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Abstract. A fast correlation attack (FCA) is a well-known cryptanal-
ysis technique for LFSR-based stream ciphers. The correlation between
the initial state of an LFSR and corresponding key stream is exploited,
and the goal is to recover the initial state of the LFSR. In this paper,
we revisit the FCA from a new point of view based on a finite field,
and it brings a new property for the FCA when there are multiple lin-
ear approximations. Moreover, we propose a novel algorithm based on
the new property, which enables us to reduce both time and data com-
plexities. We finally apply this technique to the Grain family, which is
a well-analyzed class of stream ciphers. There are three stream ciphers,
Grain-128a, Grain-128, and Grain-v1 in the Grain family, and Grain-v1 is
in the eSTREAM portfolio and Grain-128a is standardized by ISO/IEC.
As a result, we break them all, and especially for Grain-128a, the crypt-
analysis on its full version is reported for the first time.

Keywords: Fast correlation attack, Stream cipher, LFSR, Finite field,
Multiple linear approximations, Grain-128a, Grain-128, Grain-v1

1 Introduction

Stream ciphers are a class of symmetric-key cryptosystems. They commonly
generate a key stream of arbitrary length from a secret key and initialization
vector (iv), and a plaintext is encrypted by XORing with the key stream. Many
stream ciphers consist of an initialization and key-stream generator. The secret
key and iv are well mixed in the initialization, where a key stream is never output,
and the mixed internal state is denoted as the initial state in this paper. After the
initialization, the key-stream generator outputs the key stream while updating
the internal state. The initialization of stream ciphers generally requires much
processing time, but the key-stream generator is very efficient.

LFSRs are often used in the design of stream ciphers, where the update
function consists of one or more LFSRs and non-linear functions. Without loss
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Fig. 1. Model of LFSR-based stream ciphers

of generality, the key-stream generator of LFSR-based stream ciphers can be
represented as Fig.[I] where the binary noise e; is generated by the non-linear
function. LFSR-based stream ciphers share the feasibility to guarantee a long
period in the key stream.

A (fast) correlation attack is an important attack against LFSR-based stream
ciphers. The initial idea was introduced by Siegenthaler [1], and it exploits the
bias of e;. We guess the initial state s(°) = (sg,s1,...,5,_1), compute s, for
t=nmn+1,...,N —1, and XOR s; with corresponding z;. If we guess the
correct initial state, highly biased e, is acquired. Otherwise, we assume that the
XOR behaves at random. When we collect an N-bit key stream and the size of
the LFSR is n, the simple algorithm requires a time complexity of N2".

Following up the correlation attack, many algorithms have been proposed
to avoid the exhaustive search of the initial state, and they are called as “fast
correlation attack.” The seminal work was proposed by Meier and Staffelbach [2],
where the noise e; is efficiently removed from z; by using parity-check equations,
and s; is recovered. Several improvements of the original fast correlation attack
have been proposed [BAI5I6I7I8], but they have limitations such as the number
of taps in the LFSR is significantly small or the bias of the noise is significantly
high. Therefore, their applications are limited to experimental ciphers, and they
have not been applied to modern concrete stream ciphers.

