
Bernstein Bound on WCS is Tight

Repairing Luykx-Preneel Optimal Forgeries

Mridul Nandi

Indian Statistical Institute, Kolkata
mridul.nandi@gmail.com

Abstract. In Eurocrypt 2018, Luykx and Preneel described hash-key-
recovery and forgery attacks against polynomial hash based Wegman-
Carter-Shoup (WCS) authenticators. Their attacks require 2n/2 message-
tag pairs and recover hash-key with probability about 1.34×2−n where n
is the bit-size of the hash-key. Bernstein in Eurocrypt 2005 had provided
an upper bound (known as Bernstein bound) of the maximum forgery ad-
vantages. The bound says that all adversaries making O(2n/2) queries of
WCS can have maximum forgery advantage O(2−n). So, Luykx and Pre-
neel essentially analyze WCS in a range of query complexities where WCS
is known to be perfectly secure. Here we revisit the bound and found
that WCS remains secure against all adversaries making q �

√
n× 2n/2

queries. So it would be meaningful to analyze adversaries with beyond
birthday bound complexities.
In this paper, we show that the Bernstein bound is tight by describing two
attacks (one in the “chosen-plaintext model” and other in the “known-
plaintext model”) which recover the hash-key (hence forges) with
probability at least 1

2
based on

√
n× 2n/2 message-tag pairs. We

also extend the forgery adversary to the Galois Counter Mode (or GCM).
More precisely, we recover the hash-key of GCM with probability
at least 1

2
based on only

√
n
`
× 2n/2 encryption queries, where `

is the number of blocks present in encryption queries.

Keywords: WCS authenticator, GCM, polynomial hash, universal hash, AXU,
key-recovery, forgery.

1 Introduction

Wegman-Carter Authentication. In 1974 ([GMS74]), Gilbert, MacWilliams
and Sloane considered a coding problem which is essentially an one-time authen-
tication protocol (a fresh key is required for every authentication). Their solu-
tions required a key which is as large as the message to be authenticated. Later
in 1981, Wegman and Carter [WC81] proposed a simple authentication proto-
col based on an almost strongly universal2 hash function which was described
in their early work in [CW79]. The hash-key size is the order of logarithm of
message length (which is further reduced by some constant factor due to Stin-
son [Sti94]). The hash-key can be the same for every authentication, but it needs
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a fresh constant sized random key (used to mask the hash-output). More pre-
cisely, let κ be a hash-key of an n-bit hash function ρκ and R1, R2, . . . be a
stream of secret n-bit keys. Given a message m and its unique message number
n (also known as a nonce), the Wegman-Carter (WC) authenticator computes
Rn ⊕ ρκ(m) as a tag.

Almost Xor-Universal or AXU Hash. In [Kra94] Krawczyk had shown
that almost strong universal2 property can be relaxed to a weaker hash (named
as AXU or almost-xor universal hash by Rogaway in [Rog95]). The polynomial
hashing [dB93,BJKS94,Tay94], division hashing [KR87,Rab81] are such exam-
ples of AXU hash functions which were first introduced in a slightly different
context. Afterwards, many AXU hash functions have been proposed for instan-
tiating Wegman-Carter authentication [Sho96,HK97,Ber05a,BHK+99,MV04]. A
comprehensive survey of universal hash functions can be found in [Ber07,Nan14].
Among all known examples, the polynomial hashing is very popular as it requires
hash-key of constant size and, both key generation and hash computation are
very fast.

Wegman-Carter-Shoup or WCS Authenticator. To get rid of onetime
masking in Wegman-Carter authenticator, Brassard (in [Bra83]) proposed to use
a pseudorandom number generator which generates the keys R1, R2, . . . , from a
short master key K. However, in some application, message number can come in
arbitrary order and so a direct efficient computation of Rn is much desired (it is
alternatively known as pseudorandom function or PRF). Brassard pointed out
that the Blum-Blum-Shub pseudorandom number generator [BBS86] outputs
can be computed directly. As blockciphers are more efficient, Shoup ([Sho96])
considered the following variant of WC authentication:

WCSK,κ(n1,m) := eK(n)⊕ ρκ(m)

where eK is a keyed blockcipher modeled as a pseudorandom permutation (PRP).
This was named as WCS authenticator by Bernstein in [Ber05b].

The use of PRPs enables practical and fast instantiations of WCS authentica-
tors. The WCS authentication mechanism implicitly or explicitly has been used
in different algorithms, such as Poly1305-AES [Ber05a] and Galois Counter Mode
or GCM [MV04,AY12]. GCM was adopted in practice, e.g. [MV06,JTC11,SCM08].
GCM and its randomized variants, called RGCM [BT16], are used in TLS 1.2
and TLS 1.3.

1.1 Known Security Analysis of WCS prior to Luykx-Preneel
Eurocrypt 2018

Hash-Key Recovery Attacks of WCS. Forgery and key-recovery are
the two meaningful security notions for an authenticator. Whenever we recover
hash-key, the security is completely lost as any message can be forged. Security
of WCS relies on the nonce which should not repeat over different executions
[Jou,HP08]. Most of the previously published nonce respecting attacks aim to
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recover the polynomial key [ABBT15,PC15,Saa12,ZTG13] based on multiple
verification attempts. The total number of message blocks in all verification
attempts should be about 2n to achieve some significant advantage.

Provable Security Analysis of WCS. The WC authenticator based on
polynomial hashing has maximum forgery or authenticity advantage v`

2n against
all adversaries who make at most q authentication queries and v verification
queries consisting of at most ` blocks. By applying the standard PRP-PRF
switching lemma, WCS (which is based on a random permutation π) has an

authenticity advantage at most v`
2n + (v+q)2

2n . So the bound becomes useless as q

approaches 2n/2 (birthday complexity). Shoup proved that the advantage is at

most v`
2n for all q < 2

n−log `
2 [Sho96]. So, when ` = 210, n = 128, the above bound

says that the authenticity advantage is at most v`/2128, whenever q ≤ 259. This
is clearly better than the classical bound. However, the application of Shoup’s
bound would be limited if we allow large `.

Bernstein Bound. Finally, Bernstein [Ber05b] provided an improved bound for
WCS which is valid for wider range of q. The maximum authenticity advantage
is shown to be bounded above by

B(q, v) := v · ε · (1− q

2n
)
−(q+1)

2 (1)

for all q, where ρκ is an ε-AXU hash function. Thus, when q = O(2n/2), the
maximum success probability is O(v · ε) which is clearly negligible for all reason-
able choices of v and ε. For example, the forgery advantage against 128-bit WCS
based on polynomial hashing is at most (1) 1.7v` × 2−128 when q ≤ 264, and
(2) 3000v`× 2−128 when q = 266 (so WCS remains secure even if we go beyond
birthday bound query complexity).

