
Encrypt or Decrypt? To Make a Single-Key
Beyond Birthday Secure Nonce-Based MAC ?

Nilanjan Datta1, Avijit Dutta2, Mridul Nandi2 and Kan Yasuda3

1 Indian Institute of Technology, Kharagpur
2 Indian Statistical Institute, Kolkata

3 NTT Secure Platform Laboratories, NTT Corporation, Japan.
nilanjan isi jrf@yahoo.com, avirocks.dutta13@gmail.com,

mridul.nandi@gmail.com, yasuda.kan@lab.ntt.co.jp

Abstract. In CRYPTO 2016, Cogliati and Seurin have proposed a highly
secure nonce-based MAC called Encrypted Wegman-Carter with Davies-
Meyer (EWCDM) construction, as EK2

(
EK1(N) ⊕ N ⊕ HKh(M)

)
for a

nonce N and a message M . This construction achieves roughly 22n/3

bit MAC security with the assumption that E is a PRP secure n-bit
block cipher and H is an almost xor universal n-bit hash function. In
this paper we propose Decrypted Wegman-Carter with Davies-Meyer
(DWCDM) construction, which is structurally very similar to its pre-
decessor EWCDM except that the outer encryption call is replaced by
decryption. The biggest advantage of DWCDM is that we can make a
truly single key MAC: the two block cipher calls can use the same block
cipher key K = K1 = K2. Moreover, we can derive the hash key as
Kh = EK(1), as long as |Kh| = n. Whether we use encryption or de-
cryption in the outer layer makes a huge difference; using the decryption
instead enables us to apply an extended version of the mirror theory
by Patarin to the security analysis of the construction. DWCDM is se-
cure beyond the birthday bound, roughly up to 22n/3 MAC queries and
2n verification queries against nonce-respecting adversaries. DWCDM re-
mains secure up to 2n/2 MAC queries and 2n verification queries against
nonce-misusing adversaries.

Keywords: EDM, EWCDM, Mirror Theory, Extended Mirror Theory,
H-Coefficient.

1 Introduction

Almost all symmetric-key cryptographic systems that use secret keys, includ-
ing encryption, authentication and authenticated-encryption, are realized via
Pseudo-Random Functions (PRFs). Therefore, the study of practical candidates
of PRF is essential in providing solutions for the increasing use of cryptogra-
phy in real-world applications. But unfortunately, very few PRFs are actually
available in practice, and it is not easy to construct a sufficiently secure PRF.

? This is the full version of the article accepted in IACR-CRYPTO 2018.
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As a result, Pseudo-Random Permutations (PRPs) or block ciphers, which are
available in plenty [17, 21, 12, 11], replace the PRF and are deployed as building
blocks for almost every cryptographic systems.

Although various block ciphers [17, 21, 12, 11] are available and can be as-
sumed to be PRFs, such an assumption comes at the cost of security degrada-
tion due to the PRF-PRP switch [6] which tells that a PRF can be replaced by
a PRP up to quadratic degradation in security (often called “birthday bound
security”). This loss of security is sometimes acceptable in practice if the block
size of the cipher is large enough (e.g. AES-128). But with lightweight block
ciphers with relatively small block sizes (e.g. 64-bit), whose number has grown
tremendously in recent years (e.g. [11, 21, 12, 2, 1]), the quadratic security loss
severly limits their applicability, and as a result it seems to be challenging to use
these small ciphers in modern-day lightweight cryptography (e.g. Smart Card,
RFID etc.).

In order to save these ciphers from obsolescence, various PRP-to-PRF con-
structions have been proposed in recent years that guarantee higher security than
the usual birthday bound security. Such constructions are often called BBB (Be-
yond Birthday Bound)—i.e., security against more than 2n/2 queries where n is
the block size of the underlying cipher. A popular BBB construction is the XOR
of permutations [7, 24, 3, 29].

XOR of Permutations. Bellare et al. [7] suggested a way to construct a PRF
from PRPs by taking the xor (more generally sum) of two independent PRPs.

XOREK1
,EK2

(x) = EK1
(x)⊕ EK2

(x).

The construction was later analyzed by Lucks [24] and proved its security up
to 22n/3 queries, where n is the block size of the underlying PRP. Single-keyed
variant of this construction was first analyzed by Bellare and Impagliazzo [3] and
showed its security upto O(nq/2n) by using some advanced probability theory.
However, their proof was sketchy and hard to verify. Subsequently, a lot of efforts
have been invested towards improving the bound of XOR construction and its
single-keyed variant (even proving upto n-bit security) by Patarin as evident
in [29, 33, 32], but the proof contains serious gaps. Later in FSE 2014, the result
was generalized to the xor of three or more independent PRPs [14]. However,
a verifiable n-bit security proof of XOR construction is later provided by Dai
et al. [18] using chi-squared method. Although, the original proof contained a
glitch, which was pointed out by Bhattacharya and Nandi [9], was later fixed in
the full version of [18].

The XOR construction provides a solution for encryption by combining itself
with the counter (CTR) mode of encryption, as instantiated in CENC construc-
tion, a highly efficient nonce-based encryption mode proposed by Iwata [22].
It was shown [22] that CENC, as an encryption mode, achieves security upto
O(22n/3) queries against all nonce-respecting adversaries. Later, Iwata et al. [23]
provided the optimal security bound of the construction based on mirror theory
technique [33]. Recently, Bhattacharya and Nandi [10] have given an optimal se-
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curity bound of CENC by analysing the PRF security bound of variable output
length of xor of permutations using chi-squared method.

Though useful for encryption, the XOR construction does not seem to be
directly usable for authentication. A problem for authentication is that we have
to extend the domain size, so that the construction can authenticate long mes-
sages. This can be done by hashing the message, but with the XOR construction it
seems that we need some subtle combination with a double-block hash function,
as employed in PMAC Plus [34], 1K-PMAC Plus [19] and LightMAC Plus [27].

Encrypted Davies-Meyer. The above problem with the XOR construction
in authentication was solved by Cogliati and Seurin [15], who proposed a PRP-
to-PRF conversion method, called Encrypted Davies-Meyer (EDM). The EDM
construction is defined as follows:

EDMEK1
,EK2

(x) = EK2
(EK1

(x)⊕ x).

EDM uses two independent block-cipher keys and achievesO(q3/22n) security [15].
Soon after, Dai et al. [18] improved its bound to O(q4/23n) by applying chi-
squared method. Concurrently, Mennink and Neves [25] proved its almost opti-
mal security, i.e. O(2n/67n), using mirror theory technique.

As EDM requires two indepenent keys for the cipher calls, it would be in-
teresting to see that whether BBB security holds for the single key setting of
the construction, as mentioned by authors of [15]. Recently, Cogliati and Seurin
answers the question in positive and proved its security upto O(q/22n/3) [16], as
originally conjectured by themselves [15].

Encrypted Wegman-Carter with Davies-Meyer. Following the construc-
tion of EDM, Cogliati and Seurin extended the idea to construct EWCDM, a
nonce-based BBB secure MAC, which is defined as follows:

EWCDMEK1
,EK2

,HKh
(N,M) = EK2

(
EK1

(N)⊕N ⊕ HK(M)
)

where N is the nonce and M is the message to be authenticated. Note that,
EWCDM uses two independent block-cipher keys, K1 and K2, and also another
independent hash-key Kh for the AXU hash function. 4 In this way, EDM ob-
viated the necessity of using double-block hash function that existed with the
XOR construction. It has been proved that EWCDM is secure against all nonce-
respecting MAC adversaries5 that make at most 22n/3 MAC queries and 2n

verification queries. Cogliati and Seurin also proved O(2n/2) security of the con-
struction against nonce-misusing adversaries. Later, Mennink and Neves [25]
proved its n-bit PRF security using mirror theory in the nonce respecting setting
and mentioned that the analysis straightforwardly generalizes to the analysis for
unforgeability or for the nonce-misusing setting of the construction. The trick

4 An AXU hash function is a keyed hash function such that for any two distinct
messages, the probability, over a random draw of a hash key, of the hash differential
being equal to a specific output is small.

5 adversaries who never repeat the same value of N in their MAC queries
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involved in proving the optimal security of EWCDM is by replacing the last block
cipher call with its inverse. This subtle change does not make any difference in
the output distribution and as a bonus, it trivially allows one to express the
output of the construction as a sum of two random permutations (or in general
a bi-variate affine equation 6). It is only this feature which is captured by the
mirror theory to derive the security bound of the construction.

Motivation behind This Work. Constructions with multiple secret keys nec-
cessarily requires larger storage space for storing them, which is sometimes in-
feasible for lightweight crypto devices like RFID, Smart Card etc. All popular
MACs, including CMAC [28] and HMAC [4], require only a single secret key. But
most of the time reducing the number of keys without compromising the security
is not a trivial task.

As evident from the definition of the construction, EWCDM requires three
keys; two block cipher keys K1 and K2 and one hash key Kh. Thus, it is natural
to ask that whether one can achieve the similar security in the case of using less
number of keys. Cogliati and Seurin [15] believed that BBB security should hold
for single-keyed EWCDM (with K1 = K2) but be likely cumbersome to prove. In
fact, proving BBB security of single-keyed EDM, as mentioned earlier, is a highly
complicated task as evident from [16] and it is not clear at all how to build on
this result to prove the MAC security of EWCDM construction with K1 = K2.
Moreover, Cogliati and Seurin, in their proof of single-keyed EDM [16], have also
stated that

“For now, we have been unable to extend the current (already cumbersome)
counting used for the proof of the single-permutation EDM construction to the
more complicated case of single-key EWCDM.”

Thus, we expect that proving the MAC security of single-keyed EWCDM should
be a notably hard task and very likely require heavy mathematical tools like
Sum Capture Lemma as already used for single-keyed EDM. This motivates us to
design an another single-keyed, nonce-based MAC built from block ciphers (and
a hash function) with BBB security that can be proven by a simpler approach.

Our Contribution. Our contribution in this paper is fourfold which we outline
as follows:

• DWCDM: New Nonce-Based MAC. We propose Decrypted Wegman-Carter
with Davies-Meyer, in short DWCDM, a nonce-based BBB secure MAC. The
design philosophy of DWCDM is inspired from the trick used in [25] while
proving the optimal security of EWCDM. Recall that, in [25], authors replace
the last block cipher call with its inverse so that the output of EWCDM can
be expressed as a sum of two independent PRPs. But the same trick does
not work at the time of using the same block cipher key in the construction.

6 For two variables, P,Q and λ ∈ GF(2n) we call an equation of the form P ⊕Q = λ,
a bi-variate affine equation
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This phenomenon triggers us to design a nonce based MAC, very similar
to EWCDM, in which instead of using the encryption algorithm in the last
block-cipher call, we use its decryption algorithm so that the output of the
construction can be expressed as a sum of two identical PRPs and hence the
name Decrypted Wegman-Carter with Davies-Meyer. The construction is
single-keyed in the sense that the same block cipher key is used for the two
cipher calls. Schematic diagram of DWCDM is shown in Fig.4.1 where the
last n/3 bits of the nonce N is zero, i.e. N = N∗‖0n/3. We would like to
mention here that one cannot use the full n-bit nonce in DWCDM as that
would end up with a birthday bound MAC attack which is described in sec-
tion 4.1. We show that DWCDM is secure up to 22n/3 MAC queries and 2n

verification queries against nonce-respecting adversaries. We also show that
DWCDM is secure up to 2n/2 MAC queries and 2n verification queries in
the nonce-misuse setting, where the bound is tight. As a concrete example
of DWCDM, we present an instantiation of DWCDM with the AXU hash
function being realized via PolyHash [26]. We show that nPolyMAC achieves
22n/3-bit MAC security in the nonce-respecting setting.

• Extended Mirror Theory. Since, our study of interest is the MAC se-
curity of the construction, we require to analyze the number of solutions
of a system of affine bi-variate equations along with affine uni-variate and
bi-variate non-equations 7. Such a general treatment of analysing system of
affine equations with non-equations was only mentioned in [33] without giv-
ing any formal analysis. To the best of our knowledge, this is the first time
we analyse such a generic system of equations with non-equations, which we
regard to as extended mirror theory and our MAC security proofs of DWCDM
and 1K-DWCDM are crucially based on this new result.

• 1K-DWCDM: “Pure” Single-Keyed Variant of DWCDM. Moreover,
we exhibit a truly single-keyed nonce-based MAC construction, 1K-DWCDM.
Under the condition that the length of the hash key is equal to the block
size as |Kh| = n, we can even derive the hash key as Kh = EK(0n−1‖1),
which results in the construction 1K-DWCDM. We prove that 1K-DWCDM
is essentially as secure as DWCDM.

