We formulate a version of R-LWE where R is replaced by an order
O in K. An order in a number field is a subring of R which has full rank (i.e. can be described as
a Z-span of exactly n elements).5 We furthermore generalize the modulus of the RLWE equations,
and instead of taking the equations modulo (the ideal generated by) the integer q, we allow to mod
out by any ideal in the order. We call this problem Order-LWE and denote it as O-LWE. More
precisely, we define two variants of the problem O-LWE and O∨-LWE which have a duality relation
between them (and which are equivalent to each other when O = R). As explained above, R-LWE
is a special case of O-LWE (and, in a different notation, of O∨-LWE).

Recalling that Ring-LWE was shown to be as hard to solve as worst-case lattice problems
over ideal lattices from the ring R, we propose an analogous claim for Order-LWE. Using similar
techniques as those used for proving Ring-LWE hardness, but with some necessary adaptations, we
show that solving O-LWE is at least as hard as solving short-vector problems on a class of lattices
that is defined by the set of invertible ideals in the order O. This result generalizes the known result
on R-LWE (note that in R all ideals are invertible). For O∨-LWE, worst-case hardness follows for
lattices whose dual is an invertible O-ideal (again, in R this holds for all ideals). We mention that
these sets of lattices coincide in the case when the dual of the order O is an invertible O-ideal.

We show that using a larger order makes the O∨-LWE problem harder, and in that sense R-LWE
is harder than any other O∨-LWE problem. This is the case even though formally the set of duals
of (invertible) O-ideals is disjoint from the set of R-ideals. We believe that this is due to the fact
that any O-ideal lattice can be (efficiently) mapped to an R ideal that contains it as a sublattice.

See Section 3 for a formal and general definition of O-LWE, its dual O∨-LWE and the respective
worst-case hardness results.

A Corollary: New Hardness for Polynomial-LWE. Our definition of Order-LWE gives
insight on the hardness of other computational problems underlying cryptographic constructions;
specifically, the Polynomial-LWE problem (PLWE) [SSTX09, BV11a]. In PLWE, s and a are
simply random polynomials with integer coefficients modulo a polynomial f and an integer q,
and the noise e is a polynomial with small coefficients. It is evident that the PLWE problem
provides the simplest interface for LWE over polynomial rings. In many useful cases, for example
the power-of-two cyclotomic case, it is straightforward to relate PLWE and RLWE. However, for
general polynomials f the connection is far from immediate, since the ring of integers of an arbitary
number field does not look like Z[x]/(f). Recently, Rosca, Stehlé and Wallet [RSW18] showed a
reduction relating the hardness of PLWE in the general case from RLWE and thus from worst-case
lattice problems.

We observe that we can straightforwardly address this problem using our Order-LWE machin-
ery. The ambient space for the PLWE problem is the ring Z[x]/(f), for a polynomial f ∈ Z[x].
This ring is a subring of full rank of the ring of integers of K := Q[x]/(f), and hence indeed an
order. Therefore translation between PLWE and O-LWE has two aspects: “reshaping” the noise
distribution (identically to [RSW18]), and syntactic mapping of the secret to the dual domain. The
[RSW18] reduction requires a few additional steps and in this sense our reduction is more direct.

5The full-rank condition arises naturally in applications as we discuss below.
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Pinpointing the exact relation of our reduction to the one of [RSW18] is not straightforward.
The class of lattices for which we show worst-case hardness is different (and in fact formally disjoint)
from the class of lattices in [RSW18]. This is because the hardness result of Order-LWE deals with
the worst case lattice problems on invertible O-ideals. However, any O-ideal can be translated into
R-ideal which contains it as a sublattice. It therefore appears that R-lattices as in [RSW18] may
provide stronger evidence of intractability. On the other hand, the approximation factor achieved
by our reduction is never larger and in many cases should be much smaller than that achieved by
[RSW18], depending on the specific number field.

This result suggests that perhaps it is instructive to think about orders where objects can be
represented and operated on efficiently (more efficiently than over R), and in those orders O-LWE
could be a simple way to argue about the security of a cryptosystem with simpler interface than
RLWE. We did not explore this avenue further. See Section 4 for the full details of our PLWE
proof and comparison with [RSW18].

Ring-LWE with Secrets From a Subring/Order. We consider the hardness of the Ring-LWE
problem, in the setting where the secret s is sampled from some subset with algebraic structure.
As we described above, the proper distribution of secrets is uniform over the ring Rq (R modulo q).
In this paper we consider a subring of this ring, but we note that this subring must still contain qR,
since Ring-LWE equations are taken modulo q. This naturally imposes full-rank condition on the
subring and thus orders naturally arise again. Indeed, we consider distributions that are uniform
over Oq = O/qO for an order O.

To motivate the setting of sampling the secret from a subring and illustrate its importance,
we start with an analogy with (standard) LWE. In the LWE context, if the secret is sampled
from a k-dimensional linear subspace of Znq , the problem easily translates to an LWE instance
where n is replaced by k. In the ring setting, the rich algebraic structure makes the task of
defining and analyzing such straightforward transformations much more involved. Previous works
[BGV12, GHPS13, AP13] considered the notion of ring-switching which implies the hardness of
RLWE when the secret is sampled from the ring of integers of a subfield of the field K. However,
such transformations do not apply when K has no subfields of dimension k or no proper subfields
at all. Our proposed setting allows to sample s from a subring of Rq that is isomorphic to Zkq , for
1 ≤ k ≤ n and thus provides an algebraic analog of the linear subspace property.

One can view the subring property also in terms of the CRT coordinates (when q splits over R).
A subring of Rq that is isomorphic to Zkq is in one-to-one correspondence with an onto mapping
α : [n]→ [k] as follows; sample k elements r1, . . . , rk from Zq uniformly, and set the CRT coordinates
of an element s ∈ Rq as s[j] = rα(j), for j ∈ [n]. One can verify that this set forms a subring.

In Section 5, we show that the RLWE problem with secret sampled from an order O is harder
than the O∨-LWE problem, which in turn is harder than the worst case problems on the duals of
(invertible) O-ideal lattices. In fact, given two orders O′ ⊆ O, we show that O∨-LWE is at least
as hard as O′∨-LWE (albeit with increase in noise which is comparable to the norm of a minimal
generating set of O∨ over O′∨). Since O ⊆ R, this shows that R-LWE is harder than O∨-LWE
with appropriate noise increase. This result is in a similar flavor to the one of [GHPS13] which
shows that R-LWE in a field K is harder than R′-LWE in a subfield K ′ ⊆ K. Since R′, the ring of
integers of K ′, is contained in R as a subring, our result implies hardness in this setting as well.
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Ring-LWE with Secrets From Ideals, and High-Entropy Secrets. As we already men-
tioned, understanding the behavior of Ring-LWE in the setting where the secret is sampled from
an arbitrary high-entropy distribution is a central subject of inquiry in the area. We show that if
we sample s from a “dense” ideal (or equivalently zero-out a few of its CRT coordinates), then we
may end up with a distribution that is high-entropy on one hand but makes Ring-LWE insecure on
the other. More concretely, consider RLWE samples where the secret s is sampled from Rq such
that its j-th CRT coordinate, s[j], is uniformly chosen from Zq, for all j ∈ T , a randomly chosen
subset of [n], and s[j] = 0, for j /∈ T . This is equivalent to choosing s uniformly from Pq := P/qR,
where P is the ideal of R that contains qR.6 If |T | = k and we denote ε = k

n , then the distribution
of secret will have min-entropy (1−ε)n log q. A good running example is ε which is a small constant
(e.g. ε = 0.1).

One can view this as a more structured analog of an LWE instance with a composite modulus
q = p1p2, where the secret s is a mutiple of p1. It is straightforward to see that, in such a LWE
instance, if the magnitude of the error e is sufficiently smaller than p1, this instance can be easily
solved by dividing b by p1 and rounding to the nearest integer, thereby yielding a noiseless set
of equations modulo p2. However, if the noise magnitude is sufficiently larger than p1, then the
instance is secure (intuitively, since one can essentially view it as scaling up of a mod p2 LWE
instance).

Things are more involved in the ring setting as we cannot just round to the nearest integer.
Instead, we can interpret the factors of q as lattices. If the lattice corresponding to P has a good
decoding basis, it means that we can recover e when small enough. We also provide a ring analog
of the complementary result by showing that if the noise is sufficiently large, then RLWE hardness
holds. The latter is done by viewing the instance, again, as a scaled up RLWE instance modulo
Q, only now Q is not an integer but an ideal. Our O-LWE generalization of RLWE allows us to
derive RLWE hardness in this setting.

Thus, we show that high entropy of secrets alone is insufficient to argue RLWE security and
demonstrate an interplay between the entropy of the secret and the amplitude of noise. Interestingly,
we exhibit a threshold phenomenon where the RLWE instance with secret sampled from an ideal is
insecure if the error is modestly below the threshold of roughly q−(1−ε), and secure if it is modestly
above this value. The “modest” factors depend on the number field, but correspond to a fixed
polynomial in the degree n in the cyclotomic case. The formal and general analysis of these
results appears in Section 6.

Ring-LWE with Secrets From a k-Wise Independent Distribution. Given that a general
result for high-entropy distributions cannot be achieved, we consider in the final section of the paper
a subclass of high-entropy distributions. These distributions do not adhere to uniform sampling
from an algebraic structure but instead have the following property; the marginal distribution over
any subset of k CRT coordinates is jointly (statistically close to) uniform.7 In terms of entropy,
such distributions must have min-entropy at least k log q, and this entropy is also spread evenly
across all k-tuples of CRT coordinates.

We speculate that the k-wise independence condition is sufficient for obtaining RLWE hardness.
However, we are unable to show this via worst-case hardness. Instead, we define an average case

6As we hinted above, s is actually an element of the dual of R which is not a ring and doesn’t have ideals,
however there is a natural translation between the dual and primal domain that captures the CRT/ideal structure.
See Section 6 for the formal treatment.

7A computational variant is also possible, but needs to carefully define the indistinguishability experiment.
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problem, which we call Decisional Bounded Distance Decoding on a Hidden Lattice (HLBDD) and
show that the RLWE problem with secret sampled from a k-wise distribution is at least as hard
as this problem. In HLBDD, the adversary needs to distinguish between a random oracle on Rq
and an oracle of the following form. Upon initialization of the oracle, a set T ⊆ [n] of cardinality k
is sampled. For every oracle call, the oracle generates elements v, e as described next, and returns
v + e (mod q). For the element v, the CRT coordinate v[j] is random if j ∈ T , and 0 otherwise.
The element e is a small noise element, say Gaussian. This can be viewed as the decisional version
of the bounded distance decoding (BDD) problem on the ideal lattice I :=

∏
j∈T pj (where {pi}i

are the prime factors of the ideal qR), since the element v is sampled from I. We stress that this
is the hidden version as T is sampled randomly at the invocation of the oracle, causing I to be
hidden. As in the standard BDD problem, we can consider HLBDD with worst-case noise and
also with arbitrary noise distributions. Given the current understanding of the hardness of lattice
problems, discrete Gaussian noise seems like a natural choice.

The HLBDD assumption is similar to one made in [HPS+14]. However, they only require
k = n/2, whereas we attempt to take k to be very small, e.g. k = n0.1. We assert that the
hardness of the problem relies crucially on the set T being chosen at random in the beginning of
the experiment rather than being fixed throughout. In other words, we cannot allow preprocessing
that depends on T . This is because computing a good basis for the ideal lattice I, defined by
T , makes the HLBDD problem easy. It is also important to mention that T itself does not need
to be known to the adversary; in this sense HLBDD resembles the approximate GCD problem
[DGHV10]. Lastly, we note that it is sufficient for our purposes to limit the adversary to only make
2 oracle calls. Namely, the problem is to distinguish two samples (v1 +e1, v2 +e2) from two uniform
elements in Rq. Despite our efforts, we were unable to find additional corroboration to the hardness
of this problem and we leave it as an interesting open problem to characterize its hardness.

Let us try to motivate and justify our assertion that the class of k-wise independent distributions
is meaningful. Indeed, this class captures the spirit of some of the heuristic entropic distributions
that were considered for RLWE. For example, consider the representation of the secret s as a formal
polynomial modulo q (recall that Rq ' Z[x]/(f, q) is a ring of polynomials). If each coefficient of
s is sampled from a Gaussian so that the total distribution has sufficient entropy (slightly above
the necessary k log q), then this distribution will be k-wise independent (as follows from a standard
“smoothing” argument). This shows that sampling secrets with very low norm does not violate
security under our new assumption. While it was previously known that sampling the secret
from the noise distribution keeps security intact (also known as RLWE in Hermite Normal Form
[ACPS09]), we are not aware of a proof of security when s is chosen from a narrower distribution
than the error. This can be seen as a step in the direction of matching the robustness of LWE results
[GKPV10, BLP+13], that show that LWE remains hard even with high entropy binary secrets. We
note that low norm secrets are of importance in the FHE literature (e.g. [BGV12, HS14, HS15]). In
fact, in the HElib implementation [HS14, HS15] the secret is chosen to be a random extremely sparse
polynomial. Heuristically, it seems plausible that random sparse polynomials should translate into
k-wise independent distributions but we do not have a proof for this speculation as yet.8

Another example of an interesting k-wise independent distribution is the “entropic RLWE”
formulation that came up in the obfuscation literature [BVWW16]. That setting consists of a

8Intuitively, this follows from the fact that the translation between the coefficient and CRT representation is a
linear transformation defined by a Vandemonde matrix. In order to prove k-wise independence we need to show that
any subset of k rows of the Vandermonde matrix constitutes a deterministic extractor from a uniform distribution
over a Hamming ball. Analogous theorems exist in other contexts, but we do not have a proof as of yet.
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large number of public elements s1, . . . , sm, sampled from the noise distribution (which is Gaussian
in the polynomial coefficient representation and thus can be shown to be k-wise independent in
the CRT representation). The secret is generated by sampling a binary vector ~z = (z1, . . . , zm)
and outputting s =

∏
szii . Using the leftover hash lemma, one can show that so long as ~z has

entropy sufficiently larger than k log q, the resulting distribution will be k-wise independent as well.
It is worth noting that in order to achieve the strongest notion of security for their obfuscator,
[BVWW16] use ~z with entropy � log q to which our technique does not directly apply.