1.2 Understanding the result due to Luykx and Preneel in [LP18]

False-key or True-key set. All known key-recovery attacks focus on re-
ducing the set of candidate keys, denoted T, which contains the actual key. But
the set of candidate keys, also called true-key set, is constructed from verifica-
tion attempts. Recently, a true-key set (equivalently false-key set which is simply
the complement of the true-key set) is constructed from authentication queries
only. After observing some authentication outputs of a WCS based on a blockci-
pher eK , some choices for the key can be eliminated using the fact that outputs
of the blockcipher are distinct. More precisely, we can construct the following
false-key set F based on a transcript τ := ((n1,m1, t1), . . . , (nq,mq, tq)) where
ti = eK(ni)⊕ ρκ(mi):

F := {x : ti ⊕ ρx(mi) = tj ⊕ ρx(mj), for some i 6= j}. (2)

It is easy to see that the hash-key κ 6∈ F, since otherwise, there would exist
i 6= j, eK(ni) = eK(nj), which is a contradiction. So, a random guess of a key
from outside the false-key set would be a correct guess with probability at least
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1
2n−E(|F|) . This simple but useful observation was made in [LP18]. We also use

this idea in our analysis.

– Lower bound on the expected size of false-key set.
Based on the above discussion, one natural approach would be to maximize the
false-key set to obtain higher key-recovery advantage. This has been considered
in [LP18]. Proposition 3.1 of [LP18] states that

E(|F|) ≥ q(q−1)
4 , for all q <

√
2n − 3.

In other words, expected size of the false-key set grows quadratically. They have
stated the following in section 3 of [LP18].

“We describe chosen-plaintext attacks which perfectly match the bounds
for both polynomial-based WCS MACs and GCM.”

Issue 1: The Luykx-Preneel attack is no better than random guessing.
Their attack can eliminate about one fourth keys. In other words, there are still
three-fourth candidate keys are left. So, the key-recovery advantage KR(q) is
about 1.34

2n (1.34 times more than a random guess attack without making any
query). Naturally, as the key-recovery advantage is extremely negligible, claiming
such an algorithm as an attack is definitely under question.

– Upper bound on the expected size of false-key set.
Now we discuss the other claim of [LP18]. They claimed that (Theorem 5.1
of [LP18]) the size of the false-key set cannot be more than q(q + 1)/2 after
observing q responses of polynomial-based WCS. In other words, irrespective
of the length of queries `, the upper bound of the size of the false-key set is
independent of `. At a first glance this seem to be counter-intuitive as the number
of roots of a polynomial corresponding to a pair of query-responses can be as
large as `. So, at best one may expect the size of the false-key set can be

(
q
2

)
`.

But, on the other extreme there may not be a single root for may pairs of queries.
On the average, the number of roots for every pair of messages turns out to be
in the order of q2, independent of `. We investigate the proof of Theorem 5.1
of [LP18] and in the very first line they have mentioned that

“Using Thm. 4.1, Cor. 5.1, and Prop. 5.3, we have...”

However, the Cor 5.1 is stated for all q ≤ Mγ (a parameter defined in Eq. 41
of [LP18]). They have not studied how big Mγ can be. We provide an estimation

which allows us to choose Mγ such that `
(
Mγ

2

)
= 2n − `. With this bound, the

Theorem 5.1 can be restated as

E(|F|) ≤ q(q + 1)

2
for all q <

2n/2√
`
. (3)

By combining Proposition 3.1 and a corrected version of Theorem 5.1 as just
mentioned, we can conclude that

E(|F|) = Θ(q2), for all q <
2n/2√
`
.
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In other words, authors have found a tight estimate of expected size of the
false-key set in a certain range of q.

Issue 2: Usefulness of an upper bound of the false-key set: The lower
bound of the expected false-key set immediately leads to a lower bound of key-
recovery advantage. However, an upper bound of the expected false-key set does
not lead to an upper bound of key-recovery advantage. This is mainly due to
the fact, the key-recovery advantage based on q authentication responses can be
shown as

KR(q) = E(
1

2n − |F|
) ≥ 1

2n − E(|F|)
.

The inequality follows from the Jensen inequality. So an upper bound of E(|F|)
does not give any implication on KR(q). Moreover, dealing the expression E(1/(2n−
|F|)) directly is much harder. So the usefulness of an upper bound of the ex-
pected size of false-key set is not clear to us (other than understanding tightness
of size of the false-key set which could be of an independent interest).

1.3 Our Contributions

In this paper, we resolve the optimality issue of the Bernstein bound. We first
provide a tight alternative expression of the Berstein bound. In particular, we

observe that B(q, v) = Θ(v · ε · e
q2

2n+1 ). So WCS is secure against all adversaries
with q �

√
n× 2n/2 queries. An adversary must make about

√
n× 2n/2 queries

to obtain some significant advantage. In this paper we describe three attacks to
recover the hash key and analyze their success probabilities.

1. The first two attacks (in the known-plaintext and the chosen-plaintext mod-
els) are against WCS based on a polynomial hash; they also work for other
hashes satisfying certain regular property. Our attacks are also based a false-
key (equivalently a true-key set) as described in the Luykx-Preneel attack.
Unlike the Luykx-Preneel attack, we however choose message randomly in
case of chosen-plaintext model. The query complexity of our attacks is also
beyond the birthday complexity. In particular, these attacks require

√
n2n

authentication queries. So the bound due to Bernstein is tight (even in the
known-plaintext model) when q ≈

√
n2n.

2. We also extend these attacks to the authentication algorithm of GCM which
utilizes the ciphertext of GCM encryption to reduce the complexity of en-
cryption queries. In particular, if each encryption query contains ` blocks,
then this attack requires

√
n
` × 2n encryption queries to recover the hash key

used in GCM authentication. We have proved that our forgery is optimum
by proving a tight upper bound on the maximum forgery advantage.

3. We also provide a simple proof on the tightness of the false-key set which
works for all q. In particular, we show that the expected size of the false-key
set is at most q(q − 1)/2n.
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2 Preliminaries

Notations. We write X←$X to denote that the random variable X is sampled
uniformly (and independently from all other random variables defined so far)
from the set X. Let (a)b := a(a − 1) · · · (a − b + 1) for two positive integers
b ≤ a. A tuple (x1, . . . , xq) is simply denoted as xq. We call xq coordinate-wise
distinct if xi’s are distinct. We write the set {1, 2, . . . ,m} as [m] for a positive
integer m. We use standard asymptotic notations such as o(·), O(·), Θ(·) and
Ω(·) notations. For real functions f(x), g(x), we write f = O(g) (equivalently
g = Ω(f)) if there is some positive constant C such that f(x) ≤ Cg(x) for all
x. If both f = O(g) and g = O(f) hold then we write f = Θ(g). We write

f(x) = o(g(x)) if lim
x→∞

f(x)
g(x) = 0.

Jensen Inequality. We write E(X) to denote the expectation of a real valued
random variable X. A twice differentiable function f is called convex if for all x
(from the domain of f), f ′′(x) > 0. For example, (1) 1/x is a convex function
over the set of all positive real numbers and (2) 1

N−x is convex over the set of all
positive real number less than N . For every convex function f and a real valued
random variable X, E(f(X)) ≥ f(E(X)) (Jensen Inequality). In particular, for all
positive random variable X,

E
( 1

X

)
≥ 1

E(X)
(4)

and for all positive random variable Y < N ,

E
( 1

N − Y

)
≥ 1

N − E(Y)
(5)

Lemma 1. Let 0 < ε ≤
√

2− 1. Then, for all positive real x ≤ ε,

e−(1+ε)x ≤ 1− x.

