
Improved Collision Attack on Reduced RIPEMD-160

Fukang Liu, Gaoli Wang, and Zhenfu Cao?

Shanghai Key Laboratory of Trustworthy Computing, School of Computer Science and
Software Engineering, East China Normal University, Shanghai, China

liufukangs@163.com, glwang@sei.ecnu.edu.cn,
zfcao@sei.ecnu.edu.cn

Abstract. In this paper, we propose a new cryptanalysis method to mount colli-
sion attack on RIPEMD-160. Firstly, we review two existent cryptanalysis meth-
ods to mount (semi-free-start) collision attack on MD-SHA hash family and
briefly explain their advantages and disadvantages. To make the best use of the
advantages of the two methods, we come up with a new model to mount collision
attack. Applying the new technique, we improve the only existent collision attack
on the first 30-step RIPEMD-160 presented at Asiacrypt 2017 by a factor of 211.
Moreover, our new method is much simpler than that presented at Asiacrypt 2017
and there is no need to pre-determine many bit conditions for multi-step modifi-
cation, thus leaving sufficient freedom degree of the message words. Besides, we
further evaluate the pros and cons of the new method and describe how to care-
fully apply it in future research. We also implement this attack in C++ and can
find the message words to ensure the dense right branch with time complexity 230.

Keywords: RIPEMD-160, collision, hash function.

1 Introduction

A cryptographic hash function is a function which takes arbitrary long messages as
input and output a fixed-length hash value of size n bits. There are three basic require-
ments for a hash function, which are preimage resistance, second-preimage resistance
and collision resistance. Most standardized hash functions are based on the Merkle-
Damgård paradigm[Dam89,Mer89] and iterate a compression function H with fixed-
size input to compress arbitrarily long messages. Therefore, the compression function
itself should satisfy equivalent security requirements so that the hash function can in-
herit from it. There are two attack models on the compression function. One is called
free-start collision attack, the other is semi-free-start collision attack. The free-start
collision attack is to find two different pairs of message and chaining value (CV,M),
(CV ′,M′) which satisfy H(CV,M) = H(CV ′,M′). The semi-free-start collision attack
works in the same way apart from an additional condition that CV = CV ′.

The last decade has witnessed the fall of a series of hash functions such as MD4,
MD5, SHA-0 and SHA-1 since many break-through results on hash functions cryptanal-
ysis [SBK+17,WLF+05,WY05,WYY05b,WYY05a] were obtained. All of these hash

? Corresponding author.

functions belong to the MD-SHA family, whose design strategy is based on the utiliza-
tion of additions, rotations, xor and boolean functions in an unbalanced Feistel network.

RIPEMD family can be considered as a subfamily of the MD-SHA-family. Dob-
bertin was the first one to doubt the security of RIPEMD-0 [Dob97] and the first practi-
cal collision attack on it was presented by Wang et al. [WLF+05]. In order to strengthen
the security of RIPEMD-0, Dobbertin, Bosselaers and Preneel [DBP96] proposed two
strengthened versions of RIPEMD-0 in 1996, which are RIPEMD-128 and RIPEMD-
160 with 128/160 bits output and 64/80 steps, respectively. Different from the simple
design strategy of RIPEMD-0, more complex design strategies are adopted for the two
new hash functions. More specifically, different constants, rotation values, message in-
sertion schedules and boolean functions are used for RIPEMD-128 and RIPEMD-160
in their both branches.

At Eurocrypt 2013, semi-free-start collision attack on full RIPEMD-128 was pre-
sented [LP13], thus threatening its security claim. Before it, there also exists some re-
sults on RIPEMD-128 [MNS12,Wan14,WY15]. As for RIPEMD-160, the first security
analysis for collision resistance of the reduced version was presented in [MNSS12]. In
that work, Mendel et al. implemented a tool and used it to find a differential path. After
Landelle and Peyrin presented a new method to mount semi-free-start collision attack
on full RIPEMD-128 [LP13], Mendel et al. [MPS+13] improved the tool in [MNSS12]
and it was utilized to find the differential path of RIPEMD-160 at Asiacrypt 2013.
With their new tool, they found a 48-step differential path and a 36-step differential
path. Based on the two differential paths, the semi-free-start collision attack on 42-step
RIPEMD-160 and the first 36-step RIPEMD-160 was mounted. In addition, they also
proposed an open problem to theoretically calculate the step differential probability.
Four years later, Liu et al. solved this problem by modeling the propagation of the mod-
ular difference using an equation at first and then calculating the probability of the bit
conditions [LMW17]. The semi-free-start collision attack on the first 36-step RIPEMD-
160 was improved as well in [LMW17] by choosing different free message words for
merging. What’s more, the first collision attack on step-reduced RIPEMD-160 was p-
resented [LMW17]. However, the authors neglect three bit conditions and therefore the
probability to find a collision becomes 2−70 (They have corrected this mistake). The
strategy to mount the collision attack is to apply the message modification techniques
on the dense right branch while keeping the sparse left branch probabilistic [LMW17].
For the semi-free-start collision attack on 42-step RIPEMD-160 from the middle, it
was improved by a factor of 210 and therefore can be extended to 48-step RIPEMD-
160 [WSL17]. Besides, there are also some other analytical results on RIPEMD-160,
such as a preimage attack [OSS12] on 31-step RIPEMD-160, a distinguisher on up to
51 steps of the compression function [SW12]. We summarize existent results in Table
1. Although there are several results on RIPEMD-160, it is yet unbroken and is widely
used in the implementations of security protocols as a ISO/IEC standard.

For the methods to mount collision attack on MD-SHA hash family, most of them
are developed from Wang’s method [WLF+05,WY05,WYY05b,WYY05a]. The main
procedure of Wang’s method to find a collision is to find a differential path at first and
then apply single-step and multi-step modification techniques on the first two rounds.
Different from Wang’s method to compute from the first step, Landelle’s and Peyrin’s

2

method to break full RIPEMD-128 [LP13] is to fix a starting point in the middle by
simple message modification at first. Then, compute backward to merge both branch-
es by leveraging the remaining free message words. At last, the uncontrolled part is
verified probabilistically. Although such a method is powerful to mount semi-free-start
collision attack, it seems rather hard to directly apply it to mount collision attack since
the compute doesn’t start from the first step. Therefore, it is quite meaningful to explore
whether there exist a method similar with Landelle’s and Peyrin’s method to mount real
collision attack rather than semi-free-start collision attack.

This paper is organized as follows. The algorithm of RIPEMD-160 is briefly de-
scribed in Section 2. Then, we review the work to model the propagation of modular
difference using an equation in Section 3 for a better understanding of this paper. In
Section 4, we propose a new cryptanalysis method to mount collision attack on the first
30-step RIPEMD-160. Then, a further discussion of our new method is presented in
Section 5. Finally, we conclude the paper in Section 6.