See Section 7 for more details on this result.

1.3 Paper Organization

Section 2 contains preliminaries and definitions. The Order-LWE problem is formally defined in
Section 3, where the worst case hardness reduction is proved as well. The new hardness result for
PLWE appears in Section 4. We then present our results on sampling secrets from subrings in
Section 5, on sampling secrets from ideals in Section 6, and finally on sampling secrets from k-wise
independent distributions in Section 7.

2 Preliminaries

For a vector x in Cn and p ∈ [1,+∞), we mean by `p norm ‖x‖p = (
∑

i |xi|p|)1/p and by `∞
norm ‖x‖∞ = maxi |xi|. We refer to `2 norm if p is omitted. Let D be a distribution. When
writing x←D we mean sampling an element x according to the distribution D. Similarly, for

a finite set Ω, we denote by x
$← Ω sampling an element x from Ω uniformly at random. For

ε > 0, we say that D is a B-bounded distribution if Prx←D[‖x‖ > B] is negligible. For two
distributions D1 and D2 over the same measurable set Ω, we consider their statistical distance as
∆(D1,D2) = 1

2

∫
Ω |D1(x)−D2(x)|dx. When the support of D is a finite set Ω, we define the entropy

of D to be H(D) :=
∑

ω∈ΩD(Ω) · log2 (1/D(ω)). In a similar way, its min-entropy is defined by
H∞(D) := minω∈Ω log2 (1/D(ω)). It is easy to verify that H(D), H∞(D) ≤ log2 |Ω| with equality if
and only if D is the uniform distribution over Ω.

2.1 The Space H

When working with number fields from a geometric perspective, we usually work with the following
space H ⊆ Rs1 × C2s2 for some numbers s1 + 2s2 = n, defined as

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 | xs1+s2+j = xs1+j ,∀j ∈ [s2]} .

Note that H, equipped with the inner product induced by Cn, is isomorphic to Rn, as an inner
product space. This can be seen via the orthonormal basis {hi}i∈[n], defined as follows: for j ∈ [n],
let ej ∈ Cn be the vector with 1 in its jth coordinate, and 0 elsewhere; then for j ∈ [s1], we take
hj = ej ∈ Cn, and for s1 < j ≤ s1 + s2 we take hj = 1√

2
(ej + ej+s2) and hj+s2 = 1√

−2
(ej − ej+s2).

We will also equip H with the `p norm induced on it from Cn.
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2.2 Lattices

We define a lattice as a discrete additive subgroup of H. Equivalently, a lattice is the Z-span of
some set of k linearly independent basis vectors B = {b1, . . . ,bk} ⊆ H:

L =
{∑

zibi | zi ∈ Z
}
.

We refer to k as the rank of the lattice, and to n as its dimension. If k = n, we say that the lattice
is full-rank. The determinant of a lattice L, denoted by det(L), is defined as

√
det(〈bi,bj〉)i,j . It

is a standard fact that this does not depend on the choice of the basis.
The minimum distance λp1(L) of a lattice L with respect to the `p norm, p ∈ [1,∞], is the length

of a shortest nonzero lattice vector. More generally, we define the ith successive minimum as

λpi (L) := inf{r > 0 | dim(span(L ∩B
p
(0, r))) ≥ i} ,

where B
p
(0, r) is the closed ball of radius r around 0 in norm `p. When the `2 norm is used, we

denote the ith succesive minimum by λi.
The dual of a lattice L ⊂ H is defined as L∗ = {x ∈ H | 〈L,x〉 ⊆ Z}, which is also a lattice of

same rank as L. We recall the following inequality relating λ1(L) and λn(L∗).

Lemma 2.1. For any lattice L of dimension n, λ1(L) · λn(L∗) ≥ 1.

2.2.1 Gaussians

For r > 0, define the Gaussian function ρr : H → (0, 1] as ρr(x) := exp(−π ‖x‖2 /r2). By
normalizing this function, we obtain the continuous Gaussian probability distribution of width r,
denoted by Dr, whose density is given by r−n · ρr(x). We extend this to elliptical (non-spherical)
Gaussian distributions in the basis {hi}i∈[n] as follows. Define G = {r ∈ (R+)

n | rs1+s2+i =
rs1+i, ∀i ∈ [s2]}; note this has symmetry mirroring that of H. For consistency with prior works,
we sometimes use r ∈ R+ as shorthand for the all-rs vector r1 ∈ G. For r ∈ G, a sample from
Dr is given by

∑
xihi, where each xi is chosen independently from the (one-dimensional) Gaussian

distribution Dri over R. We equip partial ordering on G defined by r′ ≥ r if r′i ≥ ri for all i. By
total Gaussian measure on a set X we mean ρr(X) :=

∑
x∈X ρr(x).

Micciancio and Regev [MR07] introduced a lattice quantity called the smoothing parameter,
and related to it various lattice quantities.

Definition 2.2 (Smoothing Condition). For a lattice L ⊂ H, positive real ε > 0 and r ∈ G, we
write r ≥ ηε(L) if ρ1/r(L∗\{0}) ≤ ε, where 1/r = (1/r1, . . . , 1/rn).

A first application of the smoothing parameter suggests that the total Gaussian measure on
any translate of the lattice is almost the same, as long as the Gaussian parameter r exceeds the
smoothing parameter.

Lemma 2.3 (Special case of [Pei10, Lemma 2.4]). For any lattice L of dimension n, ε ∈ (0, 1),
c ∈ H and r ≥ ηε(L) we have ρr(L+ c) ∈ [1−ε

1+ε , 1] · ρr(L).

For a lattice L in H and r ∈ G we define the discrete Gaussian distribution over L as being the
distribution having as support L and as mass function DL,r(x) := ρr(x)/ρr(L), for any x ∈ L.

The following lemma justifies the name “smoothing parameter” adapted to discrete Gaussians.
This is a slightly generalized result of [GPV08, Corollary 2.8] in the case of elliptical Gaussians,
whose proof is the same but uses Lemma 2.3 instead of [GPV08, Lemma 2.7].
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Lemma 2.4. For any two full rank lattices L′ ⊆ L in H, ε ∈ (0, 1/2) and r ≥ ηε(L′) in G, the
statistical distance between DL,r mod L′ and the uniform distribution over L/L′ is at most 2ε.

Theorem 2.5 (Special case of [Pei10, Theorem 3.1]). Let L1 ⊂ H be a lattice, and let r1, r2 ∈ G.
Define r ∈ G by r2

i = (r1)2
i + (r2)2

i , and r3 ∈ G by 1/(r3)i := 1/(r1)i + 1/(r2)i. Assume that
r1 ≥ ηε(L1) for some positive ε ≤ 1/2, and let c1, c2 ∈ H be arbitrary. Consider the following
probabilistic experiment:

Choose x2←Dr2 , then choose x1←x2 +DL1+c1−x2,r1 .

Then the marginal distribution of x1 is within statistical distance of 8ε of DL1+c1,r and the marginal
distribution of x1 is as before and the conditional distribution of x2 given x1 = x1 ∈ L1 + c1 is
statistically close to Dr.

Theorem 2.6 (Adapted from [Lan14, Lemma 1.42]). Let L be a lattice in H of dimension n, r ∈ G
and s > 0. Define by t having ti =

√
r2
i + s2 for any i. Assume that mini ris/ti ≥ ηε(L), for some

ε ≤ 1/2. Consider the distribution Y over H obtained by sampling from DL,r and then adding an
element drawn from Ds. Then Y is statistically close to Dt within 4ε.

The following is a standard fact from [Reg05, Claim 2.13].

Lemma 2.7. For any lattice L ⊂ H and ε ∈ (0, 1), we have ηε(L) ≥
√

log(1/ε)/λ1(L∗).

Here we state some facts used in the ”noise swallowing” applications from in Section 7.

Lemma 2.8 (Special case of [AGHS13, Lemma 3]). For a lattice L in H of dimension n and r ∈ G
such that mini ri ≥ ηε(L), where 0 < ε < 1, then Prx←DL,r(‖x‖ ≥ maxi ri ·

√
n) ≤ 1+ε

1−ε · 2
−n.

Lemma 2.9 (Special case of [LD18, Proposition 2.1]). For c an element from R and Ds an 1-
dimensional continuous Gaussian over R, ∆(Ds, Ds + c) ≤ C · |c|/s, where C is equal to

√
2π/2.

This lemma shows that as long as |c|/s is negligible, Ds is statistically close to Ds + c.

Lemma 2.10. For c an element from H and Dr′ an n-dimensional continuous Gaussian over H,
∆(Dr′ , Dr′ + c) ≤ C

√
n · ‖c‖/min r′i.

Proof. Since c is in H, consider that c = c1h1+c2h2+. . .+cnhn, for some ci ∈ R. Then ∆(Dr′ , Dr′+
c) ≤

∑
i ∆(Dr′i

, Dr′i
+ ci) ≤ C ·

∑
i |ci|/r′i ≤ C ·

√
n‖c‖/min r′i, where for the second inequality we

applied Lemma 2.9 and for the last inequality we used Cauchy Schwarz inequality and the fact that
h1, h2, . . . , hn form an orthonormal basis.

This lemma shows that as long as ‖c‖ ·
√
n/min r′i is negligible, Dr′ is statistically close to

Dr′ + c.

Lemma 2.11. Let c be an element from R and r ∈ G, where r ≥ σ, for some σ ≥ ηε(R). Then
DR,r and DR,r + c are statistically close as long as ‖c‖ ·

√
n/min rσ,i is negligible, where rσ ∈ G is

defined by r2
σ,i := r2

i − σ2.
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Proof. Let z be drawn from Drσ and e drawn from DR−z,σ. According to Theorem 2.5, z + e is
statistically close to DR,r. Also, z+e+c is again statistically close to DR,r+c. Notice that by triangle
inequality we have ∆(DR,r, DR,r + c) ≤ ∆(DR,r, z+ e) + ∆(DR,r + c, z+ e+ c) + ∆(z+ e, z+ e+ c).
The previous arguments show that the first two terms are negligible. Since c ∈ R, then the cosets
R− z and R− (z+ c) coincide so one can add the same e← DR−z,σ when discretizing z and z+ c.
Now using the fact that ∆(z + e, z + e+ c) ≤ ∆(z, z + c), by Lemma 2.10 it follows that as long as
‖c‖ ·

√
n/min rσ,i is negligible, the conclusion holds.

Lemma 2.12. Let c be drawn from DR,t, for some t ∈ G, and r ∈ G, where r ≥ σ, for some
σ ≥ ηε(R). Then DR,r and DR,r + c are statistically close as long as ‖t‖∞ ·n/min rσ,i is negligible.

Proof. By Lemma 2.8, ‖c‖ ≤
√
n · ‖t‖∞ with non-negligible probability. Lemma 2.11 helps in

concluding the proof.

This lemma shows that if we add a discrete Gaussian sample to a discrete Gaussian distribution
with wide parameter, this gets swallowed. The following definition describes this phenomenon.

Definition 2.13. Consider r and t ∈ G two Gaussian parameters in G. We say that r swallows t
if n · ‖t‖∞ /min rσ,i is negligible in n.

2.2.2 Lattice Problems

Let L be a lattice in H represented by a basis B and let e +L be a lattice coset represented by its
unique representative e = (e+L)∩P(B) in the fundamental parallelepiped P(B) := B·[−1/2, 1/2)n

of B. We state the standard lattice problems.

Definition 2.14 (Gap Shortest Vector Problem). For an approximation factor γ = γ(n) ≥ 1 and
a family of lattices L, the L-GapSVPγ problem is: given a lattice L ∈ L and length d > 0, output
YES if λ1(L) ≤ d and NO if λ1(L) ≥ γd.

Definition 2.15 (Shortest Independent Vectors Problem). For an approximation factor γ =
γ(n) ≥ 1 and a family of lattices L, the L-SIVPγ problem is: given a lattice L ∈ L, output n
linearly independent lattice vectors of norm at most γ · λn(L).

Definition 2.16 (Discrete Gaussian Sampling). For a family of lattices L and a function γ that
maps lattices from L to G := {r ∈ (R+)n : rs1+s2+i = rs1+i, for 1 ≤ i ≤ s2}, the L-DGSγ
problem is: given a lattice L ∈ L and a parameter r ≥ γ(L), output an independent sample from a
distribution that is within negligible statistical distance of DL,r.

Definition 2.17 (Bounded Distance Decoding). For a family of lattices L and a function δ that
maps lattices from L to positive reals, the L-BDDδ problem is: given a lattice L ∈ L, a distance
bound d ≤ δ(L), and a coset e + L where ‖e‖ ≤ d, output e.

Lemma 2.18 (Babai’s round-off algorithm [Bab86], [LPR13, Claim 2.10]). For every family of
lattices L, there is an efficient algorithm that given as input a lattice L ∈ L, a set of linearly
independent vectors {v1, v2, . . . , vn} in L∗ and a coset e+ L such that |〈e, vi〉| ≤ 1

2 , solves L-BDDδ
for δ(L) = 1

2λn(L∗) .

