
Secure Grouping and Aggregation with MapReduce

Radu Ciucanu, Matthieu Giraud, Pascal Lafourcade, Lihua Ye
LIMOS, Université Clermont Auvergne, Aubière, France

firstname.lastname@uca.fr

Keywords: Database Queries, MapReduce, Security, Grouping, Aggregation

Abstract: MapReduce programming paradigm allows to process big data sets in parallel on a large cluster. We focus on
a scenario where the data owner outsources her data on an honest-but-curious server. Our aim is to evaluate
grouping and aggregation with SUM, COUNT, AVG, MIN, and MAX operations for an authorized user. For
each of these five operations, we assume that the public cloud provider and the user do not collude i.e., the
public cloud does not know the secret key of the user. We prove the security of our approach for each operation.

1 INTRODUCTION

We address the fundamental problem of how to
group and aggregate data from a relation in a privacy-
preserving manner using MapReduce. We assume
that the data is externalized in the cloud by the data
owner and there is a user that queries it. We consider
the following five aggregation operations, which are
precisely those included in the SQL standard: SUM,
COUNT, AVG, MIN, and MAX.

We start by a running example to present the con-
cepts of grouping and aggregation, and of MapRe-
duce computations. Then, we present our problem
statement and illustrate with the same example the
privacy issues related to grouping and aggregation
with MapReduce.

Example 1. Assume there is a university storing the
relation R corresponding to the list of professors with
their associated department and salary. The grouping
and aggregation operation on the relation R, in the
case where we assume one group attribute and one
aggregate function, is denoted by γA,θpBqpRq, where A
is the grouping attribute and θ is one of the five ag-
gregation operations applied on the attribute B differ-
ent from the grouping attribute. In this example (Fig-
ure 1), we consider the attribute “Department” as the
grouping attribute and SUM is the aggregation oper-
ation applied on attribute “Salary”. Hence, for each
department we sum all the associated salaries. Since
Alice and Bob are in the Computer Science depart-
ment, the sum of salaries associated to the Computer
Science department is 1900` 1800 “ 3700. In the
same way, we sum the salaries of Mallory and Oscar
from the Mathematics department. Since Eve is the

Name Department Salary
Alice Computer Science 1900

Mallory Mathematics 1750
Bob Computer Science 1800
Eve Physics 2000

Oscar Mathematics 1600
Figure 1: Relation R.

Department SUM (salary)
Computer Science 3700

Physics 2000
Mathematics 3350

Figure 2: Result of γDepartment,SUMpSalaryqpRq.

only one in the Physics department, the sum corre-
sponds to the salary of Eve which is equal to 2000.
For the query γDepartment,SUMpSalaryqpRq, we obtain the
relation presented in Figure 2. Aggregation opera-
tions COUNT, AVG, MIN, or MAX work similarly.

Grouping-and-aggregation with MapReduce. An
algorithm to perform grouping and aggregation with
MapReduce is presented in Chapter 2 of (Leskovec
et al., 2014). First, a set of nodes has chunks of the
relation. The map function creates for each tuple a
key-value pair where key is equal to the value of the
grouping attributes in the considered tuple, and value
is equal to the value of the aggregation attribute of
the considered tuple. Then, the key-value pairs are
grouped by key, i.e., key-value pairs output by the
map phase which have the same key are sent to the
same reducer. For each key, the reduce function ap-
plies the aggregate function on the associated values
of the considered key.

R

Data owner

Public Cloud

γA,θpBqpRq

User
Figure 3: The system architecture.

Example 2. Following Example 1, we perform
grouping and aggregation with MapReduce on the re-
lation R where the grouping attribute is the attribute
“Department”, the aggregation attribute is the at-
tribute “Salary”, and the operation is the SUM. We
start grouping and aggregation with MapReduce by
applying the map function. Since the grouping at-
tribute is the attribute “Department” and that the ag-
gregation attribute is the attribute “Salary”, the map
function emits the pairs pComputer Science,1900q,
pMathematics,1750q, (Computer Science, 1800),
pPhysics,2000q, and pMathematics,1600q. Pairs
sharing the same key (i.e., same value of the group-
ing attribute) are sent on the same reducer. Then, the
reduce function performs on each reducer the aggre-
gation, consisting here of the sum, and we obtain the
pairs pComputer Science,3700q since 1900`1800“
3700, etc. We present the final result in Figure 2.

Problem statement. We assume three participants:
the data owner, the public cloud and the user (pre-
sented in Figure 3). The data owner stores a relation
R in the distributed file system of some public cloud
provider. A user (who does not know the relation R)
is authorized to perform a grouping and aggregation
operation on R.

We assume that the public cloud is honest-but-
curious, i.e., it executes dutifully the computation task
but tries to learn the maximum of information on tu-
ples of R. In order to preserve the privacy of the data
owner, the cloud should not learn any plain input data,
contrary to what happens for standard algorithms as
found in Chapter 2 from (Leskovec et al., 2014) and
exemplified above.

We assume that the relation R is initially spread
over a set R of nodes, each of them storing a chunk
of R i.e., a set of elements of R. The final result
γA,θpBqpRq is spread over a set of nodes Q before it
is sent to the user’s nodes U. We expect that none of
the nodes in Q can learn any information about rela-
tion R, or about the final result.

Notice that a straightforward solution would re-
quire the use of a fully homomorphic encryption
scheme e.g., (Gentry, 2009). Indeed, a fully ho-
momorphic encryption scheme would allow to exe-
cute directly in the encrypted domain all operations

needed for computing a grouping and aggregation
operation. Unfortunately, such an approach would
solve our problem only from a theoretical point of
view because making a fully homomorphic encryp-
tion scheme work in practice remains an open ques-
tion (as noted e.g., in (Gentry, 2009)).

Contributions. We revisit the standard algorithms
for MapReduce grouping and aggregation (as found
in Chapter 2 from (Leskovec et al., 2014)) to guaran-
tee the privacy of the data owner. More precisely, nei-
ther the public cloud nor the user learn information
about the input data that belongs to the data owner.
Our approach, denoted SP for Secure-Private, works
for each of the considered five aggregation operations.
In each case, the SP approach is efficient from both
computational and communication points of view, in
the sense that the overhead is linear for each of the
two complexity measures.

Our technique is essentially based on two encryp-
tion schemes: (i) the well-known Paillier’s cryptosys-
tem (Paillier, 1999), which is partially homomorphic
i.e., it is additive homomorphic for COUNT,SUM,
and AVG operations, and (ii) the order-preserving
symmetric encryption scheme (Agrawal et al., 2004)
for MIN and MAX operations.

We summarize in Figure 4 the trade-offs between
computation cost and communication cost for our SP
approach vs the standard MapReduce approach for
grouping and aggregation for the five studied opera-
tions. In our communication cost analysis, we mea-
sure the total size of the data that is emitted from a
map or reduce node.

