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Abstract. One important open question in the field of side-channel
analysis is to find out whether all the leakage samples in an implementa-
tion can be exploited by an adversary, as suggested by masking security
proofs. For concrete attacks exploiting a divide-and-conquer strategy, the
answer is negative (i.e., only the leakages corresponding to the first/last
rounds of a block cipher can be exploited). Soft Analytical Side-Channel
Attacks (SASCA) have been introduced as a powerful solution to mit-
igate this limitation. They represent the target implementation and its
leakages as a code (similar to a Low Density Parity Check code) that is
then decoded thanks to belief propagation. Previous works have shown
the low data complexities that SASCA can reach in practice (at the cost
of a higher time complexity). In this work, we revisit these attacks by
modeling them with a variation of the Random Probing Model used in
masking security proofs, that we denote as the Local Random Probing
Model (LRPM). Our study establishes interesting connections between
this model and the erasure channel used in coding theory, leading to the
following benefits. First, the LRPM allows assessing the security of con-
crete implementations against SASCA in a fast and intuitive manner. We
use it to confirm that the leakage of any operation in a block cipher can
be exploited, although the leakages of external operations dominate in
known-plaintext/ciphertext attack scenarios. Second, we show that the
LRPM is a tool of choice for the (nearly worst-case) analysis of masked
implementations in the noisy leakage model, taking advantage of all the
operations performed, and leading to new possibilities of tradeoffs be-
tween their amount of randomness and physical noise level.

1 Introduction

A recent line of works started the investigation of masking security proofs as
an ingredient of concrete side-channel security evaluations [7, 8, 13, 22]. These
papers essentially concluded that for all the “accessible” leakage samples of an
implementation (i.e., corresponding to a target value that can be guessed by the
adversary) these proofs are tight and can be matched by a standard DPA [17].
Yet, the security bounds (e.g., in [7, 8]) actually suggest that the adversary’s
success probability grows linearly in the circuit size. The latter implies that all
the leakage samples of an implementation should be exploitable, independent of
whether they can be exploited via a divide-and-conquer strategy.



Contribution. In this paper, we tackle this important question of whether any
leakage sample in an implementation can be efficiently exploited by a determined
adversary. We answer the question by proposing a model for the Soft Analyt-
ical Side-Channel Attacks (SASCA) introduced in [29] and further developed
in [12, 13]. The latter attacks are natural candidates for capturing the circuit
size parameter of masking security proofs since they aim at exploiting the total
amount of information leaked by an implementation. Our model – that we denote
as the Local Random Probing Model (LRPM) – specializes the Random Prob-
ing Model used in these proofs to local decoding rules similar to those used in
SASCA. It enables interesting connections with the well-known erasure channel
used in coding theory, leading to the following concrete benefits.

First, the LRPM allows significantly speeding up the evaluation of SASCA
(which are computationally intensive). For example, we show that we can re-
produce the results of a SASCA against an AES implementation from [12, 29]
in seconds (rather than hours) of computations. These results confirm that the
leakage of any operation within a block cipher can be exploited. More precisely,
and despite the first and last rounds’ leakages are more useful than the inner
round ones in known-plaintext/ciphertext attacks, inner rounds’ leakages cannot
be neglected in other cases (e.g., in unknown-plaintext/ciphertext attacks).

Second, the LRPM allows revisiting masking security proofs and the evalu-
ation of actual implementations in a flexible manner. More precisely, the RMP
was so far mostly used as a technical ingredient in order to connect (abstract)
probing security and (concrete) noisy leakage security [7, 14, 22]. We show that
combining it with the factor graph describing an implementation and local de-
coding rules, we can analyze security in the noisy leakage model using easy-to-
estimate approximations of the leakages in hand in a nearly worst-case manner.1

The latter is particularly interesting for two main reasons. First, it shows that
there may be a gap between the concrete security of simple gadgets and the
one of complex combinations of gadgets such as S-boxes, cipher rounds, . . . For
example, we exhibit new attack paths in masked implementations based on the
the merging of some nodes in the factor graph that are connected by linear
operations. Second, recent works have optimized masking schemes in order to
minimize their randomness requirements [3, 4]. Our results recall that masked
implementations can be viewed as a tradeoff between physical noise and math-
ematical randomness, so at some point randomness minimization may become
detrimental to security. The latter has been put forward experimentally in [2,13]
by using concrete (horizontal and SASCA) attacks. But in view of the heuristic
nature and high time complexity of these attacks, they can hardly serve as a
solution to discuss the noise vs. randomness tradeoff in a systematic manner.
In this context, the LRPM could be used as a tool to guide the design of new
implementations optimized globally and jointly based on these ingredients.

1 Precisely, we bound the information leakage that can be obtained by decoding the
factor graph of an implementation using the belief propagation algorithm. A worst-
case attack would apply Bayes on the full (multivariate) leakage distribution of the
implementation, which usually leads to unrealistic time complexities [13].
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Paper structure. After providing the necessary background in Section 2, our
results are structured in three main parts. We start by outlining the general
ideas behind our modeling in an intuitive manner in Section 3. Its goal is to
describe easy-to-reproduce toy examples of implementations and security eval-
uations. Next our first main contribution is in Section 4 where we introduce
the LRPM and use it to analyze the practically-relevant case study of an AES
implementation. As previously mentioned, it allows us to considerably speed up
the analysis of SASCA, and to clarify the extent to which all the leakage samples
in an implementation can be exploited by an adversary. Finally, we present our
second main contribution in Section 5 where we show how the LRPM applied
to concrete masked implementations can be used to exhibit new security threats
(e.g., due to a so-far unreported lack of refreshing of linear operations), and to
analyze their (nearly) worst-case security and noise vs. randomness tradeoff.

2 Background

We first describe the different technical tools needed for our modeling.

2.1 Template attacks and MI metric

Template Attacks (TA) are a standard tool for extracting information from phys-
ical side-channels. They model the leakages using a set of distributions corre-
sponding to intermediate computations in the target implementation. In the
seminal TA paper [5], Chari et al. use normal distributions for this purpose (but
any distribution is eligible). For an adversary targeting an intermediate value y,
the leakage Probability Density Function (PDF) is then evaluated as:

f[L = l|Y = y] := f[l|y] ∼ N (l|µy, σ2
y).

