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Abstract. A fast correlation attack (FCA) is a well-known cryptanal-
ysis technique for LFSR-based stream ciphers. The correlation between
the initial state of an LFSR and corresponding key stream is exploited,
and the goal is to recover the initial state of the LFSR. In this paper,
we revisit the FCA from a new point of view based on a finite field,
and it brings a new property for the FCA when there are multiple lin-
ear approximations. Moreover, we propose a novel algorithm based on
the new property, which enables us to reduce both time and data com-
plexities. We finally apply this technique to the Grain family, which is
a well-analyzed class of stream ciphers. There are three stream ciphers,
Grain-128a, Grain-128, and Grain-v1 in the Grain family, and Grain-v1 is
in the eSTREAM portfolio and Grain-128a is standardized by ISO/IEC.
As a result, we break them all, and especially for Grain-128a, the crypt-
analysis on its full version is reported for the first time.
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1 Introduction

Stream ciphers are a class of symmetric-key cryptosystems. They commonly
generate a key stream of arbitrary length from a secret key and initialization
vector (iv), and a plaintext is encrypted by XORing with the key stream. Many
stream ciphers consist of an initialization and key-stream generator. The secret
key and iv are well mixed in the initialization, where a key stream is never output,
and the mixed internal state is denoted as the initial state in this paper. After the
initialization, the key-stream generator outputs the key stream while updating
the internal state. The initialization of stream ciphers generally requires much
processing time, but the key-stream generator is very efficient.

LFSRs are often used in the design of stream ciphers, where the update
function consists of one or more LFSRs and non-linear functions. Without loss
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Fig. 1. Model of LFSR-based stream ciphers

of generality, the key-stream generator of LFSR-based stream ciphers can be
represented as Fig. 1, where the binary noise et is generated by the non-linear
function. LFSR-based stream ciphers share the feasibility to guarantee a long
period in the key stream.

A (fast) correlation attack is an important attack against LFSR-based stream
ciphers. The initial idea was introduced by Siegenthaler [1], and it exploits the
bias of et. We guess the initial state s(0) = (s0, s1, . . . , sn−1), compute st for
t = n, n + 1, . . . , N − 1, and XOR st with corresponding zt. If we guess the
correct initial state, highly biased et is acquired. Otherwise, we assume that the
XOR behaves at random. When we collect an N -bit key stream and the size of
the LFSR is n, the simple algorithm requires a time complexity of N2n.

Following up the correlation attack, many algorithms have been proposed
to avoid the exhaustive search of the initial state, and they are called as “fast
correlation attack.” The seminal work was proposed by Meier and Staffelbach [2],
where the noise et is efficiently removed from zt by using parity-check equations,
and st is recovered. Several improvements of the original fast correlation attack
have been proposed [3,4,5,6,7,8], but they have limitations such as the number
of taps in the LFSR is significantly small or the bias of the noise is significantly
high. Therefore, their applications are limited to experimental ciphers, and they
have not been applied to modern concrete stream ciphers.

Another approach of the fast correlation attack is the so-called one-pass al-
gorithm [9,10], and it has been successfully applied to modern concrete stream
ciphers [11,12,13]. Similarly to the original correlation attack, we guess the initial
state and recover the correct one by using parity-check equations. To avoid ex-
haustive search over the initial state, several methods have been proposed to de-
crease the number of secret bits in the initial state involved by parity-check equa-
tions [14,15]. In the most successful method, the number of involved secret bits
decreases by XORing two different parity-check equations. Let et = 〈s(0), at〉⊕zt
be the parity-check equation, where 〈s(0), at〉 denotes an inner product between
s(0) and at, and we assume that et is highly biased. Without loss of generality,
we first detect a set of pairs (j1, j2) such that the first ` bits in aj1 ⊕ aj2 are
0, where such a set of pairs is efficiently detected from the birthday paradox.
Then, 〈s(0), aj1 ⊕ aj2〉 ⊕ zj1 ⊕ zj2 is also highly biased, and the number of in-
volved secret bits decreases from n to n − `. Later, this method is generalized
by the generalized birthday problem [16]. Moreover, an efficient algorithm was
proposed to accelerate the one-pass algorithm [14]. They showed that the guess
and evaluation procedure can be regarded as a Walsh-Hadamard transform, and
the fast Walsh-Hadamard transform (FWHT) can be applied to accelerate the
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one-pass algorithm. While the naive algorithm for the correlation attack requires
N2n, the FWHT enables us to evaluate it with the time complexity of N +n2n.
When the number of involved bits decreases from n to n−`, the time complexity
also decreases to N + (n− `)2n−`. The drawback of the one-pass algorithm with
the birthday paradox is the increase of the noise. Let p be the probability that
et = 1, and the correlation denoted by c is defined as c = 1 − 2p. If we use
the XOR of parity-check equations to reduce the number of involved secret bits,
the correlation of the modified equations drops to c2. The increase of the noise
causes the increase of the data complexity.

Revisiting Fast Correlation Attack. In this paper, we revisit the fast cor-
relation attack. We first review the structure of parity-check equations from a
new point of view based on a finite field, and the new viewpoint brings a new
property for the fast correlation attack. A multiplication between n×n matrices
and an n-bit fixed vector is generally used to construct parity-check equations.
Our important observation is to show that this multiplication is “commutative”
via the finite field, and it brings the new property for the fast correlation attack.

We first review the traditional wrong-key hypothesis, i.e., we observe correla-
tion 0 when incorrect initial state is guessed. The new property implies that we
need to reconsider the wrong-key hypothesis more carefully. Specifically, assum-
ing that there are multiple high-biased linear masks, the traditional wrong-key
hypothesis does not hold. We then show a modified wrong-key hypothesis.

The new property is directly useful to improve the efficiency of the fast corre-
lation attack when there are multiple high-biased linear masks. In the previous
fast correlation attack, the multiple approximations are only useful to reduce
the data complexity but are not useful to reduce the time complexity [11]. We
propose a new algorithm that reduces both time and data complexities. Our new
algorithm is a kind of the one-pass algorithm, but the technique to avoid the
exhaustive search of the initial state is completely different from previous ones.
The multiple linear masks are directly exploited to avoid the exhaustive search.

Applications. We apply our new algorithm to the Grain family, where there are
three well-known stream ciphers: Grain-128a [20], Grain-128 [21], and Grain-
v1 [22]. The Grain family is amongst the most attractive stream ciphers, and
especially Grain-v1 is in the eSTREAM portfolio and Grain-128a is standardized
by ISO/IEC [23]. Moreover the structure is recently used to design a lightweight
hash function [24] and stream ciphers [25,26].

Our new algorithm breaks each of full Grain-128a, Grain-128, and Grain-v1.
Among them, this is the first cryptanalysis against full Grain-128a 6. Regarding
full Grain-128, our algorithm is the first attack against the key-stream genera-

6 Grain-128a has two modes of operation: stream cipher mode and authenticated
encryption mode. We can break the stream cipher mode under the known-plaintext
setting. However we cannot attack the authenticated encryption mode under the
reasonable assumption.
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Table 1. Summary of results, where the key-stream generator and initialization are
denoted as ksg and init, respectively.

Target Attack Assumption Data Time Reference

Grain-128a ksg fast correlation attack - 2113.8 2115.4 Sect. 5

Grain-128 init dynamic cube attack chosen IV 263 290 [17]

init dynamic cube attack chosen IV 262.4 284 [18]

ksg fast correlation attack - 2112.8 2114.4 Sect. 5.4

Grain-v1 ksg fast near collision attack - 219 286.1 † [19]

ksg fast correlation attack - 275.1 276.7 Sect. 6

† In [19], the time complexity is claimed as 275.7 but the unit of the time complexity
is 1 update function of reference code on software implementation. Here we adjusted
the time complexity for the fair comparison.

tor. Regarding full Grain-v1, our algorithm is more efficient than the previous
attack [19], and it breaks Grain-v1 obviously faster than the brute-force attack.

To realize the fast correlation attack against all of the full Grain family,
we introduce novel linear approximate representations. They well exploit their
structure and reveal a new important vulnerability of the Grain family.

Comparisons with Previous Attacks against Grain Family. To under-
stand this paper, it is not necessary to understand previous attacks, but we
summarize previous attacks against the Grain family.

Before Grain-v1, there is an original Grain denoted by Grain-v0 [27], and it
was broken by the fast correlation attack [11]. Grain-v1 is tweaked to remove
the vulnerability of Grain-v0. Nevertheless, our new fast correlation attack can
break full Grain-v1 thanks to the new property.