Related work. Since the seminal MapReduce pa-
per (Dean and Ghemawat, 2004), different proto-
cols have been proposed to perform operations in
a privacy-preserving manner (Derbeko et al., 2016)
such as search (Blass et al., 2012) (Mayberry et al.,
2013), count (Vo-Huu et al., 2015), matrix multiplica-
tion (Bultel et al., 2017) or joins (Dolev et al., 2016).

Chapter 2 of (Leskovec et al., 2014) presents an
introduction to the MapReduce paradigm. In particu-
lar, it includes the MapReduce algorithm for grouping
and aggregation that we enhance with privacy guar-
antees. Very few approaches address the privacy pre-
serving execution for grouping and aggregation oper-
ations in MapReduce, and moreover they have differ-
ent assumptions than we do.

(Bonawitz et al., 2017) provides a technique
to compute secure aggregation, while relying on
Shamir’s secret sharing (Shamir, 1979) to compute
the sum of values coming from different sources.

Alg. Approach Comp. cost (big-O) Comm. cost (big-O)

COUNT
Standard p1`C`qn 2n

SP pC f `2CE `Cˆqn 3n

SUM
Standard p1`C`qn 2n

SP pC f `2CE `Cˆqn 3n

AVG
Standard p1`2C``C˜qn 2n

SP pC f `3CE `2Cˆqn 3n

MIN{MAX
Standard p1`Ccompqn 2n

SP pC f `CEope `3CE `CD `Ccompqn 3n
Figure 4: Summary of results. Let n be the number of tuples in the relation R. Let C` (resp. Cˆ, C˜, C f , CEope CE , CD) is the
cost of addition (resp. multiplication, division, pseudo-random function evaluation, order-preserving symmetric encryption,
asymmetric encryption, and asymmetric decryption) and 1 represents the cost to access to one tuple in the relation.

Similarly, (Alghamdi et al., 2017) provides a tech-
nique to compute secure aggregation for wireless sen-
sor networks. Contrary to us, these two approaches
do not consider the MapReduce paradigm and they
cannot be easily adapted for MapReduce because
values of shared attributes are encrypted in a non-
deterministic way. This is not a suitable choice for
MapReduce keys that need to be equal in order to ag-
gregate the key-value pairs on the same reducer.

(Dolev et al., 2016) proposed a technique for
executing MapReduce computations in the public
cloud while preserving data owner privacy. They
use the Shamir’s secret sharing and accumulating au-
tomata (Dolev et al., 2015). Among the five aggre-
gations studied in this paper, they support only the
count, whose computation is done on secret-shares in
the public cloud, and at the end, the user performs
the interpolation on the outputs. On the other hand,
in our setting, the user has only to decrypt the final
query result, contrary to the need of doing interpola-
tions in (Dolev et al., 2015).

On the other hand, substantial works has been
done on privacy-preserving functional queries on tra-
ditional rational database. Popa et al. (Popa et al.,
2011) designed CryptDB a system allowing a user to
execute queries over encrypted data. The authors con-
sider two threats. The first threat is a curious database
administrator who tries to learn private data while the
second threat is an adversary that gains complete con-
trol of application. In (Macedo et al., 2017), authors
proposed a generic framework called SafeNoSQL to
compute in a privacy-preserving manner on NoSQL
databases. This framework has a modular and exten-
sible design that enables data processing over mul-
tiple cryptographic techniques applied on the same
database schema. Contrary to us, these two ap-
proaches do not consider the MapReduce paradigm.

To the best of our knowledge, we are the first to
propose secure algorithms for grouping and aggre-
gation computation with the MapReduce paradigm

where the public cloud performs all the computations
and where the user has only to decrypt the result sent
by the cloud.

Outline. We introduce some preliminary notions in
Section 2. Then, we present our SP approach for these
five operations in Section 3 and prove the security in
Section 4. Finally, we outline conclusions and future
work in Section 5.

2 PRELIMINARIES

2.1 Relational Algebra

A relation R is a set of n tuples. For a tuple t P R,
by πX ptq we denote the projection of the tuple t on
the attributes X i.e., the tuple obtained from t after
removing all attributes values that are not in X .

By γA ,θpBqpRq we denote the grouping and aggre-
gation operation on R, where A is the set of attributes
on which we group, B is the attribute for which we ap-
ply the aggregation function, and θ is an aggregation
function (SUM, COUNT, AVG, MIN, MAX).

2.2 Grouping and Aggregation with
MapReduce

We recall the MapReduce algorithms for grouping
and aggregation algorithms, as found in Chapter 2 of
(Leskovec et al., 2014): for COUNT in Figure 5(a),
for SUM in Figure 5(b), for AVG in Figure 5(c), and
for MIN in Figure 5(d). The algorithm for MAX is
very similar to the one for MIN and we omit it.

2.3 Cryptographic Tools

We present definitions of the cryptographic tools used
in our protocols: negligible function, pseudo-random

Map function:
Input: pkey,valueq
// key: id of a chunk of R
// value: collection of t P R
foreach t P R do

emit pπA ptq,1q.

Reduce function:
Input: pkey,valuesq
// key: πA ptq for t P R
// values: collection of 1
countÐ 0;
foreach 1 P values do

countÐ count`1;
emit pπA ptq,countq.

(a) COUNT operation.

Map function:
Input: pkey,valueq
// key: id of a chunk of R
// value: collection of t P R
foreach t P R do

emit pπA ptq,πBptqq.

Reduce function:
Input: pkey,valuesq
// key: πA ptq with t P R
// values: collection of πBptq with t P R
sumÐ 0
foreach πBptq P values do

sumÐ sum`πBptq;
emit pπA ptq,sumq.

(b) SUM operation.
Map function:
Input: pkey,valueq
// key: id of a chunk of R
// value: collection of t P R
foreach t P R do

emit pπA ptq,πBptqq.

Reduce function:
Input: pkey,valuesq
// key: πA ptq for t P R
// values: collection of πBptq
cptÐ 0;
sumÐ 0;
foreach πBptq P values do

cptÐ cpt`1;
sumÐ sum`πBptq;

emit pπA ptq,sum{cptq.
(c) AVG operation.

Map function:
Input: pkey,valueq
// key: id of a chunk of R
// value: collection of t P R
foreach t P R do

emit pπA ptq,πBptqq.

Reduce function:
Input: pkey,valuesq
// key: πA ptq for t P R
// values: collection of πBptq
min

$
Ð values;

foreach πBptq P values do
if πBptq ămin then

minÐ πBptq;
emit pπA ptq,minq.

(d) MIN operation.

Figure 5: Grouping and aggregation with MapReduce for COUNT, SUM, AVG, MIN operations.

function, order-preserving encryption scheme, and
public key encryption scheme.

Definition 1 (Negligible function). A function ε :
NÑ N is negligible in η if for every positive poly-
nomial pp¨q and sufficiently large η, εpηq ă 1{ppηq.