Another approach of the fast correlation attack is the so-called one-pass al-
gorithm [9IT0], and it has been successfully applied to modern concrete stream
ciphers [TTIT2T3]. Similarly to the original correlation attack, we guess the initial
state and recover the correct one by using parity-check equations. To avoid ex-
haustive search over the initial state, several methods have been proposed to de-
crease the number of secret bits in the initial state involved by parity-check equa-
tions [I4UT5]. In the most successful method, the number of involved secret bits
decreases by XORing two different parity-check equations. Let e, = (s(9), a,) ® 2,
be the parity-check equation, where <5(0), a;) denotes an inner product between
59 and a;, and we assume that e, is highly biased. Without loss of generality,
we first detect a set of pairs (ji,j2) such that the first £ bits in a;, @ a;, are
0, where such a set of pairs is efficiently detected from the birthday paradox.
Then, (s, a;, @ a;,) © zj, © 2;, is also highly biased, and the number of in-
volved secret bits decreases from n to n — ¢. Later, this method is generalized
by the generalized birthday problem [16]. Moreover, an efficient algorithm was
proposed to accelerate the one-pass algorithm [T4]. They showed that the guess
and evaluation procedure can be regarded as a Walsh-Hadamard transform, and
the fast Walsh-Hadamard transform (FWHT) can be applied to accelerate the
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one-pass algorithm. While the naive algorithm for the correlation attack requires
N2", the FWHT enables us to evaluate it with the time complexity of N 4+ n2™.
When the number of involved bits decreases from n to n— ¢, the time complexity
also decreases to N + (n —£)2"~¢. The drawback of the one-pass algorithm with
the birthday paradox is the increase of the noise. Let p be the probability that
e; = 1, and the correlation denoted by c is defined as ¢ = 1 — 2p. If we use
the XOR of parity-check equations to reduce the number of involved secret bits,
the correlation of the modified equations drops to ¢2. The increase of the noise
causes the increase of the data complexity.

Revisiting Fast Correlation Attack. In this paper, we revisit the fast cor-
relation attack. We first review the structure of parity-check equations from a
new point of view based on a finite field, and the new viewpoint brings a new
property for the fast correlation attack. A multiplication between n x n matrices
and an n-bit fixed vector is generally used to construct parity-check equations.
Our important observation is to show that this multiplication is “commutative”
via the finite field, and it brings the new property for the fast correlation attack.

We first review the traditional wrong-key hypothesis, i.e., we observe correla-
tion 0 when incorrect initial state is guessed. The new property implies that we
need to reconsider the wrong-key hypothesis more carefully. Specifically, assum-
ing that there are multiple high-biased linear masks, the traditional wrong-key
hypothesis does not hold. We then show a modified wrong-key hypothesis.

The new property is directly useful to improve the efficiency of the fast corre-
lation attack when there are multiple high-biased linear masks. In the previous
fast correlation attack, the multiple approximations are only useful to reduce
the data complexity but are not useful to reduce the time complexity [I1]. We
propose a new algorithm that reduces both time and data complexities. Our new
algorithm is a kind of the one-pass algorithm, but the technique to avoid the
exhaustive search of the initial state is completely different from previous ones.
The multiple linear masks are directly exploited to avoid the exhaustive search.

Applications. We apply our new algorithm to the Grain family, where there are
three well-known stream ciphers: Grain-128a [20], Grain-128 [21], and Grain-
vl [22]. The Grain family is amongst the most attractive stream ciphers, and
especially Grain-v1 is in the eSSTREAM portfolio and Grain-128a is standardized
by ISO/IEC [23]. Moreover the structure is recently used to design a lightweight
hash function [24] and stream ciphers [25/26].

Our new algorithm breaks each of full Grain-128a, Grain-128, and Grain-v1.
Among them, this is the first cryptanalysis against full Grain-128a ﬂ Regarding
full Grain-128, our algorithm is the first attack against the key-stream genera-

6 Grain-128a has two modes of operation: stream cipher mode and authenticated
encryption mode. We can break the stream cipher mode under the known-plaintext
setting. However we cannot attack the authenticated encryption mode under the
reasonable assumption.
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Table 1. Summary of results, where the key-stream generator and initialization are
denoted as ksg and init, respectively.

Target Attack Assumption|Data| Time |Reference
Grain-128a|ksg| fast correlation attack - Q1138 gll5-4 Sect.lgl
Grain-128 [init| dynamic cube attack | chosen IV | 25% | 2% [17]

init| dynamic cube attack | chosen IV |2624| 28 [18]

ksg| fast correlation attack - Ql12.8| 9lld.4 Sect.
Grain-v1 |ksg|fast near collision attack - 219 [286-1 41 [19]

ksg| fast correlation attack - 275-1 1 9767 | Sect,.