Our Contributions. In this paper, we review two existent cryptanalysis methods to
mount (semi-free-start) collision attack on MD-SHA hash family [LP13,WLF+05,WY05].
And then, we point out the advantages and disadvantages of the two methods. To lever-
age the advantages of the two methods, we propose a new cryptanalysis method to
mount collision attack. Applying this new technique, we improve the only existent col-
lision attack on the first 30-step RIPEMD-160 [LMW17] by a factor of 211. Moreover,
our new method is much simpler than that presented in [LMW17] and there is no need
to pre-determine many bit conditions for multi-step modification, thus leaving large
freedom degree of the message words. The attack is implemented in C++ and can find
the message words to ensure the dense right branch with time complexity 230.

At last, we give a further evaluation of our new method and consider the ideal ap-
plication that maybe exist in the future. It reveals some lights on how to choose se-
cure message insertion schedule for dual-stream hash functions like RIPEMD-128 and
RIPEMD-160 to a certain degree. What’s more, we also illustrate the importance to
make a trade-off to obtain the optimal attack under our attack model.

Table 1: Summary of preimage and collision attack on RIPEMD-160.
Target Attack Type Steps Complexity Ref.

comp. function preimage 31 2148 [OSS12]
hash function preimage 31 2155 [OSS12]

comp. function semi-free-start collision 36a low [MNSS12]
comp. function semi-free-start collision 36 270.4 [MPS+13]
comp. function semi-free-start collision 36 255.1 [LMW17]
comp. function semi-free-start collision 42a 275.5 [MPS+13]
comp. function semi-free-start collision 48a 276.4 [WSL17]
hash function collision 30 270 [LMW17]
hash function collision 30 259 new
a An attack starts at an intermediate step.

3

2 Description of RIPEMD-160

RIPEMD-160 is a 160-bit hash function that uses the Merkle-Damgård construction as
domain extension algorithm: the hash function is built by iterating a 160-bit compres-
sion function H which takes as input a 512-bit message block Mi and a 160-bit chaining
variables CVi :

CVi+1 = H(CVi,Mi)

where a message M to hash is padded beforehand to a multiple of 512 bits and the first
chaining variable is set to the predetermined initial value IV , that is CV0 = IV . We refer
to [DBP96] for a detailed description of RIPEMD-160.

2.1 Notations

For a better understanding of this paper, we introduce the following notations.

1. �, ≪, ≫, ⊕, ∨, ∧ and ¬ represent respectively the logic operation: shi f t le f t,
rotate le f t, rotate right, exclusive or, or, and, negate.

2. � and � represent respectively the modular addition and modular substraction on
32 bits.

3. M = (m0, m1, ..., m15) and M′ = (m′0, m′1, ..., m′15) represent two 512-bit message
blocks.

4. ∆mi = m′i � mi represents the modular difference between two message words mi

and m′i .
5. Kl

j and Kr
j represent the constant used at the left and right branch for round j.

6. Φl
j and Φr

j represent respectively the 32-bit boolean function at the left and right
branch for round j.

7. Xi, Yi represent respectively the 32-bit internal state of the left and right branch
updated during step i for compressing M.

8. X′i , Y ′i represent respectively the 32-bit internal state of the left and right branch
updated during step i for compressing M′.

9. Xi, j, Yi, j represent respectively the j-th bit of Xi and Yi, where the least significant
bit is the 0th bit and the most significant bit is the 31st bit.

10. Qi represents the 32-bit temporary state of the right branch updated during step i
for compressing M.

11. sl
i and sr

i represent respectively the rotation constant used at the left and right branch
during step i.

12. π1(i) and π2(i) represent the index of the message word used at the left and right
branch during step i.

13. [Z]i represents the i-th bit of the 32-bit Z.
14. [Z] j∼i (0 ≤ i < j ≤ 31) represents the i-th bit to the j-th bit of the 32-bit word Z.
15. P(A) is the probability of the event A.

4

2.2 RIPEMD-160 Compression Function

The RIPEMD-160 compression function is a wider version of RIPEMD-128, which is
based on MD4, but with the particularity that it consists of two different and almost
independent parallel instances of it. We differentiate the two computation branches by
left and right branch. The compression function consists of 80 steps divided into 5
rounds of 16 steps each in both branches.

Initialization. The 160-bit input chaining variable CVi is divided into five 32-bit words
hi (i=0,1,2,3,4), initializing the left and right branch 160-bit internal state in the follow-
ing way:

X−4 = h≫10
0 , X−3 = h≫10

4 , X−2 = h≫10
3 , X−1 = h2, X0 = h1.

Y−4 = h≫10
0 , Y−3 = h≫10

4 , Y−2 = h≫10
3 , Y−1 = h2, Y0 = h1.

Particularly, CV0 corresponds to the following five 32-bit words:

X−4 = Y−4 = 0xc059d148, X−3 = Y−3 = 0x7c30f4b8, X−2 = Y−2 = 0x1d840c95,
X−1 = Y−1 = 0x98badcfe, X0 = Y0 = 0xefcdab89.

The Message Expansion. The 512-bit input message block is divided into 16 message
words mi of size 32 bits. Each message word mi will be used once in every round in a
permuted order π for both branches.

The Step Function. At round j, the internal state is updated in the following way.

Xi = X≪10
i−4 � (X≪10

i−5 �Φ
l
j(Xi−1, Xi−2, X≪10

i−3) � mπ1(i) � Kl
j)
≪sl

i ,

Yi = Y≪10
i−4 � (Y≪10

i−5 �Φ
r
j(Yi−1,Yi−2,Y≪10

i−3) � mπ2(i) � Kr
j)
≪sr

i ,

Qi = Y≪10
i−5 �Φ

r
j(Yi−1,Yi−2,Y≪10

i−3) � mπ2(i) � Kr
j ,

where i = (1, 2, 3, ..., 80) and j = (0, 1, 2, 3, 4). The details of the boolean functions and
round constants for RIPEMD-160 are displayed in Table 2. As for other parameters,
you can refer to [DBP96].

The Finalization. A finalization and a feed-forward is applied when all 80 steps have
been computed in both branches. The five 32-bit words h

′

i composing the output chain-
ing variable are computed in the following way.

h
′

0 = h1 � X79 � Y78)≪10,

h
′

1 = h2 � X≪10
78 � Y≪10

77 ,

h
′

2 = h3 � X≪10
77 � Y≪10

76 ,

h
′

3 = h4 � X≪10
76 � Y80,

h
′

4 = h0 � X80 � Y79.