Definition 2 (Pseudo-random function). A function
f : t0,1uηˆt0,1un0 Ñ t0,1un1 is a pseudo-random
function if it is calculable in polynomial time in η and
if for all polynomial-size algorithm B ,
ˇ

ˇPr
“

B fkp¨q “ 1: k $
Ð t0,1uη

‰

´Pr
“

Bgp¨q “ 1: g $
Ð Funcrn0,n1s

‰
ˇ

ˇď εpηq ,

where εp¨q is a negligible function in η, Func is
the space functions from domain t0,1un0 to domain
t0,1un1 , and the probabilities are taken over the
choice of k and g.

Definition 3 (Order-Preserving Symmetric Encryp-
tion (Agrawal et al., 2004)). Let η be a se-
curity parameter. An order-preserving encryp-
tion (OPE) scheme is defined by three algorithms
pGope,Eope,Dopeq:

Gopepηq: returns a secret key K.

Eope
K pmq: returns a new key K1 and a ciphertext c.

Dope
K pcq: returns the plaintext m.

such that for any two ciphertexts c1 and c2 with cor-
responding messages m1 and m2 we have c1 ă c2 if
and only if m1 ă m2.
Definition 4 (Public Key Encryption (PKE)). Let η be
a security parameter. A public key encryption (PKE)
scheme is defined by three algorithms pG ,E ,Dq:
Gpηq: returns a public/private key pair ppk,skq.
Epkpmq: returns the ciphertext c.
Dskpcq: returns the plaintext m.

In the following, we require an additive homo-
morphic encryption scheme to secure the grouping
and aggregation with MapReduce. There exists sev-
eral schemes that have this property (Okamoto and
Uchiyama, 1998; Paillier, 1999; Naccache and Stern,
1998). We choose Paillier’s cryptosystem (Paillier,
1999) to illustrate specific required homomorphic
properties. Our results and proofs are generic, since
any other encryption schemes having such properties
can be used instead of Paillier’s scheme.

We recall the key generation, the encryption and
decryption algorithms.

Key Generation. We denote by Zn, the ring of integers
modulo n and by Z˚n the set of invertible elements of
Zn. The public key pk of Paillier’s encryption scheme
is pn,gq, where g P Z˚n2 and n “ pˆ q is the product
of two prime numbers such that gcdpp,qq “ 1. The
corresponding private key sk is pλ,µq, where λ is the
least common multiple of p´ 1 and q´ 1 and µ “
pLpgλ mod n2qq´1 mod n, where Lpxq “ x´1

n .
Encryption Algorithm. Let m be a message such that
m P Zn. Let g be an element of Z˚n2 and r be a ran-
dom element of Z˚n . We denote by Epk the encryption
function that produces the ciphertext c from a given
plaintext m with the public key pk“ pn,gq as follows:
c“ gmˆ rn mod n2.
Decryption Algorithm. Let c be the ciphertext such
that c P Zn2 . We denote by Dsk the decryption func-
tion of the plaintext c with the secret key sk “ pλ,µq
defined as follows: m“ L

`

cλ mod n2
˘

ˆµ mod n .
Homomorphic Addition of Plaintexts. Paillier’s
cryptosystem is a partial homomorphic encryption
scheme. Let m1 and m2 be two plaintexts in Zn.
The product of the two associated ciphertexts with the
public key pk“ pn,gq, denoted c1 “Epkpm1q “ gm1ˆ

rn
1 mod n2 and c2 “ Epkpm2q “ gm2 ˆ rn

2 mod n2, is
the encryption of the sum of m1 and m2.

Epkpm1q ˆ Epkpm2q

“ c1ˆ c2 mod n2

“ pgm1 ˆ rn
1qˆpg

m2 ˆ rn
2q mod n2

“
`

gm1`m2 ˆpr1ˆ r2q
n˘ mod n2

“ Epkpm1`m2 mod nq .

3 SECURE PRIVATE APPROACH

We present our SP approach for the COUNT,
SUM, AVG, MIN, and MAX aggregation functions
with MapReduce. We denote respectively these five
protocols: SP-COUNT, SP-SUM, SP-AVG, SP-MIN,
and SP-MAX. The algorithm for SP-MAX is very sim-
ilar to SP-MIN and we omit it to avoid redundancy.

3.1 SP Protocols

To avoid the cloud to learn the content of the relation
R, the data owner protects it before the outsourcing.
We denote the protected relation by R̂.

The data owner protects the relation using a
pseudo-random function with her secret key k and
by applying it on values of grouping attributes of
each tuples of the relation R. These deterministic
pseudo-random function evaluations allow the cloud
to perform equality tests between values of grouping

attributes. Moreover, the data owner encrypts each
value of the aggregation attribute either with Paillier’s
scheme (using the user public key pku) or the OPE
scheme (using the shared secret key K between
the data owner and the user), depending on the
aggregation function. We present the preprocessing
phase in Algorithm 1, where E represents either the
Paillier encryption (in the case of COUNT, SUM, AVG
operations) or the OPE encryption (in the case of MIN
and MAX operations). We stress that A f and AE are
just notations making explicit the correspondences
between initial and outsourced data and that R̂ is the
schema of R̂. For instance, if a relation R has two
attributes such that “Name” is the grouping attribute
and “Age” is the aggregation attribute, then R̂ has
attributes “Name f ”, “NameE ” and “AgeE ”.

Algorithm: PreProcpRq
R̂ÐH;
A f Ð tA f |A P Au;
AE Ð tAE |A P Au;
R̂Ð A f YAE YB;
for t P R do

t f Ð
Ś

A f PA f fkpπAptqq;
tE Ð

Ś

AEPAE pEpkupπAptqqq;
R̂Ð R̂Ytt f ˆ tE ˆEpπBptqqu;

Algorithm 1: Preprocessing of relations.

SP-COUNT (Figure 6(a)). Value of pairs sent by the
map function contains the Paillier encryption of the
grouping attribute value and the Paillier encryption of
1. Using the homomorphic property of the Paillier’s
scheme, each reducer multiplies encryption of 1 to
obtain the count of tuples sharing the same value of
the grouping attribute.

SP-SUM (Figure 6(b)). Value of pairs sent by the
map function contains the Paillier encryption of the
grouping attribute value and the Paillier encryption
of the aggregation attribute value. Similarly to
the SP-COUNT protocol, we use the homomorphic
property of the Paillier’s scheme allowing each
reducer to multiply encrypted aggregates to obtain
the encryption of the sum of tuples values sharing the
same grouping attribute value.

SP-AVG (Figure 6(c)). The protocol combines the
SP-COUNT protocol and the SP-SUM protocol. This
allows the MapReduce user to compute the average.

SP-MIN (Figure 6(d)). We stress that before to ap-
ply the map function, the data owner must encrypt all

Map function
Input: pkey,valueq
// key: id of a chunk of R̂
// value: collection of t P R̂
foreach t P R̂ do

emit pπA f ptq,pπAE ptq,Epkup1qqq

Reduce function
Input: pkey,valuesq
// key: πA f ptq for t P R̂
// values: collection of pπAE ptq,Epkup1qq
countÐ1
foreach pπAE ptq,Epkup1qq P values do

countÐ count ¨Epkup1q
emit pπAE ,countq

(a) SP-COUNT protocol.