• Potentiality of Achieving Higher Security. Finally, we show how
one can boost the security for DWCDM type constructions using extended
generalized version of Mirror Theory.

Proof Approach. Our MAC security proof of DWCDM and 1K-DWCDM is
fundamentally relied on Patarin’s H-coefficient technique [30]. Similar to the
technique of [15, 20], we cast the unforgeability game of MAC to an equivalent
indistinguishablity game, with some suitable choice of ideal world, that allows us
to apply the H-coefficient technique for bounding the distinguishing advantage
of the construction of our concern.

7 For two variables, P,Q and λ ∈ GF(2n) \ 0n we call P ⊕Q 6= λ, an affine bi-variate
non-equation and P 6= λ is an affine uni-variate non-equation.
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As mentioned earlier that one can express the output of DWCDM as a sum
of two identical permutations. Thus, q many such evaluations of DWCDM gives
us a system of q many affine bi-variate equations

EK(N1)⊕ EK(T1) = N1 ⊕HKh
(M1)

EK(N2)⊕ EK(T2) = N2 ⊕HKh
(M2)

...

EK(Nq)⊕ EK(Tq) = Nq ⊕HKh
(Mq)

Along with this, we also need to ensure that the verification attempt of the
adversary should fail (as a part of the good transcript), i.e. for a verification
query (N ′,M ′, T ′), chosen by the adversary, we should always have

E−1
K (EK(N ′)⊕N ′ ⊕HKh

(M ′)) 6= T ′.

Hence, it tells us that we also need to incorporate affine non-equations along
with the system of bi-variate affine equations. This leads us to extend the mirror
theory technique (extension as in incorporating affine non-equations along with
affine bi-variate equations). We require the result of extended mirror theory while
lower bounding the real interpolation probability for a good transcript.

Remark 1. Recently, a new technique called chi-square method has been evolved
as a tool for upper bounding the statistical distance between the answers of
two interactive systems and is typically used to prove the information-theoretic
pseudorandomness of constructions. This method has been successfully applied
in proving the security of XOR construction [18], EDM construction [18], swap or
not construction [18] and variable output length XOR construction [9]. Recently,
Bhattacharya and Nandi [8] have shown the full indifferential security of xor
of two or more random permutations using this method. Moreover, it has been
shown in [18] that for some setting, chi-square method outperforms H-coefficient
technique in terms of guarranting security with quadratic improvement on the
number of queries that adversary can make. However, in our construction, we
find it difficult to apply this method as chi-square requires high entropy of the
conditional distribution. In D(or E)WCDM, one needs to condition the hash key.
Unlike random permutation, the hash key doesnt have sufficient entropy in the
conditional probability and there lies the difficulty of applying this method. This
fact also acts as a motivation for us to consider DWCDM so that we can represent
the construction as a sum of permutations and eventually apply extended mirror
theory.

2 Preliminaries

Symbols and Notations. For a set X , X ←$X denotes that X is sampled
uniformly at random from X and independent to all random variables defined
so far. {0, 1}n denotes the set of all binary strings of length n. The set of all
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functions from X to Y is denoted as Func(X ,Y) and the set of all permutations
over X is denoted as Perm(X ). FuncX denotes the set of all functions from X to
{0, 1}n and Perm denotes the set of all permutations over {0, 1}n. We often write
Func instead of FuncX when the domain of the functions is understood from the
context. We write [q] to refer to the set {1, . . . , q}.

For any binary string x, |x| denotes the length i.e. the number of bits in x. For
x, y ∈ {0, 1}n, we write z = x⊕y to denote the modulo 2 addition of x and y. We
write 0 to denote the zero element of the field {0, 1}n (i.e. 0n) and 1 to denote
0n−1‖1. For integers 1 ≤ b ≤ a, we write (a)b to denote a(a− 1) . . . (a− b+ 1),
where (a)0 = 1 by convention.

2.1 Security Definitions

PRF and PRP and SPRP. A keyed function with key space K, domain X
and range Y is a function F : K × X → Y and we denote F(K,X) by FK(X).
Similarly, a keyed permutation with key space K and domain X is a mapping
E : K × X → X such that for all key K ∈ K, X 7→ E(K,X) is a permutation
over X and we denote EK(X) for E(K,X).

PRF. Given an oracle algorithm A with oracle access to a function from X to
Y, making at most q queries, running time is at most t and outputting a single
bit. We define prf-advantage of A against the family of keyed functions F as

AdvPRF
F (A) := |Pr[K ←$K : AFK = 1]− Pr[RF←$ Func(X ,Y) : ARF = 1]|.

We say that F is (q, t, ε) secure PRF, if AdvPRF
F (q, t) := max

A
AdvPRF

F (A) ≤ ε,

where the maximum is taken over all adversaries A that makes q many queries
and running time is at most t.

PRP. Given an oracle algorithm A with oracle access to a permutation of X ,
making at most q queries, running time is at most t and outputting a single bit.
We define prp-advantage of A against the family of keyed permutations E as

AdvPRP
E (A) := |Pr[K ←$K : AEK = 1]− Pr[Π←$ Perm(X ) : AΠ = 1]|.

We say that E is (q, t, ε) secure PRP, if AdvPRP
E (q, t) := max

A
AdvPRP

E (A) ≤ ε,

where the maximum is taken over all adversaries A that makes q many queries
and running time is at most t.

SPRP. Given an oracle algorithm A with oracle access to a permutation and
its inverse over X , making at most q+ queries to permutation and q− queries to
inverse permutation, running time is at most t and outputting a single bit. We
define sprp-advantage of A against the family of keyed permutations E as

AdvSPRP
E (A) := |Pr[K ←$K : AEK ,E

−1
K = 1]− Pr[Π←$ Perm(X ) : AΠ,Π−1

= 1]|.

We say that E is (q, t, ε) secure SPRP, if AdvSPRP
E (q, t) := max

A
AdvSPRP

E (A) ≤ ε,
where the maximum is taken over all adversaries A that makes q many encryption
and decryption queries altogether and running time is at most t.
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MACs. Given four non-empty finite sets K,N ,M and T , a nonce based keyed
function with key space K, nonce space N , message space M and range T is a
keyed function whose domain is N ×M and range is T and we write F(K,N,M)
as FK(N,M).

Definition 1 (Nonce Based MAC). Let K,N ,M and T be four non-empty
finite sets and F : K×N ×M→ T be a nonce based keyed function. For K ∈ K,
let VerK be the verification oracle that takes as input (N,M, T ) ∈ N ×M× T
and outputs 1 if FK(N,M) = T , otherwise outputs 0. A (qm, qv, t) adversary
against the MAC security of F is an adversary A with access to two oracles FK
and VerK for K ∈ K such that it makes at most qm many MAC queries to first
oracle and qv many verification queries to second oracle. We say that A forges
F if any of its queries to VerK returns 1. The advantage of A against the MAC
security of F is defined as

AdvMAC
F (A) := Pr[K ←$K : AFK ,VerK forges ],

where the probability is taken over the randomness of the underlying key and
the random coin of adversary A (if any). We assume that A does not make any
verification query (N,M, T ) to VerK if T is obtained in previous MAC query
with input (N,M) and it does not repeat any query. We call such an adversary
as “non-trivial” adversary. The adversary is said to be “nonce respecting” if it
does not repeat nonces in its queries to the MAC oracle 8.

r-way Regular And AXU Hash Function. We will need the following def-
inition of a r-way regular and an almost xor-universal (AXU) hash function.

Definition 2. Let Kh,X ,Y be three non-empty finite sets and H be a keyed
function H : Kh ×X → Y. Then,

1. H is said to be an ε-r-way regular hash function if for any distinct X1, X2, . . . , Xr ∈
X and for any non-zero Y ∈ Y,

Pr[Kh←$Kh : HKh
(X1)⊕ · · · ⊕ HKh

(Xr) = Y ] ≤ ε. (1)

When r = 1, then we will often refer to ε-1-way regular hash function as
simply ε-regular hash function.

2. H is said to be an ε-almost xor universal (AXU) hash function if for any
distinct X,X ′ ∈ X and for any Y ∈ Y,

Pr[Kh←$Kh : HKh
(X)⊕ HKh

(X ′) = Y ] ≤ ε. (2)

Note that the definition of 2-way regular hash function is almost similar to the
definition of AXU hash function, only difference is that the former one requires
the output Y to be non-zero whereas the later one excludes such restriction from
Y .
8 Similar to nonce respecting adversary, we say that an adversary is nonce misusing

if the adversary is not restricted to make queries to the MAC oracle with distinct
nonces.
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In the following, we state that PolyHash [26] is one of the examples of algebraic
hash function which is `/2n-3-way and 1-way regular. Moreover, it is also `/2n-
AXU hash function.

Proposition 1. Let Poly : {0, 1}n× ({0, 1}n)` → {0, 1}n be a hash function de-
fined as follows: For a fixed key Kh ∈ {0, 1}n and a message M = (M1,M2, . . . ,Ml),
where |Mi| = n for all i = 1, . . . , l − 1 and |Ml| ≤ n, we define

PolyKh
(M) = (Ml‖10n−|Ml|) ·Kh ⊕Ml−1 ·K2

h ⊕ . . .⊕M1 ·Kl
h, (3)

where l is the number of n-bit blocks. Then, Poly is `/2n-3-way and 1-way regular
hash function, where ` denotes the maximum number of message blocks of size
n-bits. Moreover it is also `/2n-AXU hash function.

Proof. For three distinct messages M,M ′ and M ′′, PolyKh
(M)⊕PolyKh

(M ′)⊕
PolyKh

(M ′′) is a polynomial of Kh. Now, if this polynomial reduces to a zero
polynomial, which is possible by certain choices of M,M ′ and M ′′ (e.g M =
M1‖M2,M

′ = (M1 ⊕M2)‖M3 and M ′′ = M2‖(M2 ⊕M3)), then ε3 = 0. Oth-
erwise, the polynomial is a non-trivial one and hence, ε3 = `/2n, where ` is the
maximum number of message blocks among three messages. Similarly, it is easy
to see that Poly is a `/2n-1-way regular hash function as maximum number of
roots for the polynomial PolyKh

(M)⊕ Y , where Y 6= 0, is `. Moreover, for any
two distinct messages M and M ′, PolyKh

(M)⊕PolyKh
(M ′)⊕ Y is a non-trivial

polynomial of Kh of degree at most ` and hence the maximum number of roots
this can polynomial can have is ` and thus, the AXU advantage becomes `/2n.

ut

3 Patarin’s Mirror Theory

Mirror theory, as defined in [33] is the theory of evaluating the number of solu-
tions of affine system of equalities and non-equalities in a finite group. Patarin,
who coined this theory, has given a lower bound on the number of solutions of
a finite system of affine bi-variate equations using an inductive proof when the
variables in the equations are wor samples [31]. The proof is tractable upto the
order of 22n/3 security bound, but the proof becomes highly complex and too
difficult to verify in the case of deriving the optimal security bound. In specific,
once the first-order recursion is considered, one needs to consider a second-order
recursion, and so on, until the n-th recursion. For the i-th order recursion, there
are O(2i) many cases and Patarin’s proof only addresses the first (and perhaps
the second) order recursion by a tedious analysis, but the cases of the higher-
order ones are quite different, and it’s not at all clear how to bridge the gap,
given an exponential number of cases that one has to consider. Moreover, to
the best of our knowledge, the proof did not consider any affine non-equation as
well.

In this section we extend the Mirror theory in the context of our MAC
security to incorporate the affine non-equations (that includes uni-variate and
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bi-variate non-equations) along with a system of affine bi-variate equations. In
the following, we prove that when the number of affine bi-variate equations is
q ≤ 22n/3 and the number of non-equations is v ≤ 2n (v is the total number
of affine uni-variate and bi-variate non equations), then the number of solutions
becomes at least (2n)3q/2/2

nq. For the sake of presentation and interoperability
with the results in the remainder of the paper, we use different parameterization
and naming convention.

3.1 General Setting of Mirror Theory

Given a bi-variate affine equation P ⊕Q = λ, the associated linear equation of
this affine equation is P ⊕Q = 0. Now, given λ1, . . . , λq ∈ GF(2n) \ 0 which we
write as Λ = (λ1, . . . , λq), let us consider a system of q many bi-variate affine
equations over GF(2n):

EΛ = {Pn1 ⊕ Pt1 = λ1, Pn2 ⊕ Pt2 = λ2, . . . , Pnq ⊕ Ptq = λq}.