Definition 2.19 (Gaussian Decoding Problem [PRSD17]). For a lattice L ⊂ H and a Gaussian
parameter g > 0, the GDPL,g problem is: given a coset e + L where e ∈ H was drawn from Dg,
find e.

11



2.3 Algebraic Number Theory

2.3.1 Ideals and Orders in Number Fields

Below we present the definitions and facts used in this work, all of which are standard in the area
of algebraic number theory. As such, we omit the proofs, which can be found in various textbooks.
Unlike previous works, we focus our presentation on orders in number fields, and refer to [Cona]
for an introduction of invertible ideals in an order, and to [Ste08] for a more thorough background
and proofs for the statements that follow.

A number field is a field extension K = Q(ζ) obtained by adjoining an element ζ to the
rationals Q, where ζ satisfies the relation f(ζ) = 0 for some irreducible polynomial f(x) ∈ Q[x],
called minimal polynomial of ζ, which is monic without the loss of generality. The degree n of th
number field is the degree of f .

Let K be some number field of degree n. An order O in K is a subring of OK that contains a

Q-basis of K, i.e. O =
n⊕
i=1

Zgi for some {g1, . . . , gn} ⊂ O such that O⊗Z Q = K. The set of orders

in K has a unique maximal element (under inclusion), which is called the maximal-order, and is
denoted by OK . An element in a number field x ∈ K is said to be integral if it is the root of some
monic polynomial with (rational) integer coefficients. The set of all integral elements in K has a
ring structure, called the ring of integers and it turns out to be OK .

Let O be some order in K. An ideal I ⊆ O is an additive subgroup that is closed under
multiplication by O, i.e. x · a ∈ I for every x ∈ O and a ∈ I. Ideals in O are sometimes called
integral (as opposed to fractional ideal defined below). Every ideal in O could be generated by n
elements over Z.

The sum of two ideals I,J ⊆ O is defined by I+J := {x+y | x ∈ I, y ∈ J }, and their product
is defined by I · J := {

∑
xiyi | xi ∈ I, yi ∈ J }. Their intersection is simply their set theoretic

intersection, and their quotient is defined by (I : J ) := {x ∈ K | xJ ⊆ I}. All of the former sets,
excluding the quotient, are ideals in O.

An integral ideal p ⊂ O is prime if for every pair of elements x, y ∈ O, whenever xy ∈ p, then
either x ∈ p or y ∈ p. Every integral ideal I of O contains a product of prime ideals I ⊇

∏
pi.

Integral ideals I,J of O are coprime, if I + J = O and therefore we also have, IJ = I ∩ J and
(I ∩ J )L = IL ∩ JL, for any ideal L. For an integral ideal I ⊆ O, the set of associated primes of
I is the set of all prime ideals of O that contain I.

The norm of an ideal I ⊂ O is its index as a subgroup of, i.e. N(I) := [O : I] = |O/I|. For
the special case where O = OK is the maximal order, the norm is a multiplicative function, i.e.
N(IJ ) = N(I) ·N(J ) for any integral I,J .

A fractional ideal I ⊂ K of O is a set such that dI ⊂ O for some d ∈ O. We define its norm to
be N(I) := N(dI)/ |N(d)|. Note that for any fractional ideals I,J , their sum, product, quotient
and intersection are again fractional ideals.

A fractional ideal I is invertible if there exists a fractional ideal J such that I · J = O. If
there exists such J , then it is unique and equal to (O : I), and is denoted by I−1. The set of
invertible ideals of O forms a multiplicative group, with O being the unit element. It is denoted by
I(O). In the special case where O = OK is the maximal order, every fractional ideal is invertible.
Moreover, every fractional ideal I of OK has unique factorization into prime ideals I =

∏
peii for

some prime ideals pi and integers ei ∈ Z. However, this does not hold for non-maximal orders.
There are fractional ideals which are not invertible, and there are invertible ideals that are not a
product of prime ideals. In fact, every invertible ideal in O is not invertible in any other order O′.
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2.3.2 Embeddings and Geometry

A number field K = Q(ζ) of degree n has exactly n field embeddings (injective homomorphisms)
σi : K → C. Concretely, these embeddings map ζ to each of the complex root of its minimal
polynomial f . An embedding whose images lies in R (corresponding to a real root of f) is called
a real embedding ; otherwise it is called a complex embedding. Because complex roots of f come in
conjugate pairs, so too do the complex embeddings. The number of real embeddings is denoted
s1 and the number of pairs of complex embeddings is denoted s2, so we have n = s1 + 2s2. By
convention, we let {σj}j∈[s1] be the real embeddings, and we order the complex embeddings so that
σs1+s2+j = σs1+j for j ∈ [s2]. The canonical embedding σ : K → Rs1 × C2s2 is then defined as

σ(x) = (σ1(x), . . . , σn(x)) .

By identifying elements of K with their canonical embeddings on H, we can speak of the norms on
K. For any x ∈ K and any p ∈ [1,∞], the `p norm of x is simply ‖x‖p = ‖σ(x)‖p. Notice that due
to the component-wise multiplication of the embedded elements, we have ‖xy‖p ≤ ‖x‖∞ · ‖y‖p ≤
‖x‖p · ‖y‖p, for any x, y ∈ K and p ∈ [1,∞].

Using the canonical embedding also allows us to think of the Gaussian distribution Dr over
H, or its discrete analogue over lattice in H, as a distribution over K. Strictly speaking, the
distribution Dr is not over K, but rather over the field tensor product KR := K ⊗Q R, which is
isomorphic to H.

2.3.3 Trace and Norm

The trace Tr = TrK/Q : K → Q, and the norm N = NK/Q : K → Q of an element x ∈ K are the
sum and product, respectively, of the embeddings:

Tr(x) :=
n∑
i=1

σi(x) N(x) :=
n∏
i=1

σi(x) .

It is easy to check that the trace is additive, while the norm is multiplicative. Moreover, the
(absolute) norm of an element coincides with the norm of the ideal generated by it, in any order
O. That is |N(x)| = N(xO). Also, for all x, y ∈ K,

Tr(x · y) =
n∑
i=1

σi(x) · σi(y) = 〈σ(x), σ(y)〉 .

2.3.4 Orders and Their Ideals as Lattices

Recall that a fractional ideal I of any order O has a Z-basis U = {u1, . . . , un}. Therefore, under the
canonical embedding σ, the ideal yields a full-rank lattice σ(I) having basis {σ(u1), . . . , σ(un)} ⊂ H.
In particular, orders themselves are lattices of dimension n in the R vector space H. We often
identify I with σ(I). We call such ideals ideal lattices.

The (absolute) discriminant ∆(O) of an order O is defined to be the square of the determinant
of σ(O). Equivalently ∆(O) = |det(Tr(bi · bj))|, where b1, . . . , bn is any basis of O. Consequently,
the determinant of any ideal lattice I of O is N(I)

√
∆(O). We denote by ∆K the discriminant of

K which is the discriminant of the ring of integers ∆(OK). Moreover, the discriminant of an order
O is related to the discriminant of K by ∆(O) = [OK : O]2∆K .

For the special case of cyclotomic number fields we have the following bound.
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Lemma 2.20 ([Was83, Proposition 2.7]). Let K be a cyclotomic number field of degree n, then
∆K ≤ nn.

The following lemma gives upper and lower bounds on the minimum distance of fractional
ideals over orders. These bounds are generalizations of the bounds stated in [PR07, Lemma 6.1,
Lemma 6.2] and proved using the same framework.

Lemma 2.21. Let K be some number field of degree n, let O be an order, and I a fractional ideal
over O. Then, in any `p norm, for p ∈ [1,∞]:

n1/p ·N(I)1/n ≤ λp1(I) ≤ n1/p ·N(I)1/n ·
√

∆O
1/n
.

As a corollary we get the following bound of the smoothing parameter, which is a generalization
of [PR07, Lemma 6.5] in the case of fractional ideals over orders and its proof is the same.

Lemma 2.22. Let K be some number field of degree n, let O be an order and I a fractional ideal

over O. Then ηε(I) ≤ N(I)1/n ·∆1/n
O , where ε = 2−n.

All the computational problems defined for general lattices are immediately specialized to ideal
lattices. We use standard asymptotic convention where complexity is measured respective to some
implicit security parameter which is polynomially related to n. That is, we always consider an
infinite ensemble of number fields with asymptotically increasing degree n, and measure all other
values as a function of n.

2.3.5 Duality

Let K be a number field, and O ⊂ K be some order. For any fractional ideal I of O, its dual is
defined as

I∨ = {x ∈ K | Tr(xI) ⊂ Z} .

It follows that I∨ is a fractional ideal and that σ(I∨) = σ(I)∗. We recall that the dual of the ring
of integers O∨K is called co-different ideal and its norm is N(O∨K) = ∆K

−1.
We mention some useful properties regarding the duals of ideals.

Lemma 2.23 ([Conb, Section 3][Cona, Section 4]). Let K be a number field and O ⊂ K an order.
For any I,J fractional ideals of O the following hold:

1. (I∨)∨ = I.

2. I ⊂ J ⇐⇒ J ∨ ⊂ I∨.

3. (I + J )∨ = I∨ ∩ J ∨.

4. (I ∩ J )∨ = I∨ + J ∨.

5. I · I∨ = O∨ if {x ∈ K| xI ⊂ I} = O. If O = OK , the equality holds for any ideal I.

6. Further assuming that I is invertible, (IJ )∨ = I−1J ∨.

From the last item, the following is an immediate corollary:
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Corollary 2.24. Let I be a fractional ideal over an order O and let 0 6= α ∈ K be a nonzero field
element. Then

(αI)∨ =
1

α
I∨ .

The dual of an order is not necessarily an invertible ideal. However there are some special cases
where it is, described in the lemma below:

Lemma 2.25 ([Conb, Section 3]). If O = Z[x]/(f) for some monic irreducible f ∈ Q[x], then
O∨ = 1

f ′(α)O where α ∈ C is some root of f . Therefore (O∨)−1 = f ′(α)O and in particular O∨ is
an invertible O-ideal.

We now give a simple lemma involving the smoothing parameter of product of ideals.

Lemma 2.26. Let O be an order in a number field K. Let I, J be fractional O-ideals. Assume
that I is invertible. Then, for every ε > 0,

ηε(J )

λ∞1 (I−1)
≤ ηε(I · J ) ≤ λ∞1 (I) · ηε(J )

where λ∞1 denotes the length of the shortest vector in the lattice with respect to the `∞-norm.

Proof. By the definition of the smoothing parameter, and Lemma 2.23,

ηε(I · J ) = arg min
s>0

{
ρ1/s

(
(I · J )∨\{0}

)
≤ ε
}

= arg min
s>0

{
ρ1/s

((
I−1 · J ∨

)
\{0}

)
≤ ε
}

Let v ∈ I be such that ‖v‖ = λ∞1 (I). Since vO ⊆ I, then v−1O ⊇ I−1, and so v−1J ∨ ⊇ I−1 · J ∨.
Hence, we get that,

arg min
s>0

{
ρ1/s

((
I−1 · J ∨

)
\{0}

)
≤ ε
}
≤ arg min

s>0

{
ρ1/s

((
v−1 · J ∨

)
\{0}

)
≤ ε
}
.

For every x ∈ J ∨, we have that∥∥v−1x
∥∥ ≥ min

i∈[n]

∣∣σi(v−1)
∣∣ ‖x‖ = ‖x‖ / ‖v‖∞ = ‖x‖ /λ∞1 (I) .

Thus,

arg min
s>0

{
ρ1/s

((
v−1 · J ∨

)
\{0}

)
≤ ε
}
≤ arg min

s>0

{
ρλ∞1 (I)/s

(
J ∨\{0}

)
≤ ε
}
,

and the upper bound follows.
Using this bound we obtained, we have ηε(I−1 · IJ ) ≤ λ∞1 (I−1) · ηε(IJ ). By reversing the

inequality we get the lower bound.

2.3.6 The Conductor Ideal

In this section we recall the definition of the conductor ideal as well as a few basic facts. We note
that there is a much richer theory and we only mention the properties used in this work. See [Cona]
for more details.
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Definition 2.27. The conductor of an order O is defined to be the ideal

CO = (O : R) = (R∨ : O∨) .

It is the maximal set that is both an OK and an O-ideal.

We mention here properties of the O ideals coprime to the conductor ideal. We begin with
stating the following theorem which shows that R ideals which are coprime to the conductor ideal
are in 1-to-1 correspondence to O ideals which are coprime to the conductor ideal and then we
present some corollaries of this result.

Theorem 2.28 ([Cona, Theorem 3.8]). The nonzero ideals over O coprime to CO and the nonzero
ideals over R coprime to CO are in multiplicative bijection by mapping I 7→ IR and J 7→ J ∩ O.

Corollary 2.29 ([Cona, Corollary 3.10]). If qR is coprime to the conductor, then qR ∩ O = qO.

Corollary 2.30 ([Cona, Corollary 3.11]). The ideals over O coprime to CO have unique factoriza-
tion into prime ideals over O.

We conclude the discussion on the conductor ideal with the following lemma.

Lemma 2.31. C−1
O R∨ = RO∨, where C−1

O is the inverse of the conductor ideal as R ideal.

Proof. By the definition of the dual of an ideal we have: (RO∨)∨ = {x ∈ K| Tr(xRO∨) ⊆ Z} =
{x ∈ K| xR ⊆ (O∨)∨} = {x ∈ K| xR ⊆ O} = CO. Hence C∨O = RO∨, so C−1

O R∨ = RO∨.

Remark 2.32. By the proof of Lemma 2.31, one can get that R∨ = CORO∨ = COO∨.

