
Fortified Universal Composability: Taking
Advantage of Simple Secure Hardware Modules

Brandon Broadnax1, Alexander Koch1, Jeremias Mechler1, Tobias Müller2, Jörn
Müller-Quade1, Matthias Nagel1

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 FZI Research Center for Information Technology

{brandon.broadnax,alexander.koch,jeremias.mechler,joern.mueller-
quade,matthias.nagel}@kit.edu,tobias.mueller@fzi.de

Abstract. Remote hacks are the most common threat in the Internet.
We therefore initiate the study of incorporating very simple remotely
unhackable hardware modules, such as air-gap switches and data diodes,
into the field of multi-party computation. As a result, we are able to
construct MPC protocols with very strong and composable security
guarantees against remote hacks. Our application of remotely unhackable
hardware modules is motivated by the fact that hardware modules with
very limited functionality can be implemented securely as fixed-function
circuits and verified for correctness. Such hardware modules can therefore
not be hacked remotely.
Using only very few and very simple remotely unhackable hardware
modules, we construct protocols where mounting remote attacks does
not enable an adversary to learn or modify a party’s inputs and outputs
unless he hacks a party via the input port before it has received its (first)
input (or gains control over all parties). Hence, our protocols protect
against all remote attacks, except for hacks via the input port while a
party is waiting for input. To achieve this level of security, the parties’
inputs and outputs are authenticated, masked and shared in our protocols
in such a way that an adversary is unable to learn or modify them when
gaining control over a party via a remote hack. For simplicity we assume
erasing parties in our constructions. This is, however, not necessary and
we show that this assumption can be dropped.
The remotely unhackable hardware modules applied in this work are
based on substantially weaker assumptions than the hardware tokens
proposed by Katz at EUROCRYPT ‘07. In particular, they are not
assumed to be physically tamper-proof, can thus not be passed to other
(possibly malicious) parties, and are therefore not sufficient to circumvent
the impossibility results in the Universal Composability (UC) framework.
Therefore, our protocols still rely on additional, well-established setup
assumptions.
Since the advantages provided by unhackable hardware modules, e.g.
isolation properties, cannot be adequately captured in existing composable
security frameworks, we have conceived a new security framework based
on the UC framework. We call our framework Fortified UC.

Keywords: universal composability, remotely unhackable hardware mod-
ules

1 Introduction

In the field of multi-party computation, one distinguishes between static and
adaptive corruptions. In the static setting, parties may only be corrupted prior
to the start of the protocol. In the adaptive corruption model, first proposed
by [CFGN96], the adversary is able to corrupt parties throughout the protocol
execution. In particular, the adversary may learn all secrets of a protocol party
even if a party is corrupted “late” in the protocol execution.

In practice, however, a protocol party could be (temporarily) isolated from
the network and may therefore not be hacked remotely. For instance, a party may
use data diodes (unidirectional channels) or disconnect itself via air-gap switches,
making corruption via a remote hack impossible. In order to gain control, an
adversary would have to hack that party before it disconnects itself. Furthermore,
a party may have additional hardware modules at its disposal such as a simple
encryption unit that only implements a specific public key encryption scheme.
Such hardware modules with very limited functionality can be implemented
securely as fixed-function circuits and formally verified for correctness. They can
therefore be assumed to be resilient against remote hacking. In particular, an
adversary can only corrupt such modules if he has direct physical access.

In order to adequately capture the advantages provided by remotely unhack-
able hardware modules, we propose a new framework—called Fortified UC—based
on the UC framework [Can01]. In our new framework one distinguishes between
physical attacks and online attacks. Physical attacks model adversaries physically
tampering or replacing hardware. Online attacks model adversaries mounting
remote attacks, e.g. by exploiting software bugs. Contrary to physical attacks,
online attacks give the adversary control over a party only if the party is cur-
rently online and not assumed to be an unhackable hardware module. A party’s
current online state is determined by the type and state of its channels, e.g.,
state of its air-gap switches. The hardware modules used in a protocol and their
interconnections are part of what we call the protocol architecture.

Utilizing only very few simple unhackable hardware modules, we construct
protocols that protect against all online attacks i) mounted after a party received
its (first) input and ii) mounted before a party received input if the attack comes
from the “outside”, i.e. from all channels except one at a party’s input port.
More specifically, the parties in our protocols are disconnected from the outside
while waiting for input and can therefore not be corrupted via online attacks
from the outside at that point. After receiving input, the parties authenticate,
mask and share their secrets in such a way that mounting online attacks gives
the adversary control over a party but not the ability to learn the inputs or
outputs (i.e. results of the MPC) of a party, nor to modify them unless he gains
control over all parties. This stands in contrast to adaptive UC security where an
adversary may learn and modify the inputs and outputs of corrupted parties after

2

they received input. Although erasing parties seem necessary for such a strong
protection, we show that this assumption can be dropped using an appropriate
protocol architecture.

Our remotely unhackable hardware modules are based on substantially weaker
assumptions than the hardware tokens proposed by [Kat07]. In particular, our
hardware modules can be tampered with if one has direct physical access to them.
They cannot be passed to other (possibly malicious) parties but are only used
and trusted by their owner. Our modules are thus not sufficient to circumvent
the impossibility results of [CF01; CKL03]. Therefore, our protocols assume some
additional (UC-complete) trusted setup. Given these assumptions, our protocols
provide the best possible protection against online attacks in a setting where
parties cannot be protected while waiting for input.

1.1 Our Contribution

We utilize realistic simple remotely unhackable hardware modules that, to the
best of our knowledge, have not been used for secure multi-party computation so
far. Our main contributions are:

New Composable Security Framework: We propose a new security framework
that, unlike previous frameworks, adequately captures the advantages provided
by remotely unhackable hardware modules. As with UC security, our security
notion is universally composable (Theorem 2). Furthermore, our security notion is
equivalent to adaptive UC security for protocols that do not use any remotely un-
hackable hardware modules (Theorem 1). As a consequence, UC-secure protocols
can be used as building blocks for constructions in our framework.

New Protocols With Strong Security Guarantees Against Online Attacks:
Using only very few simple remotely unhackable hardware modules, we construct
MPC protocols with very strong security guarantees against online attacks: An
adversary is unable to learn or modify a party’s inputs and outputs by mounting
online attacks unless he gains control over a party via the input port before the
party has received its (first) input (or gains control over all parties). We present
a construction for non-reactive functionalities (Theorem 3) using only two simple
remotely unhackable hardware modules (apart from air-gap switches and data
diodes) per party and a protocol for reactive functionalities (Theorem 5) that
uses only one additional simple remotely unhackable hardware module. Both
constructions can be proven secure in our new framework for adversaries that
gain control over all but one parties. We also present an augmentation of these
constructions that allow simulation also in the case that all parties are under
adversarial control (Theorems 4 and 6). For simplicity, we assume erasing parties
in our constructions. However, we later show how this assumption can be dropped
(cf. Section 6).

1.2 Related Work

Adaptive Security, first proposed in [CFGN96], captures security against adver-
saries that can corrupt parties at any point in the protocol. This notion has since

3

received considerable attention in the literature, see e.g. [CLOS02; IPS08; HLP15;
CPV17]. In contrast to adaptive security where an adversary may learn all secrets
of a corrupted party, we achieve that remotely hacking a party after it received
its inputs does not leak anything about them at all, except for the case that all
parties have been corrupted.

Mobile adversaries [OY91; BDLO14], a notion strictly stronger than adaptive
security, models an adversary taking over a participant – similar in spirit to our
framework as “remote hacks/virus attacks” – and possibly undoing the corruption
at a later point in time.

Concerning the used trusted building blocks, we assume data diodes, which are
channels which allow for communication only in one specified direction. [GIK+15]
analyze the cryptographic power of unidirectional channels as a building block,
whereas we use unidirectional channels as a shield against dangerous incoming
data packets. [AMR14] make use of other trusted building blocks, such as a secure
equality check hardware module, to ensure the correct, UC-secure functioning of
a parallel firewall setup in the case of a malicious firewall.

Tamper-proof hardware tokens, first proposed by [Kat07], are an interesting
research direction for finding plausible and minimal UC setup assumptions. Along
this line of research, [GIS+10] showed strong feasibility results of what can be done
with these tokens. Moreover, [DMMN13] showed that UC security is possible with
a constant number of untrusted and resettable hardware tokens. Furthermore,
[HPV17] constructed constant-round adaptively secure protocols which allow all
parties to be corrupted.

Isolation is a general principle in IT security, with lots of research on isolation
through virtualization, see e.g. [Nem17]. Isolation in this way can be seen as a
software analog of a trusted, remotely unhackable encryption module. Moreover,
there is a wealth of literature on data exfiltration/side channel attacks to air-gaps
including attacks based on acoustic, electromagnetic and thermal covert channels,
cf. [ZGL18], which are not relevant to our work, as they are for protecting against
outgoing communication from malicious internal parties, while we use data
diodes/air-gap switches for the purpose of not being hackable from the outside.
As an example, the Qubes OS provides strict separation between application
domains, allowing to use a isolated GPG environment in a safe manner [Qub18].

2 The Fortified Universal Composability Framework

In this section, we present our changes to the UC framework.

2.1 Channels

In the UC framework, the model of computation consists of instances (ITIs) of
interactive Turing machines (ITMs). Communication is modelled via external
write instructions written on an ITI’s outgoing message tape. The instruction
takes the sender’s code and ID, the receiver’s code and ID, one of the receiver’s
externally writable tapes as well as the message as arguments. A control function

4

decides if the instruction is allowed. There are three different ways for machines
to communicate: provide input, send a message, give sub-routine output. This is
modelled by external write instructions targeted at another party’s input tape,
incoming message tape or subroutine output tape, respectively (cf. [Can01]).

In order to model protection mechanisms such as air-gap switches and data
diodes (unidirectional communication) as well as the online state of a protocol
party, we explicitly specify (possibly multiple, uniquely identified) channels
between ITMs that determine if communication between two ITMs is allowed and
in which direction it is allowed. In particular, if there exists no channel between
two ITMs then communication is not allowed between them.

Channels can be between (sub-)parties of a protocol or between a (sub-)party
and an ideal functionality. In addition, channels can also be between a party and
the environment or the adversary. Channels between a party and the environment
model the allowed communication with calling parties (from other protocols).
Channels between a party and the adversary model possible communication to
the “outside world” that can be “delivered” by the adversary.

Channels are modelled on top of the existing communication mechanism of
the UC framework. Specifically, each protocol description must include a set of
channels involving the protocol parties, which is part of the protocol architecture
(cf. Section 2.3). The protocol architecture is given to the control function as
an additional input. An external write instruction is allowed by the control
function only if there exists a channel that allows the intended communication
between the sending ITI and the receiving ITI. Otherwise, an external write
instruction is silently dropped.

In our framework, we have three kinds of channels: standard channels that
permanently allow bi-directional communication as well as two kinds of enhanced
channels: air-gap switches and data diodes.

Enhanced Channels. In our framework, we want to capture possible security
gains resulting from being isolated by forbidding certain communication and
hence corruption (“remote hacking”) by the adversary. To this end, we introduce
two kinds of enhanced channels:

1. Data diodes that allow communication in one direction only.
2. Air-gap switches that can be connected or disconnected by the party that

operates them. Disconnected air-gap switches allow no data transmissions at
all. Connected ones allow bi-directional communication. Each air-gap switch
has an initial connection state determined by the protocol architecture.

In order to model the current state of air-gap switches, we introduce a special
air-gap switch status tape for each party containing the identifiers of each of its
air-gap switches as well as its current state. A party can change the current state
of each of its air-gap switches by writing on this tape. The control function gets
the contents of each air-gap switch status tape as an additional input.

Communication between A and Z and A and Ideal Functionalities. As in the
UC framework, the adversary and the environment may freely interact with

5

each other. The same applies to the communication between the adversary and
ideal functionalities. Formally, we always assume standard channels between
these ITMs which are given to the control function in addition to the protocol
architecture. Communication between these ITMs is therefore independent of
the given protocol architecture.

Terminology. Let µ and µ′ be two ITMs. We say that “µ is connected to µ′” if
there is a channel between µ and µ′. If there is a data diode between µ and µ′ in
the direction of µ′ then we say that “µ is connected to µ′ via data diode”. If there
is an air-gap switch operated by µ to µ′ then we say that “µ is connected to µ′
via air-gap switch”. Likewise, we say that “µ is connected to µ′ via a standard
channel” if there is a standard channel between µ and µ′. If there is a channel C
between µ and the adversary we say that “µ is connected to the adversary via
C”. Likewise, if there is a channel C between µ and the environment we say that
“µ is connected to the environment via C”. Furthermore, we say that “µ can send
messages (or provide input or give output) to µ′ via C” or that “µ′ can receive
messages (or input or output) from µ via C” if C is a channel between µ and µ′
that allows the respective external write instruction.

Conventions for Graphical Depiction of Architectures. Main parties are rep-
resented by boxes with rounded corners, sub-parties and ideal functionalities
by cornered ones. Boxes with bold lines and grey background denote that the
sub-party is unhackable. Standard channels are denoted by lines, data diodes
by and air-gap switches by and (initially (dis)connected).
Dashed lines denote standard channels to other parties that are not shown.

2.2 Online State

Online state of Channels to the Environment. The environment Z may, upon each
activation, mark each channel that exists between Z and a protocol party either
online or offline. For this, we introduce a special channel marking tape containing
the identifiers of each channel to Z and the current markings. Z can change the
current marking of each channel to Z by writing on this tape. The control function
gets the contents of this tape as an additional input. As the environment embodies
other, concurrently executed protocols this mechanism reflects the online state of
the calling parties being implicitly incorporated in the environment. In addition,
for each channel to Z, Z is informed upon each activation if it can receive output
from that channel. (Cf. the proof of the composition theorem (Theorem 2) in
Section 3 where these two abilities of Z will be very important.)

Online State of Protocol Parties. A (sub-)party P of protocol π is online via C
if C is a channel such that one of the following holds:

1. P can receive messages from the adversary via C
2. P can receive output from an ideal functionality F via C
3. P can receive output/input via C from a sub-party/calling party M and M

is online via C ′ and C ′ is a channel between M and an ITM µ 6= P .

6

4. P can receive input from the environment Z via C and Z has marked the
channel C online

If none of the above holds, P is offline via C. If there exists no channel such that
P is online via that channel, we say that P is offline. If P is online via some
channel, we say that P is online.

Intuitively, (1) models a party who is able to receive messages from the
“outside world” and is therefore online. (2) models a party who is able to receive
messages from a trusted third party F that “lives” somewhere in the outside
world.3 For instance, F could be a public bulletin board, a common reference
string, or a trusted party evaluating a specific function. (3) models a party being
transitively online via connections to other parties who are online. (4) models a
party being (transitively) online via connections to a calling party from another
protocol who is online. Note that each party has an initial online state prior
to invocation depending on the protocol architecture (in particular, the initial
connection states of air-gap switches) and how the environment initially marked
the respective channels.

Status Report to the Adversary. Each time the adversary is activated, he gets
informed via which channels each party is online. This is called the status. As
will be described in Section 2.3, the adversary will be able to gain control over
(hackable) parties when they are online. Giving the status to the adversary
facilitates corruption as the adversary does not have to examine which parties
are online.

Example 1. See Fig. 1a on Page 8 for a graphical depiction.
Consider an environment Z that permanently marks the channel to P1 online

and the channel to P2 offline. P1 disconnects its air-gap switch to Z as soon as it
has received input. Later, P1 connects its air-gap switch to the adversary at a
specific point, say, after having erased its input.

Q1 is always online (being connected to the ideal functionality F via a
standard channel). The same holds for P2 (being connected to the adversary A
via standard channel). Therefore, Q2 is also always online (being connected to P2
via a standard channel). P1 is online before receiving its input (being connected to
the environment Z via a connected air-gap switch and Z has marked the channel
to P1 online), offline immediately afterwards, and online again after having erased
its input (having connected its air-gap switch to the adversary). M ’s online state
is the same as P1’s (being connected to P1 via a standard channel).

3 Note that it may be necessary to disable a party being online via a channel to specific
functionalities such as signature cards in order to adequately model them. This can
be done by, e.g., allowing functionalities to mark their channels to parties offline or
online (like the environment). For simplicity, we do not consider this mechanism in
this work.

7

P1 P2

Q1 Q2M

A

F

on off

(a) Architecture for Example 1

P1 P2

Q1 Q2M

A

F

on off

(b) Architecture for Example 2

Fig. 1: Architectures for Example 1 and 2.

2.3 Corruption Model

We distinguish between two kinds of corruption: physical attack and online attack.
Physical attacks model an adversary physically tampering with or replacing a
party’s hardware, giving him full control over all of a party’s hardware. For
simplicity, these attacks are only possible prior to the start of the protocol. This
restriction models an adversary secretly tampering with a party’s hardware while
that party is absent or models a malicious party setting up its own hardware.
Online attacks model remote hacks, e.g. by sending a computer virus, which can
only take effect if a party is online and not resilient to remote hacks. Unlike
physical attacks, online attacks can be mounted throughout the protocol execution.
In the following, we define our new corruption model.4

In our framework, parties can be either hackable or unhackable, meaning that
they can be corrupted via an online attack or not. The protocol architecture
specifies which parties are hackable or unhackable (cf. Section 2.3).