This approach requires estimating the sample means and variances for each value
y (and mean vectors / covariance matrices in case of multivariate attacks).2 As
a result, concrete attacks usually extract information for target values of 8 to 32
bits (so that it is possible to build the so-called “templates” f[l|y] for each y).
In a divide-and-conquer attack, one additionally requires that the targets only
depend on 8 to 32 key bits (so that the models for an enumerable part of the
key can be tested exhaustively). Based on such a leakage model, the probability
of a candidate y given a leakage l is directly computed thanks to Bayes:

Pr[y|l] =
f[l|y]∑

y∗∈Y f[l|y∗]
·

The amount of information collected on y is then usually measured in terms of
the mutual information between the random variables Y and L [27]:

MI(Y ;L) = H[Y ] +
∑
y∈Y

Pr[y]
∑
l∈L

f[l|y]. log2 Pr[y|l].

2 Alternatively, leakage models can also be built by exploiting linear regression [26].
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As discussed in [8] such a metric can be used to bound the success rate of a
divide-and-conquer side-channel attack. Considering the typical case where the
target intermediate value y is the XOR between a (known) plaintext byte x and
an (unknown) key byte k, we have MI(K;X,L) = MI(Y ;L). The number of
traces N required to perform a key recovery can then be bounded by:

N ≥ H[K]

MI(K;X,L)
=

H[K]

MI(Y ;L)
· (1)

Note that in practice, the modeling of the leakage PDF is prone to (estimation
and assumption) errors, which may reduce the amount of information extracted:
see for example the discussion about leakage certification in [9]. Our following
investigations are orthogonal to this modeling issue and just require to be fed
with the best possible approximation of the MI metric, just as for the worst-case
evaluation of any (e.g., divide-and-conquer) side-channel attack.

2.2 Soft Analytical Side-Channel Attacks

While TA aim to optimally extract information from actual leakage samples
thanks to an accurate leakage model obtained though profiling, they are still
limited in two important directions. First, they can only target the leakage of
target intermediate computations that depend on an enumerable part of the key.
This typically implies that only the leakage of the first/last rounds of a block
cipher implementation can be exploited in this way [18]. Second, estimating the
optimal (mixture) model for a masked implementation becomes prohibitively
expensive as the number of shares increases [13]. SASCA were first introduced
as a solution to mitigate the first issue [12, 29], and were recently considered as
an efficient heuristic to deal with the second one [2, 13]. Roughly, they work by
describing the target implementation and its leakages in a way similar to a Low-
Density Parity Check code (LDPC) [10], which the adversary then tries to decode
using posterior probabilities obtained thanks to a TA on all the intermediate
values of the implementation. More precisely, they work in three steps:

1. Construction. The cipher is represented as a so-called “factor graph” with
two types of nodes and bidirectional edges. First, variable nodes represent the
intermediate values. Second, function nodes represent the a-priori knowledge
about the variables (e.g., the known plaintexts and leakages) and the operations
connecting the different variables. Those nodes are connected with bidirectional
edges that carry two types of messages (i.e., propagate the information) through
the graph: the type q messages are from variables to functions and the type r
messages are from functions to variables (see [16] for more details).

2. Information extraction. The probabilities provided by performing TA on all
the intermediate variables of the target implementation are added as function
nodes to the factor graph. For this purpose, one can use exactly the same profiling
tools as in the divide-and-conquer case [12] (but for more variables).

3. Decoding. Similar to LDPC codes, the factor graph is decoded using a Belief
Propagation (BP) algorithm [21], which essentially iterates the local propagation
of the information about the variable nodes of the target implementation.

4



Since one goal of our work is to bound the security of an implementation
against SASCA, in order to avoid the hassle of actually launching the BP al-
gorithm but also to gain better intuitions about the parameters influencing its
success, we defer a description of this algorithm to Appendix A.

2.3 Basics in coding theory

This subsection briefly recalls some basic terminology from coding theory.

Definition 1 (Linear code). We define an [η, κ]q linear code C as a linear
subspace over Fq of length η and dimension κ, and its (information) rate, denoted
as R, is κ

η . The redundancy of the code is then worth η − κ.

We will simply write [η, κ] linear code if there is no ambiguity.

Definition 2 (Parity-check matrix). Let C ⊆ Fηq be a linear code of dimen-

sion κ. If C is the kernel of a matrix H ∈ F(η−κ)×κ
q , that is:

C = ker(H) =
{
v ∈ Fηq : HvT = 0

}
,

then, we say that H is a parity-check matrix of the linear code C.

Definition 3 (LDPC codes [10]). A Low-Density Parity-Check (LDPC) code
is a linear code C with a very sparse parity-check matrix H.

We note that LDPC codes have been an important topic in the coding commu-
nity during the past twenty years due to their capacity-approaching feature (i.e.,
the fact that their decoding performance is close to the channel capacity).

Tanner Graphs. One core feature of LDPC codes is their efficient decoding
thanks to the BP algorithm on the Tanner graph [23, 28] representation of the
code. A Tanner graph is a bipartite graphical representation of the code, where
each edge corresponds to a non-zero element in the parity-check matrix H. In
general, sparse matrices H are expected to lead to sparse Tanner graphs.

Erasure Channel / Random Probing Model (RPM). An erasure channel
is a communication channel model used in coding theory and information theory.
In this model, a transmitter sends a value (usually a bit) and the receiver either
receives the bit in full or it receives a message that the bit was not received
(“erased” or ⊥). It exactly corresponds to the definition of RPM in [7].

3 A toy example of unprotected implementation

In this section, we introduce our modeling by evaluating the side-channel se-
curity of a toy unprotected implementation. We first show how to analyze its
leakage with state-of-the-art tools exploiting a divide-and-conquer strategy. We
then evaluate its security against a SASCA exploiting all its target intermediate
computations, by exploiting tools from the coding theory literature.
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3.1 Target implementation

We consider an implementation setting with four 8-bit plaintext bytes x1, x2, x3
and x4, four 8-bit key bytes k1, k2, k3 and k4, and the leaking computations in
Figure 1, with S an 8-bit S-box and  ly denoting the generation of a leakage
ly when computing an intermediate result y within the implementation.

Divide-and-conquer targets:

– y1 := x1 ⊕ k1  ly1 ,
– y2 := x2 ⊕ k2  ly2 ,
– y3 := x3 ⊕ k3  ly3 ,
– y4 := x4 ⊕ k4  ly4 ,
– z1 := S(y1) lz1 ,
– z2 := S(y2) lz2 ,
– z3 := S(y3) lz3 ,
– z4 := S(y4) lz4 ,

1-round SASCA targets:

– v1 := z1 ⊕ z2  lv1 ,
– v2 := z3 ⊕ z4  lv2 ,
– w1 := S(v1) lw1 ,
– w2 := S(v2) lw2 ,

2-round SASCA targets:

– a := w1 ⊕ w2  la,
– b := S(a) lb.

Fig. 1. Toy unprotected implementation.

