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Abstract. Recently, Faust et al. (TCC’14) introduced the notion of continuous non-malleable codes
(CNMC), which provides stronger security guarantees than standard non-malleable codes, by allowing
an adversary to tamper with the codeword in continuous way instead of one-time tampering. They
also showed that CNMC with information theoretic security cannot be constructed in 2-split-state
tampering model, and presented a construction of the same in CRS (common reference string) model
using collision-resistant hash functions and non-interactive zero-knowledge proofs.
In this work, we ask if it is possible to construct CNMC from weaker assumptions. We answer this
question by presenting lower as well as upper bounds. Specifically, we show that it is impossible to
construct 2-split-state CNMC, with no CRS, for one-bit messages from any falsifiable assumption, thus
establishing the lower bound. We additionally provide an upper bound by constructing 2-split-state
CNMC for one-bit messages, assuming only the existence of a family of injective one way functions.
We also present a construction of 4-split-state CNMC for multi-bit messages in CRS model from the
same assumptions. Additionally, we present definitions of the following new primitives: 1) One-to-one
commitments, and 2) Continuous Non-Malleable Randomness Encoders, which may be of independent
interest.

1 Introduction

Non-malleable codes (NMC). Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [34]
as a relaxation of error-correcting codes, and are useful in settings where privacy—but not necessarily
correctness—is desired. The main application of non-malleable codes proposed in the literature is for pro-
tecting a secret key stored on a device against tampering attacks, although non-malleable codes have also
found applications in other of areas of cryptography [25, 24, 44] and theoretical computer science [21].

Continuous Non-malleable codes (CNMC). Importantly, standard non-malleable codes achieve security only
against one-time tampering. This means that in applications, the non-malleable encoding of a secret key
must be continually decoded and re-encoded, each time the device is run, incurring overhead in computation
and in generation of randomness for re-encoding. This motivated a stronger notion of non-malleable codes,
known as continuous non-malleable codes (CNMC), introduced by Faust et al. [36]. This definition allows
many-time tampering, which means that the adversary can continuously tamper with the codeword and
observe the effects of the tampering. Due to known impossibility results, there must also be a “self-destruct”
mechanism. This means that if, upon decode, the device detects an error, then a “self-destruct” mechanism,
which erases the secret key, is triggered, rendering the device useless.

The notion of CNMC with respect to a tampering class F is as follows: Given a coding scheme Π = (E,D),
where E is the encoding function and D is the decoding function, the adversary gets to interact with an oracle
OΠ(C), parameterized by Π and an encoding of a message m, C ← E(m). We refer to the encoding C as
the “challenge” encoding. In each round, the adversary gets to submit a tampering function f ∈ F . The
oracle evaluates C ′ = f(C). If D(C ′) = ⊥, the oracle outputs ⊥ and a “self-destruct” occurs, aborting the
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experiment. Otherwise, if C ′ = C, the oracle outputs a special message “same.” Otherwise, the oracle outputs
C ′. We emphasize that the entire tampered codeword is returned to the adversary in this case. A CNMC
is secure if for every pair of messages m0,m1, the adversary’s view in the above game is computationally
indistinguishable when the message is m0 or m1.

Split-state tampering. One of the most well-studied tampering classes for non-malleable codes is known as
split-state tampering. Here, the codeword is split into sections and the adversarial tampering function may
tamper each section independently. The case of 2-split-state tampering, where the codeword is split into two
sections, is of particular interest. See the related work section for a discussion of prior work on NMC and
CNMC against split-state tampering.

Information-theoretic impossibility. The original CNMC paper of [36] showed an information-theoretic im-
possibility result for 2-split-state CNMC. To aid the subsequent discussion, we present an outline of this
result. The impossibility result considers a property of 2-split-state CNMC known as (perfect) “unique-
ness.” Informally, perfect uniqueness means that there do not exist triples (x, y, z) such that either (1)
y 6= z ∧ D(x, y) 6= ⊥ ∧ D(x, z) 6= ⊥ OR (2) x 6= y ∧ D(x, z) 6= ⊥ ∧ D(y, z) 6= ⊥. First, a perfectly unique
CNMC cannot be information-theoretically secure since, given L, the split-state tampering function can find
the unique R such that D(L,R) 6= ⊥ and then tamper based on m = D(L,R). On the other hand, if the
CNMC is not perfectly unique, then the following is an efficient attack (with non-uniform advice): Given a
tuple L′1, L

′
2, R

′ such that D(L′1, R
′) 6= ⊥ and D(L′2, R

′) 6= ⊥, the adversary can learn L bit-by-bit by using
the following tampering function in the i-th round: fL does the following: If the i-th bit of L is equal to 0,
replace L with L′1. Otherwise, replace L′ with L′2. fR always replaces R with R′. Now, in the i-th round,
if the oracle returns (L′1, R

′), then the adversary learns that the i-th bit of L is equal to 0. If the oracle
returns (L′2, R

′), then the adversary learns that the i-th bit of L is equal to 1. Once L is fully recovered, the
adversary can tamper based on m = D(L,R).

The computational setting. The above shows that the CNMC setting is distinguished from other NMC
settings, since information-theoretic (unconditional) security is impossible. Prior work has shown how to
construct 2-split-state CNMC in the CRS model under the assumptions of collision-resistant hash functions
and NIZK. On the other hand, CNMC’s imply commitment schemes, which in turn imply OWF. It remains
to determine where CNMC lies in terms of complexity assumptions and what are the minimal computational
assumptions needed to achieve CNMC.

Black-box reductions. In general, it is not feasible to unconditionally rule out the construction of a primitive
G from a cryptographic assumption H. This is because the logical statement H → G is true if H is false
and, typically, if P = NP then H will be false. So unconditionally ruling out the construction of primitive G
from assumption H is as hard as proving P 6= NP . Despite this, we can still show that the proof techniques
we have at hand cannot be used to construct G from assumption H. In the literature, this is typically done
by showing that there is no black-box reduction from primitive G to assumption H. In this work, what we
mean by black-box reduction is a reduction that accesses the adversary in an input/output fashion only.
However, we allow non-black-box usage of the assumption H in both the construction and the proof (see
Definition 7 for a formal definition tailored to CNMC). While there are some exceptions [12, 14], the vast
majority of cryptographic reductions are black-box in the adversary.

1.1 Our Results

We present upper and lower bounds for CNMC in the 2-split-state model. First, we show that with no CRS,
single-bit CNMC in the 2-split-state model (with a black-box security proof) is impossible to construct from
any falsifiable assumption.

Theorem 1 (Informal). There is no black-box reduction from a single-bit, 2-split-state, CNMC scheme
Π = (E,D) to any falsifiable assumption.
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On the other hand, in the CRS model, we show how to achieve single-bit CNMC in the 2-split-state
model from injective one-way functions.

Theorem 2. Assuming the existence of an injective one-way function family, there is a construction of a
2-split-state CNM Randomness Encoder in the CRS model. Moreover, the corresponding reduction is black-
box.

Actually, we show a somewhat more general result: First, we define a (to the best of our knowledge) new
type of commitment scheme called one-to-one commitment schemes in the CRS model. Informally, these
commitment schemes have the additional property that with all but negligible probability over Σ produced
by CRS generation, for every string com, there is at most a single string d that will be accepted as a valid
decommitment for com (See Definition 9 for a formal definition). We then show the following:

Theorem 3. Assuming the existence of one-to-one commitment schemes in the CRS model, there is a
construction of a 2-split-state CNM Randomness Encoder in the CRS model. Moreover, the corresponding
reduction is black-box.

Note that, one-to-one commitment schemes in the CRS model can be constructed from any injective one-
way function family, allowing us to obtain Theorem 2 as a corollary. Moreover, CNMC with perfect uniqueness
in the CRS model implies one-to-one commitment schemes in the CRS model in a straightforward way (see
Appendix B).

We leave open the question of constructing CNMC in the CRS model from (non-injective) one-way
functions and/or showing a black-box separation between the two primitives.

Finally, we extend the techniques from our single-bit construction above to achieve the following:

Theorem 4. Assuming the existence of one-to-one commitment schemes in the CRS model, there is a
construction of a multi-bit, 4-split-state CNMC in the CRS model. Moreover, the corresponding reduction is
black-box.

Are prior CNMC reductions “black-box”? Prior CNMC reductions often proceed in a sequence of hybrids,
where in the final hybrid, the description of the adversary is incorporated in the definition of a leakage
function. It is then shown that the leakage-resilience properties of an underlying encoding imply that the view
of the adversary is statistically close when the encoded message is set to m0 or m1. While this may seem like
non-black-box usage of the adversary, we note that typically the leakage-resilience of the underlying encoding
is information-theoretic. When converting a hybrid-style proof to a reduction, the reduction will choose one
of the hybrid steps at random and use the fact that a distinguisher between some pair of consecutive hybrids
implies an adversary breaking an underlying assumption. Therefore, reductions of the type discussed above
are still black-box in the adversary, since all pairs of consecutive hybrids whose indistinguishability is implied
by a computational assumption yield a reduction in which the adversary is used in a black-box manner.

1.2 Technical Overview

Lower bound. Recall that prior work has shown that if a CNMC is not perfectly unique, then there is an
efficient attack (with non-uniform advice). Thus, it remains to show that there is no black-box reduction
from a single-bit, perfectly unique CNMC scheme to any falsifiable assumption. We use the meta-reduction
approach, which is to prove impossibility by showing that given only black-box access to the split-state
adversary, A = (AL, AR), the reduction cannot distinguish between the actual adversary and a simulated
(efficient) adversary (which is possibly stateful). Since the view of the reduction is indistinguishable in the
two cases, the reduction must also break the falsifiable assumption when interacting with the simulated
adversary. But this in turn means that there is an efficient adversary (obtained by composing the reduction
and the simulated adversary), which contradicts the underlying falsifiable assumption. In our setting, the
simulated adversary is stateful and keeps a table containing all the L and R values that it has seen. Whenever
a L or R query is made, the simulated adversary first checks the table to see if a matching query to R̂ or
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L̂ such that D(L, R̂) 6= ⊥ or D(L̂, R) 6= ⊥ was previously made. If not, the simulated adversary chooses a
random encoding, (L′, R′), of a random bit b′, stores it in the table along with the L/R query that was made

and returns either L′ or R′ as appropriate. If yes, the simulated adversary finds the corresponding R̂ or L̂
along with the pair (L′, R′) stored in the table. The simulated adversary then decodes (L, R̂) or (L̂, R) to
find out b. If b = 0, the simulated adversary returns either L′ or R′ as appropriate. Otherwise, the simulated
adversary returns the left/right side of an encoding of a random bit b′′. The uniqueness property guarantees
that we can provide a “real” adversary (which is stateless but inefficient) whose input/output behavior is
identical to that of the simulated adversary. See section 3.1 for additional details.

Upper bound. For the upper bound, we construct a new object called a continuous non-malleable randomness
encoder (see Definition 5), which is the continuous analogue of the non-malleable randomness encoder recently
introduced by [48]. Informally, a continuous non-malleable randomness encoder is just a non-malleable code
for randomly chosen messages. It is then straightforward to show that a continuous non-malleable randomness
encoder implies a single-bit continuous non-malleable code (see Appendix A).

At a high level, the difficulty in proving continuous non-malleability arises from the need of the secu-
rity reduction to simulate the interactive tampering oracle, without knowing the message underlying the
“challenge” encoding. The approach of prior work such as [36] was to include a NIZK Proof of Knowledge
in each part of the codeword to allow the simulator to extract the second part of the encoding, given the
first. This then allowed the simulator (with some additional leakage) to respond correctly to a tampering
query, while knowing only one of the two split-states of the original encoding. In our setting, we cannot
use NIZK, since our goal is to reduce the necessary complexity assumptions; therefore, we need a different
extraction technique.1 Our main idea is very simple: To respond to the i-th tampering query, we simply run
the adversarial tampering function on random (simulated) codewords (L′, R′) that are consistent with the
output seen thus far (denoted Outi−1A ) and keep track of frequent outcomes (occurring with non-negligible

probability) of the tampering function, L̂, R̂. I.e. SL (resp. SR) is the set of values of L̂ (resp. R̂) such that

with non-negligible probability over choice of L′ (resp. R′), it is the case that L̂ = fL(L′) (resp. R̂ = fR(R′)).
We then show that if the outcome of the tampering function applied to the actual “challenge” split-state L
or R is not equal to one of these frequent outcomes (i.e. fL(L) /∈ SL or fR(R) /∈ SR), then w.h.p. decode
outputs ⊥. This will allow us to simulate the experiment with only a small amount of leakage (to determine
which of the values in SL/SR should be outputted).