Map function
Input: pkey,valueq
// key: id of a chunk of R̂
// value: collection of t P R̂
foreach t P R̂ do

emit pπA f ptq,pπAE ptq,πBptqqq

Reduce function
Input: pkey,valueq
// key: πA f ptq for t P R̂
// value: collection of pπAE ptq,πBptqq
sumÐ 1
foreach pπAE ptq,πBptqqP values do

sumÐsum ¨πBptq
emit pπAE ptq,sumq

(b) SP-SUM protocol.
Map function
Input: pkey,valueq
// key: id of a chunk of R̂
// value: collection of t P R̂
foreach t P R̂ do

emit pπA f ptq,pπAE ptq,πBptq,Epku
p1qqq

Reduce function
Input: pkey,valueq
// key: πA f ptq for t P R̂
// value: collection of pπAE ptq,πBptq,Epku

p1qq
cptÐ 1
sumÐ 1
foreach pπAE ptq,πBptq,Epku

p1qq P values do
cptÐ cpt ¨Epkup1q
sumÐ sum ¨πBptq
emit pπAE ptq,cpt,sumq

(c) SP-AVG protocol.

Map function
Input: pkey,valueq
// key: id of a chunk of R̂
// value: collection of t P R̂
foreach t P R̂ do

emit pπA f ptq,pπAE ptq,πBptqqq

Reduce function
Input: pkey,valuesq
// key: πA f ptq for t P R̂
// values: collection of pπAE ptq,πBptqq
pv1,v2q

$
Ð values

minÐ Dskcpv2q

foreach pπAE ptq,πBptqq P values do
xÐDskcpπBptqq
if x ămin then

minÐ x
emit pπAE ptq,Epkupminqq

(d) SP-MIN protocol.
Figure 6: Secure grouping and aggregation with MapReduce for COUNT, SUM, AVG, and MIN operations. The highlighting
emphasizes differences w.r.t. the standard non-secured approach cf. Figure 5.

values of the aggregate attribute using an OPE scheme
with the secret key K shared between the data owner
and the MapReduce user.

Value of pairs sent by the map function contains
the encryption of the pre-computed OPE ciphertexts
using an IND-CPA public key encryption scheme
with the public key pkc of the public cloud. Since the
OPE encryption is deterministic, the additional public
key encryption avoids an eavesdropper between the
data owner and the public cloud to have any informa-
tion on repetitions of values sent by the data owner.

After received the key-value pairs, the public
cloud uses its secret key skc to obtain OPE ciphers.
Using the property of the OPE scheme, each reducer
of the public cloud computes the minimum to obtain
the minimum value associated to the considered
value of the grouping attribute. Finally, the public
cloud uses the public key pku of the user to encrypt
each OPE ciphertext and sends the result to the user.

Remark: As we can see in the SP-COUNT protocol
(Figure 6(a)), a public cloud knowing that it performs
the count operation can deduce the value of the count
even if it can not decrypt the encryption of 1. In fact,
the public cloud can count tuples that each reducer re-
ceives. Hence, it deduce the count result for the cor-
responding key. We stress that the plain value of the
key stay unknown from the public cloud since it does
not have the secret key sku of the user to decrypt it.
In the following, we present the SPcomb-COUNT and
the SPcomb-AVG protocols in Figure 7 using combin-
ers (Leskovec et al., 2014) to avoid this leakage of
information.

3.2 Refinement: Combiners

Combiners allow to push some of what the reducers
do to the map function. In the case of the COUNT
operation, the map function counts tuples of the chunk
that share the same value for the grouping attribute.

Map function:
Input: pkey,valueq
// key: id of a chunk of R̂
// value: collection of pt1, t2, t3q P R̂
LÐ r s ; // Let L be a dictionary

foreach pt1, t2, t3q P R̂ do
if pt1, t2q P L then Lrpt1, t2qs Ð Lrpt1, t2qs ¨Epku

p1q;
else Lrpt1, t2qs Ð Epku

p1q;
foreach pt1, t2q P L do

emit pt1,pt2,Lrpt1, t2qsqq.

Reduce function:
Input: pkey,valuesq
// key: πAptq for t P R̂
// values: collection of pEpkupaq,Epkupbqq
countÐ 1;
foreach pEpkupaq,Epkupbqq P values do

countÐ count ¨Epkupbq;
emit pEpkupaq,countq.

Figure 7: SPcomb-COUNT protocol.

Hence, each reducer receives key-value pairs, where
key is the grouping attribute value, and value is the
count of tuples sharing this key in the chunk.

We use homomorphic property of the Paillier’s
scheme to count in the map function the number
of tuples in the chunk that share the same group-
ing attribute value. Then, each reducer multiplies
all encrypted counts for the considered grouping at-
tribute value to obtain the final encrypted count sent
to the user. We present this refinement called SPcomb-
COUNT protocol in Figure 7.

Similarly, we can use combiners for the AVG op-
eration. Even if the sum is encrypted, combiners hide
the count used for each grouping attribute value i.e.,
for each computed average. We present this refine-
ment called SPcomb-AVG protocol in Figure 8.

We stress that we can also use combiners with
SUM, and MIN/MAX operations but they do not add
privacy as in previous operations.

4 SECURITY PROOFS

First, we recall definitions of the indistinguability
under chosen-plaintext attack for a PKE scheme and
of the indistinguability under ordered chosen plain-
text attacks for a OPE scheme.
Definition 5. A PKE scheme Π “ pG ,E ,Dq
is indistinguishable under chosen-plaintext attack
(IND-CPA) (Bellare et al., 2000) if for any probabilis-
tic polynomial time adversary B , the difference be-
tween 1

2 and the probability that B wins the IND-CPA
experiment in Figure 9 is negligible, where the ora-
cle EpkpLRbp¨, ¨qq takes pm0,m1q as input and returns
Epkpmbq.

Map function:
Input: pkey,valueq
// key: id of a chunk of R̂
// value: collection of pt1, t2, t3q P R̂
LÐ r s ; // Let L be a dictionary
MÐ r s ; // Let M be a dictionary

foreach pt1, t2, t3q P R̂ do
if pt1, t2q P L then Lrpt1, t2qs Ð Lrpt1, t2qs ¨Epku

p1q;
else Lrpt1, t2qs Ð Epku

p1q;
if pt1, t2q PM then Mrpt1, t2qs ÐMrpt1, t2qs ¨ t3;
else Mrpt1, t2qs Ð t3;

foreach pt1, t2q P L do
emit pt1,pt2,Lrpt1, t2qs,Mrpt1, t2qsqq.