Given a function φ : {n1, t1, . . . , nq, tq} → I, called index mapping function, we
associate another system of bi-variate affine equations:

EΛ,φ = {Pφ(n1) ⊕ Pφ(t1) = λ1, Pφ(n2) ⊕ Pφ(t2) = λ2, . . . , Pφ(nq) ⊕ Pφ(tq) = λq}.

Let α denotes the cardinality of the image set of φ. Then, EΛ,φ is a system of
bi-variate affine equations over α variables. In our paper, a specific choice of I
would be {0, 1}n.

Example. Consider a system of equations:

{P1 ⊕ P2 = λ1, P1 ⊕ P3 = λ2, P2 ⊕ P4 = λ3}.

Then, the index mapping function for the above system of equations is φ(n1) =
1, φ(t1) = 2, φ(n2) = 1, φ(t2) = 3, φ(n3) = 2, φ(t3) = 4. For this system of
equations α = 4.

Equation-Dependent Graph. For index mapping function φ : {n1, t1, . . . , nq, tq} →
I, we associate a undirected graph Gφ = ([q],S) where {i, j} ∈ S if

|{φ(ni), φ(ti)} ∩ {φ(nj), φ(tj)} | ≥ 1

or if i = j and φ(ni) = φ(ti). We call such an edge a self-loop. In other words, we
introduce an edge between two equations (node represents the equation number)
in the equation-dependent graph if the corresponding equations have at least one
common unknown variable. Note that the set {φ(ni), φ(ti)} can be a multi-set.

For a subset {i1, . . . , ic} ⊆ [q], let

{Pφ(ni1
) ⊕ Pφ(ti1 ) = 0, Pφ(ni2

) ⊕ Pφ(ti2 ) = 0, . . . , Pφ(nic ) ⊕ Pφ(tic ) = 0}

be the sub-system of associated linear equations. We say this sub-system of
associated linear equations is linearly dependent if {i1, . . . , ic} is the minimal set
and all variables Px, which appeared in the above sub-system, appears exactly
twice. Depending on the value of c (for the minimal linearly dependent sub-
system), we have the following three cases;
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(i) c = 1: Self-loop. If there exists i such that φ(ni) = φ(ti).

(ii) c = 2: Parallel-edge. If there exists i 6= j such that either:

(a) φ(ni) = φ(nj) and φ(ti) = φ(tj) or (b) φ(ni) = φ(tj) and φ(ti) = φ(nj).

(iii) c ≥ 3: Alternating-cycle. If there exists distinct i1, i2, . . . , ic such that
for every j ∈ [c] either

- φ(nij ) ∈ {φ(nij+1), φ(tij+1)} and φ(tij ) ∈ {φ(nij−1), φ(tij−1)} or

- φ(tij ) ∈ {φ(nij+1
), φ(tij+1

)} and φ(nij ) ∈ {φ(nij−1
), φ(tij−1

)}.

When i = 1, i − 1 is considered as c and when i = c, i + 1 is considered as
1. We say that φ is dependent if any one of the above condition holds. Other-
wise, we call it independent. Given an independent φ, the graph Gφ becomes a
simple graph and EΛ,φ becomes linearly independent. In this case, the number
of variables present in a connected component C = {i1, . . . , ic} of Gφ (i.e., the
size of the set {φ(ni1), φ(ti1), . . . , φ(nic), φ(tic)}) is exactly c + 1. We call the
set {φ(ni1), φ(ti1), . . . , φ(nic), φ(tic)} a block. The block maximality, denoted by
ξmax, of an independent φ is defined as ζmax+1 where ζmax is the size of the max-
imum connected components of Gφ (Note that, a block with p many elements
introduces p− 1 many affine equations.).

Example. Suppose, E = {(1) P1 ⊕ P2 = λ1, (2) P1 ⊕ P3 = λ2, (3) P2 ⊕ P4 =
λ3, (4) P5⊕P6 = λ4}, then we have two blocks {1, 2, 3, 4} and {5, 6} and ξmax = 4.
Observe that, we also have two connected components {1, 2, 3} and {4} and the
size of the maximum connected component ζmax = 3 as depicted in Fig. 3.1 and
ξmax = ζmax + 1 = 4.

1

2

3

4

Fig. 3.1. Equation dependent graph G[E ] comprised of two components; largest com-
ponent size is 3.

3.2 Extended Mirror Theory

In this section, we introduce the extended Mirror theory technique by incor-
porating two types of non-equations with a finite number of bi-variate affine
equations. We consider (i) uni-variate affine non-equation of the form Xi 6= c
and (ii) bi-variate affine non-equation of the form Xi ⊕ Yi 6= c, where c is a
non-zero constant. In particular, we lower bound the number of solutions of a
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finite number of affine equations 9 and uni(bi-) variate affine non-equations. To
begin with, let us investigate what happens when we introduce a single uni(bi-)
variate affine non-equation with a finite number of affine equations.

Let E= be a system of q many affine equations of the form

E= = {Pn1 ⊕ Pt1 = λ1, . . . , Pnq ⊕ Ptq = λq}. (4)

Let φ be an index mapping function that maps from {n1, t1, . . . , nq, tq} → I.
Let Λ= = (λ1, λ2, . . . , λq), where each λi ∈ GF(2n) \0. Now, for an independent
choice of φ, E=

φ,Λ=
is a linearly independent set of q many affine equations. Let E 6=

be a system of r many bi-variate affine non-equations and v−r many uni-variate
affine non-equations of the form

E 6= = {Pnq+1
⊕ Ptq+1

6= λ′1, . . . , Pn(q+r)
⊕ Pt(q+r)

6= λ′r}⋃
{Pnq+r+1 6= λ′r+1, . . . , Pn(q+v)

6= λ′v}.

We denote Λ6= = (λ′1, λ
′
2, . . . , λ

′
v), where each λ′i ∈ GF(2n) \ 0, and Λ′ =

(λ1, λ2, . . . , λq, λ
′
1, λ
′
2, . . . , λ

′
v). Now, for the system of affine equations and non-

equations E := E= ∪ E 6=, we consider the index mapping function

φ′ : {n1, t1, . . . , nq, tq, nq+1, tq+1, . . . , nq+v, tq+v} → I.

Moreover, we denote φ := φ′|q to be the index mapping function that maps

{n1, t1, . . . , nq, tq} → I and Λ= := Λ′|q to be (λ1, λ2, . . . , λq).

Characterizing Good (φ′,Λ′). We say that a pair (φ′,Λ′) is good if

- (C1) φ is independent and for all x 6= y, Pφ(x) = Pφ(y) cannot be generated
from the system of equations E=

φ,Λ=
.

- (C2) for all j ∈ [v] and i1, . . . , ic ∈ [q], c ≥ 0, such that {i1, . . . , ic, q + j} is
dependent system then λi1 ⊕ · · · ⊕ λic ⊕ λ′j 6= 0.

In words, a good (φ′,Λ′) says that: (i) the system of equation Eφ,Λ= is linearly
independent system of equations and one cannot generate an equation of the
form Pφ(x) = Pφ(y) by linearly combining the equation of Eφ,Λ=

. Moreover, (ii)
by linearly combining the equation of Eφ,Λ=

, one cannot generate an equation of

the form Px ⊕ Py = λx,y such that Px ⊕ Py 6= λx,y already exist in E 6=φ′,Λ′ .
Summarizing above, we state and prove the following main theorem, which we
call as Extended Mirror Theorem for ξmax = 3. For the notational simplicity we
assume the index set I = [α].

9 when we consider affine equation, we actually refer to the bi-variate affine equation.
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Theorem 1. Let (E=∪E 6=, φ′,Λ′) be a system of q many affine equations and v
many uni(bi-) variate affine non-equations associated with index mapping func-
tion φ′ over GF(2n) which are of the form

(a)Pφ(ni) ⊕ Pφ(ti) = λi(6= 0), ∀i ∈ [q]

(b)Pφ(nj) ⊕ Pφ(tj) 6= λ′j(6= 0), ∀j ∈ [q + 1, q + r]

(c)Pφ(nj) 6= λ′′j (6= 0), ∀j ∈ [q + r + 1, q + v]

over the set of α many unknown variables P = {P1, . . . , Pα} such that Pa may
be equals to some Pφ(ni) or Pφ(ti), where a ∈ {φ(nj), φ(tj)}, j ∈ [q + 1, q + v].
Now, if

- (i) (φ′,Λ′) is good and
- (ii) ξmax = 3

then the number of solutions for P, denoted by h 3q
2

such that Pi 6= Pj for all

distinct i, j ∈ {1, . . . , α} is

h 3q
2
≥

(2n) 3q
2

2nq

(
1− 5q3

22n
− v

2n

)
. (5)

An Overview of the Proof. We prove the result by induction on the number
of blocks. Let us assume that we have exactly u many blocks with total number
of equations 2u and total number of variables 3u. Let us also assume that we
have ω3u many uni-variate and bi-variate affine non equations and h3u be the
total number of solutions of such a system of affine equations and non-equations.
Now, we introduce one more block that adds two new equations and three new
variables with the existing set of equations and variables. We also consider an
affine bi-variate non-equation such that one of its variables comes from the ex-
isting 3u many variables and the other one comes from the newly introduced
three variables. Moreover, we also consider an affine uni-variate non-equation
such that the variable comes from the newly introduced three variables. Given
we have h3u many solutions, we calculate the number of solutions for the newly
introduced affine equations and non-equations such that the solution does not
end up with any inconsistencies.

Proof. As mentioned, our proof is an inductive proof based on the number of
blocks u. Our first observation is that as (φ′,Λ′) is good, φ is independent and
thus ξmax = ζmax + 1 and hence, the maximum number of variables Pi that can
reside in the same block is 3. For the simplicity of the proof, assume that we
have exactly 3 variables at each blocks. Now, it is easy to see that Eqn. (5) holds
when u = 1.

As the next step of the proof, let h3u be the solutions for first 2u many affine
equations, which we denote as E=

2u. Now as soon as we add the (u+ 1)th block,
we consider the following bi-variate affine equations

P3u+1 ⊕ P3u+2 = λ2u+1, P3u+1 ⊕ P3u+3 = λ2u+2
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and those bi-variate affine non-equations which are of the form

Pσi
⊕ Pδi 6= λ′i, where σi ∈ {1, . . . , 3u+ 3}, δi ∈ {3u+ 1, 3u+ 2, 3u+ 3},

and also those uni-variate affine non-equations of the form

Pδi 6= λ′′i , where δi ∈ {3u+ 1, 3u+ 2, 3u+ 3}.

Let v′ and v′′ be the number of such bi-variate and uni-variate affine non-
equations. Now, note that each such bi-variate affine non-equation of the form
Pσi
⊕ Pδi 6= λ′i where σi ∈ {1, . . . , 3u + 3}, δi ∈ {3u + 1, 3u + 2, 3u + 3}

can be written as P3u+1 6= Pσi
⊕ λ?i , where σi ∈ {1, . . . , 3u + 3} and λ?i ∈

{λ′i, λ′i⊕λ2u+1, λ
′
i⊕λ2u+2}. Moreover, each such uni-variate affine non-equation

of the form Pδi 6= λ′′i where δi ∈ {3u + 1, 3u + 2, 3u + 3} can be written as
P3u+1 6= λ??i , where λ??i ∈ {λ′′i , λ′′i ⊕ λ2u+1, λ

′′
i ⊕ λ2u+2}.

Now h3u+3 counts for the number of solutions to {P1, . . . , P3u, P3u+1, P3u+2, P3u+3}
such that

- {P1, . . . , P3u} is a valid solution of E=
2u.

- P3u+1 ⊕ P3u+2 = λ2u+1, P3u+1 ⊕ P3u+3 = λ2u+2.

- P3u+1 /∈ {P1, . . . , P3u, P1 ⊕ λ2u+1, . . . , P3u ⊕ λ2u+1, P1 ⊕ λ2u+2, . . . , P3u ⊕
λ2u+2}.

- P3u+1 /∈ {Pσ1
⊕ λ?1, . . . , Pσv′ ⊕ λ

?
v′}.

- P3u+1 /∈ {λ??1 , . . . , λ??v′′}.

Let V1 = {P1, . . . , P3u}, V2 = {P1 ⊕ λ2u+1, . . . , P3u ⊕ λ2u+1}, V3 = {P1 ⊕
λ2u+2, . . . , P3u⊕λ2u+2}, V4 = {Pσ1

⊕λ?1, . . . , Pσv′⊕λ
?
v′} and V5 = {λ??1 , . . . , λ??v′′}.

Note that, |Vi| = 3u, i = 1, 2, 3 and |V4| = v′, |V5| = v′′. Therefore, we can write

h3u+3 = h3u(2n − |V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5|) ≥ h3u(2n − |V1| − |V2| − |V3| − |V4| − |V5|)
≥ h3u(2n − 9u− v′ − v′′).