To show that if the outcome of the tampering function is not in SL or SR, then decode outputs ⊥
w.h.p., we first use the “uniqueness” property, which says that for every L̂ = fL(L) (resp. R̂ = fR(R)),

there is at most a single “match”, R̂′ (resp. L̂′), such that DΣ(L̂, R̂′) 6= ⊥ (resp. DΣ(L̂′, R̂) 6= ⊥). Given the
“uniqueness” property, it is sufficient to show that for every setting of L,Outi−1A

Pr[fR(R) = R̂′ ∧ R̂′ /∈ SR | L ∧ Outi−1A ] ≤ negl(n) (1)

and that for every setting of R ∧ Outi−1A

Pr[fL(L) = L̂′ ∧ L̂′ /∈ SL | R ∧ Outi−1A ] ≤ negl(n). (2)

To prove the above, we first argue that for the “challenge” codeword, (L,R), the split-states L and R
are conditionally independent, given Outi−1A (assuming no ⊥ has been outputted thus far) and an additional
simulated part of the codeword. This means that the set of frequent outcomes SL (resp. SR) conditioned on
Outi−1A is the same as the set of frequent outcomes SL (resp. SR) conditioned on both Outi−1A and R (resp.

L). So for any R̂ /∈ SR,

Pr[fR(R) = R̂ | L ∧ Outi−1A ] ≤ negl(n)

1 Note that our extraction technique is inefficient. This is ok, since the goal of the extraction technique is simply
to show that the view of the adversary can be simulated given a small amount of leakage on the two split-states.
Then, information-theoretic properties of the encoding are used to show that the view of the adversary must be
independent of the random encoded value.
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and for any L̂ /∈ SL,
Pr[fL(L) = L̂ | R ∧ Outi−1A ] ≤ negl(n)

is negligible. Since R̂′ (resp. L̂′) is simply a particular setting of R̂ /∈ SR (resp. L̂ /∈ SL), we have that (1)
and (2) follow.

For the above analysis, we need the encoding scheme to possess the following property: The L,R sides
of the “challenge” codeword are conditionally independent given Outi−1A (an additional simulated part of
the codeword), but any tampered split-state fL(L) or fR(R) created by the adversary has at most a single

“match,” R̂′ or L̂′.
To explain how we achieve this property, we briefly describe our construction. Our construction is based

on a non-interactive, equivocal commitment scheme in the CRS model and a two-source (inner product) ex-
tractor. To encode a random value m, random vectors cL, cR such that 〈cL, cR〉 = m are chosen. We generate
a commitment com to cL||cR. The commitment scheme has the additional property that adversarially pro-
duced commitments are statistically binding (even if an equivocal commitment has been released) and have at
most a single valid decommitment string. The left (resp. right) split-state L (resp. R) consists of com and an
opening of com to the bits of cL (resp. cR). The special properties of the commitment scheme guarantee the
“perfect uniqueness” property of the code. In the security proof, we replace the statistically binding commit-
ment com in the “challenge” codeword with an equivocal commitment. Thus, each split-state of the challenge
encoding, L (resp. R), contains no information about cR (resp. cL). Moreover, assuming “⊥” is not yet out-
putted, the output received by the adversary in the experiment at the point that the i-th tampering function is
submitted, denoted Outi−1A is of the form (f1L(L) = v1, f

1
R(R) = w1), . . . , (f i−1L (L)) = vi−1, f

i−1
R (R) = wi−1),

where for j ∈ [i − 1], vj is equal to the left value outputted in response to the j-th query and wj is equal
to the right value outputted in response to the j-th query. (note that vj/wj can be set to “same” if the
tampering function leaves L/R unchanged). This allows us to argue that the distribution of L | Outi−1A , R
(resp. R | Outi−1A , L) is identical to the distribution of L | Outi−1A (resp. R | Outi−1A ) which implies that
the left and right hand sides are conditionally independent given Outi−1A and the equivocal commitment, as
desired. See Section 4 for additional details.

Extension to 4-state CNMC in CRS model from OWF. To encode a message m we now generate random
(cL,1, cR,1, cL,2, cR,2) conditioned on 〈cL,1, cR,1〉+〈cL,2, cR,2〉 = m (where addition is over a finite field). Now,
we generate a commitment com to cL,1||cR,1||cL,2||cR,2. Each of the four split states now consists of com and
an opening of com to the bits of cL,b (resp. cR,b). The analysis is similar to the previous case and requires the
property that at each point in the experiment the distribution of 〈cL,1, cR,1〉 (resp. 〈cL,2, cR,2〉) is uniform
random, conditioned on the output thus far. Our techniques are somewhat similar to those used in [32] in
their construction of 2t-split-state continuously non-malleable codes from t-split-state one-way continuously
non-malleable codes. See section 5 for additional details.

1.3 Related Work

Non-Malleable Codes. The notion of non-malleable codes (NMC) was formalized in the seminal work of
Dziembowski, Pietrzak and Wichs [34]. Split-state classes of tampering functions introduced by Liu and
Lysyanskaya [54], have subsequently received a lot of attention with a sequence of improvements achieving
reduced number of states, improved rate, or adding desirable features to the scheme [33, 4, 20, 3, 8, 2, 47, 52].
Recently [10, 7, 19, 35, 11, 9] gave efficient constructions of NMC for “non-compartmentalized” tampering
function classes. NMC have also been considered in several other models for various practical applications
in [29, 18, 16]. Other works on non-malleable codes include [36, 23, 17, 6, 46, 15, 29, 37, 3, 18, 49, 27, 32, 28].

Continuous Non-Malleable Codes Continuous Non-Malleable codes (CNMC) were introduced by Faust et.al.
in [36]. They gave a construction of CNMC based on existence of collision resistant hash functions (CRHFs)
and non-interactive zero knowledge proof systems (NIZKs) in common reference string (CRS) model. They
also showed the impossibility of constructing 2-split state CNMC information theoretically. Subsequent to
the original Faust et.al construction, Jafargholi and Wichs [46] presented a general study of CNMCs and
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its variants with some existential results. Recently, Aggarwal et. al. [5] gave first information theoretic
construction in 8-split-state model.

Non-Malleable Randomness Encoders (NMRE) NMRE were introduced recently by Kanukurthi et. al. [48]
as a building block for constructing efficient (constant-rate) split-state NMC. In this work, we present the
stronger variant Continuous NMRE which allows continual tampering in split-state model.

Bounds on Non-Malleable Codes. Cheragachi and Guruswami [22] studied the “capacity” of non-malleable
codes in order to understand the optimal bounds on the efficiency of non-malleable codes. This work has
been instrumental in asserting the claims of efficient constructions for non-malleable codes since then [2, 7, 8]
etc. Similar study was presented in [27] for locally decodable and updatable NMC. This work studies bounds
for continuous non-malleable codes in terms of complexity assumptions.

Black-Box Separations. Impagliazzo and Rudich ruled out black-box reductions from key agreement to one-
way function in their seminal work [45]. Their oracle separation technique was subsequently used to rule
out black-box reductions between various primitives such as collision resistant hash functions to one way
functions [60], oblivious transfer to public key encryption [43] and many more. The meta-reduction technique
(cf. [26, 57, 41, 38, 58, 42, 1, 59, 13, 40]) has been useful for ruling out larger classes of reductions—where the
construction is arbitrary (non-black-box), but the reduction uses the adversary in a black-box manner. The
meta-reduction technique is often used to provide evidence that construction of some cryptographic primitive
is impossible under “standard assumptions” (e.g. falsifiable assumptions or non-interactive assumptions).

2 Definitions and Preliminaries

Let N be the set of all natural numbers, i.e., N = {1, 2, 3, . . .}. For n ∈ N, we write [n] = {1, . . . , n}. For
a set S, x ← S denotes, sampling an element x uniformly at random from the set S. For an algorithm A,
y ← A(x) is the output obtained on execution of A on input x. If A(·, ·) is a randomized algorithm, then
y ← A(x, r), is the output random variable for input x and randomness r. We also write, A(x) instead of
A(x, r) if it is clear from the context for the brevity. A function δ(·) is called negligible if for all sufficiently
large n and for every polynomial p(·), it holds that δ(n) < 1/p(n). In this paper, we will denote a negligible
function by negl(·).

For a random variable X, we sometimes also denote the corresponding probability distribution by X. An
ensemble of probability distributions {Xλ}λ∈N is a sequence of probability distributions. For two probability
ensembles {X}λ and {Y }λ, defined over a domain S with finite support we say that {X}λ and {Y }λ are
statistically indistinguishable if there exists a negligible function negl(·) such that for all λ ∈ N,

1

2

∑
s∈S
|Pr [Xλ = s]− Pr [Yλ = s]| ≤ negl(λ)

We denote statistical indistinguishability by Xλ ≈s Yλ.
Similarly, we say that two probability ensembles {X}λ and {Y }λ, defined over a domain S with finite

support we say that {X}λ and {Y }λ are computationally indistinguishable if for all probabilistic polynomial
time distinguishers D, there exists a negligible function negl(·) such that for all λ ∈ N,∣∣∣∣ Pr

x←Xλ
[D(x) = 1]− Pr

y←Yλ
[D(y) = 1]

∣∣∣∣ ≤ negl(λ)

We denote computational indistinguishability by Xλ ≈c Yλ.
If S is a set, we denote by US the uniform distribution over S. For λ ∈ N, we denote by Uλ the uniform

distribution over λ-bit strings.

Remark 1. If a distribution D with support S of size 2` is statistically 2−λ-close to the uniform distribution
over S, denoted US , then for every x ∈ S,

∣∣PrX←D[X = x]− 1/2`
∣∣ ≤ 1/2λ. This implies that 1/2` − 1/2λ ≤

PrX←D[X = x] ≤ 1/2` + 1/2λ.
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2.1 Randomness Extractors

Lemma 1 (Inner-Product Two-Source Extractor [61]). Let X,Y be independent variables, where

X,Y have their support in {0, 1}` = F
`
λ

2λ
and λ|`, Let Uλ be uniform and independent on F2λ . Then

∆(〈X,Y 〉, Uλ) ≤ 2−s

for some s ≥ 1 + 1
2 (kX + kY − `− λ), where kX := H∞(X), kY := H∞(Y )

Next we present the worst-case version:

Lemma 2 (Inner-Product Two-Source Extractor, worst-case version [51]). Let X,Y , Z be corre-

lated variables, where X,Y have their support in {0, 1}` = F
`
λ

2λ
and λ|`, and are independent conditioned on

Z. Let Uλ be uniform and independent on F2λ . Then

∆((Z, 〈X,Y 〉), (Z,Uλ)) ≤ 2−s

for some s ≥ 1 + 1
2 (kX + kY − `− λ), where kX := H̃∞(X|Z), kY := H̃∞(Y |Z)

2.2 CNMC

Here, we present the definition of coding scheme, and continuous non-malleable codes.

Definition 1 (Coding Scheme [34]). A coding scheme, Code = (E,D), consists of two functions: a ran-
domized encoding function E : {0, 1}λ → {0, 1}n, and a deterministic decoding function D : {0, 1}n →
{0, 1}λ ∪ {⊥} such that, for each m ∈ {0, 1}λ, Pr [D(E(m)) = m] = 1 (over the randomness of encoding
function).

Next, we present the definition of continuous non malleable codes in CRS model for codes with split-state
encoding schemes.

Definition 2 (Split-State Encoding Scheme in the CRS model [36]). A split-state encoding scheme
in common reference string (CRS) model is a tuple of algorithms, Code = (CRSGen,E,D) specified as follows:

– CRSGen takes the security parameter as input and outputs the CRS, Σ ← CRSGen(1λ).
– E takes a message x ∈ {0, 1}λ as input along with the CRS Σ, and outputs a codeword consisting of two

parts (X0, X1) such that X0, X1 ∈ {0, 1}n.
– D takes a codeword (X0, X1) ∈ {0, 1}2n as input along with the CRS Σ and outputs either a message
x′ ∈ {0, 1}λ or a special symbol ⊥.