In this setting, a divide-and-conquer adversary targets the four key bytes k1
to k4 independently and therefore exploits all the leakages that only depend on
them (e.g., ly1 and lz1 when targeting k1). The analytical adversary additionally
exploits the leakages lv1 , lv2 , lw1 , lw2 , la and lb that depend on several key bytes.
More precisely, we will consider a so-called 1-round analytical adversary that
(only) exploits lv1 and lw1

(in the grey box of the figure) or lv2 and lw2
, and a

2-round analytical adversary that exploits all the leakages. We will additionally
refer to univariate attacks when the adversary only exploits the S-box output
leakages and bivariate attacks when exploiting both the S-box input and output
leakages. For simplicity, we further assume that the information leakage on each
intermediate computation is identical. Measured with the mutual information
metric of Section 2.1, it means that MI(Y1;LY1

) = MI(Y2;LY2
) = . . . = ε. Yet,

the following evaluations could naturally capture situations where the amount
of information leakage (or the noise level) on each intermediate value differs.
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3.2 A divide-and-conquer evaluation

A bivariate divide-and-conquer adversary targeting k1 to k4 proceeds as follows.
For each (known) plaintext byte x1, he first combines the leakages ly1 and lz1 ,
leading to a mutual information leakage of 2ε bits on k1 (using the worst-case
Independent Operation Leakage assumption from [13]). He then does the same
with the plaintext bytes xn and the leakages lyn and lzn with n = 2, 3, 4, leading
to the same information on each key byte kn. Assuming independent and uni-
formly distributed plaintexts, the (data) complexity Ndc of a key recovery attack
against each key byte can then be bounded thanks to Equation 1 as Ndc ≥

⌊
8
2ε

⌋
.

Taking a value of ε = 0.1 bits for example, this means that one can guarantee
that complete key recovery requires the observation of at least 40 leakages.

3.3 A SASCA evaluation

In order to characterize the increased amount of information that a SASCA can
extract from the example of Figure 1, we model an implementation with a factor
graph, its side-channel leakages with the RPM and their exploitation with (local)
information propagation rules that can be viewed as a variation of the piling up
lemma. As an example of the latter, let us assume a channel with field size 256
(i.e., 8-bit target variables) and a check node v with ` neighbors. If the mutual
information on the edges e with e ∈ [1, `] is λj bytes, then the extrinsic mutual
information on edge e0 is

∏
e∈[1,`],j 6=e0 λj bytes.3 We will denote this combination

of a factor graph, the RPM and local information propagation rules as the Local
Random Probing Model (LRPM), and specify it in Sections 4.1, 4.2, 4.3.

In order to take advantage of this model, one first needs to build the factor
graph corresponding to the example of Figure 1. An example of such graph is
illustrated in Figure 2 for a simple attack and is based on two principles:

On the one hand, and most importantly, there are two types of leakage (func-
tion) nodes in the graph. The first ones are “continuous” leakage nodes and are
represented in dark gray (with the Lc symbol). They correspond to target inter-
mediate variables that can be exploited via a divide-and-conquer attack and for
which the leakage is accumulated based on an additive channel (thanks to the
uniform plaintext assumption). The second ones are “one-shot” leakage nodes
and are represented in light gray (with the L1 symbol). They correspond to the
target intermediate variables that cannot be exploited via a divide-and-conquer
attack and for which the leakage is exploited thanks to the BP algorithm.

On the other hand, whenever two intermediate variables X and F(X) are
connected through a bijection F (e.g., the identity function, an S-box or the
Xtimes function in the AES), the information on X (i.e., MI(X;L)) can be turned
into information on F(X) (i.e., MI(F(X);L)) and vice versa. Therefore, we can
treat these variables as a single node and accumulate their information based on
an additive channel. This combination of targets is reflected by the value before

3 We use the λ notation rather than the ε notation in order to reflect the fact that the
leakage is now expressed in bytes - or more generally Fq elements.
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the L symbols in Figure 2. For example, the 2Lc node attached to k1 means that
there are two continuous channels (i.e., the S-box’s input and output) leaking
information on this value. Similarly, the 1L1 node attached to wn(i) and b(i)
means that there is a single one-shot leakage attached to each wn(i) and b(i)
intermediate variable (with i ∈ [1, N ] the index of the manipulated plaintext). So
this graph corresponds to an attack exploiting bivariate leakages for the divide-
and-conquer targets, and univariate leakages for the SASCA targets.

Fig. 2. Example of factor graph corresponding to Figure 1.

From a coding theory viewpoint, these two types of leakages have a sim-
ple interpretation. The first (information-accumulating) nodes can be viewed as
“noise reduction” while the second ones can be viewed as a “code expansion”.

The next step is to compute the information leakage on each node. For the
graph of Figure 2, and assuming a mutual information of ε bits on every interme-
diate computation (as in the previous subsection), the leakage on kn for n ∈ [1, 4]
is bounded by 2Nε bits (with the factor 2 coming from the combination of the
S-boxes’ input and output) and λ = Nε

4 bytes. Similarly, the one-shot leakages
on the wn(i) and b(i) nodes are bounded by ε bits and λ = ε

8 bytes.

Eventually, we need to bound the information leakage in function of the
amount of operations exploited by the adversary. For this purpose, we start by
considering the 1-round analytical adversary targeting the key bytes k1 and k2
(of which the leakages exploited are in the light gray boxes of Figures 1 and 2).
We use the following notations. After (t) iterations of the message passing rules
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of the BP algorithm (given in Appendix A), the information (in bytes) from the

key variable node kn to the check node cm is denoted as p
(t)
kn→cm (as per the

notations of Appendix A). Similarly, the information (in bytes) from the check

node cm to the key variable node kn is denoted r
(t)
cm→kn . Additionally denoting

the information bound (in bytes) on the key bytes k1 or k2 with B(t), we can
then derive the following set of equations describing the bound:

r
(0)
cm→kn = 0, (2)

p
(t)
kn→cm =

Nε

4
+ (N − 1) · r(t−1)cm→kn , (3)

r
(t)
cm→kn = p

(t)
kn→cm ·

ε

8
, (4)

B(t) =
Nε

4
+N · r(t)cm→kn . (5)

For illustration, a Matlab pseudo-code for this example is given in Appendix B.
Taking a value of ε = 0.1 bits as in the previous subsection, and using a similar
approximation for the data complexity of an analytical attack Na ≥ 1

B(∞) , we
can see in the left part of Figure 10 that the bound becomes larger than one
for Na ≥ 27. Note that the gain of the analytical strategy over the divide-and-
conquer one only appears when the number of measurements becomes sufficient
for the decoding to become effective. Note also that for Na such that B(t) = 1,
the additional leakage of w1 is essentially equivalent to the addition of a third
continuous channel on the key bytes in this case (since 27 ≈ 8

0.3 ).