By applying repeated induction, we obtain

h 3q
2
≥
(

2n − 9(
q

2
− 1)− v′ − v′′

)
h3( q

2−1) ≥ . . . ≥
q/2−1∏
u=0

(2n − 9u− v′ − v′′)
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for which we have,

h 3q
2

2nq

(2n) 3q
2

≥
q/2−1∏
u=0

22n(2n − 9u− v′ − v′′)
(2n − 3u)(2n − 3u− 1)(2n − 3u− 2)

≥
q/2−1∏
u=0

22n(2n − 9u− v′ − v′′)
23n − (9u+ 3)22n + (27u2 + 18u+ 2)2n

[1]

≥
q/2−1∏
u=0

(
1 +

3

2n
− 27u2 + 18u+ 2

22n
− v′ + v′′

2n

)
[2]

≥
q/2−1∏
u=0

(
1− 27u2

22n
− 9u2

22n
− v′ + v′′

2n

)
≥
q/2−1∏
u=0

(
1− 36u2

22n
− v′ + v′′

2n

)

≥

(
1−

q/2−1∑
u=0

36u2

22n
−
q/2−1∑
u=0

v′ + v′′

2n

)
[3]

≥

(
1− 5q3

22n
− v

2n

)

where [1] follows from the assumptions u ≤ 2n/9, [2] follows as 9u2

22n ≥ (18u+3)
22n − 3

2n

and [3] follows as
q/2−1∑
u=0

(v′ + v′′) ≤ v. ut

4 DWCDM and Its Security Result

In this section, we discuss our proposed construction DWCDM and state its
security in nonce respecting and nonce misuse setting. Let us recall the DWCDM
construction:

DWCDM[E,E−1,H](N,M) := E−1
K (EK(N)⊕N ⊕ HKh

(M))

where N = N∗‖0n/3. EK is a n-bit block cipher and HKh
is an ε1-regular,

ε2-AXU and ε3-3-way regular n-bit keyed hash function. A schematic diagram
of DWCDM is shown in Fig.4.1. Note that, DWCDM is structurally similar to
EWCDM, but unlike EWCDM, our construction uses the same block cipher key
and the last block cipher call of EWCDM is replaced by its decryption function.
Moreover, DWCDM cannot exploit the full nonce space like EWCDM, otherwise
its beyond birthday security will be compromised as explained below.

4.1 Why DWCDM Cannot Accommodate Full n-bit Nonce

As mentioned above, for DWCDM we need to reduce the nonce space to 2n/3-
bits. If it uses the full nonce space then using a nonce respecting adversary A
who set the tags as nonce repeatedly, can mount a birthday bound forging attack
on DWCDM as follows:

Suppose, an adversary starts with query (N,M) and then makes a chain of
queries of the form (Ti−1,M) where (Ti−1,M) is the i-th query and Ti−1 is the
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N EK ⊕ E−1
K T

HKh

M

Fig. 4.1. Decrypted Wegman-Carter with Davies-Meyer Construction.

response of the previous (i − 1)-th query, until the first time collision occurs
(i.e. a responce matches with one of the previous responses). If the adversary
makes upto q ≈ 2n/2 queries, it gets a collision Ti = Tj with high probability.
Interestingly, if (j − i) 10 is even (which holds with probability 1/2), then

Tj = Ti iff (Ti + Ti+1 + · · ·+ Tj−1 = 0).

Now, this property can be easily used A to predict Ti = Tj if it finds Ti +Ti+1 +
· · · + Tj−1 = 0 for some i, j such that (j − i) is even. Thus, A can mount the
following forging attack as shown in Figure 4.2.

MAC Adversary A

1. Take any arbitrary N and M ; set T0 ← N .
2. for (j = 1; j ≤ q; j + +)
3. Tj ← DWCDM(Tj−1,M).
4. for(i = j − 1; i ≥ 0; i = i− 2)
5. if((Ti + · · ·+ Tj) = 0)
6. forge(Tj ,M, Ti).

Fig. 4.2. Birthday bound MAC attack against DWCDM if full nonce space is used.

However, if we restrict the nonce space to 2n/3 bits, then this attack doesn’t
work because now using the tag as a valid nonce is a probabilistic event. Prob-
ability that a tag is a valid nonce is 2−n/3. This restricts the adversary from
forming a chain as used in the attack. In fact, if adversary makes 22n/3 many
MAC queries then the expected number of tags whose last n/3 bits are all zeros
is 2n/3. Now, if adversary uses these 2n/3 tags as the nonces, then the expected
number of tags whose last n/3 bits are zeros is 1 and then adversary cannot

10 we assume j > i.
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proceed further. This phenomenon effectively invalidates the above attack to
happen.

4.2 Nonce Respecting Security of DWCDM

In this section, we state that DWCDM is secure up to 22n/3 MAC queries and
2n verification queries against nonce respecting adversaries. Formally, the fol-
lowing result bounds the MAC advantage of DWCDM against nonce respecting
adversaries.

Theorem 2. Let M,K and Kh be finite and non-empty sets. Let E : K ×
{0, 1}n → {0, 1}n be a block cipher and H : Kh ×M → {0, 1}n be an ε2-AXU,
ε3-3-way regular and ε1-regular hash function. Then, the MAC advantage for any
(qm, qv, t) nonce respecting adversary against DWCDM[E,E−1,H] is given by,

AdvMAC
DWCDM[E,E−1,H](qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) +

2qm
22n/3

+ qmε1 +
2qmε2
2n/3

+ 2qv.max{ε1, ε2, ε3}+
(qm + qv)

2n
+

5q3
m

22n
,

where t′ = O(t+ (qm + qv)tH), tH be the time for computing the hash function.
By assuming ε1, ε2, ε3 ≈ 2−n and qm ≤ 22n/3, DWCDM is secured up to roughly
qm ≈ 22n/3 MAC queries and qv ≈ 2n verification queries.

4.3 Nonce Misuse Security of DWCDM

Similar to EWCDM [15], one can prove that DWCDM[E,E−1,H] is birthday bound
secure MAC against nonce misuse adversaries. In particular, DWCDM is secure
up to 2n/2 MAC queries and 2n verification queries against nonce misuse adver-
saries and that the security bound is essentially tight. More formally, we have
the following MAC security result of DWCDM in nonce misuse setting.

Theorem 3. Let M,K and Kh be finite and non-empty sets, E : K×{0, 1}n →
{0, 1}n be a block cipher and H : Kh×M→ {0, 1}n be an ε1-regular and ε2-AXU
hash function. Then, the MAC security of DWCDM[E,E−1,H] in nonce misuse
setting is given by

AdvMAC
DWCDM(qm, qv, t) ≤ AdvSPRP

E (qm+qv, t
′)+q2

mε2 +
4q2
m

2n
+qmε1 +

(qm + qv)

2n
,

where t′ = O(t+ q(qm + qv)tH), tH be the time for computing hash function.

By assuming ε1 ≈ 2−n and ε2 ≈ 2−n, DWCDM is secure up to roughly qm ≈ 2n/2

MAC queries and qv ≈ 2n verification queries. For completeness of the paper,
we present the proof of Theorem 3 in Appendix A.



18 Nilanjan Datta, Avijit Dutta, Mridul Nandi and Kan Yasuda

Tightness of the Bound

We show that the above bound of DWCDM is tight by demonstrating a forging
attack which shows thats roughly 2n/2 MAC queries are enough to break the
MAC security of DWCDM when an adversary is allowed to repeat nonce only
for once. The attack is as follows:

1. Adversary A makes q many MAC queries (Ni,Mi) with distinct nonces where
a collision in the response, i.e. Ti = Tj for some i < j occurs.

2. Make a MAC query (Nj ,Mi). Let Tq+1 be the response.

3. Forge with (Ni,Mj , Tq+1).

As Π(Tq+1) = Π(Ni) ⊕ Ni ⊕ HKh
(Mj), (Ni,Mj , Tq+1) is a valid forgery. If we

make q = 2n/2 many queries, with very high probability, we will get a collision in
step 1, and mount the attack. Note that, the attack does not exploit any specific
properties of the hash function and a single time repitition of nonce makes the
construction vulnerable above birthday bound security.

4.4 nPolyMAC: An Instantiation of DWCDM

In this section, we propose nPolyMAC, an algebraic hash function based instan-
tiation of DWCDM, as defined in Eqn. (3), as the underlying hash function of
DWCDM construction.

PolyHash [26] is one of the popular examples of algebraic hash function.
For a hash key Kh and a message M = (M1,M2, . . . ,Ml) such that for all
i = 1, 2, . . . l − 1 |Mi| = n and |Ml| ≤ n, we define the PolyHash as follows:

PolyKh
(M1,M2, . . . ,Ml) = (Ml‖10n−|Ml|) ·Kh ⊕Ml−1 ·K2

h ⊕ . . .⊕M1 ·Kl
h.

It has already been shown in Proposition 1 that Poly is `/2n 3-way and 1-way
regular hash function. Moreover, the AXU advantage of Poly is `/2n. Following
these results, we show in the following that nPolyMAC[Poly,E,E−1] is secure up
to 22n/3 MAC and 2n verification queries against nonce respecting adversaries.

Theorem 4. Let K,Kh and M be three non-empty finite sets. Let E : K ×
{0, 1}n → {0, 1}n be a block cipher. Then, the MAC security of nPolyMAC in
nonce respeting setting is given by

AdvMAC
nPolyMAC(qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) +

11qm`

22n/3
+

3qv`

2n
,

where t′ = O(t+(qm+qv)`), ` be the maximum number of message blocks among
all q queries.

The proof of the theorem directly follows from Proposition 1 and Theorem 2
with the assumption qm ≤ 22n/3.
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5 Proof of Theorem 2

In this section, we prove Theorem 2. We would like to note that we will often refer
to the construction DWCDM[E,E−1,H] as simply DWCDM where the underlying
primitives are assumed to be understood.

As the first step of the proof, we replace EK and E−1
K with an n-bit uniform ran-

dom permutation Π and its inverse Π−1 respectively both in the MAC and veri-
fication oracle of DWCDM and denote the construction as DWCDM∗[Π,Π−1,H].
This conversion will add a term AdvSPRP

E (qm + qv, t
′) where t′ = O(t + (qm +

qv)tH) and hence one simply has

AdvMAC
DWCDM(qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) + AdvMAC

DWCDM∗(qm, qv, t)︸ ︷︷ ︸
δ∗

. (6)

Now, our goal is to upper bound δ∗. For doing this, we consider TG[Π,Π−1,HKh
]

be the tag generation and VF[Π,Π−1,HKh
] be the verification oracle of DWCDM∗

construction. We also consider that Rand be a perfect random oracle that on
input (N,M) ∈ {0, 1}n × M, returns T , sampled uniformly at random from
{0, 1}n, whereas Rej be an oracle with inputs (N,M, T ), returns always ⊥ (i.e.
rejects). Now, due to [15, 20] we write

δ∗:= max
D

Pr[DTG[Π,Π−1,HKh
],VF[Π,Π−1,HKh

] = 1]− Pr[DRand,Rej = 1],

where the maximum is taken over all non-trivial distinguishers D. This formula-
tion allows us to apply the H-Coefficient Technique [30], as we explain in more
detail below, to prove

δ∗ ≤ 2qm
22n/3

+ qmε1 +
2qmε2
2n/3

+ 2qv.max{ε1, ε2, ε3}+
(qm + qv)

2n
+

5q3
m

22n
. (7)

H-Coefficient Technique. From now on, we fix a non-trivial distinguisher D
that interacts with either (1) the real oracle (TG[Π,Π−1,HKh

],VF[Π,Π−1,HKh
])

for a random permutation Π, its inverse Π−1 and a random hashing key Kh or
(2) the ideal oracle (Rand,Rej) making at most qm queries to its left (MAC)
oracle and at most qv queries to its right (verification) oracle, and outputting a
single bit. We let

Adv(D) = Pr[DTG[Π,Π−1,HKh
],VF[Π,Π−1,HKh

] = 1]− Pr[DRand,Rej = 1].