1 In [19], the time complexity is claimed as 277 but the unit of the time complexity
is 1 update function of reference code on software implementation. Here we adjusted
the time complexity for the fair comparison.

tor. Regarding full Grain-v1, our algorithm is more efficient than the previous
attack [19], and it breaks Grain-v1 obviously faster than the brute-force attack.
To realize the fast correlation attack against all of the full Grain family,
we introduce novel linear approximate representations. They well exploit their
structure and reveal a new important vulnerability of the Grain family.

Comparisons with Previous Attacks against Grain Family. To under-
stand this paper, it is not necessary to understand previous attacks, but we
summarize previous attacks against the Grain family.

Before Grain-v1, there is an original Grain denoted by Grain-v0 [27], and it
was broken by the fast correlation attack [IT]. Grain-v1 is tweaked to remove
the vulnerability of Grain-v0. Nevertheless, our new fast correlation attack can
break full Grain-v1 thanks to the new property.

The near collision attack is the important previous attack against Grain-v1
[28], and very recently, an improvement called the fast near collision attack was
proposed [19], where the authors claimed that the time complexity is 27°7. How-
ever, this estimation is controversial because the unit of the time complexity is
“1 update function of reference code on software implementation,” and they esti-
mated 1 update function to be 21%4 cycles. Therefore, the pure time complexity
is rather 27271104 — 986.1 cycles, which is greater than 28°. On the other hand,
the time complexity of the fast correlation attack is 2767, where the unit of the
(dominant) time complexity is at most one multiplication with fixed values over
the finite field. It is obviously faster than the brute-force attack, but it requires
more data than the fast near collision attack.

Grain-128 is more aggressively designed than Grain-vl, where a quadratic
function is adopted for the nonlinear feedback polynomial of the NFSR. Unfortu-
nately, this low degree causes vulnerability against the dynamic cube attack [29].
While the initial work by Dinur and Shamir is a weak-key attack, it was then
extended to the single-key attack [I7] and recently improved [18]. The dynamic
cube attack breaks the initialization, and the fast correlation attack breaks the
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key-stream generator. Note that different countermeasures are required for at-
tacks against the key-stream generator and initialization. For example, we can
avoid the dynamic cube attack by increasing the number of rounds in the ini-
tialization, but such countermeasure does not prevent the attack against the
key-stream generator.

Grain-128a was designed to avoid the dynamic cube attack. The degree of
the nonlinear feedback polynomial is higher than in Grain-128. No security flaws
have been reported on full Grain-128a, but there are attacks against Grain-128a
whose number of rounds in the initialization is reduced [303II32].

2 Preliminaries

2.1 LFSR-Based Stream Ciphers

The target of the fast correlation attack is LFSR-based stream ciphers, which
are modeled as Fig.[I] simply. The LFSR generates an N-bit output sequence

as {so,81,...,8N—-1}, and the corresponding key stream {zo,z1,...,2y-1} is
computed as z; = sy @ e, where e; is a binary noise.
Let

f($):Co-f—Clxl+02$2+,..+cn71xn—1+xn

be the feedback polynomial of the LFSR and s(*) = (St, St41,- -+, St+n—1) be an
n-bit internal state of the LFSR at time ¢. Then, the LFSR outputs s, and the
state is updated to s¢t1 as

0---00 co
1---00 C1
st — () « p— (O « Dot ;
0---10¢p_2
0---01cp_1

where F' is an n X n binary matrix that represents the feedback polynomial
f(z). In concrete LFSR-based stream ciphers, the binary noise e; is nonlinearly
generated from the internal state or another internal state.