Proof . It is well known (from calculus) that e−x ≤ 1−x+ x2

2 for all real x. Let

η = 1 + ε <
√

2. So

e−(1+ε)x ≤ 1− (1 + ε)x+
η2x2

2

≤ 1− (1 + ε)x+ x2

= 1− x− x(ε− x) ≤ 1− x ut

We also know that 1 − x ≤ e−x. So, the above result informally says that
1−x and e−x are “almost” the same whenever x is a small positive real number.

2.1 Security Definitions

Pseudorandom Permutation Advantage. Let PermB be the set of all per-
mutations over B. A blockcipher over a block set B is a function e : K×B→ B
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such that for all key k ∈K, e(k, ·) ∈ PermB. So, a blockcipher is a keyed family
of permutations. A uniform random permutation or URP is denoted as π, where
π←$PermB. The pseudorandom permutation advantage of a distinguisher A

against a blockcipher e is defined as

Advprpe (A) :=
∣∣ Pr
K ←$K

(AeK returns 1)− Pr
π

(Aπ returns 1)
∣∣.

Let A(q, t) denote the set of all adversaries which runs in time at most t and
make at most q queries to either a blockcipher or a random permutation. We
write Advprp(q, t) = max

A∈A(q,t)
Advprpe (A).

Authenticator. A nonce based authenticator with nonce space N, key space
K, message space M and tag space B is a function γ : K ×N ×M → B.
We also write γ(k, ·, ·) as γk(·, ·) and hence a nonce based authenticator can
be viewed as a keyed family of functions. We say that (n,m, t) is valid for γk
(or for a key k when γ is understood) if γk(n,m) = t. We define a verifier
Verγk : N ×M ×B→ {0, 1} as

Verγk(n,m, t) =

{
1 if (n,m, t) is valid for γk,

0 otherwise.

We also simply write Verk instead of Verγk .

An adversary A against a nonce based authenticator makes authentication
queries to γK and verification queries to VerK for a secretly sampled K ←$K.
An adversary is called

- nonce-respecting if nonces in all authentication queries are distinct,

- single-forgery (or multiple-forgery) if it submits only one (or more than one)
verification query,

- key-recovery if it finally returns an element from key space.

In this paper we only consider nonce-respecting algorithm. We also assume that
A does not submit a verification query (n,m, t) to VerγK for which (n,m) has al-
ready been previously queried to the authentication oracle. Let A(q, v, t) denote
the set of all such nonce-respecting algorithms which runs in time t and make at
most q queries to an authenticator and at most v queries to its corresponding ver-
ifier. In this paper our main focus on analyzing the information-theoretic adver-
saries (which can run in unbounded time). So we write A(q, v) = ∪t<∞ A(q, v, t).

View of an Adversary. An adversary A ∈ A(q, v) makes queries (n1,m1), . . .,
(nq,mq) to an authenticator γK adaptively and obtain responses t1, . . . , tq re-
spectively. It also makes (n′1,m

′
1, t
′
1), . . . , (n′v,m

′
v, t
′
v) to verifier VerK and obtain

responses b1, . . . , bv ∈ {0, 1} respectively. The authentication and verification
queries can be interleaved and adaptive. Note that all ni’s are distinct as we
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consider only nonce-respecting adversary, however, n′i’s are not necessarily dis-
tinct and can match with nj values. We also assume that both q and v are fixed
and hence non-random. We call the tuple(

(n1,m1, t1), . . . , (nq,mq, tq), (n
′
1,m

′
1, t
′
1, b1), . . . , (n′v,m

′
v, t
′
v, bv)

)
view and denote it as view(AγK ,VerK ) (which is a random variable induced by
the randomness of A and the key of γ). Let

V = (N ×M ×B)q × (N ×M ×B× {0, 1})v

be the set of all possible views. We say that a view τ ∈V is realizable if

Pr
A,K

(view(AγK ) = τ) > 0.

Authenticity Advantage. Following the notation of the view of an adversary
as denoted above, we define the authenticity advantage of A as

Authγ(A) := Pr(∃i, bi = 1).

In words, it is the probability that A submits a valid verification query which has
not been obtained through a previous authentication query. In this paper, we are
interested in the following maximum advantages for some families of adversaries:

Authγ(q, v, t) = max
A∈A(q,v,t)

Auth(A), Authγ(q, v) = max
A∈A(q,v)

Auth(A).

So Authγ(q, v) is the maximum advantage for all information theoretic adver-
saries with the limitation that it can make at most q authentication queries and
v verification queries. It is shown in [BGM04,Ber05a] that

Authγ(q, v) ≤ v · Authγ(q, 1). (6)

Key-recovery Advantage. A full-key-recovery algorithm A is an adversary
interacting with γK and VerK and finally it aims to recover the key K. Once the
key K is recovered, the full system is broken and so one can forge as many times
as it wishes. For some authenticators, we can do the forgeries when a partial key
is recovered. Let K = K′ ×H for some sets K′ and H. We call H hash-key
space. Let K = (K ′, H)←$K′ ×H.

Definition 1 (key-recovery advantage). A hash-key recovery algorithm (or
we simply say that a key-recovery algorithm) A is an adversary interacting with
γK and VerK and finally it returns h, an element from H. We define key-
recovery advantage of A against γ as

KRγ(A) := Pr(AγK ,VerK ⇒ h ∧ h = H).

The above probability is computed under randomness of A and K = (K ′, H).
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Similar to the maximum authenticity advantages, we define

KRγ(q, v, t) = max
A∈A(q,v,t)

KR(A), KRγ(q, v) = max
A∈A(q,v)

KR(A).

When v = 0, we simply write KRγ(q, t) and KRγ(q). A relationship between
key-recovery advantage and authenticity advantage is the following which can
be proved easily KRγ(q) ≤ Authγ(q, 1).

Authenticated Encryption. In addition to nonce and message, an authen-
ticated encryption γ′ takes associated data and returns a ciphertext-tag pair. A
verification algorithm Verγ′ takes a tuple of nonce, associated data, ciphertext
and tag, and determines whether it is valid (i.e. there is a message corresponding
to this ciphertext and tag) or not. A forgery adversary A submits a fresh tuple
(not obtained through encryption queries) of nonce, associated data, ciphertext
and tag. Similar to authenticity advantage of an authenticator, authenticity of
an adversary A, denoted Authγ′(A) is the probability that it submits a fresh
valid tuple.

Almost XOR Universal and ∆-Universal Hash Function. Let ρ : H ×
M → B, for some additive commutative group B. We denote the subtraction
operation in the group as “−”. We call ρ ε-∆U (ε-∆-universal) if for all x 6= x′ ∈
M and δ ∈ B,

Pr(ρκ(x)− ρκ(x′) = δ) ≤ ε.