Let P be the set of main parties of a protocol π. At the first activation5,
the adversary may only send a physical-attack instruction that enables him
to gain control over parties regardless of the protocol architecture. Formally, A
writes (physical-attack,M), where M ⊆ P, on his outgoing message tape.
Each P ∈M and all of their sub-parties are then connected to the adversary via
a standard channel and all air-gap switches controlled by and data diodes coming
from these parties are replaced with standard channels. In addition, the adversary
gets full control over all P ∈M and all of their sub-parties (including unhackable
ones). More specifically, all future inputs and subroutine outputs received by these
4 Note that the following describes the behavior of protocol parties in the real model
upon receiving corruption messages. As in the UC framework, in ideal protocols the
behavior upon party corruption is determined by the ideal functionality.

5 As in the UC framework, the first ITI to be invoked by the environment in our
framework is A (cf. Definition 2 for the Fortified UC execution experiment).

8

parties are forwarded to A and A may instruct these parties to send any message
of his choice (formally, A can do this by sending external write instructions
targeted at the incoming message tape of a party over which he has control).

From the second activation on, the adversary may not send a physical-attack
instruction anymore. A may send online-attack instructions that enable A to
gain control over hackable parties when they are online. Formally, if A writes
(online-attack, P) on his outgoing message tape and P is a (sub-)party of π
that is online and hackable, then a standard channel between P and A is created,
all air-gap switches controlled by P are connected, and P sends its entire local
state to A. From then on, A has full control over P . If P is unhackable, this
instruction is ignored.

If A has gained control over a (sub-)party P through one of the above
instructions, we say that P is “corrupted”.

Finally, if a (sub-)party P is corrupted, then each ideal functionality which is
connected to P is informed about P being corrupted through a special message
(corrupt, P) that is written on its incoming message tape. Also, each main party
immediately informs the environment after being corrupted.6

“Tainting” Unhackable Parties. Consider an unhackable party E that is connected
to a hackable party M via air-gap switch and to the adversary via air-gap switch.
E’s air-gap switch to M is connected only if E’s air-gap switch to the adversary
is disconnected. M is only connected to E. Therefore, A cannot gain control
over M (through an online-attack instruction) since M is offline. However, it
should be intuitively possible for A to gain control over M since otherwise E
would act as a “perfect firewall” for M .

In order to do so, the adversary may send taint instructions. Formally, if A
writes (taint, P) on his outgoing message tape and P is a (sub-)party of π that
is online and unhackable, then a standard channel between P and A is created.
This way, A can gain control over M since M is now online via the air-gap switch
to E if that air-gap switch is connected.

Example 2. See Fig. 1b on Page 8 for a graphical depiction.
Consider an environment Z that permanently marks its channel to P1 online

and to P2 offline. On receiving input, P1 disconnects its air-gap switch to Z. P2
connects its air-gap switches to the adversary and Q2 upon receiving input.

At his first activation, the adversary A may write (pyhsical-attack,M),
M⊆ {P1, P2}. If, e.g.,M = {P1} then A gains control over P1 and M as well
as (the unhackable) party Q1. From the second activation on, A may still gain
control over P1 before P1 has received its input by writing (online-attack, P1)
6 Note that, to ensure that the above instructions can be fully carried out, the en-
vironment Z is not allowed to activate any other ITI upon being informed by a
(main) party P that P is corrupted until Z is explicitly informed (by the control
function) that this instruction has been fully carried out (in particular, all function-
alities connected to parties that are corrupted through that instruction have been
(iteratively) informed that these parties are corrupted and all corrupted main parties
have informed Z that they are corrupted).

9

since P1 is online via the channel to Z at this point. A may also choose to “skip”
P1 by writing (online-attack,M) but not (online-attack, P1). This way, A
can still gain control over P1 after P1 has received its input since P1 is online
via the channel to M (because a standard channel between M and A has been
created). Moreover, A cannot gain control over P2 through an online-attack
instruction before P2 has received its input. Note that “skipping” P1 would be
prevented if P1 was connected to M via an initially-disconnected air-gap switch.

Remark 1. Note that our corruption model gives the adversary lots of freedom.
In particular, the adversary is still able to freely control a party corrupted via an
online-attack instruction even in the case that such a party is offline via all
channels specified by the protocol architecture (as is the case for party M after
P1 has received its input in Example 2 on Page 9).

This is because we grant the adversary standard channels to parties corrupted
via online-attack instructions. Intuitively, this models the ability of a corrupted
device to communicate with the outside world via side-channels. Allowing the
adversary to corrupt a party (via online-attack instructions) if a party is only
online via channels to a tainted party can also be seen as exploiting side channels.
Also, the adversary always knows which parties are online and can gain control
over a party even if that party is not connected to the adversary but, e.g., online
via some channel to a sub-party that is online. Our corruption model therefore
captures the vulnerabilities implied by being online in a very pessimistic way.
This has the advantage of making the security notion of our framework both
strong and simple at the same time.

Combination of Parties. In the UC framework, parties may be combined by
giving them the same PID or the same value in a component of the PID (PID-
wise corruption). Intuitively, combined parties are processes running on the
same physical machine and therefore may only be corrupted together . In our
framework, two parties P = (pid1|| . . . ||pidl) and P ′ = (pid′1|| . . . ||pid′m) are
combined if i) pid1 = pid′1 and ii) P, P ′ are connected via standard channels
only and iii) P, P ′ are both either hackable or unhackable. If P, P ′ are combined
then any (online-attack, µ) or (taint, µ) instruction such that µ ∈ {P, P ′}
affects both parties. We will later (implicitly) combine dummy parties with their
respective calling party in the constructions presented in this work.

Protocol Architecture. The protocol architecture of a protocol π is the set of all
channels involving the parties of π and, in addition, a specification of the initial
connection state of each air-gap switch that exists in that set and for each party
in π also a specification of whether that party is hackable or unhackable.

2.4 Interface Modules and Fortified Functionalities

Recall our security goal: The adversary should be unable to learn or modify a
party’s inputs and outputs (i.e. results of the MPC) via online-attack instruc-
tions i) mounted after a party received its (first) input (unless all parties are

10

corrupted) and ii) mounted before a party received input if the online attack
“comes from the outside”, i.e. if the online attack can only take effect if a party is
online via a channel that is not connected to the environment. To model this goal,
we introduce interface modules, an appropriate ideal-model protocol architecture
and fortified functionalities.

Interface Modules. In order to achieve the above-mentioned level of security, a
party’s result of the MPC must remain unmodified and hidden from the adversary
even if the party is corrupted via an online-attack instruction after receiving
input. This is not possible if a party learns its result and outputs it itself since
the adversary would learn this result if he corrupts the party and could then
also instruct it to output a value that does not equal its result. Furthermore, for
reactive tasks, a party corrupted after receiving input (via an online-attack
instruction) must also not be able to learn or modify its input(s) for the rounds
≥ 2.

Deviating from the UC framework, we therefore allow the main parties to
invoke special sub-parties called interface modules that are connected to their
main party as well as to the environment via channels specified by the protocol
architecture. These interface modules may thus give subroutine output to or
receive input from the environment subject to the protocol architecture.

Intuitively, interface modules model simple hardware modules connected to,
e.g., a PC. During the protocol execution, a user does not trust his PC since
it may have been remotely hacked (in particular, the output of his PC may
have been altered by a hacker). Instead, he only trusts the unhackable interface
modules and, in particular, the outputs given by them (e.g. via a display).

In our constructions, interface modules will be unhackable sub-parties with
very limited functionality (except for the interface module introduced in Section 6
which will be hackable). We will assume an interface module called output
interface module (OIM) that is used for ensuring that a party’s result of the
MPC remains unmodified and hidden from the adversary even in the case that
the party is corrupted after receiving input. More specifically, a party’s result(s)
will only be learned by its OIM, which outputs these result(s) instead of the
party.7 For reactive tasks, we will also assume an input interface module (IIM)
that is used for ensuring that a party’s input(s) for the rounds ≥ 2 remain
secret and unmodified. Note that in the ideal execution, the ideal functionality
may also interact with dummy parties corresponding to interface modules (see
Definition 1).

Ideal Protocols. In ideal protocols, each dummy party is connected to the en-
vironment and to the ideal functionality F via channels specified by the ideal
protocol’s architecture. Recall that, as described in Section 2.3, F is informed

7 Note that the adversary is, of course, still able to determine what a corrupted party
outputs. However, he cannot modify a party’s result(s) of the MPC, which are the
outputs of the party’s (unhackable) OIM.

11

through a special message (corrupt, P), which is written on its incoming message
tape, when a party P connected to F is corrupted.8

Denote by SC(F) the ideal protocol where the dummy parties are connected to
F and the environment via standard channels. For a non-reactive9 functionality
F , let AG(F) be the ideal protocol where N hackable “dummy main parties”
P1, . . . , PN are connected to F via an initially disconnected air-gap switch and
to the environment via an initially connected air-gap switch and additionally N
unhackable “dummy output interface modules” OIM1, . . . ,OIMN are connected
to F and the environment via standard channels. Upon input v, each party Pi
disconnects its air-gap switch to the environment, connects its air-gap switch to
F , and passes v to F . Each Pi connects its air-gap switch to the environment
again upon receiving a special message open from F . Furthermore, if F is
reactive, AG(F) additionally contains N unhackable “dummy input interface
modules” IIM1, . . . , IIMN which are connected to F and the environment via
intitially disconnected air-gap switch. Each IIMi connects its air-gap switch to
the environment upon receiving open from F .

By construction, AG(F) ensures that each party Pi cannot be corrupted by an
online-attack instruction “coming from the outside” prior to receiving input,
i.e. each Pi can only be corrupted by an online-attack instruction prior to
receiving input if it is online via its channel to the environment (which is the
case if the environment marks this channel online).

Note that we will also refer to OIMi (and IIMi) as the “dummy OIM (resp.
IIM) of Pi”

Standard Functionalities. We call an ideal functionality G standard if G i) imme-
diately notifies the adversary upon receiving input from an (honest) party, and
ii) is standard corruption10, and iii) only gives delayed outputs to parties (except
for “corrupted” outputs upon receiving corruption messages).

Fortified Functionalities. In contrast to functionalities in the adaptive UC security
model, fortified functionalities do not pass the inputs and outputs of a party
Pi corrupted after receiving input to the adversary A and also do not allow
him to modify Pi’s input and the output to Pi’s dummy OIM, unless all parties
Pj (j = 1, . . . , N) are corrupted. A can only block an output or instruct the
8 Note that the adversary is not allowed to write external write instructions con-
taining the special message (corrupt, P) in order to prevent him from bypassing the
corruption rules (e.g. by sending (corrupt, P) to the ideal functionality during the
protocol execution while party P is offline).

9 For a definition of reactive resp. non-reactive functionalities, see Appendix B.
10 Recall that an ideal functionality F is standard corruption if it proceeds as follows

upon receiving a (corrupt, P) message from A. First, F marks P as corrupted and
outputs corrupted to P . In the next activation, F sends to A all the inputs and
outputs of P so far. In addition, from this point on, whenever F gets an input value
v from P , it forwards v to A, who may then send a “modified input value” v′ that
overwrites v. Also, all output values intended for P are sent to A instead.

12

P1 P2 PN

[G]

. . .OIM1 OIM2 OIMN

Fig. 2: Architecture of the Ideal Protocol AG([G]).

functionality to pass either the computed output or an error symbol ⊥ to Pi’s
dummy OIM. If all parties are corrupted, A learns all inputs and outputs and
may modify them arbitrarily (including the outputs to the dummy OIMs).

Definition 1 (Fortified Functionality). Let G be a non-reactive standard
ideal functionality interacting with N parties P1, . . . , PN and A. Define the
fortified functionality [G] of G interacting with P1, . . . , PN , A and additionally
N “dummy output interface modules (OIMs)” OIM1, . . . ,OIMN as follows: (For
a graphical depiction of AG([G]), see Fig. 2 in Appendix A.)
– [G] internally runs an instance of G.
– [G] initializes a counter c = 0.
– Upon receiving input from a party Pi, [G] forwards that input to G.
– Each time G sends a notification to A upon receiving input from an (honest)

party, [G] forwards that notification to A.
– [G] forwards all delayed outputs of G to A. Upon confirmation by A, [G]

forwards the output to the dummy OIM of the party for which G intended
this output.

– Upon receiving (corrupt, Pi), [G] does the following:
• If [G] has not yet received input from Pi, [G] increments c, marks Pi as
corrupted before input and forwards (corrupt, Pi) to G.

• If [G] has already received input from Pi, [G] increments c, marks Pi as
corrupted after input and forwards (corrupt, Pi) to G.

– If G outputs “corrupted” to Pi upon receiving (corrupt, Pi), [G] forwards this
to Pi.

– Handling Parties Pi marked as corrupted before input:
• If G sends the input of Pi to A, [G] forwards that input to A. Furthermore,
if A sends a modified input value for Pi, [G] forwards that value to G.
• If G sends an output intended for Pi to A, [G] sends that output to A. A
may instruct [G] to pass any output of his choice to OIMi.

– Handling Parties Pi marked as corrupted after input:
• If c < N and G sends the input of Pi to A upon receiving (corrupt, Pi)
(after having output “corrupted” to Pi), ignore this message. Furthermore,
if A sends a modified input value for Pi, ignore this value.

13

• If c < N and G sends the output intended for Pi to A, [G] first notifies
A that OIMi is about to receive output. A may then instruct [G] to pass
that output or ⊥ to OIMi.

– If c = N , send all inputs and outputs to A. In addition, A may determine
the outputs of all dummy OIMs in this case.

– All other messages between A and G are forwarded.
– If A sends (output, ỹ, Pi), [G] outputs ỹ to Pi if [G] has marked Pi.

Reactive Case. If G is reactive, then [G] is defined as above except that [G]
additionally interacts with N “dummy input interface modules”IIM1, . . . , IIMN

as follows: Upon receiving input from an honest party Pi, [G] forwards that input
to G and sends open to the dummy IIM of Pi. [G] forwards all inputs provided
by a party Pi for rounds u ≥ 2 to the adversary A if Pi is marked. Furthermore,
upon receiving an input provided by the dummy IIM of a party Pi who is marked
as corrupted before input, [G] forwards this input to A who may then modify it.
However, upon receiving an input provided by the dummy IIM of a party Pi who
is not marked as corrupted before input, [G] does not forward this input to A and
does not allow A to modify it.

By construction, AG([G]) captures our desired security goal: i) [G] ensures
that corrupting a party Pi (via an online-attack instruction) after it received
its (first) input does not enable the adversary to learn or modify Pi’s input(s) and
result(s) of the MPC (i.e. outputs of Pi’s dummy OIM) unless all parties Pj (j =
1, . . . , N) are corrupted, and ii) Pi’s initially disconnected air-gap switches ensure
that an adversary can only corrupt a party Pi via online-attack instructions
prior to receiving input if Pi is online via its channel to the environment.

2.5 Notify Transport Mechanism and Activation Instructions

In the UC framework, the adversary is not activated when immediate communi-
cation between (sub-)parties occurs and thus is not able to adaptively corrupt
them during this type of communication. In our setting of hacking adversaries,
this is undesirable because it does not capture the possibility of parties being
remotely hacked when they are online during immediate communication.

As a motivating example, consider a hackable party P that is connected to
the environment and the adversary A via standard channels. Furthermore, P
is also connected to an unhackable sub-party P ′ via a standard channel. Upon
receiving input, P sends a message containing secret data (e.g. shares of its input)
to P ′. P ′ then sends a notification message to P who immediately erases all
secret data after being activated again. As this message delivery is immediate,
i.e. A is not activated during the communication between P and P ′, he is unable
to corrupt P before P has erased its secret data and sent it to an unhackable
sub-party even though P has been online all the time.

To address this problem, we introduce a notify transport mechanism that
activates A (under certain conditions) upon immediate message delivery.

14

Notify Transport Mechanism. Let µ, µ′ by two ITIs such µ, µ′ 6∈ {Z,A}, µ and
µ′ are not combined and neither µ nor µ′ is a fortified ideal functionality.

If µ sends an external write instruction addressed to µ′ and the control
function allows this instruction, then the adversary is activated with a notify
transport message consisting of µ′’s PID. Upon activation, the adversary may
then forward the notify transport message to the environment or execute an
online-attack or taint instruction, or do nothing. If activated, Z may only
activate A again who may then carry out an online-attack or taint instruction,
or do nothing. Afterwards, the external write instruction is carried out. If µ′
is corrupted, then A is activated again. Otherwise, µ′ is activated.

The above mechanisms ensure that the adversary is activated during immedi-
ate communication between protocol parties that are not combined. Note that,
upon receiving a notify transport message, the adversary is not able to block the
message or activate another party.