5

Table 2: Boolean Functions and Round Constants in RIPEMD-160

Round j φl
j φr

j Kl
j Kr

j Function Expression
0 XOR ONX 0x00000000 0x50a28be6 XOR(x,y,z) x⊕y⊕z
1 IFX IFZ 0x5a827999 0x5c4dd124 IFX(x,y,z) (x∧y)⊕(¬x∧z)
2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 IFZ(x,y,z) (x∧z)⊕(y∧¬z)
3 IFZ IFX 0x8f1bbcdc 0x7a6d76e9 ONX(x,y,z) x⊕(y∨¬z)
4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x,y,z) (x∨¬y)⊕ z

3 Propagation of the Modular Difference

Mendel et al. point out that it is not as easy to calculate the differential probabil-
ity for each step of a given differential path of RIPEMD-160 as that of RIPEMD-
128 [MPS+13]. The main reason is that the step function in RIPEMD-160 is no longer
a T-function. Therefore, the accurate calculation of the differential probability becomes
very hard. Then, Liu et al. solve this problem by modeling the propagation of the mod-
ular difference using an equation at first and then calculate the probability of the bit
conditions [LMW17]. For a better understanding of this paper, we review how the mod-
ular difference of the internal states propagates and how to model the propagation by
an equation as presented in [LMW17]. We use the step function of the right branch for
explanation.

Yi = Y≪10
i−4 � (Y≪10

i−5 �Φ
l
j(Yi−1,Yi−2,Y≪10

i−3) � mπ2(i) � Kr
j)
≪sr

i .

Y ′i = Y ′≪10
i−4 � (Y ′≪10

i−5 �Φl
j(Y
′
i−1,Y

′
i−2,Y

′≪10
i−3) � m′π2(i) � Kr

j)
≪sr

i .

Let

∆(Yi) = Y ′i � Yi,

∆(Y≪10
i−5) = Y ′≪10

i−5 � Y≪10
i−5 ,

∆(Y≪10
i−4) = Y ′≪10

i−4 � Y≪10
i−4 ,

∆F = Φl
j(Y
′
i−1,Y

′
i−2,Y

′≪10
i−3) �Φl

j(Yi−1,Yi−2,Y≪10
i−3),

∆m = m′π2(i) − mπ2(i).

Given the differential path and the bit conditions to control the differential propagation,
∆(Yi), ∆(Y≪10

i−5), ∆(Y≪10
i−4), ∆F and ∆m are all fixed. Let

in = ∆(Y≪10
i−5) � ∆F � ∆m,

out = ∆(Yi) � ∆(Y≪10
i−4).

Hence, in and out are constants. To ensure ∆(Yi) can be the correct value, an equation
is constructed as follows.

(Qi � in)≪sr
i = Q≪sr

i
i � out.

6

Since Qi is a variable, the probability that ∆(Yi) is correct is equal to the probability that
Qi satisfies the equation (Qi � in)≪sr

i = Q≪sr
i

i � out. Calculating this probability of
such an equation has been solved by Daum [Dau05]. Then, Liu et al. [LMW17] consider
this problem from a different perspective and can obtain some useful information of Qi.
We can refer to [LMW17] for more details. Next, we present the example in [LMW17]
so as to introduce the concept of possible and impossible characteristics of Qi, which is
vital to message modification.

Example. Let in = 0x80bfd9ff, out = 0x0xfd9ff80c and sr
i = 12. Then, the equa-

tion becomes

(Qi � 0x80bfd9ff)≪12 = Q≪12
i � 0x0xfd9ff80c.

To have a better understanding of the method to calculate the probability, we explain it
by Table 3.

Table 3: Calculation of the Probability
Qi 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Qi

in 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1
R0 R1

Q≪12
i 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20

Q≪12
i
out 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0

R′1 R′0

First of all, we give a description of the notations in Table 3. To illustrate it more
clearly, R0, R1, R′0 and R′1 are introduced. Let

R0||R1 = Qi � 0x80bfd9ff,

R′1||R
′
0 = Q≪12

i � 0x0xfd9ff80c.

where R0, R′0 are 12-bit variables, and R1, R′1 are 20-bit variables. Then, the goal is to
calculate the probability P(R0 = R′0 and R1 = R′1). Observing the values of in and
out, it is easy to find the following relationship:

[in]19∼0 = [out]31∼12, [in]31∼20 + 1 ≡ [out]11∼0 mod (212).

Therefore, to ensure R0 = R′0 and R1 = R′1, there must be carry from the 19-th bit to
the 20-th bit when calculating Qi � 0x80bfd9ff, while there must be no carry from
the 11-th bit to the 12-th bit when calculating Q≪12

i � 0x0xfd9ff80c. For example,
[Qi]19 = 1 can ensure R0 = R′0, and we call [Qi]19 = 1 one possible characteristic of
Qi. However, [Qi]31 = 1 will cause R1 , R′1 and we call [Qi]31 = 1 one impossible
characteristic of Qi. By considering all cases, we can obtain the characteristics of Qi as
listed in Table 4. Then,

P(R1 = R′1) = 1 − (2−1 + 2−9 + 2−10).
P(R0 = R′0) = Σ6

i=12−i + 2−8 + 2−9 + Σ20
i=122−i.

Therefore, P(R0 = R′0 and R1 = R′1) = P(R1 = R′1) × P(R0 = R′0) ≈ 2−1.

7

Table 4: The Characteristics of Qi
Num Characteristic Type Num Characteristic Type
1 [Qi]31 = 1 Impossible 11 [Qi]19∼11 = 000000101 Possible
2 [Qi]31∼23 = 011111111 Impossible 12 [Qi]19∼8 = 000000100111 Possible
3 [Qi]31∼22 = 0111111101 Impossible 13 [Qi]19∼7 = 0000001001101 Possible
4 [Qi]19 = 1 Possible 14 [Qi]19∼6 = 00000010011001 Possible
5 [Qi]19∼18 = 01 Possible 15 [Qi]19∼5 = 000000100110001 Possible
6 [Qi]19∼17 = 001 Possible 16 [Qi]19∼4 = 0000001001100001 Possible
7 [Qi]19∼16 = 0001 Possible 17 [Qi]19∼3 = 00000010011000001 Possible
8 [Qi]19∼15 = 00001 Possible 18 [Qi]19∼2 = 000000100110000001 Possible
9 [Qi]19∼14 = 000001 Possible 19 [Qi]19∼1 = 0000001001100000001 Possible
10 [Qi]19∼12 = 00000011 Possible 20 [Qi]19∼0 = 00000010011000000001 Possible

4 Improved Collision Attack on the First 30-Step RIPEMD-160

At Asiacrypt 2017, Liu et al. proposed the first collision attack on the first 30-step
RIPEMD-160 [LMW17]. The differential path used in [LMW17] for collision attack is
shown in Table 5. The strategy to construct this differential path can be divided into two
phases. At first, one bit difference of m15 is chosen and then the difference is propagated
in the left branch as sparsely as possible. This phase can be done manually. At the sec-
ond phase, the tool invented by Mendel et al. [LMW17] is utilized to find a compatible
differential path for the right branch. When the differential path is constructed, the mes-
sage modification techniques [WLF+05] is then applied on the right branch until Y23.
Due to the difficulty to correct the conditions on both branches, the differential path in
the left branch remains probabilistic.