Here, the probability is taken under the uniform distribution κ←$H. Note that
ε ≥ 1/N (since, for any fixed x, x′,

∑
δ Pr(ρκ(x) − ρκ(x′) = δ) = 1). When

B = {0, 1}b for some positive integer b and the addition is “⊕” (bit-wise XOR
operation), we call ρ ε-almost-xor-universal or ε-AXU hash function.

3 Known Analysis of WCS

We describe a real and an idealized version of WCS.

Definition 2 (WCS authenticator). Let eK be a blockcipher over a commu-
tative group B of size N with a key space K′ and ρκ : M → B is a keyed hash
function with a key space K. On an input (n,M) ∈ B×M, we define the output
of WCS as

WCSK,κ(n,M) = eK(n) + ρκ(M). (7)

Here, the pair (K,κ), called secret key, is sampled uniformly from K′ ×K.
An idealized version of WCS is based on a uniform random permutation

π←$PermB (replacing the blockcipher e) and it is defined as

iWCSπ,κ(n,m) = π(n) + ρκ(M) (8)

where the hash key κ←$K (and independent of the random permutation).
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WCS is a nonce based authenticator in which n is the nonce and M is a mes-
sage. The most popular choice of B is {0, 1}n for some positive integer n and
the blockcipher is AES [DR05,Pub01] (in which n = 128). The WCS and the
ideal-WCS authenticators are computationally indistinguishable provided the
underlying blockcipher e is a pseudorandom permutation. More formally, one
can easily verify the following relations by using standard hybrid reduction;

AuthWCS(q, v, t) ≤ AuthiWCS(q, v) + Advprpe (q + v, t+ t′), (9)

KRWCS(q, v, t) ≤ KRiWCS(q, v) + Advprpe (q + v, t+ t′) (10)

where t′ is the time to compute q + v executions of hash functions ρκ.

Polynomial Hash. Polynomial hash is a popular candidate for the keyed hash
function in WCS (also used in the tag computation of GCM [MV04]). Here we
assume that B is a finite field of size N . Given any message M := (m1, . . . ,md) ∈
Bd and a hash key κ ∈K = B, we define the polynomial hash output as

PolyM (κ) := md · κ+md−1 · κ2 + · · ·+m1 · κd. (11)

There are many variations of the above definition. Note that it is not an AXU
hash function over variable-length messages (as appending zero blocks will not
change the hash value). To incorporate variable length message, we sometimes
preprocess the message before we run the polynomial hash. One such example
is to pad a block which encodes the length of the message. One can simply
prepend the constant block 1 to the message. These can be easily shown to be
`
N -AXU over the padded message space M = ∪≤`i=1B

i. In this paper we ignore
the padding details and for simplicity, we work only on the padded messages.
Whenever we use the polynomial hash in the WCS authenticator, we call its
hash-key κ the polynomial-key.

Nonce Misuse. The input n is called nonce which should not repeat over dif-
ferent executions. Joux [Jou] and Handschuh and Preneel [HP08] exhibit attacks
which recover the polynomial key the moment a nonce is repeated. For any two
messages M 6= M ′ ∈ Bd,

WCSK,κ(n,M)−WCSK,κ(n,M ′) = PolyM (κ)− PolyM ′(κ)

which is a nonzero polynomial in κ of degree at most d. By solving roots of the
polynomial (which can be done efficiently by Berlekamps algorithm [Ber70] or
the Cantor-Zassenhaus algorithm [CZ81]), we can recover the polynomial key.
So it is an essential for a WCS authenticator to keep the nonce unique.

3.1 Shoup and Bernstein Bound on WCS

Let iWCS (we simply call it ideal-WCS) be based on a URP and an ε-AXU hash
function ρ. When we replace the outputs of URP by uniform random values,
Wegman and Carter had shown that (in [WC81]) the forgery advantage os less
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than vε (independent of the number of authentication queries). So by applying
the classical PRP-PRF switching lemma, we obtain

AuthiWCS(q, v) ≤ v · ε+
(q + v)2

2N
. (12)

So the classical bound is useless as q approaches
√
N or as v approaches to

ε−1. In [Sho96] Shoup provided an alternative bound (which is improved and
valid in a certain range of q). In particular, he proved

AuthiWCS(q, v) ≤ v · ε · (1− q2ε

2
)−1. (13)

The above bound is a form of multiplicative (instead of additive form of the
classical bounds). Thus, the above bound is simplified as

AuthiWCS(q, v) ≤ 2εver(v) := 2v · ε, ∀q ≤
√
ε−1. (14)

So the ideal-WCS is secure up to q ≤
√
ε−1 queries. When ε = 1/N , it says that

authentication advantage is less 2v · ε for all q ≤
√
N . In other words, ideal-

WCS is secure against birthday complexity adversaries. However, when the hash
function is polynomial hash, Shoup’s bound says that the ideal-WCS is secure
up to q ≤

√
N/`. For example, when we authenticate messages of sizes about

224 bytes (i.e. ` = 220) using AES-based ideal-WCS, we can ensure security up
to q = 254 queries. Like the classical bound, it also does not provide guarantees
for long-term keys. Bernstein proved the following stronger bound for WCS.

Theorem 1 (Bernstein Bound([Ber05b])). For all q and v

AuthiWCS(q, v) ≤ B(q, v) := v · ε · (1− q

N
)−

q+1
2 . (15)

As a simple corollary (recovering the hash-key implies forgery), for all v ≥ 1 we
have

KRiWCS(q, v) ≤ B(q, v), KRiWCS(q, 0) ≤ B(q, 1). (16)

The key-recovery bound was not presented in [Ber05b], but it is a simple straight-
forward corollary from the fact that recovering hash-key implies forgery.

3.2 Interpretation of the Bernstein Bound

We now provide the interpretation of the bound which is crucial for understand-
ing the optimality of ideal-WCS. As 1− x ≤ e−x, we have

B(q, 1) ≥ ε · e
q(q+1)

2N .
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Obviously, the Bernstein bound becomes more than one when q(q + 1)/2 ≥
N lnN (note that ε ≥ N−1). So we assume that q(q+1)/2 ≤ N lnN . We denote
n = log2N . By Lemma 1, we have

B(q, 1) ≤ ε · e
q(q+1)

2N (1+ q
N )

≤ ε · e
q(q+1)

2N × e
q lnN
N

≤ ε · e
q(q+1)

2N × (1 +

√
2 ln3N

N
)

≤ ε · e
q(q+1)

2N × (1 +
2n1.5

2n/2
) = ε · e

q(q+1)
2N × (1 + negl(n))

where negl(n) = 2n1.5

2n/2
. Thus, B(q, v) = Θ(v ·ε ·e

q(q+1)
2N ). Let us introduce another

parameter δ, called the tolerance level. We would now solve for q and v satisfying
B(q, v) = δ (or the inequality B(q, v) ≥ δ) for any fixed constant δ. In other
words, we want to get a lower bound of q and v to achieve at least δ authenticity
advantage.