Why Exclude Fortified Functionalities? The notify transport mechanism does not
apply to the communication between the dummy parties and [G]. This ensures
that the ideal model adversary is not activated after a dummy party has sent
its input to [G] before [G] receives this input. Note that he would otherwise be
able to learn or modify a party’s input and output through an online-attack
instruction at a moment when the party has already received its input.

Activation Instructions. In the UC framework, protocol parties are activated
via external write instructions. This mechanism cannot be applied to parties
that are offline, however. For instance, consider a party P that wants to send
messages to multiple parties via data diodes while being offline. In order to do
so, P must be activated multiple times. This raises a problem since there is no
way to activate P via an external write instruction.

In order to address this problem, we allow the adversary to send activation
instructions. Formally, A may activate a party P by writing (activate, P) on
its outgoing message tape. P will then be activated.

2.6 Fortified UC Emulation

We now define the execution experiment in our framework by applying the rules
specified in Sections 2.1 to 2.5 to the UC execution experiment:

Definition 2 (Fortified UC Execution Experiment). An execution of a
protocol σ with adversary A and an environment Z on input a ∈ {0, 1}∗ and with
security parameter n ∈ N is a run of a system of ITMs subject to the following
restrictions:

– First, Z is activated on input a ∈ {0, 1}∗. At each activation, Z may mark
each channel that exists between Z and a protocol party either online or offline.
In addition, for each channel to Z, Z is informed upon each activation if it
can receive output from that channel (cf. Section 2.2).

15

– The first ITI to be invoked by Z is the adversary A. The corruption model is
as specified in Section 2.3.

– Z may invoke a single instance of a challenge protocol, which is set to be σ
by the experiment. The SID of σ is determined by Z upon invocation.

– Z may provide inputs to the adversary. In addition, Z may provide inputs to
the parties of σ subject to the protocol architecture (cf. Section 2.1). (Note
that among the parties that may receive input from Z are interface modules,
cf. Section 2.4.)

– The adversary A may give subroutine outputs to Z. In addition, A may send
messages to the parties of σ subject to the protocol architecture (Section 2.1).
At each activation, A is given the status (cf. Section 2.2). Moreover, A may
activate a party through activate instructions (cf. Section 2.5).

– Each party of σ may send messages to the adversary, provide inputs to its
sub-parties and give subroutine outputs to the parties of which it is a sub-party
or to the environment Z subject to the protocol architecture (Section 2.1).
Immediate messages may trigger the notify transport mechanism activating
the adversary as specified in Section 2.5.

– At the end of the execution experiment, Z outputs a single bit.

Denote by ExecFortUC(σ,A,Z)(n, a) ∈ {0, 1} the output of the environment Z
on input a ∈ {0, 1}∗ and with security parameter n ∈ N when interacting with σ
and A according to the above definition.

We now define security in our framework in analogy to the UC framework:

Definition 3 (Emulation in the Fortified UC Framework). Let π and φ
be protocols. π is said to emulate φ in the Fortified UC framework, denoted by
π ≥## φ11, if for every ppt-adversary A there exists a ppt-adversary S such
that for every ppt-environment Z there exists a negligible function negl such that
for all n ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[ExecFortUC

(
π,A,Z

)
(n, a) = 1]− Pr[ExecFortUC

(
φ,S,Z

)
(n, a) = 1]| ≤ negl(n)

Let π be a protocol with N main parties P1, . . . , PN . We will later say that “π
emulates φ for up to L parties under adversarial control” if emulation holds for all
(real-model) ppt-adversaries A corrupting at most L parties P ∈ {P1, . . . , PN}.

3 Properties of the Framework

As with UC security, our security notion is transitive and closed under protocol
composition. Furthermore, our notion is equivalent to adaptive UC security for
protocols that do not have unhackable subparties.

Definition 4 (Emulation with Respect to the Dummy Adversary). De-
fine the dummy adversary D as follows: i) When receiving a message (sid, pid,m)
11 Think of “##” as a fence, i.e. part of a fortification.

16

from the environment Z, D sends m to the party with extended identity (pid, sid).
ii) When receiving (physical-attack,M) or (online-attack, P) or (taint, P)
or (activate, P) from Z, D carries out that instruction. iii) When receiving m
from the party with PID pid and SID sid, D sends (sid, pid,m) to Z. iv) When
receiving the instruction status from Z, D sends the status Z.

Let π and φ be protocols. π is said to emulate φ with respect to the dummy
adversary in the Fortified UC framework if there exists a ppt-adversary SD such
that for every ppt-environment Z there exists negligible function negl such that
for all n ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[ExecFortUC

(
π,D,Z

)
(n, a) = 1]−Pr[ExecFortUC

(
φ,SD,Z

)
(n, a) = 1]| ≤ negl(n)

Proposition 1 (Completeness of the Dummy Adversary). Let π and φ
be protocols. Then, π ≥## φ if and only if π emulates φ with respect to the dummy
adversary in the Fortified UC framework.

Proof (Idea). The proof is almost identical to the proof in the UC framework
(cf. [Can01]). The only difference is that the environment ZA, which internally
runs a copy of a given adversary A and environment Z, forwards the status to A
each time A is activated in ZA’s internal simulation. Note that ZA can obtain
the status by sending status to the dummy adversary D. ut

Proposition 2 (Transitivity). Let π1, π2, π3 be protocols. If π1 ≥## π2 and
π2 ≥## π3 then it holds that π1 ≥## π3.

Proof (Idea). The proof follows from the same argument as in the UC framework
[Can01]. ut

Theorem 1 (Equivalence with UC Emulation for Plain Protocols). Let
π and φ be plain protocols. Then,

π ≥## φ ⇐⇒ π ≥UC φ ⇐⇒ π ≥## φ,

where ≥UC denotes UC emulation with respect to adaptive (PID-wise) corruption.

Proof (Idea). These statements follow from the fact that UC environments can
easily simulate Fortified UC environments interacting with plain protocols and
vice versa. This is because in a plain protocol the notify transport mechanism
is only triggered if a party sends a message to a (standard) ideal functionality
(which by convention immediately notifies the adversary upon input) and the
online state of a party in a plain protocol can be trivially derived. ut

Theorem 2 (Composition Theorem). Let π, φ, ρ be protocols. Then,

π ≥## φ =⇒ ρπ ≥## ρφ

Proof (Sketch). The proof is very similar to the proof of the composition theorem
of the UC framework(cf. [Can01]). The two main differences are the following

17

The environment Zπ, which internally runs a given environment Z, the
protocol ρ and all but one of the instances of π or φ that are called by ρ and
interacts with the dummy adversary D and either π or φ as challenge protocol,
behaves as in proof of the composition theorem of the UC framework (cf. [Can01])
and additionally does the following:

1. Zπ marks each channel to a party in the challenge protocol according to
the online state of the respective calling party in ρ in its internal simulation.
This ensures that the online states of the parties in the challenge protocol
when interacting with Zπ are the same as when run as subroutines of ρ in
an interaction with the environment Z.

2. Zπ determines if a party E in its internal simulation who is a calling party of
a party P in the challenge protocol is online via a channel C to P by deriving
the relevant information from the status reported by the adversary (which
contains information about whether P is online via a channel C ′ 6= C to
another ITM µ 6= E) and by checking whether it can receive output12 via C
from P .13 This ensures that the online state of E when internally run by Zπ
is the same as when running in an interaction between ρ and the environment
Z.

3. If Z sends (physical-attack,M) in Zπ’s internal simulation, Zπ sends
(physical-attack,M′) to D, where the parties inM′ are the main parties
of Zπ’s challenge protocol who are the respective sub-parties of the parties
in M. Furthermore, if Z sends (online-attack, P) for a party P in Zπ’s
challenge protocol, Zπ forwards (online-attack, P) to D. Finally, if Z sends
(online-attack, E) for a party E in Zπ’s internal simulation, Zπ checks the
online state of E in its internal simulation and ignores this instruction if E
is offline or internally carries out this instruction if E is online. Furthermore,
if E is combined with a party P in Zπ’s challenge protocol, Zπ forwards
(online-attack, P) to D.

The simulator S, which internally runs the dummy adversary D and copies of
the simulator Sπ implied by π ≥## φ, and interacts with a given environment Z
and the protocol ρφ, behaves as in proof of the composition theorem of the UC
framework (cf. [Can01]) and additionally does the following:
S keeps track of a “simulated” status as follows:

1. If E is a party who is not a party of an instance of φ and C is channel
between E and an ITM who is also not a party of an instance of φ, then E is
online via C in S’s “simulated” status if and only if the status S receives14

from the experiment states that E is online via C.
12 Recall that for each channel to Zπ, Zπ is informed upon each activation if it can

receive output from that channel, cf. Section 2.2.
13 Recall that, by definition, E is online via channel C if and only if E can receive

output via C from the sub-party P and P is online via a channel C′ 6= C to another
ITM µ 6= E, cf. Section 2.2.

14 Recall that, at each activation, the adversary S gets informed via which channels
each party is online, cf. Section 2.2.

18

2. At each activation, S internally hands the copies of the simulator Sπ a status
that is derived from the status that S receives from the experiment (by taking
the information about the channels involving the parties in the respective
instance of φ). Afterwards, S sends the instruction status to all copies of
Sπ, receiving a status from each copy.

3. If P is a party of an instance of φ and C ′ is a channel between P and any
other ITM, then P is online via C ′ in S’s “simulated” status if and only if the
status reported by the respective copy of the simulator Sπ for that instance
of φ claims P to be online via C ′.

4. If E is a party who is not a party of an instance of φ and C ′′ is channel
between E and a party P who is a party of an instance of φ, then E is online
via C ′′ in S’s “simulated” status if and only if the status that S receives from
the experiment states that E is online via C ′′ and the status reported by
the respective copy of Sπ for that instance of φ claims that P is online via a
channel C̃ 6= C ′′ to another ITM µ 6= E.

When the environment Z sends the instruction status to S, then S reports
the “simulated” status to Z. When Z sends (online-attack, E) for a party E
who is not a party of an instance of φ, then S checks the online state of E that
is implied by the “simulated” status and ignores this instruction if E is offline or
carries out the instruction if E is online. When Z sends (online-attack, P) for
a party P that is a party of an instance of φ, then S forwards this message to
the respective copy of Sπ for that instance.

Theorems 1 and 2 allow for modular composition with UC-secure protocols. For in-
stance, say we have a protocol ρSC(F) making subroutine calls to the ideal protocol
SC(F) such that ρSC(F) ≥## AG([G]) for some fortified functionality [G]. Further-
more, assume there is a protocol π such that π ≥UC SC(F). Then, by Theorem 1
we have that π ≥## SC(F). Hence, ρSC(F) ≥## ρSC(π) by Theorem 2. Therefore,
we can conclude that ρSC(π) ≥## AG([G]) by transitivity (Proposition 2).

Remark 2 (Further Discussion of the Composition Theorem).

1. Not giving the environment the possibility to learn if it can receive output
via a channel between the environment and a party does not lead to a
composable security notion. As an example, consider a two-party protocol π
that only uses standard channels. In particular, parties P1, P2 in π are always
online. Consider a protocol π′ that is identical to π except that the parties
are connected to the environment via initially-connected air-gap switches.
Each party in π′ disconnects its air-gap switch to the environment upon
receiving input. Before giving output, a party connects its air-gap switch to
the environment again. It is easy to see that π emulates π′ according to this
modified notion (where environments are not able learn if they can receive
output).
Now, consider a protocol ρπ that consists of two parties E1, E2 making
subroutine calls to one instance of π, i.e. Pi is a sub-party of Ei in ρπ. The

19

protocol architecture of ρπ is such that each Ei is offline via all channels
except to Pi. It holds that ρπ does not emulate ρπ′ . This is because the
parties Ei in ρπ are online but offline in ρπ

′ . Hence, an environment who
instructs the dummy adversary D to send an online-attack instruction
to Ei can easily distinguish these two protocols by observing if that party
becomes corrupted or not.

2. Stipulating that a party is online if it can receive input from the environment,
i.e. not giving the environment the possibility to modify the online state
of its channels to the parties (by marking the channel), neither leads to a
composable security notion. As an example, consider a two-party protocol
π where each party Pi is connected to the environment via a standard
channel. Furthermore, both parties are connected to the adversary via initially-
connected air-gap switches. Let π′ be identical to π except that all air-gap
switches to the adversary are initially disconnected. It is easy to see that π
emulates π′ according to this modified notion (where a party is online if it
can receive input from the environment).
Now, consider a protocol ρπ that consists of two parties E1, E2 making
subroutine calls to one instance of π, i.e. Pi is a sub-party of Ei in ρπ. The
protocol architecture of ρπ is such that each Ei is offline via all channels
except to Pi. By construction, the parties Pi in ρπ are still initially online.
However, the parties Pi in ρπ

′ are initially offline. Hence, an environment
who instructs the dummy adversary D to send an online-attack instruction
to Pi can easily distinguish these two protocols by observing if that party
becomes corrupted or not.

3. Only giving the adversary the current online state of a party as opposed to the
information via which channels a party is online does also not lead to a compos-
able security notion. As an example, consider a two-party protocol π where the
environment is connected to the parties P1, P2 via initially-connected air-gap
switches (i.e. the environment operates these air-gap switches). Furthermore,
both parties in π are connected to the adversary via initially-disconnected
air-gap switches. Let π′ be identical to π except that all air-gap switches
to the adversary are initially-connected. It is easy to see that π emulates
π′ according to this modified notion (where the adversary is only given the
current online state of each party).
Now, consider a protocol ρπ that consists of two parties E1, E2 making
subroutine calls to one instance of π, i.e. Pi is a sub-party of Ei in ρπ. Each
Ei is connected to the environment and adversary via initially-connected
air-gap switches. On any input, each Ei disconnects its air-gap switch to
the environment. On input 0, each Ei disconnects its air-gap switch to the
adversary but lets its air-gap switch to Pi remain connected. In contrast,
on input 1, each Ei disconnects its air-gap switch to Pi but lets its air-gap
switch to the adversary remain connected.
It holds that ρπ does not emulate ρπ′ . This can be argued as follows: Consider
the environment Z interacting with the dummy adversary D that randomly
chooses a bit b, hands b to E1 as input, and then instructs D to send an
online-attack instruction to E1. By construction, the party E1 will then

20

be corrupted or not depending on the input b. More specifically, E1 will be
corrupted if b = 1 and remain uncorrupted otherwise (since P1 in π is offline).
However, in the protocol ρπ′ , E1 is always online regardless of its inputs.
This is because E1 is either online via its channel to the adversary or to the
party in π′ who, by construction, is always online. Therefore, a potential
simulator interacting with ρπ′ who only gets the online state of the parties
cannot decide if the online attack on E1 should be carried out or ignored.

4 Construction for Non-Reactive Functionalities

In this section, we will construct a general MPC protocol for every fortified
functionality [G] such that G is non-reactive (and standard adaptively well-
formed15).

The broad idea is to have the parties P1, . . . , PN send encrypted shares of
their inputs via data diodes in an offline sharing phase and subsequently use
these shares to compute the desired function in an online compute phase. This,
however, cannot be done straightforwardly. To begin with, the parties are not
able to retrieve public keys themselves in the sharing phase since this would
necessitate going online, making them susceptible to online attacks. Therefore,
each party Pi sends its shares to an unhackable sub-party called encryption unit
(Enc-unit) via a data diode. The Enc-unit retrieves the public keys and sends
encrypted shares to hackable sub-parties of the designated receivers called buffers
(note that since the parties P1, . . . , PN are offline they cannot receive messages).

Furthermore, each message has to be authenticated so that the adversary
cannot change the input of a party by modify the messages it sends. One could
do this with an additional unhackable “authentication unit” which signs each
ciphertext or have the Enc-unit sign all ciphertexts. However, since we want to
use as few and as simple unhackable sub-parties as possible, we take a different
approach. Each party Pi sends its shares together with valid signatures to its
Enc-unit. The verification key is sent, over an intermediary sub-party called join
(J), to a hackable sub-party called registration module (RM) that disconnects
itself from J after receiving input and forwards the verification key to a public
bulletin board via a data diode. Once a party Pi has sent all of its shares, it erases
everything except for its own share, its verification key and its decryption key.
In order for this sign-then-encrypt approach to be secure, we assume that the
PKE scheme is non-malleable (IND-parallel-CCA-secure) and that the digital
signature is unforgeable (EUF-naCMA secure) and also satisfies a property we
call length-normal, guaranteeing that signatures of messages of equal length are
also of equal length. This prevents an adversary from learning information of
plaintexts based on the length of their ciphertext. Each party Pi is connected to
its sub-party J via an initially disconnected air-gap switch in order to prevent the
adversary from corrupting Pi’s RM but not Pi before Pi has received its input.

In the compute phase, the adversary must be prevented from using values
that are different from the shares sent by the honest parties to the corrupted
15 Cf. Appendix B for a definition of adaptively well-formed functionalities.