Before defining the continuous non malleable codes consider the following oracle,OCNM((X0, X1), (T0,T1))
which is parametrized by the CRS Σ and “challenge” codeword (X0, X1) and takes functions T0,T1 :
{0, 1}n → {0, 1}n as inputs.
OCNM(Σ, (X0, X1), (T0,T1)):

(X ′0, X
′
1) = (T0(X0),T1(X1))

If (X ′0, X
′
1) = (X0, X1) return same∗

If DΣ(X ′0, X
′
1) = ⊥, return ⊥ and “self destruct”

Else return (X ′0, X
′
1).

“Self destruct” here means that once DΣ(X ′0, X
′
1) outputs ⊥, the oracle answers all the future queries

with ⊥.
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Definition 3 (Continuous Non Malleability [36]). Let Code = (CRSGen,E,D) be a split-state encoding
scheme in the CRS model. We say that Code is q-continuously non-malleable code, if for all messages x,
y ∈ {0, 1}λ and all PPT adversary A it holds that{

CTamperA,x(λ)
}
λ∈N ≈c

{
CTamperA,y(λ)

}
λ∈N

where

CTamperA,x(λ)
def
=

{
Σ ← CRSGen(1λ); (X0, X1)← EΣ(x);

outA ← AOCNM(Σ,(X0,X1),(·,·)); output : outA

}
and A asks total of q queries to OCNM.

The following is an equivalent formulation

Definition 4 (Continuous Non Malleability [36], equivalent formulation).
Let Code = (CRSGen,E,D) be a split-state encoding scheme in the CRS model. We say that Code is

q-continuously non-malleable code, if for all messages m0, m1 ∈ {0, 1}λ, all PPT adversary A and all PPT
distinguishers D it holds that

Pr[D(outbA) = b] ≤ 1/2 + negl(λ)

where b← {0, 1} and

outbA ← AOCNM(Σ,(Xb0 ,X
b
1),(·,·)) : Σ ← CRSGen(1λ); (Xb

0, X
b
1)← EΣ(mb)

and A asks total of q queries to OCNM.

2.3 Continuous Non-Malleable Randomness Encoder

The following definition is an adaptation of the notion of Non-Malleable Randomness Encoders [48] to the
continuous setting.

Definition 5. Let Code = (CRSGen,CNMREnc,CNMRDec) be such that CRSGen takes security parame-
ter λ as input and outputs a string of length Σ1 = poly(λ) as CRS. CNMREnc : {0, 1}Σ1 × {0, 1}r →
{0, 1}λ× ({0, 1}n1 , {0, 1}n2) is defined as CNMREnc(r) = (CNMREnc1,Σ(r),CNMREnc2,Σ(r)) = (m, (x0, x1))
and CNMRDec : {0, 1}Σ1 × {0, 1}n1 × {0, 1}n2 → {0, 1}λ.

We say that (CRSGen,CNMREnc,CNMRDec) is a continuous non-malleable randomness encoder with
message space {0, 1}λ and codeword space {0, 1}n1 × {0, 1}n2 , for the distribution R on {0, 1}r with respect
to the 2-split-state family F if the following holds true:

– Correctness:
Pr
r←R

[CNMRDecΣ(CNMREnc2,Σ(r)) = CNMREnc1,Σ(r)] = 1

– Continuous Non-Malleability:

(Σ,CNMREnc1,Σ(R), outΣ,A(R)) ≈c (Σ,Uλ, outΣ,A(R))

where Σ ← CRSGen(1λ), R is a uniform random variable over {0, 1}r, Uλ is a uniform random variable
over {0, 1}λ and outΣ,A(R) is defined as follows:

outΣ,A(R)← AOCNM(Σ,(X0,X1),(·,·)) : (X0, X1)← CNMREnc2,Σ(R)

where OCNM runs with CNMRDec as decoding algorithm.

Next, we present definitions related to falsifiable assumptions and black-box reductions, strong one-time
signature schemes, and equivocal commitment scheme.
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2.4 Falsifiable Assumptions and Black-Box Reductions

Definition 6. A falsifiable assumption consists of ppt interactive challenger C(1λ) that runs in time poly(λ)
and a constant 0 ≤ δ < 1. The challenger C interacts with a machine A and may output special symbol win.
If this occurs, A is said to win C. For any adversary A, the advantage of A over C is defined as:

Adv
(C,δ)
A = |Pr

[
A(1λ) wins C(1λ)

]
− δ|,

where the probability is taken over the random coins of A and C. The assumption associated with the
tuple (C, δ) states that for every (non-uniform) adversary A(1λ) running in time poly(λ),

Adv
(C,δ)
A = negl(λ).

If the advantage of A is non-negligible in λ then A is said to break the assumption.

Definition 7. Let Π = (E,D) be a split-state CNMC. We say that the non-malleability of Π can be proven
via a black-box reduction to a falsifiable assumption, if there is an oracle access machine M(·) such that
for every (possibly inefficient) Π-adversary P∗, the machine MP∗ runs in time poly(λ) and breaks the
assumption.

2.5 (Strong) One-Time Signature Schemes

A digital signature scheme consists of a triple of ppt algorithms (Gen,Sign,Verify) such that:

– Gen takes the security parameter 1λ as input and generates a pair of keys: a public verification key vk,
and a secret signing key sk.

– Sign takes as input a secret key sk and a message m, and generates a signature σ. We write this as
σ ← Signsk(m).

– Verify takes as input a verification key vk, a message m, and a (purported) signature σ and outputs a
single bit indicating acceptance or not.

For correctness, we require that for all (vk, sk) output by Gen(1λ), for all messages m, and for all σ ←
Signsk(m), we have Verifyvk(m,σ) = 1.

2.6 Equivocal Commitment Scheme

We start by defining the basic commitment schemes and then present the notion of equivocal bit-commitment
schemes introduced by Di Crescenzo et al. in [30].

Definition 8 (Commitment Scheme). A (non-interactive) commitment scheme in the CRS model for
the message space M, is a triple (CRSGen,Commit,Open) such that:

– Σ ← CRSGen(1λ) generates the CRS.
– For all m ∈ M, (com, d) ← CommitΣ(m) is the commitment/opening pair for the message m. Specifi-

cally; com is the commitment value for m, and d is the opening.
– OpenΣ(com, d) → m̃ ∈ M ∪ {⊥}, where ⊥ is returned when com is not a valid commitment to any

message.

The commitment scheme must satisfy the standard correctness requirement,

∀λ ∈ N,∀m ∈M and Σ ∈ CRS, Pr [OpenΣ(CommitΣ(m)) = m] = 1

where, CRS is the set of all possible valid CRS’s generated by CRSGen(1λ) and where the probability is
taken over the randomness of Commit.
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The commitment scheme provides the following 2 security properties:

Hiding: It is computationally hard for any adversary A to generate two messages m0,m1 ∈ M such
that A can distinguish between their corresponding commitments. Formally, for any PPT adversary
A = (A1,A2) it should hold that:

Pr

[
b = b′

∣∣∣∣∣Σ ← CRSGen(1λ), (m0,m1, α)← A1(Σ), b← {0, 1},
(com, d)← CommitΣ(mb), b

′ ← A2(com, α)

]
≤ 1

2
+ negl(λ)

Binding: It is computationally hard for any adversary A to find a triple (com, d, d′) such that both (com, d)
and (com, d′) are valid commitment/opening pairs for some m,m′ ∈ M respectively, and m 6= m′.
Formally, for any PPT adversary A it should hold that:

Pr

[
m 6= m′∧
m,m′ 6= ⊥

∣∣∣∣∣ Σ ← CRSGen(1λ), (com, d, d′)← A(Σ),

m← OpenΣ(com, d),m′ ← OpenΣ(com, d′)

]
≤ negl(λ)

Definition 9 (One-to-One Commitment Scheme in the CRS Model). Let (CRSGen,Commit,Open)
be a bit-commitment scheme in CRS model. We say that (CRSGen,Commit,Open) is a one-to-one commit-
ment scheme if with all but negligible probability over b← {0, 1}, Σ ← CRSGen(1λ), (com, d)← CommitΣ(b),
d′ = d is the unique string such that Open(com, d′) 6= ⊥.

Definition 10 (Non-Interactive Equivocable Bit-Commitment Scheme). Let (CRSGen,Commit,Open)
be a bit-commitment scheme in CRS model. We say that (CRSGen,Commit,Open) is a non-interactive equiv-
ocable bit-commitment scheme in the CRS model if there exists an efficient probabilistic algorithm SEq which
on input 1λ outputs a 4-tuple (Σ′, com′, d′0, d

′
1) satisfying the following:

– Pr[OpenΣ′(com
′, d′b) = b] for b ∈ {0, 1}.

– For b ∈ {0, 1}, it holds that outCommit(b) ≈ε outSEq (b) where the random variables outCommit(b) and
outSEq (b) are defined as follows:{
Σ ← CRSGen(1λ); (com, d)← CommitΣ(b);

outCommit(b) : (Σ, com, d)

}
≈

{
(Σ′, com′, d′0, d

′
1)← SEq(1

λ);

outSEq (b) : (Σ′, com′, d′b)

}

We now present variant of the commitment scheme presented by Naor in [55], specifically we present the
same construction in CRS model. This is also presented in [30].

Let λ > 0 be an integer, let G : {0, 1}λ → {0, 1}3λ be a pseudo-random generator.

– CRSGen(1λ): Output a uniform random string Σ of length 3λ.
– CommitΣ(b): Choose uniform random seed s ∈ {0, 1}λ and compute t = G(s). If b = 0, set com := t. If
b = 1, set com := t⊕Σ. Output c. Output decommitment d = s.

– OpenΣ(com, d): If com = G(d), then output 0. Else if, com = G(d) ⊕ Σ, then output 1. Output ⊥
otherwise.

Claim 2.1.The scheme presented above is equivocal commitment scheme.
In order to prove claim 2.1 we need to show an efficient simulator SEq which outputs (Σ′, com′, d′0, d

′
1)

on input 1λ. Following is the description of SEq: On input 1λ, SEq chooses two uniform random seeds
s0, s1 ∈ {0, 1}λ and computes u = G(s0) and v = G(s1). Set Σ′ = u ⊕ v, com′ = u, and for b ∈ {0, 1}, set
d′b = sb.

Clearly SEq can open both 0 and 1 by choosing d′0 or d′1 respectively. Moreover, for any algorithm
distinguishing between real transcript and interaction with SEq we can present a distinguisher which breaks
the security of G with same advantage. This can be achieved by replacing the string v by the challenge string
in the pseudo-random generator experiment.
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2.7 One-to-one Equivocal Commitment

We present a modification of the above scheme that allows us to achieve an equivocal commitment scheme
with the one-to-one property: for every statistically binding commitment, there is at most a single opening
string that will be accepted by the receiver during the decommitment phase. As an underlying ingredient, we
use any commitment scheme Π = (CRSGenΠ ,CommitΠ ,OpenΠ) (not necessarily equivocal) with the above
property.

Let λ > 0 be an integer, let G1 : {0, 1}λ′ → {0, 1}3λ′ and G2 : {0, 1}λ → {0, 1}t·λ′ be pseudo-random
generators.

– CRSGen(1λ): Run CRSGenΠ(1λ) to generate ΣΠ . Output Σ = ΣΠ , Σ1, Σ2 where Σ1, Σ2 are uniform
random strings of length 3λ.

– CommitΣ(b): Choose uniform random seeds s1, s2 ∈ {0, 1}λ and compute t1 = G(s1), t2 = G(s2). Choose
β ∈ {0, 1}. Set c1 = t1 ⊕ (b · Σ1). Set c2 = t2 ⊕ (β · Σ2). Generate (comβ , dβ) = CommitΣΠ (s1||s2) and
(com1−β , d1−β) = CommitΣΠ (02n). Output commitment com := (c1, c2, com0, com1). Output decommit-
ment information s := (s1, s2, dβ).

– OpenΣ(com, s): Parse com = (c1, c2, com0, com1) and s = s1||s2||d. If c2 = G(s2), set β = 0. If c2 =
G(s2)⊕Σ2, set β = 1. Run OpenΣΠ (comβ , d) and check that it outputs s1||s2. Otherwise, output ⊥. If
c1 = G(s1), output 0. If c1 = G(s1)⊕Σ1, output 1. Output ⊥ otherwise.