However, although they apply the message modification techniques on the right
branch until Y23, they can’t ensure all the bit conditions on Yi nor have all the equations
in terms of Qi hold for 1 ≤ i ≤ 23. More specifically, 13 bit conditions on Y23 and 1 bit
condition on Y19 can’t be satisfied by message modification. In addition, Q20 satisfies
its corresponding equation with probability 2−1. It seems rather hard to correct the bit
conditions on Y23 since there are many bit conditions on Yi (12 ≤ i ≤ 18). Hence,
overcoming this obstacle is quite important so as to improve the collision attack. Since
the multi-step modification techniques have its limitation, a new method is essential to
solve this problem.

4.1 Overview of Our Method to Find Collisions

Our new method is inspired by Landelle’s and Peyrin’s idea [LP13]. Therefore, first of
all, we give a comparison of Wang’s method, Landelle’s and Peyrin’s method and our
new method to find collisions as illustrated in Figure 1.

For Wang’s method [WY05,LMW17], the computation starts from the first step
and then the message modification techniques are applied. For Landelle’s and Peyrin’s
method [LP13], the dense nonlinear part is determined by simple message modification
at first. Then, the computation have two directions. One is backward from the nonlinear

8

Table 5: 30-step Differential Path, where m′15 = m15 � 224, and ∆mi = 0 (0 6 i 6 14).
Note that the symbol n represents that a bit changes to 1 from 0, u represents that a bit
changes to 0 from 1, and - represents that the bit value is free.

Xi π1(i) Yi π2(i)
-4 -------- -------- -------- -------- -4 -------- -------- -------- --------
-3 -------- -------- -------- -------- -3 -------- -------- -------- --------
-2 -------- -------- -------- -------- -2 -------- -------- -------- --------
-1 -------- -------- -------- -------- -1 -------- -------- -------- --------
00 -------- -------- -------- -------- 00 00 -------- -------- -------- -------- 05
01 -------- -------- -------- -------- 01 01 -------- -------- -------- -------- 14
02 -------- -------- -------- -------- 02 02 -------- -------- -------- -------- 07
03 -------- -------- -------- -------- 03 03 -------- -------- -------- -------- 00
04 -------- -------- -------- -------- 04 04 -------- -------- -------- -------- 09
05 -------- -------- -------- -------- 05 05 -------- -------- -------- -------- 02
06 -------- -------- -------- -------- 06 06 -------- -------- -------- -------- 11
07 -------- -------- -------- -------- 07 07 -------- -------- -------- -------- 04
08 -------- -------- -------- -------- 08 08 -------- -------- -------- -------- 13
09 -------- -------- -------- -------- 09 09 -----1-1 -1------ -------- -------- 06
10 -------- -------- -------- -------- 10 10 ----0000 00-1--1- --0000-- 1-001010 15
11 -------- -------- -------- -------- 11 11 -0--0--- 00001101 10010000 000nuuuu 08
12 -------- -------- -------- -------- 12 12 nuuuuuuu uuuuuuuu u0n0n00- ---01100 01
13 -------- -------- -------- -------- 13 13 0unn1uu- 111-1-1- -nuunn11 011011un 10
14 -------- -------- -------- -------- 14 14 -1000011 11----1- 10nu1010 1-nu1-11 03
15 -------- -------- -------- -------- 15 15 00---011 11-0u-u- 101000-u ----0-01 12
16 -------- -------- -------- -------n 07 16 111-n1uu 000n1n-- 0001n--- -nuuuuuu 06
17 -------- -------- -------- -------0 04 17 1u1-1--u n--0111- 00u10unn n-nnn01- 11
18 -------- -------- -----1-- -------1 13 18 01------ 0n-011-- 1n0000-- --0-00-1 03
19 -------- -------- -----0-- -------- 01 19 1u------ 1--100-- 010----- -----1-1 07
20 -------- -------- -----n-- -------- 10 20 -0------ --1----- ----0nu1 1---11-0 00
21 -------- -------- -----0-- -------- 06 21 -1-----1 011----- 11111-10 1------- 13
22 -------- ---1---- -----1-- -------- 15 22 u-----00 1-u----- ------1u ------00 05
23 n------- ---0---- -------- -------- 03 23 1------- -------0 -----01- ------n- 10
24 0------- ---n---- -------- -------- 12 24 1------- -------1 ----0-1- ------00 14
25 1------- ---0---- ------1- -------- 00 25 1----n-- ---0---- ----1--- ------01 15
26 -1------ ---1---- ------0- -------- 09 26 -------- ---0---- ----unn- -------- 08
27 -0------ -------- ------n- -------- 05 27 -u------ -------- -------- -------- 12
28 -n------ -------- ------0- -------- 02 28 -------- -------- -------- -------- 04
29 -0------ ----1--- -------- -------- 14 29 -------- -------- -------- -------- 09
30 -------- -------- -------- -------- 11 30 -------- -------- -------- -------- 01

Other Conditions
Y11,31

∨
¬Y10,21 = 1, Y11,29

∨
¬Y10,19 = 1, Y11,28

∨
¬Y10,18 = 1, Y11,26

∨
¬Y10,16 = 1, Y11,25

∨
¬Y10,15 = 1, Y11,24

∨
¬Y10,14 = 1.

Y14,21 = 1, Y14,20 = 1, Y14,19 = 1 (We use the three conditions); Or Y15,21 = 1, Y14,21 = 0, Y14,20 = 0, Y14,19 = 0.
Y15,6 = 1, Y14,6 = 0, Y15,5 = 1; Or Y14,6 = 1, Y15,5 = 0 (We use the two conditions).
Y15,29 = 0, Y15,28 = 0, Y15,27 = 1.
Y18,28 = Y17,28, Y18,21 = Y17,21, Y18,16 = Y17,16.
Y19,17 = Y18,17, Y19,8 = Y18,8, Y19,1 = Y18,1.
Y20,24 = Y19,24.
Y22,19 = Y21,19, Y22,20 = Y21,20.
Y24,18 = Y23,18.
Y27,4 = Y26,4.
Y28,19 = Y27,19, Y28,20 = Y27,20, Y28,21 = Y27,21.
Y29,8 = Y28,8.
X15,0 = X14,22.
X22,31 = X21,21.

9

Fig. 1: Comparison of the three methods

part and the other is forward from the nonlinear part. The advantage of Landelle’s and
Peyrin’s method is obvious. That’s, it can skip the the sophisticated multi-step modifi-
cation and determining the dense nonlinear part is the pre-computation with a relatively
low time complexity. Then at Asiacrypt 2013, such a method is applied by Mendel et al.
to find semi-free-start collisions for RIPEMD-160 [MPS+13]. However, its disadvan-
tage is also evident. It seems impossible to use such a method to find collisions since
the computation doesn’t start from the first step. Therefore, we come up with a new
model, which can keep the advantages of Landelle’s and Peyrin’s method and make the
collision attack become possible.

Our new method can be devided into four steps.

Step 1: Preparation: Use the single-step modification to ensure the dense nonlinear
part. We call the dense nonlinear part a starting point.

Step 2: Compute forward from the nonlinear part and use the message modification to
ensure the corresponding conditions.