21

parties in the sharing phase. Otherwise, he would be able to modify the inputs of
the parties who were honest during the sharing phase. The parties Pi therefore
not only use the shares they received but also the signatures of these shares
and the registered verification keys during the compute phase. The result of the
compute phase is a special “error symbol” if not all signatures are valid. Since the
signing keys were erased at the end of the sharing phase, the adversary cannot
generate new valid signatures for parties Pi corrupted after receiving input. He is
also unable to revoke the verification key of such parties since this would require
corrupting the respective RM, which is impossible since that party is offline.

Moreover, an adversary could swap a message in the sharing phase addressed
to (the buffer of) an honest party Pj with a ciphertext of a share and signature
received by a corrupted party (by encrypting that tuple with the respective public
key). Furthermore, an adversary controlling at least two parties Pi, Pj knows two
shares and valid signatures of each party and could use one of these tuples twice
in the compute phase. To prevent these attacks, a party Pi signs each share along
with the designated receiver’s PID. In addition, a party Pi also includes its own
PID in each message it sends to prevent the adversary from reusing messages
sent by honest parties for the parties corrupted before receiving input.

Finally, one cannot simply send the result of the compute phase to a party
Pi since this would allow the adversary to learn and modify the output of the
parties corrupted after receiving input. Instead, we introduce another unhackable
sub-party called output interface module (OIM). Each party Pi sends not only
the shares of its input xi but also shares of a random pad ri and of a MAC key
ki in the sharing phase. Furthermore, each party Pi sends ri and ki to its OIM
via a data diode. In the compute phase, the parties will then use these shares to
compute (yi + ri,Mac(ki, yi + ri)), where yi is the desired output value (of party
Pi). Each party then sends its result to its OIM, which will check authenticity
by verifying the MAC tag and, if correct, reconstruct and output the value yi.

In the following, we will take a modular approach and define a functionality
Fnreac
G that implements the verification of the input values in the compute phase as

well as the subsequent multi-party computation on the shares. Using Theorems 1
and 2, we will be able to replace the sub-protocol SC(Fnreac

G) in our construction
with an existing adaptively UC-secure protocol (cf. Remark 4).

We first define the functionality Fnreac
G .

Construction 1 Let G be a non-reactive standard adaptively well-formed ideal
functionality. Fnreac

G proceeds as follows, running with parties P1, . . . , PN and
adversary A and parametrized with a digital signature scheme SIG and a message
authentication code MAC.

1. Upon receiving (corrupt, Pi), behave like a standard corruption ideal func-
tionality. In addition, forward this message to G.

2. Initialize the Boolean variable verify = true.
3. Upon receiving input from party Pi, store it and send (received, Pi) to A.

Upon receiving (confirmed, Pi) from A, mark Pi as input given.

22

4. Upon receiving from A a (modified) input for a party Pl marked as corrupted,
store that input (if an input has already been stored for Pl then overwrite it)
and, if not done yet, mark Pl as input given.

Consistency Check
5. Once each party has been marked as input given, check if each stored input is

of the form vki = (vk(i)
1 , . . . , vk(i)

N), (sji, rji, kji, σji) (j = 1, . . . , N).
(i) If no, set verify = false.
(ii) If yes, check if vk1 = · · · = vkN .

(A) If this does not hold, set verify = false.
(B) Else, set (vk1, . . . , vkn) = (vk(1)

1 , . . . , vk(1)
N). For all i = 1, . . . , N ,

check if VrfySIG(vkj , Pi, sji, rji, kji, σji) = 1 for all j = 1, . . . , N .
(a) If this does not hold for every i, j, set verify = false.
(b) Else, proceed with Item 6.

Reconstruction and Computation
6. For each i = 1, . . . , N , compute xi = si1 + si2 + · · ·+ siN , ki = ki1 + ki2 +
· · ·+ kiN and ri = ri1 + ri2 + · · ·+ riN .

7. Internally run G on input (x1, . . . , xN). Let (y1, . . . , yN) be the output of G.
For all i = 1, . . . , N , compute oi = yi + ri and θi ← Mac(ki, yi + ri).

8. If party Pi requests an output, proceed as follows:
(i) If verify = false, send a private delayed output ⊥ to Pi.
(ii) Else, if Item 7 has already been carried out, send a private delayed output

(oi, θi) to Pi.
9. If A requests an output for a party Pl marked as corrupted, proceed as

follows:
(i) If verify = false, send ⊥ to A.
(ii) Else, if Item 7 has already been carried out, send (ol, θl) to A.

10. Once all parties are corrupted, send all of its private randomness used so
far as well as the private randomness G sends to A in this case (note that G
is adaptively well-formed) to the adversary A. (Note that this ensures that
Fnreac
G is also adaptively well-formed).

11. All other messages between A and G are ignored.

Let G be a non-reactive standard adaptively well-formed functionality. We
next define our protocol for realizing G, which is denoted by ΠN−1,nreac

G .
Let Freg be the public bulletin board functionality (cf. Appendix B.3 for a

formal definition). Let PKE = (GenPKE,Enc,Dec) be a public-key encryption
scheme, SIG = (GenSIG,Sig,VrfySIG) a digital signature scheme and MAC =
(GenMAC,Mac,VrfyMAC) a message authentication code (cf. Appendix B.4 for a
formal definition of these primitives).

Construction 2 Define the protocol ΠN−1,nreac
G as follows:

Architecture: See Fig. 3 for a graphical depiction.

Offline Sharing Phase
Upon input xi, each party Pi (i = 1, . . . , N) does the following:

23

Pi

Freg

RMi

Ji

Fnreac
G

Enci

Bufferi
A

OIMi

Fig. 3: Architecture of ΠN−1,nreac
G . Each party Pi (i = 1, . . . , N) has 3 hackable

sub-parties, called buffer, registration module (RM) and join (J), and 2 unhackable
sub-parties, called Enc(-unit) and OIM. Buffer and Enc-unit are connected to
the adversary via standard channels. All air-gap switches, except for P ’s air-
gap switch to the environment and the RM’s air-gap switch to J , are initially
disconnected.

– Disconnect air-gap switch to the environment.
– Generate (pki, ski)← GenPKE(1n), ki ← GenMAC(1n),

(sgki, vki)← GenSIG(1n) and a random pad ri ← {0, 1}pi(n).
– Generate shares si1 + si2 + · · ·+ siN = xi and ki1 + ki2 + · · ·+ kiN = ki
and ri1 + ri2 + · · ·+ riN = ri.

– Connect air-gap switch to J.
– Send (ki, ri) to OIM and (pki, vki) to J.
– Create signatures σij ← Sig(sgki, Pj , sij , rij , kij) (j = 1, . . . , N)
– Send (Pj , sij , rij , kij , σij) (j ∈ {1, 2, . . . ,m} \ {i}) to Enc-unit
– Erase everything except for (sii, rii, kii, σii), vki and ski.

Registration module and J: On input (pki, vki) to J , J forwards the input
to RM . RM then disconnects air-gap switch to J and registers pki and vki by
sending these keys to the public bulletin-board functionality Freg.

Enc-unit: Receive a list L = {(Pj , vj)}j={1,...,N}\{i} from one’s main party Pi.
At each activation, for each (Pj , vj) ∈ L, request pkj belonging to Pj from Freg.
If retrievable, compute cij ← Enc(pkj , vj), send (Pi, cij)16 to buffer of Pj and
delete (Pj , v) from L. Then, go into idle mode.

Buffer: Store each message received. On input retrieve, send all stored mes-
sages to one’s main party.

16 Sending the sender’s PID as prefix is not necessary but simplifies the discussion. Note
that for (Pi, c) we also say that “c is addressed as coming from party Pi”.

24

Online Compute Phase
Having completed its last step in the sharing phase, a party Pi does the following:

– Connect air-gap switches to buffer, to Freg and to FG.
– Request from Freg all verification keys {vkl}l∈{1,...,N}\{i} registered by the
other parties’ registration modules. If not all verification keys can be retrieved
yet, go into idle mode and request again at the next activation.

– Send retrieve to buffer and check if the buffer sends at least N−1 messages.
If no, go into idle mode and when activated again send retrieve and check
again. If yes, check if one has received from each party Pj a setMj = {(Pj , c̃)}
with the following property (∗) (Validity Check):
There exists a tuple (Pj , ŝji, r̂ji, k̂ji, σ̂ji) and a (Pj , c) ∈Mj such that:
• Dec(ski, c) = (Pj , ŝji, r̂ji, k̂ji, σ̂ji) and

VrfySIG(vkj , Pi, ŝji, r̂ji, k̂ji, σ̂ji) = 1
• For all (Pj , c̃) ∈Mj it holds that either Dec(ski, c̃) = (Pj , ŝji, r̂ji, k̂ji, σ̂ji)
or (Pj , c̃) is “invalid”, i.e., either decrypts to a tuple (Pj , s̃ji, r̃ji, k̃ji, σ̃ji)
such that VrfySIG(vkj , Pi, s̃ji, r̃ji, k̃ji, σ̂ji) = 0, or decrypts to a tuple
(P ′, s̃ji, r̃ji, k̃ji, σ̃ji) such that P ′ 6= Pj, or does not decrypt correctly.

If this does not hold, send ⊥ to FG. Else, send all retrieved verification keys
(vk1, . . . , vkN) as well as all tuples (ŝji, r̂ji, k̂ji, σ̂ji) (j ∈ {1, . . . , N}) to FG.

Online Output Phase
Having completed its last step in the compute phase, a party Pi requests output
from FG and forwards that output to OIM.

OIM: Store the first input (ki, ri) from one’s main party. On second input (oi, θi)
or ⊥ from one’s main party, do the following: If the received value equals ⊥,
output ⊥. Otherwise, check if VrfyMAC(ki, oi, θi) = 1 and output yi = oi + ri if
this holds, and ⊥ otherwise.

Remark 3. Note that we do not model how to reuse modules such as the regis-
tration modules that stay disconnected throughout the protocol execution. In
practice, one may assume, e.g., a physical reset mechanism for these modules.

We will prove that ΠN−1,nreac
G emulates the ideal protocol AG([G]) in the

Fortified UC framework for adversaries corrupting at most N − 1 parties P ∈
{P1, . . . , PN} under the assumptions that PKE is IND-parallel-CCA-secure, SIG
is EUF-naCMA-secure and length-normal and MAC is EUF-1-CMA-secure (cf.
Appendix B.4 for a formal definition of these security notions).

Before stating the theorem, we define the following auxiliary experiment,
which will be used in the proof.

Definition 5 (Auxiliary Experiment). The experiment Expaux
A(z),PKE,SIG(n)

is defined as follows: At the beginning, the experiment generates keys (pk, sk)←
GenPKE(1n) and (vk, sgk) ← GenSIG(1n). On input 1n, z and pk, the adver-
sary A may then non-adaptively send queries to a signing oracle OSig(sgk,·).
Afterwards, the experiment sends vk to A. A may then send a message of

25

the form (prf1, prf2,m) to the experiment. The experiment then computes
σ ← Sig(sgk, prf2,m), c∗ ← Enc(pk, prf1,m, σ), and sends c∗ to A. During the
experiment, A may send a single parallel query to a decryption oracle ODec(sk,·)
subject to the restriction that the query does not contain c∗. At the end of the
experiment, A sends a tuple (m′, σ′) to the experiment. The experiment then
checks if VrfySIG(vk,m′, σ′) = 1 and m′ has not been sent to OSig(sgk,·) before. If
this holds, the experiment outputs 1 and 0 otherwise.

We have the following lemma.

Lemma 1. If PKE is IND-pCCA-secure and SIG EUF-naCMA-secure, then for
every ppt-adversary A and all z ∈ {0, 1}∗, there exists a negligible function negl
such that

Pr[Expaux
A(z),PKE,SIG(n) = 1] ≤ negl(n)

Proof (Sketch). Assume there exists an adversary A that wins in the experiment
Expaux

PKE,SIG,A(z)(n) with non-negligible probability. Since PKE is IND-pCCA-
secure, one can replace c∗ by c′ ← Enc(pk, 0L), where L = |(prf1,m, σ)|, in-
curring only a negligible loss in A’s success probability. Then, one can directly
construct an adversary A′ out of A that breaks the EUF-naCMA-security of SIG
with non-negligible probability. A′ simply internally simulates the experiment
Expaux

PKE,SIG,A(z)(n) for A using his signing oracle and c′ for c∗. Once A sends
a tuple (m,σ) to the experiment Expaux

PKE,SIG,A(z)(n), A′ sends (m,σ) to the
EUF-naCMA experiment. A′ then wins in the EUF-naCMA experiment if and
only if A wins in the experiment Expaux

PKE,SIG,A(z)(n). ut

We will use the above experiment to show that an environment Z cannot
send “fake messages” (Pi, c′) to an honest party Pj addressed as coming from a
party Pi that has not been corrupted before receiving input such that i) c′ was
not generated by the Enc-unit of Pi and ii) (Pi, c′) is accepted by Pj .

Next, we define the simulator for the dummy adversary.

Definition 6 (Definition of the Simulator). Define the simulator Sim inter-
acting with an environment Z and a fortified ideal functionality [G] as follows:

1. At the beginning, Sim internally defines N parties corresponding to the parties
in ΠN−1,nreac

G . Throughout the simulation, Sim will keep track of the online
state of these parties by marking them as online or offline. At the beginning,
Sim marks these parties according to the initial online states of the dummy
parties in the ideal protocol (which depend on how Z has initially marked its
channels to these parties).

2. Sim initializes a Boolean variable verify = true.
3. Sim carries out the physical-attack instruction received from Z on its first

activation. Sim carries out an (online-attack, Pi) instruction only if Sim
has marked party Pi as online.

4. Each time Z sends status, Sim sends the set of markings of each party.
5. Throughout the simulation, Sim reports the respective notify transport tokens

to Z (note that we will not mention them anymore in the following).

26

6. Sim generates (pki, ski)← GenPKE(1n), ki ← GenMAC(1n) and (sgki, vki)←
GenSIG(1n) for each party Pi that is not corrupted before receiving input
(i.e. for each party Pi for which Sim has not sent a (physical-attack,M)
instruction such that Pi ∈ M and has not sent an (online-attack, Pi)
instruction before Pi received its input).

7. For each i such that party Pi is honest, Sim reports (registered, sid ′, RMi,
pki, vki). If Z answers with “ok”, Sim stores (pki, vki) as “registered”.

8. Each time Sim is activated by [G] after an honest party Pi re-
ceived its input, Sim generates 3N random strings s′ij , r

′
ij , k

′
ij , com-

putes σ′ij ← Sig(sgki, Pj , s′ij , r′ij , k′ij) (j = 1, . . . , N) and cij ←
Enc(pkj , Pi, s′ij , r′ij , k′ij , σ′ij). Each time party Z activates the Enc-unit of
Pi, Sim reports the respective tuple (Pi, cij) if pkj is stored as “registered”.

9. Once Sim has reported all (Pi, cij) (j = 1, . . . , N) as well as
(registered, sid ′, RMi, pki, vki) for an honest party Pi, Sim marks Pi as
online.

10. If a party Pi is corrupted after receiving input, Sim sends
(s′ii, r′ii, k′ii, σ′ii, vki, ski) to Z.

11. If Z sends a value (pkl, vkl) to Freg for a party Pl corrupted before receiving
input, Sim stores (pkl, vkl) as “registered”.

12. Each time Z sends a message addressed to buffer of a party Pi, Sim stores
that message as a message “received by Pi”.

13. If Z activates an honest party Pj who is marked as online and has received
at least N − 1 messages and all vkl (l = 1, . . . , N) are stored as “registered”,
then Sim stores vkj = (vk1, . . . , vkN) and reports (received, Pi) to Z. Upon
receiving (confirmed, Pi) from Z, Sim marks Pj as input given.

14. If Z sends a tuple consisting of a vector vkj and (s′lj , r′lj , k′lj , σ′lj) (l = 1, . . . , N)
as the input to FG for a corrupted party Pj , then Sim stores that input (if
an input has already been stored for Pj then Sim overwrites it) and, if not
done yet, marks Pj as input given.

15. Once all parties are marked as input given, Sim does the following:
(i) Sim checks if all vki (i = 1, . . . , N) are equal. If not, Sim sets verify =

false.
(ii) For each j such that party Pj is honest, Sim checks if the following two

conditions hold:
• Pj has received for each i such that party Pi is not corrupted be-
fore receiving input the tuple (Pi, cij), where cij is the respective
ciphertext generated by Sim.

• Pj has received for each l such that party Pl is corrupted before
receiving input a setMl fulfilling property (∗) (Validity Check, see
Page 25).

If at least one of these two conditions does not hold, Sim sets verify =
false.