Clearly, by the binding of the original commitment scheme and the unique string decommitment property
of Π, the modified scheme has the unique string decommitment property.

To create equivocal commitments/openings one can do the following: Run CRSGenΠ(1λ) to generate
ΣΠ . Choose uniform random seeds s01, s

1
1, s

0
2, s

1
2 ∈ {0, 1}λ and compute t01 = G(s01), t02 = G(s02), t11 =

G(s11), t12 = G(s12). Choose β ← {0, 1} Generate (comβ , dβ) = CommitΣΠ (s01||s
β
2 ) and (com1−β , d1−β) =

CommitΣΠ (s11||s
1−β
2 ). Set c1 = t01. Set c2 = t02. Set Σ1 = c1 ⊕ t11. Set Σ2 = c2 ⊕ t12. Output commitment

com′ := (c1, c2, com0, com1).

To open the commitment to a 0, output (s01||s
β
2 ||dβ), where dβ is the decommitment information for

comβ .

To open the commitment to a 1, output (s11||s
1−β
2 ||d1−β), where d1−β is the decommitment information

for com1−β .

2.8 Equivocal Commitment (with extra properties) in the CRS model

Let Π ′ = (Gen′Com,Com
′,Open′,S′Eq), be an equivocal, one-to-one `-bit commitment scheme in the CRS

model (given in Section 2.7). Let (GenSign,Sign,Verify) be a strong, one-time signature scheme. We construct
Π = (GenCom,Com,Open,SEq), which is an equivocal commitment scheme, with several additional proper-
ties that we describe at the end of the section and which will be useful for our constructions in Sections 4
and 5.

Key generation GenCom is as follows: On input security parameter 1λ, run Gen′Com 2t times to generate
t pairs of CRS’s [(Σ0,i

Eq, Σ
1,i
Eq)]i∈[t], where t is the length of the verification key vk output by GenSign.

Commitment Com is as follows: To commit to a message m of length `, generate a key pair (vk, sk) ←
GenSign. For i ∈ [t], generate (comi, di) ← Com′(Σvki,i,m), where comi is the commitment and di is the
decommitment information. Generate σ ← Signsk([comi]i∈[t]). Output commitment c = (vk, [comi]i∈[`], σ). A
sender can decommit separately to any set of bits of the message m. Decommitment information for a set
S of message bits consists of d[S] = [di,j ]i∈[t],j∈[S], where di,j is the decommitment information contained in
di corresponding to the j-th bit.

Decommitment Open w.r.t. a set S: Given a set S, a commitment com, and an opening [di,j ]i∈[t],j∈S , Open
does the following: Parse commitment as (vk, [comi,j ]i∈[t],j∈[`], σ). (1) Check that Verifyvk([comi,j ]i∈[t],j∈[`], σ) =
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1 (2) For i ∈ [t], j ∈ S, check that di,j is a valid decommitment for comi,j w.r.t. CRS Σvki,i.

Equivocal CRS generation and commitment SEq is as follows: On input security parameter 1λ,
generate a key pair (vk, sk) ← GenSign. Run S′Eq t times to generate [Σvki,i]i∈[t], equivocal commitments

[comi]i∈[t] and decommitments [(d0i,j , d
1
i,j)]i∈[t],j∈[`]. Run Gen′Com t times to generate [Σ1−vki,i]i∈t. Set ΣEq :=

[(Σ0,i
Eq, Σ

1,i
Eq)]i∈[t]. Compute σ ← Signsk([comi]i∈[t]). Output (Σ = ΣEq, c = (vk, [comi]i∈[`], σ),

d0 = [d0i,j ]i∈[t],j∈[`], d
1 = [d1i,j ]i∈[t],j∈[`]).

Additional Check functionality: Given a Σ and commitments com = (vk, [comi]i∈[`], σ),
com′ = (vk′, [com′i]i∈[`], σ

′), CheckΣ(com, com′) outputs 1 if (1) vk = vk′; (2) Verifyvk([com
′
i]i∈[`], σ

′) = 1.

Additional properties:

1. With overwhelming probability over generation of Σ, for every set S ⊆ [`] and every string com, there is
at most a single string d[S] such that OpenΣ(S, com, d[S]) = 1. This property is achieved by using the
equivocal, one-to-one, commitment scheme given in Section 2.7 as the underlying commitment scheme.

2. Given a pair (Σ, com), a PPT adversary outputs com′ such that com 6= com′ but CheckΣ(com, com′) = 1
with negligible probability. This property follows from the security of the one-time signature scheme.

3. Given equivocal commitment (ΣEq, com), for every string com′, if CheckΣEq (com, com
′) = 0 then (with

overwhelming probability over generation of ΣEq) com
′ has at most one valid opening. Specifically, for

every set S ⊆ [`], there is at most a single string d[S] such that OpenΣEq (S, com
′, d[S]) = 1. Again, this

property is achieved by using the equivocal, one-to-one, commitment scheme given in Section 2.7 as the
underlying commitment scheme.

3 Impossibility of CNMC with no CRS

In this section we present theorem 5, stating impossibility of constructing CNMC without CRS.

Theorem 5. There is no black-box reduction from a single-bit CNMC scheme Π = (E,D) to any falsifiable
assumption, unless the assumption is false.

3.1 Proof of Theorem 5 Impossibility of CNMC with no CRS

In this section we present the proof of theorem 5.
We know from prior work that continuous NMC are impossible in the info-theoretic setting. Assume we

have a construction of single-bit, continuous NMC from some falsifiable assumption with no CRS. We only
allow black-box usage of the adversary in the reduction. However, the underlying assumption can be used in
a non-black-box way in the construction/proof.

Preliminaries. Given adversary A = (AL, AR), we say that A has advantage α in the simplified no-Σ CNMC
game against construction Π = (E,D) if:∣∣∣Pr[D(AL(L), AR(R)) 6= ⊥ | (L,R)← E(1λ, 0)]

−Pr[D(AL(L), AR(R)) 6= ⊥ | (L,R)← E(1λ, 1)]
∣∣∣ = α,

Clearly, if A = (AL, AR) has non-negligible advantage in the simplified no-Σ CNMC game, it can be used
to break the CNMC security of Π = (E,D).

Definition 11. A tuple (x, y, z) is bad relative to CNMC scheme Π = (E,D) if either:

– y 6= z ∧ D(x, y) 6= ⊥ ∧ D(x, z) 6= ⊥ OR

12



– x 6= y ∧ D(x, z) 6= ⊥ ∧ D(y, z) 6= ⊥.

Definition 12. A single-bit CNMC Π = (E,D) in the standard (no CRS model) is perfectly unique if there
exist no bad tuples relative to Π = (E,D).

We next present the following two lemmas, which, taken together, imply Theorem 5.

Lemma 3. If a single-bit CNMC scheme Π = (E,D) is not perfectly unique then it is insecure.

This is immediate, since if a bad tuple exists, it can be given to the adversary as non-uniform advice.
Then the same attack from the literature (reviewed in the introduction) can be run.

Lemma 4. There is no BB reduction from a single-bit CNMC scheme Π = (E,D) which is perfectly unique
to any falsifiable assumption.

The basic idea is that, given only black-box access to the split-state adversary, A = (AL, AR), the
reduction cannot tell the difference between the actual adversary and a simulated adversary. The simulated
adversary simply waits to get matching L and R queries from the reduction, decodes, and re-encodes a fresh
value that is related to the decoded value. The challenges are that the L and R queries are not received
simultaneously. In fact, there could be many queries interleaved between a L and R match. So the simulated
adversary must return a value upon seeing the L or R half before seeing the other half and before knowing
whether the encoded value is a 0 or a 1. Therefore, the simulated adversary does the following: It keeps a table
containing all the L and R values that it has seen. Whenever a L or R query is made, the simulated adversary
first checks the table to see if a matching query was previously made. If not, the simulated adversary chooses
a random encoding, (L′, R′), of a random bit b′, stores it in the table along with the L/R query that was
made and returns either L′ or R′ as appropriate. If yes, the simulated adversary finds the corresponding
L/R along with the pair (L′, R′) stored in the table. The simulated adversary then decodes (L,R) to find
out b. If b = 0, the simulated adversary returns either L′ or R′ as appropriate. Otherwise, the simulated
adversary returns the left/right side of an encoding of a random bit b′′. We prove that the view generated
by the reduction interacting with this adversary is identical to the view of the reduction interacting with
the following real adversary: The real adversary, given L or R, recovers the corresponding unique codeword
(L,R) and decodes to get the bit b. If b = 0, the real adversary encodes a random bit b′ = RO1(L||R) using
randomness r = RO2(L||R) (where RO1, RO2 are random oracles internal to the real adversary that are
used to generate consistent randomness across invocations) and outputs the left/right side as appropriate.
Otherwise, the real adversary outputs the left/right side of a random encoding of a random bit, b′′. Note
that since the CNMC is perfectly unique, the real adversary obtains non-negligible advantage of 1− negl(λ)
in the simplified no-Σ CNMC game.

Proof. We will construct a meta-reduction as follows:

Consider the following inefficient, split state adversary A = (AL, AR) with internal random oracles
RO1, RO2:

AL: On input L, find the unique R such that D(L,R) 6= ⊥. Let b := D(L,R). If b = 0, encode b′ = RO1(L||R)
using randomness r = RO2(L||R) to obtain (L′, R′) := D(b′; r) and output L′. Otherwise, compute a
random encoding of a random bit b′′, (L′′, R′′)← D(b′′) and output L′′.

AR: On input R, find the unique L such that D(L,R) 6= ⊥. Let b := D(L,R). If b = 0, encode b′ = RO1(L||R)
using randomness r = RO2(L||R) to obtain (L′, R′) := D(b′; r) and output R′. Otherwise, compute a
random encoding of a random bit b′′, (L′′, R′′)← D(b′′) and output R′′.

Clearly, A succeeds with advantage 1− negl(n) in the simplified no-Σ CNMC game.

The following adversary A′ simulates the above: Keeps two lists ListL, ListR. Let T be a table that
records internal randomness. A′ is a stateful adversary that proceeds as follows:
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1. On input L, check if the corresponding R such that D(L,R) 6= ⊥ has been queried. If yes, decode to get
bit b := D(L,R). If b = 0, check the table T to recover (R,L′, R′). Output L′.
If not, choose a random encoding of a random bit b′′: (L′′, R′′) ← E(b′′). Store (L,L′′, R′′) in T . and
output L′′.

2. On input R, check if the corresponding L such that D(L,R) 6= ⊥ has been queried. If yes, decode to get
bit b := D(L,R). If b = 0, check the table T to recover (L,L′, R′). Output R′.
If not, choose a random encoding of a random bit b′′: (L′′, R′′) ← E(b′′). Store (L,L′′, R′′) in T . and
output R′′.

By properties of the random oracle, the view of the reduction Red when interacting with A versus A′

are equivalent.
Since the reduction succeeds when interacting with Real adversary with non-negligible probability p and

since the view of the reduction is identical when interacting with Real or Sim, Reduction interacting with
Sim must also succeed with non-negligible probability p. But Reduction composed with Sim are efficient,
leading to an efficient adversary breaking the underlying falsifiable assumption, which is a contradiction.

4 2-State CNMC for One-Bit Messages

In this section we prove the following theorem:

Theorem 6. Assuming the existence of one-to-one commitment schemes in the CRS model, there is a
construction of a 2-split-state CNM Randomness Encoder in the CRS model.

The corollary is immediate, given the transformation in Appendix A.

Corollary 1. Assuming the existence of one-to-one commitment schemes in the CRS model, there is a
construction of a single-bit, 2-split-state CNMC in the CRS model.

Notation and parameters. λ is security parameter and length of encoded randomness. ` = `(λ) ∈ Θ(λ2)
and we assume for simplicity that λ|`. Sets SL, SR ⊆ [2`] are defined as follows: SL = [`], SR = [2`] \ [`].
yo = yo(`) ∈ Θ(`1/2), yt = yt(`) ∈ Θ(`1/2).
The construction of the 2-state CNM Randomness Encoder is presented in Figure 1.