We assume that D is computationally unbounded and hence wlog deterministic
and that it never repeats a query. Let

τm := {(N1,M1, T1), (N2,M2, T2), . . . , (Nqm ,Mqm , Tqm)}

be the list of MAC queries of D and its corresponding responses. Note that, as
D is nonce respecting, there cannot be any repetition of triplet in τm. Let also

τv := {(N ′1,M ′1, T ′1, b′1), (N ′2,M
′
2, T

′
2, b
′
2), . . . , (N ′qv ,M

′
qv , T

′
qv , b

′
qv )}
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be the list of verification queries of D and its corresponding responses, where
for all j, b′j ∈ {>,⊥} denotes the accept (b′j = >) or reject (b′j = ⊥). The
pair (τm, τv) constitutes the query transcript of the attack. For convenience, we
slightly modify the experiment where we reveal to the distinguisher (after it
made all its queries and obtains corresponding responses but before it output its
decision) the hashing key Kh, if we are in the real world, or a uniformly random
dummy key Kh if we are in the ideal world. All in all, the transcript of the attack
is τ = (τm, τv,Kh) where τm and τv is the tuple of MAC and verification queries
respectively. We will often simply name a tuple (N,M, T ) ∈ τm a MAC query,
and a tuple (N ′,M ′, T ′, b) ∈ τv a verification query.

A transcript τ is said to be an attainable (with respect to D) transcript if the
probability to realize this transcript in ideal world is non-zero. For an attainable
transcript τ = (τm, τv,Kh), any verification query (N ′i ,M

′
i , T
′
i , b
′
i) ∈ τv is such

that b′i = ⊥. We denote Θ to be the set of all attainable transcripts and Xre

and Xid denotes the probability distribution of transcript τ induced by the real
world and ideal world respectively. In the following we state the main lemma of
the H-coefficient technique (see e.g. [13] for the proof).

Lemma 1. Let D be a fixed deterministic distinguisher and Θ = Θg tΘb (dis-
joint union) be some partition of the set of all attainable transcripts. Suppose
there exists εratio ≥ 0 such that for any τ ∈ Θg,

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Xid ∈ Θb] ≤ εbad. Then, Adv(D) ≤
εratio + εbad.

The remaining of the proof of Theorem 2 is structured as follows: in section 5.1
we define the transcript graph; in section. 5.2 we define bad transcripts and
upper bound their probability in the ideal world; in section 5.3, we analyze good
transcripts and prove that they are almost as likely in the real and the ideal
world. Theorem 2 follows easily by combining Lemma 1, Eqn. (6) and (7) above,
and Lemmas 3 and 4 proven below.

5.1 Transcript Graph

Given a transcript τ = (τm, τv,Kh), we define the following two types of graphs:
(a) MAC Graph and (b) Verification Graph.

MAC Graph. Given a transcript τ = (τm, τv,Kh), we define the MAC graph,
denoted as Gm

τ as follows:

Gm
τ = ([qm], Em) where Em = {(i, j) ∈ [qm]× [qm] : Ni = Tj ∨Nj = Ti ∨Ti = Tj}.

For the sake of convenience, we denote the edge (i, j) as a dotted line when
Ti = Tj , else we denote it as a continuous line. Thus, the edge set of Gm

τ consists
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i j i j i j

(a) (b) (c)

Fig. 5.1. Different types of edges of MAC and Verification Graphs. (a) : Ni = Tj/Ti =
Nj , (b) : Ti = Tj , (c) : Ni = Nj .

of two different types of edges as depicted in Fig. 5.1 (a) and (b). Note that, for
a MAC graph we cannot have edges of type (c).
Given such a MAC graph, we can partition the set of vertices in the following
way: if vertex i and j are connected by an edge then they belong to the same
partition. Each partition is called a component of the graph and the number of
vertices in the component is called its size, which we denote as ζ.

Verification Graph. Given a MAC graph Gm
τ , we define Verification graph,

denoted as Gv
τ , by extending Gm

τ with adding one more vertex and at most
two edges for incorporating a verification query as follows: For convenience, we
reorder the set of MAC queries and verification queries so that all verification
queries appears after all MAC queries. Therefore, after such a reordering, j-
th verification query becomes (qm + j)-th verification query. Let (qm + j)-th
verification query be (N ′qm+j ,M

′
qm+j , T

′
qm+j , b

′
qm+j) ∈ τv and Gm

τ be the MAC
graph corresponding to τ = (τm, τv,Kh). Then we define Gv

τ = ([qm] ∪ {qm +
j}, Ev) where Ev is defined as follows:

Ev = Em ∪ {(qm+j, r), (qm+j, s) : r 6= s ∈ [qm] such that either of (1)-(4) holds}.


(1) N ′qm+j = Nr ∧ T ′qm+j = Ns

(2) N ′qm+j = Nr ∧ T ′qm+j = Ts

(3) N ′qm+j = Tr ∧ T ′qm+j = Ns

(4) N ′qm+j = Tr ∧ T ′qm+j = Ts

Definition 3 (Valid Cycle). A cycle C = (i1, i2, . . . , ip) of length p in the
MAC graph Gm

τ is said to be valid if the imposed equality pattern of (N,T ),
generated out of C, derives

0 =
⊕
i∈C

(
Ni ⊕ HKh

(Mi)

)
equation from the given system of equations.

Similar to the definition of valid cycle of MAC graph, one can define the valid
cycle for the Verification graph also. Note that, the definition of valid cycle in
MAC graph or verification graph actually resembles to the alternating cycle as
stated in section. 3.1. Now, we make an important observations about the MAC
queries (in ideal oracle) as follows:
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Lemma 2. For two MAC queries i, j, we have

(a) if i < j, Pr[Tj = Ni] =
1

2n
; (b) if i > j, Pr[Tj = Ni] =

1

2n/3
.

Proof. Proof of the first result holds due to the randomness of Tj , i.e a randomly
sampled value Tj is equal to a fixed nonce value Ni holds with probability 2−n.
For the later one, condition i > j ensures that one can set the nonce value Ni to
a previously sampled tag value Tj . But this would be valid only when the last
n/3 bits of Ti are all zero, probability of which is 2−n/3. ut

5.2 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcript in ideal
world. But, before that we first briefly justify the reason about our identified
bad events and there after we define the bad transcript accordingly.

Let τ = (τm, τv,Kh) be an attainable transcript. Then, for all MAC queries
(Ni,Mi, Ti) in real oracle, we have

i ∈ {1, . . . , qm},Π(Ni)⊕ Π(Ti) = Ni ⊕ HKh
(Mi).

Moreover, for all verification queries (N ′a,M
′
a, T

′
a, ba) in real oracle, we have

a ∈ {1, . . . , qv},Π(N ′a)⊕ Π(T ′a) 6= N ′a ⊕ HKh
(M ′a).

We refer to the system of equations as “MAC Equations” which involve only the
MAC queries. Similarly, we refer to the system of non-equations as “Verification
non-equations” which involve only the verification queries.

Therefore, from a given attainable transcript τ , one can write exactly qm
many affine equations and qv many non-equations. Now, as one needs to lower
bound the number of solutions of this system of equations and non-equations (for
analyzing the real interpolation probability), it essentially leads us to the model
of extended Mirror theory where the equivalence of two set up is established as
follows:{

φ′(ni) = Ni, φ
′(ti) = Ti, λi = Ni ⊕ HKh

(Mi), i ∈ {1, . . . , qm}
φ′(na) = N ′a, φ

′(ta) = T ′a, λ
′
a = N ′a ⊕ HKh

(M ′a), a ∈ {1, . . . , qv}

Recall that, (φ′,Λ′) where Λ′ = (λ1, . . . , λqm , λ
′
1, . . . , λ

′
qv ), was characterized to

be bad if either of the following holds:

(i) φ(ni) = φ(ti).

(ii) - φ(ni) = φ(nj) and φ(ti) = φ(tj)
- φ(ni) = φ(tj) and φ(ti) = φ(nj) for i 6= j ∈ [qm].

(iii) there is an alternating cycle.
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(iv) for all j ∈ [qv] and i1, . . . , ic ∈ [qm], c ≥ 0, such that {i1, . . . , ic, qm + j} is
dependent system then λi1 ⊕ · · · ⊕ λic ⊕ λ′j = 0.

where φ = φ′|qm . Therefore, with the help of equivalence of two set up as estab-
lished above, we justify our identified bad events:

- (i)⇒ Ni = Ti
- (ii)⇒ existence of a valid cycle in the MAC graph Gm

τ .
- (iii)⇒ Ni⊕HKh

(Mi) = Nj⊕HKh
(Mj), Ti = Tj or Ni = Tj , Ni⊕HKh

(Mi) =
Nj ⊕ HKh

(Mj) such that i 6= j ∈ [qm].

Moreover, recall that while considering the non-equation then we considered
that any of qv non-equations can be determined from a subset of qm many affine
equations with their correponding sum of λ constant becomes zero, which is to
say that

- the verification graph Gv
τ contains any valid cycle.

Summarizing above, we now define the bad transcript.

Definition 4. A transcript τ = (τm, τv,Kh) is said to be bad if the associated
MAC graph Gm

τ and the Verification graph Gv
τ satisfies the either of the following

properties:

- B0 : ∃i ∈ [qm] such that Ti = 0.
- B1 : Gm

τ has a component of size 3 or more.
- B2 : Gm

τ contains a valid cycle of any arbitrary length that also includes the
self loop (that implicitly takes care of the condition Ni = Ti).

- B3 : Gv
τ contains a valid cycle of any arbitrary length that involves the veri-

fication query.

Moreover, τ is also said to be bad if

- B4 : ∃i 6= j ∈ [qm] such that Ni ⊕ HKh
(Mi) = Nj ⊕ HKh

(Mj), Ti = Tj.
- B5: ∃i 6= j ∈ [qm] such that Ni = Tj , Ni ⊕ HKh

(Mi) = Nj ⊕ HKh
(Mj).

- B6 : ∃i ∈ [qm] such that HKh
(Mi) = Ni.

Condition B1 actually imposes a restriction on the block maximality as we
do not allow to have a larger component size for a good transcript. Condi-
tion B6 ensures that for a good transcript, all the elements of the tuple

(
N1 ⊕

HKh
(M1), . . . , Nqm ⊕HKh

(Mqm)
)

are non-zero. Note that, if we do not consider
the condition B6, then for a good attainable transcript the real interpolation
probability would become zero.

We denote Θb ⊆ Θ be the set of all attainable bad transcripts and the event B
denotes B := B0 ∨ B1 ∨ B2 ∨ B3 ∨ B4 ∨ B5 ∨ B6, We bound the probability of
event B in ideal world as follows:

Lemma 3. Let Xid and Θb be defined as above. If qm ≤ 22n/3 and qv ≤ 2n,
then

Pr[Xid ∈ Θb] ≤ εbad =
2qm
22n/3

+
qm
2n

+ qmε1 +
2qmε2
2n/3

+ 2qv.max{ε1, ε2, ε3}.

Proof of this lemma is deferred to section 5.4.
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5.3 Analysis of Good Transcripts

In this section, we show that for a good transcript τ , realizing τ is almost as
likely in the real world as in the ideal world. Formally, we prove the following
lemma.

Lemma 4. Let τ = (τm, τv,Kh) be a good transcript. Then

pre(τ)

pid(τ)
:=

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ (1− εratio) =

(
1− 5q3

m

22n
− qv

2n

)
.

Proof. Consider the good transcript τ = (τm, τv,Kh). Since in the ideal world
the MAC oracle is perfectly random and the verification always rejects, one
simply has

pid := Pr[Xid = τ ] =
1

|Kh|
· 1

2nqm
(8)

We must now lower bound the probability of getting τ in real world. We say
that a permutation Π is compatible with τm if

∀i ∈ [qm],Π(Ni)⊕ Π(Ti) = Ni ⊕ HKh
(Mi)︸ ︷︷ ︸

λi

and we say that it is compatible with τv if

∀a ∈ [qv],Π(N ′a)⊕ Π(T ′a) 6= N ′a ⊕ HKh
(M ′a)︸ ︷︷ ︸

λ′a

.

We simply say that Π is compatible with τ if it is compatible with τm and τv. We
denote Comp(τ) the set of permutations that are compatible with τ . Therefore,

pre(τ) =
1

|Kh|
· Pr[Π←$ Perm : Π ∈ Comp(τ)]

=
1

|Kh|
· Pr[Π(Ni)⊕ Π(Ti) = λi,∀i ∈ [qm],Π(N ′a)⊕ Π(T ′a) 6= λ′a,∀a ∈ [qv]]︸ ︷︷ ︸

Pmv

Lower Bounding Pmv: Observe that lower bounding Pmv implies lower bound-
ing the probability of the number of solutions to the following system of qm many
equations and qv many non-equations:

(Em) =


Π(N1)⊕ Π(T1) = λ1

Π(N2)⊕ Π(T2) = λ2

...

Π(Nqm)⊕ Π(Tqm) = λqm

(Ev) =


Π(N ′1)⊕ Π(T ′1) 6= λ′1
Π(N ′2)⊕ Π(T ′2) 6= λ′2
...