(iii) For each tuple consisting of a vector vkj and (s′lj , r′lj , k′lj , σ′lj)
(l = 1, . . . , N) which was stored by Sim as the input to FG for a corrupted
party Pj , Sim checks the following:

27

• for each i such that party Pi was not corrupted before receiving
input, Sim checks if (s′ij , r′ij , k′ij) = (sij , rij , kij), where (sij , rij , kij)
is the respective tuple generated by Sim. If this does not hold or
VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 0, Sim sets verify = false.
• for each l such that party Pl was corrupted before receiving input,

Sim sets verify = false if VrfySIG(vkl, Pj , s′lj , r′lj , k′lj , σ′lj) = 0.
16. Sim extracts the input, MAC key and random pad of each party Pl corrupted

before receiving input by (a) decrypting all ciphertexts addressed as coming
from Pl which are sent by Z to the buffers of honest parties (using the
decryption keys generated in Item 6) and examining the respective plaintexts
in Item 15 (Note that if a set Ml fulfills property (∗) (Validity Check),
then there exists a plaintext (Pl, ŝli, r̂li, k̂li, σ̂li) containing shares and a valid
signature of these shares such that at least one ciphertext inMl decrypts to
this plaintext and each ciphertext inMl either decrypts to this plaintext or
is invalid. If this plaintext exists, Sim uses it for reconstructing Pl’s input,
MAC key and random pad. Note that if this plaintext does not exist, then
verify = false holds), and (b) using the shares Z sends to the Enc-unit of
Pl (if Pl was corrupted through an (online-attack, Pl) instruction before
receiving its input), and (c) using the inputs Z sends to FG for corrupted
parties in Item 14 (Note that if a party Pi who was honest during the
sharing phase is corrupted, Sim does not use the plaintext (Pl, ŝli, r̂li, k̂li, σ̂li)
decrypted in (a) or the shares Z sent to the Enc-unit of Pl addressed to the
buffer of Pi in (b) but instead uses the tuple Z sends to FG as input for Pi
for reconstructing Pl’s input, MAC key and random pad). Sim sends each
extracted input to [G].

17. Once all parties are marked as input given and Z activates an honest party
Pi, then
(i) If verify = true, Sim instructs [G] to send the output to the dummy

OIM of Pi.
(ii) If verify = false, Sim instructs [G] to output ⊥ to the dummy OIM of

Pi.
18. Once all parties are marked as input given and Z requests the output of FG

for a party Pi corrupted after receiving input, then
(i) If verify = true, Sim generates a random string ỹi ← {0, 1}pi(n) and

sends (ỹi,Mac(ki, ỹi)) to Z.
(ii) If verify = false, Sim sends ⊥ to Z.

19. If Z sends a message (m′, t′) addressed to OIM of a party Pi corrupted after
receiving input, then
(i) If Z has not yet requested the output of FG for Pi yet, Sim instructs [G]

to output ⊥ to the dummy OIM of Pi.
(ii) If Z has already requested the output of FG for Pi and Sim sent

(ỹi,Mac(ki, ỹi)) (in Item 18) to Z, then
• If m′ 6= ỹi, Sim instructs [G] to output ⊥ to the dummy OIM of Pi.
• If m′ = ỹi and VrfyMAC(ki,m′, t′) = 1, then Sim instructs [G] to send

the output to the dummy OIM of party Pi. Otherwise, Sim instructs
[G] to output ⊥ to the dummy OIM of Pi.

28

(iii) If Z has already requested the output of FG for Pi and Sim sent ⊥ (in
Item 18) to Z, then Sim instructs [G] to output ⊥ to the dummy OIM of
Pi.

20. Once all parties are marked as input given and Z requests the output of FG
for a party Pi corrupted before receiving input, then
(i) If verify = true, Sim sends (yi + ri,Mac(ki, yi + ri)) to Z, where yi is

the output of [G] for party Pi and ki, ri are the MAC key and random
pad extracted in Item 16.

(ii) If verify = false, Sim sends ⊥ to Z.
21. Sim lets Z determine the output of the dummy OIM of each party corrupted

before receiving input.

We now state the theorem:

Theorem 3 (Up to N − 1 Corrupted Parties, Non-Reactive Case). Let
G be a non-reactive standard17 adaptively well-formed functionality. Assume PKE
is NM-CPA-secure and SIG is EUF-naCMA-secure and length-normal, and MAC
is EUF-1-CMA-secure. Then it holds that

ΠN−1,nreac
G ≥## AG([G])

for up to N − 1 parties under adversarial control.

Proof. By Proposition 1, it suffices to find a simulator for the dummy adversary.
In the following proof, we will consider a sequence of hybrids H0, . . . ,H4.

Starting from the real protocol ΠN−1,nreac
G , we will define ideal protocols that

gradually reduce the simulator’s abilities (i.e. restrict the set of parties for which
he may learn/modify the inputs/outputs). The final hybrid H4 will be the ideal
protocol AG([G]) and the simulator as defined in Definition 6.

Let Z be an environment that instructs D to corrupt at most N − 1 parties
P ∈ {P1, . . . , PN}. Let outi(Z) be the output of Z in the hybrid Hi.

In the following, we will say corrupted before input and corrupted after input
for the sake of brevity.

Hybrid H0. Let H0 be the execution experiment between the environment Z, the
dummy adversary D and the real protocol ΠN−1,nreac

G .

Hybrid H1. Let H1 be the execution experiment between the environment Z, the
ideal protocol AG(F1) and the ideal-model adversary Sim1, where F1 and Sim1
are defined as follows: Define F1 to be identical to [G] except for the following: F1
hands the adversary the inputs and outputs of every party (honest and corrupted)
and allows him to determine the outputs of the dummy OIMs of all corrupted
parties (i.e. all parties corrupted before and after input).

Define Sim1 to be like the simulator in Definition 6 except for the following:
In Item 8, Sim1 reports the ciphertexts as they are generated in the real protocol
17 Cf. Section 2.4 for a definition of standard ideal functionalities

29

(in particular, generates shares of the actual inputs). Also, if a party Pi is
corrupted after having received input, Sim1 reports the respective shares as they
are generated in the real protocol in Item 10 along with a valid signature and
vki, ski. In Item 18, if verify = true, Sim1 reports (yi+ri,Mac(ki, yi+ri)) to Z,
where yi is the output Sim1 receives for the respective party from F1 and ki, ri are
the MAC key and one-time pad generated in Items 6 and 8. If verify = false,
Sim1 reports ⊥. In Item 19, if Z sends a message (m′, t′) addressed to OIM of a
party Pi (corrupted after input), Sim1 carries out the program of the OIM (using
the MAC key and one-time pad generated in Items 6 and 8), computing a value
y′ ∈ {0, 1}pi(n) ∪ {⊥}, and then instructs [G] to output y′ to the dummy OIM of
Pi.

Consider the following events:
Let Efakemess be the event that there exists an honest party Pj that retrieves

a tuple (Pi, c′) in its buffer such that party Pi is not corrupted before input and
Dec(skj , c′) = (Pi, s′ij , r′ij , k′ij , σ′ij) and VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 1 but
either c′ 6= cij or cij has not been generated yet (by the Enc-unit of party Pi).

Let Efakeinp be the event that Z sends an input (s′ij , r′ij , k′ij , σ′ij) for a
corrupted party Pj to FG such that VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 1 but
(s′ij , r′ij , k′ij) 6= (sij , rij , kij), where (sij , rij , kij) was generated by a party Pi that
was not corrupted before input.

Let E = Efakemess ∪Efakeinp. It holds that

Pr[out0(Z) = 1 ∧ ¬E] = Pr[out1(Z) = 1 ∧ ¬E]

This is because if Efakemess does not occur then a message in the buffer of
a party Pj that is addressed as coming from a party Pi who was not corrupted
before input decrypts to a valid message/signature pair if and only if it equals the
ciphertext cij sent by Pi. Moreover, for each corrupted party Pi, since Efakeinp
does not occur, Z only sends inputs (s′ij , r′ij , k′ij , σ′ij) to FG such that either
VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 0 or VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 1 and
(s′ij , r′ij , k′ij) = (sij , rij , kij) was generated by party Pi (who was not corrupted
before input).

Therefore, it holds that

|Pr[out0(Z) = 1]− Pr[out1(Z) = 1]| ≤ Pr[E] ≤ Pr[Efakemess] + Pr[Efakeinp]

Claim 1: Pr[Efakemess] is negligible.
Consider the following adversaryA in the auxiliary experiment Expaux

PKE,SIG,A(z)(n):
At the beginning, A randomly selects a tuple (i, j) ∈ {1, . . . , N} × {1, . . . , N}
such that i 6= j. A then simulates hybrid H0 using the public key pk from the
experiment for pkj in its internal simulation. When Z gives the party Pi its input
xi, A generates shares sil, ril, kil of xi, of a random pad ri and of a MAC key ki
just like in H0. A sends the tuples (Pl, sil, ril, kil) for l 6= j to the signing oracle
OSig(sgk,·), receiving signatures σil. After receiving the verification key vk from
the experiment, A uses vk for vki in its internal simulation. Using pk, A encrypts
all tuples (Pi, sil, ril, kil, σil) (l 6∈ {i, j}) and sends them to the respective party

30

in its internal simulation. Once the message (Pi, cij) is supposed to be sent in
the internal simulation, A sends (Pi, Pj, sij , rij , kij) to the experiment, receiving
c∗. A then uses (Pi, c∗) for (Pi, cij) in its simulation. When Pj is activated and is
online and has received at least N−1 messages, A sends all ciphertexts addressed
as coming from Pi such that c 6= c∗ to the decryption oracle ODec(sk,·) (if c∗ has
not been generated yet, A sends all ciphertexts addressed as coming from Pi).
For each message (Pl,m, σ) he receives from the oracle ODec(sk,·), A checks if
VrfySIG(vk, Pj ,m, σ) = 1. If this holds for a message (Pl,m′, σ′), then A sends
(Pj ,m′, σ′) to the experiment. If during the simulation, Pi is corrupted before
input or Pj is corrupted (before or after input) or if no message A receives from
ODec(sk,·) is valid, then A sends ⊥ to the experiment.

By construction, it holds that if Efakemess occurs and A has correctly guessed
an index (i, j) for which Efakemess occurs, then A sends a message c′ to ODec(sk,·)
such that c 6= c∗ or c∗ has not been generated yet and Dec(sk, c′) = (Pi,m′, σ′)
and VrfySIG(vk, Pj ,m′, σ′) = 1. Since A does not send a message of the form
(Pj,m) to the signing oracle OSig(sgk,·), it follows that Expaux

PKE,SIG,A(z)(n) = 1.
Furthermore, the probability that A correctly guesses an index (i, j) for which
Efakemess occurs is at least 1/(N · (N − 1)). Hence,

Pr[Expaux
PKE,SIG,A(z)(n) = 1] ≥ Pr[Efakemess]/(N · (N − 1))

Therefore, since Pr[Expaux
PKE,SIG,A(z)(n) = 1] is negligible by Lemma 1 and

N · (N − 1) is polynomial in n, it follows that Pr[Efakemess] is also negligible.

Claim 2: Pr[Efakeinp] is negligible.
Consider the following adversary A against the EUF-naCMA security of SIG:
At the beginning, A randomly selects an index i ∈ {1, . . . , N}. A then simu-
lates hybrid H0. When Z gives the party Pi its input xi, A generates shares
sij , rij , kij of xi, of a random pad ri and of a MAC key ki just like in H0. A
sends the tuples (Pj , sij , rij , kij) (j 6= i) to the signing oracle OSig(sgk,·), receiving
signatures σij . After receiving vk, A then uses vk for vki, encrypts all tuples
(Pi, sij , rij , kij , σij) (j = 1, . . . , N) and sends them to the respective party in
its internal simulation. Each time Z sends a tuple (s′ij , r′ij , k′ij , σ′ij) as input for
a corrupted party Pj to FG such that (s′ij , r′ij , k′ij) 6= (sij , rij , kij), A checks if
VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 1. If this holds, A sends (Pj , s′ij , r′ij , k′ij , σ′ij) to
the experiment. If during the simulation, Pi is corrupted before input or if no
message A checks is valid, then A sends ⊥ to the experiment.

By construction, it holds that if Efakeinp occurs and A has correctly guessed
an index i for which Efakeinp occurs, then Expeuf-nacma

SIG,A(z)(n) = 1 because the tuple
(Pj , s′ij , r′ij , k′ij , σij) is valid and (Pj , s′ij , r′ij , k′ij) 6= (Pj , sij , rij , kij) has not been
sent to the signing oracle OSig(sgk,·). Furthermore, the probability that A correctly
guesses an index i for which Efakeinp occurs is at least 1/N . Hence,

Pr[Expeuf-nacma
SIG,A(z),(n) = 1] ≥ Pr[Efakeinp]/N

31

Therefore, since Pr[Expeuf-nacma
SIG,A(z)(n) = 1] is negligible because SIG is EUF-

naCMA-secure by assumption andN is polynomial in n, it follows that Pr[Efakeinp]
is also negligible.

Hence, there exist a negligible function negl1 such that

|Pr[out0(Z) = 1]− Pr[out1(Z) = 1]| ≤ negl1(n)

Hybrid H2. Let H2 be the execution experiment between the environment Z, the
ideal protocol AG(F1) (again) and the ideal-model adversary Sim2, where Sim2 is
defined as follows:

Define Sim2 to be like Sim1 except for the following: In Item 8, each time
Sim2 is activated by F1 after an honest party Pi received its input, Sim2
generates N random strings k′ij and computes σ′ij ← Sig(sgki, Pj , sij , rij , k′ij)
(j = 1, . . . , N), where the sij and rij (j = 1, . . . , N) are still the shares of
the input xi and a random pad ri, respectively. Sim2 then iteratively reports
(Pi,Enc(pkj , Pi, sij , rij , k′ij , σ′ij)) (j ∈ {1, . . . , N} \ {i}) to Z. If a party Pi is
corrupted after having received input, Sim2 sends (sii, rii, k′ii, σ′ii, vki, ski) to Z
in Item 10. (Note that in Item 18 Sim2 still uses the MAC key ki ← GenMAC(1n)
generated in Item 6 for the output of FG to a party Pi corrupted after input (if
that output is 6= ⊥)).

Let H2,0, . . . ,H2,N be the execution experiment between the environment
Z, the ideal protocol AG(F1) and the ideal-model adversary Sim2,0, . . . ,Sim2,N ,
respectively, where Sim2,i is defined as follows:

Define the simulators Sim2,i to be like Sim1 except for the following:
In Item 8, each time Sim2,i is activated by F1 after an honest party
Pl ∈ {P1, . . . , Pi} received its input, Sim2,i generates N random strings k′lj ,
computes σ′lj ← Sig(sgkl, Pj , slj , rlj , k′lj) (j = 1, . . . , N), and iteratively re-
ports (Pl,Enc(pkj , Pl, slj , rlj , k′lj , σ′lj)) (j ∈ {1, . . . , N} \ {l}) to Z. If a party
Pl ∈ {P1, . . . , Pi} is corrupted after having received input, Sim2,i sends
(sll, rll, k′ll, σ′ll, vkl, skl) to Z in Item 10.

It holds that
Pr[out2,0(Z) = 1] = Pr[out1(Z) = 1]

and
Pr[out2,N (Z) = 1] = Pr[out2(Z) = 1]

Assume that there exists a non-negligible function ε such that |Pr[out1(Z) =
1] = Pr[out2(Z) = 1]| > ε. Then there exists an i∗ ∈ {1, . . . , N} such that

|Pr[out2,i∗−1(Z) = 1]− Pr[out2,i∗(Z) = 1]| > ε/N

Moreover, if party Pi∗ is not corrupted after input, i.e. if it is corrupted before
input or remains honest throughout the execution, then the views of Z in H2,i∗−1
and H2,i∗ are identically distributed. Therefore,

ε/N <|Pr[out2,i∗−1(Z) = 1]− Pr[out2,i∗(Z) = 1]|
=|Pr[out2,i∗−1(Z) = 1 ∧ party Pi∗ corrupted after input]
− Pr[out2,i∗(Z) = 1 ∧ party Pi∗ corrupted after input]|

32

Consider the following adversary A against the IND-pCCA security of
PKE: At the beginning, A randomly selects an index j ∈ {1, . . . , N} \ {i∗}.
A then simulates the experiment H2,i∗−1. When Z gives the party Pi∗ its
input xi∗ , A generates shares si∗l, ri∗l, ki∗l of the input xi∗ , of a random
pad ri∗ and of a MAC key ki∗ just like in H2,i∗−1. A additionally gen-
erates random strings k′i∗l (l ∈ {1, . . . , N}). A then generates signatures
σi∗j , σ

′
i∗j for (Pj , si∗j , ri∗j , ki∗j) and (Pj , si∗j , ri∗j , k′i∗j), respectively, and sends

(Pi∗ , si∗j , ri∗j , ki∗j , σi∗j), (Pi∗ , si∗j , ri∗j , k′i∗j , σ′i∗j) to the experiment, receiving a
ciphertext c∗. Note that A’s challenge messages are allowed, i.e. have the same
length, because SIG is length-normal. A then continues simulating the experiment
H2,i∗−1 using c∗ as ci∗j and his decryption oracle to decrypt the ciphertexts in the
buffer of Pj that are addressed as coming from the parties corrupted before input
but do not equal c∗ (the ones that are equal to c∗ are ignored. Note that a tuple
(Pl, c∗) sent by a party Pl corrupted before input is always invalid since Pl 6= Pi∗).
Note that in A’s internal simulation, party Pi∗ receives the correct value from
FG (i.e. (yi∗ + ri∗ ,Mac(ki∗ , yi∗ + ri∗)) or ⊥). At the end of the experiment, A
outputs what Z outputs. If during the simulation, Z corrupts Pj (before or after
input) or if Pi∗ is not corrupted after input, A sends ⊥ to the experiment.