To prove Theorem 6, we show that the construction above is a secure CNM Randomness Encoder, via
the following sequence of hybrids.

Hybrid 0: This is the “Real” security experiment.

Hybrid 1: The experiment is identical to Hybrid 0 except we modify the decode algorithm from DΣ to D1
Σ to

abort if the tampered codeword submitted is different from the challenge codeword and the Check function
outputs 1. Specifically, let (L := (com, d[SL]), R = (com, d[SR])) be the “challenge” codeword (i.e. the
codeword generated by the security experiment).

Hybrid 2: The experiment is identical to Hybrid 1, except we switch to equivocal commitments in the
codeword (L,R) that is given to the adversary. Specifically, CRSGen is replaced with CRSGen2 and the
challenge codeword is generated as shown in Figure 3.

Hybrid 3: The experiment is identical to Hybrid 2, except we modify D1 to D3, which aborts if the outcome
of f iL(L) or f iR(R) is not a “likely value.”

Specifically, given (ΣEq, com, d
0, d1) and the adversary’s current output Outi−1A = Ôut

i−1
A , we define the

sets SL, SR, S ′L, S ′R as follows:
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Let (CRSGenCom,Com,Open, SEq) be the non-interactive, equivocal, one-to-one commitment in the CRS model
given in Section 2.8.

CRSGen(1λ): Run Σ ← CRSGenCom(1λ). Output Σ.

EΣ(cL||cR||rL||rR):

1. Parse cL, cR as strings in F
`
λ

2λ
.

2. (com, d)← ComΣ(cL||cR)
3. Let d[SL] (resp. d[SR]) correspond to the decommitment of com to the bits corresponding to SL (resp. SR).
4. E1,Σ outputs L = (com, d[SL]); R = (com, d[SR]). E2,Σ outputs 〈cL, cR〉.

DΣ(L̃, R̃):

1. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).
2. Check that c̃om = c̃om′.
3. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that c̃L 6= ⊥ and c̃R 6= ⊥.
4. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Fig. 1. Construction of 2-State, Continuous, Non-Malleable Randomness Encoder.

D1
Σ(L̃, R̃):

1. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).
2. If L 6= L′ and CheckΣ(com, c̃om) = 1 or R 6= R′ and CheckΣ(com, c̃om′) = 1 then output ⊥.
3. Check that c̃om = c̃om′.
4. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that c̃L 6= ⊥ and c̃R 6= ⊥.
5. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Fig. 2. Decode in Hybrid 1.

CRSGen2(1λ): Run (ΣEq, com, d
0, d1)← SEq(1

λ). Output ΣEq.
Challenge codeword:

1. Sample cL, cR uniform randomly from F
`
λ

2λ
.

2. Set d[SL] := [d
cL[i]
i ]i∈SL ; Set d[SR] := [d

cR[i]
i ]i∈SR ;

3. Output L = (com, d[SL]); R = (com, d[SR]).

Fig. 3. Gen and Challenge Codeword generation in Hybrid 2.
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– SL contains all values of L̂′ that occur with probability at least ε = 1/2yo/3, where values of L̂′ are
sampled as follows: Sample ĉL conditioned on the output of the experiment in Hybrid 2 thus far being

equal to Outi−1A = Ôut
i−1
A . Compute equivocal decommitment of com: d̂[SL] := [d

ĉL[i]
i ]i∈SL . Apply f iL to

L̂ = (com, d̂[SL]) to obtain L̂′ (or “same” if the output is L̂ itself).

– SR contains all values of R̂′ that occur with probability at least ε = 1/2yo/3, where values of R̂′ are
sampled as follows: Sample ĉR conditioned on the output of the experiment in Hybrid 2 thus far being

equal to Outi−1A = Ôut
i−1
A . Compute equivocal decommitment of com: d̂[SR] := [d

ĉR[i]
i ]i∈SR . Apply f iR to

R̂ = (com, d̂[SR]) to obtain R̂′ (or “same” if the output is R̂ itself).

– Let S ′L ⊆ SL be the set of L̂′ such that there is a “matching” R̂′ ∈ SR such that D1
ΣEq

(L̂′, R̂′) 6= ⊥.

– Let S ′R ⊆ SR be the set of R̂′ such that there is a “matching” L̂′ ∈ SL such that D1
ΣEq

(L̂′, R̂′) 6= ⊥.

D3
ΣEq

((f iL, f
i
R), L̃, R̃):

1. Check that L̃ ∈ S ′L and that R̃ ∈ S ′R. If not, output ⊥.

2. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).
3. Check that c̃om = c̃om′.
4. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that c̃L 6= ⊥ and c̃R 6= ⊥.
5. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Fig. 4. Decode in Hybrid 3.

Hybrid 4: The experiment is identical to Hybrid 3, except we modify D3 to D4 which aborts if there are
more than yt number of queries f iL (resp. f iR) such that the outcome of f iL(L) (resp. f iR(R)) is not the most
“likely value” Specifically, at the beginning of the experiment, we initialize counters countL, countR to 0. We
also define L∗ (resp. R∗) to be the element of S ′L (resp. S ′R) that occurs most frequently.

D4
ΣEq

((f iL, f
i
R), L̃, R̃):

1. Check that L̃ ∈ S ′L and that R̃ ∈ S ′R. If not, output ⊥.
2. If L̃ 6= L∗, then set countL := countL + 1.

3. If R̃ 6= R∗, then set countR := countR + 1.
4. If countL > yt or countR > yt, output ⊥.

5. Parse L̃ = (c̃om, d̃[SL]), R̃ = (c̃om′, d̃[SR]).
6. Check that c̃om = c̃om′.
7. Let c̃L = OpenΣ(SL, c̃om, d̃[SL]) and c̃R = OpenΣ(SR, c̃om, d̃[SR]). Check that c̃L 6= ⊥ and c̃R 6= ⊥.
8. If all the above checks pass, output 〈c̃L, c̃R〉. Otherwise, output ⊥.

Fig. 5. Decode in Hybrid 4.

Claim 4.1. Hybrids 0 and 1 are computationally indistinguishable.
This follows from the additional properties of the equivocal commitment scheme given in Section 2.8.

Claim 4.2. Hybrids 1 and 2 are computationally indistinguishable.
This follows from the security of the equivocal commitment scheme.

Claim 4.3. Hybrids 2 and 3 are ε · 2q-close, where ε = 1/2yo/3 and yo ∈ O(`1/2).
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Proof. To prove indistinguishability of Hybrids 2 and 3, it is sufficient to show that for each i ∈ [q], Pr[f iL(L) /∈
S ′L ∧ D1

ΣEq
(f iL(L), f iR(R)) 6= ⊥] ≤ ε and Pr[f iL(R) /∈ S ′R ∧ D1

ΣEq
(f iL(L), f iR(R)) 6= ⊥] ≤ ε. The result then

follows by a union bound over the q LHS and q RHS queries.

To bound the above, we in fact show something stronger: (1) for each i ∈ [q], each value of Outi−1A =

Ôut
i−1
A (which does not contain a ⊥ output) and each value of R = R̂,

Pr[f iL(L) /∈ S ′L ∧ D1
ΣEq (f

i
L(L), f iR(R)) 6= ⊥ | R = R̂ ∧ Outi−1A = Ôut

i−1
A )] ≤ ε;

and (2) for each i ∈ [q], each value of Outi−1A = Ôut
i−1
A (which does not contain a ⊥ output) and each value

of L = L̂,

Pr[f iR(R) /∈ S ′R ∧ D1
ΣEq (f

i
L(L), f iR(R)) 6= ⊥ | L = L̂ ∧ Outi−1A = Ôut

i−1
A )] ≤ ε.

We first fix (ΣEq, com, d
0, d1). Note that for fixed ΣEq, com, d

0, d1, there is a bijection φL (resp. φR)

between cL (resp. cR) and (com, d[SL]) (where d[SL] := [d
cL[i]
i ]i∈SL). Therefore the probability of a particular

value of cL (resp. cR) occurring is equivalent to the probability of L = φL(cL) (resp. R = φR(cR)) occurring.
Additionally, Let ρL (resp. ρR) be the function that given f iR(R) (resp. f iR(R)) returns the unique L′ (resp.
R′) if it exists such that, D1

ΣEq
(L′, f iR(R)) 6= ⊥ (resp. D1

ΣEq
(f iL(L), R′) 6= ⊥). Note that L′ (resp. R′) is equal

to “same” if and only if f iR(R) = “same” (resp. f iL(L) = “same”).

We first show that for i ∈ {0, . . . , q}, cL, cR are conditionally independent given OutiA = Ôut
i−1
A . This

follows from the fact that the information contained in Ôut
i−1
A is of the form (f1L(φL(cL)) = v1, f

1
R(φR(cR)) =

w1), . . . , (f i−1L (φL(cL)) = vi, f
i−1
R (φR(cR)) = wi), where for j ∈ [i−1], vj is equal to the L′ value outputted in

response to the j-th query and wj is equal to the R′ value outputted in response to the j-th query. (note that
vj/wj can be set to “same” if the tampering function leaves L/R unchanged). Thus, the distribution of cL, cR
conditioned on (f1L(φL(cL)) = v1, f

1
R(φR(cR)) = w1), . . . , (f i−1L (φL(cL)) = vi, f

i−1
R (φR(cR)) = wi) is equal

to (U` | (f1L(φL(U`)) = v1, . . . , f
i−1
L (φL(U`)) = vi)) × (U` | (f1R(φR(U`)) = w1, . . . , f

i−1
R (φR(U`)) = wi)).

Moreover, due to the discussion above, L,R are also conditionally independent given Outi−1A = Ôut
i−1
A .

Therefore, to show (1), we note that for every (L̂, R̂, Ôut
i−1
A ), Pr[L = L̂ | R = R̂ ∧ Outi−1A = Ôut

i−1
A )] =

Pr[L = L̂ | Outi−1A = Ôut
i−1
A )]. So we have that for every fixed R = R̂ (for which Pr[R = R̂ ∧ Outi−1A =

Ôut
i−1
A )] > 0), and every L′ /∈ S ′L, Pr[f i(L) = L′ | R = R̂ ∧ Outi−1A = Ôut

i−1
A )] ≤ ε. Therefore,

Pr[f iL(L) /∈ S ′L ∧ D1
ΣEq (f

i
L(L), f iR(R)) 6= ⊥ | R = R̂ ∧ OutA = Ôut

i−1
A )]

= Pr[f iL(L) /∈ S ′L ∧
(
f iL(L) = ρL(f iR(R))

)
| R = R̂ ∧ Outi−1A = Ôut

i−1
A )]

≤ ε.

The proof for (2) is analogous.

Claim 4.4. Hybrids 3 and 4 are statistically indistinguishable.

Proof. To prove indistinguishability of Hybrids 3 and 4, we must show that the probability that the event
(1) f iL(L) is not most frequent and D1

ΣEq
(f iL(L), f iR(R)) 6= ⊥ or event (2) f iR(R) is not most frequent and

D1
ΣEq

(f iL(L), f iR(R)) 6= ⊥ occurs more than yt times in a single execution is at most (1/2)yt .

We first analyze the event (1). If f iL(L) = L′ is not the most frequent query in S ′L then, by definition,

Pr[f iL(L̂) = L′ | Outi−1A = Ôut
i−1
A ] ≤ 1/2. Recall that in the proof of the previous claim, we have shown

that for i ∈ {0, . . . , q}, L,R are conditionally independent given OutiA. Therefore, Pr[f iL(L) = L′ | Outi−1A =
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Ôut
i−1
A ∧R = R̂] ≤ 1/2. This implies that for every fixed R = R̂ (for which Pr[R = R̂∧Outi−1A = Ôut

i−1
A ] > 0),

Pr[f iL(L) is not most frequent ∧ D1
ΣEq (f

i
L(L), f iR(R)) 6= ⊥ | R = R̂ ∧ Outi−1A = Ôut

i−1
A )]

= Pr[f iL(L) is not most frequent ∧ f iL(L) = ρL(f iR(R)) | R = R̂ ∧ Outi−1A = Ôut
i−1
A )]

≤ 1/2.

The probability that this event occurs yt times for yt distinct values of i ∈ [q] is at most (1/2)yt ∈ negl(λ).
The proof for event (2) is analogous.

We finally show the main technical claim of this section, which completes the proof of Theorem 6.