1. Case 1 When v · ε = δ and q ≥ 1 we have B(q, `) ≥ δ. In other words, one
needs to have sufficient verification attempts (and only one authentication
query suffices) to have some significant advantage. We would like to note that
even when q = O(

√
N), B(q, v) = Θ(v ·ε). So the advantages remain same up

to some constant factor for all values of q = O(
√
N). In other words, we can

not exploit the number of authentication queries within the birthday-bound
complexity.

2. Case 2. v · ε < δ. Let us assume that vε/δ = Nβ for some positive real
β. In this case one can easily verify that q = Ω(

√
δN logN) to achieve at

least δ advantage. In other words, if q = o(
√
N logN) and v = o(ε−1) then

B(q, v) = o(1).

Tightness of the bound for the Case 1. We have seen that when q =
O(
√
N), we have Authγ(q, v) = O(v · ε). In fact, it can be easily seen to be

tight (explained below) when the hash function is the polynomial hash function
PolyM (κ).

Key Guess Forgery/Key-Recovery. Suppose WCS is based on the poly-
nomial hash. Given a tag t of a known nonce-message pair (n,M) with M ∈ B`,
a simple guess attack works as follows. It selects a subset B1 ⊆ B of size ` and
defines a message M ′ ∈M and t′ such that the following identity as a polynomial
in x holds:

PolyM ′(x)− t′ = PolyM (x)− t+
∏
α∈B1

(x− α).

If κ ∈ B1 then it is easy to verify that t′ is the tag for the nonce-message
pair (n,M ′). The success probability of the forging attack is exactly `/N . If the
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forgery is allowed to make v forging attempts, it first chooses v disjoint subsets
B1, . . . ,Bv ⊆ B, each of size `. It then performs the above attack for each set
Bi. The success probability of this forgery is exactly v`/N . The same attack
was used to eliminate false keys systematically narrowing the set of potential
polynomial keys and searching for weak keys.

Remark 1. The tightness of multiple-forgery advantage for WCS based on the
polynomial hash can be extended similarly to all those hash functions ρ for which
there exist v + 1 distinct messages M1, . . . ,Mv,M and c1, . . . , cv ∈ B such that

Pr(ρκ(Mi) = ρκ(M) + ci, ∀i) = vε`.

Why the Bernstein bound is better than the classical birthday bound?
One may think the Bernstein bound is very close to the classical birthday bound
of the form q2/2n and they differ by simply logarithmic factor. However, these
two bound are quite different in terms of the data or query limit in the usage of
algorithms. We illustrate the difference through an example. Let n = 128, and
the maximum advantage we can allow is 2−32. Suppose a construction C has

maximum forgery advantage q2

n2n (a beyond birthday bound with logarithmic
factor). Then we must have the constraint q ≤ 251.5. Whereas, WCS can be used
for at most 264 queries. In other words, Bernstein bound actually provide much
better life time of key than the classical birthday bound.

4 False-Key/True-Key Set: A tool for Key-Recovery and
Forgery

Our main goal of the paper is to obtain hash-key-recovery attacks against WCS
and GCM. Note that we do not recover the blockcipher key. So key-recovery
advantage of whats follows would mean the probability to recover the hash-key
only.

Query System and Transcript. A key-recovery (with no verification at-
tempt) or a single forgery adversary has two components. The first compo-
nent Q, called query system, is same for both key-recovery and forgery. It
makes queries to WCSK,κ adaptively and obtains responses. Let (n1,M1), . . .,
(nq,Mq) be authentication queries with distinct ni (i.e., the query system is
nonce-respecting) and let ti denote the response of ith query. Let τ := τ(Q) =
((n1,M1, t1), . . . , (nq,Mq, tq)) denote the transcript.

Based on the transcript, a second component of forgery returns a fresh
(n,M, t) (not in the transcript). If n 6= ni for all i then the forgery of WCS is
essentially reduced to a forgery of the URP (in particular, forging the value of
π(n)). Hence, the forgery advantage in that case is at most 1/(N −q). The most
interesting case arises when n = ni for some i. Similarly, the second component
of a key-recovery adversary returns an element k ∈K (key space of the random
function) based on the transcript τ obtained by the query system.
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Definition 3 (False-key set [LP18]). With each τ = ((n1,M1, t1), . . ., (nq,Mq, tq)),
we associate a set

Fτ = {x ∈K | ∃i 6= j, ρx(Mi)− ρx(Mj) + tj − ti = 0,Mi 6= Mj}

and we call it the false-key set.

Note that Pr(κ ∈ Fτ ) = 0 and so the term false-key set is justified. In other
words, the true key κ can be any one of the elements from T := K\Fτ , called the
true-key set. Given a query system Q, let us consider the key-recovery adversary
which simply returns a random key k from the true-key set. Let us denote
the key-recovery adversary as QTK . The following useful bound is established
in [LP18].

Lemma 2 ([LP18]). Following the notation as described above we have

KRWCS(QTK) ≥ 1

N − E(|Fτ(Q)|)
. (17)

Proof . Given a transcript τ , the probability that k = κ is exactly 1
N−|Fτ | .

Then,

KRWCS(QTK) =
∑
τ

Pr(k = κ | τ)× Pr(τ)

=
∑
τ

1

N − |Fτ |
Pr(τ)

= E(
1

N − |Fτ |
). (18)

Here the expectation is taken under the randomness of the transcript. A
transcript depends on the randomness of π, κ and the random coins of the query
system. Note that the function f(x) = 1

N−x is convex in the interval (0, N) and

so by using Jensen inequality, we have KRWCS(QTK) ≥ 1
N−E(|Fτ(Q)|)

. ut

In [LP18], it was also shown that E(|Fτ(Q)| ≤ q(q + 1)/2 for all q < Mγ

where

Mγ = max{q : min
mq,tq

|Tτ | ≥ `}

where τ denotes the transcript ((m1, t1), . . . , (mq, tq)) (ignoring nonce values as

these are redundant). A straight forward estimation of Mγ is 2n/2/
√
`. Here we

give a very simple proof of the above bound for all q.

Lemma 3. For all q, E(|Fτ(Q)| ≤ q(q + 1)/2.