The near collision attack is the important previous attack against Grain-v1
[28], and very recently, an improvement called the fast near collision attack was
proposed [19], where the authors claimed that the time complexity is 275.7. How-
ever, this estimation is controversial because the unit of the time complexity is
“1 update function of reference code on software implementation,” and they esti-
mated 1 update function to be 210.4 cycles. Therefore, the pure time complexity
is rather 275.7+10.4 = 286.1 cycles, which is greater than 280. On the other hand,
the time complexity of the fast correlation attack is 276.7, where the unit of the
(dominant) time complexity is at most one multiplication with fixed values over
the finite field. It is obviously faster than the brute-force attack, but it requires
more data than the fast near collision attack.

Grain-128 is more aggressively designed than Grain-v1, where a quadratic
function is adopted for the nonlinear feedback polynomial of the NFSR. Unfortu-
nately, this low degree causes vulnerability against the dynamic cube attack [29].
While the initial work by Dinur and Shamir is a weak-key attack, it was then
extended to the single-key attack [17] and recently improved [18]. The dynamic
cube attack breaks the initialization, and the fast correlation attack breaks the



Fast Correlation Attack Revisited 5

key-stream generator. Note that different countermeasures are required for at-
tacks against the key-stream generator and initialization. For example, we can
avoid the dynamic cube attack by increasing the number of rounds in the ini-
tialization, but such countermeasure does not prevent the attack against the
key-stream generator.

Grain-128a was designed to avoid the dynamic cube attack. The degree of
the nonlinear feedback polynomial is higher than in Grain-128. No security flaws
have been reported on full Grain-128a, but there are attacks against Grain-128a
whose number of rounds in the initialization is reduced [30,31,32].

2 Preliminaries

2.1 LFSR-Based Stream Ciphers

The target of the fast correlation attack is LFSR-based stream ciphers, which
are modeled as Fig. 1 simply. The LFSR generates an N -bit output sequence
as {s0, s1, . . . , sN−1}, and the corresponding key stream {z0, z1, . . . , zN−1} is
computed as zt = st ⊕ et, where et is a binary noise.

Let

f(x) = c0 + c1x
1 + c2x

2 + · · ·+ cn−1x
n−1 + xn

be the feedback polynomial of the LFSR and s(t) = (st, st+1, . . . , st+n−1) be an
n-bit internal state of the LFSR at time t. Then, the LFSR outputs st, and the
state is updated to s(t+1) as

s(t+1) = s(t) × F = s(t) ×


0 · · · 0 0 c0
1 · · · 0 0 c1
...

. . .
...

...
...

0 · · · 1 0 cn−2
0 · · · 0 1 cn−1

 ,

where F is an n × n binary matrix that represents the feedback polynomial
f(x). In concrete LFSR-based stream ciphers, the binary noise et is nonlinearly
generated from the internal state or another internal state.

2.2 Fast Correlation Attack

The fast correlation attack (FCA) exploits high correlation between the internal
state of the LFSR and corresponding key stream [1,2]. We first show the most
simple model, where we assume that et itself is highly biased. Let p be the
probability of et = 1, and the correlation c is defined as c = 1−2p. We guess the
initial internal state s(0), calculate {s0, s1, . . . , sN−1} from the guessed s(0), and

evaluate
∑N−1
t=0 (−1)st⊕zt , where the sum is computed over the set of integers. If

the correct initial state is guessed, the sum is equal to
∑N−1
t=0 (−1)et and follows
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a normal distribution N (Nc,N) 7. On the other hand, we assume that the sum
behaves at random when an incorrect initial state is guessed. Then, it follows a
normal distribution N (0, N). To distinguish the two distributions, we need to
collect N ≈ O(1/c2) bits of the key stream.

The FCA can be regarded as a kind of a linear cryptanalysis [33]. The output
st is linearly computed from s(0) as st = 〈s(0), At〉, where At is the 1st row vector
in the transpose of F t denoted by TF t. In other words, At is used as linear masks,

and the aim of attackers is to find s(0) such that
∑N−1
t=0 (−1)〈s

(0),At〉 is far from
N/2.

Usually, the binary noise et is not highly biased in modern stream ciphers,
but we may be able to observe high correlation by summing optimally chosen
linear masks. In other words, we can execute the FCA if

e′t =
⊕
i∈Ts

〈s(t+i), Γi〉 ⊕
⊕
i∈Tz

zt+i

is highly biased by optimally choosing Ts, Tz, and Γi, where s(t+i) and Γi are
n-bit vectors. Recall s(t) = s(0) × F t, and then, e′t is rewritten as

e′t =
⊕
i∈Ts

〈
s(t+i), Γi

〉
⊕
⊕
i∈Tz

zt+i

=
⊕
i∈Ts

〈
s(0) × F t+i, Γi

〉
⊕
⊕
i∈Tz

zt+i

=

〈
s(0),

(⊕
i∈Ts

(Γi × TF i)

)
× TF t

〉
⊕
⊕
i∈Tz

zt+i.

For simplicity, we introduce Γ denoted by Γ =
⊕

i∈Ts(Γi ×
TF i). Then, we can

introduce the following parity-check equations as

e′t =
〈
s(0), Γ × TF t

〉
⊕
⊕
i∈Tz

zt+i. (1)

We redefine p as the probability satisfying e′t = 1 for all possible t, and the
correlation c is also redefined from the corresponding p. Then, we can execute
the FCA by using Eq. (1). Assuming that N parity-check equations are collected,

we first guess s(0) and evaluate
∑N−1
t=0 (−1)e

′
t . While the sum follows a normal

distribution N (0, N) in the random case, it follows N (Nc,N) if the correct s(0)

is guessed.
The most straightforward algorithm requires the time complexity of O(N2n).

Chose et al. showed that the guess and evaluation procedure can be regarded as a
Walsh-Hadamard transform [14]. The fast Walsh-Hadamard transform (FWHT)
can be successfully applied to accelerate the algorithm, and it reduces the time
complexity to O(N + n2n).

7 Accurately, when the correct initial state is guessed, it follows N (Nc,N + Nc2).
However, since N is huge and Nc2 is small, the normal distribution N (Nc,N) is
enough to approximate the distribution.



Fast Correlation Attack Revisited 7

Definition 1 (Walsh-Hadamard Transform (WHT)). Given a function
w : {0, 1}n → Z, the WHT of w is defined as ŵ(s) =

∑
x∈{0,1}n w(x)(−1)〈s,x〉.

When we guess s ∈ {0, 1}n, the empirical correlation
∑N−1
t=0 (−1)e

′
t is rewritten

as

N−1∑
t=0

(−1)e
′
t =

N−1∑
t=0

(−1)〈s,Γ×
TF t〉⊕

⊕
i∈Tz zt+i

=
∑

x∈{0,1}n

 ∑
t∈{0,1,...,N−1|Γ×TF t=x}

(−1)〈s,x〉⊕
⊕
i∈Tz zt+i


=

∑
x∈{0,1}n

 ∑
t∈{0,1,...,N−1|Γ×TF t=x}

(−1)
⊕
i∈Tz zt+i

 (−1)〈s,x〉.

Therefore, from the following public function w as

w(x) :=
∑

t∈{0,1,...,N−1|Γ×TF t=x}

(−1)
⊕
i∈Tz zt+i ,

we get ŵ by using the FWHT, where ŵ(s) is the empirical correlation when s is
guessed.

3 Revisiting Fast Correlation Attack

We first review the structure of the parity-check equation by using a finite field
and show that Γ × TF t is “commutative.” This new observation brings a new
property for the FCA, and it is very important when there are multiple linear
masks. As a result, we need to reconsider the wrong-key hypothesis carefully,
i.e., there is a case that the most simple and commonly used hypothesis does
not hold. Moreover, we propose a new algorithm that successfully exploits the
new property to reduce the data and time complexities in the next section.

3.1 Reviewing Parity-Check Equations with Finite Field

We review Γ×TF t by using a finite field GF(2n), where the primitive polynomial
is the feedback polynomial of the LFSR.

Recall the notation of At ∈ {0, 1}n, which was defined as the 1st row vector
in TF t, and then, the ith row vector of TF t is represented as At+i−1. Let α be a
element as f(α) = 0 and it is a primitive element of GF(2n). We notice that αt

becomes natural conversion of At ∈ {0, 1}n. We naturally convert Γ ∈ {0, 1}n
to γ ∈ GF(2n). The important observation is that Γ × TF also becomes natural
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conversion of γα ∈ GF(2n) because of

Γ × TF = Γ ×


0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
c0 c1 · · · cn−2 cn−1

 .