2.3.7 Cancellation of Ideals

The next lemma is a generalization of [LPR10, Lemma 2.15]. It is crucially used to make a BDD
instance and a DGS sample into an Order-LWE instance in the hardness result in Section 3.
Generally speaking, the lemma allows us to cancel invertible factors in the quotient IL/IJL to
yield an isomorphism onto L/JL by multiplying by an appropriate “tweak” factor. The proof of
the lemma uses a generalization of the Chinese Remainder Theorem adapted for ideals over orders.

Theorem 2.33 (Chinese Remainder Theorem). Let I be a fractional O-ideal, and let p1, . . . , pk be
k distinct prime ideals in O. The canonical O-module homomorphism

I/
(∏

pi

)
I →

⊕
I/piI

is an isomorphism.

Lemma 2.34. Let I,J be integral ideals in an order O and let L be a fractional O-ideal. Assume
that I is invertible. Given the associated primes of J , p1, p2, · · · , pk, and an element t ∈ I\

⋃k
i=1 piI

the map

θt : L/JL → IL/IJL
x 7→ t · x

is well-defined, and induces an isomorphism of O-modules. Moreover, θt is efficiently inverted given
I,J ,L and t. Finally, such t can be computed given I and p1, p2, · · · , pk.
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Proof. Assume that t further satisfies that tI−1 + J = O. Therefore tL + IJL = IL, and the
multiplication by t map induces an O-module isomorphism

L
JL

∼→ tL
tJL

=
tL

tL ∩ IJL
' tL+ IJL

IJL
=
IL
IJL

where for the first equality we used the fact that tI−1 and J are coprime and hence tJL =
(tI−1 ∩J )IL = tL∩IJL. The isomorphism above is the inclusion map used in the second law of
isomorphism and for the last equality we used tL+ IJL = IL.

We now show that the condition t ∈ I\
⋃k
i=1 piI implies that tI−1 + J = O. If it is not the

case, then tI−1 + J must be included in a maximal ideal m of O. Hence tI−1 and J are included
in m. The last inclusion suggests that m is an associated prime of J , so it is a prime ideal pi.
Therefore, the first inclusion suggests that t belongs to piI, which comes in contradiction with the
choice of t.

Finally we show how to compute such t. Since I is invertible and pi ( O, the quotient I/piI 6= 0.
For each i ∈ [k], choose a non-zero ti ∈ I/piI. Let t ∈ I be the pre-image of (t1, t2, · · · , tk) ∈⊕
I/piI, under the Chinese remainder theorem. It is clear that t /∈

⋃k
i=1 piI.

2.4 The Ring-LWE Problem

Let q ≥ 2 be a (rational) integer. Let T = KR/R
∨ denote a torus in the Minkowski space. For any

fractional ideal I of R, let Iq := I/qI.

Definition 2.35 (Ring-LWE Distribution). For s ∈ R∨q , referred to as “the secret”, and an error
distribution ψ over KR, a sample from the R-LWE distribution As,ψ over Rq × T is generated by

sampling a
$← Rq, e← ψ, and outputting (a, b = a · s/q + e mod R∨).

Definition 2.36 (Ring-LWE, Average-Case Decision Problem). Let ϕ be a distribution over R∨q ,
and let Υ be a distribution over a family of error distributions, each over KR. The average-case
Ring-LWE decision problem, denoted R-LWEq,ϕ,Υ, is to distinguish between independent samples
from As,ψ for a random choice of a “secret” s←ϕ, and an error distribution ψ←Υ, and the same
number of uniformly random and independent samples from Rq × T.

We recall the error distribution defined in [PRSD17, Definition 6.1]. We stick to the notation
used in the reference.

Definition 2.37. Fix an arbitrary f(n) = ω(
√

log n). For a real α > 0, a distribution sampled from
Υα is an elliptical Gaussian Dr, where r ∈ G is sampled as follows: for each 1 ≤ i ≤ s1, sample
xi ← D1 and set r2

i = α2(x2
i + f2(n))/2. For each s1 + 1 ≤ i ≤ s1 + s2, sample xi, yi ← D1/

√
2 and

set r2
i = r2

i+s2
= α2(x2

i + y2
i + f2(n))/2.

Theorem 2.38 ([PRSD17, Theorem 6.2]). Let K be an arbitrary field of degree n and R = OK
its ring of integers. Let α = α(n) ∈ (0, 1), and let q = q(n) ≥ 2 be a (rational) integer such that
αq ≥ 2ω(1). There is a polynomial-time quantum reduction from I(R)-DGSγ to R-LWEq,U(R∨q ),Υα,
where

γ = max
{
η (L) ·

√
2/α · ω(1),

√
2n/λ1

(
L∨
)}

.
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3 Order-LWE: Definition, Variants and Worst-Case Hardness

The ring of integers R of a number field K plays a central role in the definition and use of the
Ring-LWE problem. However, the ring of integers is a special member of a family of rings in a
number field, known as orders. We present a generalization of Ring-LWE which we call Order-
LWE, and show that similar to Ring-LWE it also enjoys worst-case hardness, but with respect to a
different set of lattices. Generalizing the problem to the setting of orders also exposes a difference
between two variants of Ring-LWE that are indeed identical when considering the ring of integers,
but are distinct for general orders. Some background on algebraic number theory and particularly
on orders can be found in Section 2.3.

In the original R-LWE definition [LPR10], the secret s was sampled from the dual of the ring
of integers R∨ (modulo q), and the coefficients a were sampled from R (modulo q). We similarly
define O-LWE as a sequence of noisy linear univariate equations where the secret is sampled from
O∨ and the coefficients are sampled from O. As pointed out in [LPR10], a dual version where s is
sampled from R and a from R∨ can also be defined, and is equivalent to the original one. Indeed
some followup works used the alternative definition (e.g. [GHPS13]). In the context of orders, we
show that this distinction can make a difference. We denote the dual version by O∨-LWE. While
we are able to show worst-case hardness reductions for both O-LWE and O∨-LWE, the classes of
lattices for which worst-case hardness holds is different for the two variants; one is the dual of the
other. Our definition also generalizes R-LWE in another dimension, by allowing to take equations
modulo arbitrary ideals, and not necessarily modulo (an ideal generated by) a rational integer q.
In this section we define the variants of Order-LWE and present the worst-case hardness results.

To set up the problems, let K be a number field, and let O be an order in it. Let Q be an
integral O-ideal, and let u ∈ (O : Q) := {x ∈ K : xQ ⊆ O}. For fractional O-ideals J and L,
define JL := J /JL, and let TO∨ := KR/O∨.

Definition 3.1 (O-LWE Distribution). For s ∈ O∨Q and an error distribution ψ over KR, a sample

from the O-LWE distribution Os,ψ,u over OQ × TO∨ is generated by sampling a
$← OQ, e← ψ and

outputting (a, b = u · (a · s) + e mod O∨).

Definition 3.2 (O-LWE, Average-Case Decision Problem). Let ϕ be a distribution over O∨Q and
let Υ be a distribution over a family of error distributions, each over KR. The average-case O-
LWE decision problem, denoted O-LWE(Q,u),ϕ,Υ, is to distinguish between independent samples from
Os,ψ,u, for a random choice of a “secret” s←ϕ, and an error distribution ψ←Υ, and the same
number of uniformly random and independent samples from OQ × TO∨.

When the secret is sampled from the uniform distribution over O∨Q, we sometimes omit it from
the subscript. Observe that when O = OK , Q = qOK and u = 1/q, the O-LWE problem coincides
with the Ring-LWE problem.

In our definition of an O-LWE distribution, the secret s ∈ O∨Q and a ∈ OQ. One can also
consider a dual variant of O-LWE where a ∈ O∨Q and s ∈ OQ. In general, these two variants are
not equivalent, unlike in the case of Ring-LWE (see Remark 3.5), but for special orders O they are,
namely for orders O such that their duals O∨ are invertible as O-ideals. For example, if f is the
minimal polynomial of the number field K, then the ring O = Z[x]/(f) is an order in K, whose
dual is invertible according to Lemma 2.25.
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Definition 3.3 (O∨-LWE Distribution). For s ∈ OQ and an error distribution ψ over KR, a

sample from the O∨-LWE distribution O∨s,ψ,u over O∨Q × TO∨ is generated by sampling a
$← O∨Q,

e← ψ, and outputting (a, b = u · a · s+ e mod O∨).

Definition 3.4 (O∨-LWE, Average-Case Decision Problem). Let ϕ be a distribution over OQ,
and let Υ be a distribution over a family of error distributions, each over KR. The average-case
O∨-LWE decision problem, denoted O∨-LWE(Q,u),ϕ,Υ, is to distinguish between independent samples
from O∨s,ψ,u, for a random choice of a “secret” s←ϕ, and an error distribution ψ←Υ, and the same
number of uniformly random and independent samples from O∨Q × TO∨.

As before, when the secret is sampled from the uniform distribution over OQ, we sometimes
omit it from the subscript. Similar to the case of O-LWE, when O = OK , Q = qOK and u = 1/q,
the O∨-LWE problem coincides with the variant of the Ring-LWE problem where a is sampled
from R∨/qR∨ and s is sampled from R/qR.

Remark 3.5. The O-LWE problem and the O∨-LWE problem are equivalent as long as O∨ is an
invertible O-ideal. By Lemma 2.34, the invertibility of O∨ yields an isomorphism from O∨Q to OQ
induced by multiplication by t ∈ (O∨)−1. Therefore, the samples of the form (a, b = u · a · s +
e mod O∨) are transformed to (a′ = a · t, b′ = b = u · a′ · s′ + e mod O∨), where a′ = a · t ∈ OQ and
s′ = s · t−1 ∈ O∨Q. In the particular case of O being the ring of integers, we obtain the equivalence
between Ring-LWE and the variant of Ring-LWE previously described.

The O∨-LWE definition is inspired by [GHPS13], where the authors show that for the variant
of Ring-LWE with a from the dual and s from the ring, problem becomes harder as the number
field grows. In Section 5, we prove an analogue of this result for the set of orders under inclusion,
i.e., the bigger the order is, the harder the O∨-LWE problem is. Since the ring of integers is the
maximal order in the field, the Ring-LWE problem is harder than any O∨-LWE problem.

3.1 Worst-Case Hardness for O-LWE and O∨-LWE

We now state the hardness results of the O-LWE and O∨-LWE problems and derive the hard-
ness of the Ring-LWE problem (see Theorem 2.38) as a special case. We begin by generalizing
Definition 2.37 of the error distribution Υα to be elliptical according to u.

Definition 3.6. Fix an arbitrary f(n) = ω(
√

log n). For α > 0 and u ∈ K, a distribution sampled
from Υu,α is an elliptical Gaussian Dr, where r ∈ G is sampled as follows: for i = 1, . . . , s1, sample
xi ← D1 and set r2

i = α2(x2
i + (f(n) · |σi(u)| / ‖u‖∞)2)/2. For i = s1 + 1, . . . , s1 + s2, sample

xi, yi ← D1/
√

2 and set r2
i = r2

i+s2
= α2(x2

i + y2
i + (f(n) · |σi(u)| / ‖u‖∞)2)/2.

Note that when u ∈ K satisfies σ1(u) = . . . = σn(u) (and therefore is rational), the distribution
Υu,α degenerates to Υα. Otherwise, Υu,α is strictly narrower than Υα.

Recall that I(O) is the set of invertible fractional ideals over the order O. Our hardness results
for O-LWE and O∨-LWE are as follows.

Theorem 3.7. Let K be an arbitrary number field of degree n and O ⊂ K an order. Let Q be
an integral O-ideal, u ∈ (O : Q) and let α ∈ (0, 1) be such that α/ ‖u‖∞ ≥ 2 · ω(1). There is a
polynomial-time quantum reduction from I(O)-DGSγ to O-LWE(Q,u),Υu,α, where

γ = max
{
η(QL) ·

√
2 ‖u‖∞ /α · ω(1),

√
2n/λ1

(
L∨
)}

. (1)
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Theorem 3.8. Let K be an arbitrary number field of degree n and O ⊂ K an order. Let Q be
an integral O-ideal, u ∈ (O : Q) and let α ∈ (0, 1) be such that α/ ‖u‖∞ ≥ 2 · ω(1). There is a
polynomial-time quantum reduction from I(O) · O∨-DGSγ to O∨-LWE(Q,u),Υu,α, where

γ = max
{
η(QL) ·

√
2 ‖u‖∞ /α · ω(1),

√
2n/λ1

(
L∨
)}

. (2)

We note that the class I(O) · O∨ is exactly the class of all lattices whose dual is in I(O). Thus
we see that the effect of changing the domains of a and s to the dual of their previous domains is
that the class of lattices for which the hardness result applies is the dual of the previous class. The
classes are the same if O∨ itself is an invertible ideal in O. An equivalence between the problems
can be shown in this case directly, similar to the setting in Ring-LWE.

Remark 3.9. Consider the special case where O = R, the ideal Q = qR and u = 1/q. Then
the O∨-LWE(Q,u),Υu,α is equivalent to the R-LWEq,Υα distribution as mentioned in Remark 3.5.
Moreover, the sets I(R) ·R∨ and I(R) are equal as all fractional R-ideals are invertible, and finally
η(QL) ‖u‖∞ = η(L) shows that the parameters γ from Theorem 2.38, Theorem 3.8 and Theorem 3.7
coincide.

Remark 3.10. Another important special case is the R-LWE distribution with an ideal modulus
Q in place of the integer modulus qR. Formally, we let O be R, choose u ∈ (R : Q) = Q−1 such
that ‖u‖∞ = λ∞1 (Q−1) and α <

√
log n/n. Then the theorem above implies a reduction from I(R)-

DGSγ to R-LWE(Q,u),Υu,α with γ greater than at most ∆
1/n
K times the γ obtained when Q = qR

and u = 1/q, as in Theorem 2.38. Indeed, the lower bound in Lemma 2.26 implies that the first
term in Eq. (1) is at least η(L) ·

√
2/α · ω(1), which is greater than the second term as long as

α <
√

log n/n, since η(L) > ω(
√

log n)/λ1(L∨) (Lemma 2.7). Now the first term in (1) is at most

∆
1/n
K · η(L) ·

√
2/α · ω(1), according to Lemma 2.21 and the upper bound from Lemma 2.7.