Π(N ′qv )⊕ Π(T ′qv ) = λ′qv

Let us assume the distinct number of random variables in the above set of
equations is α. As the transcript τ is good, we have the following properties:



Encrypt or Decrypt? To Make a Single-Key BBB Secure Nonce-Based MAC 25

- (i) all λi values are non-zero (otherwise condition B6 is satisfied).
- (ii) (φ′,Λ′) is good.
- (iii) Finally, block maximality ξmax is 3.

Above properties enable us directly to apply Theorem 1 to lower bound Pmv as
follows:

Pmv ≥
1

2nqm

(
1− 5q3

m

22n
− qv

2n

)
(9)

Therefore, from Eqn. (9), we have

pre(τ) ≥ 1

|Kh|
· 1

2nqm
·
(

1− 5q3
m

22n
− qv

2n

)
(10)

Finally, taking the ratio of Eqn. (10) to Eqn. (8), the result follows. ut

5.4 Proof of Lemma 3

In order to bound Pr[Xid ∈ Θb], it is enough to bound Pr[B]. Therefore, we write

Pr[B] ≤
∑

v∈{0,1,4,5,6}

Pr[Bv] + Pr[B2 | B1] + Pr[B3 | B0 ∧ B1 ∧ B2] (11)

In the following, we bound the probabilities of all the bad events individually.

Bounding B0. Event B0 occurs if there exists a MAC query whose response
is all zero. For a fixed MAC query, the probability of this event in ideal world
is 2−n as the responses are sampled uniformly and independently to all other
sampled random variables. Now, varying over all such MAC queries we obtain
the bound to be

Pr[B0] ≤ qm
2n

(12)

Bounding B1. Event B1 occurs if there exists a component of size at least 3 in
Gm
τ . This essentially implies there is a chain of two edges. Depending on whether

the edges are dotted (Dot) or continuous (Con), there are three possible choices
of components: components with both the edges being dotted, components with
one dotted and one continuous edge and component with both continuous edges.
We analyze each of them one by one:

(Dot-Dot) Component. ∃i, j, k ∈ [qm] such that Ti = Tj = Tk. For a fixed set of
i, j, k ∈ [qm], this event is bounded by 2−2n as each Ti is sampled uniformly at
random from {0, 1}n. Summing over all possible choices of i, j and k, we obtain
q3m

6·22n bound.

(Dot-Con) Component. ∃i, j, k ∈ [qm] such that Ni = Tj = Tk. For a fixed set
of i, j and k, Tj = Tk is bounded by 2−n. Now, we have the following two sub
cases: (a) if j > i then from Lemma 2, probability of Ni = Tj is bounded by
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i j k i j k i j k

(a) (b) (c)

Fig. 5.2. Different components of size of three. (a)Ti = Tj = Tk, (b)Ni = Tj = Tk or
Ti = Nj , Tj = Tk and (c)Ni = Tj , Nj = Tk or Ti = Nj , Tj = Nk.

2−n and thus the overall probability becomes 2−2n. Summing over all possible

choices of i, j, k, we obtain
q3m

6·22n . (b) if j < i then from Lemma 2, probability of

Ni = Tj is bounded by 2−n/3. Hence the overall probability becomes 2−4n/3. In
this case, choice of i is 1 and that of j and k is at most qm. Therefore, summing

over all possible choices of i, j, k we have
q2m

2·24n/3 ≤ qm
22n/3 , assuming qm ≤ 22n/3.

(Con-Con) Component. ∃i, j, k ∈ [qm] such that Ni = Tj , Nj = Tk. We bound
this event using different sub cases. (a) when i < j < k, then due to Lemma 2,
we obtain 2−2n bound and varying over all possible choices of i, j, k, we obtain
q3m
22n bound. (b) when i < j and j > k, then we obtain 2−4n/3 bound, but there
is exactly one choice of j and qm many choices for i and k. Hence, by summing

over all possible choices of i, j, k we obtain
q2m

24n/3 ≤ qm
22n/3 bound. (c) i > j, j < k

is similar to case (b) and finally (d) when i > j > k, then due to Lemma 2,
probability of the event is bounded by 22n/3 and there is exactly one choice of i
and j, leaving qm choices for k which eventually gives qm

22n/3 bound.

For each of the above cases, we obtain the maximum bound to be qm
22n/3 and

therefore, we have

Pr[B1] ≤ qm
22n/3

. (13)

Bounding B2 |B1: Recall that event B2 holds if there exists any cycle in Gm
τ .

But, as we conditioned on B1, it is enough to bound the existence of a cycle of
length one (self loop) and two (parallel edges).

Self Loop. A self loop or cycle of length 1 in Gm
τ implies that ∃i ∈ [qm] such

that Ni = Ti. For a fixed choice of i, probability of Ni = Ti is bounded by 2−n

due to randomness of Ti. Summing over all choices of i, we obtain qm
2n bound.

i

(a)

i j

(b)

Fig. 5.3. (a) Self Loop: when Ni = Ti, (b) Parallel Edges: Ni = Tj , Nj = Ti.

Parallel Edges. A parallel edge or cycle of length 2 in Gm
τ implies that ∃i 6=

j ∈ [qm] such that Ni = Tj , Nj = Ti. For a fixed choice of i, j (without loss
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of generality we assume i < j), probability of Ni = Tj , Nj = Ti is bounded by
2−4n/3. This is because of Lemma 2, the probability of Ni = Tj is bounded by
2−n and the probability of Nj = Ti is bounded by 2−n/3. As there exists only
one choice of j and qm many choices of i, summing over all possible choices of i
and j, we obtain qm

24n/3 ≤ qm
22n/3 bound.

From the above two cases, we obtain the maximum bound to be qm
22n/3 and

thus we write
Pr[B2 | B1] ≤ qm

22n/3
. (14)

Bounding B3 | B0 ∧ B1 ∧ B2. Recall that event B3 holds if there exists any
cycle in Gv

τ and the sum of the corresponding N ⊕ HKh
(M) is zero. But, as we

conditioned on B0 ∧ B1 ∧ B2, it is enough to bound the existence of a cycle of
length one two and three.

Self Loop. A self loop or cycle of length 1 in Gvτ implies that ∃a ∈ [qv] such
that N ′a = T ′a and HKh

(M ′a) = N ′a. Note that, for a fixed choice of a, the above
event holds with probability at most ε1 as we assume the hash function is ε1
regular. Summing over all choices of a, we obtain qvε1 bound.

a a

(a)

a i

(b.1)

a i

(b.2)

Fig. 5.4. (a) Self Loop: when N ′a = Ta, (b) Parallel Edges: (b.1) N ′a = Ni, T
′
a = Ti, (b.2)

N ′a = Ti, T
′
a = Ni. Node with concentric circle denotes the verification query node.

Parallel Edges. A parallel edge or cycle of length 2 in Gv
τ implies that the

edges would be (i) one dashed (Dash) and one dotted (Dot) or (ii) both contin-
uous (Con-Con). Formally ∃i ∈ [qm], a ∈ [qv] :{

(Dot-Dash) : Ni = N ′a, Ti = T ′a,HKh
(Mi)⊕ HKh

(M ′a) = Ni ⊕N ′a
(Con-Con) : N ′a = Ti, T

′
a = Ni,HKh

(Mi)⊕ HKh
(M ′a) = Ni ⊕N ′a

• Bounding (Dot-Dash) Edges. For a fixed choice of i and a, probability of
Ni = N ′a, Ti = T ′a,HKh

(Mi)⊕ HKh
(M ′a) = Ni ⊕N ′a is bounded by ε2 due to

the randomness of hash key Kh (note that Mi 6= M ′a, as we have assumed a
non-trivial distinguisher). As there exists only one choice of i for which the
above probability is bounded by ε2, summing over all possible choices of i
and a, we obtain the bound qvε2.

• Bounding (Con-Con) Edges. Similarly, for a fixed choice of i, a, probability
of N ′a = Ti, T

′
a = Ni,HKh

(Mi)⊕ HKh
(M ′a) = Ni ⊕N ′a is bounded by ε2 due

to the randomness of hash key Kh, Note that, in this case there exists only
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two choices of i (as we have at most two collision of T ) for which the above
probability is bounded by ε2. Summing over all possible choices of i and a,
we obtain the bound 2qvε2.

Thus, we see from the above two cases that the probability of forming a
parallel edge is bounded by 2qvε2.

Closed Triangle. For the case of a closed triangle, it has the following restric-
tions on the edges: (a) maximum one edge can be dashed and if exist, it must
contain the verification node a, (b) maximum one edge can be dotted (otherwise
there exists a self loop or parallel edges). These restrictions impose the following
properties on the closed triangle:

• if (i, j)-th edge is dotted, then the other edges must be one dashed and one
continuous.
• if (i, j)-th edge is continuous, then there must be a dashed edge.

Hence, a closed triangle or cycle of length 3 in Gv
τ implies that ∃i, j ∈ [qm], a ∈

[qv] such that either of the following holds:

(Con-Dash-Dot) : Ni = Tj , N
′
a = Nj , T

′
a = Ti and

HKh
(Mi)⊕ HKh

(Mj)⊕ HKh
(M ′a) = Tj

(Con-Con-Con) : Ni = Tj , T
′
a = Nj , N

′
a = Ti and

HKh
(Mi)⊕ HKh

(Mj)⊕ HKh
(M ′a) = Ti ⊕ Tj ⊕ T ′a.

(Dot-Dash-Con) : Ti = Tj , N
′
a = Nj , T

′
a = Ni and

HKh
(Mi)⊕ HKh

(Mj)⊕ HKh
(M ′a) = Ti

i

j

a

i

j

a

i

j

a

Fig. 5.5. Cycles of length 3 including the verification query which is denoted by the
concentric circle node.

We bound each of these events for a fixed choice of i, j and a.

• Bounding (Con-Dash-Dot) Triangle. For a fixed choice of i, j, a, probability of
the event is bounded by ε3 using the randomness of the hash key as we have
assumed the hash function is ε3-3-way regular (note that we have conditioned
on B0 and therefore Tj 6= 0). Note that, choice of j and i is one and two
respectively. Hence, summing over all possible choices of indices, we obtain
the bound to be 2qvε3.
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• Bounding (Con-Con-Con) Triangle. We analyze this case in two different
subcases:

- (a) For a fixed choice of i, j and a, if Nj 6= Ti ⊕ Tj , then HKh
(Mi) ⊕

HKh
(Mj) ⊕ HKh

(M ′a) 6= 0 and thus we can bound the event by ε3. In
this case, choices of i and j is 2 an 1 respectively and hence we obtain
the bound to be 2qvε3.

- (b) For a fixed choice of i, j and a, if Nj = Ti ⊕ Tj , then HKh
(Mi) ⊕

HKh
(Mj)⊕HKh

(M ′a) = 0 and in that case we again consider two different
sub cases: (i) if i < j, then Tj = Ni holds with probability 2−n and Ti
is to be valid (i.e. last n/3 bits of Ti has to be zero), which holds with
probability 2−n/3. Moreover, number of choices of i and j in this case

is qm and thus we obtain the bound to be
q2m

24n/3 ≤ qm
22n/3 , assuming

qm ≤ 22n/3. (ii) If i > j, then Tj = Ni holds with probability 2−n/3 and
Ti should be Ni ⊕ Nj which holds with probability 2−n. In this case,
number of choices of j is qm and i in 1, resulting in probability of the
event to be bounded by qm

24n/3 ≤ qm
22n/3 .

• Bounding (Dot-Dash-Con) Triangle. For a fixed choice of i, j and a, the prob-
ability of the event is bounded by ε3 as HKh

(Mi)⊕HKh
(Mj)⊕HKh

(M ′a) = Ti
holds with probability at most ε3 (by the assumption that the hash function
is ε3-3-way regular). Note that, in this case choice of j and i is one. Hence,
summing over all possible choices of indices, we obtain the bound to be qvε3.

Therefore, we see that for all the above cases, the maximum probability of form-
ing a closed triangle in Gv

τ is 2qvε3.

Therefore, we see from all of the above cases the maximum probability of
forming a cycle in Gv

τ is max{2qvε3, 2qvε2, qvε1}. Thus, we have

Pr[B3 | B0 ∧ B1 ∧ B2] ≤ max{2qvε3, 2qvε2, qvε1} (15)

Bounding B4: Recall that, the event B4 holds if ∃i 6= j ∈ [qm] such that
Ni⊕HKh

(Mi) = Nj ⊕HKh
(Mj), Ti = Tj . Since, in the ideal oracle the hash key

is sampled independent to all previously sampled MAC responses Ti, we write

Pr[B4] ≤
∑
i,j

Pr[HKh
(Mi)⊕ HKh

(Mj) = Ni ⊕Nj ] · Pr[Ti = Tj ] ≤
q2
m.ε2
2n

. (16)

Bounding B5: Recall that, the event B5 holds if ∃i 6= j ∈ [qm] such that
Ni ⊕ HKh

(Mi) = Nj ⊕ HKh
(Mj), Ni = Tj . Now, we consider two sub cases:

• (a) for fixed i and j if i < j, then Ni = Tj holds with probability 2−n (due
to Lemma 2) and Ni ⊕ HKh

(Mi) = Nj ⊕ HKh
(Mj) holds with probability

ε2. Summing over all possible choices of i and j we obtain the bound to be
q2mε2
2n .