This trivially derives that Γ×TF t is also natural conversion of γαt ∈ GF(2n), and
of course, the multiplication is commutative, i.e., γαt = αtγ. We finally consider
a matrix multiplication corresponding to αtγ. Let Mγ be an n×n binary matrix,
where the ith row vector of TMγ is defined as the natural conversion of γαi−1.
Then, αtγ is the natural conversion of At × TMγ , and we acquire Γ × TF t =
At × TMγ . The following shows an example to understand this relationship.

Example 1. Let us consider a finite field GF(28) = GF(2)[x]/(x8 + x4 + x3 +
x2 + 1). When Γ = 01011011, the transpose matrix of the corresponding binary
matrix Mγ is represented as

TMγ =



0 1 0 1 1 0 1 1
1 0 0 1 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
1 0 1 0 1 0 0 0


,

where the first row coincides with Γ and the second row is natural conversion of
γα. Then, Γ × TF t = At × TMγ , and for example, when t = 10,

Γ × TF 10 = A10 × TMγ ,

⇔
(
0 1 0 1 1 0 1 1

)
×



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 1 1 0 0 0



10

=
(
0 0 1 0 1 1 1 0

)
×



0 1 0 1 1 0 1 1
1 0 0 1 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
1 0 1 0 1 0 0 0


,

and the result is 00010101.

We review Eq. (1) by using the “commutative” feature as〈
s(0), Γ × TF t

〉
=
〈
s(0), At × TMγ

〉
=
〈
s(0) ×Mγ , At

〉
,
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and Eq. (1) is equivalently rewritten as

e′t =
〈
s(0) ×Mγ , At

〉
⊕
⊕
i∈Tz

zt+i.

The equation above implies the following new property.

Property 1. We assume that we can observe high correlation when we guess s(0)

and parity-check equations are generated from Γ × TF t. Then, we can observe
exactly the same high correlation even if we guess s(0) ×Mγ and parity-check
equations are generated from At instead of Γ × TF t.

Hereinafter, γ ∈ GF(2n) is not distinguished from Γ ∈ {0, 1}n, and we use γ
as a linear mask for simplicity.

3.2 New Wrong-Key Hypothesis

We review the traditional and commonly used wrong-key hypothesis, where we
assume that the empirical correlation behaves as random when an incorrect
initial state is guessed. However, Property 1 implies that we need to consider
this hypothesis more carefully.

We assume that the use of a linear mask Γ leads to high correlation, and
we simply call such linear masks highly biased linear masks. When we generate
parity-check equations from Γ × TF t, let us consider the case that we guess
incorrect initial state s′(0) = s(0) ×Mγ′ . From Property 1〈

s′(0), Γ × TF t
〉

=
〈
s(0) ×Mγ′ , At × TMγ

〉
=
〈
s(0), At × TMγγ′

〉
In other words, it is equivalent to the case that γγ′ is used as a linear mask
instead of γ. If both γ and γγ′ are highly biased linear masks, we also observe high
correlation when we guess s(0)×Mγ′ . Therefore, assuming that the target stream
cipher has multiple linear masks with high correlation, the entire corresponding
guessing brings high correlation.

We introduce a new wrong-key hypothesis based on Property 1. Assuming
that there are m linear masks whose correlation is high and the others are
correlation zero, we newly introduce the following wrong-key hypothesis.

Hypothesis 1 (New Wrong-Key Hypothesis) Assume that there are m highly
biased linear masks as γ1, γ2, . . . , γm, and parity-check equations are generated
from At. Then, we observe high correlation when we guess s(0) ×Mγi for any
i ∈ {1, 2, . . . ,m}. Otherwise, we assume that it behaves at random, i.e., the
correlation becomes 0.

The new wrong-key hypothesis is a kind of extension from the traditional wrong-
key hypothesis.
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4 New Algorithm Exploiting New Property

Overview. We first show the overview before we detail our new attack algo-
rithm. In this section, let n be the size of the LFSR in the target LFSR-based
stream cipher, and we assume that there are m (� 2n) highly biased linear masks
denoted by γ1, γ2, . . . , γm. The procedure consists of three parts: constructing
parity-check equations, FWHT, and removing γ.

– We first construct parity-check equations. Parity-check equations of the tra-
ditional FCA are constructed from Γ × TF t and

⊕
i∈Tz zt+i. In our new

algorithm, we construct parity-check equations from At instead of Γ × TF t.
– We use the fast Walsh-Hadamard transform (FWHT) to get solutions with

high correlation. In other words, we evaluate s such that 〈s,At〉⊕
⊕

i∈Tz zt+i
is highly biased. As we explained in Sect. 3.1, we then observe high correla-
tion when s = s(0) ×Mγi , and there are m solutions with high correlation.
Unfortunately, even if FWHT is applied, we have to guess n bits and it
requires n2n time complexity. It is less efficient than the exhaustive search
when the size of the LFSR is greater than or equal to the security level.
To overcome this issue, we bypass some bits out of n bits by exploiting m
linear masks. Specifically, we bypass β bits, i.e., we guess only (n − β) bits
and β bits are fixed to constant (e.g., 0). Even if β bits are bypassed, there
are m2−β solutions with high correlation in average. Therefore, m > 2β is a
necessary condition.

– We pick solutions whose empirical correlation is greater than a threshold,
where some of solutions are represented as s = s(0) ×Mγi . To remove Mγi ,
we exhaustively guess the applied γi and recover s(0). Assuming that Np
solutions are picked, the time complexity is Np×m. If the expected number
of occurrences that the correct s(0) appears is significantly greater than that
for incorrect ones, we can uniquely determine s(0). We simulate them by
using the Poisson distribution in detail.

4.1 Detailed Algorithm

Let n be the state size of the LFSR and κ be the security level. We assume that
there are mp (� 2n) linear masks γ1, γ2, . . . , γmp with positive correlation that
is greater than a given c. Moreover we assume that there are mm (� 2n) linear
masks ρ1, ρ2, . . . , ρmm with negative correlation that is smaller than −c. Note
that c is close to 0, and m = mp +mm.

Constructing Parity-Check Equations. We first construct parity-check equa-
tions from At and

⊕
i∈Tz zt+i for t = 0, 1, . . . , N − 1, and the time complexity is

N . The empirical correlation follows N (Nc,N) and N (−Nc,N) when we guess
one of s(0) ×Mγi and s(0) ×Mρi , respectively 8. Otherwise we assume that the
empirical correlation follows N (0, N).

8 The correlation c is the lower bound for all γi. Therefore, while the empirical
correlation may not follow N (Nc,N), it does not affect the attack feasibility because
it is far from N (0, N).
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FWHT with Bypassing Technique. We next pick s ∈ {0, 1}n such that

|
∑N−1
t=0 (−1)e

′
t

N | ≥ th, where e′t = 〈s,At〉 ⊕
⊕

i∈Tz zt+i and th (> 0) is a threshold.
Let ε1 be the probability that values following N (0, N) is greater than th, and let
ε2 be the probability that values following N (Nc,N) is greater than th. Namely,

ε1 =
1√

2πN

∫ ∞
th

exp

(
− x2

2N

)
dx, ε2 =

1√
2πN

∫ ∞
th

exp

(
− (x−Nc)2

2N

)
dx.

Note that the probability that values following N (0, N) is smaller than −th is
also ε1 and the probability that values following N (−Nc,N) is smaller than −th
is also ε2. Let Sp and Sm be the set of picked solutions with positive and negative
correlation, respectively. The expected size of Sp and Sm is (2nε1 + mpε2) and
(2nε1 +mmε2), respectively, when the whole of n-bit s is guessed.

Unfortunately, if we guess the whole of n-bit s, the time complexity of FWHT
is n2n and it is less efficient than the exhaustive search when n ≥ κ. To reduce the
time complexity, we assume multiple solutions. Instead of guessing the whole of
s, we guess its partial (n−β) bits, where bypassed β bits are fixed to constants,
e.g., all 0. Then, the time complexity of the FWHT is reduced from n2n to
(n − β)2n−β . Even if β bits are bypassed, mp2

−βε2 (resp. mm2−βε2) solutions
represented as s(0)×Mγi (resp. s(0)×Mρi) remain. Moreover, the size of Sp and
Sm also decreases to (2n−βε1 +mp2

−βε2) and (2n−βε1 +mm2−βε2), respectively.