Proof . We define an indicator random variable Ix which takes value 1 if and
only if there exists i 6= j such that ρx(Mi) − ρx(Mj) + tj − ti = 0. We observe
that |Fτ | =

∑
x∈K Ix.
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Let us denote π(ni) as Vi. Note that for all i, ti = Vi + ρκ(Mi). Now,
E(|Fτ |) =

∑
x∈K E(Ix). We write px = E(Ix) which is nothing but the probability

that there exists i 6= j such that Vi−Vj = ρx(Mi)− ρκ(Mi) + ρx(Mi) + ρκ(Mi).
By using the union bound we have px ≤

(
q
2

)
/(N − 1). So

E(|Fτ |) ≤
Nq(q − 1)

2(N − 1)

≤ q(q − 1)

2
+

q(q − 1)

2(N − 1)

We can clearly assume that q < N and so by using simple inequality the lemma
follows. ut

True-key Set. Instead of the false-key set we focus on the true key set. The
set Tτ := K \ Fτ is called the true-key set. In terms of the true-key set, we
can write KRWCS(QTK) = E( 1

|Tτ(Q)|
). Let π(ni) = Vi and ai,x := ai,x(κ) :=

ρκ(Mi)− ρx(Mi). We can equivalently define the true-key set as

Tτ = {x ∈K | t1 − ρx(M1), . . . , tq − ρx(Mk) are distinct}
= {x ∈K | V1 + a1,x, . . . ,Vq + aq,x are distinct}. (19)

Now we define an indicator random variable Ix as follows:

Ix =

{
1, if V1 + a1,x, . . . ,Vq + aq,x are distinct
0, otherwise

Let px denote the probability that V1 + a1,x, . . . ,Vq + aq,x are distinct. So,

E(|Tτ |) =
∑
x

E(Ix) =
∑
x∈K

px.

When we want to minimize the expected value of the size of the true-key set,
we need to upper bound the probability px for all x. We use this idea while we
analyze our key-recovery attacks.

5 Key-Recovery Security Attacks of WCS

5.1 A Chosen-Plaintext Key-Recovery Attack

In this section we provide a chosen-plaintext attack against any WCS based on
any blockcipher and a keyed hash function which satisfies a reasonable assump-
tion, called differential regular. This property is satisfied by the polynomial hash.
A function f : M → B is called regular if X ←$M ⇒ f(X)←$B. Now we define
a special type of keyed hash functions.

Definition 4. A keyed hash function ρκ : K → B is called differential regular
if for all distinct x, k ∈K, the function mapping M ∈M to ρk(M)− ρx(M) is
regular.
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The polynomial hash is clearly differential regular. For example, when the
message space is B and κ 6= x, the function mapping m ∈ B to ρκ(m)−ρx(m) =
m(κ− x) is regular.

Theorem 2. Suppose WCS is based on a blockcipher and a keyed differential
regular hash function ρ. Then,

KRWCS(q) ≥ 1

1 +N ′e−
q(q−1)

2N

(20)

where N ′ = |K| (size of the hash-key space). In particular, when q(q − 1) =
2N logN ′ we have KRWCS(q, `) ≥ 1/2.

Interpretation of the result. When N ′ = N (key size is same as the block
size), we can achieve 0.5 key-recovery advantage after making roughly

√
2N logN

authentication queries . If N ′ = N c for some c > 1 (the hash-key size is larger
than the block size) we need roughly

√
2cN logN (which is a constant multiple of

the number queries required for hash-key space of size N) authentication queries.

Proof . Suppose WCS := WCSK,κ is the WCS authenticator based on a block-
cipher eK and a keyed differential regular hash function ρκ. We describe our
key-recovery attack1 A as follows:

1. Choose q messagesM1, . . . ,Mq ←$M and make authentication queries (ni,Mi),
i ∈ [q] for distinct nonces ni’s.

2. Let t1, . . . , tq be the corresponding responses.

3. Construct the true-key set

Tτ = {k | (ti − ρk(Mi))
′s are distinct}.

4. Return a key k←$Tτ .

Here, τ = ((n1,M1, t1), . . . , (nq,Mq, tq)) is the transcript of the adversary A.
We also note that Pr(κ ∈ Tτ ) = 1 and so we have seen that KRWCS(A) = E( 1

|Tτ | ).

Here the expectation is taken under randomness of transcript. The randomness
of a transcript depends on the randomness of K, κ and the messages Mi. By
using Jensen inequality, we have

KRWCS(A) ≥ 1

E(|Tτ |)
.

We will now provide an upper bound of E(|Tτ |). In fact, we will provide an upper
bound on the conditional expectation after conditioning the blockcipher key K
and hash-key κ. Note that ti = eK(ni) + ρκ(Mi) and hence the true-key set is
the set of all x for which Ri,x := eK(ni) + ρκ(Mi)− ρx(Mi) are distinct for all
i ∈ [q].

1 We note that the similar attack is considered in [LP18] where the messages are fixed
and distinct. However in their attacks the analysis is done for q ≤ 2n/2 whereas, we
analyze for all q.
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Claim. Given K and κ, the conditional distributions of Ri,x’s are uniform and
independent over B, whenever x 6= κ.

Proof of the Claim. Once we fix K and κ, for every x 6= κ, ρκ(Mi) − ρx(Mi)
is uniformly distributed (as ρ is differentially regular). So eK(ni) + ρκ(Mi) −
ρx(Mi)’s are also uniformly and independently distributed since eK(ni)’s are
some constants nd Mi’s are independently sampled.

Now we write |Tτ | =
∑
x Ix where Ix is the indicator random variable which

takes values 1 if and only if Ri,x are distinct for all i. Note that Ri,x are distinct

for all i has probability exactly
∏q−1
i=1 (1 − i

N ) (same as the birthday paradox

bound). As 1− x ≤ e−x for all x, we have E(Ix) = Pr(Ix = 1) ≤ e−
q(q−1)
N . So,

E(|T| | K,κ) = 1 +
∑
x 6=κ

E(Ix)

≤ 1 + (N ′ − 1)e−
q(q−1)

2N .

This bound is true for all K and κ and hence E(|T|) ≤ 1 + (N ′ − 1)e−
q(q−1)

2N .
This completes the proof. ut

5.2 Known-Plaintext Attack

Now we show a known-plaintext attack for polynomial-based hash in which we
do not assume any randomness of messages. So our previous analysis does not
work in this case. We first describe a combinatorial result which would be used
in our known plaintext key-recovery advantage analysis.

Lemma 4. Let V1, . . . ,Vq be a uniform without replacement sample from B and
a1, . . . , aq ∈ B be some distinct elements, for some q ≤ N/6. Then,

px := Pr(V1 + a1, . . . ,Vq + aq are distinct) ≤ e−q
2/4N .

Proof . For 1 ≤ α ≤ q, let hα denote the number of tuples vα = (v1, . . . , vα)
such that v1 + a1, . . . , vα + aα are distinct. Clearly, h1 = N . Now we establish
some recurrence relation between hα+1 and hα. We also abuse the term hα to
represent the set of solutions vα = (v1, . . . , vα) such that v1 + a1, . . . , vα + aα
are distinct.

Given any solution vα (among the hα solutions), we want to estimate the
number of ways we can choose vα+1. Note that

vα+1 6∈ {v1, . . . , vα} ∪ {v1 + a1 − aα+1, . . . , vα + aα − aα+1}.

Let Sα := {v1 + a1 − aα+1, . . . , vα + aα − aα+1}. As vα is one solution from hα,
the size of the set Sα is exactly α. Note that if vi = vj + aj − aα then j must be
different from i as ai’s are distinct. For any i 6= j ≤ α, we denote h′α(i, j) be the
number of vα such that v1+a1, . . . , vα+aα are distinct and vi+ai = vj+aj (once
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again we abuse this term to represent the set of solutions). So by the principle
of inclusion and exclusion, we write

hα+1 = (N − 2α)hα +
∑
i 6=j

h′α(i, j).