Reduce function:
Input: pkey,valuesq
// key: πAptq for t P R̂
// values: collection of pEpku

paq,Epku
pbq,Epku

pcqq
cptÐ 1;
sumÐ 1;

foreach pEpkupaq,Epkupbq,Epkupcqq P values do
cptÐ cpt ¨Epkupbq;
sumÐ sum ¨Epkupcq;
emit pEpkupaq,cpt,sumq.

Figure 8: SPcomb-AVG protocol.

ExpIND-CPA
Π,B pηq:

b $
Ð t0,1u;
ppk,skq Ð Gpηq;
b˚Ð BEpkpLRbp¨,¨qqppkq;
return pb“ b˚q.

Figure 9: IND-CPA experiment (Bellare et al., 2000).

The standard definition of CPA experiment allows
the adversary to call this oracle only one time. How-
ever, in (Bellare et al., 2000) authors prove that the
two definitions of CPA security are equivalent using
an hybrid argument. For the security proofs we use
the IND-CPA property of Paillier’s scheme (Paillier,
1999).

Definition 6. An OPE scheme Πope is indistinguish-
able ciphertexts under ordered chosen plaintext at-
tacks (IND-OCPA) (Boldyreva et al., 2009) if for any
probabilistic polynomial time adversary B , the differ-
ence between 1

2 and the probability that B wins the
IND-OCPA experiment in Figure 10 is negligible.

We use the standard multi-party computations def-
inition of security against honest-but-curious adver-
saries (Ma and Deng, 2008). We consider several
entities that run a secure protocol in order to eval-
uate a multivariate function g. For example, con-
sider two parties P1 and P2 using respectively inputs
p1 and p2 that run a secure two-party protocol to
evaluate the multivariate function g “ pgP1 ,gP2q. At
the end of the protocol, P1 learns gP1pp1, p2q and P2
learns gP2pp1, p2q. Such a protocol is secure when P1

ExpIND´OCPA
Πope,B pηq:

pX0,X1q Ð B where |X0| “ |X1| “ n and @1 ď i, j ď
n,x0,i ă x0, j ô x1,i ă x1, j;
S0 Ð Gopepηq;
b $
Ð t0,1u;

For all 1ď iď n run pSi,yb,iq Ð EopepSi´1,xb,iq;
b˚Ð Bpyb,1, . . . ,yb,nq;
Ouput 1 if and only if b“ b˚.
Figure 10: IND-OCPA experiment (Boldyreva et al., 2009).

(resp. P2) learns nothing else than gP1pp1, p2q about
p2 (resp. gP2pp1, p2q about p1). We consider honest-
but-curious adversaries in the sense that P1 and P2 run
honestly the protocols, but they try to exploit all infor-
mation that they have received during the protocol.

For the sake of simplicity, we consider a relation
R composed of two attributes A and B, where A is the
grouping attribute and B is the aggregation attribute.
Moreover, we assume that R is composed of n tuples.
All the results can easily be extended to the general
case.

We model our SP-COUNT, SP-SUM, and SP-
AVG protocols with three entities R , Q and U us-
ing respectively inputs I “ pIR , IQ , IUq and a function
g“ pgR ,gQ ,gUq such that:

• R has the input IR “ pR̂,pkuq where R̂ is a pro-
tected relation, and pku is a Paillier’s public key,
and returns gR pIq “ K (where K denotes that the
function returns nothing), because R does not
learn anything.

• Q has the input IQ “ pku where pku is a Pail-
lier’s public key, and returns gQ pIq “ K, because
Q does not learn anything.

• U has the input IU “ ppku,skuq where ppku,skuq

is a Paillier’s key pair, and returns gUpIq “
γA,θpBqpRq (with θ the COUNT, SUM, or AVG op-
eration).

While protocols SP-MIN, SP-MAX are modeled
with three entities R , Q and U using respective in-
puts I “ pIR , IQ , IUq and a function g“ pgR ,gQ ,gUq
such that:

• R has the input IR “ pR̂,K,pkc,pkuq where R̂ is
a protected relation, K the secret key for the OPE
scheme, and pkc (resp. pku) is the public cloud
Paillier’s public key (resp. user Paillier’s public
key), and returns gR pIq “ K (where K denotes
that the function returns nothing), because R does
not learn anything.

• Q has the input IQ “ pskc,pkc,pkuq where
pskc,pkcq is the Paillier’s key pair of the public
cloud, and pku is the Paillier’s public key of the

user, and returns gQ pIq “ K, because Q does not
learn anything.

• U has the input IU “ pK,pkc,sku,pkuq where K is
the secret key for the OPE scheme, and psku,pkuq

is a Paillier’s key pair of the user, and returns
gUpIq “ γA,θpBqpRq (with θ the MIN, or MAX op-
eration).

We start by formally defining the Computational
Indistinguishability and the view of an entity before
formally presenting the security of the secure opera-
tions.
Definition 7 (Computational indistinguishability).
Let η be a security parameter and Xη and Yη two
distributions. We say that Xη and Yη are Computa-
tionally Indistinguishable, denoted Xη ” Yη, if for ev-
ery probabilistic polynomial-time distinguisher D we
have:
ˇ

ˇPrrxÐ Xη : 1ÐDpxqs´PrryÐ Yη : 1ÐDpyqs
ˇ

ˇď εpηq ,

where ε is a negligible function in η.

Definition 8 (View). Let π be a ρ-parties proto-
col that computes the function g “ pgiq1ďiďρ for the
entities pEiq1ďiďρ using inputs I “ pIiq1ďiďρ. The
view of a party Ei during an execution of π, denoted
VIEWπ

Ei
pIq, is the set of all values sent and received

by Ei during the protocol.

To prove that a party E learns nothing during exe-
cution of the protocol, we show that E can run a sim-
ulator algorithm that simulates the protocol, such that
E (or any polynomial bounded algorithm) is not able
to differentiate an execution of the simulator and an
execution of the real protocol. The idea is the follow-
ing: since the entity E is able to generate his view
using the simulator without the secret inputs of other
entities, E cannot extract any information from his
view during the protocol. This notion is formalized
in Definition 9.

Definition 9 (Security with honest-but-curious behav-
ior). Let π be a ρ-parties protocol that computes
the function g “ pgiq1ďiďρ for entities pEiq1ďiďρ us-
ing inputs I “ pIiq1ďiďρ P I . We say that π securely
computes g in the presence of honest-but-curious ad-
versaries if for each Ei (where 1 ď i ď ρ) there ex-
ists probabilistic polynomial-time simulators SEi such
that: SEipIi,gEipIqq ” VIEWπ

Ei
pIq .

We say that π is secure against collusion between
Ei and E j (where 1ď i, jď ρ) if there exist probabilis-
tic polynomial-time simulators SEi,E j such that:

SEi,E jppIi,gEipIqq,pI j,gE jpIqqq ” VIEWπ
Ei,E j

pIq .

Our proofs are done in the Random Oracle Model
(ROM). We simulate the pseudo-random function
fkp¨q used in our protocols with the hLkp¨q function

presented in Algorithm 2. For an already asked value
x, this function returns always the value store in Lkrxs
whereas for a new value x it returns a random value r
and store it in Lkrxs.

hLk pxq:
if x R Lk then

Lkrxs $
Ðt0,1un1 ;

return Lkrxs.