2.2 Fast Correlation Attack

The fast correlation attack (FCA) exploits high correlation between the internal
state of the LFSR and corresponding key stream [I2]. We first show the most
simple model, where we assume that e; itself is highly biased. Let p be the
probability of e, = 1, and the correlation c is defined as ¢ = 1 —2p. We guess the
initial internal state s(©), calculate {s0,81,-..,8n—1} from the guessed s and
evaluate Zivz Bl(fl)st@zf, where the sum is computed over the set of integers. If

the correct initial state is guessed, the sum is equal to Zi\]: 61(—1)” and follows
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a normal distribution N'(N¢, N )m On the other hand, we assume that the sum
behaves at random when an incorrect initial state is guessed. Then, it follows a
normal distribution A(0, N). To distinguish the two distributions, we need to
collect N ~ O(1/c?) bits of the key stream.

The FCA can be regarded as a kind of a linear cryptanalysis [33]. The output
s¢ is linearly computed from 50 as s = <s(0), Ay, where Ay is the 1st row vector
in the transpose of F'* denoted by TF*. In other words, A; is used as linear masks,
and the aim of attackers is to find s(°) such that Zi\;}l(—l)“(o)"“‘) is far from
N/2.

Usually, the binary noise e; is not highly biased in modern stream ciphers,
but we may be able to observe high correlation by summing optimally chosen
linear masks. In other words, we can execute the FCA if

e = @<S(t+i)7fi> ® @ g
i€T, i€T.

is highly biased by optimally choosing T, T, and I}, where s*% and I’ are
n-bit vectors. Recall s = 5(°) x F* and then, ¢, is rewritten as

e = @ <S(t+i)7[‘i> P @ Zii

€T, €T,
- B (0 n) o @ s
i€Ts €T,
:<$(O),<@(FlXTF1)> XTFt>@@Z,§+i.
€Ty i€T,

For simplicity, we introduce I" denoted by I" = @, (I X TF?Y). Then, we can
introduce the following parity-check equations as

e = <s(0),F X TFt> ® @ Ziti- (1)

€T,

We redefine p as the probability satisfying e, = 1 for all possible ¢, and the
correlation c¢ is also redefined from the corresponding p. Then, we can execute
the FCA by using Eq. . Assuming that N parity-check equations are collected,
we first guess s(°) and evaluate iV: 61(—1)62. While the sum follows a normal
distribution A(0, N) in the random case, it follows N'(N¢, N) if the correct s(%)
is guessed.

The most straightforward algorithm requires the time complexity of O(N2").
Chose et al. showed that the guess and evaluation procedure can be regarded as a
Walsh-Hadamard transform [14]. The fast Walsh-Hadamard transform (FWHT)
can be successfully applied to accelerate the algorithm, and it reduces the time
complexity to O(N + n2™).

7 Accurately, when the correct initial state is guessed, it follows A (Ne,N + N c2).
However, since N is huge and N¢? is small, the normal distribution N(N¢,N) is
enough to approximate the distribution.
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Definition 1 (Walsh-Hadamard Transform (WHT)). Given a function
w:{0,1}" — Z, the WHT of w is defined as w(s) =3, c(013n w(z)(—1)2),

When we guess s € {0,1}", the empirical correlation Zi\’;ol(—l)eé is rewritten
as
N— N-1
Z (_1)62 — (_1)<55F><TFt>®@iE'ﬂ'Z Zi4i
0

t=0 t=

[ay

= Z Z (_1)(5»1>@®ie¢r2 Zt4i

x€{0,1}™ \te{0,1,....N—1|'xTFt=g}

Z Z (—1)@1‘@2 Btti (_1)<S,r).

z€{0,1}7 \t€{0,1,....N—1|'xTFt=g}

Therefore, from the following public function w as

w(w) = Z (_1)®i€’rz Zt+i7

te{0,1,....N—1|I'xTFt=z}

we get W by using the FWHT, where w(s) is the empirical correlation when s is
guessed.