3.2 Proving Worst-Case Hardness

We present a proof for Theorem 3.7. The proof for Theorem 3.8 is completely analogous and follows
by replacing the point of reference from lattices in I(O) to their dual.

Our proof of Theorem 3.7 follows the blueprint analogous to the proofs of LWE [Reg05], and
R-LWE [LPR10, PRSD17], and is in particular similar to the latter. A key lemma in the settings
of R-LWE is a classical reduction from GDP (see Definition 2.19) to R-LWE, which uses Gaussian
samples. We provide a more general reduction to O-LWE, based on Lemma 2.34 which generalizes
the “cancellation of ideals” lemma from [LPR10, Lemma 2.15] to the setting of orders, as opposed
to the ring of integers. Note that we can assume that the associated primes of the modulus Q are
known, since ideal factorization is solvable in quantum polynomial time.

The proof of the theorem follows from the following iterative step. For a real number r > 0, let
Wr ⊂ G be a subset of polynomial size such that each coordinate of an element in it is at least r.
For the exact definition, see [PRSD17, Definition 6.4].

Lemma 3.11. There exists an efficient quantum algorithm that given an oracle that solves O-
LWE(Q,u),Υu,α on input an integral O-ideal Q, u ∈ (O : Q), and a real number α ∈ (0, 1); along

with a fractional ideal L ∈ I(O), a real number r ≥
√

2 · η(QL) such that r′ := r · ‖u‖∞ /α · ω(1) ≥√
2n/λ1 (L∨) and polynomially many samples from the discrete Gaussian distribution DL,r for each

r ∈Wr, and a vector r′ ∈ G where r′ ≥ r′, outputs an independent sample from DL,r′.
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Theorem 3.7 follows from the above lemma in the same way as in previous works. We begin
with samples from a wide enough Gaussian for each r ∈ Wr, where r ≥ 22nλn(L). This bound
ensures that sampling from DL,r is an efficient process (see [Reg05, Lemma 3.2]). We iteratively run
the algorithm described in the lemma above to generate samples from DL,r′ , for each r′ ∈Wr′ . We
stop when we obtain samples with the desired Gaussian parameter s ≥ γ, where γ in the statement
of Theorem 3.7 corresponds to values r, r′ in Lemma 3.11.

The proof of Lemma 3.11 follows from combining the following two lemmas. The first is a
classical reduction from GDP (Definition 2.19) to O-LWE, using Gaussian samples. This is a
generalization of [PRSD17, Lemma 6.6].

Lemma 3.12. There exists a probabilistic polynomial-time (classical) algorithm that given an oracle
that solves O-LWE(Q,u),Υu,α on input an integral ideal Q, u ∈ (O : Q) and a real number α ∈
(0, 1); along with a fractional ideal L ∈ I(O), a real r ≥

√
2 · η(QL), and polynomially many

samples from the discrete Gaussian distribution DL,r for each r ∈ Wr, solves GDPL∨,g for any
g = o(1) · α/(

√
2r · ‖u‖∞).

The second is a quantum algorithm that produces narrower Gaussian samples given a GDP
oracle.

Lemma 3.13 ([PRSD17, Lemma 6.7]). There is an efficient quantum algorithm that, given any
n-dimensional lattice L, a real number g < λ1(L∨)/(2

√
2n), a vector r ≥ 1, and an oracle that

solves GDPL∨,g (with all but negligible probability), outputs an independent sample from DL,r/(2g).

3.3 Proof of Lemma 3.12

The proof of the lemma is similar to the proof of [PRSD17, Lemma 6.6] and is based on parts of it.
We begin with a reduction that translates BDD instances into O-LWE samples. This reduction is
a generalization of [PRSD17, Lemma 6.8], which in turn is an adaptation of [LPR10, Lemma 4.7].
The proof is almost identical to that of [LPR10, Lemma 4.7] and [LPR10, Lemma 4.8], except that
in [LPR10, Lemma 4.8] we can replace the use of [Reg05, Claim 3.9] with [PRSD17, Theorem 3.1]
or [Lan14, Lemma 1.42] for analyzing the sum of a discrete elliptical Gaussian and a continuous
Gaussian. The novelty comes in using the cancellation lemma adapted to the case of fractional
ideals over orders (Lemma 2.34).

Lemma 3.14. There is a probabilistic polynomial time algorithm that takes as input: an integral
ideal Q, u ∈ (I : Q), a fractional ideal L ∈ I(O), a coset e + L∨ and a bound d ≥ ‖e‖∞, a real
number r ≥

√
2 · η(QL), and polynomially many samples from the discrete Gaussian distribution

DL,r for some r ≥ r, and outputs samples that are statistically close to the O-LWE distribution
Os,u,Dr′ , where the coordinates of r′ are given by (r′i)

2 := (ri |σi(e)σi(u)|)2 + (rd ‖u‖∞)2.

Proof. By a scaling argument, we may assume that L ⊆ O is an integral ideal. Let y = x + e be
a point in H with x ∈ L∨ and ‖e‖∞ ≤ d. We input y as a representative of the coset L∨ + e in
the algorithm. The key point that makes the algorithm work is the existence of an element t ∈ L,
guaranteed by Lemma 2.34, that induces the following isomorphisms

θt : O/QO ·t−→ LO/QLO = L/QL

θt : L∨/QL∨ ·t−→ LL∨/QLL∨ = O∨/QO∨
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Recall that we assumed full knowledge of the set of associated primes of Q when we fixed the
modulus. This implies that θt is an efficiently computable map.

The algorithm described in the statement works as follows: on input z ← DL,r and an error
term e′ ← Drd‖u‖∞ , it outputs the following tuple

(a = θt
−1(z mod QL), b = u · z · y + e′ mod O∨) ∈ OQ × TO∨

We show that (a, b) is indeed an O-LWE sample, as claimed. The distribution DL,r mod QL
is statistically close to the uniform distribution over LQ by Lemma 2.4, as r ≥ η(QL). Since θ−1

t

induces a bijection between L/QL and O/QO, the variable a is distributed statistically close to
U(OQ).

In order to analyze the marginal distribution of b conditioned on some value of a, observe that

b = u · z · y + e′ = u · z · x+ u · z · e+ e′ mod O∨ .

Rewriting the first term
u · z · x = u · (t−1z) · (tx) mod O∨

we get that s := t ·x mod QO∨ is a well-defined element in O∨Q. Also, a = z · t−1 mod QO. Since
O∨ is a fractional O-ideal and u ∈ (O : Q), the first term of b, namely u · z · x = u · a · s mod O∨
is well-defined. Finally, we analyze the error term u · z · e + e′. Assume that e 6= 0, otherwise the
conclusion holds trivially. Write u · z · e + e′ as (z + e′

ue) · ue, and observe that conditioned on a,

the distribution of z is DQL+c,r for c = θt(a). As e′ ← Drd‖u‖∞ and ‖e‖∞ ≤ d, the term e′

ue ← Dt,

where t =
(

rd‖u‖∞
|σi(u)||σi(e)|

)
i
> r. Let e′

ue = f + g, where f ← Dr and g ← Dt′ with t′ defined as

t
′2
i = t2

i − r2, are sampled from independent continuous Gaussian distributions. Thus we have,(
z +

e′

ue

)
· ue = (z + f + g) · ue.

Since r ≥ 2η(QL) and r ≥ r, Theorem 2.6 implies that the distribution of z+f is statistically close
to D

(
√

r2i+r
2)i
. Therefore, the distribution of z+ f + g is statistically close to D(√

r2i+
(rd‖u‖∞)2

|σi(e)σi(u)|2
)

)
i

,

thus implying that u · z · e+ e′ is sampled from a distribution statistically close to Dr′ .

Note that when y is sampled as in GDPL∨,g with g := α/(
√

2 · r · ‖u‖∞), and d := g · f(n), for
some function f , the above lemma yields the error distribution as in Definition 3.6.

Here we highlight the only difference between the hardness proofs of O-LWE and O∨-LWE.
This consists in applying Lemma 2.34 differently in the BDD-to-O∨-LWE reduction (Lemma 3.14);
namely the maps in this proof will be:

θt : O∨/QO∨ ·t−→ L′O∨/QL′O∨ = L/QL

θt : L∨/QL∨ ·t−→ L′L∨/QL′L∨ = O/QO,

where L = L′ · O∨ ∈ I(O) · O∨ for L′ an invertible fractional O-ideal and t ∈ L′.

The final part of the proof follows from the following lemma.
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Lemma 3.15 ([PRSD17, Adaptation of Lemma 6.6]). There exists a probabilistic polynomial-
time algorithm that given an oracle O-LWE solver and inputs as in Lemma 3.12, and an oracle
that transforms a GDPL∨,g into samples from Os,u,Dr′ for some s ∈ O∨Q, solves GDPL∨,g. Here,

g = o(1) · α/(
√

2r · ‖u‖∞) and r′i = ti · |σi(e)|2 + v, with ti dependent on ri and v is independent of
i.

4 New Worst-Case Hardness for Polynomial-LWE

The Polynomial Learning with Errors problem, or PLWE in short, introduced by Stehlé et al. [SSTX09]9

is closely related to both the Ring-LWE and Order-LWE problems. PLWE has an advantage of
having very simple interface which is useful for manipulations and thus also for applications and
implementations. In a recent work, Rosca, Stehlé and Wallet [RSW18] showed a reduction from
worst-case ideal-lattice problems to PLWE. In this section, we show that the hardness of O-LWE
that we proved in Section 3 implies a different worst-case hardness result for PLWE, essentially
by relating it to a different class of lattices than those considered in [LPR10, PRSD17]. In what
follows we start with an informal description of the PLWE problem, the current hardness result of
PLWE, our result and a comparison. This is followed by a more detailed and formal treatment.

4.1 Overview

Consider a number field K defined by an irreducible polynomial f , so that K = Q[x]/(f). Recall
that the Ring-LWE distribution involves elements a and s of the ring of integers R := OK and
its dual R∨, respectively. The O-LWE distribution is defined similarly, but with a and s coming
from an arbitrary order in K and its dual, respectively. In the PLWE setting, both a and s are
elements of the ring O := Z[x]/(f), i.e. polynomials with integer coefficients in the number field.
There are number fields for which R 6= O, however it is always true that O is an order of K. We
highlight that in PLWE, unlike in Ring-LWE and Order-LWE, both a and s are elements of the
order itself.10

The aforementioned [RSW18] presented a reduction from Ring-LWE to PLWE (see Theo-
rem 4.2 for the formal statement). Their reduction is based on the so called “Cancellation Lemma”
(Lemma 2.34) which, informally, allows to “reshape” orders and ideals at the cost of increasing
the size of the error. As mentioned above, in PLWE both a and s are elements of O, whereas in
Ring-LWE a and s are elements of R and R∨ respectively. The reduction of [RSW18] applies the
Cancellation Lemma to reshape both R and R∨ into O. We mention that using the Cancellation
Lemma to reshape ideals of the ring of integers R is a known technique (see [Pei16, Section 2.3.2]).
The novel contribution of [RSW18] is both in analyzing the increase of the error and in reshaping
ideals of one order into another.

We suggest an alternative reduction from O-LWE to PLWE in Theorem 4.4. Our reduction is
also based on the reshaping procedure, but with a single application of the Cancellation Lemma.
More specifically, we only need to reshape O∨ into O. We show below that our reduction increases

9As “ideal-LWE”. The name PLWE was used in [BV11a].
10Another difference between Ring/Order-LWE and PLWE is that in the latter, the error distribution is specified

using the so called coefficients embedding, and not the canonical embedding. For the sake of simplicity, we focus on
a variant of PLWE which uses the canonical embedding, (called PLWEσ in [RSW18]) but we call it likewise, and we
avoid the distinction between the embeddings. Both hardness results in this section can be further extended to the
hardness of PLWE.
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the error by a smaller factor than in the reduction of [RSW18] from Ring-LWE. See Proposition 4.6
for the formal statement.

4.2 Hardness of PLWE

The formal definitions and hardness results follow, along with a more detailed and formal compar-
ison of the results. We let K be a number field of degree n defined by a polynomial f . We denote
O := Z[x]/(f), and R := OK . The PLWE distribution and problem are defined as follows.

Definition 4.1 (PLWE Distribution and Problem [SSTX09]). For a rational integer q ≥ 2, a ring
element s ∈ Oq, and an error distribution ψ over KR/O, the PLWE distribution over Oq ×KR/O,

denoted by Ps,ψ, is sampled by independently choosing a uniformly random a
$← Oq and an error

term e←ψ, and outputting (a, b = (a · s)/q + e mod O).
For a distribution Υ over a family of error distributions, each over KR/O, the PLWE decision

problem, denoted PLWEq,Υ, is to distinguish between independent samples from Ps,ψ for a random

choice of s
$← Oq, and an error distribution ψ←Υ, and the same number of uniformly random and

independent samples from Oq ×KR/O.

For a distribution ϕ and an element t ∈ K we denote by t · ϕ the distribution obtained by
sampling an element x←ϕ and outputting t · x. Similarly, for a family distribution Υ, we denote
by t ·Υ the family obtained by multiplying each distribution by t.

We now turn to present and compare the two worst-case to average-case reductions. Recall
the definition of the conductor ideal, denoted by CO, from Definition 2.27. [RSW18] showed the
following reduction from Ring-LWE to PLWE.