Fig. 3. Leakage bounds for the factor graph of Figure 2.

In this respect, a natural question is whether the same intuition holds when
digging further into a cipher’s internal operations? We answer this question by
analyzing the 2-round adversary described by the following equations:
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r
(0)
cm→kn = 0, (6)

r(0)cm→wn
= 0, (7)

r
(0)
dm→wn

= 0, (8)

p
(t)
kn→cm =

Nε

4
+ (N − 1) · r(t−1)cm→kn , (9)

p(t)wn→cm =
ε

8
+ r

(t−1)
dm→wn

, (10)

p
(t)
wn→dm =

ε

8
+ r(t−1)cm→wn

, (11)

r
(t)
cm→kn = p

(t)
kn→cm · p

(t)
wn→cm , (12)

r(t)cm→wn
= p

(t)
kn→cm · p

(t)
kn→cm , (13)

r
(t)
dm→wn

= p
(t)
wn→dm ·

ε

8
, (14)

B(t) =
Nε

4
+N · r(t)cm→kn . (15)

Taking again a value of ε = 0.1 bits, and using the approximation for the data
complexity of an analytical attack Na ≥ 1

B(∞) , we can see in the right part of
Figure 10 that the bound becomes larger than one for Na ≥ 21. So here as well,
we observe that the addition of the leakages of w1 and v is very close to the
addition of two continuous channels on the key bytes (since 20 = 8

0.4 ).

The latter provides a preliminary confirmation of the security proofs in [7,8]
from a coding theory viewpoint, and in particular of the fact that the security of
an implementation in the LRPM may indeed decrease linearly with its circuit size
Γ (here reflected by the number of leaking operations), independent of whether
these operations are exploitable via divide-and-conquer attacks or not.

3.4 Discussion

The next section will provide a more definitive confirmation that our modeling
based on the RPM can serve as an excellent (and very fast) predictor of the
complexity of SASCA, by studying the practically-relevant case study of an AES
implementation. Beforehand, and for completeness, we use our simple examples
to briefly discuss the small discrepancies that can occur between (nearly) worst-
case analyzes based on the LRPM and concrete SASCA results. The goal of
this more heuristic discussion is to serve as background for the interpretation of
our next results. For this purpose, we launched experiments against the target
implementation of Figure 1 and considered three attacks:

– A divide-and-conquer univariate TA (Template Attack),
– A SASCA additionally exploiting univariate first-round leakages,
– A SASCA exploiting univariate first- and second-round leakages.
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Following the usual approach in simulated side-channel attacks, we first consid-
ered Hamming weight leakages: for example ly1 = HW(y1)+ρ with ρ a Gaussian-
distributed noise, from which we extracted a MI value using the tools in [8]. The
success rate curves for these attacks are given in the left part of Figure 4. A
success rate of 90% is reached after approximately 148 traces for the TA, ap-
proximately 80 traces for the 1-round SASCA and approximately 67 traces for
the 2-round SASCA. So one can notice that the complexity improvement due to
1- and 2-round SASCA is slightly reduced compared to the factors 2 and 3 that
would be predicted based on the equations in the previous subsection.

Fig. 4. Experimental results (left) and theoretical predictions with XOR heuristic
(right) for TA, 1R and 2R SASCA against the implementation of Figure 1.

The latter is in fact natural since (i) the piling-up lemma only provides
a bound for the extrinsic mutual information on an edge (see the discussion
in [8,13]), and (ii) the BP algorithm applied on factor graphs with cycles (such
as the ones we consider by mixing multiple plaintexts) is only a heuristic and
does not guarantee to extract all the available information. To these general
observations, one must add that it is very easy to conceive leakage functions
that are informative and would not enable any information propagation through
an XOR operation: think for example of 2-bit sensitive values where the leakage
of one input is the LSB and the leakage of the other input is the MSB.

The XOR heuristic. Based on these observations, we conclude that the con-
crete analysis of SASCA (and the evaluation of all the leakages in an imple-
mentation) is inevitably slightly heuristic and implementation-dependent. Since
our goal is to reduce the cost of analyzing these heuristic and implementation-
dependent aspects of SASCA as much as possible, we suggest a simple solution
in order to mitigate the impact of these dependencies, which is to investigate
the “XOR loss” factor that reduces the extrinsic information leakage propagated
through an XOR operation in the factor graph. In the 1-round attack, this typi-
cally happens for Equation 4. So a simple approximation is to compare the ideal
predictions obtained with this equation and the result of a concrete 1-round at-
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tack, and to extract a value α ≤ 1 (called the XOR loss) corresponding to the
ratio between the (ideal) theoretical expectations and the practical results. We
can then use this value α to modify the equation 4 as follows:

r
(t)
cm→kn = p

(t)
kn→cm ·

ε

8
· α, (16)

and include exactly the same multiplicative loss factor in Equations 12, 13 and 14
for the 2-round attack. The results obtained with such a heuristic are given in
the right part of Figure 4. We reach 90% of mutual information leakage after 103
traces for the TA, 56 traces for the 1-round SASCA and 45 traces for the 2-round
SASCA. So the gains observed for the 1-round SASCA ( 148

80 ≈ 1.85 in practice,
103
56 ≈ 1.83 in our predictions) and for the 2-round SASCA ( 148

67 ≈ 2.20 in
practice, 103

45 ≈ 2.28 in our predictions) are remarkably close. The absolute values
are slightly less accurate (since the bounds based on the mutual information do
not capture the “saturation” of the success rate curves), yet provide a reasonable
and very fast assessment of the security level against SASCA.4

In the following, we will sometimes use a value of α = 0.9 (corresponding
to the Hamming weight leakages we will use in our experiments), in order to
evaluate the impact of this XOR loss in other concrete scenarios.

Additional observations. To conclude this discussion, we launched similar
experiments to evaluate other contexts and attack parameters, namely:

Graph extension vs. graph combination. The SASCA of Figure 4 are based on
an extended factor graph connecting all the manipulated plaintexts. A simpler
variant is to extract information on the key bytes for each plaintext separately
(with a smaller factor graph) and to combine the information afterwards. The
latter in general leads to lower information extraction, and in the particular case
of our toy implementation, achieves a success rate similar to the one of a TA.

Change of leakage function. We repeated the same experiments with various
leakage functions (e.g., identify, random) and obtained identical success rates
given an adaptation of the noise level in order to keep the same MI.

Impact of the S-box. It is interesting to note that the S-box in Figure 1 is impor-
tant for the effectiveness of the SASCA. For example, replacing the S-box by an
identify function, the first-round intermediate value w1 is worth x1⊕k1⊕x2⊕k2.
As a result, a SASCA guessing only one byte of key will be unable to exploit
this information, since w1 depends on k1⊕ k2 rather than on k1 and k2. Adding
the S-box allows w1 = S(x1 ⊕ k1)⊕ S(x2 ⊕ k2) to depend on k1 and k2 jointly.