Step 3: Compute forward from the first step and use the message modification to en-
sure the corresponding conditions. Link the this part with the nonlinear part by
leveraging remaining free message words. In other words, we leverage the re-
maining free message words to achieve the consistency between the nonlinear
part and this part.

Step 4: The conditions located in the uncontrolled part are verified probabilistically.

4.2 Deducing Extra Bit Conditions to Control the Characteristics of Qi

To mount the collision attack on the first 30-step RIPEMD-160, the first work is to i-
dentify the bit conditions. As observed in [LMW17], not only the bit conditions but
also the modular difference of the internal states should be satisfied. However, mes-
sage modification techniques are only useful to ensure the bit conditions. It is rather
difficult to directly use this technique to ensure the modular difference of the internal
states. Fortunately, Liu et al. note that by adding extra bit conditions on the internal
states, the modular difference can be correctly propagated with probability 1 or close to

10

1 [LMW17]. The reason is that the newly-added bit conditions can be satisfied by mes-
sage modification techniques. For completeness, we explain the two examples showed
in [LMW17] once again.

Based on the 30-step differential path in Table 5, we can obtain that Q13 has to
satisfy the equation (Q13 � 0x6ffba800)≪14 = Q≪14

13 � 0xea001bff so that the
modular difference ∆Y13 holds. As described previously, we can deduce the characteris-
tics of Q13. We only choose two possible characteristics of Q13, which are [Q13]31 = 0
and [Q13]17 = 1. Consider the relationship between Y13 and Y9 :

Q≪14
13 = Y13 � Y≪10

9 .

Our goal is to ensure the two bit conditions on Q13 are satisfied under the condition that
some bits of Y13 and Y9 are already fixed. We show the calculation of Q≪14

13 = Y13�Y≪10
9

in Table 6, which will help understand how to accurately deduce the extra bit conditions.

Table 6: The Calculation of Q≪14
13 = Y13 � Y≪10

9
Y13 0 1 0 0 1 u u - 1 1 1 - 1 - 1 - - n u u n n 1 1 0 1 1 0 1 1 u n

Y≪10
9 1 0 - - - - - - - - - - - - - - - - 1 0 - - - - - - - 1 - 1 - 1

Q≪14
13 1 - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - -

If we impose four bit conditions on Y9, which are Y9,2 = 0, Y9,3 = 1, Y9,20 = 0,
Y9,21 = 1, the two bit conditions on Q13 will hold with probability 1.

In order to ensure that the modular difference ∆Y23 holds, Q23 has to satisfy the
equation (Q23 � 0x81000001)≪9 = Q≪9

23 � 0x102, from which we can deduce the
characteristics of Q23. Then, we choose one possible characteristic, which is [Q23]31 =

1. In this way, Q23 satisfies its corresponding equation with probability 1 − 2−23 ≈ 1.
By considering the calculation of Q≪9

23 = Y23 � Y≪10
19 as shown in Table 7, we describe

how to dynamically determine the bit conditions on Y23.

Table 7: The Calculation of Q≪9
23 = Y23 � Y≪10

19
Y23 1 - - - - - - - - - - - - - - 0 - - - - - 0 1 - - - - - - - n -

Y≪10
19 1 u - - - - - - 1 - - 1 0 0 - - 0 1 0 - - - - - - - - - - 1 - 1

Q≪9
23 - 1 - - - - - - - -

After Y23,1 is corrected, compare [Y23]7∼0 with [Y≪10
19]7∼0. For different relationships

between them, different bit conditions are used.

1. If [Y23]7∼0 ≥ [Y≪10
19]7∼0, we add a condition Y23,8

⊕
Y19,30 = 1.

2. If [Y23]7∼0 < [Y≪10
19]7∼0, we add a condition Y23,8

⊕
Y19,30 = 0.

By determining the conditions on Y23 in this way dynamically, we can ensure Q23 sat-
isfies its corresponding equation with probability close to 1 by applying the message
modification to correct Y23,8.

11

As described above, we can deduce many extra bit conditions on the internal states,
which are displayed in Table 8. Different from [LMW17], we don’t add extra bit con-
ditions to control the characteristics of Qi (11 ≤ i ≤ 13). The reason will be explained
later. Then we can take these newly added bit conditions into consideration when ap-
plying the message modification techniques. In this way, both the bit conditions and the
modular difference of the internal states can be satisfied at the same time.

Table 8: Equations of Qi for the 30-Step Differential Path and Extra Conditions to Con-
trol the Equations

Equation: (Qi � in)≪shi f t = Q≪shi f t
i � out

i shift in out Extra conditions
11 8 0x1000000 0x1
12 11 0x15 0xa800
13 14 0x6ffba800 0xea001bff
14 14 0x40400001 0x1010 Y10,31 = 0
15 12 0xafffff5f 0xfff5fb00 Y15,9 = 0, Y11,31 = 1
16 6 0x9d020 0x2740800
17 9 0x85f87f2 0xbf0fe410 Y13,20 = 1, Y13,18 = 0, Y17,28 = 0, Y17,26 = 1, Y13,16 = 0.
18 7 0x0 0x0
19 15 0xffffd008 0xe8040000 Y15,21 = 0
20 7 0xd75fbffc 0xafdffdec
21 12 0x10200813 0x812102 Y21,6 = 1, Y17,28 = 0, Y21,10 = Y17,0

22 8 0xff7edffe 0x7edffeff Y22,30 = 1, Y18,21 = 1, Y22,2 = Y18,24, Y22,3 = Y18,25,
Y22,4 = Y18,26, Y22,5 = Y18,27, Y22,6 = Y18,28, Y22,7 = Y18,29

23 9 0x81000001 0x102 If [Y23]7∼0 ≥ [Y≪10
19]7∼0, then Y23,8

⊕
Y19,30 = 1.

If [Y23]7∼0 < [Y≪10
19]7∼0, then Y23,8

⊕
Y19,30 = 0.

24 11 0xffffff00 0xfff80000
25 7 0x80000 0x4000000
26 7 0x1000800 0x80040000
27 12 0x7ffc0000 0xbffff800
28 7 0x0 0x0
29 6 0xc0000000 0xfffffff0
30 15 0x10 0x80000

4.3 Finding Collisions for 30-step RIPEMD-160

Due to the difficulty to modify two branches simultaneously, we only consider the dense
right branch and the sparse left branch is left probabilistic. Then, we specify our method
to find collisions as illustrated in Figure 2. The procedure is divided into four steps.

Step 1. At this step, the goal is to generate a starting point. The technique used here
is the single-step modification and the details are as follows.

S1: Randomly choose Y10, Y11, Y12, Y13 and Y14. Then, it is very easy to correct Yi

(10 ≤ i ≤ 14) to ensure the bit conditions on them. For instance, suppose there are
two bit conditions on Y10, which are Y10,2 = 0, Y10,5 = 1. Then, we can correct Y10
in this way: Y10 = Y10 ⊕ (Y10,2 << 2) ⊕ (Y10,5 << 5).