Theorem 4.2 ([Pei16, Section 2.3.2][RSW18, Theorem 4.2]). Let q ≥ 2 be some rational integer
such that qR + CO = R, and let Υ be a distribution over a family of error distributions, each over
KR/O. There exists a probabilistic polynomial time reduction from R-LWEq,Υ to PLWEq,t1t22·Υ,

where t1 ∈ (R : R∨) \
⋃
i pi(R : R∨) and t2 ∈ CO \

⋃
i piCO, where pi’s are the prime ideals of qR.

Combining the reduction above with the hardness of Ring-LWE stated in Theorem 2.38 we get
the following:

Corollary 4.3 (Worst-Case Hardness of PLWE from Ring-LWE). With the same notations as
above, let α ∈ (0, 1) such that αq ≥ 2

∥∥t1t22∥∥∞ ω(1). There is a reduction from I(R)-DGSγ to
PLWEq,Υα for any

γ = max
{
η (L) ·

√
2/α ·

∥∥t1t22∥∥∞ · ω(1),
√

2n/λ1

(
L∨
)}

.

We now state the hardness result based on the hardness of O-LWE. First, using a reduction
similar to the one from [Pei16, Section 2.3.2], we obtain an analogous reduction from O-LWE to
PLWE.

Theorem 4.4. Let q ≥ 2 be some rational integer, and let Υ be a distribution over a family of
error distributions, each over KR/O. There exists a probabilistic polynomial time reduction from
O-LWEq,Υ to PLWEq,t·Υ, where t ∈ (O : O∨) \

⋃
i p̃i(O : O∨), where p̃i’s are the associated primes

of qO.
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Proof. Recall that O = Z[x]/f , and so by Lemma 2.25 O∨ is an invertible O-ideal. Using
Lemma 2.34, there exists an element t ∈ (O : O∨) \

⋃
i p̃i(O : O∨) such that the mapping x 7→ t · x

is an isomorphism O∨/qO∨ → O/qO.
The reduction follows from the following efficient transformation that takes as input a pair

(a, b) ∈ Oq ×KR/O∨ and outputs another (a′, b′) ∈ Oq ×KR/O. We show that this transformation
maps the uniform distribution over Oq ×KR/O∨ to the uniform distribution over Oq ×KR/O, and
Os,ϕ to Pt·s,t·ϕ for any element s ∈ O∨/qO∨ and distribution ϕ. Note that in the latter, if s was
sampled uniformly over O∨/qO∨, then by our choice of t, t · s is distributed uniformly over O/qO.

The transformation is the following. Given a pair (a, b) ∈ Oq × KR/O∨, the transformation
outputs

a′ = a, b′ = t · b mod O .

Note that if (a, b) is distributed uniformly over O × KR/O∨ then (a′, b′) is distributed uniformly
over O×KR/O, by the choice of t. On the other hand, if (a, b = 1/q ·a ·s+e mod O∨) are sampled
from Os,ϕ, then the distribution of (a′, b′ = 1/q · a · (t · s) + t · e mod O) is Pt·s,t·ϕ.

Now, using the hardness of O-LWE from Theorem 3.7 we obtain:

Corollary 4.5 (Worst-Case Hardness of PLWE from Order-LWE). Let q ≥ 2 be some rational
integer, and let α ∈ (0, 1) be such that αq ≥ 2‖t‖∞ω(1). Then there is a reduction from I(O)-DGSγ
to PLWEq,Υα for any

γ = max
{
η (L) ·

√
2/α · ‖t‖∞ · ω(1),

√
2n/λ1

(
L∨
)}

.

4.3 Comparison

Both Corollary 4.3 and Corollary 4.5 relate PLWE to worst-case ideal lattice problems. The former
result involves invertible R-ideals, whereas the family of lattices in the latter is the set of invertible
O-ideals. These two families are disjoint, as any ideal can be invertible in at most a single order. In
this regard, the two results are incomparable. We note that despite being disjoint, they are known
to be related by the conductor ideal, see [Cona] for reference. We leave exploring this connection
to future work.

Another parameter for comparison is the increase of the error in both hardness results. In the
proposition below we show that the element t from Theorem 4.4 can be chosen to be smaller than
the product t1t

2
2 from Theorem 4.2. Before doing so we give a more precise description of the

elements t, t1 and t2 in the case where qR is coprime to the conductor.
Let q ≥ 2 be some rational integer such that qR + CO = R, and let qR =

∏k
i=1 p

ei
i be its

factorization into prime ideals in R. Notice that also the primes pi are coprime to the conductor.
By Corollary 2.29, qO = qR ∩ O and coprime to the conductor as O ideal. By Theorem 2.28 and
Corollary 2.30, we get that qO = (

∏k
i=1 p

ei
i ) ∩ O =

∏k
i=1 (pi ∩ O)ei is the unique factorization of

qO into prime ideals in O. So the associated primes of qO, p̃i, are actually pi ∩O. In this setting,
the elements t, t1, t2 are any elements satisfying the following conditions:

1. t ∈ (O : O∨) and t /∈ (pi ∩ O)(O : O∨) for all i ∈ [k].

2. t1 ∈ (R : R∨) and t1 /∈ pi(R : R∨) for all i ∈ [k].

3. t2 ∈ CO and t2 /∈ piCO for all i ∈ [k]. Notice that t22 satisfies same properties.
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Proposition 4.6. With the same notations as above, for any t1 and t2 satisfying conditions 2
and 3, the product t∗ = t1t

2
2 satisfies condition 1. In particular, letting t to be the shortest satisfying

condition 1, and t1 and t2 satisfying conditions 2 and 3, respectively, such that t1t
2
2 is the shortest,

we have that ‖t‖∞ ≤
∥∥t1t22∥∥∞.

Proof. Recall that CO = (O : R) = (R∨ : O∨), by Definition 2.27. Therefore

C2
O(R : R∨) = (R∨ : O∨)(O : R)(R : R∨) ⊆ (R∨ : O∨)(O : R∨) ⊆ (O : O∨) ,

and so t∗ = t1t
2
2 ∈ (O : O∨).

It is now sufficient to prove that t∗ is not in any (pi∩O)(O : O∨), which would be equivalent to
t∗O∨ not being included in any pi∩O. Assume there exists an i ∈ [k] for which t1t

2
2O∨ ⊆ pi∩O. Then

t1t
2
2O∨R ⊆ (pi ∩O)R = pi, according to Theorem 2.28. By Lemma 2.31, we get t1R

∨ · t22C
−1
O ⊆ pi.

But since pi is a prime ideal, it should follow that either t1R
∨ ⊆ pi or t22C

−1
O ⊆ pi. This comes in

contradiction with the choices of t1 and t2.
This shows that t∗ = t1t

2
2 belongs to C2

O(R : R∨) \
⋃
i(pi ∩ O)(O : O∨). By letting t to be the

shortest satisfying condition 1 and t1, t2 satisfying conditions 2 and 3, respectively, such that t∗ is
the shortest, we have:

‖t‖∞ = min{‖x‖∞ | x ∈ (O : O∨) \ (pi ∩ O)(O : O∨)}
≤min{‖x‖∞ | x ∈ C

2
O(R : R∨) \ (pi ∩ O)(O : O∨)}

≤‖t∗‖∞

5 Sampling Secrets from Orders

In this section, we consider a setting where the RLWE secret s is sampled from a subring of its
designated space. For this purpose, it is more convenient to work with the dual version of R-LWE,
which is used interchangeably in the literature but according to our notation should be denoted
R∨-LWE. In this variant a is sampled from R∨ and the secret s comes from R.

More formally, we assume the following setting. Let q ≥ 2 be a rational prime that splits
completely over R.11 Then Rq ' Znq , as rings, and a subring S ⊆ Rq isomorphic to Zkq corresponds
to an order O satisfying qR ⊆ O ⊆ R. We show that this version of the Ring-LWE problem is
at least as hard as the O∨-LWE problem, defined in Section 3. In fact, this reduction follows
as a corollary of a stronger result that shows that the O∨-LWE problem becomes harder as the
order becomes bigger. This result can be viewed as an analogue of [GHPS13, Lemma 3.1], for the
O∨-LWE problem, instead of the ring variant.

Given two orders O′ ⊆ O, their duals satisfy O∨ ⊆ O′∨, as fractional O′-ideals, and there exist
{v1, v2, . . . , vm} ⊆ O′ s.t. O∨ =

∑
iO′∨vi.12 We will be interested in finding such set with the

smallest possible norm (that is, the `2 of the concatenation of the canonical embeddings of all vi).

11A similar argument can be stated for the general case. However, this leads to a very cumbersome statement, and
we prefer to avoid it.

12It is even possible to do so with m = 2, but we will be interested in vi with small norm, in which case it is
sometimes beneficial to use larger m.
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Theorem 5.1. Let O′ ⊆ O ⊂ K be orders, Q′ an integral O′-ideal and Q an integral O-ideal
such that Q = Q′O. Let {v1, v2, . . . , vm} ⊆ O′ be s.t. O∨ =

∑
iO′∨vi. Let ϕ be a distribution

over O′Q′, let Υ be a family of distributions, each over KR/O′∨, and let u ∈ (O′ : Q′). Then there

is a probabilistic polynomial time reduction from O′∨-LWE(Q′,u),ϕ,Υ to O∨-LWE(Q,u),ϕ,〈Υ,~v〉, where
〈Υ, ~v〉 is the distribution (over distributions) that samples ϕ← Υ, and then outputs the distribution
that e1, . . . , em from ϕ and outputs

∑
i eivi.

Proof. We describe an efficient transformation that takes m elements from O′∨Q′ × KR/O′∨ and
outputs an element in O∨Q ×KR/O∨. We show that this transformation maps uniform samples to

uniform ones, and O′∨s,ψ,u samples to O∨s,〈ψ,~v〉,u samples for any s←ϕ and ψ←Υ.

Given m samples {(a′i, b′i)}i∈[m], the transformation outputs (a =
∑

i a
′
ivi, b =

∑
i b
′
ivi). Since

O∨ =
∑

iO′∨vi and QO∨ =
∑

iQ′O′∨vi, this map is well-defined over the cosets that arise in the
distributions and maps uniform distribution over O′∨Q′×TO′∨ to uniform distribution over O∨Q×TO∨ ,
respectively.

Now, assume that {(a′i, b′i)}i∈[m] are sampled from O′∨s,ψ,u. Then, for i ∈ [m], the element
b′i = u · a′i · s+ e′i, where e′i←ψ. As

b =
∑
i

b′ivi = u ·
∑
i

a′ivi · s+
∑
i

eivi = u · a · s+ e,

where e =
∑

i eivi is sampled from 〈ψ,~v〉, so the tuple (a, b) lies in O∨s,〈ψ,~v〉,u. This concludes the
proof.

Corollary 5.2. Let O ⊂ R be an order such that qR ⊆ O, and let ~v = {v1, v2, . . . vm} ⊂ O
be short elements such that they generate R∨ over O∨, i.e., R∨ =

∑
iO∨vi. Let Υ be a family

of error distributions, each over KR/O∨. Then, there exists a polynomial time reduction from
O∨-LWE(qR,1/q),Υ to R-LWEq,U(O/qR),〈Υ,~v〉.

We note that in this case, the elements v1, v2, . . . , vm are generators of the conductor ideal CO
as an R-ideal.

Proof. The proof follows easily as a special case of Theorem 5.1; take O′ = O and O = R,
Q′ = Q = qR, and u = 1/q.

Important Special Cases. We now discuss a family of orders O that give rise to interesting
secret distributions. Assume that q splits completely in R. Let qR =

∏
pi denote the prime

factorization of q in R. Then the Chinese remainder theorem yields the following isomorphism:

Rq
∼−→

∏
i

(
R

pi

)
' Znq

x 7→ (x mod pi)i∈[n].

Let Ω = (Ω1, . . . ,Ωk) be a partition of [n] into k disjoint subsets. Define

S := {x ∈ Znq | xj = xj′ , for j, j′ ∈ Ωi, and i ∈ [k]}.

Then, the set S is isomorphic to Zkq and can be written as O/qR, for an order O such that
qR ⊆ O ⊆ R. Due to Corollary 5.2, we can get hardness of the Ring-LWE with the secret sampled
from O/qR from the hardness of O∨-LWE and therefore, from the hardness of I(O) · O∨-DGS.
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In particular, if we consider K ′ a subfield of K, then its ring of integers R′ = OK′ is a subring
of R. Hence we can consider the following order O = R′+ qR in R and see that O/qR corresponds
to some partition of [n]. Using the hardness result of Ring-LWE (in K ′) and the comparison result
in [GHPS13, Lemma 3.1], one gets that the Ring-LWE problem (in K) with the secret sampled
from O = R′ + qR is at least as hard as I(R′)-DGS (in K ′).

On the other hand, using the hardness result of O∨-LWE (Theorem 3.8) and Corollary 5.2,
we get that the Ring-LWE problem (in K) with the secret sampled from O is at least as hard as
I(O) · O∨-DGS (in K). One may wonder about a relation between the sets I(R′) and I(O) · O∨.
It is not too hard to check that the set of invertible ideals I(R′) embeds into I(O) · O∨ as follows:

I(R′) ↪→ I(O) · O∨

L′ 7→ L′O · O∨ = (L′ + qL′R) · O∨ .