Removing γ. For all s ∈ Sp and all j ∈ {1, 2, . . . ,mp}, we compute s×M−1γj .

It computes s(0) ×Mγi ×M−1γj and becomes s(0) when i = j. Since there are

mp2
−βε2 solutions represented as s(0) × Mγi in Sp, the correct s(0) appears

mp2
−βε2 times. On the other hand, every incorrect initial state appears about

mp(2
n−βε1 +mp2

−βε2)2−n times when we assume uniformly random behavior.
In total, every incorrect initial state appears about

λ1 = mp(2
n−βε1 +mp2

−βε2)2−n +mm(2n−βε1 +mm2−βε2)2−n

= (m2n−βε1 + (m2
p +m2

m)2−βε2)2−n

times when we assume uniformly random behavior. On the other hand, the
correct s(0) appears

λ2 = (mp +mm)2−βε2 = m2−βε2

times.
The number of occurrences that every incorrect initial state appears follows

the Poisson distribution with parameter λ1, and the number of occurrences that
the correct s(0) appears follows the Poisson distribution with parameter λ2. To
recover the unique correct s(0), we introduce a threshold thp as

∞∑
k=thp

λk1e
−λ1

k!
< 2−n.
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The probability that the number of occurrences that s(0) appears is greater than

thp is estimated as
∑∞
k=thp

λk2e
−λ2

k! . Therefore, if the probability is close to one,

we can uniquely recover s(0) with high probability.

4.2 Estimation of Time and Data Complexities

The procedure consists of three parts: constructing parity-check equations, FWHT,
and removing γ. The first step requires the time complexity N , where the unit
of the time complexity is a multiplication by α over GF(2n) and

⊕
i∈Tz zt+i.

The second step requires the time complexity (n − β)2n−β , where the unit of
the time complexity is an addition or subtraction 9. The final step requires the
time complexity (m2n−βε1 + (m2

p+m2
m)2−βε2), where the unit of the time com-

plexity is a multiplication by fixed values over GF(2n). These units of the time
complexity are not equivalent, but at least, they are more efficient than the unit
given by the initialization of stream ciphers. Therefore, for simplicity, we regard
them as equivalent, and the total time complexity is estimated as

N + (n− β)2n−β +m2n−βε1 + (m2
p +m2

m)2−βε2.

Proposition 1. Let n be the size of the LFSR in an LFSR-based stream cipher.
We assume that there are m linear masks whose absolute value of correlation is
greater than c. When the size of bypassed bits is β, we can recover the initial
state of the LFSR with time complexity 3(n − β)2n−β and the required number
of parity-check equations is N = (n − β)2n−β, where the success probability is∑∞
k=thp

λk2e
−λ2

k! , where thp is the minimum value satisfying

∞∑
k=thp

Nke−N

k!
< 2−n,

and

λ2 =
m2−β√

2πN

∫ ∞
th

exp

(
− (x−Nc)2

2N

)
dx,

th =
√

2N × erfc−1
(

2(n− β)

m

)
.

Proof. The total time complexity is estimated as

N + (n− β)2n−β +m2n−βε1 + (m2
p +m2

m)2−βε2.

In the useful attack parameter, since (m2
p + m2

m)2−βε2 is significantly smaller
than the others, we regard it as negligible. We consider the case that other three
terms are balanced, i.e.,

N = (n− β)2n−β = m2n−βε1,

9 Since we only use N < 2n parity-check equations, it is enough to use additions or
subtraction on n-bit registers.
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Fig. 2. Theoretical estimation for Example 2.

where ε1 is estimated as

ε1 =
1√

2πN

∫ ∞
th

exp

(
− x2

2N

)
dx =

1

2
× erfc

(
th√
2N

)
=
n− β
m

.

Thus, when th is

th =
√

2N × erfc−1
(

2(n− β)

m

)
,

complexities of the three terms are balanced. We finally evaluate the probability
that the initial state of the LFSR is uniquely recovered. The number of occur-
rences that each incorrect value appears follows the Poisson distribution with
parameter λ1 = N2−n. To discard all 2n−1 incorrect values, recall thp satisfying∑∞
k=thp

λk1e
−λ1

k! < 2−n. Then, the success probability is
∑∞
k=thp

λk2e
−λ2

k! where λ2
is

λ2 = m2−βε2 =
m2−β√

2πN

∫ ∞
th

exp

(
− (x−Nc)2

2N

)
dx

ut

Example 2. Let us consider an attack against an LFSR-based stream cipher with
80-bit LFSR. We assume that there are 214 linear masks whose correlation is
greater than 2−36. For β = 9, we use N = (80−9)×280−9 ≈ 277.1498 parity-check
equations. The left figure of Fig. 2 shows two normal distributions: random and
biased cases. If we use a following threshold

th =
√

2N × erfc−1
(

2(n− β)

m

)
≈ 239.9672,

ε1 = (n−β)/m ≈ 2−7.8503 and ε2 = 0.99957. The expected number of picked so-
lutions is 280−9ε1+214−9ε2 ≈ 263.1498+31.98627 ≈ 263.1498. We apply 214 inverse
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linear masks to the picked solutions and recover s(0), and the time complexity
is 263.1498+14 = 277.1498.

The number of occurrences that each incorrect value appears follows the
Poisson distribution with parameter λ1 = 277.1498−80 = 2−2.8502. On the other
hand, the number of occurrences that s(0) appears follows the Poisson distri-
bution with parameter λ2 = 214−9 × 0.99957 ≈ 31.98627. The right figure of
Fig. 2 shows two Poisson distributions. For example, when thp = 15 is used,
the probability that an incorrect value appears at least 15 is smaller than 2−80.
However, the corresponding probability for s(0) is 99.9%. As a result, the total
time complexity is 3× 277.1498 ≈ 278.7348.

5 Application to Grain-128a

We apply the new algorithm to the stream cipher Grain-128a [20], which has two
modes of operations: stream cipher mode and authenticated encryption mode.
We assume that all output sequences of the pre-output function can be observed.
Under the known-plaintext scenario, this assumption is naturally realized for the
stream cipher mode because the output is directly used as a key stream. On the
other hand, this assumption is very strong for the authenticated encryption mode
because only even-clock output is used as the key stream. Therefore, we do not
claim that the authenticated encryption mode can be broken.

5.1 Specification of Grain-128a

yt

st st+127bt bt+127

24 5

27 7 1

6

h

g f

Fig. 3. Specification of Grain-128a

Let s(t) and b(t) be 128-bit internal states of the LFSR and NFSR at time
t, respectively, and s(t) and b(t) are represented as s(t) = (st, st+1, . . . , st+127)
and b(t) = (bt, bt+1, . . . , bt+127). Let yt be an output of the pre-output function
at time t, and it is computed as

yt = h(s(t), b(t))⊕ st+93 ⊕
⊕
j∈A

bt+j , (2)
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where A = {2, 15, 36, 45, 64, 73, 89}, and h(s(t), b(t)) is defined as

h(s(t), b(t)) = h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94)

= bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42 ⊕ st+60st+79 ⊕ bt+12bt+95st+94.

Moreover, st+128 and bt+128 are computed by

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96,

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84

⊕ bt+88bt+92bt+93bt+95 ⊕ bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82.

Let zt be the key stream at time t, and zt = yt in the stream cipher mode. On
the other hand, in the authenticated encryption mode, zt = y2w+2i, where w is
the tag size. Figure 3 shows the specification of Grain-128a.

5.2 Linear Approximate Representation for Grain-128a

If there are multiple linear masks with high correlation, the new algorithm can be
applied. In this section, we show that Grain-128a has many linear approximate
representations, and they produce many linear masks.

93

94796042952013812

g f

93

94796042952013812

g f

93

94796042952013812

g f n

n n

n

h

h

h

Fig. 4. Linear Approximate Representation for Grain-128a

Figure 4 shows the high-level view of the linear approximate representation.
It involves from tth to (t + n + 1)th rounds, where b(t) and b(t+n+1) must be
linearly inactive to avoid involving the state of NFSR. Moreover, yt+i is linearly
active for i ∈ Tz, and the linear mask of the input of the (t+ i)-round h function
denoted by Λi must be nonzero for i ∈ Tz. Otherwise, it must be zero.

We focus on the structure of the h function, where the input consists of
7 bits from the LFSR and 2 bits from the NFSR. Then, non-zero Λi can take
several values, and specifically, Λi can take 64 possible values (see Table 2) under
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the condition that a linear mask for 2 bits from NFSR is fixed. Since the sum
of yt+i for i ∈ Tz is used, it implies that there are 64|Tz| linear approximate
representations. These many possible representations are obtained by exploiting
the structure of the h function, and this structure is common for all ciphers in
the Grain family. In other words, this is a new potential vulnerability of the
Grain family.