• (b) When i > j, then Ni = Tj holds with probability 2−n/3 (due to Lemma 2)
and as before Ni ⊕ HKh

(Mi) = Nj ⊕ HKh
(Mj) holds with probability ε2. In
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this case, possible choices of i and j is 1 and qm respectively and therefore
by summing over all possible choices of indices, we obtain the bound to be
qmε2
2n/3 .

By assuming qm ≤ 22n/3, from each of the above cases we have

Pr[B5] ≤ qmε2
2n/3

. (17)

Bounding B6: Recall that, the event B6 holds if ∃i ∈ [qm] such that Ni =
HKh

(Mi). For a fixed i ∈ [qm], the event holds with probability ε1 due to the
regular property of the hash function. Summing over all choices of i, we obtain
the bound

Pr[B6] ≤ qmε1. (18)

Finally, by assuming qm ≤ 22n/3, Lemma 3 follows from Eqn. (21)-(18). ut

6 1K-DWCDM : A Single Keyed DWCDM

Recall that, our proposed construction DWCDM is instantiated with a hash
function and a block cipher where the hash key is independent to block cipher
keys, leading to have a two-keyed (counting hash key separately from block cipher
keys) nonce based MAC. In this section, we transform the DWCDM construction
to a purely single keyed construction by setting the underlying hash key Kh to
the encryption of 1 (i.e. Kh := EK(1)) and argue that the modified construction
(that we call as 1K-DWCDM) is secure.

Now, we state and prove that 1K-DWCDM is secure up to 22n/3 MAC queries
and 2n verification queries against all nonce respecting adversaries. We mainly
focus on the nonce respecting security of the construction, as its nonce misuse
security is very similar to that of DWCDM and hence we skip it.

Theorem 5. Let M and K be finite and non-empty sets. Let E : K×{0, 1}n →
{0, 1}n be a block cipher and H : EK(1)×M→ {0, 1}n be an ε2-AXU, ε3-3-way
regular and ε1-regular hash function. Then, the MAC advantage of 1K-DWCDM
is given by:

AdvMAC
1K-DWCDM[E,E−1,H](qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) +

3qm
22n/3

+
q2
mε2
2n

+
qv

2n − 1

+ max{2qvε3, 2qvε2, qvε1}+ qvε1 +
qm
2n

+
5q3
m

22n
,

where t′ = O(t+(qm+qv)tH), tH being the time for computing hash function. As-
suming ε1, ε2 and ε3 ≈ 2−n and qm ≤ 22n/3, 1K-DWCDM[E,E−1,H] construction
is secured up to roughly 22n/3 MAC and 2n verification queries.
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Proof. The proof approach is similar to the one used in Theorem 2. Using stan-
dard argument, we can replace EK and E−1

K with n-bit uniform random permu-
tation Π and its inverse Π−1, denote the construction as 1K-DWCDM∗[Π,E−1,H]
and bound the following:

AdvMAC
1K-DWCDM[E,E−1,H](qm, qv, t) ≤ AdvSPRP

E (qm+qv, t
′)+AdvMAC

1K-DWCDM∗[Π,Π−1,H](A)︸ ︷︷ ︸
δ∗

.

(19)
Now, our goal is to prove the following:

δ∗ ≤ 3qm
22n/3

+
q2
mε2
2n

+ max{2qvε3, 2qvε2, qvε1}+ qvε1 +
qm
2n

+
5q3
m

22n
+

qv
2n − 1

. (20)

which we will do by applying H-Coefficient Technique in a similar way as we
did in proving Theorem 2. For this, we first define the ideal oracle (Rand,Rej)
which works as follows: for each MAC query (N,M), it samples the response
T from {0, 1}n uniformly at random and returns it to the distinguisher and
for each verification query it returns ⊥. For convenience, we slightly modify the
experiment where we reveal to the distinguisher (after it made all it’s queries and
obtains corresponding responses but before it output it’s decision) the hashing
key Kh which is EK(1), if we are in the real world, or a uniformly random dummy
key Kh, sampled uniformly at random from {0, 1}n, if we are in the ideal world.
All in all, the transcript of the attack is τ = (τm, τv,Kh) where τm and τv is the
tuple of MAC and verification queries respectively.

Bad Transcript. The definition of bad transcript is similar to that of defined
in section 5.2 and therefore, we have the following result:

Let Xid and Θb be defined as above. If qm ≤ 22n/3 and qv ≤ 2n, then

Pr[Xid ∈ Θb] ≤
3qm
22n/3

+
q2
mε2
2n

+ max{2qvε3, 2qvε2, qvε1}+ qvε1 +
qm
2n
. (21)

Analysis of Good Transcripts. Similar to Lemma 4, we prove that for any
good transcript τ , realizing τ is almost as likely as real and in the ideal world.
As the transcript τ is good, each sampled Ti value is non-zero. Since, in the ideal
world the MAC oracle is perfectly random and the verification always rejects,
one simply has

pid := Pr[Xid = τ ] =
1

2n
· 1

(2n − 1)qm
(22)

Now, for the real interpolation probability, we have

Pr[Π(Ni)⊕ Π(Ti) = λi,∀i ∈ [qm] and Π(N ′a)⊕ Π(T ′a) 6= λ′a,∀a ∈ [qv]].

Additionally, if the adversary makes any verification query (N ′a,M
′
a, T

′
a) with

tag T ′a set to 1, then we need to ensure that

Π(N ′a) 6= Π(1)⊕N ′a ⊕ HΠ(1)(M
′
a)︸ ︷︷ ︸

λ′′a

,∀a ∈ [qv]]. (23)
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Since, the hash key, i.e. Π(1), is revealed to the adversary after the interaction is
over, the right hand side of the non-Eqn. (23) becomes a constant, which makes
it a uni-variate affine non-equation and then it is satisfied by condition (c) of
Theorem 1. Therefore, we have

pre(τ) =
1

2n
· Pr[Π(Ni)⊕ Π(Ti) = λi,∀i ∈ [qm],Π(N ′a)⊕ Π(T ′a) 6= λ′a,

Π(N ′a) 6= λ′′a,∀a ∈ [qv]]

≥ 1

2n
· 1

(2n − 1)qm
·
(

1− 5q3
m

22n
− qv

2n − 1

)
(24)

The last inequality follows using similar to the proof of Lemma 4 and Eqn. (9).
Finally, from Eqn. (22) and Eqn. (24), we compute the ratio as follows:

pre(τ)

pid(τ)
≥
(

1− 5q3
m

22n
− qv

2n − 1

)
. (25)

Eqn. (20) follows from Eqn. (21) and Eqn. (25). Finally, Theorem 5 follows from
Eqn. (19) and Eqn. (20). ut

7 Towards Higher Security of DWCDM

In this section, we briefly describe how to boost the security of DWCDM upto
(k−1)/k-bit for a general k. The underlying construction remains as it is, however
the nonce space is increased to (k − 1)n/k-bits i.e. DWCDM k[E,H](N,M) :=
E−1
K (EK(N)⊕N ⊕ HKh

(M)) but here we consider N = N∗‖0n/k where N∗ is a
(k − 1)n/k bit nonce. For this, we first state the following conjecture on Mirror
theory, which is a generalized version of extended Mirror theorem as introduced
in section. 3.2.

Conjecture 1 ( Extended Mirror Theorem for ξmax = k). Let (E=∪E 6=, φ′,Λ′) be
a system of q many affine equations and v many affine non-equations associated
with index mapping function φ′ over GF(2n) which are of the form Pφ(ni) ⊕
Pφ(ti) = λi for i ∈ [q] and Pφ(nj)⊕Pφ(tj) 6= λ′j(6= 0) for j ∈ [q+ 1, q+ v] over the
set of α many unknown variables P = {P1, . . . , Pα} such that Pa may be equals
to some Pφ(ni) or Pφ(bj), where a ∈ {φ(nj), φ(tj)}, j ∈ [q, q + v]. Now, if

- (i) (φ′,Λ′) is good and
- (ii) ξmax = k

then the number of solutions for P, denoted by hβ (where β = kq
k−1 ) such that

Pi 6= Pj for all distinct i, j ∈ {1, . . . , α} is

hβ ≥
(2n)β
2nq

(
1−O

(
qk

2(k−1)n
+

v

2n

))
. (26)

Assuming this conjecture holds, we have the following result on the MAC ad-
vantage of DWCDM k:
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Theorem 6. Let E be a block cipher and H be an ε-j-way regular hash function
for all j ≤ k (e.g PolyHash). Then, the MAC advantage for any (qm, qv, t)
nonce-respecting adversary against DWCDM k is given by,

AdvMAC
DWCDM k(qm, qv, t) ≤ AdvSPRP

E (qm + qv, t
′) +O(qkm/2

n(k−1) + qv.ε),

where t′ = O(t+ (qm + qv)tH).

The proof will be similar to the proof of Theorem 2. We first define the transcript,
associated MAC and the verification graph as before.

Now, we call a transcript τ = (τm, τv,Kh) to be bad if the associated MAC
graph Gm

τ and the Verification graph Gv
τ satisfies the either of the following

properties:

- B1′ : Gm
τ has a component of size k or more.

- B2′ : Gm
τ contains a valid cycle of length less than k.

- B3′ : Gv
τ contains a valid cycle of length less than or equals to k that involves

the verification query.

Moreover, τ is also said to be bad if it satisfies B0,B4,B5,B6 (as defined in
Definition 4).
Here we will mainly consider bounding B1’, B2’ and B3’, as the remaining ones
are already done. Here we provide a sketch for bounding each of this event:

Bounding B1’. Event B1’ occurs if there exists a component of size at least k
in Gm

τ . This essentially implies there is a chain of (k− 1) edges. Let there are c1
number of edges are of the form Ti = Nj with i < j. Here we claim that

Pr[B1’] ≤ qm.
(
qm
2n

)k−c1
.

(
1

2k/n

)c1
. (27)

As k ≥ 4, the above bound is O(qkm/2
n(k−1)).

Bounding B2’. Event B2’ occurs if there exists a cycle of size less than k in Gm
τ .

Let us bound a cycle of length c < (k − 1). Again, assume there are c1 number
of edges of the form Ti = Nj with i < j. Using similar argument as above,

Pr[B2’] ≤
(
qm
2n

)c−c1
.

(
1

2k/n

)c1
. (28)

It is easy to see that for any c, the above bound is O(qm/2
n).

Bounding B3’. Event B3’ occurs if there exists a cycle of size less than or equals
to k in Gv

τ . Extending similar arguments used in lemma 3 to bound the event
B3, one can show that if H is ε j-way regular for all j ≤ k then

Pr[B3’] ≈ O
(
qv.ε.q

c
m

2nc

)
, (29)

for some c ≥ 0.



34 Nilanjan Datta, Avijit Dutta, Mridul Nandi and Kan Yasuda

Combining everything together, we can bound

Pr[B] ≤ Pr[B0] + Pr[B1’] + Pr[B2’] + Pr[B3’] + Pr[B4] + Pr[B5] + Pr[B6]

≈ O(qkm/2
n(k−1) + qv.ε)

Next, we fix a good transcript τ . Now, to obtain the lower bound of the
probability of getting τ in real world, we need a lower bound on the probability
of the number of solutions to a system of qm many equations and qv many non-
equations. Again, we can do that using an extended Mirror theory result with
maximal block size ξmax = k. From Conjecture 1, we have

pre(τ) ≥ 1

|Kh|
· 1

2nqm
·
(

1−O
(

qkm
2(k−1)n

+
qv
2n

))
, (30)

The theorem follows by applying Patarin’s H-Coefficient Technique. ut

Remark 2. We would like to clarify that increasing the nonce space does not
have any relation with the increase in security. We have restricted the nonce
space of DWCDM to 2n/3-bit (note that this is minimum as we must allow
22n/3 many MAC queries with distinct nonces) purely because of the simplicity
of the extended mirror theory analysis. One can of course increase the nonce
space to (k − 1)n/k-bit for any k ≤ n, but that increases the block maximality
(ξmax) to k and hence the analysis of the extended mirror theory would become
tedious and involved..