Claim. For all i 6= j ≤ α, h′α(i, j) ≤ hα
N−2α .

Proof of claim. Let us assume i = α and j = α − 1. The proof for the other
cases will be similar. Any solution for h′α(α, α − 1) is a solution for hα−1 and
vα = vα−1 + aα−1 − aα. However, all solutions corresponding to hα satisfy the
solution corresponding to hα−1 and vα is not a member of a set of size at most
2α. So the claim follows.

Now, we have

hα+1 ≤ hα(N − 2α) + α(α− 1)hα/(N − 2α).

In other words,

hα+1

hα
≤ (N − 2α) +

α(α− 1)

N − 2α
=
N2 − 4αN + 5α2 − α

N − 2α
.

Now we simplify the upper bound as follows.

N2 − 4αN + 5α2 − α
N − 2α

= (N − α)
N2 − 4αN + 5α2 − α
N2 − 3αN + 2α2

= (N − α)(1− αN + α− 3α2

N2 − 3αN + 2α2
)

≤ (N − α)(1− αN + α− 3α2

N2
)

≤ (N − α)(1− α

2N
)

provided α(N + 1)− 3α2 ≥ αN/2, equivalently (N + 2) ≥ 6α. So for all α ≤ q ≤
N/6 we have

hα+1

hα
≤ (N − α)(1− α

2N
) ≤ (N − α)e−

α
2N .

By multiplying the ratio for all 1 ≤ α ≤ q−1 and the fact that h1 = N , we have
hq ≤ (N)qe

−q2/4N . The lemma follows from the definition that px =
hq

(N)q
. ut

Now we consider the key-recovery adversary considered in [LP18]. However,
they considered transcripts with

√
N queries and were able to show a key-

recovery advantage about 1.3/N . However, we analyze it for all queries q and
the key-recovery advantage can reach to 1/2 for q = O(

√
N logN).

Theorem 3. Suppose m1, . . . ,mq ∈ B be distinct messages and n1, . . . ,nq be
distinct nonces. Let ti = WCSπ,κ(ni,mi) where ρκ is the polynomial hash. Then,
there is an algorithm A which recovers the hash-key κ with probability at least

1

1 + (N − 1)e−
q2

4N

.
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So when q =
√

4N logN , the key-recovery advantage is at least 1
2 .

Proof . We denote π(ni) = Vi. So V1, . . . ,Vq forms a without replacement
random sample from B. We write ti = Vi + ρκ(mi) = Vi + κ ·mi. As before we
define the true-key set as

T := {x ∈ B | t1 − x ·m1, . . . , tq − x ·mq are distinct}.

Clearly κ ∈ T. Let us fix x 6= κ and denote ai = (κ− x) ·mi. Note that ai’s are
distinct. So given a hash-key κ, we write the size of true-key set |T| as the sum
of the indicator random variables as follows: |T| = 1 +

∑
x 6=κ Ix where Ix takes

value 1 if and only if V1 + a1, . . . ,Vq + aq are distinct. So,

E(|T| | κ) = 1 +
∑
x 6=κ

E(Ix)

= 1 +
∑
x 6=κ

px

where

px := Pr(V1 + a1, . . . ,Vq + aq are distinct).

By Lemma 4, we know that px ≤ e−
q2

4N and hence E(|T| | κ) ≤ 1+(N−1)e−
q2

4N .

This is true for all hash-keys κ and hence we have E(|T|) ≤ 1 + (N − 1)e−
q2

4N .
This completes the proof. ut

6 Key-Recovery Security Analysis of GCM

Definition of GCM. We briefly describe how GCM works. We refer the reader
to see [MV04] for details. Here B = {0, 1}n (with n = 128) Let eK be a
blockcipher as before. We derive hash-key as κ = eK(0n). Given a message
(m1, . . . ,m`) ∈ B` and a nonce n ∈ {0, 1}b−s for some s, we define the cipher-
text as

ci = V′i ⊕mi, i ∈ [`],V′i = eK(n‖〈i+ 1〉)

where 〈i〉 represents s-bit encoding of the integer i. Finally, the tag is computed
as xor of V := eK(n‖〈1〉) and the output of the polynomial hash of the associated
data and the ciphertext with length encoding. So, t = V⊕c0κ⊕c1κ2⊕· · · where
c0 is the block which encodes the length of message (same as the ciphertext) and
the associated data.

In other words, the tag is computed as a WCS authentication over the cipher-
text with the hash-key derived from the blockcipher. So, one can have a similar
key-recovery attack as stated in Theorem 2 which requires roughly

√
n × 2n/2

authentication queries. More precisely, after making 268 authentication queries
with the first message block random we can recover eK(0) with probability at
least 1/2. Note that the ciphertext blocks are uniformly distributed as it is an
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XOR of message blocks and some blockcipher outputs independent of the mes-
sage blocks. Now we show a more efficient algorithm B which utilize the length
of messages as described below.

1. Choose q messages M1, . . . ,Mq ←$B` and fix some associated data Ai = A.
Make authentication queries (ni,Mi, A), i ∈ [q] for distinct nonces ni’s.

2. Let (C1, t1), . . . , (Cq, tq) be the corresponding responses.

3. Let Mi = mi,1‖ · · ·mi,` and Ci = ci,1‖ · · · ci,` where ni,j , ci,j ∈ B. Construct
a set

V′ = {V′i,j := mi,j ⊕ ci,j | i ∈ [q], j ∈ [`]}

4. Construct the true-key set

T = {k ∈ B | ti ⊕ ρk(A,Ci) 6∈V′ ∀i ∈ [q]}.

5. Return a key k←$T.

Remark 2. One may incorporate the relation that ti ⊕ ρk(A,Ci)’s are distinct
while defining the true-key set. We can gain some complexity up to some small
constant factor. For the sake of simplicity of the analysis and the attack, we keep
the basic simple attack algorithm as described above.

Theorem 4. Let N = 2n where n is the block size of the blockcipher used in
GCM.

KRGCM(q, `) ≥ 1

1 +Ne−
`q2

N

(21)

In particular, when `q2 = N logN we have KRGCM(q, `) ≥ 1/2.

For example, when n = 128, ` = 215 we now need q = 260 encryption queries
to recover κ = eK(0). Once we recover κ, we can forge as many times as re-
quired. Moreover, one can define a universal forgery (for any chosen message
and associated data but not the nonce).

Proof . From the permutation nature of the blockcipher, it is easy to see that
eK(0) ∈ T as defined in the algorithm. So, as before

KRGCM(A) ≥ 1

E(|T|)
.