6 RLWE Secrets From Ideals: High Entropy is Not Enough

In this section we show, perhaps surprisingly, that sampling Ring-LWE secrets from a high-entropy
distribution is not necessarily sufficient to guarantee security. Specifically, we investigate the se-
curity of Ring-LWE in the case where the distribution of secrets is uniform over an ideal. We
note that by definition this ideal must be a factor of the ideal qR (i.e. the ideal generated by the
modulus q in the number field). In many applications of RLWE it is common to choose a value
of q as a prime integer which nevertheless factors (splits completely) as an ideal over R.13 This
means that elements in Rq = R/qR can be represented using the Chinese Remainder Theorem as
tuples of elements in Zq = Z/qZ, and the factors of qR represent elements where some of the CRT
coordinates are fixed to zero. Indeed, this CRT representation allows for more efficient operations
over Rq and is the reason why such values of q are chosen in the first place. It is therefore natural
to investigate whether setting a subset of the CRT coordinates to 0 has an effect on security.

We show that, as mentioned above, fixing a very small ε fraction of the CRT coordinates
(thus only eliminating ε fraction of entropy) could result in complete loss of security. That is,
we consider a RLWE instance with uniform secret, where worst-case to average-case reductions
guarantee plausible security under the current state of the art in algorithms. We then show that
by fixing any ε fraction of the CRT coordinates, the instance becomes insecure. The value of
ε depends on the noise level of the RLWE instance. We complement this with a positive result,
showing that taking ε that is slightly smaller than the aforementioned prescribed value is insufficient
and worst-case hardness can still be established.

Notation. We use the standard RLWE setting where K is a number field of degree n with R as
its ring of integers. We usually omit the asymptotic terminology to reduce clutter of notation.

Letting P ⊃ qR be an integral ideal in R, we let Q = qP−1 denote its complement with
respect to qR. We note that Q is also an integral ideal in R. We further note that as per the above
exposition, P (or more accurately P/qR) represents a subset of the CRT coordinates defined by the
decomposition of qR in R. Since, formally RLWE is defined with secrets distributed over R∨/qR∨,
therefore formally we will sample our secret from PR∨/qR∨ rather than P/qR itself. Note that
the two spaces are isomorphic, due to the cancellation lemma (Lemma 2.34), and this distinction is

13Sometimes a product of such primes is used.
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mere formalism. We would also like to point out that the dual of 1
qPR

∨ is Q. To see this observe

that Q∨ = (qP−1)∨ = 1
q (P−1)∨ = 1

qPR
∨.

Remark 6.1. As stated above, the results in this section capture secret distributions, or leakage
scenarios, where a fixed subset of the CRT coordinates is known to be 0. We remark that all the
results below generalize easily to the case where an ε fraction of the CRT coordinates is any fixed-
value. As one would expect, fixing to some non-zero value corresponds to sampling the secret from
a coset of an ideal.

6.1 Insecure Instances

Our result is stated below.

Theorem 6.2. Let K, R be a degree n number field and its ring of integers, respectively. Let
P ⊃ qR be an integral R-ideal and Q = qP−1 its complement as described above. There is a
non-uniform algorithm such that for any distribution ψ satisfying Pre←ψ[‖e‖ < 1/(2λn(Q))] is
non-negligible and any distribution ϕ over PR∨/qR∨, the algorithm solves search R-LWEq,ϕ,{ψ}
with non-negligible probability given a single sample.

We note that the theorem immediately implies that the same holds for R-LWEq,ϕ,Υ where Υ is
a distribution over distributions ψ so long as the probability to sample ψ as required in the theorem
is non-negligible.

Proof. The algorithm will use a non-uniform advice string containing short vectors in Q that will
be used for decoding in the lattice P. Specifically let V = {v1, . . . , vn} ⊂ Q be a set of Z-linearly
independent vectors satisfying ‖vi‖ ≤ λn(Q).

The algorithm executes as follows. Given the input (a, b), we let ā denote the inverse of a over
Rq. This inverse exists with high probability, and is efficiently computable. It then considers b as
an element in KR by taking an arbitrary representative. It further applies Babai’s BDD algorithm
(Lemma 2.18) on input b with respect to the lattice 1

qPR
∨, and with V as the decoding basis.

The BDD subroutine returns an element b′ in 1
qPR

∨. Finally it returns s′ = qāb′ (mod qR∨) ∈
PR∨/qR∨.

We show that the algorithm succeeds whenever a is invertible and e satisfies ‖e‖ < 1/(2λn(Q)).
These conditions occur concurrently with non-negligible probability. We recall that b = as/q + e
mod R∨, and note that as/q ∈ 1

qPR
∨/R∨. Therefore when casting b as an element in KR this

element is of the form y+ e where y ∈ 1
qPR

∨ and y = as/q (mod R∨). We furthermore have that,
for all i,

|Tr(e · vi)| =
∣∣∣〈σ(e), σ(vi)〉

∣∣∣ ≤ ‖e‖ · ‖vi‖ < 1/2 .

Therefore, recalling that Q is the dual of 1
qPR

∨, we can apply Lemma 2.18 and deduce that the
rounding algorithm recovers the value y.

Finally, the output value will be s′ = qāy (mod qR∨) = qāas/q (mod qR∨) = s (mod qR∨)
and the result follows.

We exemplify the power of the theorem by considering a specific setting in Section 6.3.
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6.2 Secure Instances

We now show that the vulnerability exposed in Theorem 6.2 can be mitigated by increasing the
noise rate of the instance. Indeed, we show that sampling the secret from a distribution with lower
entropy preserves worst-case hardness so long as the noise level is sufficiently high. To this end, we
use our definition of Order-LWE (Definition 3.2), but with the order O being the ring of integers
R. This definition still generalizes the classical R-LWE since it allows us to consider a “modulus”
which is not necessarily an integer q but an ideal Q. In terms of terminology, O-LWE with O = R
will still be denoted R-LWE, so we overload the notation of the standard RLWE problem.

Theorem 6.3. Let K, R be a degree n number field and its ring of integers respectively. Let P ⊃ qR
be an integral R-ideal and Q = qP−1 its complement as described above. Let u ∈ Q−1 and Υ be
arbitrary. Then there is a polynomial time reduction from R-LWE(Q,u),Υ to R-LWEq,U(PR∨/qR∨),Υ.

Proof. We prove the theorem by showing a (randomized) transformation T that takes as input
a ∈ RQ and outputs ã = T (a) ∈ Rq such that

1. If a is uniform over its domain, then so is T (a) over its domain.

2. For all s ∈ R∨/QR∨, there exists s̃ ∈ PR∨/qR∨ s.t. uas = ãs̃/q (mod R∨), for all a ∈ RQ.

If indeed such a transformation exists, then the reduction works as follows. Start by sampling s0

uniformly from PR∨/qR∨. Then, given a sequence of samples (a, b) for R-LWE(Q,u),Υ, apply the

transformation (a, b)→ (ã, b̃) = (T (a), b+ ãs0/q) on each sample and output the resulting samples
as R-LWEq,U(PR∨/qR∨),Υ samples. By the properties of the transformation indeed ã is uniform, and

b̃ = uas + e + ãs0/q = ã(s̃ + s0)/q + e (mod R∨). Since s0 is uniform over PR∨/qR∨ then so is
(s̃+ s0) and indeed the output samples are distributed as required.

The transformation T is as follows. Given a as input, sample a random a′ from Q/qR and
output ã = a + a′ (mod qR). The first property holds since a is uniformly distributed over all
cosets of a′. As for the second property, define s̃ = qus (mod qR∨). Since u ∈ Q−1, it holds that
qu ∈ P and therefore indeed s̃ ∈ PR∨/qR∨. We have

ãs̃/q = (a+ a′)qus/q = uas+ ua′s (mod R∨) .

Since a′ ∈ Q/qR, u ∈ Q−1 and s ∈ R∨/QR∨ we have that ua′s = 0 (mod R∨) and the result
follows.

We exemplify the power of this theorem and its relation to Theorem 6.2 by considering a specific
setting in Section 6.3.

6.3 A Threshold Phenomenon

Combining the results from Theorems 6.2 and 6.3, we show a (commonly used) setting where
reducing the entropy of the secret results in tractability of the RLWE instance on one hand, but
either using fully uniform secret (with the same noise level) or a modest increase in the noise level
(with the same imperfect secret) results in the problem’s intractability being resumed.

We consider the setting where K is a cyclotomic number field (so that we have a good bound
on the discriminant ∆K) and where q is a prime for which the ideal qR splits completely as an ideal
over R. The latter condition is the formal description of the fact that elements in Rq (and also in
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R∨q , due to Lemma 2.34) can be written in CRT form as tuples in Znq . We can thus consider secret
distributions where k out of the n CRT coordinates are set to be 0, and the remaining (n − k)
coordinates are uniform. Naturally, this distribution has entropy (1− k

n)n log q, i.e. (1− k
n)-fraction

of the full entropy. Formally, this corresponds to sampling the RLWE secret from an ideal P ⊃ qR
with algebraic norm N(P) = qk. The formal statement is as follows.

Corollary 6.4. Let K, R be a degree n number field and its ring of integers respectively, and
assume furthermore that K is cyclotomic. Then for every integer k ∈ [0, n], letting ε = k/n, there
exist q = qε = nO(1/ε), α = αε = poly(n)/q and a distribution ϕ over R∨q with entropy (1− ε)n log q
s.t. R-LWEq,ϕ,Υα is solvable in polynomial time.

On the other hand, solving the problems R-LWEq,Υα and R-LWEq,ϕ,Υβ for any β = α · ω(n5/2)

is as hard as solving I(R)-DGSγ for γ = η · poly(n1/ε).

Solving DGS with γ as above corresponds to approximating the Shortest Independent Vector
Problem (SIVP) to within poly(n1/ε) factor. At least for constant ε, achieving such DGS/SIVP
approximation is intractable using current state of the art algorithmic techniques. Therefore, we
show a threshold effect in two different aspects. First, in terms of entropy, we show a RLWE
problem which is plausibly intractable if the secret is uniformly random, becomes tractable when
the entropy is slightly reduced. Second, even if the entropy is reduced, a relatively modest increase
in the noise level restores intractability.

Proof. Starting with k (and ε) as above, the values of q, α are set as follows. Let p(n) be a
polynomial, so that our choice of α satisfies α = p(n)/q. We set q ∈ (2p(n)n3/2)1/ε · [1, 2] = nO(1/ε),
and furthermore require that qR splits completely as an ideal over R. Setting α = p(n)/q, it follows
that

α = p(n)/q = p(n)q−ε/q1−ε ≤ 1/(2n3/2q1−ε) .

As explained in the outline above, once q is determined, we will consider an ideal P ⊃ qR of volume
qk. The distribution ϕ is simply U(PR∨/qR∨), and since |PR∨/qR∨| = |P/qR| = |R/qR|/|R/P| =
qn/N(P) = qn−k, this has the stated entropy.

For the ideal Q (the complement of P) in the cyclotomic field K, Lemma 2.21 shows that

λ1(Q) = λn(Q) ≤
√
nN(Q)1/n

√
∆K

1/n
. We have N(Q) = N(qP−1) = qn/N(P) = qn−k. In

addition, since K is cyclotomic then ∆K ≤ nn. Therefore λn(Q) ≤ nq1−ε.
Given the value for α set above, we have α ≤ 1/(2

√
nλn(Q)), which means that ‖e‖ ≤

1/(2λn(Q)) with all but negligible probability, which allows us to apply Theorem 6.2 to conclude
that R-LWEq,ϕ,Υα is solvable in polynomial time.

The intractability of R-LWEq,Υα follows directly from Theorem 2.38. To show the intractability
of R-LWEq,ϕ,Υβ , we first use Theorem 6.3 for a reduction from R-LWE(Q,u),Υβ . We then apply
Theorem 3.7 in the special case of O = R, which is analyzed in Remark 3.10. We can apply the
theorem if β ≥ ‖u‖∞ · ω(1), where by Lemma 2.21,

‖u‖∞ = λ∞1 (Q−1) ≤ N(Q−1)1/n
√

∆K
1/n
≤ n/q1−ε .

It is therefore sufficient to set β = n/q1−εω(1), which is indeed equal to α ·ω(n5/2). As analyzed in
Remark 3.10, this translates to γ as desired.
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7 k-Wise Independent Secrets and Hidden Lattice BDD

In this section, we propose a class of high-entropy distributions for RLWE secrets for which we
believe worst-case hardness should hold. As evidence, we show how to prove hardness based on a
new average-case lattice problem. This new problem is a decision variant of the bounded distance
decoding (BDD) problem. In our variant, BDD is to be solved on an ideal lattice which is sampled
from a large family of ideals. It allows us to prove the hardness for distributions of RLWE secrets
with norm bounded away from q and whose marginal distribution over this family of ideals (i.e.
sampling an element from this distribution and taking its product with the ideal) is indistinguishable
from uniform.

The Setting and Notation. In this section, we choose to use a simpler notation at the cost
of some restriction on the generality of our discussion. This will allow us to present our results in
a more digestible manner. In particular, we limit the discussion to cyclotomic number fields, our
modulus to completely splitting, and the regime of the RLWE samples to be over Rq × Rq, i.e.
discrete and integral, instead of Rq ×KR/R

∨.
Formally, we let K be a cyclotomic number field of degree n, and denote its ring of integers by

R. In this case, the ideal R∨ is just a scalar multiple of R, R∨ = tR, for t ∈ K [Conb, Theorem
3.7]. Therefore, we can assume that the RLWE distribution is obtained by sampling s from Rq
instead of from R∨q . Moreover, we consider that the error e from a discrete Gaussian over R. This
setting is quite commonly used (and is perhaps the most popular use of RLWE) and its worst case
hardness is presented in [LPR13, Lemma 2.23].

Defining k-Wise Independent Distributions. As explained above, we consider the case where
q is an integer prime which splits completely, qR =

∏n
i=1 pi, where each pi ⊆ R is a prime ideal.

For k ∈ [n], we define the following family of ideals

Pk :=

{∏
i∈T

pi | T ⊆ [n], |T | = k

}
.