3 Revisiting Fast Correlation Attack

We first review the structure of the parity-check equation by using a finite field
and show that I" x TF? is “commutative.” This new observation brings a new
property for the FCA, and it is very important when there are multiple linear
masks. As a result, we need to reconsider the wrong-key hypothesis carefully,
i.e., there is a case that the most simple and commonly used hypothesis does
not hold. Moreover, we propose a new algorithm that successfully exploits the
new property to reduce the data and time complexities in the next section.

3.1 Reviewing Parity-Check Equations with Finite Field

We review I' x TF* by using a finite field GF(2"), where the primitive polynomial
is the feedback polynomial of the LFSR.

Recall the notation of A; € {0,1}", which was defined as the 1st row vector
in TF?, and then, the ith row vector of TF? is represented as Agyrioq. Let abea
element as f(a) = 0 and it is a primitive element of GF(2"). We notice that o'
becomes natural conversion of A, € {0,1}". We naturally convert I" € {0,1}"
to v € GF(2"). The important observation is that I" x TF also becomes natural
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conversion of yoo € GF(2™) because of

01--- 0

T ol T .
I'x " F=1x 00..- 1
00--- 0

CoCl " Cp—2Cn-1

This trivially derives that I'x TF* is also natural conversion of ya! € GF(2"), and
of course, the multiplication is commutative, i.e., ya! = a'y. We finally consider
a matrix multiplication corresponding to a‘~. Let M., be an n x n binary matrix,
where the ith row vector of M., is defined as the natural conversion of ya'~*.
Then, o'y is the natural conversion of A; x TMW, and we acquire I' x TFt =
Ay x T™M.,. The following shows an example to understand this relationship.

Example 1. Let us consider a finite field GF(2%) = GF(2)[z]/(2® + 2* + 23 +
22 +1). When I = 01011011, the transpose matrix of the corresponding binary

matrix M, is represented as

T M'y

01011011
10010101
11110010
01111001
10000100
01000010
00100001
10101000

where the first row coincides with I" and the second row is natural conversion of

ya. Then, I' x TFt = A, x TM,,

I' < TP = Ay x ™M,

, and for example, when ¢ = 10,

10

< (01011011) x

01000000
00100000
00010000
00001000
00000100
00000010
00000001
10111000

and the result is 00010101.

=(00101110)x

We review Eq. by using the “commutative” feature as

01011011
10010101
11110010
01111001
10000100
01000010
00100001
10101000

<8(0)7F x TFt> = <s(0),At x TM7> = <s<0) x Mv,At>,
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and Eq. is equivalently rewritten as

62 = <S(0) X M’Y’At> (&) @ Zt4ig-

i€T,
The equation above implies the following new property.

Property 1. We assume that we can observe high correlation when we guess s(©)
and parity-check equations are generated from I' x TF*. Then, we can observe
exactly the same high correlation even if we guess s(©) x M., and parity-check
equations are generated from A, instead of I' x TF?.

Hereinafter, v € GF(2") is not distinguished from I" € {0, 1}", and we use v
as a linear mask for simplicity.

3.2 New Wrong-Key Hypothesis

We review the traditional and commonly used wrong-key hypothesis, where we
assume that the empirical correlation behaves as random when an incorrect
initial state is guessed. However, Property[I] implies that we need to consider
this hypothesis more carefully.

We assume that the use of a linear mask I" leads to high correlation, and
we simply call such linear masks highly biased linear masks. When we generate
parity-check equations from I' x TF*, let us consider the case that we guess
incorrect initial state s'(9) = s(0) x M., From Property

(0,0 x TR = (s x My, Ay x M) = (59, Ay x M)

In other words, it is equivalent to the case that v+’ is used as a linear mask
instead of . If both « and v+’ are highly biased linear masks, we also observe high
correlation when we guess s(©) x M.,,. Therefore, assuming that the target stream
cipher has multiple linear masks with high correlation, the entire corresponding
guessing brings high correlation.