We finally mention that the impact of the noise in a SASCA against an
unprotected (e.g., AES) implementation was previously analyzed in [29]. In par-
ticular, it was shown in this reference that the gain of a SASCA over a TA in
this context is independent of the noise level (given that this noise is sufficient:
for too low noise levels, algebraic properties of the leakages can play a role).

4 An approximation is given by Ndc ≥ 8
ε
, N1R ≥ 8

ε·(1+α) for the 1-round attack and

N2R ≥ 8
ε·(1+α+α3)

for the 2-round attack, where the (.)3 comes from the three XOR

losses that the leakage on b undergoes in its connection with the key bytes.
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4 The AES case study

We now move to our first main contribution and show how to formalize a realistic
case study based on an unprotected AES implementation. For this purpose, we
consider the implementation of four S-boxes and MixColumns in Figure 5.
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Fig. 5. Factor graph for the first round / first column of the AES (adapted from [12]).

13



4.1 Factor graph generation

In the original SASCA description of [12,29], the function nodes can be classified
in three categories: leakage nodes, 1-input nodes (e.g., corresponding to the S-box
and Xtimes operations), and nodes with two or more inputs (e.g., corresponding
to the XOR operations). We have seen in Section 3 that if we locally combine
the information leakages of variable nodes connected via 1-input function nodes
before running the BP algorithm, then the decoding problem can be reduced to
a simpler bipartite factor graph, called Tanner graph in coding theory.

XOR

y1k1
x1

SBOX

z1

LcLc

=⇒
v1

2Lc

Fig. 6. Illustration of the merging trick.

Figure 6 illustrates this “merge trick” with a simple example. In the left
part of the plot, showing a sub-graph of Figure 5, we have that z1 = S(y1)
for the two variables z1 and y1 with distinct continuous leakages, and y1 =
XOR(x1, k1). Since the plaintext x1 is known, we also have a bijection between k1
and y1. Therefore, we can merge these variables according to the two bijections,
and create a new variable v1 to represent them, with a single bivariate leakage
function node corresponding to two continuous leakage channels.

This merge trick actually generalizes the “average trick” that combines the
information on identical random variables obtained from many leakage traces in
standard DPA. That is, say two leaking intermediate variables are connected by
a function F: averaging is possible if F is the identity function. But in general,
the merging trick straightforwardly applies to any bijection.5As will be discussed
in the next section, this generalization turns out to be very useful in order to
improve attacks against masked implementations of the AES S-box.

Figure 7 shows the simplified Tanner graph from the factor graph in Figure 5
corresponding to the first column of the first AES round. We then explain in
Figure 8 the correspondence between the merged nodes in Figure 7 and the
original variable nodes in Figure 5. For instance, the first row of the first column
in Figure 8 means that the node v1 in Figure 7 is the merge of three random
variables in Figure 5: k1, y1 and z1. The leakages are combined accordingly. As
in the previous section, all the leakages are single-shot excepted the (continuous)

5 It is in fact not even necessary that F is a bijection. For various F functions, it is
possible to extract information on a random variable X from F(X).
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Fig. 7. Tanner graph associated with one column of the first AES round.

ones that correspond to variable nodes that can be targeted by a divide-and-
conquer attack (i.e., the nodes vn for n ∈ {1, 2, 3, 4} that represent the key
bytes), and the figure also includes the number of leakage channels.

– v1:= y1, z1, k1;
leakage := 2Lc;

– v2:= y2, z2, k2;
leakage := 2Lc;

– v3:= y3, z3, k3;
leakage := 2Lc;

– v4:= y4, z4, k4;
leakage := 2Lc;

– v5:= xt1, mc1, h1;
leakage := 3L1;

– v6:= xt2, mc2;
leakage := 2L1;

– v7:= xt3, mc3;
leakage := 2L1;

– v8:= xt4, mc4;
leakage := 2L1;

– v9:= a1;
leakage := L1;

– v10:= a2;
leakage := L1;

– v11:= a3;
leakage := L1;

– v12:= a4;
leakage := L1;

– v13:= b1;
leakage := L1;

– v14:= b2;
leakage := L1;

– v15:= b3;
leakage := L1;

– v16:= b4;
leakage := L1;

– v17:= h2;
leakage := L1;

– v18:= h3.
leakage := L1;

Fig. 8. The correspondence between the nodes in Figure 5 and 7.

We can directly see that the factor graph used for the BP algorithm is greatly
simplified. In contrast with the factor graph representation in Figure 5, which
includes 35 variable nodes, the new one in Figure 7 consists of only 18 variable
nodes. Moreover, if one has N traces, the number of variable nodes in the ex-
tended graph corresponding to multiple traces drops from 4 + 31N to 4 + 14N ,
leading to reduced time and memory complexities for the decoding.

4.2 Local estimation rules

Based on the Tanner graph from the previous subsection, the BP algorithm
works locally. That is, a (variable or function) node computes the output distri-
bution on an edge according to the input probability distributions coming from
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its neighbors. Thus, given a factor graph, the main ingredients to analyze the
decoding performance are the local rules for the estimation of the output MI
values on an edge from the input MI values on the other connected edges.

+

MIa,in

MIb,in

MIc,out
v

MIa,in

MIb,in MIc,out

Fig. 9. Illustration of the local rules for estimating MI values.

These local rules are illustrated in Figure 9. The left part of the figure is for
the function nodes and the right part for the variable nodes, assuming a degree-3
node in both cases. Based on this figure, we need to compute MIc,out from two
input probability distributions with MI values, MIa,in and MIb,in, respectively.
More generally, given the edges (with index set I) connected to a node, we need
to compute MIe,out from {MIe′,in|e′ ∈ I}, for every edge e ∈ I.

Assuming that the probability distribution on each edge is independent, the
rule at the variable node is simple, and given by:

MIe,out =
∑

e′∈I\{e}

MIe′,in, (17)

As for the rule at the function node, we adopt an approximation frequently
employed in coding theory [23] and also in the previous masking proof papers [7,
8]. That is, we approximate the probability distribution on each edge e ∈ I by
a distribution from a q-ary erasure channel (which, as previously mentioned,
corresponds to the random-probing model) with capacity equal to 1 −MIe,in.6

Thus the erasure probability is MIe,in, and we can compute MIe,out as:

MIe,out =
∏

e′∈I\{e}

MIe′,in. (18)

We call this approximation “piling-up lemma” due to their similar forms (despite
the piling up lemma actually applies to binary random variables).