Claim 4.5. In Hybrid 4, the encoded randomness 〈cL, cR〉 is statistically close to uniform, given the view of
the adversary.

Proof. Towards proving the claim, we consider the following leakage functions:

Leakage function on cL: Fix ΣEq, com, d
0, d1, universal hash h : {0, 1}α → {0, 1}yo ∈ H (where α is the

length of a single split-state of the encoding) and adversary A. On input cL, set output OutA to “” and OutL
to “”. Set L = (com, [d

cL[i]
i ]i∈[`]). Repeat the following in rounds i = 1, 2, . . .:

1. Obtain the next tampering function (fL, fR) from adversary A. If A terminates then terminate with
output OutL.

2. Set L′ := fL(L). If L′ ∈ S ′L, then:
(a) Find the unique R̂′ ∈ S ′R such that D1

ΣEq
(L′, R̂′) 6= ⊥. Return (L′, R̂′) to the adversary. Set OutA =

OutA||(L′, R̂′).
(b) If L′ is not the most frequent output in S ′L, set OutL := OutL||(i||h(L′)) If |OutL| > (log(q) + yo) · yt

then terminate with output OutL := OutL||(i||⊥).
3. If L′ /∈ S ′L, output ⊥ to the adversary and terminate with output OutL := OutL||(i||⊥).

The leakage function for the RHS is analogous.
We now show that given OutL and OutR we can reconstruct the full output sequence for the adversary’s

view with probability 1− 2q
ε2·2yo = 1− 2q

2y0/3
in the following way:

Fix ΣEq, com, d
0, d1, universal hash h ← H and adversary A. Set output OutA to “” and OutL to “”.

Repeat the following in rounds i = 1, 2, . . .:

1. Obtain the next tampering function (fL, fR) from adversary A given its current view, OutA.
2. If (i,⊥) ∈ OutL or (i,⊥) ∈ OutR, set OutA = OutA||⊥ and abort.
3. If (i, y) ∈ OutL, for some y 6= ⊥, set L′ = L̂′ such that L̂′ ∈ S ′L and h(L̂′) = y.

4. If (i, ·) /∈ OutL, set L′ = L̂′ such that L̂′ ∈ S ′L is the most frequent value.

5. If (i, y) ∈ OutR, for some y 6= ⊥, set R′ = R̂′ such that R̂′ ∈ S ′R and h(R̂′) = y.

6. If (i, ·) /∈ OutR, set R′ = R̂′ such that R̂′ ∈ S ′R is the most frequent value.
7. If L′ = “same” and R′ = “same” output “same” and set OutA = OutA||“same”.
8. Else if one of L′, R′ is “same” and not the other, set OutA = OutA||⊥ and abort.
9. Else Parse L′ := (com, d[SL]) and R′ := (com′, d[SR]). If com 6= com′, set OutA = OutA||⊥ and abort.

10. Otherwise, set OutA = OutA||(L′, R′).
It can be determined by inspection that the incorrect value is output only if in one of the at most 2q

instances, there are two distinct values L̂′, L̂′′ ∈ S ′L or R̂′, R̂′′ ∈ S ′R such that h(L̂′) = h(L̂′′) or h(R̂′) = h(R̂′′).
Due to universality of h and the fact that |S ′L| = |S ′R| = 1/ε, this can occur with probability at most 2q

ε2·2yo ,
as claimed.

Since |OutL| ≤ (log(q) + yo) · yt ≤ 2yo · yt ≤ c · ` for constant c < 1 and |OutR| ≤ (log(q) + yo) · yt ≤
2yo · yt ≤ c · ` for constant c < 1, we can use the properties of the inner product extractor given in Lemma 1
to argue that 〈cL, cR〉 is statistically close to uniform random, given OutL,OutR. Moreover, since we have
shown that the view of the adversary in the Hybrid 4 can be fully reconstructed given OutL,OutR, we have
that, in the Hybrid 4, the encoded randomness 〈cL, cR〉 is statistically close to uniform, given the adversary’s
view in the CNMC experiment.
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5 4-State CNMC for Multi-Bit Messages

In this section we prove the following theorem:

Theorem 7. Assuming the existence of one-to-one commitment schemes in the CRS model, there is a
construction of a multi-bit, 4-split-state CNMC in the CRS model.

Notation and parameters. λ is security parameter and length of encoded message. ` = `(λ) ∈ Θ(λ2) and
we assume for simplicity that λ|`. k = 2λ. Sets SL,1, SR,1, SL,2, SR,2 ⊆ [4`] are defined as follows: SL,1 =
[`], SR,1 = [2`] \ [`], SL,2 = [3`] \ [2`], SR,2 = [4`] \ [3`]. yo = yo(`) ∈ Θ(`1/2), yt = yt(`) ∈ Θ(`1/2).

The construction of the multi-bit, 4-state CNMC is presented in Figure 6.

Let (CRSGenCom,Com,Open, SEq) be the non-interactive, equivocal, one-to-one commitment in the CRS model
given in Section 2.8.

CRSGen′(1λ): Run Σ ← CRSGenCom(1λ). Output Σ.

E′Σ(m) for m ∈ {0, 1}λ:

1. Choose at random m1,m2 ∈ F2λ such that m1 +m2 = m.

2. For b ∈ {1, 2}, Choose (cL,b, cR,b) at random, from F
`
λ

2λ
, conditioned on 〈cL,b, cR,b〉 = mb.

3. (com, d)← ComΣ([cL,b||cR,b]b∈{1,2})
4. For b ∈ {1, 2}, let d[SL,b] (resp. d[SR,b]) correspond to the decommitment of com to the bits corresponding

to SL,b (resp. SR,b).
5. Output L1 = (com, d[SL,1]); R1 = (com, d[SR,1]); L2 = (com, d[SL,2]); R2 = (com, d[SR,2]).

D′Σ(L̃1, R̃1, L̃2, R̃2): //For simplicity of notation, we assume D′ can take its inputs in any order.

1. For b ∈ {1, 2}, parse L̃b = (c̃omb, d[SL,b]), R̃b = (c̃om′b, d[SR,b]).
2. Check that c̃om1 = c̃om′1 = c̃om2 = c̃om′2.
3. For b ∈ {1, 2}, let c̃L,b = OpenΣ(SL,b, c̃om, d̃[SL,b]) and c̃R,b = OpenΣ(SR,b, c̃om, d̃[SR,b]). Check that

c̃L,b 6= ⊥ and c̃R,b 6= ⊥.
4. For b ∈ {1, 2}, compute m̃b = 〈cL,b, cR,b〉.
5. If all the above checks pass, output m̃1 + m̃2; otherwise, output ⊥.

Fig. 6. Construction of 4-state Continuous, Non-Malleable Code.

To prove Theorem 7, we show that the construction above is a secure multi-bit CNMC, via the following
sequence of hybrids.

Hybrid 0: This is the Experiment from Definition 4.
Hybrids 1 and 2 are analogous to the first and second hybrids in the previous section. We therefore give

an abbreviated description.

Hybrid 1: The experiment is identical to Hybrid 0 except we modify the decode algorithm from D′Σ to D′
1
Σ

to abort if the tampered codeword (L̃1, R̃1, L̃2, R̃2) is different from the challenge codeword (L1, R1, L2, R2)
but the corresponding commitment is not statistically binding.

Hybrid 2: The experiment is identical to Hybrid 1, except we switch to equivocal commitments in (L1, R1)
(resp. (L2, R2)) that is given to the adversary. We denote the corresponding CRS’s, and equivocal commit-
ment and decommitments by ΣEq, com, d

0, d1.

We now define some terminology which will be needed for the next sequence of hybrids. Given (ΣEq, com, d
0, d1)

an output (OutiA,1,Out
i
A,2), for b ∈ {1, 2}, we define the sets SL,b, SR,b, S ′L,b, S ′R,b as follows:
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– SL,b contains all values of L̂′b that occur with probability at least ε = 1/2yo/3, where values of L̂′b
are sampled as follows: Sample ĉL,b conditioned on OutiA,b. Compute equivocal decommitment of com:

d̂[SL,b] := [d
ĉL,b[i]
i ]i∈SL,b . Apply f iL,b to L̂b = (comb, d̂[SL,b]) to obtain L̂′b (or “same” if the output is L̂b

itself).

– SR,b contains all values of R̂′b that occur with probability at least ε = 1/2yo/3, where values of R̂′b
are sampled as follows: Sample ĉR,b conditioned on OutiA,b. Compute equivocal decommitment of com:

d̂[SR,b] := [d
ĉR,b[i]
i ]i∈SR,b . Apply f iR,b to R̂b = (comb, ôpenR,b) to obtain R̂′b (or “same” if the output is

R̂b itself).

– Let S ′L,b ⊆ SL,b be the set of L̂′b such that there is a “matching” R̂′b ∈ SR,b such that D′
1
ΣEq (L̂

′
b, R̂

′
b, ·, ·) 6=

⊥.
– Let S ′R,b ⊆ SR,b be the set of R̂′b such that there is a “matching” L̂′b ∈ SL,b such that D′

1
ΣEq (L̂

′
b, R̂

′
b, ·, ·) 6=

⊥.

We also give two alternate decoding procedures in Figures 7 and 8.

D′
3
ΣEq ([(f iL,b, f

i
R,b), L̃b, R̃b]b∈{1,2}):

1. For b ∈ {1, 2}, check that L̃b ∈ S ′L,b and that R̃b ∈ S ′R,b. If not, output ⊥.

2. For b ∈ {1, 2}, parse L̃b = (c̃omb, d[SL,b]), R̃b = (c̃om′b, d[SR,b]).
3. Check that c̃om1 = c̃om′1 = c̃om2 = c̃om′2.
4. For b ∈ {1, 2}, let c̃L,b = OpenΣ(SL,b, c̃om, d̃[SL,b]) and c̃R,b = OpenΣ(SR,b, c̃om, d̃[SR,b]). Check that

c̃L,b 6= ⊥ and c̃R,b 6= ⊥.
5. For b ∈ {1, 2}, compute m̃b = 〈c̃L,b, c̃R,b〉.
6. If all the above checks pass, output m̃1 + m̃2; otherwise, output ⊥.

Fig. 7. Algorithm D′
3
ΣEq .

For the following decode algorithm, we assume that at the beginning of the experiment, for b ∈ {1, 2},
counters countL,b, countR,b are initialized to 0. We also define L∗b (resp. R∗b) to be the element of S ′L,b (resp.
S ′R,b) that occurs most frequently.

D′
4
ΣEq ([(f iL,b, f

i
R,b), L̃b, R̃b]b∈{1,2}):

1. Check that L̃ ∈ S ′L and that R̃ ∈ S ′R. If not, output ⊥.
2. For b ∈ {1, 2}, if L̃b 6= L∗b , then set countL,b := countL,b + 1.

3. For b ∈ {1, 2}, if R̃b 6= R∗b , then set countR,b := countR,b + 1.
4. For b ∈ {1, 2}, if countL,b > yt or countR,b > yt, output ⊥.

5. For b ∈ {1, 2}, parse L̃b = (c̃omb, d[SL,b]), R̃b = (c̃om′b, d[SR,b]).
6. Check that c̃om1 = c̃om′1 = c̃om2 = c̃om′2.
7. For b ∈ {1, 2}, let c̃L,b = OpenΣ(SL,b, c̃om, d̃[SL,b]) and c̃R,b = OpenΣ(SR,b, c̃om, d̃[SR,b]). Check that

c̃L,b 6= ⊥ and c̃R,b 6= ⊥.
8. For b ∈ {1, 2}, compute m̃b = 〈c̃L,b, c̃R,b〉.
9. If all the above checks pass, output m̃1 + m̃2; otherwise, output ⊥.

Fig. 8. Algorithm D′
4
ΣEq .

We next present a sequence of intermediate hybrids H2 = H2,0,b, H2,1,a . . . , H2,q,b = H3, defined as
follows:

20



Hybrid H2,i,a for i ∈ [q]: The experiment is identical to the previous hybrid, except we respond to the i-th
query to the decoding oracle using D3

ΣEq
.

Hybrid H2,i,b for i ∈ [q]: The experiment is identical to the previous hybrid, except we respond to the i-th
query to the decoding oracle using D4

ΣEq
.