We introduce a new wrong-key hypothesis based on Property[l}] Assuming
that there are m linear masks whose correlation is high and the others are
correlation zero, we newly introduce the following wrong-key hypothesis.

Hypothesis 1 (New Wrong-Key Hypothesis) Assume that there are m highly
biased linear masks as v1,72,...,Ym, and parity-check equations are generated
from A;. Then, we observe high correlation when we guess s(9 x M, for any

i € {1,2,...,m}. Otherwise, we assume that it behaves at random, i.e., the
correlation becomes 0.

The new wrong-key hypothesis is a kind of extension from the traditional wrong-
key hypothesis.
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4 New Algorithm Exploiting New Property

Overview. We first show the overview before we detail our new attack algo-
rithm. In this section, let n be the size of the LFSR in the target LFSR-based
stream cipher, and we assume that there are m (< 2™) highly biased linear masks
denoted by 71,72,...,7m. The procedure consists of three parts: constructing
parity-check equations, FWHT, and removing ~.

— We first construct parity-check equations. Parity-check equations of the tra-
ditional FCA are constructed from I' x TF? and GaieTz Ztyi. In our new
algorithm, we construct parity-check equations from A, instead of I' x TF®,

— We use the fast Walsh-Hadamard transform (FWHT) to get solutions with
high correlation. In other words, we evaluate s such that (s, A;) @ ®ieTZ Ztti
is highly biased. As we explained in Sect.[3.I] we then observe high correla-
tion when s = s(® x M.,,, and there are m solutions with high correlation.
Unfortunately, even if FWHT is applied, we have to guess n bits and it
requires n2" time complexity. It is less efficient than the exhaustive search
when the size of the LFSR is greater than or equal to the security level.
To overcome this issue, we bypass some bits out of n bits by exploiting m
linear masks. Specifically, we bypass § bits, i.e., we guess only (n — ) bits
and [ bits are fixed to constant (e.g., 0). Even if § bits are bypassed, there
are m2~7 solutions with high correlation in average. Therefore, m > 27 is a
necessary condition.

— We pick solutions whose empirical correlation is greater than a threshold,
where some of solutions are represented as s = s(®) x M,,. To remove M,,,
we exhaustively guess the applied 7; and recover s(?). Assuming that N,
solutions are picked, the time complexity is IV, x m. If the expected number
of occurrences that the correct s(9) appears is significantly greater than that
for incorrect ones, we can uniquely determine s(°). We simulate them by
using the Poisson distribution in detail.

4.1 Detailed Algorithm

Let n be the state size of the LFSR and k be the security level. We assume that
there are m,, (< 2™) linear masks 1,7z, . . . »Ym, With positive correlation that
is greater than a given ¢. Moreover we assume that there are m,, (< 2™) linear
masks p1, p2, ..., pm,, With negative correlation that is smaller than —c. Note
that c is close to 0, and m = my + Mmyy,.

Constructing Parity-Check Equations. We first construct parity-check equa-
tions from A; and @ie’ﬂ‘z zipq for t =0,1,..., N — 1, and the time complexity is
N. The empirical correlation follows N (N¢, N) and N (—N¢, N) when we guess
one of 50 x M., and s(*) x M,,, respectively[} Otherwise we assume that the
empirical correlation follows A (0, N).

8 The correlation ¢ is the lower bound for all ;. Therefore, while the empirical
correlation may not follow A (Ne¢, N), it does not affect the attack feasibility because
it is far from N(0, N).
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FWHT with Bypassing Technique. We next pick s € {0,1}" such that

|20 DY > 4 where €] = (s, Ay) ® @yep, 2104 and th (> 0) is a threshold.
Let €1 be the probability that values following A(0, N) is greater than th, and let
€2 be the probability that values following ' (N¢, N) is greater than th. Namely,

1 /Ooe < x2>d 1 /Ooe ( (x—Nc)2>d
€ = xp | —=—= ) dz, €= xp | ———— | dz.
VS aan S TP\ TN 2= VorN S P 2N