Eventually, and as discussed in Section 3.4, we can include a XOR loss factor
α in Equation 18 in order to reflect information losses in the BP algorithm:

MIe,out =
∏

e′∈I\{e}

α ·MIe′,in, (19)

The latter allow more realistic (and less pessimistic) security estimations.

6 The value MIe,in is then computed using logarithm with base q.
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Cautionary note. As already mentioned at the end of Section 3.4, Equation 17
can be inaccurate when the noise becomes too small, leading to highly correlated
distributions and MI values quite dependent of the algebraic form of the leakages.
The latter case is however of limited practical relevance, since such low-noise
implementations generally correspond to insecure ones anyway.

4.3 The Local Random Probing Model (LRPM)

Based on the previous descriptions, we can now define the LRPM as a model
in which an implementation is represented by a factor graph (as in Section 4.1),
its leakages are captured by the RPM, and the exploitation of its leakages is
quantified thanks to the local propagation rules of Section 4.2. As mentioned
in Footnote 1, the latter is not exactly worst-case since it restricts the way the
information is exploited. We call it “nearly worst-case” since such a restriction
seems necessary in order for the attacks to remain computationally tractable [13].
We also note that due to the reduction in [7], we could equally call this model
the “local noisy leakage model”. Concretely, it reflects the actual security of an
implementation captured with an information theoretic metric [8, 27].

4.4 Analysis and results

Based on the Tanner graph of Figure 7 and the local rules of Equations 17 and
18, we can derive formulas to estimate the performance of a SASCA targeting the
first round of AES. For readability, we omit the full set of formulas for this case
and present the results obtained in Figure 10, where the left plot corresponds to
a leakage of ε = 0.01 and the right plot corresponds to a leakage of ε = 0.001.
Similar results for two AES rounds are given in Appendix C, Figure 18.

Fig. 10. Leakage bounds for one AES round (known plaintext attack).

We observe that these predictions nicely match the experimental results
in [12, 29]. More precisely, the gain obtained thanks to the SASCA over the
(bivariate) TA is independent of the noise (as witnessed by the similarity be-
tween the left and right parts of the figure); the approximate factor 5 that we
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observe between the two attacks quite accurately corresponds to the one in
these references; and the addition of a second round of leakages only reduces
the attack complexity to a lower extent (i.e., by less than a factor 2 – see Fig-
ure 18 Appendix C).7 Importantly, the fact that the the leakages of the exter-
nal rounds dominate in known-plaintext/ciphertext attacks does not imply that
the inner rounds cannot be exploited. As a typical example, in an unknown-
plaintext/ciphertext attack, all rounds leak a similar amount of information
(that roughly corresponds to the one of a 2-share masked implementation [19]).
As illustrated in Figure 11, the addition of a second round of leakages is clearly
beneficial in this case.8 More technically, we also observe that the impact of
the loss factor is quite limited in our experiments, due to the fact that several
intermediate variables are re-used multiple times in the implementation of Mix-
Columns. Yet, it increases when considering the inner round leakages (which have
to go through more XOR operations) and in the unknown-plaintext scenario.

Fig. 11. Leakage bounds for one/two AES rounds (unknown plaintext attack).

Overall, the main interest of the LRPM is that our approximations are ob-
tained instantaneously (given an estimation of ε), while they correspond to hours
of computations when based on SASCA exploiting the BP algorithm. They are
also easily reproducible and deterministic, which makes them a tool of choice for
the systematic analysis and comparison of concrete implementations.

4.5 Connections to coding theory

We conclude this section by highlighting interesting connections between SASCA
and coding theory. In particular, the Tanner graph derived from one column of
the first AES round (in Figure 7) defines an LDPC code with a parity-check

7 The 2-round attack in Figure 18 exploits key scheduling leakages. The version with-
out key scheduling leakages does not bring any improvement at all.

8 The 2-round attack in Figure 11 does not exploit key scheduling leakages. The ad-
dition of key scheduling leakages would remove the aforementioned “masking effect”
and dominate the round leakages, for the 1-round and 2-round cases.
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matrix H18×14 shown in Figure 12, whose row weight is a constant 3, and the
column weight vector (i.e., the degree vector of variable nodes) equals:

( 3 3 4 4 3 2 2 2 2 2 2 2 1 1 1 1 2 5 )

The sparsity of this parity-check matrix H18×14 explains why BP performs well.



1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1



Fig. 12. Parity-check matrix of the SC-LDPC code corresponding to Figure 7.

We can further formalize this type of LDPC codes used in SASCA a Side-
Channel Low-Density Parity-Check (SC-LDPC) codes, defined as follows:

Definition 4 (SC-LDPC codes). A Side-Channel Low-Density Parity-Check
(SC-LDPC) code CN,E is an LDPC code induced by the factor graph correspond-
ing to a fixed number N of encryption procedures E of a certain cipher.

When N increases, the dimension of the derived code is invariant, i.e., equiv-
alent to the key size. Its length, however, increases and the additive channels
associated to some positions (i.e., connected to so-called continuous channels)
become less noisy. The latter explains why more traces lead to better attacks
(and in particular SASCA) from a coding theory viewpoint, since both low-rate
codes and low-noise channels generally imply better decoding performances. Note
that the coding theory literature contains tools (e.g., EXIT charts) developed
for designing codes with near-optimal decoding performances (called capacity-
approaching codes). Since the goal of a cryptographic designer is to guarantee
that high number of measurements N are needed for decoding, it is an interest-
ing open problem to investigate whether the analogies in this section may lead
to better solutions to counteract side-channel attacks (e.g., implementations of
which the corresponding codes have provably poor decoding performances).
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Fig. 13. Masked encoding with d = 3 shares.

5 Masked implementations

We next move to our second main contribution and extend our analysis and
modeling of SASCA to the more challenging case of masked implementations, for
which higher security levels can be expected and therefore shortcut approaches
to simplify the security evaluations are increasingly needed. We show that our
concrete use of the RPM can lead to new insights (e.g., unreported attack paths
against a masked AES S-box due to a lack of refreshing of its linear parts)
and serve as a tool to discuss the tradeoff between the amount of noise and
randomness used in masked implementations. We first analyze small (encoding
and multiplication) gadgets and follow with the analysis of an AES S-box.

5.1 Masked encoding

The Tanner graph of a masked encoding with three shares is given in Figure 13.
In general, it corresponds to a secret value x is represented as an XOR of d shares
x = x0 ⊕ x1 ⊕ . . .⊕ xd−1. The adversary can access d leakages corresponding to
all the shares. For simplicity, we assume that each share’s leakage has a similar
mutual information (per bit) of λ, leading to a set of equations:

pxi→c = λ (20)

rc→x = pdxi→c · α
(d−1), (21)

B = N · rc→x, (22)

where N is the number of measurements used in the attack. The resulting ap-
proximation is similar to the bounds given in masking proofs.9 Note that in
this simple context, the application of the BP algorithm is equivalent to the
application of a multivariate TA if the noise covariance matrix is diagonal.