Let outputb(A) denote the output of A in the IND-pCCA experiment when
the challenge bit b is chosen. By construction, assuming party Pi∗ is corrupted
after input, if A guessed an index j such that party Pj remains honest then it
holds that if the challenge bit is 0 the view of Z in A’s internal simulation is
distributed as in the experiment H2,i∗−1 and if the challenge bit is 1 the view of
Z in A’s internal simulation is distributed as in the experiment H2,i∗ . Moreover,
assuming party Pi∗ is corrupted after input, the probability that A guesses an
index j such that party Pj remains honest is at least 1/(N − 1). Hence,

|Pr[output0(A) = 1]− Pr[output1(A) = 1]|
=|Pr[out2,i∗−1(Z) = 1 ∧ party Pi∗ corrupted after input ∧Guess correct]
− Pr[out2,i∗(Z) = 1 ∧ party Pi∗ corrupted after input ∧Guess correct]|

> ε/(N · (N − 1))

This contradicts the IND-pCCA security of PKE.
Hence, there exist a negligible function negl2 such that

|Pr[out1(Z) = 1]− Pr[out2(Z) = 1]| ≤ negl2(n)

Hybrid H3. Let H3 be the execution experiment between the environment Z, the
ideal protocol AG(F2) and the ideal-model adversary Sim3, where F2 and Sim3
are defined as follows:

Let F2 be identical to F1 except that now the adversary is allowed to determine
the outputs only of the dummy OIMs of the parties corrupted before input.

Define Sim3 to be like Sim2 except that Item 19 is identical to the same step
of the simulator in Definition 6.

33

Let Efakeoutp be the event that Z sends a message (m′, t′) to OIM of a party
Pi corrupted after input such that VrfyMAC(ki,m′, t′) = 1 but either Pi has
received ⊥ from FG or a tuple (m, t) such that m′ 6= m or Pi has not received an
output from FG yet.

It is easy to see that the following holds:

Pr[out2(Z) = 1 ∧ ¬Efakeoutp] = Pr[out3(Z) = 1 ∧ ¬Efakeoutp]
Therefore, it holds that

|Pr[out2(Z) = 1]− Pr[out3(Z) = 1]| ≤ Pr[Efakeoutp]

Claim 3: Pr[Efakeoutp] is negligible.
Consider the adversary A against the EUF-1-CMA-security of MAC. At the
beginning, A randomly selects an index i ∈ {1, . . . , N}. A then simulates the
hybrid H2. Once Z expects the output from FG for party Pi (if Pi is corrupted
after input), A computes the (padded) result m for this party. If m = ⊥, A sends
⊥ to Z. Otherwise, A sends m to the MAC oracle OMac(k,·), receiving a tag t.
A then sends (m, t) to Z. If Z sends a tuple (m′, t′) to OIM of Pi such that
m′ 6= m, then A sends (m′, t′) to the experiment. If during the simulation, Pi is
not corrupted after input or if Z sends ⊥ or a tuple (m′, t′) such that m′ = m to
OIM of Pi, then A sends ⊥ to the experiment.

By construction, it holds that if Efakeoutp occurs and A correctly guessed an
index for which Efakeoutp occurs, then Expeuf-1-cma

MAC,A(z)(n) = 1 because (m′, t′) is
valid and m′ 6= m has not been sent to OMac(k,·). Moreover, the probability that
A correctly guesses an index for which Efakeoutp occurs is at least 1/N . Hence,

Pr[Expeuf-1-cma
MAC,A(z)(n) = 1] ≥ Pr[Efakeoutp]/N

Therefore, since Pr[Expeuf-1-cma
MAC,A(z)(n) = 1] is negligible because MAC is EUF-1-

CMA-secure by assumption and N is polynomial in n, it follows that Pr[Efakeoutp]
is also negligible.

Hence, there exist a negligible function negl3 such that

|Pr[out2(Z) = 1]− Pr[out3(Z) = 1]| ≤ negl3(n)

Hybrid H4. Let H4 be the execution experiment between Z, the ideal protocol
AG(F3) and the ideal-model adversary Sim4, where F3 and Sim4 are defined as
follows: Let F3 be identical to F2 except that the adversary is not given the
inputs and outputs of honest parties anymore. In addition, the adversary is only
given the inputs and outputs of parties corrupted after input when all parties
are corrupted.

Let H4,0, . . . ,H4,N be the execution experiment between the environment Z,
the ideal protocol AG(F3,0), . . . , AG(F3,N) and the adversary Sim4,0, . . . ,Sim4,N ,
respectively, where F3,i and Sim4,i are defined as follows:

Define F3,i be identical to F2 except now the adversary is not given the inputs
and outputs of the parties Pl ∈ {1, . . . , i} if they are honest or corrupted after
input unless all parties are corrupted.

34

Define the simulators Sim4,i to be like Sim3 except for the following:
In Item 8, each time Sim4,i is activated by F3,i after an honest party
Pl ∈ {P1, . . . , Pi} received its input, Sim4,i generates 3N random strings
s′lj , r

′
lj , k

′
lj , computes σ′lj ← Sig(sgkl, j, s′lj , r′lj , k′lj) (j = 1, . . . , N), and itera-

tively reports (Pl,Enc(pkj , Pl, s′lj , r′lj , k′lj , σ′lj)) (j ∈ {1, . . . , N} \ {l}) to Z. If a
party Pl ∈ {P1, . . . , Pi} is corrupted after having received input, Sim4,i sends
(s′ll, r′ll, k′ll, σ′ll, vkl, skl) to Z in Item 10. In Item 18, if verify = true, then
for every corrupted party Pl ∈ {P1, . . . , Pi}, Sim4 generates a random string
ỹl ← {0, 1}pl(n) and sends (ỹl,Mac(kl, ỹl)) to Z as the output from FG , where
kl ← GenMAC(1n) is the MAC key generated in Item 6. If verify = false, then
for every corrupted party, Sim4,i sends ⊥ to Z as the output from FG .

It holds that
Pr[out4,0(Z) = 1] = Pr[out3(Z) = 1]

and
Pr[out4,N (Z) = 1] = Pr[out4(Z) = 1]

Assume that there exists a non-negligible function ε such that |Pr[out3(Z) =
1] = Pr[out4(Z) = 1]| > ε. Then there exists an i∗ ∈ {1, . . . , N} such that

|Pr[out4,i∗−1(Z) = 1] = Pr[out4,i∗(Z) = 1]| > ε/N

Moreover, if party Pi∗ is not corrupted after input, i.e. if it is corrupted before
input or remains honest throughout the execution, then the views of Z in H4,i∗−1
and H4,i∗ are identically distributed. Therefore,

ε/N < |Pr[out4,i∗−1(Z) = 1]− Pr[out4,i∗(Z) = 1]|
= |Pr[out4,i∗−1(Z) = 1 ∧ party Pi∗ corrupted after input]
− Pr[out4,i∗(Z) = 1 ∧ party Pi∗ corrupted after input]|

Consider the following adversary A against the IND-pCCA security of PKE:
At the beginning, A randomly selects an index j ∈ {1, . . . , N} \ {i∗}. A then
simulates the experiment H4,i∗−1. When Z gives the party Pi∗ its input xi∗ ,
A generates shares si∗l and ri∗l of xi∗ and of a random pad ri∗ and generates
random strings k′i∗l (l ∈ {1, . . . , N}) just like in H4,i∗−1. A additionally generates
random strings s′i∗j and r′i∗j (l ∈ {1, . . . , N}). A then generates signatures
σi∗j , σ

′
i∗j for (Pj , si∗j , ri∗j , k′i∗j) and (Pj , s′i∗j , r′i∗j , k′i∗j), respectively, and sends

(Pi∗ , si∗j , ri∗j , k′i∗j , σi∗j), (Pi∗ , s′i∗j , r′i∗j , k′i∗j , σ′i∗j) to the experiment, receiving
a ciphertext c∗. Note that A’s challenge messages are allowed because SIG is
length-normal. A then continues simulating the experiment H4,i∗−1 using c∗ as
ci∗j and his decryption oracle to decrypt the ciphertexts in the buffer of Pj that
are addressed as coming from the parties corrupted before input but do not
equal c∗ (the ones that are equal to c∗ are ignored. Note that a tuple (Pl, c∗)
sent by a party Pl corrupted before input is always invalid since Pl 6= Pi∗). Note
that in A’s internal simulation, party Pi∗ receives the correct value from FG (i.e.
(yi∗ + ri∗ ,Mac(ki∗ , yi∗ + ri∗) or ⊥). At the end of the experiment, A outputs

35

what Z outputs. If during the simulation, Z corrupts Pj (before or after input)
or if party Pi∗ is not corrupted after input, then A sends ⊥ to the experiment.

Let outputb(A) denote the output of A in the IND-pCCA experiment when
the challenge bit b is chosen. By construction, assuming party Pi∗ is corrupted
after input, if A guessed an index j such that party Pj remains honest then it
holds that if the challenge bit is 0 the view of Z in A’s internal simulation is
distributed as in the experiment H4,i∗−1 and if the challenge bit is 1 the view of
Z in A’s internal simulation is distributed as in the experiment H4,i∗ . Moreover,
assuming party Pi∗ is corrupted after input, the probability that A guesses an
index j such that party Pj remains honest is at least 1/(N − 1). Hence,

|Pr[output0(A) = 1]− Pr[output1(A) = 1]|
=|Pr[out4,i∗−1(Z) = 1 ∧ party Pi∗ corrupted after input ∧Guess correct]
− Pr[out4,i∗(Z) = 1 ∧ party Pi∗ corrupted after input ∧Guess correct]|

> ε/(N · (N − 1))

This contradicts the IND-pCCA security of PKE.
Hence, there exists a negligible function negl3 such that

|Pr[out3(Z) = 1]− Pr[out4(Z) = 1]| ≤ negl3(n)

Since H4 is identical an execution between Z, the ideal protocol AG([G]) and
the simulator as defined in Definition 6, it follows that there exists a negligible
function negl such that

|Pr[ExecFortUC

(
ΠN−1,nreac
G ,D,Z

)
= 1]−Pr[ExecFortUC

(
AG([G]),Sim,Z

)
= 1]| ≤ negl(n)

The statement follows. ut

Remark 4. Using Theorems 1 and 2, we can replace SC(Fnreac
G) in ΠN−1,nreac

G
with an adaptively UC-secure protocol, e.g. [CLOS02]. Note that this inevitably
requires an additional trusted setup assumption (e.g. a common reference string)
because our remotely unhackable modules (and Freg) are not UC-complete.

Remark 5. Note that one can also let a party check each message it receives (in
its buffer) right away once it is online without having to wait for at least N − 1
messages in the buffer. The protocol remains secure if one assumes the stronger
assumption that PKE is IND-CCA-secure (cf. Appendix B.4).

Remark 6. Note that if the parties Pi disconnect all their air-gap switches again
after receiving output from Fnreac

G then A cannot obtain all shares anymore.

4.1 Up to N Parties Under Adversarial Control

One can augment Construction 2 in order to obtain a protocol ΠN,nreac
G that is

also secure if the adversary corrupts all parties at the expense of one additional

36

unhackable sub-party called decryption unit (Dec-unit). The main idea in the
new construction is that parties do not decrypt ciphertexts themselves but send
them to Dec-unit. Each Dec-unit receives the secret key from its main party
during the sharing phase. In the compute phase, each Dec-unit accepts a single
vector of ciphertexts from its main party. (cf. Fig. 4). Since the Dec-units are

Pi

Freg

RMi

Ji

Fnreac
G

Enci

Bufferi
A

OIMi

Deci

Fig. 4: Architecture of ΠN,nreac
G . Each party Pi (i = 1, . . . , N) has 3 hackable sub-

parties, called buffer, registration module (RM) and join (J), and 3 unhackable
sub-parties, called Enc(-unit), Dec(-unit) and OIM. Buffer and Enc-unit are
connected to the adversary via standard channels. All air-gap switches, except
for P ’s air-gap switch to the environment and the RM’s air-gap switch to J, are
initially disconnected.

unhackable and do not leak the secret keys, the simulator can report plaintext
tuples to Z in such a way that the shares they contain are consistent with the
parties’ inputs and outputs even if all parties are corrupted.

Theorem 4 (Up to N Corrupted Parties, Non-Reactive Case). Let G
be a non-reactive standard adaptively well-formed functionality. Assume PKE,
SIG, MAC are as in Theorem 3. Then it holds that

ΠN,nreac
G ≥## AG([G])

for up to N parties under adversarial control.

The simulator Sim′ for the case of up to N parties under adversarial control is
identical to the simulator for up to N − 1 in Definition 6, except for the following:
Once all parties have been corrupted, Sim′, who learns the inputs and outputs of
all parties from [G] in this case, reports plaintext tuples to Z in such a way that
the shares they contain are consistent with the parties’ inputs and outputs. Note
that Z cannot check if the tuples it receives from Sim′ were encrypted before
since it does not have the secret keys.

37

More specifically, each time Sim′ is activated by [G] after an honest party Pi
received its input, the simulator Sim′ generates 3N random strings s′ij , r′ij , k′ij ,
computes σ′ij ← Sig(sgki, Pj , s′ij , r′ij , k′ij) (j = 1, . . . , N), and reports the cipher-
text (Pi,Enc(pkj , Pi, s′ij , r′ij , k′ij , σ′ij)) (j ∈ {1, . . . , N} \ {i}) to Z. Furthermore,
for each i = 1, . . . , N , Sim′ generates random strings ỹi ← {0, 1}n. Once the
last party, denoted by Pl∗ , is corrupted, Sim′ computes for each i the shares
s̃il∗ = xi+

∑
j∈{1,...,N}\{l∗} s

′
ij , and k̃il∗ = ki+

∑
j∈{1,...,N}\{l∗} k

′
ij and r̃il∗ = ỹi+

yi +
∑
j∈{1,...,N}\{l∗} r

′
ij . Sim′ then generates σ̃il∗ ← Sig(sgki, Pl∗ , s̃il∗ , r̃il∗ , k̃il∗).

When Z sends a vector of ciphertexts to the Dec-unit of party Pl∗ , then Sim′
checks for each c′ contained in that vector if c′ = cil∗ for some i. For each c′ for
which this holds, Sim′ returns the corresponding (Pi, s̃il∗ , r̃il∗ , k̃il∗ , σ̃il∗). For each
c′ for which this does not hold, Sim′ returns Dec(sk∗l , c′).

5 Construction for Reactive Functionalities

In this section, we will construct a general MPC protocol for every fortified
functionality [G] such that G is reactive (and standard adaptively well-formed).
The new construction is a direct generalization of Constructions 1 and 2.

For reactive functionalities, a new problem arises because a protocol party
is online after the first round. The input(s) for the next round(s) can therefore
not just be given to a party since it may be corrupted. We therefore need to
find a way to insert the input(s) for the rounds u ≥ 2 into the protocol without
allowing a party to learn or modify them.

To this end, we introduce an additional unhackable sub-party called input
interface module (IIM) that acts as the counterpart of the OIM for inputs. Let
R ∈ N be the number of rounds. In the sharing phase, each party Pi generates 2R
random pads r1

i , . . . , r
R
i , t

1
i , . . . , t

R
i and shares them as before. Also, each party

Pi pads its (first) input x̃1
i = x1

i + t1i and computes a MAC tag of it. Then, each
party Pi sends the R random pads r1

i , . . . , r
R
i as well as the MAC key ki to the

OIM and the other R random pads t1i , . . . , tRi and the MAC key ki to the IIM. As
before, each random pad is shared with the other parties along with signatures
on these shares, the PID of the designated receiver as well as the number of
the round in which this share is to be used. Note that the latter prevents an
adversary from re-using shares from earlier rounds.

In each compute phase, the parties will use their shares and padded inputs to
compute the desired padded output values for that round and MAC tags of these
padded output values along with a prefix indicating this being an output and the
round number. Verification and reconstruction of the output values is then done
as before using the OIM. Note that since the prefix contains the round number,
the OIM is able to reject results from earlier computation phases.

As before, each input to the compute phase has to be verified before the desired
padded output values are computed. Now, however, not only the signatures of
the shares are verified but also the MAC tags of the padded inputs. In order to
obtain the MAC tags for the padded inputs for the rounds u ≥ 2, the respective
input has to be inserted into the protocol via the IIM. The IIM then applies a

38

one-time pad on each input it receives and computes a MAC tag of the padded
input along with a prefix indicating this being an input and the round number.
It then sends the computed tuple to the party. This way, a party will be able
to continue the computation without learning the inputs for the rounds u ≥ 2.
Note that due to the prefix containing the round number, the adversary cannot
use padded inputs of earlier rounds. Also note that since the prefix indicates
inputs/outputs, an adversary cannot send a padded input to the OIM.