S2: Randomly choose Y15, Y16, Y17 and Y18. In the same way as above, correct Yi (15 ≤
i ≤ 18) to ensure the bit conditions on them. Then, compute m3 by using Y10, Y11,

12

Fig. 2: Outline of our method

Y12, Y13, Y14 and Y15.
m3 = (Y15 � Y≪10

11)≫12 � (ONX(Y14,Y13,Y≪10
12) � Y≪10

10 � Kr
0). Similarly, compute

m12, m6, and m11.
S3: Compute Y19 by using Y14, Y15, Y16, Y17, Y18 and m3. If all the bit conditions on Y19

can hold, goto S4. Otherwise, goto S1.
S4: Randomly choose Y20 and correct Y20 to ensure the bit conditions on it. Compute

m7 and Q20 by using Y15, Y16, Y17, Y18, Y19 and Y20.
Compute Q20 = (Y20 �Y≪10

16)≫7. If Q20 doesn’t satisfy its corresponding equation,
goto S1. Otherwise, a starting point is found.

Since there are 14 bit conditions on Y19 and the probability that Q20 satisfies its
corresponding equation is about 2−1, the time complexity of finding a starting point is
215.

Step 2. At this step, the goal is to ensure the bit conditions on Y21, Y22 and Y23. It
is easy to achieve this goal since m0, m13 and m5 are free. More specifically, randomly
choose Y21, Y22 and Y23, and then apply the single-step modification to correct Y21, Y22
and Y23 by modifying m0, m13 and m5.

Step 3. At this step, there are two goals. One is to ensure the bit conditions on
the internal states. The other is to link this part with the nonlinear part. Observe that,
after fixing the value of Yi (1 ≤ i ≤ 9) by computing forward from the first step, we
have to ensure that the determined Yi (10 ≤ i ≤ 14) have to be consistent with the
values obtained by computing forward from the first step. In this way, the two parts
can be linked. The ideal case is that m6, m15, m8, m1, m10 are all free. In this case, by
modifying these five consecutive free message words, we can achieve the consistency
in Yi (10 ≤ i ≤ 14).

However, m6 is already fixed at Step 1. Therefore, the case is not ideal. Fortunately,
we still can link the two parts by using the property of the boolean function in the first
round on the right branch. Note that Y10 and m6 is determined. Consider the calculation
of Y10 when computing forward from the first step.

Y10 = Y≪10
6 � ((Y9 ⊕ (Y8

∨
Y≪10

7)) � Y≪10
5 � m6 � Kr

0)≪7.

13

The first idea to have this equation hold is to only change the value of Y9 while keeping
Yi (5 ≤ i ≤ 8) the same. Then, compute a new m13 by using Yi (4 ≤ i ≤ 9). However,
m13 is already determined. Therefore, this idea doesn’t work.

However, if we make Y7 = 0, then the calculation of Y10 is changed as follows.

Y10 = Y≪10
6 � ((Y9 ⊕ 0xffffffff) � Y≪10

5 � m6 � Kr
0)≪7.

Therefore, we can calculate a new Y9 as follows to have the above equation hold.

Y9 = ((Y10 � Y≪10
6)≫7 � (Y≪10

5 � m6 � Kr
0)) ⊕ 0xffffffff.

Observe that m13 is not free but m4 is free. Therefore, we can modify m4 to achieve that
Y9 can be the value as computed in the above equation.

Y8 = ((Y9 � Y≪10
5)≫7 � (Y≪10

4 � m13 � Kr
0)) ⊕ (Y7

∨
Y≪10

6),

m4 = (Y8 � Y≪10
4)≫5 � (ONX(Y7,Y6,Y≪10

5) � Y≪10
3 � Kr

0).

Based on our analysis, by making Y7 = 0, we have a way to ensure Y10 is consistent
with the value obtained by computing forward from the first step. In other words, Y10
can be linked even though m6 is already fixed. For Yi (11 ≤ i ≤ 14), they can be linked
by using the free message words m15, m8, m1, m10.

Now, we give a complete description of how to compute the internal states at Step
3.

S1: Since m5 is already fixed, we can compute Y1 by using m5 and Yi (−4 ≤ i ≤ 0).
S2: Randomly choose m14 and compute Y2.
S3: Since m7 and m0 are already fixed, we can compute Y3 and Y4.
S4: Randomly choose m9 and compute Y5.
S5: Let Y7 = 0, and then Y6 can be computed as follows.

Y6 = ((Y7 � Y≪10
3)≫15 � (m11 � Kr

0)) ⊕ (Y5
∨

Y≪10
4).

S6: Compute m2 based on the following equation.
m2 = (Y6 � Y≪10

2)≫15 � (ONX(Y5,Y4,Y≪10
3) � Y≪10

1 � Kr
0).

S7: In order to ensure Y10 is consistent with the value obtained by computing forward
from the first step, we firstly compute the value of Y9 since the condition Y7 = 0
makes Y10 won’t be influenced by the Y8.
Y9 = ((Y10 � Y≪10

6)≫7 � (Y≪10
5 � m6 � Kr

0)) ⊕ 0xffffffff.
Since there are three bit conditions on Y9, we have to goto S2 if these three bit
conditions don’t hold.

S8: Compute Y8 and the corresponding m4 as follows.
Y8 = ((Y9 � Y≪10

5)≫7 � (Y≪10
4 � m13 � Kr

0)) ⊕ (Y7
∨

Y≪10
6).

m4 = (Y8 � Y≪10
4)≫5 � (ONX(Y7,Y6,Y≪10

5) � Y≪10
3 � Kr

0).
S9: Check whether Qi (11 ≤ i ≤ 13) satisfy their corresponding equations since the

characteristics of Qi (11 ≤ i ≤ 13) are not controlled. If they don’t hold, goto S2.
S10: Compute the free message words m15, m8, m1 and m10 to ensure that Yi (11 ≤ i ≤

14) are consistent with the values obtained by computing forward from the first

14

step.
m15 = (Y11 � Y7

≪10)≫8 � (ONX(Y10,Y9,Y≪10
8) � Y≪10

6 � Kr
0).

m8 = (Y12 � Y≪10
8)≫11 � (ONX(Y11,Y10,Y9

≪10) � Y7
≪10 � Kr

0).
m1 = (Y13 � Y9

≪10)≫14 � (ONX(Y12,Y11,Y10
≪10) � Y≪10

8 � Kr
0).

m10 = (Y14 � Y10
≪10)≫14 � (ONX(Y13,Y12,Y11

≪10) � Y9
≪10 � Kr

0).

After presenting the procedure of computation at Step 3, we explain the reason why
we don’t control the characteristics of Qi (11 ≤ i ≤ 13). If we add some extra bit
conditions on Yi (7 ≤ i ≤ 9) to control their characteristics as in [LMW17], since Y7
is set to 0 and it is difficult to ensure the bit conditions on Y8 and Y9, it will lower the
success probability at Step 3. On the other hand, Q11 and Q12 satisfy their corresponding
equations with probability close to 1 and therefore can be neglected. For Q13, it satisfies
its corresponding equation with probability of about 2−1. In addition, we can’t ensure
the three bit conditions on Y9. Hence, the success probability at Step 3 is 2−4.