Note that the probability that values following N (0, N) is smaller than —th is
also €1 and the probability that values following N'(—Ne¢, N) is smaller than —th
is also €. Let S, and S,;, be the set of picked solutions with positive and negative
correlation, respectively. The expected size of S, and S,, is (2"€; + mpez) and
(2™€1 + mypez), respectively, when the whole of n-bit s is guessed.
Unfortunately, if we guess the whole of n-bit s, the time complexity of FWHT
is n2™ and it is less efficient than the exhaustive search when n > k. To reduce the
time complexity, we assume multiple solutions. Instead of guessing the whole of
s, we guess its partial (n — /3) bits, where bypassed f bits are fixed to constants,
e.g., all 0. Then, the time complexity of the FWHT is reduced from n2" to
(n — B)2"=B. Even if 3 bits are bypassed, m,2 ey (resp. m,,2 P€2) solutions
represented as () x M, (resp. 5(0) x M,,) remain. Moreover, the size of S, and
Sy, also decreases to (2" Py +mp2*'862) and (2" B¢ +m,,27P¢y), respectively.

Removing ~. For all s € S, and all j € {1,2,...,m,}, we compute s X M;Jl
It computes s(© x M, x M,?jl and becomes s(°) when i = j. Since there are

mp2_662 solutions represented as s(© x M, in S,, the correct s appears
mp2_5 €2 times. On the other hand, every incorrect initial state appears about
m,(2" Per +mp2~P€3)27™ times when we assume uniformly random behavior.
In total, every incorrect initial state appears about

A = mp(Q”_’Bel + mp2_ﬁ62)2_” + My, (2"_361 + mm2_ﬁ62)2_"
= (m2" Pe; + (mi +m?2 )27 Pey)27n

times when we assume uniformly random behavior. On the other hand, the
correct s(°) appears

)\2 = (mp + m»,,L)27ﬁ62 = m27662

times.

The number of occurrences that every incorrect initial state appears follows
the Poisson distribution with parameter A1, and the number of occurrences that
the correct s(°) appears follows the Poisson distribution with parameter Ay. To
recover the unique correct s(9, we introduce a threshold thy, as

o0

Are=M n
> <2
k=th,
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The probability that the number of occurrences that s(9) appears is greater than

k_—X
th, is estimated as Zzozthp )‘227,2 Therefore, if the probability is close to one,

we can uniquely recover s(9) with high probability.

4.2 Estimation of Time and Data Complexities

The procedure consists of three parts: constructing parity-check equations, FWHT,
and removing . The first step requires the time complexity N, where the unit
of the time complexity is a multiplication by a over GF(2") and ;cr. ¢+
The second step requires the time complexity (n — 3)2"~ 7, where the unit of
the time complexity is an addition or subtractionﬂ The final step requires the
time complexity (m2"Pe; + (m?2+ m2,)2 P ey), where the unit of the time com-
plexity is a multiplication by fixed values over GF(2"). These units of the time
complexity are not equivalent, but at least, they are more efficient than the unit
given by the initialization of stream ciphers. Therefore, for simplicity, we regard
them as equivalent, and the total time complexity is estimated as

N+ (n—B3)2" P 4+ m2n Pe + (m2 + m2,)2 Pe,.

Proposition 1. Let n be the size of the LFSR in an LFSR-based stream cipher.
We assume that there are m linear masks whose absolute value of correlation is
greater than c. When the size of bypassed bits is 3, we can recover the initial
state of the LFSR with time complexity 3(n — B)2" " and the required number
of parity-check equations is N = (n — 3)2"~#, where the success probability is

Ak — Ao . Lo . .
> retn. 2, where thy, is the minimum value satisfying
=th, — Wl

o NN
> T <
k=th,

and

O (z — NC)2)
)\ = ex —_— d$7
27 VN Ju P ( 2N

th = V2N x erfc™* (Q(n—ﬁ)) :

m
Proof. The total time complexity is estimated as
N+ (n—B3)2" P 4+ m2nPe + (mf, +m2)2 Pe,.