Acknowledgments

Initial part of this work was done in NTT Lab, Japan when Avijit Dutta was
visiting there. Mridul Nandi is supported by R.C.Bose Centre for Cryptology
and Security. The authors would like to thank all the anonymous reviwers of
CRYPTO 2018 for their invaluable comments and suggestions that help to im-
prove the overall quality of the paper. Authors would also like to thank Eik List
for pointing out a flaw in the earlier version of this paper.

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The simon and speck families of lightweight
block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013.
http://eprint.iacr.org/2013/404.

2. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In CRYPTO 2016,
Proceedings, Part II, pages 123–153, 2016.

3. M. Bellare and R. Impagliazzo. A tool for obtaining tighter security
analyses of pseudorandom function based constructions, with applications to
prp to prf conversion. Cryptology ePrint Archive, Report 1999/024, 1999.
http://eprint.iacr.org/1999/024.



Encrypt or Decrypt? To Make a Single-Key BBB Secure Nonce-Based MAC 35

4. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for mes-
sage authentication. In Advances in Cryptology - CRYPTO ’96, pages 1–15, 1996.

5. Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of verification
queries in message authentication and authenticated encryption. IACR Cryptology
ePrint Archive, 2004:309, 2004.

6. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chain-
ing. In CRYPTO ’94, pages 341–358, 1994.

7. Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-rackoff backwards: In-
creasing security by making block ciphers non-invertible. In EUROCRYPT ’98,
Proceeding., pages 266–280, 1998.

8. Srimanta Bhattacharya and Mridul Nandi. Full indifferentiable security of the xor
of two or more random permutations using the \chi ˆ2 method. In EUROCRYPT
2018 Proceedings, Part I, pages 387–412, 2018.

9. Srimanta Bhattacharya and Mridul Nandi. Revisiting variable output length XOR
pseudorandom function. IACR Trans. Symmetric Cryptol., 2018(1):314–335, 2018.

10. Srimanta Bhattacharya and Mridul Nandi. Revisiting variable output length XOR
pseudorandom function. IACR Trans. Symmetric Cryptol., 2018(1):314–335, 2018.

11. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In CHES 2007, Proceedings, pages
450–466, 2007.

12. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A family of small and efficient hardware-oriented block ciphers. In
CHES 2009, Proceedings, pages 272–288, 2009.

13. Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P. Stein-
berger. Minimizing the two-round even-mansour cipher. In CRYPTO 2014. Pro-
ceedings, Part I, pages 39–56, 2014.

14. Benoit Cogliati, Rodolphe Lampe, and Jacques Patarin. The indistinguishability of
the XOR of k permutations. In FSE 2014. Revised Selected Papers, pages 285–302,
2014.
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A Proof of Theorem 3

Proving the MAC security in nonce misuse setting, PRF security of the con-
struction implies its MAC security and hence we view the construction as a
keyed function with domain N ×M and study the PRF security of it. Our main
security result about DWCDM[E,E−1,H] against nonce misuse adversary is as
follows.

Lemma 5. LetM,K and Kh be finite and non-empty sets. Let E : K×{0, 1}n →
{0, 1}n be a block cipher and H : Kh×M→ {0, 1}n be an ε1-regular and ε2-AXU
hash function. Then, the PRF advantage of DWCDM[E,E−1,H] is given by,

AdvPRF
DWCDM[E,E−1,H](q, t) ≤ AdvSPRP

E (q, t′) + q2ε2 + qε1 +
4q2

2n
+

q

2n
,

where t′ = O(t+ qtH), tH be the time for computing hash function.

Theorem 3 follows from Lemma 5 and the folklore result that a secure PRF is a
secure MAC due to Bellare et al. [5]:



Encrypt or Decrypt? To Make a Single-Key BBB Secure Nonce-Based MAC 37

A.1 Proof of Lemma 5

As before, we fix a non-repeating query making (q, t) distinguisher A against the
PRF security of DWCDM[E,E−1,H]. As the first step of the proof, we replace
EK and E−1

K with a n-bit uniform random permutation Π and its inverse Π−1

respectively at the cost of AdvSPRP
E (A′) and denote the resulting construction

as DWCDM∗[Π,Π−1H], where A′ is an adversary against the SPRP security of
E, making at most q queries and running time is at most t+ qtH such that

AdvPRF
DWCDM[E,E−1,H](A) ≤ AdvSPRP

E (A′) + AdvPRF
EWCDM∗[Π,Π−1,H](A) (31)

It remains to upper bound the PRF advantage of A against DWCDM∗[Π,Π−1,H].
For this we apply H-Coefficient Technique as follows: Adversary A interacts (a)
either with the real oracle DWCDM∗[Π,Π−1,H] for a random permutation Π, its
inverse Π−1 and a random hashing key Kh or (b) with the ideal oracle in which
it receives uniformly and independent responses against each distinct query it
makes. Note that, the adversary is allowed to make distinct query with same
nonce.

After the interaction is over (but before A output its decision bit), we release
the actual hash key Kh to the adversary A, if A is in the real world, or a random
dummy hash key Kh if A is in the ideal world.

A.1.1 Attack Transcript and Transcript Graph. Let the transcript of
A be τ = (τm,Kh) where τm :=

(
(N1,M1, T1), . . . , (Nq,Mq, Tq)

)
be the list of

queries and reponses of A. Θ,Xre and Xid respectively denotes the set of all
attainable transcripts, the probability distribution of transcript τ induced by
the real world and ideal world.

Similar to proof of Theorem 2, we define a transcript graph Gτ corresponding
to a transcript τ as follows:

Gτ = ([q], E) where E = {(i, j) ∈ [q]×[q] : Ni = Nj∨Ni = Tj∨Nj = Ti∨Ti = Tj}.

For the sake of convenience of the proof, we denote the edge (i, j) as a dotted
line when Ti = Tj and as a dashed line when Ni = Nj . Else, we denote it as
a continuous line. Thus, the edge set of Gτ consists of three different types of
edges as depicted in Fig. 5.1 (a), (b) and (c).

A.1.2 Definition and Probability of Bad Transcripts.

Definition 5. An attainable transcript τ = (τm,Kh) is bad if

- B1 : there exists two distinct queries (Ni,Mi, Ti) and (Nj ,Mj , Tj) such that
Ti = Tj.

- B2 : there exists two distinct queries (Ni,Mi, Ti) and (Nj ,Mj , Tj) such that
Ni ⊕ HKh

(Mi) = Nj ⊕ HKh
(Mj), Ni = Nj.

- B3 : ∃i ∈ [q] such that HKh
(Mi) = Ni.
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- B4 : ∃i ∈ [q] such that Ni = Ti.
- B5 : if there is a cycle of length at least 2 in Gτ .

Let Θb ⊆ Θ denotes the set of all attainable bad transcripts. In the following
lemma, we upper bound the probability of realizing a bad transcript in ideal
world.

Lemma 6. Let Xid and Θb be defined as above. Then we have,

Pr[Xid ∈ Θb] ≤ εbad = q2ε2 + qε1 +
3q2

2n
+

q

2n

Proof. Let us denote B := B1∨B2∨B3∨B4∨B5. In order to bound Pr[Xid ∈ Θb],
it is enough to bound Pr[B]. Therefore, we have

Pr[B] ≤ Pr[B1] + Pr[B2] + Pr[B3] + Pr[B4] + Pr[B5 | B1] (32)

In the following, we bound the probabilities of all the bad events individually.

Bounding B1: Fix two distinct query indices i and j such that Ti = Tj . For two
fixed distinct indices i, j ∈ [q], the event holds with probability 2−n as Ti’s are
sampled uniformly and independent to all previously sampled random variables
in the ideal world. Summing over all possible choices of i and j, we obtain the
bound

Pr[B1] ≤ q2

2n
. (33)

Bounding B2: Fix two distinct query indices i and j such that Ni⊕HKh
(Mi) =

Nj ⊕HKh
(Mj), Ni = Nj . For two fixed distinct indices i, j ∈ [q], the event holds

with probability ε2 due to the randomness of the hash key Kh.as the hash key is
sampled uniformly and independent to all previously sampled random variables
in the ideal world. Summing over all possible choices of i and j, we obtain the
bound

Pr[B2] ≤ q2ε2. (34)

Bounding B3 and B4: Observe that, B3 and B4 have already been defined in
Definition 4. Therefore, following Lemma 3, we have

Pr[B3] ≤ qε1, Pr[B4] ≤ q

2n
(35)

where the probability of the former event is bounded by the regularity assump-
tion on the hash function whereas the later one is bounded by the randomness
of Ti.

Bounding B5 | B1 : We bound the probability of formation of a cycle in the
transcript graph Gτ when all T ’s are distinct. Let us consider such a cycle of
length p and we denote the corresponding event by Cylp. Note that, since T ’s
are all distinct, there cannot be any dotted edge in the cycle. Moreover, there
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cannot be any dashed edge in the cycle as that would leads to have an invalid
cycle.

Example. Let us consider the following set of four equations:
Π(N1)⊕ Π(T1) = N1 ⊕ HKh

(M1)

Π(N2)⊕ Π(T2) = N2 ⊕ HKh
(M2)

Π(N3)⊕ Π(T3) = N3 ⊕ HKh
(M3)

Π(N4)⊕ Π(T4) = N4 ⊕ HKh
(M4)

In the above set of equations all T ’s are distinct. Now, consider a cycle C of
length 4 where there is only one dashed edge (wlog of we assume the dashed
edge is in between 1 and 2) and all remaining three edges are continuous. Then,
C imposes the following equality pattern on (N,T ):

N1 = N2, N2 = T3, N3 = T4, N4 = T1.

These set of constraints eventually leads us to have Π(T3) =
4⊕
i=1

(Ni⊕HKh
(Mi)).

Hence the cycle is invalid. It is simple to observe that existence of any dashed
edge in any cycle of Gτ makes it invalid when all T ’s are distinct. Hence, if the
cycle has to be valid, then there must be only continuous edges in the cycle.

Let us consider such a valid cycle C = (i1, i2, . . . , ip) of length p. Without loss
of generality we may assume i1 < i2 < . . . < ip. Therefore, from Lemma 2, the
probability of each of the edges (ik, ik+1) for all k = 1, . . . , p − 1 is 2−n and as
ip > i1, probability of the edge (ip, i1) is 2−n/3. Therefore, the for a fixed choice
of indices i1, . . . , ip, the probability of the cycle becomes 1

2n(p−1)+n/3 . Hence, by
summing over all possible choices of i1, . . . , ip, we have

Pr[Cylp] ≤ qp

2n(p−1)+n/3
.

Therefore,

Pr[B5 | B1] ≤
∞∑
p=2

Pr[Cylp] =
q2

24n/3

(
1 +

q

2n
+

q2

22n
+ . . .

)
=

q2

24n/3
· 1

(1− q
2n )

As we assume, q ≤ 2n/2, we have

Pr[B5 | B1] ≤ 2q2

24n/3
≤ 2q2

2n
(36)

Finally, Lemma 6 follows from Eqn. (32), Eqn. (33), Eqn. (34), Eqn. (35) and
Eqn. (36). ut

A.1.3 Analysis of Good Transcripts. Now, we analyze good transcripts
in the following lemma:
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Lemma 7. Let τ = (τm,Kh) be a good transcript. Then

pre(τ)

pid(τ)
:=

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ (1− εratio) = (1− q2

2n
).

Proof. Let τ = (τm,Kh) be a good transcript. Then one has

Pr[Xid = τ ] =
1

|Kh|
· 1

2nq
(37)

as in the ideal world, the oracle is perfectly random and the hash key Kh is
chosen uniformly at random and independently from the query transcript.

Since, τ is good, the following set of equations

E =


Π(N1)⊕ Π(T1) = N1 ⊕ HKh

(M1)

Π(N2)⊕ Π(T2) = N2 ⊕ HKh
(M2)

...

Π(Nq)⊕ Π(Tq) = Nq ⊕ HKh
(Mq)

is circle free and contains no collision in the solution within a same block. Let us
assume that the maximal block size of E is ξmax. Then due to Theorem 3 of [31],
which is known as “Theorem Pi ⊕ Pj when ξmaxα� 2n”, we have

Pr[Xre = τ ] =
1

|Kh|
· 1

2nq
(1− qξmax

2n
) (38)

Computing the ratio of Eqn. (38) and Eqn. (37), we have

pre(τ)

pid(τ)
≥ (1− qξmax

2n
) ≥ (1− q2

2n
).

where the last inequality follows as ξmax ≤ q. ut

Finally, Lemma 5 follows from Lemma 6, Lemma 7 and Lemma 1.