Attack Procedure. Now, we give the procedure to mount collision attack on the
first 30-step RIPEMD-160.

S1: Preparation. Generate a starting point as described in Step 1.
S2: Compute as described in Step 2.
S3: Compute as described in Step 3.
S4: Check the conditions on Yi (24 ≤ i ≤ 30). If they don’t hold, goto S2.
S5: Check whether the left branch can hold. If not, goto S2.

Observing the attack procedure, it is easy to find that we don’t need goto S1 if the
uncontrolled part don’t hold. This is important to improve the probability of the attack
since the success probability at S1 is 2−15. Why do we only need go back to S2? The
reason is that the freedom degree of the message words (m0, m13, m5, m14 and m9) is
sufficient to ensure the uncontrolled part on both branches.

Implementation. We implement the attack in C++ and obtain one instance on the
right branch as showed in Table 9.

4.4 Complexity Evaluation

As described in [LMW17], the left branch holds with probability 2−29. For the right
branch, the time complexity to generate a starting point is 215 and the success prob-
ability at Step 3 is 2−4. For Yi (24 ≤ i ≤ 30), there are 23 bit conditions on them.
In addition, Qi (24 ≤ i ≤ 30) satisfy their corresponding equations with probability
about 2−3. Therefore, the right branch holds with probability about 2−23−3−4 = 2−30 af-
ter applying our method. Therefore, a collision can be found with probability 2−29−30

= 2−59. Moreover, it is easy to observe that one starting point is enough due to the
large freedom degree of the message words. Hence, the time complexity to find a col-
lision is 215 + 259 ≈ 259. We have to stress that the authors [LMW17] neglected three
bit conditions (marked in red in Table 5). That’s, the success probability of collision
attack in [LMW17] should be 2−70. Obviously, our new method performs better than
[LMW17]. Moveover, our method is simpler compared with the sophisticated multi-
step modification and there is no need to pre-determine many bit conditions for multi-
step modification as in [LMW17].

15

Table 9: One Instance on the Right Branch, where m′15 = m15 � 214, and ∆mi = 0
(i , 7, 0 6 i 6 15). The starting point is marked in red.

Yi π2(i)
-4 11000000 01011001 11010001 01001000
-3 01111100 00110000 11110100 10111000
-2 00011101 10000100 00001100 10010101
-1 10011000 10111010 11011100 11111110
00 11101111 11001101 10101011 10001001 05
1 11100101 10010011 00000110 10000000 14
2 00001111 10000111 10001110 10100011 7
3 01101000 10100010 00100111 01101100 0
4 00100100 11010111 00101001 10011000 9
5 01001011 10111011 01110110 01011011 2
6 11010011 10000011 11010101 00001101 11
7 00000000 00000000 00000000 00000000 4
8 00111011 10101011 00000111 01100010 13
9 11010111 11011011 11011010 10111100 6
10 01110000 00111111 01000000 10001010 15
11 10110111 00001101 10010000 000nuuuu 8
12 nuuuuuuu uuuuuuuu u0n0n001 00001100 1
13 0unn1uu0 11111010 0nuunn11 011011un 10
14 01000011 11111111 10nu1010 11nu1111 3
15 00001011 1100u1u1 1010000u 11010101 12
16 1111n1uu 000n1n11 0001n111 1nuuuuuu 5
17 1u10111u n1101111 00u10unn n0nnn011 11
18 01001000 0n101111 1n000010 01000001 3
19 1u000101 10010010 01010010 00011101 7
20 00000001 01100110 00000nu1 10101100 0
21 11000101 01101000 11111110 11011111 13
22 u1010100 10u01001 0011001u 00100000 5
23 11010111 01101100 01000010 100001n1 10
24 11011001 10110101 00100110 10001000 14
25 10111n10 00100111 00101011 01101101 15
26 00100010 11001100 0001unn0 11010010 8
27 0u111000 00010001 01110000 11010001 12
28 00001001 10010011 10110010 10011010 4
29 01011111 01111011 00000100 00111010 9
30 01000100 11111111 00001100 10001010 1

Message Words m0 m1 m2 m3
Value 0x27e16551 0x3b7d1236 0xb896c190 0xd5f43d9f

Message Words m4 m5 m6 m7
Value 0xd2100fd1 0xc807bcc7 0x1221b7bb 0x42156657

Message Words m8 m9 m10 m11
Value 0x6b8513b4 0x41aeeaf1 0x5369aa6f 0xf567ac2e

Message Words m12 m13 m14 m15
Value 0x20d0d1cb 0xa58a488f 0xe82b93aa 0x7fb8b25

16

5 Further Discussion of Our Method

In this section, we evaluate the pros and cons of our new method and describe how it
can be applied in future research. First of all, we explain the advantages of our new
method, which is highly related to the application.

As the application on collision attack on 30-step RIPEMD-160 in Section 4 shows,
our new method to find a collision can be divided into two phases. The first phase
is to generate a starting point, which is used to ensure the dense nonlinear part. The
second phase is to leverage the free message words to find a collision. Suppose the time
complexity of the two phases are TC0 and TC1 respectively, the total time complexity
becomes TC0 + TC1. In many cases, we can use max{TC0, TC1} to represent the total
time complexity since it is very common that one of TC0 and TC1 is far greater than
the other. Therefore, we can make a trade-off between the two phases. In some bad
cases, the freedom degree at the second phase is not sufficient enough to generate a
collision. Therefore, one starting point is not enough and we have to generate several
starting points. In these cases, we have to carefully analyze the time complexity. This is
much like the collision attack on SHA-3 by constructing a 3-round connector at Crypto
2017 [SLG17], which requires several times to construct this connector due to the size
of the solution space.

The advantage of our method is that the dense nonlinear part can be efficiently
satisfied and there is no need to add extra bit conditions on the first round so as to
ensure the conditions on the second round. However, as we know, although the single-
step modification is powerful, the multi-step modification requires a lot of sophisticated
manual work and many other bit conditions must be pre-determined on the first round
if the bit conditions are dense on the second round. In addition, it is quite difficult to
ensure the bit conditions on both branches simultaneously if directly applying Wang’s
method [WLF+05] to find a collision by computing from the first step. However, our
method may have the potential to overcome this obstacle. We present an ideal case in
Figure 3 to explain it.

Fig. 3: Ideal case

To ensure the dense nonlinear part on one branch, some message words will be
fixed. If some of these fixed message words are also used in the very first part on the
other branch, then we can check whether these messages words can ensure the condi-
tions on this part. Finally, our starting point can not only ensure the dense nonlinear part
on one branch, but also ensure some parts on the other branch. Then, we leverage free
message words to link the starting point with the previous part and ensure some other

17

bit conditions. Finally, uncontrolled conditions will be verified probabilistically. Since
the total time complexity is the sum of that at two phases, if the probability of finding
a starting point is relatively high, our method will overcome the obstacle to a certain
degree. Besides, this also reveals some principles on how to choose secure message in-
sertion schedules for dual-stream hash functions like RIPEMD-128 and RIPEMD-160.