Our class of (perfect/statistical/computational) k-wise independent distributions are those
whose marginals are (perfectly/statistically/computationally) indistinguishable from uniform mod-
ulo any product of k prime ideals from q, so modulo any P ∈ Pk. Recalling the CRT representation
of Rq, this is equivalent to any k-tuple of CRT coordinates being indistinguishable from uniform.

Definition 7.1. A distribution ϕ over Rq is (perfectly/statistically/computationally) k-wise inde-
pendent if the random variables (s mod P) and (z mod P) are (perfectly/statistically/computationally)
indistinguishable, where s ← ϕ, z ← Rq and P ← Pk. The asymptotics are over the dimension n
and k = k(n) is some integer function.

Lemma 7.2. Let ϕ be k-wise independent, and consider the following probability space. Sample
P ← Pk and let Q = P−1q ∈ Pn−k. Sample x1, x2 ← Q/qR conditioned on x1 being invertible

modulo P, and s
$← ϕ. Then the distributions (x1, x1 · s) and (x1, x2) are indistinguishable.

Proof. Let s′ be any representative of s (mod P). Then (x1, x1 · s) = (x1, x1 · s′) since x1 ∈ Q and
P+Q = qR. Thus, Definition 7.1 implies that (x1, x1 ·s) is indistinguishable from (x1, x1 ·z) where
z is uniform in Rq.
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Now fix any P, x1, we will show that x1z and x2 are identically distributed. Since x1 is
invertible modulo P, then x1z is uniform modulo P. Since x1 ∈ Q/qR it follows that x1z = 0
(mod Q). Therefore x1z is uniform in Q/qR.

7.1 Hidden-Lattice Decision Bounded Distance Decoding

We first define the hidden lattice BDD (HLBDD) distribution, and then the decisional problem
associated with it. We use Gaussian noise but other noise distributions can be considered as well,
the property that we use in our proof is that the distribution is bounded.

Definition 7.3 (Hidden Lattice BDD Distribution). Let L1 and L2 be two given lattices, and let
L be a finite family of lattices, where each member L′ ∈ L satisfies L1 ⊆ L′ ⊆ L2. Let r ∈ G be a
Gaussian parameter. The Hidden Lattice BDD Distribution over L2/L1, denoted by CL1,L,DL2,r, is

sampled by choosing uniformly at random a lattice L′ $← L, an element x
$← L′/L1, and an error

term e←DL2,r and outputting y = x+ e mod L1.

One should think of the lattice L2 as the “ambient space”, i.e. Zn for general Euclidean setting
or the ring of integer R in the algebraic setting. Note that it is possible to define the distribution
with a continuous noise term e. The usual connection between discrete and continuous distribution
from LWE / RLWE apply here as well (see, e.g., [LPR13, Lemma 2.23]).

Definition 7.4 (HLBDD Problem). Let L1,L2,L, r be as in Definition 7.3. The HLBDD Problem,
denote by HLBDDL1,L,DL2,r is to distinguish between two samples from the distribution CL1,L,DL2,r,
and two samples from the uniform distribution over L2/L.

For the purpose of this section we will set L2 = R (the ring of integers of our number field) and
L = Pk, for k = nΩ(1).

Hardness and Variants. We defined HLBDD as the problem where the distinguisher only gets
2 samples from the HLBDD distribution. This is the minimal definition that is needed for our
application. However, we note that we do not know of polynomial time algorithms even for weaker
variants. For example, one where polynomially many samples are given to the distinguisher instead
of only 2, or one where the distinguisher is provided with a (canonical) Z-basis of the lattice P
in addition to the samples. We note that the latter variant is at least as easy as the former since
it is possible to use a hybrid argument to show that if P is known then indistinguishability for
one sample implies indistinguishability for polynomially many samples. The connections to other
problems in the literature, e.g. [HPS+14], is described in the introduction.

7.2 Stating and Proving Hardness

The reduction from HLBDD to RLWE with s from a k-wise distribution consists of two main steps.

1. A reduction from RLWE where the adversary gets only one RLWE sample, to the version
with polynomially many samples. This reduction applies to any distribution of secrets which
is bounded (and is the same on both the initial and final instances). The reduction assumes
in addition the hardness of the standard RLWE problem (with the usual noise distribution).

The reduction follows using a rerandomization technique from [LPR13, Section 8.2], [BV11a,
Lemma 4]. This transformation unfortunately also requires “noise swallowing”, a technique

33



that uses the fact that adding a Gaussian with super-polynomial Gaussian parameter will
mask any random variable with polynomial amplitude.

2. A reduction from HLBDD to RLWE with a single sample. For this we assume that there
is an adversary that can distinguish between a single RLWE sample (a, b = as + e) and a
uniform one.

We begin by replacing a with a decisional hidden-lattice BDD sample (v1 + e1), where v1

only has k nonzero CRT coordinates (randomly chosen) and e1 is small. The decisional
hidden-lattice BDD assumption asserts that this distribution will be indistinguishable from
the original one. Namely, we now have (v1 + e1, b = (v1 + e1)s+ e). Opening the parenthesis,
we have b = v1s+ e1s+ e.

We again use noise swallowing to argue that b is statistically close to b = v1s+ e, i.e. we use e
to swallow e1s, which can be done so long as s is small enough and e is large enough. Now we
observe that since v1 is zero on all but k CRT coordinates, and s is close to uniform in any
subset of k coordinates, it follows that v1s is statistically close to a fresh v2 that is sampled
from the same distribution as v1 (i.e. has the same set of nonzero coordinates, but the value
in each coordinate is randomly chosen). We get b = v2 + e. We now apply decisional hidden-
lattice BDD again to claim that (a, b) = (v1 + e1, v2 + e) is indistinguishable from uniform,
which completes the proof.

We now state the main theorem of the section: the hardness of RLWE with k-wise independent
secrets.

For σ > 0 and a Gaussian parameter r ∈ G such that r ≥ σ, recall from Lemma 2.11 rσ as
defined by r2

σ,i = r2
i − σ2.

Theorem 7.5. Let q ≥ 2 be a integer prime that splits completely over R. Let k(n) ∈ [n]. Let ϕ
be a distribution over Rq that is B-bounded, i.e. Prs←ϕ[‖s‖ < B] is non-negligible. and k-wise
independent as per Definition 7.1.

Let σ ≥ ηε(R) and r, r′, t, r̃, r? ∈ G be Gaussian parameters such that r? defined as (r?σ,i)
2 = rσ,i

and swallows t and r̃, r swallows t and r̃ swallows r′ as in Definition 2.13.
Then, there is a polynomial time reduction from HLBDDqR,Pn−k,DR,r′ to R-LWEq,ϕ,DR,r, assum-

ing the hardness of R-LWEq,DR,t.

Proof. It follows from combining Lemma 7.6 and Lemma 7.7.

Now we go to the first step of the theorem: we reduce from R-LWE with only one sample to
R-LWE with polynomially many samples.

Lemma 7.6. Let ϕ be a distribution over Rq that is B-bounded, i.e. Prs←ϕ[‖s‖ < B] is non-
negligible. Let σ ≥ ηε(R) and r, r̃, t, r? ∈ G be Gaussian parameters such that r? defined as
(r?σ,i)

2 = rσ,i, such that it swallows t and r̃ and r swallows t as in Definition 2.13. Assuming the
hardness of R-LWEq,DR,t, there is a reduction from R-LWEq,ϕ,DR,r̃ where the adversary gets only
one sample, to R-LWEq,ϕ,DR,r with polynomially many samples.

Proof. Given a single sample (ã, b̃) ∈ Rq × Rq, we do the following for each requested sample.
Sample an element z←DR,t, and errors e′←DR,t and e′′←DR,r, and output

(a = ãz + e′, b = b̃z + e′′) .
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We claim that if (ã, b̃) is distributed uniformly, then so is (a, b). View (ã, a) as a R-LWEq,DR,t,DR,t
sample. Since the hardness of R-LWEq,DR,t implies the hardness of R-LWEq,DR,t,DR,t (see [LPR13]),
which in turn implies the hardness of R-LWEq,DR,t,DR,r , it follows that a is indistinguishable from

uniform. Similarly, considering (b̃, b) as a R-LWEq,DR,t,DR,r , we get that b is uniform in Rq.

Now, let (ã, b̃) be a single sample from the R-LWEq,ϕ,DR,r distribution, so b̃ = ãs+ ẽ for some
s←ϕ and ẽ← DR,r̃. The error term in this sample is as follows:

b− as = (b̃z + e′′)− (ãzs+ e′s) = (ãsz + ẽz + e′′)− (ãzs+ e′s) = ẽz + e′′ − e′s =: e .

Let us analyze the distribution of zẽ+ e′′. Notice that with non-negligible probability, ‖zẽ‖ ≤
‖z‖ · ‖ẽ‖ ≤ ‖t‖∞

√
n · ‖r̃‖∞

√
n = n · ‖t‖∞ · ‖r̃‖∞, by Lemma 2.8. Recall that r? swallows t

and r̃, so by Definition 2.13, it follows that n · ‖t‖∞ · n ‖r̃‖∞ /min rσ,i = negl(n). Hence
√
n ·

n ‖t‖∞ ‖r̃‖∞ /min rσ,i = negl(n). Also, since zẽ is in R, according to Lemma 2.11, it follows that
zẽ + DR,r and DR,r are statistically close. Therefore it follows that the distribution of zẽ + e′′ is
statistically close to the one of e′′.

Now we analyze the distribution of e′s + e′′. Notice that by Lemma 2.8, with non-negligible
probability ‖e′s‖ ≤ ‖e′‖ · ‖s‖ ≤ ‖t‖∞

√
n · B, since s is drawn from ϕ, a B-bounded distribution.

Recall that r swallows t, so by Definition 2.13 it follows that B ·n · ‖t‖∞ /min rσ,i = negl(n). Since
e′s ∈ R, by Lemma 2.11, it follows that the distribution of e′s + e′′ is statistically close to that of
e′′. We conclude that e is distributed statistically close to DR,r, and therefore (a, b) is distributed
as in the distribution of R-LWEq,ϕ,DR,r .

Now we prove the second step of the theorem: we show a reduction from HLBDD to R-LWE
with only one sample.

Lemma 7.7. Let ϕ be a distribution over Rq that is B-bounded, i.e. Prs←ϕ[‖s‖ < B] is non-
negligible, and k-wise independent. Let σ ≥ ηε(R) and r̃, r̃, r′ ∈ G be Gaussian parameters such
that r̃ is as in Lemma 2.11, r̃ ≥ max{r′, σ} and r̃ swallows r′. Then, there is a reduction from
HLBDDqR,Pn−k,DR,r′ to R-LWEq,ϕ,DR,r̃ with a single sample.

Proof. We show that under the HLBDDqR,Pn−k,DR,r′ assumption, a sample from R-LWEq,ϕ,DR,r̃ is
indistinguishable from a sample from U(Rq × Rq). We prove this using a hybrid argument. The
hybrids used are defined here and followed by a detailed description.

H0 : (a, b = as+ e) ∈ Rq ×Rq where s← ϕ, e← DR,r̃

H1 : (x1 + e1, (x1 + e1)s+ e) ∈ (Q+R) mod q ×Rq where Q $← Pn−k, e1←DR,r′

H2 : (x1 + e1, x1s+ e2) ∈ Rq ×Rq, where e2←DR,r̃

H3 : (x1 + e1, x2 + e2) ∈ Rq ×Rq, where x2←Q/qR
H4 : U(Rq ×Rq)

Hybrid H0. In this hybrid, we consider the distribution As,DR,r̃ , where s←ϕ.

Hybrid H1. Here, instead of sampling a
$← Rq, we do the following;

1. sample an ideal Q $← Pn−k,

2. sample an element x1
$← Q/qR and an error term e1←DR,r′ , and
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3. output a := x1 + e1 mod qR.

Thus, this hybrid has samples of the form

(a = x1 + e1 mod qR, b = x1 · s+ e1 · s+ e mod qR) .

Assuming the hardness of HLBDDqR,Pn−k,DR,r′ , we get that H0 ≈ H1.

Hybrid H2. Here, we replace the term e1 · s+ e with e2, where e2
$← DR,r̃. This yields,

(a = x1 + e1 mod qR, b = x1 · s+ e2 mod qR) .

Recall that ϕ is B-bounded. Let us check that e1 · s + e is statistically close to e2. Indeed, by
Lemma 2.8, with non-negligible probability ‖e1s‖ ≤ ‖e1‖ · ‖s‖ ≤ ‖r′‖∞ ·

√
n · B. Recall that r̃

swallows r′, so by Definition 2.13, it follows that B · n · ‖r′‖∞ /min r̃σ,i = negl(n). Since e1s ∈ R,
by Lemma 2.11 we get that e1 · s+ e is distributed statistically close to the distribution of e2. We
conclude that the hybrids H1 and H2 are statistically close.

Hybrid H3. We note that since q is super-polynomial, x1 is invertible with all but negligible
probability. Therefore, Lemma 7.2 implies that the hybrids H2 and H3 are indistinguishable.

Hybrid H4. Observe that the resulting distribution from the previous hybrid is

(a = x1 + e1 mod qR, b = x2 + e2 mod qR) ,

where x1, x2
$← Q/qR, e1←DR,r′ and e2←DR,r̃. In this hybrid, we sample a and b uniformly at ran-

dom. Assuming the hardness of HLBDDqR,Pn−k,DR,r′ , which implies the hardness of HLBDDqR,Pn−k,DR,r̃
as long as r̃ ≥ r′, we replace x1+e1 mod qR and x2+e2 with elements from U(Rq). Thus H3 ≈ H4.

Putting it all together, we get that As,DR,r̃ = H0 ≈ H4 = U(Rq ×Rq).
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