As before, we will take a modular approach and define an ideal functionality
Freac
G that implements the verification of the input values in the compute phase

as well as the multi-party computation on the shares and padded inputs.
We first define the functionality F reac

G .

Construction 3
Let G be a reactive standard adaptively well-formed ideal functionality with R
rounds. F reac

G proceeds as follows, running with parties P1, . . . , PN and an adver-
sary A and parametrized with a digital signature SIG and a message authentication
code MAC.

1. Upon receiving (corrupt, Pi), behave like a standard corruption ideal func-
tionality. In addition, forward this message to G.

2. Initialize R + 1 Boolean variables verify0, verify1,. . . ,verifyR = true
and a counter u = 1.

3. Upon receiving input from party Pi, store it and send (received, Pi) to A.
Upon receiving (confirmed, Pi) from A, mark Pi as input given.

4. Upon receiving from A a (modified) input for a party Pl marked as corrupted,
store that input (if an input has already been stored for Pl then overwrite it)
and, if not done yet, mark Pl as input given.

Consistency Check
5. Once each party has been marked as input given, proceed with Item 6 if this

is round u = 1, else proceed with Item 7.
6. Check if every party Pi has sent an input of the form vki = (vk(i)

1 , . . . , vk(i)
N),

(tji, rji, σji, kji, σ′ji) (j = 1, . . . , N).
i) If no, set verify0 = false.
ii) If yes, check if vk1 = · · · = vkN .

(A) If this does not hold, set verify = false.
(B) Else, set (vk1, . . . , vkn) = (vk(1)

1 , . . . , vk(1)
N). For all i = 1, . . . , N ,

check if VrfySIG(vkj , Pi, kji, σ′ji) = 1 for all j = 1, . . . , N .
(a) If this does not hold, set verify = false.
(b) Else, for each i = 1, . . . , N , compute and store ki = ki1 + ki2 +
· · ·+ kiN and continue with Item 8.

7. If verify0 = false, do nothing. Else, check if every party Pi has sent an input
of the form (tuji, ruji, σuji) (j = 1, . . . , N), (x̃ui , τui). If no, set verifyu = false.
Else, continue with Item 8.

8. For all i = 1, . . . , N , check if VrfySIG(vkj , u, Pi, tuji, ruji, σuji) = 1 for all j =
1, . . . , N and if VrfyMAC(ki, Inp Round u, x̃ui , τ

u
i) = 1.

39

(a) If this does not hold for all i, j, set verifyu = false.
(b) Else, proceed with Item 9.

Reconstruction and Computation
9. For each i = 1, . . . , N , compute rui = rui1 + rui2 + · · ·+ ruiN and tui = tui1 + tui2 +
· · ·+ tuiN and xui = x̃ui + tui .

10. Internally run G on input (xui , . . . , xuN). Let (yu1 , . . . , yuN) be the output of G.
For all i = 1, . . . , N , compute oui = yui +rui and θui ← Mac(ki, Outp Round u, yui +
rui). Increment counter u.

11. If party Pi requests an output for round u′, proceed as follows:
(i) If u ≤ u′, ignore.
(ii) Else, if verify0 = false or verifyu′ = false, send a private delayed

output ⊥ to Pi.
(iii) Else, send a private delayed output (oui , θui) to Pi.

12. Once all parties are corrupted, send all private randomness used so far as
well as the private randomness G sends to A in this case (note that G is
adaptively well-formed) to the adversary A. (Note that this ensures that F reac

G
is also adaptively well-formed).

13. All other messages between A and G are ignored.

Let G be a reactive standard adaptively well-formed functionality. We next
define our protocol for realizing G, which is denoted by ΠN−1,reac

G .

Construction 4 Define the protocol ΠN−1,reac
G as follows:

Architecture: See Fig. 5 for a graphical depiction.
Offline Sharing Phase
Upon input x1

i , each party Pi does the following:

– Disconnect air-gap switch to the environment.
– Generate a key pair (pki, ski)← GenPKE(1n), a MAC key ki ← GenMAC(1n),
a signature key pair (sgki, vki)← GenSIG(1n) and random pads t1i , t2i , . . . , tRi ←
{0, 1}n and r1

i , r
2
i , . . . , r

R
i ← {0, 1}pi(n).

– Generate shares tui1+tui2+· · ·+tuiN = tui , rui1+rui2+· · ·+ruiN = rui (u = 1, . . . ,R)
and ki1 + ki2 + · · ·+ kiN = ki.

– Connect air-gap switch to J and to IIM.
– Send (ki, rui) to the OIM and (ki, tui) (u = 1, . . . ,R) to the IIM.
– Send (pki, vki) to the registration module via J and to IIM.
– Create signatures σuij ← Sig(sgki, u, Pj , tuij , ruij) and σ′ij ← Sig(sgki, Pj , kij)

(j = 1, . . . , N ;u = 1, . . . ,R).
– Compute x̃1

i = x1
i + t1i and τ1

i ← Mac(ki, Inp Round 1, x̃1
i)

– Let tij = (t1ij , t2ij , . . . , tRij), rij = (r1
ij , r

2
ij , . . . , r

R
ij) and σij = (σ1

ij , σ
2
ij , . . . , σ

R
ij).

Send (j, tij , rij , σij , kij , σ′ij) (j ∈ {1, . . . ,R} \ {i}) to the Enc-unit
– Erase everything except for the tuple (tii, rii, σii, kii, σ′ii) and (x̃1

i , τ
1
i) and

vki, ski.

40

Pi

Freg

RMi

Ji

F reac
G

Enci

Bufferi
A

OIMi

IIMi

Fig. 5: Architecture of ΠN−1,reac
G . Each party Pi (i = 1, . . . , N) has 3 hackable sub-

parties, called buffer, registration module (RM) and join (J), and 3 unhackable
sub-parties, called Enc(-unit), OIM and IIM. Buffer and Enc-unit are connected
to the adversary via standard channels. All air-gap switches, except for P ’s
air-gap switch to the environment and the RM’s air-gap switch to J, are initially
disconnected.

Registration module and J: On input (pki, vki) to J, J forwards the input
to RM . RM then disconnects air-gap switch to J and registers pki and vki by
sending these keys to the public bulletin-board functionality Freg.

Enc-unit: Receive a list L = {(Pj , vj)}j={1,...,N}\{i} from one’s main party Pi.
At each activation, for each (Pj , vj) ∈ L, request pkj belonging to Pj from Freg.
If retrievable, compute cij ← Enc(pkj , vj), send (Pi, cij) to the buffer of Pj and
delete (Pj , v) from L. Then, go into idle mode.

Buffer: Store each message received. On input retrieve, send all stored mes-
sages to one’s main party.

First Online Compute Phase
Having completed its last step in the sharing phase, each party Pi does the
following:

– Connect air-gap switches to the buffer, to Freg and to Freac
G .

– Request all verification keys {vkl}l∈{1,...,N}\{i} from Freg registered by the
other parties’ registration modules. If not all verification keys can be retrieved
yet, go into idle mode and request again at the next activation.

– Send retrieve to the buffer and check if the buffer sends at least N − 1
messages. If no, go into idle mode and when activated again send retrieve
and check again.
If yes, check if one has received from each party Pj a setMj = {(Pj , c̃)} with
the following property:

41

There exists a tuple (Pj , t̂ji, r̂ji, σ̂ji, k̂ji, σ̂′ji), where t̂ji = (t̂1ji, t̂2ji, . . . , t̂Rji),
r̂ji = (r̂1

ji, r̂
2
ji, . . . , r̂

R
ji) and σ̂ji = (σ̂1

ji, σ̂
2
ji, . . . , σ̂

R
ji), and an element (Pj , c) ∈

Mj such that
• Dec(ski, c) = (Pj , t̂ji, r̂ji, σ̂ji, k̂ji, σ̂′ji) and

VrfySIG(vkj , u, Pi, t̂uji, r̂uji, σ̂uji) = 1 (u = 1, . . . ,R) and
VrfySIG(vkj , Pi, k̂ji, σ̂′ji) = 1
• For every (Pj , c̃) ∈ Mj it holds that either Dec(ski, c̃) =

(Pj , t̂ji, r̂ji, σ̂ji, k̂ji, σ̂′ji) or (Pj , c̃) is “invalid”, i.e., either decrypts to
(Pj , t̃ji, r̃ji, σ̃ji, k̃ji, σ̃′ji) such that either VrfySIG(vkj , u, Pi, t̃uji, r̃uji, σ̃uji) =
0 for some u or VrfySIG(vkj , Pi, k̃ji, σ̃′ji) = 0, or decrypts to
(P ′, t̃ji, r̃ji, σ̃ji, k̃ji, σ̃′ji) where P ′ 6= Pj, or c̃ does not decrypt correctly.

If this does not hold, send ⊥ to Freac
G . Else, send all verification keys

(vk1, . . . , vkN) as well as all tuples (t̂1ji, r̂1
ji, σ̂

1
ji, k̂ji, σ̂

′
ji) (j ∈ {1, . . . , N} and

(x̃1
i , τ

1
i) to Freac

G .
– Instruct the IIM to connect its air-gap switch to Z.

Subsequent Online Compute Phases
Upon receiving an input xui in round u, each IIM does the following:

IIM: Initially, set u = 2. Compute x̃ui = xui +tui and τui ← Mac(ki, Inp Round u, x̃ui)
and send (x̃ui , τui) to one’s main party. Increment u.

– Party Pi then sends (t̂uji, r̂uji, σ̂uji) (j ∈ {1, . . . , N} and (x̃ui , τui) to Freac
G .

Online Output Phases
Having completed its last step in the compute phase in round u, a party Pi requests
output from Freac

G and forwards that output to OIM.

OIM: Initially, set u = 1 and store the first input (ki, (r1
i , . . . , r

R
i)) from one’s

main party. On subsequent inputs (oui , θui) or ⊥ from one’s main party, do
the following: If the received value equals ⊥, output ⊥. Otherwise, check if
VrfyMAC(ki, oui , θui) = 1 and output yui = oui + rui if this holds, and ⊥ otherwise.
Always increment u.

We are now ready to state our theorem for reactive functionalities. The proof
is similar to the proof of Theorem 3 and therefore omitted.

Theorem 5 (Up to N − 1 Corrupted Parties, Reactive Case). Let G be
a reactive standard adaptively well-formed functionality. Let PKE and SIG be as
in Theorem 3 and assume that MAC is EUF-CMA-secure. Then it holds that

ΠN−1,reac
G ≥## AG([G])

for up to N − 1 parties under adversarial control.

42

5.1 Up to N Parties Under Adversarial Control

With the same augmentation as described in Section 4.1, one can obtain a protocol
ΠN,reac
G that is also secure if the adversary corrupts all parties (cf. Fig. 6).

Theorem 6 (Up to N Corrupted Parties, Reactive Case). Let G be a
reactive standard adaptively well-formed functionality. Let PKE, SIG, MAC be
as in Theorem 5. Then it holds that

ΠN,reac
G ≥## AG([G])

for up to N parties under adversarial control.

Pi

Freg

RMi

Ji

F reac
G

Enci

Bufferi
A

OIMi

Deci

IIMi

Fig. 6: Architecture of ΠN,reac
G . Each party Pi (i = 1, . . . , N) has 3 hackable sub-

parties, called buffer, registration module (RM) and join (J), and 4 unhackable
sub-parties, called Enc(-unit), Dec(-unit), OIM and IIM. Buffer and Enc-unit are
connected to the adversary via standard channels. All air-gap switches, except
for P ’s air-gap switch to the environment and the RM’s air-gap switch to J, are
initially disconnected.

6 Architectures without Erasure

We can also obtain the results in Theorems 3 to 6 without relying on erasure
by introducing an additional hackable interface party S that is connected to its
main party P via a data diode and to the environment via an initially-connected
air-gap switch (cf. Fig. 7 in Appendix A). S takes the (first) input and carries
out the sharing phase. Afterwards, S sends its own shares together with their
signatures (and for reactive functionalities also MAC tags) and the verification
key and secret key to P , who then carries out all further computations. S is then
never activated again, remains offline throughout the protocol execution and thus

43

cannot be corrupted though an online-attack instruction. Note, however, that
S can only be reused in subsequent protocols if it can be reset to its initial state.
Such a reset is in line with what is implicitly assumed in large parts of the MPC
literature, e.g. in the UC framework, where parties holding secrets cease to exist
after protocol execution.

PiSi

Fnreac
GFreg

RMi

EnciA
OIMi

Fig. 7: Architecture without Erasure (for up to N − 1 Parties under Adversarial
control, Non-Reactive Case).

7 Conclusion

We have proposed a new framework that captures the advantages provided
by remotely unhackable hardware modules. Using only few simple remotely
unhackable hardware modules, we constructed protocols securely realizing any
fortified functionality in our framework.

References

[AMR14] D. Achenbach, J. Müller-Quade, and J. Rill. “Universally Compos-
able Firewall Architectures Using Trusted Hardware”. In: Balkan-
CryptSec 2014.

[BDH+17] B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, and M.
Nagel. “Concurrently Composable Security with Shielded Super-
Polynomial Simulators”. In: EUROCRYPT 2017.

[BDLO14] J. Baron, K. E. Defrawy, J. Lampkins, and R. Ostrovsky. “How to
withstand mobile virus attacks, revisited”. In: PODC 2014.

[Can01] R. Canetti. “Universally Composable Security: A New Paradigm for
Cryptographic Protocols”. In: FOCS 2001. IEEE.

44

[CF01] R. Canetti and M. Fischlin. “Universally composable commitments”.
In: CRYPTO 2001.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor. “Adaptively Secure
Multi-Party Computation”. In: STOC 1996.

[CKL03] R. Canetti, E. Kushilevitz, and Y. Lindell. “On the Limitations of
Universally Composable Two-Party Computation without Set-up
Assumptions”. In: EUROCRYPT 2003.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. “Universally
composable two-party and multi-party secure computation”. In:
STOC 2002.

[CPV17] R. Canetti, O. Poburinnaya, and M. Venkitasubramaniam. “Equivo-
cating Yao: constant-round adaptively secure multiparty computa-
tion in the plain model”. In: STOC 2017.

[DMMN13] N. Döttling, T. Mie, J. Müller-Quade, and T. Nilges. “Implement-
ing Resettable UC-Functionalities with Untrusted Tamper-Proof
Hardware-Tokens”. In: TCC 2013.

[GIK+15] S. Garg, Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Cryp-
tography with One-Way Communication”. In: CRYPTO 2015.

[GIS+10] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. “Found-
ing Cryptography on Tamper-Proof Hardware Tokens”. In: TCC
2010.

[HLP15] C. Hazay, Y. Lindell, and A. Patra. “Adaptively Secure Computation
with Partial Erasures”. In: PODC 2015.

[HPV17] C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam. “Con-
stant Round Adaptively Secure Protocols in the Tamper-Proof
Hardware Model”. In: PKC 2017.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. “Founding Cryptography
on Oblivious Transfer - Efficiently”. In: CRYPTO 2008.

[Kat07] J. Katz. “Universally Composable Multi-party Computation Using
Tamper-Proof Hardware”. In: EUROCRYPT 2007.

[Nem17] H. Nemati. “Secure System Virtualization: End-to-End Verification
of Memory Isolation”. PhD thesis. Royal Institute of Technology,
Stockholm, Sweden.

[OY91] R. Ostrovsky and M. Yung. “How to Withstand Mobile Virus Attacks
(Extended Abstract)”. In: PODC 1991.

[Qub18] Qubes OS Project. Qubes Split GPG. User Documentation. (Visited
on 05/08/2018).

[ZGL18] E. Zheng, P. Gates-Idem, and M. Lavin. “Building a virtually air-
gapped secure environment in AWS: with principles of devops secu-
rity program and secure software delivery”. In: HoTSoS 2018.

45

Appendix

A Graphical Depiction of Architectures

This section contains graphical depictions of the architectures of the protocols
in Sections 4 to 6. Main parties are represented by boxes with rounded corners,
sub-parties and ideal functionalities by cornered ones. Boxes with bold lines and
grey background denote that the sub-party is unhackable. Standard channels are
denoted by lines, data diodes by and air-gap switches by (initially
disconnected) and (initially connected). Dashed lines denote standard
channels to other parties that are currently not shown. Downward connections
from the main party and possibly from the OIMs or IIMs are to the environment
(or the calling protocol).

Pi

Freg

RMi

Ji

F?
G

Enci

Bufferi
A

OIMi

Deci

IIMi

Fig. 8: Architecture for a) non-reactive functionalities and up to N − 1 parties
under adversarial control, if red and blue part absent, b) non-reactive functionali-
ties and up to N parties under adversarial control, if blue part absent, c) reactive
functionalities and up to N − 1 parties under adversarial control, if red part is
absent, and d) reactive functionalities and up to N parties under adversarial
control, if blue and red is present. Note that ? ∈ {reac, nreac} depending on G.

B Definitions

B.1 Reactive / Non-Reactive Functionalities

A non-reactive functionality interacts with the parties in a single round, taking at
most one input from each party and providing at most one output to each party.