Claim 5.1. Hybrids 0 and 1 are computationally indistinguishable.
This follows from the security of the one-time signature scheme and “uniqueness of opening” property of

the underlying commitment.

Claim 5.2. Hybrids 1 and 2 are computationally indistinguishable.
This follows from the security of the equivocal, non-malleable commitment scheme.

We say that an output pair (Outi−1A,1 = Ôut
i−1
A,1 ,Out

i−1
A,2 = Ôut

i−1
A,2 ) is good if the marginal distribution

over m1 is statistically 2−k-close to uniform random conditioned on (Outi−1A,1 = Ôut
i−1
A,1 ,Out

i−1
A,2 = Ôut

i−1
A,2 )

and the marginal distribution over m2 is statistically 2−k-close to uniform random conditioned on (Outi−1A,1 =

Ôut
i−1
A,1 ,Out

i−1
A,2 = Ôut

i−1
A,2 ).

Claim 5.3. For i ∈ {0, . . . , q}, in Hybrid H2,i,b, the outcome (Outi−1A,1 = Ôut
i−1
A,1 ,Out

i−1
A,2 = Ôut

i−1
A,2 ) is good

with probability 1− 2−k/q.

Proof. Towards proving the claim, we consider the following leakage functions:

Leakage function on cL,b, for b ∈ {1, 2}: Fix ΣEq, com, d
0, d1, universal hash h : {0, 1}α → {0, 1}yo ∈ H

(where α is the length of a single split-state of the encoding) and adversary A. On input cL, set output OutA

to “” and OutL to “”. Set Lb = (com, [d
cL,b[i]
i ]i∈[`]). Repeat the following in rounds i = 1, 2, . . .:

1. Obtain the next tampering function [(fL,b, fR,b)]b∈{1,2} from adversary A. If A terminates then output
OutL,b.

2. Set L′ := fL,b(Lb). If L′b ∈ S ′L,b, then:

(a) Find the unique R̂′b ∈ S ′R such that D′
1
ΣEq (L

′
b, R̂

′
b, ·, ·) 6= ⊥. Return (L′b, R̂

′
b) to the adversary. Set

OutA,b = OutA,b||(L′b, R̂′b).
(b) If L′b is not the most frequent output in S ′L,b, set OutL,b := OutL,b||(i||h(L′b)) If |OutL,b| > (log(q) +

yo) · yt then terminate with output OutL,b := OutL,b||(i||⊥).
3. If L′b /∈ S ′L,b, output ⊥ to the adversary and terminate with output OutL,b := OutL,b||(i||⊥).

The leakage function for cR,b is analogous.
We now show that given OutL,1, OutR,1, OutL,2, OutR,2 we can reconstruct the full output sequence for

the adversary’s view with probability 1− 4q
ε2·2yo = 1− 4q

2y0/3
in the following way:

Fix ΣEq, τ, com, universal hash h ← H and adversary A. Set output OutA,1 to “” and OutA,2 to “”.
Repeat the following in rounds i = 1, 2, . . .:

1. Obtain the next tampering function (fL, fR) from adversaryA given its current view, OutA = (OutA,1,OutA,2).
2. If for b ∈ {1, 2}, (i,⊥) ∈ OutL,b or (i,⊥) ∈ OutR,b, then for b ∈ {1, 2}, set OutA,b = OutA,b||(i,⊥) and

abort.
3. If for b ∈ {1, 2}, (i, y) ∈ OutL,b, for some y 6= ⊥, set L′b = L̂′b such that L̂′b ∈ S ′L,b and h(L̂′b) = y.

4. If for b ∈ {1, 2}, (i, ·) /∈ OutL,b, set L′b = L̂′b such that L̂′b ∈ S ′L,b is the most frequent value.

5. If for b ∈ {1, 2}, (i, y) ∈ OutR,b, for some y 6= ⊥, set R′b = R̂′b such that R̂′b ∈ S ′R,b and h(R̂′b) = y.

6. If for b ∈ {1, 2}, (i, ·) /∈ OutR,b, set R′ = R̂′b such that R̂′b ∈ S ′R,b is the most frequent value.
7. If for all b ∈ {1, 2}, L′b = “same” and R′b = “same” output “same” and for b ∈ {1, 2}, set OutA,b =

OutA,b||“same”.
8. Else if at least one of [L′b, R

′]b∈{1,2} is “same” but not all, then for b ∈ {1, 2}, set OutA,b = OutA,b||⊥
and abort.
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9. Else for b ∈ {1, 2}, parse L′b := (comb, openL,b) and R′b := (com′b, openRb). Check that com1 = com′1 =
com2 = com′2. If not, set OutA,b = OutA,b||⊥ and abort.

10. Otherwise, for b ∈ {1, 2} set OutA,b = OutA,b||(L′b, R′b).

It can be determined by inspection that the incorrect value is output only if in one of the at most q
instances, for some b ∈ {1, 2}, there are two distinct values L̂′b, L̂

′′
b ∈ S ′L,b or R̂′b, R̂

′′
b ∈ S ′Rb such that h(L̂′b) =

h(L̂′′b ) or h(R̂′b) = h(R̂′′b ). Due to universality of h and the fact that for b ∈ {1, 2}, |S ′L,b| = |S ′R,b| ≤ 1/ε, this

can occur with probability at most 4q
ε2·2yo , as claimed.

Since for b ∈ {1, 2}, |OutL,b| ≤ (log(q)+yo) ·yt ≤ 2yo ·yt ≤ c ·`, and |OutR,b| ≤ (log(q)+yo) ·yt ≤ 2yo ·yt ≤
c · `, for constant c < 1, we have that with probability 1− 2−k/q over choice of (Outi−1A,1 = Ôut

i−1
A,1 ,Out

i−1
A,2 =

Ôut
i−1
A,2 ), the min-entropy of cL,b (resp. cR,b) conditioned on (Outi−1A,1 = Ôut

i−1
A,1 ,Out

i−1
A,2 = Ôut

i−1
A,2 ) is at least

c′ · ` for constant c′ < 1. We can use the properties of the inner product extractor given in Lemma 2 to argue
that 〈cL,b, cR,b〉 is statistically close to uniform random, given OutL,1, OutR,1, OutL,2, OutR,2. Moreover, since
we have shown that the view of the adversary OutiA,1, Out

i
A,2 can be fully reconstructed given OutL,OutR,

we have that 〈cL,b, cR,b〉 is statistically close to uniform, given the adversary’s view in the CNMC experiment.

Claim 5.4. For i ∈ {0, . . . , q − 1}, Hybrids H2,i,b and H2,i+1,a are 4(ε′ + 2−k)-close, where ε′ = (1 + 2−λ)ε.

Proof. To prove indistinguishability of Hybrids 2 and 3, it is sufficient to show that for and b ∈ {1, 2},
Pr[f iL,b(Lb) /∈ S ′L,b∧D′

1
ΣEq (f

i
L,b(Lb), f

i
R,b(Rb), ·, ·) 6= ⊥] ≤ ε′ and Pr[f iR,b(Rb) /∈ S ′R,b∧D′

1
ΣEq (f

i
L,b(L), f iR,b(Rb), ·, ·) 6=

⊥] ≤ ε′. The result then follows by a union bound.

Given Claim 5.3, to bound the above it is sufficient to show: (1) for b ∈ {1, 2}, each good pair Outi−1A,1 =

Ôut
i−1
A,1 (which does not contain ⊥), Outi−1A,2 = Ôut

i−1
A,2 (which does not contain ⊥), and each value of Rb = R̂b,

Pr[f iL,b(Lb) /∈ S ′L,b∧D′
1
ΣEq (f

i
L,b(Lb), f

i
R,b(Rb), ·, ·) 6= ⊥ | Rb = R̂b∧Outi−1A,1 = Ôut

i−1
A,1 ∧Out

i−1
A,2 = Ôut

i−1
A,2 ] ≤ ε′;

and (2) for b ∈ {1, 2}, each good pair Outi−1A,1 = Ôut
i−1
A,1 (which does not contain ⊥), Outi−1A,2 = Ôut

i−1
A,2 (which

does not contain ⊥), and each value of Lb = L̂b,

Pr[f iR,b(Rb) /∈ S ′R,b∧D′
1
ΣEq (f

i
L,b(Lb), f

i
R,b(Rb), ·, ·) 6= ⊥ | Lb = L̂b∧Outi−1A,1 = Ôut

i−1
A,1 ∧Out

i−1
A,2 = Ôut

i−1
A,2 ] ≤ ε′.

We first fix (ΣEq, com, d
0, d1). Note that fixed ΣEq, com, d

0, d1 and b ∈ {1, 2}, there is a bijection

φL,b (resp. φR,b) between cL,b (resp. cR,b) and (com, d[SL,b]), where d[SL,b] = [d
cL,b[i]
i ]i∈[`]. Therefore the

probability of a particular value of cL,b (resp. cR,b) occurring is equivalent to the probability of Lb =
φL,b(cL,b) (resp. Rb = φR,b(cR,b)). Additionally, Let ρL,b (resp. ρR,b) be the function that given f iR,b(Rb)

(resp. f iL,b(Lb)) returns the unique L′b (resp. R′b) if it exists such that, D′
1
ΣEq (L

′
b, f

i
R,b(Rb), ·, ·) 6= ⊥ (resp.

D′1ΣEq (f
i
L,b(Lb), R

′
b, ·, ·) 6= ⊥). Note that L′b (resp. R′b) is equal to “same” if and only if f iR,b(Rb) = “same”

(resp. f iL,b(Lb) = “same”).
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Now, note that for b = 1 and every (ĉL,1, ĉR,1) and every good pair ÔutA,1, ÔutA,2):

Pr[cL,1 = ĉL,1 | cR,1 = ĉR,1 ∧ Outi−1A,1 = ÔutA,1,Out
i−1
A,2 = ÔutA,2]

=
∑

ĉL,2,ĉR,2

(
Pr[cL,2 = ĉL,2, cR,2 = ĉR,2 | Outi−1A,2 = ÔutA,2]

· Pr[cL,1 = ĉL,1, cR,1 = ĉR,1 | Outi−1A,1 = ÔutA,1 ∧ 〈cL,2, cR,2〉 = 〈ĉL,2, ĉR,2〉]
)

=
∑
m2

Pr[〈cL,2, cR,2〉 = m2 | Outi−1A,2 = ÔutA,2] · Pr[cL,1 = ĉL,1, cR,1 = ĉR,1 | Outi−1A,1 = ÔutA,1 ∧m2]

∈
∑
m̂2

(2−λ ± 2−k) · Pr[cL,1 = ĉL,1 | cR,1 = ĉR,1 ∧ Outi−1A,1 = ÔutA,1 ∧m2 = m̂2] (3)

= (2−λ ± 2−k)
∑
m2

Pr[cL,1 = ĉL,1 | cR,1 = ĉR,1 ∧ Outi−1A,1 = ÔutA,1 ∧m2 = m̂2]

= (1± 2λ−k) · Pr[cL,1 = ĉL,1 | ∧Outi−1A,1 = ÔutA,1]

= (1± 2−λ) · Pr[cL,1 = ĉL,1 | cR,1 ∧ Outi−1A,1 = ÔutA,1],

where (3) follows from Claim 5.3. An analogous statement holds for b = 2.
Morever, by the same reasoning as in the proof of Claim 4.3 (where we showed conditional independence

of cL,b, cR,b) we have that for every (ĉL,b, ĉR,b, ÔutA,b):

Pr[cL,b = ĉL,b | cR,b ∧ Outi−1A,b = ÔutA,b] = Pr[cL,b = ĉL,b | Outi−1A,b = ÔutA,b].

Therefore, for every every (ĉL,1, ĉR,1) and every good pair ÔutA,1, ÔutA,2):

Pr[Lb = L̂b | Rb = R̂b ∧ Outi−1A,1 = Ôut
i−1
A,1 ∧ Outi−1A,2 = Ôut

i−1
A,2 ] ∈ (1± 2−λ) Pr[Lb = L̂b | Outi−1A,b = Ôut

i−1
A,b ].

So for every Rb = R̂b, every good pair ÔutA,1, ÔutA,2) and every L′b /∈ S ′L,b:

Pr[f iL,b(Lb) = L′b | Rb = R̂b ∧ Outi−1A,1 = Ôut
i−1
A,1 ∧ Outi−1A,2 = Ôut

i−1
A,2 ] ≤ (1 + 2λ)ε ≤ ε′.