9 Excepted that our modeling considers the leakages per bit rather than the mutual
information, which is less conservative, yet typically sufficient for simple leakage
functions such as the Hamming weight one we consider in our simulations.
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5.2 Masked multiplication

Given some encoded values, masked multiplications usually apply some process-
ing to the shares, based on secure addition and multiplication algorithms [14].
For illustration, we first consider a factor graph for a secure multiplication al-
gorithm similar to the one investigated in [13] and depicted in Figure 14 for
three shares. The adversary can observe the leakages of the d2 partial products
(denoted as Lp), together with the shares of the leakages (denoted as Ls).

10 We
can consider two leakage assumptions for this purpose:

– First assumption: single 1-shot leakages (Ls = λ).
– Second assumption: multiple 1-shot leakages (Ls = d · λ) due to the need to

manipulate each share d times in the multiplication algorithm of [14].

Fig. 14. Factor graph for a secure multiplication with three shares.

Since g is a bijection, we employ the merge trick to have the following equations,
where the check nodes of the XOR operations used for the encoding of x and y
are denoted s, and the ones of the multiplication functions are denoted p:

r(0)s→xi
= 0 (23)

r(0)s→x = 0 (24)

r(0)p→xi
= 0 (25)

10 As discussed in [13], the latter are necessary to initialize the shares’ leakage.
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p(t)xi→s = Ls + d · r(t−1)p→xi
(26)

p(t)xi→p = Ls + (d− 1) · r(t−1)p→xi
+ r(t−1)s→xi

(27)

p(t)x→s = (2N − 1) · r(t−1)s→x (28)

r(t)s→x = (p(t)xi→s)
d
· α(d−1) (29)

r(t)s→xi
= (p(t)xi→s)

(d−1)
· p(t)x→s · α(d−1) (30)

r(t)p→xi
= p(t)xi→p · Lp · β (31)

B(t) = 2N · r(t)s→x (32)

Due to the symmetry, we only need to write equations for the x variables. Similar
to the XOR loss factor α, we define a multiplicative loss factor β (we set both
to one for simplicity – small variations do not affect our conclusions). We also
mention the factor (2N − 1) in Equation 28 for which N edges come from the y
shares and (N − 1) edges come from the x shares. Similarly in Equation 32, the
factor 2 comes from the combination of the leakages on x and y thanks to g.

Maybe the only surprising element of these equations is the multiplicative
local estimation rule of Equation 31. One could indeed expect a higher extrinsic
information than predicted by this rule due to the well-known “zero problem”
of multiplicative masking schemes [11]. However, a reasoning based on the ran-
dom probing model shows that the situation is actually different here. Roughly,
suppose that we have three random variables X, Y and Z over GF(q), where
Z = X · Y and we have two independent leakages L(Z) and L(X) from two
erasure channels with erasure probabilities e1 and e2 (i.e., capacity MI1 = 1−e1
and MI2 = 1 − e2). The question is: how much information can we gain about
Y ? Since we know the value y of Y if and only if L(X) ∈ GF(q) \ {0} and
L(Z) 6=⊥, the two observations L(Z) and L(Y ) form a new erasure channel of
X with erasure probability at least 1− (1− e1)(1− e2) = 1−MI1 ·MI2. So the
capacity of the new channel is at most MI1 ·MI2, justifying Equation 31.

Based on these equations, we first show in Figure 15 the reduction of the data
complexity when exploiting the leakages of the partial products Lp, expressed
as the ratio with the data complexity of the attack exploiting only the shares’
leakages Ls. It clearly illustrates that as the noise level increases (i.e., the leakage
per share ε decreases), the impact of these partial product vanishes, independent
of the leakage assumption.11 By contrast, for too low noise levels these additional
leakages become significant, especially for large d values. So the latter confirms
the requirement that the level of noise needed to “hide” the shares’ leakages
increases linearly in d. A similar view can be extracted from Figure 16 where the
information leakages of different masked multiplications are given, for two noise
levels. The latter additionally shows the positive impact of increasing d when
the noise level is large enough, and its detrimental effect when the noise is too
low (due to the higher complexity ratio illustrated in Figure 15).

11 Yet, it remains that the actual data complexities depend on the leakage assumption
and are a factor dd lower in the case of the second leakage assumption [13].
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Fig. 15. Information gain of masked multiplications.

Fig. 16. Leakage bounds for the factor graph of Figure 14 (leakage assumption 1).

Overall, these experiments illustrate that the LRPM allows us to revisit the
key intuitions of masking security proofs [7,8,13,22], but in a much more flexible
manner: we are indeed able to immediately gauge the impact of the repeated
manipulation of a share, or a variation of information leakage for a complete
factor graph accurately describing the target implementation.

A note on the BP algorithm for masked implementations. The experi-
mental investigations in Section 3.4 suggested that in the case of an unprotected
implementation, running the BP algorithm on a factor graph connecting all the
manipulated plaintexts (i.e., graph extension) leads to better results than run-
ning it on several smaller factor graphs that are then re-combined (i.e., graph
combination). Interestingly, we can show that the latter fact does not hold for
higher-order masked implementation with more than two shares.

The key observation is that in a masked implementation, we can only ex-
tend the graph thanks to the unshared values which can potentially accumulate
leakages continuously (all other intermediate variables are ephemeral). These
unshared variables are then injected in each sub-graph by passing through the
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sharing node (e.g., a d-input XOR in the case of Boolean masking). This means
that the information that the unshared values are able to send to each share
essentially corresponds to the information of a (d− 1)-share encoding. As a re-
sult, graph extension is effective for unprotected implementation and first-order
masked implementation, but rapidly becomes uselss for higher orders.

We confirmed this theoretical explanation by running again the experimental
SASCA against a (3-share) masked multiplication carried out in [13], Section 5.4.
The latter was performed with graph combination. We evaluated the impact of
graph extension and did not observe any improvement, as predicted.

This limited positive impact of graph extension is a plausible reason for the
slightly worse performances of the BP algorithm in a masked context (and the
fact the gain of a SASCA over a TA decreases with the noise level in [13], contrary
to what is observed for unprotected implementations). In an unprotected imple-
mentation, the accumulation of continuous leakages presumably allows optimal
information extraction by the BP algorithm, despite the presence of cycles in the
factor graph that do not guarantee convergence. In a masked implementation,
the lack of continuous leakages make the presence of cycles more detrimental.