46

In contrast, a reactive functionality may receive inputs and provide outputs in
multiple rounds, possibly maintaining state information between rounds.

B.2 Well-Formed Functionalities

An ideal functionality is called well-formed if it consists of a “shell” and a “core”.
The core is an arbitrary PPT TM. The shell is a TM that acts as a “wrapper”
in the following way: All incoming message are forwared to the core except for
corrupt messages. Furthermore, outputs generated by the core are forwarded
by the shell. Furthermore, an ideal functionality is adaptively well-formed if it
consist of a shell and a core as described above and, in addition, the shell sends
the random tape of the core to the adversary if all parties are corrupted at some
activation.

B.3 Ideal Public Bulletin Board Functionality

In our constructions (Sections 4 and 5), we make use of the ideal functionality
Freg that models a public bulletin board.

Definition 7 (Ideal Functionality Freg). Freg proceeds as follows:

– Report: Upon receiving a message (register, sid, v) from party P , send
(registered, sid, P, v) to the adversary; upon receiving ok from the adversary,
record the pair (P, v). Otherwise, ignore the message.

– Retrieve: Upon receiving a message (retrieve, sid, Pi) from some party Pj
(or the adversary A), generate a public delayed output (retrieve, sid, Pi, v)
to Pj, where v = ⊥ if no record (P, v) exists.

Note that in contrast to the usual definition, we allow key revocation in Freg.

B.4 Cryptographic Primitives

In the following, we define the cryptographic primitives used in this paper along
with their required security properties.

Public-Key Encryption Schemes

Definition 8 (Public-Key Encryption Scheme). LetM⊆ {0, 1}p(n) be the
message space. A public-key encryption scheme PKE = (GenPKE,Enc,Dec)
consists of three probabilistic polynomial-time algorithms such that:

1. The key-generation algorithm GenPKE takes as input 1n and outputs a tuple
(pk, sk). We call pk the public key and sk the private key or secret key.

2. The encryption algorithm Enc takes as input a public key pk and a message
m ∈M and outputs a ciphertext c.

3. The decryption algorithm Dec takes as input a private key sk and a ciphertext
c and outputs a message m ∈M or a special symbol ⊥ denoting failure.

47

We call PKE perfectly correct if Pr[Dec(sk,Enc(pk,m)) = m] = 1 for any
m ∈ M and for all (pk, sk) ← GenPKE(1n) where the probability is over the
random choices of GenPKE,Enc, and Dec.

Definition 9 (Indistinguishability Under Parallel Chosen Ciphertext
Attack).

The experiment ExpIND−pCCA
A(z),PKE (n) denotes the output of the following proba-

bilistic experiment: At the beginning, the experiment generates keys (pk, sk) ←
GenPKE(1n). On input 1n, z and pk, the adversary A chooses two messages
m0,m1 and sends them to the experiment. The experiment then chooses a bit
b uniformly random from {0, 1} and computes c∗ ← Enc(pk,mb). During the
experiment A may send a single parallel query to the oracle ODec(sk,·). At the end
of the experiment, A sends a bit b′ ∈ {0, 1}. The experiment then outputs 1 if
b = b′, and 0 otherwise. The output of the experiment is replaced by a uniformly
random bit b∗ if during the experiment A queries ODec(sk,·) on a vector containing
c∗.

An adversary is called valid if he only chooses messages m0,m1 such that
|m0| = |m1| and his parallel query to ODec(sk,·) does not contain c∗.

We call a public-key encryption scheme PKE IND-pCCA-secure if for every
valid ppt-adversary A and all z ∈ {0, 1}∗ there exists a negligible function negl
such that

Pr[ExpIND−pCCA
A(z),PKE (n) = 1] ≤ 1

2 + negl(n)

Definition 10 (Indistinguishability under Adaptive Chosen Ciphertext
Attack). The experiment ExpIND−CCA

A(z),PKE (n) denotes the output of the following
probabilistic experiment: At the beginning, the experiment generates a key pair
(pk, sk)← GenPKE(1n). On input 1n, z and pk, the adversary A chooses two mes-
sages m0,m1 of equal length and sends them to the experiment. The experiment
then chooses a bit b uniformly random from {0, 1} and computes c∗ ← Enc(pk,mb).
On input 1n, z, c∗ and pk, the adversary may now make an arbitrary number of
queries (not containing c∗) to a decryption oracle ODec(sk,·). At the end of the
experiment, A sends a bit b′ ∈ {0, 1}. The experiment then outputs 1 if b = b′,
and 0 otherwise. The output of the experiment is replaced by a uniformly random
bit b∗ if during the experiment A queries ODec(sk,·) on c∗.

An adversary is called valid if he only chooses messages m0,m1 such that
|m0| = |m1| and does not query ODec(sk,·) on c∗ during the experiment.

We call a public-key encryption scheme PKE IND-CCA-secure if for every
valid ppt-adversary A and all z ∈ {0, 1}∗ there exists a negligible function negl
such that

Pr[ExpIND−CCA
A(z),PKE (n) = 1] ≤ 1

2 + negl(n)

48

The security definitions of Definitions 9 and 10 can also be equivalently stated
as follows. For every valid ppt-adversary A and all z ∈ {0, 1}∗ there exists a
negligible function negl such that

|Pr[out0(A) = 1]− Pr[out1(A) = 1]| ≤ negl(n)

where b denotes the respective experiment’s choice bit and outb(A) denotes the
bit sent to the experiment by A.

Message Authentication Codes

Definition 11 (Message Authentication Code). A message authentication
code MAC = (GenMAC,Mac,VrfyMAC) consists of three probabilistic polynomial-
time algorithms such that:

1. The key-generation algorithm GenMAC takes as input 1n and outputs a key
k. We call k the MAC key.

2. The tag-generation algorithm Mac takes as input a MAC key k and a message
m and outputs a MAC tag t.

3. The verification algorithm VrfyMAC takes as input a MAC key k, a message
m and a presumptive MAC tag t and outputs a bit b ∈ {0, 1}, with b = 1
meaning valid and b = 0 meaning invalid.

It is required that for every MAC key k ← GenMAC(1n) and every m ∈ {0, 1}∗,
it holds that Pr[VrfyMAC(k,m,Mac(k,m)) = 1] = 1, where the probability is over
the random choices of GenMAC,VrfyMAC and Mac. (correctness).

Definition 12 (Existential Unforgeability under One Chosen Message
Attack for MACs). We call a message authentication code MAC EUF-1-CMA-
secure if for every ppt-adversary A and all z ∈ {0, 1}∗ there exists a negligible
function negl such that

Pr[ExpEUF−1−CMA
A(z),MAC (n) = 1] ≤ negl(n)

The experiment ExpEUF−1−CMA
A(z),MAC (n) denotes the output of the following prob-

abilistic experiment: At the beginning, the experiment generates a key k ←
GenMAC(1n). On input 1n and z, the adversary A may send a single query m′ to
an oracle OMac(k,·). Afterwards, A outputs a tuple (m∗, t∗). If VrfyMAC(k,m∗, t∗) =
1 and m∗ 6= m′, the experiment outputs 1, else 0.

Definition 13 (Existential Unforgeability under Chosen Message At-
tack for MACs). We call a message authentication code MAC EUF-CMA-
secure if for every ppt-adversary A and all z ∈ {0, 1}∗ there exists a negligible
function negl such that

Pr[ExpEUF−CMA
A(z),MAC (n) = 1] ≤ negl(n)

49

The experiment ExpEUF−CMA
A(z),MAC (n) denotes the output of the following probabilis-

tic experiment: At the beginning, the experiment generates a key k ← GenMAC(1n).
On input 1n and z, the adversary A may send queries to an oracle OMac(k,·).
Let Q be the set of all queries. Eventually, A outputs a tuple (m∗, t∗). If
VrfyMAC(k,m∗, t∗) = 1 and m∗ /∈ Q, the experiment outputs 1, else 0.

Digital Signature Schemes

Definition 14 (Digital Signature Scheme). A digital signature scheme
SIG = (GenSIG,Sig,VrfySIG) consists of three probabilistic polynomial-time algo-
rithms such that:

1. The key-generation algorithm GenSIG takes as input 1n and outputs a tuple
(vk, sgk). We call vk the (public) verification key and sgk the (private) signing
key or signature key.

2. The signature-generation algorithm Sig takes as input a signing key sgk and
a message m and outputs a signature σ.

3. The verification algorithm VrfySIG takes as input a verification key vk, a
message m and a presumptive signature σ and outputs a bit b ∈ {0, 1}, with
b = 1 meaning valid and b = 0 meaning invalid.

It is required that for every key pair (vk, sgk) ← GenSIG(1n) and every
m ∈ {0, 1}∗, it holds that VrfySIG(vk,m,Sig(sgk,m)) = 1 (correctness).

Definition 15 (Length-Normal Digital Signatures). A digital signature
scheme SIG is length-normal if for every key pair (vk, sgk) output by GenSIG(1n)
and all m,m′ ∈ {0, 1}∗ such that |m| = |m′| the following holds: If σ ←
Sig(sgk,m), σ′ ← Sig(sgk,m′) then |σ| = |σ′|.

Definition 16 (Existential Unforgeability under Non-Adaptive Chosen
Message Attack for Digital Signature Schemes). We call a digital signature
scheme SIG EUF-naCMA-secure if for every ppt-adversary A and all z ∈ {0, 1}∗
there exists a negligible function negl such that

Pr[ExpEUF−naCMA
A(z),SIG (n) = 1] ≤ negl(n)

The experiment ExpEUF−naCMA
A(z),SIG (n) denotes the output of the following proba-

bilistic experiment: At the beginning, the experiment generates keys (vk, sgk)←
GenSIG(1n). On input 1n and z, the adversary A may send queries to a signing
oracle OSig(sgk,·). Let Q be the set of all queries. Afterwards on input 1n, z and
vk, A outputs a tuple (m∗, σ∗). If VrfySIG(vk,m∗, σ∗) = 1 and m∗ /∈ Q, the
experiment outputs 1, else 0.

50

C A Short Introduction to the UC Framework

In the following, we give a brief overview of the UC framework. The following is
adapted from [BDH+17]. For a detailed introduction see [Can01].

In the UC framework, security is defined by the indistinguishability of two
experiments: the ideal experiment and the real experiment. In the ideal experiment,
the task at hand is carried out by dummy parties with the help of an ideal
incorruptible entity—called the ideal functionality F . In the real experiment, the
parties execute a protocol π in order to solve the prescribed tasks themselves. A
protocol π is said to be a (secure) realization of F if no PPT-machine Z, called
the environment, can distinguish between these two experiments. In contrast to
previous simulation-based notions, indistinguishability must not only hold after
the protocol execution has completed, but even if the environment Z—acting
as the interactive distinguisher—takes part in the experiment, orchestrates all
adversarial attacks, gives input to the parties running the challenge protocol,
receives the parties’ output and observes the communication during the whole
protocol execution.

The basic model of computation. The basic model of computation consists of a
set of (a polynomial number of) instances (ITIs) of interactive Turing machines
(ITMs). An ITM is the description of a Turing machine with an additional
identity tape, three externally writable input tapes (namely for input, subroutine
output18 and incoming messages) and an outgoing message tape. The latter is
jointly used to provide input to any of the three input tapes of another ITM.
The tangible instantiation of an ITM—the ITI—is identified by the content of its
identity tape. The order of activation of the ITIs is completely asynchronous and
message-driven. An ITI gets activated if input, subroutine output or an incoming
message is written onto its respective tape. If the ITI writes onto its outgoing
message tape and calls the special external write instruction, the activation
of this ITI completes. The message must explicitly designate the identity and
input tape of the receiving ITI. Each experiment comprises two special ITIs: The
environment Z and the adversary A (in the real experiment) or the simulator S
(in the ideal experiment). The environment Z is the ITI that is initially activated.
If any ITI completes its activation without giving any output, the environment is
activated again as a fall-back. If the environment Z provides subroutine output,
the whole experiments stops. The output of the experiment is the output of Z.
Without loss of generality, we assume that Z outputs a single bit only.

The Control Function and Message Delivery. If an ITI writes a message onto its
outgoing message tape and calls external write, a control function decides if
the operation is allowed19. If so, the experiment proceed as follows: If the receiver
is uncorrupted and the designated input tape is either input or subroutine output,
18 Beware: Despite its name this tape is actually an input tape as it receives subroutine

output.
19 N.b.: The control function is another ITI that exists “outside” of the experiment and

checks which combination of sender ID, receiver ID and message tape are feasible.

51

the message is copied to the respective tape of receiver. Else (meaning if the
message is intended to be sent to an incoming message tape or the receiver is
corrupted) the message is delivered to the respective tape of the adversary. This
captures the natural intuition that input and subroutine output normally occurs
within the same physical party and thus should be authenticated, immediate,
confidential and of integrity. In contrast, external communication is only possible
through an unreliable network under adversarial the control.

UC Framework Conventions. In the UC framework, many important aspects are
unspecified. For example, it leaves open which ITI is allowed to invoke what kind
of new ITIs. The conventions stated in the following are probably the mostly
used ones and quite natural.

Each party is identified by its party identifier (PID) pid which is unique to
the party and is the UC equivalent of the physical identity of this party. A party
runs a protocol π by means of an ITI which is called the main party of this
instance of π. An ITI can invoke subsidiary ITIs to execute sub-protocols. A
subsidiary and its parent use their input/subroutine output tape to communicate
with each other. The set of ITIs taking part in the same protocol but for different
parties communicate through their incoming message tapes. An instance of a
protocol is identified by its session identifier (SID) sid. All ITIs taking part in
the same protocol instance share the same SID. A specific ITI is identified by its
ID id = (pid, sid).

The (Dummy) Adversary. The adversary A is instructed by Z and represents Z’s
interface to the network. To this end, all messages from any party to a party that
has a different main party and that are intended to be written to an incoming
message tape are copied to the adversary. The adversary can process the message
arbitrarily. The adversary may decide to deliver the message (by writing the
message on its own outgoing message tape), postpone or completely suppress
the message, inject new messages or alter messages in any way including the
recipient and/or alleged sender.
Z may also instruct A to corrupt a party. In this case, A takes over the

position of the corrupted party, reports its internal state to Z and from then on
may arbitrarily deviate from the protocol in the name of the corrupted party
as requested by Z. This means whenever the corrupted ITI would have been
activated (even due to subroutine output), the adversary gets activated with the
same input.

Ideal Functionalities and the Ideal Protocol. An ideal functionality F is a special
type of ITM whose instantiations (ITIs) bear a SID but no PID. Hence, it is an
exception to the aforementioned identification scheme. Input to and subroutine
output from F is performed through dummy parties. Dummy parties merely
forward their input to the input tape of F and subroutine output from F to their

For example, only subsidiary ITIs are typically allowed to provide subroutine output
to their main ITI. For details see [Can01].

52

own outgoing message tape. They share the same SID as F , but additionally
have individual party identifiers (PIDs) as if they were the actual main parties
of a (real) protocol. The ideal functionality F is simultaneously a subroutine for
each dummy party and conducts the prescribed task. IDEAL(F) is called the
(ideal) protocol for F and denotes the set of F together with its dummy parties.

The UC Experiment. Let π be a protocol, Z an environment and A an adversary.
The UC experiment, denoted by Execπ,A,Z(n, a), initially activates the environ-
ment Z with security parameter 1n and input a ∈ {0, 1}∗. The first ITI that is
invoked by Z is the adversary A. All other parties invoked by Z are set to be
main parties of the challenge protocol π. Z freely chooses their input, their PIDs
and the SID of the challenge protocol. The experiment is executed as outlined
above.

Definition of Security. A protocol π is said to emulate (or UC-realize) another
protocol ρ, denoted by π ≥UC ρ, if and only if

∀A ∃S ∀Z : Execπ,A,Z(n, a) c≡ Execρ,S,Z(n, a)

holds for all a ∈ {0, 1}∗ with the probability on the left and on the right being
taken over the initial input of Z and all random tapes of all PPT machines. The
adversary S on the right side is called simulator. Please recall that the experiment
silently ensures that the main parties of the challenge protocol are instantiated
by π or ρ respectively. Usually, the security of a (real) protocol π is analyzed
with respect to an (ideal) protocol IDEAL(F) for an ideal functionality F . By
abuse of notation we simply write π ≥UC F , i.e.

π ≥UC F ⇐⇒ π ≥UC IDEAL(F) ⇐⇒

∀A ∃S ∀Z : Execπ,A,Z(n, a) c≡ ExecIDEAL(F),S,Z(n, a)

for all a ∈ {0, 1}∗. The simulator S mimics the adversarial behavior to the
environment as if this were the real experiment with real parties carrying out the
real protocol with real π-messages. Moreover, S must come up with a convincing
internal state upon corrupted parties, consistent with the simulated protocol
execution up to this point (dummy parties do not have an internal state).

Protocol Composition. UC security is closed under protocol composition: Let
π, φ, ρ be protocols. Then,

π ≥UC φ =⇒ ρπ ≥UC ρ
φ

53

	Fortified Universal Composability: Taking Advantage of Simple Secure Hardware Modules