We first consider Tz to construct the linear approximate representation, but
it is difficult to find an optimal Tz. Our strategy is heuristic and does not guar-
antee the optimality, but the found Tz is enough to break full Grain-128a. Once
Tz is determined, we first evaluate the correlation of a linear approximate rep-
resentation on fixed Λi for i ∈ {0, 1, . . . , n}. The high-biased linear mask γ used
in our new algorithm is constructed by Λi, and the correlation of γ is estimated
from the correlation of Λi.

Finding Linear Masks with High Correlation. We focus on the sum of
key stream bits, i.e.,

⊕
i∈Tz yt+i. From Eq. (2), the sum is represented as

⊕
i∈Tz

yt+i =
⊕
i∈Tz

h(s(t+i), b(t+i))⊕ st+i+93 ⊕
⊕
j∈A

bt+i+j


=
⊕
i∈Tz

(
h(s(t+i), b(t+i))⊕ st+i+93

)
⊕
⊕
j∈A

(⊕
i∈Tz

bt+j+i

)
.

We first consider an appropriate set Tz. We focus on
⊕

i∈Tz bt+j+i and choose
Tz such that

⊕
i∈Tz bt+j+i is highly biased. Concretely, we tap 6 bits whose index

corresponds to linearly tapped bits in the g function, i.e., Tz = {0, 26, 56, 91, 96, 128}.
Then, for any j,⊕

i∈Tz

bt+j+i = bt+j ⊕ bt+j+26 ⊕ bt+j+56 ⊕ bt+j+91 ⊕ bt+j+96 ⊕ bt+j+128

= st+j ⊕ g′(b(t+j)),

where

g′(b(t)) = bt+3bt+67 ⊕ bt+11bt+13 ⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48

⊕ bt+61bt+65 ⊕ bt+68bt+84 ⊕ bt+88bt+92bt+93bt+95

⊕ bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82.

Note that all bits in g′(b(t)) are nonlinearly involved, and the correlation may
be high. Then⊕

i∈Tz

yt+i =
⊕
i∈Tz

(
h(s(t+i), b(t+i))⊕ st+i+93

)
⊕
⊕
j∈A

(
st+j ⊕ g′(b(t+j))

)
=
⊕
i∈Tz

st+i+93 ⊕
⊕
j∈A

st+j ⊕
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕
j∈A

g′(b(t+j)).
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Table 2. Correlation of the h function. The horizontal axis shows Λh,i[1 − 3], the
vertical axis shows Λh,i[5− 8], and 512× corh,i is shown in every cell.

000 001 010 011 100 101 110 111

0000 -32 -32 -32 32 -32 -32 -32 32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 -32 -32 -32 32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 -32 -32 -32 32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 32 32 32 -32
0111 0 0 0 0 0 0 0 0
1000 -32 -32 -32 32 0 0 0 0
1001 0 0 0 0 -32 -32 -32 32
1010 -32 -32 -32 32 0 0 0 0
1011 0 0 0 0 -32 -32 -32 32
1100 -32 -32 -32 32 0 0 0 0
1101 0 0 0 0 -32 -32 -32 32
1110 32 32 32 -32 0 0 0 0
1111 0 0 0 0 32 32 32 -32

Case of Λh,i[0, 4] = 00.

000 001 010 011 100 101 110 111

0000 -32 -32 -32 32 -32 -32 -32 32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 -32 -32 -32 32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 -32 -32 -32 32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 32 32 32 -32
0111 0 0 0 0 0 0 0 0
1000 32 32 32 -32 0 0 0 0
1001 0 0 0 0 32 32 32 -32
1010 32 32 32 -32 0 0 0 0
1011 0 0 0 0 32 32 32 -32
1100 32 32 32 -32 0 0 0 0
1101 0 0 0 0 32 32 32 -32
1110 -32 -32 -32 32 0 0 0 0
1111 0 0 0 0 -32 -32 -32 32

Case of Λh,i[0, 4] = 01.

000 001 010 011 100 101 110 111

0000 -32 -32 -32 32 32 32 32 -32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 32 32 32 -32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 32 32 32 -32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 -32 -32 -32 32
0111 0 0 0 0 0 0 0 0
1000 -32 -32 -32 32 0 0 0 0
1001 0 0 0 0 32 32 32 -32
1010 -32 -32 -32 32 0 0 0 0
1011 0 0 0 0 32 32 32 -32
1100 -32 -32 -32 32 0 0 0 0
1101 0 0 0 0 32 32 32 -32
1110 32 32 32 -32 0 0 0 0
1111 0 0 0 0 -32 -32 -32 32

Case of Λh,i[0, 4] = 10.

000 001 010 011 100 101 110 111

0000 -32 -32 -32 32 32 32 32 -32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 32 32 32 -32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 32 32 32 -32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 -32 -32 -32 32
0111 0 0 0 0 0 0 0 0
1000 32 32 32 -32 0 0 0 0
1001 0 0 0 0 -32 -32 -32 32
1010 32 32 32 -32 0 0 0 0
1011 0 0 0 0 -32 -32 -32 32
1100 32 32 32 -32 0 0 0 0
1101 0 0 0 0 -32 -32 -32 32
1110 -32 -32 -32 32 0 0 0 0
1111 0 0 0 0 32 32 32 -32

Case of Λh,i[0, 4] = 11.

We next consider a linear approximate representation of h(s(t+i), b(t+i)). Let
Λi ∈ {0, 1}9 be the input linear mask for the h function at time t + i, and
Λi = (Λi[0], Λi[1], . . . , Λi[8]). Then,

h(s(t+i), b(t+i))

≈ Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95 ⊕ 〈Λi[1− 3], (st+i+8, st+i+13, st+i+20)〉
⊕ 〈Λi[5− 8], (st+i+42, st+i+60, st+i+79, st+i+94)〉,

where Λi[x − y] denotes a sub vector indexed from xth bit to yth bit. Let
corh,i(Λi) be the correlation of the h function at time t + i, and Table 2 sum-
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marizes them. From Table 2, corh,i(Λi) is 0 or ±2−4. We have 6 active h func-
tions because |Tz| = 6, and let ΛTz ∈ {0, 1}9×|Tz| be the concatenated lin-
ear mask, i.e., ΛTz = (Λ0, Λ26, Λ56, Λ91, Λ96, Λ128). The total correlation from
all active h functions depends on ΛTz , and it is computed as corh(ΛTz ) =
(−1)|Tz|+1

∏
i∈Tz corh,i(Λi) because of the piling-up lemma. Therefore, if Λi with

correlation 0 is used for any i ∈ Tz, corh(ΛTz ) = 0. Otherwise, corh(ΛTz ) =
±2−24.

We guess all terms involved in the internal state of the LFSR in the FCA.
Under the correlation ±2−24, we get⊕

i∈Tz

yt+i ≈ (term by guessing s(t))

⊕
⊕
i∈Tz

(Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95)⊕
⊕
j∈A

(
g′(b(t+j))

)
.

Therefore, if

corg(ΛTz ) = Pr

⊕
i∈Tz

(Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95)⊕
⊕
j∈A

(
g′(b(t+j))

)
= 0


− Pr

⊕
i∈Tz

(Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95)⊕
⊕
j∈A

(
g′(b(t+j))

)
= 1


is high, the FCA can be successfully applied. Note that corg(ΛTz ) is indepen-
dent of Λi[1 − 3, 5 − 8] for any i ∈ Tz. To evaluate its correlation, we di-
vide

⊕
j∈A

(
g′(b(t+j))

)
into 20 terms such that bt+67 and bt+137 are involved

by multiple terms. Then, we try out 4 possible values of (bt+67, bt+137) and
evaluate correlation independently. As a result, when (bt+67, bt+137) = (0, 0) and
(bt+67, bt+137) = (0, 1), the correlation is −2−33.1875 and −2−33.4505, respectively.
On the other hand, the correlation is 0 when bt+67 = 1. Therefore

corg(ΛTz ) =
−2−33.1875 − 2−33.4505

4
= −2−34.313

when Λi[0, 4] = 0 for all i ∈ Tz.
We similarly evaluate corg(ΛTz ) when Λi[0, 4] 6= 0 for any i ∈ Tz. If one

of Λ0[0], Λ26[0], Λ56[0], Λ91[4], Λ96[4], and Λ128[4] is 1, the correlation is al-
ways 0 because bt+12, bt+38, bt+68, bt+186, bt+191, and bt+223 are not involved
to
⊕

j∈A
(
g′(b(t+j))

)
. Table 3 summarizes corg(ΛTz ) when Λ0[0], Λ26[0], Λ56[0],

Λ91[4], Λ96[4], and Λ128[4] are 0.
For any fixed Λi, we can get the following linear approximate representation⊕

i∈Tz

yt+i ≈
⊕
i∈Tz

st+i+93 ⊕
⊕
j∈A

st+j ⊕
⊕
i∈Tz

〈Λi[1− 3], (st+i+8, st+i+13, st+i+20)〉

⊕
⊕
i∈Tz

〈Λi[5− 8], (st+i+42, st+i+60, st+i+79, st+i+94)〉. (3)
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Table 3. Summary of correlations when Λi[0, 4] is fixed. Let ∗ be arbitrary bit.