Therefore,

Pr[f iL,b(Lb) /∈ S ′L,b ∧ D′
1
ΣEq (f

i
L,b(Lb), f

i
R,b(Rb), ·, ·) 6= ⊥ | Rb = R̂b ∧ Outi−1A,1 = Ôut

i−1
A,1 ∧ Outi−1A,2 = Ôut

i−1
A,2 ]

= Pr[f iL,b(Lb) /∈ S ′L,b ∧ f iL,b(Lb) = ρL(f iR,b(Rb)) | Rb = R̂b ∧ Outi−1A,1 = Ôut
i−1
A,1 ∧ Outi−1A,2 = Ôut

i−1
A,2 ]

≤ ε′.

The proof for (2) is analogous.

Claim 5.5. For i ∈ {1, . . . , q}, Hybrids H2,i,a and H2,i,b are 4(ε′ + 2−k)-close, where ε′ = 2 · ε.

Proof. To prove indistinguishability, we must show that for i ∈ {1, . . . , q}, b ∈ {0, 1} the probability that the

event (1) f iL,b(Lb) is not most frequent and D′
1
ΣEq (f

i
L,b(Lb), f

i
R,b(Rb), ·, ·) 6= ⊥ occurs more than yt times in

H2,i,a is at most ((1 + 2−λ)/2)yt + 2−k and the probability that the event (2) f iR,b(Rb) is not most frequent

and D′1ΣEq (f
i
L,b(L), f iR,b(Rb), ·, ·) 6= ⊥ occurs more than yt times in H2,i,a is at most ((1 + 2−λ)/2)yt + 2−k.

We first analyze the event (1). If f iL,b(Lb) = L′b is not the most frequent query in S ′L,b then, by definition,

Pr[f iL,b(L̂b) = L′b | Out
i−1
A = Ôut

i−1
A ] ≤ 1/2. (4)
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Recall that, by the arguments in the proof of the previous Claim, in H2,i−1,b (and hence also H2,i,a), for

good pairs (Outi−1A,1 = Ôut
i−1
A,1 ∧ Outi−1A,2 = Ôut

i−1
A,2 ):

Pr[f iL,b(Lb) = L′b | Rb = R̂b∧Outi−1A,1 = Ôut
i−1
A,1∧Out

i−1
A,2 = Ôut

i−1
A,2 ] ∈ (1±2−λ) Pr[f iL,b(Lb) = L′b | Out

i−1
A,b = Ôut

i−1
A,b ].

Combining with (4):

Pr[f iL,b(Lb) = L′b | Rb = R̂b ∧ Outi−1A,1 = Ôut
i−1
A,1 ∧ Outi−1A,2 = Ôut

i−1
A,2 ] ≤ (1 + 2−λ)/2.

This implies that for every fixed Rb = R̂b (for which Pr[Rb = R̂b∧Outi−1A,1 = Ôut
i−1
A,1 ∧Out

i−1
A,2 = Ôut

i−1
A,2 ] > 0),

Pr[f iL,b(Lb) is not most frequent ∧ D′(f iL,b(Lb), f
i
R,b(Rb)) 6= ⊥ | Rb = R̂b ∧ Outi−1A,1 = Ôut

i−1
A,1 ∧ Outi−1A,2 = Ôut

i−1
A,2 ]

= Pr[f iL,b(Lb) is not most frequent ∧ f iL,b(L) = ρL(f iR,b(Rb)) | Rb = R̂b ∧ Outi−1A,1 = Ôut
i−1
A,1 ∧ Outi−1A,2 = Ôut

i−1
A,2 ]

≤ (1 + 2−λ)/2.

The probability that this occurs yt times for yt distinct values of j ≤ [i], where all outcomes of OutjA,1 =

Ôut
j

A,1 ∧Out
j
A,2 = Ôut

j

A,2 are good for all j is at most ((1 + 2−λ)/2)yt . Since by Claim 5.3, with probability

1− 2−k, all outcomes OutjA,1 = Ôut
j

A,1 ∧OutjA,2 = Ôut
j

A,2 are good for all j ∈ [q], the upperbound for event
(1) follows.

The proof for event (2) is analogous.

Claim 5.6. In Hybrid 3, for all (even inefficient) distinguishers D, it holds that

Pr[D(outbA) = b] ≤ 1/2 +O(2−λ).

Proof. We first compute

O =
∑
m′2

Pr[m2 = m′
2 ∧m1 = m0 +m′

2 | OutA,1,OutA,2] +
∑
m′2

Pr[m2 = m′
2 ∧m1 = m1 +m′

2 | OutA,1,OutA,2]

=
∑
m′2

Pr[m2 = m′
2 | OutA,1,OutA,2] · Pr[m1 = m0 +m′

2 | OutA,1,OutA,2]

+
∑
m′2

Pr[m2 = m′
2 | OutA,1,OutA,2] · Pr[m1 = m1 +m′

2 | OutA,1,OutA,2]

≥ (2−λ − 2−k) · (
∑
m′2

Pr[m1 = m0 +m′
2 | OutA,1,OutA,2] +

∑
m′2

Pr[m1 = m1 +m′
2 | OutA,1,OutA,2])

= 2 · (2−λ − 2−k)

= 2 · 2−λ − 2 · 2−k.

where the first inequality follows from Claim 5.3.
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So

Pr[ message is mb | OutA,1,OutA,2] =

∑
m′2

Pr[m2 = m′
2 | OutA,1,OutA,2] · Pr[m1 = mb +m2 | OutA,1,OutA,2]

O

≤ (2−λ + 2−k) ·
∑
m′2

Pr[m1 = mb +m2 | OutA,1,OutA,2]

O

=
2−λ + 2−k

O

=
2−λ + 2−k

2 · 2−λ − 2 · 2−k

≤ 2−λ + 3 · 2−k

2 · 2−λ

= 1/2 +
3 · 2−k

2 · 2−λ
= 1/2 +O(2−λ).

References

1. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures from non-interactive assump-
tions. In Lee, D.H., Wang, X., eds.: ASIACRYPT 2011. Volume 7073 of LNCS., Springer, Heidelberg (December
2011) 628–646

2. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-
state non-malleable codes. [50] 393–417

3. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In Servedio,
R.A., Rubinfeld, R., eds.: 47th ACM STOC, ACM Press (June 2015) 459–468

4. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In Shmoys, D.B., ed.:
46th ACM STOC, ACM Press (May / June 2014) 774–783

5. Aggarwal, D., Dottling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous non-malleable codes in the
8-split-state model. Cryptology ePrint Archive, Report 2017/357 (2017) https://eprint.iacr.org/2017/357.

6. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-malleable codes. [31] 398–426
7. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes against bit-wise

tampering and permutations. In Gennaro, R., Robshaw, M.J.B., eds.: CRYPTO 2015, Part I. Volume 9215 of
LNCS., Springer, Heidelberg (August 2015) 538–557

8. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing compiler for non-malleable
codes against bit-wise tampering and permutations. [31] 375–397

9. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes for small-depth circuits.
Cryptology ePrint Archive, Report 2018/207 (2018) https://eprint.iacr.org/2018/207.

10. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for bounded depth, bounded fan-
in circuits. In Fischlin, M., Coron, J.S., eds.: EUROCRYPT 2016, Part II. Volume 9666 of LNCS., Springer,
Heidelberg (May 2016) 881–908

11. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from average-case hardness: AC0,
decision trees, and streaming space-bounded tampering. [56] 618–650

12. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS, IEEE Computer Society Press
(October 2001) 106–115

13. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal - an O(n2)-query attack on any key exchange
from a random oracle. In Halevi, S., ed.: CRYPTO 2009. Volume 5677 of LNCS., Springer, Heidelberg (August
2009) 374–390

14. Bitansky, N., Paneth, O.: From the impossibility of obfuscation to a new non-black-box simulation technique.
In: 53rd FOCS, IEEE Computer Society Press (October 2012) 223–232

15. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-malleable codes. Cryptology
ePrint Archive, Report 2015/129 (2015) http://eprint.iacr.org/2015/129.

16. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-malleable codes. In Chatzi-
giannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D., eds.: ICALP 2016. Volume 55 of LIPIcs., Schloss
Dagstuhl (July 2016) 31:1–31:14

25

https://eprint.iacr.org/2017/357
https://eprint.iacr.org/2018/207
http://eprint.iacr.org/2015/129


17. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decodable codes. [53] 489–514
18. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-malleable codes and their ap-

plications. [50] 367–392
19. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth circuits, and affine functions. In

Hatami, H., McKenzie, P., King, V., eds.: 49th ACM STOC, ACM Press (June 2017) 1171–1184
20. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. In: 55th FOCS,

IEEE Computer Society Press (October 2014) 306–315
21. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient functions. [62] 670–683
22. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In Naor, M., ed.: ITCS 2014, ACM (January

2014) 155–168
23. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. [53] 440–464
24. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: Simpler, shorter, stronger. In

Kushilevitz, E., Malkin, T., eds.: TCC 2016-A, Part I. Volume 9562 of LNCS., Springer, Heidelberg (January
2016) 306–335

25. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-
malleable codes. [31] 532–560

26. Coron, J.S.: Security proof for partial-domain hash signature schemes. In Yung, M., ed.: CRYPTO 2002. Volume
2442 of LNCS., Springer, Heidelberg (August 2002) 613–626

27. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for leakage-resilient, locally
decodable and updatable non-malleable codes. In Fehr, S., ed.: PKC 2017, Part I. Volume 10174 of LNCS.,
Springer, Heidelberg (March 2017) 310–332

28. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Local non-malleable codes in the bounded retrieval model. In
Abdalla, M., Dahab, R., eds.: PKC 2018, Part II. Volume 10770 of LNCS., Springer, Heidelberg (March 2018)
281–311

29. Dachman-Soled, D., Liu, F.H., Shi, E., Zhou, H.S.: Locally decodable and updatable non-malleable codes and
their applications. [31] 427–450

30. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable commitment. In: 30th ACM STOC,
ACM Press (May 1998) 141–150

31. Dodis, Y., Nielsen, J.B., eds.: TCC 2015, Part I. In Dodis, Y., Nielsen, J.B., eds.: TCC 2015, Part I. Volume
9014 of LNCS., Springer, Heidelberg (March 2015)
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A CNM Randomness Encoder to Single-Bit CNMC

Let Π = (CRSGen,E = (E1,E2),D) be a CNM Randomness Encoder. To construct a CNMC for a single bit
from Π, we must show how to use E to encode a message b ∈ {0, 1}. In the case of the CNM Randomness

Encoder given in Section 4, this can be done by choosing random cL, cR ∈ F
`
λ

2λ
, conditioned on the parity of

〈cL, cR〉 being equal to b. and then running E(cL||cR||renc||rL||rR) In general, one can run E(r) repeatedly
until E2(r) outputs a random message m with parity equal to b. (this will give an encode algorithm that
runs in polynomial time with all but negligible probability).

Now, it can be immediately seen that an adversary who breaks the security formulation of CNMC given
in Definition 4 must also break the security of the CNM Randomness Encoder, given in Definition 5.

B Perfectly Unique CNMC Implies One-to-one Commitments

Let Π = (CRSGenΠ ,E,D) be a CNMC such that with at all but negligible probability over choice of CRS,
Σ, choice of b ← {0, 1} and randomness for generating (L,R) ← EΣ(b), there exists a single R′ = R such
that DΣ(L,R′) 6= ⊥. Then we will construct a one-round one-to-one commitment (in the CRS model) as
follows.

– CRSGen(1n): Run CRSGenΠ(1n) to generate Σ. Output Σ.
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– Commit(Σ, b): Generate (L,R)← EΣ(b). Output c = L. Output decommitment d = R.
– Open(Σ, c, d): Parse c = L and d = R. Output b = DΣ(L,R).

It can immediately be seen that the scheme is a one-to-one commitment by the perfect uniqueness
property of the underlying CNMC.

The hiding property of the commitment scheme is implied by non-malleability. This is because if the
adversary can predict b by seeing L then the adversary can tamper with L in a way that depends on b
(e.g. leave L untouched if b = 0 and set L to a random value if b = 1), thus breaking non-malleability.
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