We have to stress that the similar cases actually exist in literatures [MPS+13,LMW17].
Specifically, the starting points in [MPS+13] and [LMW17] are illustrated in Figure 4
and Figure 5 respectively. Obviously, the shorter the starting point is, the more freedom
degree of message words is, and the lower probability of the uncontrolled part. There-
fore, it is a trade-off when choosing the position of the starting point. Based on the
trade-off , Liu et al. improved the semi-free-start collision attack on 36-step RIPEMD-
160 [MPS+13]. Although they are not the collision attacks, the same trade-off should
be considered in our model as well.

On the other hand, the disadvantage of our model is also quite obvious. Linking the
starting point in the middle with previous part decreases the freedom degree dramati-
cally. Besides, the consecutive internal states to be linked should be carefully chosen in
order that we can use free message words to ensure their consistency. Moreover, to re-
duce the times to generate a starting point, we have to make a trade-off so as to provide
sufficient freedom degree of message words to generate a collision at the second phase.

Fig. 4: The starting Point at Asiacrypt 2013

Fig. 5: The starting Point at Asiacrypt 2017

18

6 Conclusion

In this paper, we propose a new cryptanalysis method to find collisions for reduced
RIPEMD-160. Wang’s method to find a collision is by computing forward from the
first step, and the message modification techniques are applied on the first round and
second round. Landelle’s and Peyrin’s method to find a semi-free-start collision is by
computing in two directions after a starting point is fixed. However, for Wang’s method,
although the single-step modification is powerful to ensure all the bit conditions on the
first round, the multi-step modification technique is sophisticated and requires a lot of
manual work as well as many pre-determined bit conditions on the first round. For Lan-
delle’s and Peyrin’s method, although there is no sophisticated multi-step modification,
it seems hard to directly use it to find a collision since the computation doesn’t start
from the first step. To make the best of the advantages and bypass the disadvantages
of the two methods, we propose a new model to find a collision. In our method, we
firstly generate a starting point with relatively low time complexity. Then, we compute
forward from the middle to ensure some latter parts. Next, we compute forward from
the first step to ensure the previous part and use the free message words to link this part
with the starting point so as to achieve the consistency. Applying our new technique, the
only existent collision attack on the first 30-step RIPEMD-160 is improved by a factor
of 211. The time complexity to mount collision attack is improved from 270 to 259. We
hope that our new method can be used in future research.

References

Dam89. Ivan Damgård. A design principle for hash functions. In Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 20-24, 1989, Proceedings, pages 416–427, 1989.

Dau05. Magnus Daum. Cryptanalysis of Hash functions of the MD4-family. PhD thesis, Ruhr
University Bochum, 2005.

DBP96. Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A strengthened
version of RIPEMD. In Fast Software Encryption, Third International Workshop,
Cambridge, UK, February 21-23, 1996, Proceedings, pages 71–82, 1996.

Dob97. Hans Dobbertin. RIPEMD with two-round compress function is not collision-free. J.
Cryptology, 10(1):51–70, 1997.

LMW17. Fukang Liu, Florian Mendel, and Gaoli Wang. Collisions and semi-free-start col-
lisions for round-reduced RIPEMD-160. In Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
I, pages 158–186, 2017.

LP13. Franck Landelle and Thomas Peyrin. Cryptanalysis of full RIPEMD-128. In Ad-
vances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May
26-30, 2013. Proceedings, pages 228–244, 2013.

Mer89. Ralph C. Merkle. One way hash functions and DES. In Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 20-24, 1989, Proceedings, pages 428–446, 1989.

19

MNS12. Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision attacks on the reduced
dual-stream hash function RIPEMD-128. In Fast Software Encryption - 19th Inter-
national Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised
Selected Papers, pages 226–243, 2012.

MNSS12. Florian Mendel, Tomislav Nad, Stefan Scherz, and Martin Schläffer. Differential at-
tacks on reduced RIPEMD-160. In Information Security - 15th International Con-
ference, ISC 2012, Passau, Germany, September 19-21, 2012. Proceedings, pages
23–38, 2012.

MPS+13. Florian Mendel, Thomas Peyrin, Martin Schläffer, Lei Wang, and Shuang Wu. Im-
proved cryptanalysis of reduced RIPEMD-160. In Advances in Cryptology - ASI-
ACRYPT 2013 - 19th International Conference on the Theory and Application of
Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Pro-
ceedings, Part II, pages 484–503, 2013.

OSS12. Chiaki Ohtahara, Yu Sasaki, and Takeshi Shimoyama. Preimage attacks on the
step-reduced RIPEMD-128 and RIPEMD-160. IEICE Transactions, 95-A(10):1729–
1739, 2012.

SBK+17. Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
The first collision for full SHA-1. In Advances in Cryptology - CRYPTO 2017 -
37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part I, pages 570–596, 2017.

SLG17. Ling Song, Guohong Liao, and Jian Guo. Non-full sbox linearization: Applications
to collision attacks on round-reduced keccak. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part II, pages 428–451, 2017.

SW12. Yu Sasaki and Lei Wang. Distinguishers beyond three rounds of the RIPEMD-128/-
160 compression functions. In Applied Cryptography and Network Security - 10th
International Conference, ACNS 2012, Singapore, June 26-29, 2012. Proceedings,
pages 275–292, 2012.

Wan14. Gaoli Wang. Practical collision attack on 40-step RIPEMD-128. In Topics in Cryp-
tology - CT-RSA 2014 - The Cryptographer’s Track at the RSA Conference 2014, San
Francisco, CA, USA, February 25-28, 2014. Proceedings, pages 444–460, 2014.

WLF+05. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis
of the hash functions MD4 and RIPEMD. In Advances in Cryptology - EUROCRYPT
2005, 24th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 1–18,
2005.

WSL17. Gaoli Wang, Yanzhao Shen, and Fukang Liu. Cryptanalysis of 48-step RIPEMD-160.
IACR Trans. Symmetric Cryptol., 2017(2):177–202, 2017.

WY05. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May
22-26, 2005, Proceedings, pages 19–35, 2005.

WY15. Gaoli Wang and Hongbo Yu. Improved cryptanalysis on RIPEMD-128. IET Infor-
mation Security, 9(6):354–364, 2015.

WYY05a. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-
1. In Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
pages 17–36, 2005.

WYY05b. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attacks
on SHA-0. In Advances in Cryptology - CRYPTO 2005: 25th Annual International

20

Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Pro-
ceedings, pages 1–16, 2005.

21

	Improved Collision Attack on Reduced RIPEMD-160
	Fukang Liu, Gaoli Wang, Zhenfu Cao