Λ0[4] Λ26[4] Λ56[4] Λ91[0] Λ96[0] Λ128[0] corg(ΛTz )

0 0 0 0 0 0 −2−34.3130

0 0 0 0 0 1 +2−36.1875

0 0 0 0 1 0 −2−37.5860

0 0 0 0 1 1 +2−39.4605

0 0 0 1 0 0 −2−34.9230

0 0 0 1 0 1 +2−36.7975

0 0 0 1 1 0 +2−37.5860

0 0 0 1 1 1 −2−39.4605

0 0 1 0 0 0 −2−35.8980

0 0 1 0 0 1 +2−37.7724

0 0 1 0 1 0 −2−39.1710

0 0 1 0 1 1 +2−41.0454

0 0 1 1 0 0 −2−36.5080

0 0 1 1 0 1 +2−38.3825

0 0 1 1 1 0 +2−39.1710

0 0 1 1 1 1 −2−41.0454

0 1 0 0 0 0 −2−35.3636

0 1 0 0 0 1 +2−37.2381

0 1 0 0 1 0 −2−38.1710

0 1 0 0 1 1 +2−40.0454

0 1 0 1 0 0 −2−35.8490

0 1 0 1 0 1 +2−37.7235

0 1 0 1 1 0 +2−38.1710

0 1 0 1 1 1 −2−40.0454

0 1 1 0 0 0 −2−36.9486

0 1 1 0 0 1 +2−38.8230

0 1 1 0 1 0 −2−39.7559

0 1 1 0 1 1 +2−41.6304

0 1 1 1 0 0 −2−37.4340

0 1 1 1 0 1 +2−39.3085

0 1 1 1 1 0 +2−39.7559

0 1 1 1 1 1 −2−41.6304

1 ∗ ∗ ∗ ∗ ∗ 0

From the piling-up lemma, the correlation is computed as

−corg(ΛTz )× corh(ΛTz ),

where corg(Tz) is summarized in Table 3 and corh(ΛTz ) = (−1)|Tz|+1
∏
i∈Tz corh,i(Λi).

How to Find Multiple γ. The correlation of the linear approximate repre-
sentation on fixed Λi was estimated in the paragraph above. The linear mask γ
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used in the FCA directly is represented as

γ =
∑
i∈Tz

(
Λi[1]αi+8 + Λi[2]αi+13 + Λi[3]αi+20 + Λi[5]αi+42

+ Λi[6]αi+60 + Λi[7]αi+79 + Λi[8]αi+94 + αi+93
)

+
∑
j∈A

αj .

If different ΛTz s derive the same γ, we need to sum up corresponding correlations.
Clearly, since this linear approximate representation does not involve Λi[0, 4]

for i ∈ Tz, we need to sum up 22×|Tz| = 212 correlations, where Λi[1−3, 5−8] is
identical and only Λi[0, 4] varies for i ∈ Tz. Let V be a linear span whose basis
is 12 corresponding unit vectors.

Moreover, there are special relationships. When we focus on Λ56[6] and Λ96[3],
corresponding elements over GF(2128) are identical because α56+60 = α96+20 =
α116. In other words, (Λ56[6], Λ96[3]) = (0, 0) and (Λ56[6], Λ96[3]) = (1, 1) derive
the same γ, and (Λ56[6], Λ96[3]) = (1, 0) and (Λ56[6], Λ96[3]) = (0, 1) also derive
the same γ. We have 3 such relationships as follows.

– Λ56[6] and Λ96[3]. Then, α56+60 = α96+20 = α116.
– Λ91[2] and Λ96[1]. Then, α91+13 = α96+8 = α104.
– Λ91[7] and Λ128[5]. Then, α91+79 = α128+42 = α170.

Therefore, from following three vectors

w1(δ[0]) = (09,09,000000100,000000000,000δ[0]00000,000000000),

w2(δ[1]) = (09,09,000000000,001000000,0δ[1]0000000,000000000),

w3(δ[2]) = (09,09,000000000,000000010, 000000000,00000δ[2]000),

a linear span W (δ) = span(w1(δ[0]), w2(δ[1]), w3(δ[2])) is defined, where δ[i] =
δ[i]⊕ 1. As a result, the correlation for γ denoted by corγ is estimated as

corγ =
∑

w∈W (δ)

∑
v∈V
−corg(ΛTz ⊕ v)× corh(ΛTz ⊕ v ⊕ w).

Note that corg is independent of w ∈W (δ).
We heuristically evaluated γ with high correlation. As shown in Table 2, the

number of possible Λi is at most 64. Otherwise, corh is always 0. Therefore,
the search space is reduced from 254 to 236. Moreover, Λ0 is not involved in
W (δ), and the absolute value of corγ is invariable as far as we use Λ0 satisfying
corh,0 = ±2−4. Therefore, we do not need to evaluate Λ0 anymore, and the
search space is further reduced from 236 to 230. While Λ26 is also not involved
to W (δ), we have non-zero correlation for both cases as Λ26[4] = 0 and 1 (see
Table 3). If the sign of corh,26 for Λ26[4] = 0 is different from that for Λ26[4] = 1,
they cancel each other out. Therefore, we should use Λ26 such that the sign
of correlation of Λ26 is equal to that of Λ26 ⊕ (000010000), and the number of
such candidates is 32. Then, we do not need to evaluate Λ26 anymore, and the
search space is further reduced from 230 to 224. We finally evaluated 224 ΛTz
exhaustively. As a result, we found 49152 × 64 × 32 ≈ 226.58 γ whose absolute
value of correlation is greater than 2−54.2381.
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5.3 Estimation of Attack Complexity and Success Probability
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Fig. 5. Time complexity and success probability. FCA against Grain-128a.

We apply the attack algorithm described in Sect. 3, and Proposition 1 is used
to estimate the attack complexity and success probability. Figure 5 shows the
relationship between the time complexity, success probability, and the size of
bypassed bits, where (n,m, c) = (128, 49152× 64× 32,±2−54.2381) is used. From
Fig. 5, β = 21 is preferable. The time complexity is 3 × (128 − 21) × 2128−21 ≈
2115.3264 and the corresponding success probability is almost 100%. Moreover
when β = 22, the time complexity is 2114.3129 and the success probability is
60.95%.

The estimation above only evaluates the time complexity to recover the initial
state of the LFSR. To recover the secret key, we need to recover the whole of
the initial state. Our next goal is to recover the initial state of the NFSR under
the condition that the initial state of the LFSR is uniquely determined, but it
is not difficult. We have several methods to recover the initial state and explain
the most simple method.

The key stream is generated as Eq. (2). We focus on (y0, . . . , y34), which
involves 128 bits as (b2, . . . , b129). We first guess 93 bits, and the remaining
35 bits are recovered by using corresponding Eq. (2). Specifically, we first guess
(b33, . . . , b75, b80, . . . , b129). Then, (b76, . . . , b79) are uniquely determined by using
(y31, . . . , y34). Similarly, we can uniquely determine the remaining 31 bits step by
step. While we need to guess 93 bits, the time complexity is negligible compared
with that for the FCA.

5.4 Application to Grain-128

We also applied our technique to Grain-128, but we briefly show the result due
to the page limitation. Since Grain-128 is very similar to Grain-128a, we can
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use the same Tz. Then, corg = −2−32, where Λ26[4] and Λ91[0] can be chosen
arbitrary but the others must be 0.