Algorithm 2: Simulator of fkp¨q.

4.1 SP-(COUNT-SUM-AVG) Protocols

We give the security proof of the SP-SUM protocol
in Theorem 1. We emphasize that the security for
SP-(COUNT-AVG) protocols are similar so we do not
present them.

Theorem 1. The SP-SUM protocol securely computes
the grouping and aggregation for the SUM operation
in the ROM in the presence of semi-honest adversary
even if cloud nodes collude.

The security proof for the SP-SUM protocol (The-
orem 1) is decomposed in Lemma 1 for R and Q , and
Lemma 2 for U.

Lemma 1. There exists a probabilistic polynomial-
time simulator S sum

R ,Q such that for all I “ pIR , IQ , IUq

we have: S sum
R ,Q ppIR ,gR pIqq,pIQ ,gQ pIqqq ”

VIEWSP´SUM
R ,Q pIq .

Proof. Let S sum
R ,Q be the simulator presented in Algo-

rithm 3. It outputs the view of R consisting in the pro-
tected relation R̂ sent by the data owner and the view
of Q that contains key-value pairs of tuples of the pro-
tected relation sent by R and the final result sent to U
consisting in a set of pairs with the encrypted values
of the grouping attribute and the encrypted associated
sum.

Let η be the security parameter used for the
Paillier’s cryptosystem. Assume there exists a
polynomial-time distinguisher D such that for all
I P I :

ˇ

ˇPrrs Ð S sum
R ,Q ppIR ,gR pIqq,pIQ ,gQ pIqqq : 1 Ð

Dpsqs´PrrsÐ VIEWSP´SUM
R ,Q pIq : 1ÐDpsqs

ˇ

ˇ“ εpηq,
where ε is a non-negligible function in η. We show
how to build a probabilistic polynomial-time adver-
sary B such that B has a non-negligible advantage to
win the IND-CPA experiment on the Paillier’s cryp-
tosystem. Then we conclude the proof by contraposi-
tion.

Adversary B is presented in Algorithm 4. At the
end of its execution, B uses the distinguisher D to
compute the bit b˚ before returning it.

S sum
R ,Q ppku,Kq:

k $
Ðt0,1uη;

Lk ÐH;
RÐH;
sumÐH;
for 1ď iď n do

t ÐMAˆMB;
RÐ RYttu;

R̂ÐH;
GÐH;
for t P R do

GÐ GYthLk pπAptqqu;
t̂ Ð phLk pπAptqq,Epku

pπAptqq,Epku
pπBptqqq;

R̂Ð R̂Ytt̂u;
for 1ď iď |G| do

r $
ÐMA;

s $
ÐMB;

sumÐ sumYtpEpkuprq,Epku
psqqu;

return VIEW “ pR̂,sumq.
Algorithm 3: Simulator S sum

R ,Q .

BEpku pLRbp¨,¨qqppkuq:
k $
Ðt0,1uη;

Lk ÐH;
RÐH;
sumÐH;
for 1ď iď n do

t ÐMAˆMB;
RÐ RYttu;

R̂ÐH;
GÐH;
for t P R do

r $
ÐMA;

s $
ÐMB;

g1 Ð hLk pπAptqq;
GÐ GYtg1u;
pg2,g3q Ð pEpkupπAptqq,EpkupπBptqqq;
t̂ Ð pg1,EpkupLRbpg2,rqq,EpkupLRbpg3,sqqq;
R̂Ð R̂Ytt̂u;

if b“ 0 then
foreach g P G do

sÐ
ś

pg,g2,g3qPR̂ g3;
sumÐ sumYtg2,su;

else
for 1ď iď |G| do

α
$
ÐMA;

β
$
ÐMB;

sumÐ sumYtpEpku
pαq,Epku

pβqqu;
VIEW “ pR̂,sumq;
b˚ÐDpVIEWq;
return b˚.

Algorithm 4: Adversary B .

First, we remark that: Prr1Ð ExpIND-CPA
Paillier,Bpηq|b “

0s “ Prrs Ð VIEWSP´SUM
R ,Q pIq : 0 Ð Dpsqs. Indeed,

when b “ 0, the view that B uses as input for D is
computed as in the real SP protocol since the data
owner uses the Paillier’s cryptosystem to encrypt val-
ues of the relation and that the SP-SUM protocol
uses the Paillier’s cryptosystem to compute the sum
of values of the same group in the reduce function
by multiplying Paillier ciphers. Then the probabil-
ity that the experiment returns 1 (which is the prob-
ability that b˚ “ b “ 0) is equal to the probabil-
ity that the distinguisher returns 0 on inputs com-
puted as in the real protocol. On the other hand,
we have: Prr1 Ð ExpIND-CPA

Paillier,Bpηq | b “ 1s “ Prrs Ð
S sum

R ,Q ppIR ,gR pIqq,pIQ ,gQ pIqqq : 1ÐDpsqs.
When b“ 1, the view that B uses as input for D is

computed as in the simulator S sum
R ,Q . Then the proba-

bility that the experiment returns 1 (which is the prob-
ability that b˚ “ b“ 1) is equal to the probability that
the distinguisher returns 1 on inputs computed as in
the simulator. Finally, we evaluate the probability that
B wins the experiment, i.e. b˚ “ b:

Prr1Ð ExpIND-CPA
Paillier,Bpηqs

“Prrb“ 0s ¨Prr1Ð ExpIND-CPA
Paillier,Bpηq | b“ 0s

`Prrb“ 1s ¨Prr1Ð ExpIND-CPA
Paillier,Bpηq | b“ 1s

“
1
2
¨PrrsÐ VIEWSP´SUM

R ,Q pIq : 0ÐDpsqs

`
1
2
¨PrrsÐ S sum

R ,Q ppIR ,gR pIqq,pIQ ,gQ pIqqq : 1ÐDpsqs

“
1
2
¨PrrsÐ VIEWSP´SUM

R ,Q pIq : 0ÐDpsqs

`
1
2
¨

´

PrrsÐ VIEWSP´SUM
R ,Q pIq : 1ÐDpsqs˘ εpηq

¯

“
1
2
¨PrrsÐ VIEWSP´SUM

R ,Q pIq : 0ÐDpsqs

`
1
2
´

1
2
¨PrrsÐ VIEWSP´SUM

R ,Q pIq : 0ÐDpsqs˘
1
2
¨ εpηq

“
1
2
˘

εpηq

2
.

We deduce the advantage of B:
ˇ

ˇ

ˇ
Pr
”

1Ð ExpIND-CPA
Paillier,Bpηq

ı

´ 1
2

ˇ

ˇ

ˇ
“

εpηq

2 . Which
concludes the proof by contraposition.