We will now provide an upper bound of E(|Tτ |). In fact, we will provide an upper
bound of the conditional expectation after conditioning the blockcipher key K
(so that all blockcipher outputs are fixed). Since message blocks are uniformly
distributed, the ciphertext blocks are also uniformly distributed (due to one-time
padding). This proves that after conditioning the blockcipher key K,

R1,x := t1 ⊕ ρx(A,C1), . . . , Rq,x := tq ⊕ ρx(A,Cq)←$B.
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Now, we define an indicator random variable Ix to be one if Ri,x 6∈ V′ for all
i ∈ [q] and 0 otherwise. So, from the definition of T, it is easy to see that

|T| = 1 +
∑
x6=κ

Ix.

Condition a blockcipher key K (and hence the hash-key κ = eK(0n) is fixed),
and fix some x 6= κ. Now,

E(Ix | K) = Pr(Ix = 1 | K)

=

q∏
i=1

(
N − `q
N

)

≤ e−
`q2

N .

When x = κ, clearly, Ix = 1. So,

E(|T| | K) = 1 +
∑
x6=κ

E(Ix)

≤ 1 +Ne−
`q2

N .

This bound is true for all blockcipher keys K and hence E(|T|) ≤ 1 +Ne−
`q2

N .
This completes the proof. ut

We show that when `q2 =
√

2NlogN , we achieve some significant forgery
advantage. Bernstein proved an upper bound of the forgery advantage for WCS.
A similar proof is also applicable for GCM. In particular, we show that forgery

advantage of GCM is at most 1
N · O(e

4`q2

N ). So our forgery (which is induced
from the key-recovery algorithm) is also optimum for GCM.

Theorem 5. Let GCM be based on the ideal n-bit random permutation π. Then,
for all q, v and ` (denoting the number of blocks present in the largest message
including associated data),

AuthGCM(q, v, `) = v · `
N
·O(e

4σq
N ) (22)

Proof . We use xq to denote a q tuple (x1, . . . , xq). For positive integers r ≤ m,
we write (m)r := m(m − 1) · · · (m − r + 1). Bernstein proved an upper bound
of the interpolation probability of a random permutation π as described below.
Let δN (q) = (1− (q − 1)/N)−q/2.

Lemma 5 ([Ber05b], Theorem 4.2). For all 0 < r ≤ N ,

1

(N)r
≤ δN (r)

Nr
=

(1− r−1
N )−

r
2

Nr
. (23)



22 Mridul Nandi

Note that for any r distinct inputs x1, . . . , xr and outputs y1, . . . , yr the prob-
ability that π(x1) = y1, . . . , π(xr) = yr is exactly 1

(N)r
. We use this result to

prove our result.

Without loss of generality we assume that A is deterministic and the nonce in
the forging attempt is one of the nonce in the encryption queries (since otherwise
the bound can be shown to be smaller that what we claimed). Let A make
queries (ni,mi, ai) and obtain response (ci, ti) where mi = (mi[1], . . . ,mi[`i]),
ai = (ai[1], . . . , ai[`

′
i]) and ci = (ci[1], . . . , ci[`i]) and let σ =

∑
i(`i + `′i) (total

number of blocks in all queries). We call (nq,mq, aqcq, tq) transcript.

Let (n∗, a∗, c∗, t∗) denote the forging attempt where c∗ contains `∗ blocks.
According to our simplification, let n∗ = ni for some i. So cq, tq determine the
whole transcript including the forging attempt. Let us write zi = mi ⊕ ci. It is
also easy to see that tq, zq also determine the transcript.

Let F denote the forgery event, n∗ = ni and d = t∗ ⊕ ti. Moreover, for
every k (a candidate of hash key), we set yi(k) = ti ⊕ ρk(ai‖ci). Now, Pr(F ) =
Pr(ρκ(ai‖ci)⊕ ρκ(a∗‖m∗) = d). This can be written as the following sum

Pr(F ) =
∑
tq,zq

Pr(ρκ(ai‖ci)⊕ ρκ(a∗‖c∗) = d ∧ A obtains zq, tq)

=
∑
tq,zq

Pr(ρκ(ai‖ci)⊕ ρκ(a∗‖c∗) = d ∧ E(κ))

where the sum is taken over all tq and all those zq for which all blocks of zi’s are
distinct. The event E(κ) denotes that π(n1‖〈1〉) = y1(κ), . . . , π(nq‖〈1〉) = yq(κ)
and π(ni‖〈j〉) = zi[j] for all 1 ≤ i ≤ q, 1 ≤ j ≤ `i.

Now conditioning on any π(0) := κ = k such that ρκ(ai‖ci)⊕ ρκ(a∗‖c∗) = d
(there are at most ` := max{`i + `′i, `

∗ + `
′∗} + 1 choices of k), the conditional

probability is reduced to Pr(E(k)) which should be 1
(N−1)q+σ (note that π(0) is

conditioned and the event E(k) defines q + σ many inputs-outputs of π). So,

Pr(F ) =
∑
tq,zq

Pr(ρκ(ai‖ci)⊕ ρκ(a∗‖c∗) = d ∧ E(κ))

=
∑
tq,zq

Pr(ρκ(ai‖ci)⊕ ρκ(a∗‖c∗) = d)× Pr(E(κ) | ρκ(ai‖ci)⊕ ρκ(a∗‖c∗) = d)

≤
∑
tq,zq

`

N
· 1

(N − 1)q+σ

=
` · (N)σ ·Nq

(N)q+σ+1
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Note that in the above sum, we vary all distinct values of z blocks and so there
are (N)σ such choices of z. Now it remains to simplify the bound.

Pr(F ) ≤ ` · (N)σ ·Nq

(N)q+σ+1

=
` ·Nq

(N − σ)q+1

≤(a)
` ·Nq

(N − σ)q+1
δN−σ(q + 1)

=
`

N
× (1− σ

N
)−(q+1) × (1− q

N − σ
)−(q+1)/2.

The inequality (a) follows from the above Lemma 1 with N as N − σ. This pro-
vides the forgery bound for GCM (without using the privacy bound for GCM).
For the values of q, ` and σ of our interest, we can assume that σ ≤ N/2 and
1 − x = Θ(e−x) (Lemma 1 of the main paper). So we can rewrite the upper
bound of the forgery advantage of GCM as

`

N
·O(e

σ(q+1)+q(q+1)
N ) =

`

N
·O(e

(σ+q)(q+1)
N ) =

`

N
·O(e

4σq
N ). ut

Remark 3. The above bound says that, as long as qσ = o(N logN), the forgery
advantage is negligible and hence we need qσ to be in the order of N logN to get
non-negligible advantage. Along with our forgery adversary on GCM, we have
shown the above forgery bound of GCM is indeed tight.

7 Conclusion

In this paper we describe key-recover attacks on WCS and GCM. The query
complexity of the attack match with the Bernstein bound and hence we prove
the tightness of Bernstein bound. Although the query complexity of our attacks
are optimal, a straightforward implementation would require O(N) memory and
time complexity. Very recently Leurent and Sibleyras [LS18] demonstrated at-
tacks for WCS. They have described a method to recover hash key of WCS (and
counter mode encryption) with O(22n/3) query and time complexity. However,
the success probability analysis of their attack is heuristic. It would be an in-
teresting problem to see whether our concrete analysis can be adapted to their
attacks.
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