We heuristically evaluated γ with high correlation, and we used the same
strategy as the case of Grain-128a. As a result, we found 215 × 64× 32 = 226 γ
with correlation ±2−51. We apply the attack algorithm described in Sect. 3, and
Proposition 1 is used to estimate the attack complexity and success probability.
As a result, β = 22 is preferable, and the time complexity is 3 × (128 − 22) ×
2128−22 ≈ 2114.3129 and the corresponding success probability is 99.0%.

6 Application to Grain-v1

6.1 Specification of Grain-v1

Let s(t) and b(t) be 80-bit internal states of the LFSR and NFSR at time t,
respectively, and s(t) and b(t) are represented as s(t) = (st, st+1, . . . , st+79) and
b(t) = (bt, bt+1, . . . , bt+79), respectively. Then, let zt be a key stream at time t,
and it is computed as

zt = h(s(t), b(t))⊕
⊕
j∈A

bt+j , (4)

where A = {1, 2, 4, 10, 31, 43, 56} and h(s(t), b(t)) is defined as

h(s(t), b(t)) = h(st+3, st+25, st+46, st+64, bt+63)

= st+25 ⊕ bt+63 ⊕ st+3st+64 ⊕ st+46st+64 ⊕ st+64bt+63

⊕ st+3st+25st+46 ⊕ st+3st+46st+64 ⊕ st+3st+46bt+63

⊕ st+25st+46bt+63 ⊕ st+46st+64bt+63.

Moreover, st+80 and bt+80 are computed by

st+80 = st ⊕ st+13 ⊕ st+23 ⊕ st+38 ⊕ st+51 ⊕ st+62,

bt+80 = si ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45 ⊕ bt+37 ⊕ bt+33 ⊕ bt+28 ⊕ bt+21

⊕ bt+14 ⊕ bt+9 ⊕ bi ⊕ bt+63bt+60 ⊕ bt+37bt+33 ⊕ bt+15bt+9

⊕ bt+60bt+52bt+45 ⊕ bt+33bt+28bt+21 ⊕ bt+63bt+45bt+28bt+9

⊕ bt+60bt+52bt+37bt+33 ⊕ bt+63bt+60bt+21bt+15

⊕ bt+63bt+60bt+52bt+45bt+37 ⊕ bt+33bt+28bt+21bt+15bt+9

⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

6.2 Fast Correlation Attack against Grain-v1

When we use Tz = {0, 14, 21, 28, 37, 45, 52, 60, 62, 80}, we focus on the sum of
the key stream bits, i.e., zt+0 ⊕ zt+14 ⊕ zt+21 ⊕ zt+28 ⊕ zt+37 ⊕ zt+45 ⊕ zt+52 ⊕
zt+60 ⊕ zt+62 ⊕ zt+80.⊕

i∈Tz

zt+i =
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕
j∈A

(⊕
i∈Tz

bt+j+i

)
.
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Table 4. Correlation of the h function, where 32× corh,i is shown in every cell.

Λi[0− 3]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Λi[4] = 0 0 0 0 0 0 -8 0 8 0 8 0 -8 -8 8 -8 8
Λi[4] = 1 0 -8 0 8 -8 -8 -8 -8 0 0 0 0 0 -8 0 8

For any j, ⊕
i∈Tz

bt+j+i = st+j ⊕ g′(b(t+j)),

where g′(b(t)) is defined as

g′(b(t)) = bt+33 ⊕ bt+9 ⊕ bt+63bt+60 ⊕ bt+37bt+33 ⊕ bt+15bt+9 ⊕ bt+60bt+52bt+45

⊕ bt+33bt+28bt+21 ⊕ bt+63bt+45bt+28bt+9 ⊕ bt+60bt+52bt+37bt+33

⊕ bt+63bt+60bt+21bt+15 ⊕ bt+63bt+60bt+52bt+45bt+37

⊕ bt+33bt+28bt+21bt+15bt+9 ⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

Then ⊕
i∈Tz

zt+i =
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕
j∈A

(
st+j ⊕ g′(b(t+j))

)
=
⊕
j∈A

st+j ⊕
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕
j∈A

g′(b(t+j)).

We next consider a linear approximate representation of h(s(t+i), b(t+i)). Let
Λi be the input linear mask for the h function at time t+ i. Then

h(s(t+i), b(t+i))

≈ Λi[4]bt+i+63 ⊕ 〈Λi[0− 3], (st+i+3, st+i+25, st+i+46, st+i+64)〉.

Let corh,i(Λi) be the correlation of the h function at time t + i, and Table 4
summarizes them. From Table 4, corh,i(Λi) is 0 or ±2−2. Since we have |Tz| = 10
active h functions, the total correlation from all active h functions is computed
as (−1)|Tz|+1

∏
i∈Tz corh,i(Λi) = ±2−20 because of the piling-up lemma. Note

that Λi[0− 3] is independent from the state of the NFSR.

All terms involved in the internal state of the LFSR can be guessed in the
FCA. Therefore, under the correlation ±2−20, we get⊕

i∈Tz

zt+i = (term by guessing)⊕
⊕
i∈Tz

(Λi[4]bt+i+63)⊕
⊕
j∈A

(
g′(b(t+j))

)
.
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Table 5. Summary of correlations when Λi[4] is fixed.

Λ14[4] Λ21[4] Λ28[4] Λ45[4] corg(ΛTz )

0 0 0 0 −2−39.7159

0 0 0 1 −2−43.4500

0 0 1 0 −2−39.6603

0 0 1 1 −2−43.7260

0 1 0 0 +2−45.1228

0 1 0 1 −2−42.9025

0 1 1 0 +2−44.3802

0 1 1 1 −2−42.6875

1 0 0 0 +2−41.9519

1 0 0 1 +2−43.5233

1 0 1 0 +2−41.8662

1 0 1 1 +2−43.6420

1 1 0 0 −2−44.9114

1 1 0 1 +2−42.8544

1 1 1 0 −2−44.5232

1 1 1 1 +2−42.7302

Therefore, if

corg(ΛTz ) = Pr

⊕
i∈Tz

(Λi[4]bt+i+63)⊕
⊕
j∈A

(
g′(b(t+j))

)
= 0


− Pr

⊕
i∈Tz

(Λi[4]bt+i+63)⊕
⊕
j∈A

(
g′(b(t+j))

)
= 1


is high, the FCA can be successfully applied.

Similarly to the case of Grain-128a, we evaluate corg(ΛTz ). If one of Λ0[4],
Λ37[4], Λ52[4], Λ60[4], Λ62[4], and Λ80[4] is 1, the correlation is always 0 because
bt+63, bt+100, bt+115, bt+123, bt+125, and bt+143 are not involved in

⊕
j∈A

(
g′(b(t+j))

)
.

Table 5 summarizes corg(ΛTz ) when Λi[4] = 0 for i ∈ {0, 37, 52, 60, 62, 80}.
For any fixed Λi, we can get the following linear approximate representation⊕
i∈Tz

zt+i ≈
⊕
j∈A

st+j ⊕
⊕
i∈Tz

〈Λi[0− 3], (st+i+3, st+i+25, st+i+46, st+i+64)〉. (5)

From the piling-up lemma, the correlation is computed as−corg(ΛTz )×corh(ΛTz ).

How to Find Multiple γ. The correlation of the linear approximate repre-
sentation on fixed Λi was estimated in the paragraph above. The linear mask γ
used in the FCA directly is represented as

γ =
∑
i∈Tz

(
Λi[0]αi+3 + Λi[1]αi+25 + Λi[2]αi+46 + Λi[3]αi+64

)
+
∑
j∈A

αj .
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If different Λh have the same γ, we need to sum up corresponding correlations.
This linear approximate representation does not use Λi[4] for i ∈ Tz. There-

fore, we need to sum up 2|Tz| = 210 correlations, where Λi[0− 3] is identical and
only Λi[5] varies for i ∈ Tz. Let V be a linear span whose basis is 12 correspond-
ing unit vectors.

Moreover, there are special relationships similar to the case of Grain-128a,
and we have four such relationships as

– Λ37[2] and Λ80[0]. Then, α37+46 = α80+3 = α83.
– Λ62[3] and Λ80[2]. Then, α62+64 = α80+46 = α126.
– Λ0[2] and Λ21[1]. Then, α0+46 = α21+25 = α46.
– Λ21[3] and Λ60[1]. Then, α21+64 = α60+25 = α85.