Lemma 2. There exists a probabilistic polynomial-
time simulator S sum

U such that for all I “ pIR , IQ , IUq

we have: S sum
U pIU ,gUpIqq ” VIEWSP´SUM

U pIq.

Proof. We build the simulator S sum
U presented in Al-

gorithm 5. The view of U contains key-value pairs
that are sent by Q and corresponding to the result
of the grouping and aggregation with the sum oper-
ation. Hence, S sum

U pppku,skuq,γA,sumpBqpRqq describes

exactly the same distribution as VIEWSP´SUM
U pIq since

we only use the Paillier’s cryptosystem to send the
result to the MapReduce user, which concludes the
proof.

S sum
U pppku,skuq,γA,sumpBqpRqq:

sumÐH;
foreach px,yq P γA,sumpBqpRq do

aÐ Epkupxq;
bÐ Epkupyq;
sumÐ sumYtpa,bqu;

VIEW “ psumq;
return VIEW.

Algorithm 5: Simulator S sum
U .

4.2 SP-(MIN-MAX) Protocols

The security proof for the SP-MIN operation is given
in Theorem 2. The security proofs for SP-MAX proto-
col are identical so we do not present them.

Theorem 2. The SP-MIN protocol securely computes
the grouping and aggregation for the MIN operation
in the ROM in the presence of semi-honest adver-
saries even if cloud nodes collude.

The security proof for the SP-MIN protocol (The-
orem 2) is decomposed in Lemma 3 for R and Q , and
Lemma 4 for U.

Lemma 3. There exists a probabilistic polynomial-
time simulator S min

R ,Q such that for all I “ pIR , IQ , IUq

we have:

S min
R ,Q ppIR ,gR pIqq,pIQ ,gQ pIqqq ” VIEWSP´MIN

R ,Q pIq .

Proof. We first present the simulator S 1min
R ,Q in Algo-

rithm 6. It outputs the view of R and Q that contains
the protected relation sent by the data owner and key-
value pairs sent by R and the final result sent to U
consisting in a set of pairs with the encrypted values
of the grouping attribute and the encrypted associated
minimum. We show that S 1min

R ,Q outputs the same view
than the SP protocol if Πope is IND-OCPA.

Let η be the security parameter used for
Πope. Assume there exists a polynomial-time dis-
tinguisher D such that for all I P I :

ˇ

ˇPrrs Ð
S 1min

R ,Q ppIR ,gR pIqq,pIQ ,gQ pIqqq : 1ÐDpsqs´PrrsÐ
VIEWSP´MIN

R ,Q pIq : 1 Ð Dpsqs
ˇ

ˇ “ εpηq, where ε is a
non-negligible function in η. We show how to build a
probabilistic polynomial-time adversary B such that
B has a non-negligible advantage to win the IND-
OCPA experiment on Πope. Then we conclude the
proof by contraposition.

Adversary B is presented in Algorithm 7. At the
end of its execution, B uses the distinguisher D to
compute the bit b˚ before returning it. First, we re-
mark that: Prr1Ð ExpIND´OCPA

Πope,B pηq | b“ 0s “ PrrsÐ
VIEWSP´MIN

R ,Q pIq : 0ÐDpsqs .

Indeed, when b “ 0, the view that B uses as in-
put for D is computed as in the real protocol SP-
MIN. Then the probability that the experiment returns
1 (which is the probability that b˚ “ b “ 0) is equal
to the probability that the distinguisher returns 0 on
inputs computed as in the real protocol. On the other
hand, we have: Prr1 Ð ExpIND´OCPA

Πope,B pηq | b “ 1s “
PrrsÐ S 1min

R ,Q ppIR ,gR pIqq,pIQ ,gQ pIqqq : 1ÐDpsqs .

S 1min
R ,Q ppskc,pkc,pkuq,Kq:

k $
Ðt0,1uη;

K $
Ðt0,1uη;

Lk ÐH;
RÐH;
MÐH;
minÐH;
for 1ď iď n do

t ÐMAˆMB;
RÐ RYttu;

R̂ÐH;
GÐH;
for t P R do

pg1,g2q Ð phLk pπAptqq,Epku
pπAptqqq;

GÐ GYtg1u;
Mrg1s Ð g2;
t̂ Ð pg1,g2,Epkc

pEope
K pπBptqqqq;

R̂Ð R̂Ytt̂u;
foreach g1 P G do

s $
ÐMB;

minÐminYtpMrg1s,Epku
pEope

K psqqqu;
return VIEW “ pR̂,minq.

Algorithm 6: Simulator S 1min
R ,Q .

When b“ 1, the view that B uses as input for D is
computed as in the simulator SR ,Q . Then the proba-
bility that the experiment returns 1 (which is the prob-
ability that b˚ “ b“ 1) is equal to the probability that
the distinguisher returns 1 on inputs computed as in
the simulator. Finally, we evaluate the probability that
B wins the experiment, i.e. b˚ “ b:

Prr1Ð ExpIND´OCPA
Πope,B pηqs

“Prrb“ 0s ¨Prr1Ð ExpIND´OCPA
Πope,B pηq | b“ 0s

`Prrb“ 1s ¨Prr1Ð ExpIND´OCPA
Πope,B pηq | b“ 1s

“
1
2
¨PrrsÐ VIEWSP´MIN

R ,Q pIq : 0ÐDpsqs

`
1
2
¨PrrsÐ S 1min

R ,Q ppIR ,gR pIqq,pIQ ,gQ pIqqq : 1ÐDpsqs

“
1
2
¨PrrsÐ VIEWSP´MIN

R ,Q pIq : 0ÐDpsqs

`
1
2
¨

´

PrrsÐ VIEWSP´MIN
R ,Q pIq : 1ÐDpsqs˘ εpηq

¯

“
1
2
¨PrrsÐ VIEWSP´MIN

R ,Q pIq : 0ÐDpsqs

`
1
2
´

1
2
¨PrrsÐ VIEWSP´MIN

R ,Q pIq : 0ÐDpsqs˘
1
2
¨ εpηq

“
1
2
˘

εpηq

2
.

We deduce the advantage of B:
ˇ

ˇ

ˇ

ˇ

Pr
”

1Ð ExpIND´OCPA
Πope,B pηq

ı

´
1
2

ˇ

ˇ

ˇ

ˇ

“
εpηq

2
.

Finally, we can construct a simulator S min
R ,Q that

simulates the real SP protocol using the indistin-
guishability of the Paillier’s cryptosytem. Using the
same reason that previously, we can conclude the
proof by contraposition.

Lemma 4. There exists a probabilistic polynomial-
time simulator SU such that for all I “ pIR , IQ , IUq

we have: SUpIU ,gUpIqq ” VIEWSP´MIN
U pIq .

Proof. We build the simulator SU presented in Algo-
rithm 8. The view of U contains encrypted pairs using
sent by Q . Hence, SUppK,pku,skuq,γA,MINpBqpRqq
describes exactly the same distribution as
VIEWSP´MIN

U pIq, which concludes the proof.