5.3 Masked S-box implementations

To conclude this paper, we finally illustrate that our modeling does not only allow
confirming existing analyzes and connecting the RPM with coding theory tools
and SASCA, but can also put forward attacks that were not directly captured
by theoretical analysis so far. For this purpose, we consider the case study of
an AES S-box as represented in Figure 17 (originally proposed in [24] but here
tweaked with the refreshing gadgets of [14] to avoid the attacks put forward
in [6]). Considering asymptotic analysis for readability, our main observation is
that the merge trick discussed in Section 4.1 applied to the case of a masked
implementation can bring a powerful generalization of the horizontal attacks
in [2]. For this purpose, first consider an attack targeting the shares of y1. Given
a leakage λ on each share (and ignoring the loss factors for simplicity), we obtain
a leakage bound of λd on y1. But by merging the node of y1 with the one of y2
(which is feasible since these linear functions are operated share by share), one
reduces this bound to (2 · λ)d. Then additionally considering the fact that the
shares of y1 and y2 will be loaded d times when being multiplied, it is further
reduced to (2·λ+2d·λ)d, meaning a security reduction by a factor (2+2d)d, which
grows exponentially in d. We leave the application of this attack to concrete
implementations as an interesting direction for further investigations.

The latter observation naturally becomes even more critical if all the S-box
(and possibly MixColumns) operations are combined in a similar manner. In this
respect, the important message of this final analysis is that besides being useful
for composability issues [1], the addition of refreshing gadgets may also be useful
to prevent such powerful SASCA. For example, adding a simple refreshing (e.g.,
a sharing of zero) after each (even linear) operation in Figure 17 would pre-
vent the combination of certain leakages. That is, the merge of y1 and y2 would
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Fig. 17. AES S-box from [24] (with refreshing from [14]).

remain unavoidable (leading to a security reduction of 2d), just as the combina-
tion of the d manipulations of each share during the multiplication (leading to
a security reduction of dd), but their further combination would be prevented
by the refreshing. Improving the security of the multiplication could also be
achieved, by using the algorithm proposed in [2] (which minimizes the number
of times each share is manipulated). So our results recall that the masking prob-
lem can be stated as a global optimization trading the physical randomness (aka
noise) and the pseudo-randomness used for refreshing the shares. The design
of efficient gadgets (and complete implementations) that optimize the tradeoff
between these two ingredients is one of the main research challenges in masking
and leakage-resilience. In this respect, and once again, we observe that a sys-
tematic analysis of multiplication gadgets (or complete implementations) with
heuristic tools such as SASCA or the ones in [2] would hardly be practical. By
contrast, the LRPM provides a principled path for this purpose, which we hope
will enable improved analyzes and optimizations in the future.
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Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 116–129. ACM, 2016.
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23. Thomas J. Richardson and Rüdiger L. Urbanke. Modern Coding Theory. Cam-
bridge University Press, 2008.

24. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, Crypto-
graphic Hardware and Embedded Systems, CHES 2010, 12th International Work-
shop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of
Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

25. Palash Sarkar and Tetsu Iwata, editors. Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science. Springer,
2014.

26. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for dif-
ferential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2005, 7th International
Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, volume
3659 of Lecture Notes in Computer Science, pages 30–46. Springer, 2005.

27. François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, Advances

27



in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cologne, Germany, April
26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science, pages
443–461. Springer, 2009.

28. Robert Michael Tanner. A recursive approach to low complexity codes. IEEE
Trans. Information Theory, 27(5):533–547, 1981.
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A The Belief Propagation (BP) algorithm

Our description is inspired by the description of [16, Chapter 26]. For this pur-
pose, we denote by αi the ith intermediate value and by fi the ith function
node. The nodes will be connected by edges that carry two types of messages.
The first ones go from a variable node to a function node, and are denoted as
pvn→fm . The second ones go from a function node to a variable node, and are
denoted as rfn→vm . In both cases, n is the index of the sending node and m the
index of the recipient node. The messages carried correspond to the scores for
the different values of the variable nodes. At the beginning of the algorithm ex-
ecution, the messages from variable nodes to function nodes are initialized with
no information on the variable. That is, for all n,m and for all αn we have:

pvn→fm(αn) = 1.

The scores are then updated according to two rules (one per type of messages):

rfm→vn(αn) =
∑

αn′ ,n
′ 6=n

(
fm(αn′ , xn)

∏
n′

pvn′→fm(αn′)
)
. (33)

pvn→fm(αn) =
∏
m′ 6=m

rfm′→vn(αn). (34)

In Equation 34, the variable node vn sends the product of the messages about
αn received from the others function nodes (m′ 6= m) to the function node fm,
for each value of αn. And in Equation 33, the function node fm sends a sum over
all the possible input values of fm of the value of fm evaluated on the vector
of (αn′ , n

′ 6= n)’s, multiplied by the product of the messages received by fm for
the considered values of αn′ . The BP algorithm essentially works by iteratively
applying these rules on all nodes. If the factor graph is a tree (i.e., if it has no
loop), a convergence should occur after a number of iterations at most equal to
the diameter of the graph. In case the graph includes loops (e.g., as in the case
of a SASCA against an AES implementation), convergence is not guaranteed,
but usually occurs after a number of iterations slightly larger than the graph
diameter. The main parameters influencing the time and memory complexity
of the BP algorithm are the number of possible values for each variable (e.g.,
28 for 8-bit target intermediate computations) and the number of edges in the
factor graph. The time complexity additionally depends on the number of inputs
of the function nodes representing the (e.g., block cipher) operations, since the
first rule sums over all the input combinations of these operations.
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B Matlab pseudo-code of a toy example

n = 8; -- n-bit targets

e = 0.1; -- MI per target operation

Nd = 2; -- 1 for univariate, 2 for bivariate

Nmax = n/(Nd ∗ e); -- max. data complexity for the plots)

Nmax = ceil(Nmax ∗ (1.1));

– Divide-and-conquer approach:
MIdc(1) = 0;
for i = 1 : Nmax

MIdc(i+ 1) = MIdc(i) + (Nd ∗ e);
end

– Analytical approach:
Nit = 10; -- # of iterations (2 x graph diam.)

MIa(1) = 0;
for i = 1 : Nmax

Rck(1) = 0;
for j = 1 : Nit

Pkc(j + 1) = i ∗ (Nd ∗ e/n) + (i− 1) ∗Rck(j);
Rck(j + 1) = Pkc(j + 1) ∗ (Nd ∗ e/n);
B(j + 1) = i ∗ (Nd ∗ e/n) + i ∗Rck(j + 1);

end
MIa(i+ 1) = max(B);

end

C Additional figures

Fig. 18. Leakage bounds for two AES rounds (known plaintext attack).
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