Therefore, from following four vectors

w1(δ[0]) = (00000,05, 00000,05,00100,05,05,00000, 00000,δ[0]0000),

w2(δ[1]) = (00000,05, 00000,05,00000,05,05,00000, 00010,00δ[1]00),

w3(δ[2]) = (00100,05,0δ[2]000,05,00000,05,05,00000, 00000,00000),

w4(δ[3]) = (00000,05, 00010,05,00000,05,05,0δ[3]000,00000,00000),

a linear spanW (δ) = span(w1(δ[0]), w2(δ[1]), w3(δ[2]), w4(δ[3])) is defined, where
δ[i] = δ[i]⊕ 1. Then, let corγ be the correlation of γ, and

corγ =
∑

w∈W (δ)

∑
v∈V
−corg(ΛTz ⊕ v)× corh(ΛTz ⊕ v ⊕ w).

We heuristically evaluated γ with high correlation. For every element in Tz,
since the subset {14, 28, 45, 52} is independent of the special relationship, we first
focus on the subset. Since bt+63+52 is not involved in

⊕
j∈A

(
g′(b(t+j))

)
, Λ52[4]

must be 0. Therefore, Λ52[0− 3] should be chosen as

Λ52[0− 3] ∈ {0101, 0111, 1001, 1011, 1100, 1101, 1110, 1111},

and corγ is invariable as far as we use Λ52 satisfying corh,52 = ±2−2. We do not
need to evaluate Λ52 anymore, and the search space is reduced from 240 to 236.
For i ∈ {14, 28, 45}, corresponding masks should be chosen as

Λi[0− 3] ∈ {0101, 0111, 1001, 1011, 1100, 1101, 1110, 1111}

because corg(ΛTz ) is high when (Λ14[4], Λ21[4], Λ28[4], Λ45[4]) is 0010 or 0000.
Let us focus on Table 5. We have three-type linear masks as

– Λi[0 − 3] ∈ {1001, 1011, 1100, 1110}, where corh,i = ±2−2 for Λi[4] = 0 but
corh,i = 0 for Λi[4] = 1.

– Λi[0− 3] ∈ {0111, 1101}, where the sign of corh,i is different in each case of
Λi[4] = 0 or 1.

– Λi[0 − 3] ∈ {0101, 1111}, where the sign of corh,i is the same in both cases
of Λi[4] = 0 and 1.
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Fig. 6. Time complexity and success probability. FCA against Grain-v1.

Since corγ is invariable in each case, it is enough to evaluate one from each case.
Therefore, the search space is reduced from 236 to 33× 224. We finally evaluated
9× 224 ΛTz exhaustively. As a result, we found about 442368 γ whose absolute
value of correlation is greater than 2−36.

Estimating Attack Complexity and Success Probability. We apply the
attack algorithm described in Sect. 3, and Proposition 1 is used to estimate the
attack complexity and success probability. Figure 6 shows the relationship be-
tween the time complexity, success probability, and the size of bypassed bits,
where (n,m, c) = (80, 442368,±2−36) is used. From Fig. 6, β = 11 is preferable,
and the time complexity is 3×(80−11)×280−11 ≈ 276.6935 and the corresponding
success probability is almost 100%.

7 Verifications, Observations, and Countermeasures

7.1 Experimental Verification

We verify our algorithm by applying it to a toy Grain-like cipher, where the sizes
of the LFSR and NFSR are 24 bits, and st+24, bt+24, and zt are computed as

st+24 = st ⊕ st+1 ⊕ st+2 ⊕ st+7,

bt+24 = bt ⊕ bt+5 ⊕ bt+14 ⊕ bt+20bt+21 ⊕ bt+11bt+13bt+15,

zt = h(st+3, st+7, st+15, st+19, bt+17)⊕
⊕

j∈{1,3,8}

bt+j ,

where the h function is as the one used in Grain-v1.
Similarly to the case of Grain-128a, Tz is used by tapping linear part of the

feedback polynomial of NFSR, i.e., Tz = {0, 5, 14, 24}. Then, the sum of the key



Fast Correlation Attack Revisited 27

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

Theoretical and experimental simulations

# of occurrences that correct/incorrect initial state appars

p
ro

b
ab

il
it
y

Incorrect initial states (theoretical)
Correct initial state (theoretical)
Incorrect initial state (experimental)
Correct initial state (experimental)

thp = 9

Fig. 7. Comparison between the theoretical and experimental estimations.

stream is⊕
i∈Tz

zt+i =
⊕
i∈Tz

h(s(t+i), b(t+i))⊕
⊕

j∈{1,3,8}

(
st+j + g′(b(t+j))

)
,

where g′(b(t)) = bt+20bt+21⊕bt+11bt+13bt+15. The ANF of the h function involves
bt+17, bt+22, bt+31, and bt+41. If Λi[4] = 1 is used for i ∈ {0, 14, 24}, the cor-
relation is always 0 because

⊕
j∈{1,3,8} g

′(b(t+j)) does not involve bt+17, bt+31,

and bt+41. Only bt+22 is involved to
⊕

j∈{1,3,8} g
′(b(t+j)). Therefore, we evalu-

ated correlations of
⊕

j∈{1,3,8} g
′(b(t+j)) and

⊕
j∈{1,3,8} g

′(b(t+j)) ⊕ bt+22, and

they have the correlation 2−3.41504. For i ∈ {0, 14, 24}, we have 8 possible linear
masks. Moreover, we should use 0101 and 1111 for the linear mask Λ14[0 − 3]
because the sign of the correlation is the same in either case of Λ14[4] = 0 and
Λ14[4] = 1. As a result, we have 8×8×8×2 = 1024 linear masks whose absolute
value of correlations is 2×2−8−3.41504 = 2−10.41504, where the factor 2 is derived
from the sum of correlations for Λ14[4] = 0 and Λ14[4] = 1.

For example, when β = 5, the data complexity is (24 − 5) × 224−5 ≈ 223.25.
From Proposition 1, when we use th = 6579 as the threshold for the normal dis-
tribution, the complexities for three steps of the attack algorithm are balanced.
Moreover, when we use thp = 9 as the threshold for the Poisson distribution, the
probability that incorrect initial state appears at least thp times is 2−26 < 2−24.

We randomly choose the initial state and repeat the attack algorithm 1000
times. Figure 7 shows the comparison of the Poisson distributions between the
theoretical and experimental ones. From this figure, our experimental results
almost follow the theoretical one.

7.2 Another View to Find Preferable Tz

In our strategy, we first searched for Tz, which brings the best linear charac-
teristic. A mixed integer linear programming (MILP) is often applied to search
for the best linear characteristics of block ciphers [34,35], and this method is
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naturally applied to search for the best linear characteristic of the fast corre-
lation attack. We first generate an MILP model to represent linear trail with
specific number of rounds R. Then, we maximize the probability of the linear
characteristic under the condition that b(0) and b(R) are linearly inactive.

We used Tz = {0, 26, 56, 91, 96, 128} and Tz = {0, 14, 21, 28, 37, 45, 52, 60, 62, 80}
for Grain-128a and Grain-v1, respectively, and they bring the best linear charac-
teristic. For Grain-128a and Grain-v1, the correlation of the linear characteristic
are ±2−80.159 and ±2−38.497, respectively. It is not enough to estimate the corre-
lation only from the best characteristic because we need to take into account of
the effect by multiple characteristics. For example, assuming that there are two
characteristics whose absolute values of correlations are the same but their signs
are different, these two characteristics cancel each other. On the other hand, if
their signs are the same, we can observe double correlations. Especially, it is very
interesting that Grain-128a has significant gain from the best linear characteris-
tic. While the MILP is useful to find the best characteristic, there is no method
to find multiple linear characteristics without repeating MILPs. Therefore, we
used the MILP only to detect a preferable Tz, and the corresponding correlation
is estimated as explained in Sects. 5 and 6.

7.3 Possible Countermeasure against Our New Attack

The simplest countermeasure is to suppress the output at every second position
when the key stream is output. For example, the authenticated encryption mode
of Grain-128a has such structure, where the key stream is output only in the even
clock. When we attack Grain-128a, we want to use Tz = {0, 26, 56, 91, 96, 128},
but we cannot tap 91. As far as we search, we cannot detect a preferable Tz under
the condition that the tapped indices are only even numbers. On the other hand,
this countermeasure leads to low throughput.

Another countermeasure would be to limit the length of the key stream for
each pair of secret key and iv. It would become difficult to collect enough parity-
check equations to execute the FCA. Lightweight stream ciphers often have such
restriction, e.g., Plantlet outputs only 230-bit key stream for each pair of secret
key and iv [26]. On the other hand, the advantage of stream ciphers can keep
high performance once the initialization finishes, and such restriction does not
use the advantage very well.
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