5 CONCLUSION

We have presented efficient algorithms for group-
ing and aggregation operations with MapReduce that
enjoy privacy guarantees such as none of the nodes
of the public cloud computing can learn the input or
the output relation. To achieve our goal, we relied on
Paillier’s cryptosystem and on Order-Preserving en-
cryption. We developed an efficient approach (SP) on
the computation cost side as the communication cost
side. We have compared this approach to the standard
algorithm with respect to three fundamental criteria:

BEope
K pLRbp¨,¨qqppkuq:

k $
Ðt0,1uη;

K $
Ðt0,1uη;

Lk ÐH;
RÐH;
MÐH;
minÐH;
for 1ď iď n do

t ÐMAˆMB;
RÐ RYttu;

R̂ÐH;
GÐH;
for t P R do

r $
ÐMA;

s $
ÐMB;
pg1,g2,g3q Ð phLk pπAptqq,πAptq,πBptqq;
GÐ GYtg1u;
Mrg1s Ð g2;
t̂ Ð pg1,g2,Epkc

pEope
K pLRbpg3,sqqqq;

R̂Ð R̂Ytt̂u;
if b“ 0 then

foreach g1 P G do
mÐmintEpkupDskcpg3qq|pg1,g2,g3q P

R̂u;
minÐminYtpg2,mqu;

else
foreach g1 P G do

s $
ÐMB;

minÐminYtpMrg1s,Epku
pEope

K psqqqu;
VIEW “ pR̂,minq;
b˚ÐDpVIEWq;
return b˚.

Algorithm 7: Adversary B .

SUppK,pkc,pku,skuq,γA,MINpBqpRqq:
R̂ÐH;
foreach px,yq P γA,MINpBqpRq do

aÐ Epkupxq;
bÐ EpkupE

ope
K pyqq;

R̂Ð R̂Ytpa,bqu
VIEW “ pR̂q;
return VIEW.

Algorithm 8: Simulator SU .

computation cost, communication cost, and privacy
guarantees.

Looking forward to future work, we plan to study
the practical performance of our algorithms in an
open-source system that implements the MapReduce
paradigm as Hadoop1. Additionally, we aim to inves-
tigate the grouping and aggregation computation with
privacy guarantees in different big data systems (such

1Apache Hadoop: https://hadoop.apache.org/

as Spark or Flink) whose users also tend to outsource
data and computations similarly to MapReduce.

REFERENCES

Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2004).
Order-Preserving Encryption for Numeric Data. In
Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 563–574.

Alghamdi, W. Y., Wu, H., and Kanhere, S. S. (2017). Re-
liable and Secure End-to-End Data Aggregation Us-
ing Secret Sharing in WSNs. In 2017 IEEE Wire-
less Communications and Networking Conference,
WCNC, pages 1–6.

Bellare, M., Boldyreva, A., and Micali, S. (2000). Public-
key encryption in a multi-user setting: Security proofs
and improvements. In EUROCRYPT 2000. Springer.

Blass, E., Pietro, R. D., Molva, R., and Önen, M. (2012).
PRISM - Privacy-Preserving Search in MapReduce.
In Privacy Enhancing Technologies - 12th Interna-
tional Symposium, PETS, pages 180–200.

Boldyreva, A., Chenette, N., Lee, Y., and O’Neill, A.
(2009). Order-Preserving Symmetric Encryption.
In Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages
224–241.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. (2017). Practical Secure Aggregation
for Privacy-Preserving Machine Learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS, pages
1175–1191.

Bultel, X., Ciucanu, R., Giraud, M., and Lafourcade, P.
(2017). Secure Matrix Multiplication with MapRe-
duce. In Proceedings of the 12th International Con-
ference on Availability, Reliability and Security, pages
11:1–11:10.

Dean, J. and Ghemawat, S. (2004). MapReduce: Simpli-
fied Data Processing on Large Clusters. In 6th Sym-
posium on Operating System Design and Implementa-
tion OSDI, pages 137–150.

Derbeko, P., Dolev, S., Gudes, E., and Sharma, S. (2016).
Security and privacy aspects in MapReduce on clouds:
A survey. Computer Science Review, 20:1–28.

Dolev, S., Gilboa, N., and Li, X. (2015). Accumulat-
ing Automata and Cascaded Equations Automata for
Communicationless Information Theoretically Secure
Multi-Party Computation: Extended Abstract. In Pro-
ceedings of the 3rd International Workshop on Secu-
rity in Cloud Computing, SCC@ASIACCS ’15, pages
21–29.

Dolev, S., Li, Y., and Sharma, S. (2016). Private and Se-
cure Secret Shared MapReduce. In Data and Appli-
cations Security and Privacy XXX - 30th Annual IFIP
WG 11.3 Conference, DBSec, pages 151–160.

Gentry, C. (2009). Fully Homomorphic Encryption Using
Ideal Lattices. In Proceedings of the Forty-first Annual

ACM Symposium on Theory of Computing, STOC ’09,
pages 169–178. ACM.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Min-
ing of Massive Datasets. Cambridge University Press.

Ma, Q. and Deng, P. (2008). Secure Multi-party Protocols
for Privacy Preserving Data Mining, pages 526–537.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Macedo, R., Paulo, J., Pontes, R., Portela, B., Oliveira,
T., Matos, M., and Oliveira, R. (2017). A practical
framework for privacy-preserving nosql databases. In
36th IEEE Symposium on Reliable Distributed Sys-
tems, SRDS 2017, Hong Kong, Hong Kong, September
26-29, 2017, pages 11–20.

Mayberry, T., Blass, E., and Chan, A. H. (2013). PIRMAP:
Efficient Private Information Retrieval for MapRe-
duce. In Financial Cryptography and Data Security
- 17th International Conference, FC, pages 371–385.

Naccache, D. and Stern, J. (1998). A New Public Key Cryp-
tosystem Based on Higher Residues. In Proceedings
of the 5th ACM Conference on Computer and Commu-
nications Security, CCS ’98, pages 59–66, New York,
NY, USA. ACM.

Okamoto, T. and Uchiyama, S. (1998). A New Public-key
Cryptosystem as Secure as Factoring, pages 308–318.
Springer Berlin Heidelberg.

Paillier, P. (1999). Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes. In Advances
in Cryptology - EUROCRYPT ’99, International Con-
ference on the Theory and Application of Crypto-
graphic Techniques, pages 223–238.

Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakr-
ishnan, H. (2011). Cryptdb: protecting confidentiality
with encrypted query processing. In Proceedings of
the 23rd ACM Symposium on Operating Systems Prin-
ciples 2011, SOSP 2011, Cascais, Portugal, October
23-26, 2011, pages 85–100.

Shamir, A. (1979). How to Share a Secret. Commun. ACM,
22(11):612–613.

Vo-Huu, T. D., Blass, E., and Noubir, G. (2015). EPiC: Effi-
cient Privacy-Preserving Counting for MapReduce. In
Networked Systems - Third International Conference,
NETYS, pages 426–443.