In the useful attack parameter, since (mf] + m2,)2 B¢, is significantly smaller
than the others, we regard it as negligible. We consider the case that other three
terms are balanced, i.e.,

N = (n—B)2" P =m2" P,

9 Since we only use N < 2" parity-check equations, it is enough to use additions or
subtraction on n-bit registers.
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Fig. 2. Theoretical estimation for Example

where €7 is estimated as

! /Ooe ( m2>daz lxerfc( th ) n—p
€1 = X _— = — _— = .
YT VN S TP\ 2N 2 V2N m

Thus, when th is

th = V2N x erfc™? (2(nm—5)) ,

complexities of the three terms are balanced. We finally evaluate the probability
that the initial state of the LFSR is uniquely recovered. The number of occur-
rences that each incorrect value appears follows the Poisson distribution with

parameter A; = N27". To discard all 2" —1 incorrect values, recall thy, satisfying
k_—X k_—X

Zzozthp Alc}ﬁi,l < 27", Then, the success probability is Z;ithp )‘227,2 where Ay

is

27,6 () _ N 2
Ay = m2*'862 = :/nm exp (—W) dx
th

O

Ezxample 2. Let us consider an attack against an LFSR-based stream cipher with
80-bit LFSR. We assume that there are 2'4 linear masks whose correlation is
greater than 2736, For 8 = 9, we use N = (80—9) x 28079 ~ 277-1498 parity-check
equations. The left figure of Fig.[2] shows two normal distributions: random and
biased cases. If we use a following threshold

2 _
th = \/ﬁ X erfC*1 ((nﬁ)) ~ 239496727
m

€1 = (n—7B)/m =~ 27780 and e; = 0.99957. The expected number of picked so-
lutions is 28079, + 2149, =5 263-1498 1 31 98627 = 2631498 'We apply 2'4 inverse
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linear masks to the picked solutions and recover s(®), and the time complexity
ig 963.1498+14 _ 977.1498

The number of occurrences that each incorrect value appears follows the
Poisson distribution with parameter \; = 277-1498=80 — 9-2.8502 (y the other
hand, the number of occurrences that s(°) appears follows the Poisson distri-
bution with parameter Ay = 2479 x 0.99957 ~ 31.98627. The right figure of
Fig.@ shows two Poisson distributions. For example, when th, = 15 is used,
the probability that an incorrect value appears at least 15 is smaller than 2780,
However, the corresponding probability for s(©) is 99.9%. As a result, the total
time complexity is 3 x 2771498 o 9787348

5 Application to Grain-128a

We apply the new algorithm to the stream cipher Grain-128a [20], which has two
modes of operations: stream cipher mode and authenticated encryption mode.
We assume that all output sequences of the pre-output function can be observed.
Under the known-plaintext scenario, this assumption is naturally realized for the
stream cipher mode because the output is directly used as a key stream. On the
other hand, this assumption is very strong for the authenticated encryption mode
because only even-clock output is used as the key stream. Therefore, we do not
claim that the authenticated encryption mode can be broken.

5.1 Specification of Grain-128a

9 f
LT L l

[b: bys127]«— D—]s, P

7 2 7 1

h

S3)

l

Yt

Fig. 3. Specification of Grain-128a

Let s and b®) be 128-bit internal states of the LFSR and NFSR at time
t, respectively, and s) and b(®) are represented as s) = (s;, 5141, ..,511127)
and b®) = (bty b1, - -, bip127). Let yy be an output of the pre-output function
at time ¢, and it is computed as

" :h(S(t)J)(t))@8t+93@@bt+ja (2)
JEA
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where A = {2,15,36,45,64, 73,89}, and h(s®),b®) is defined as

0 ot
h(sW b)) = h(biy12, St48, 514135 51420, D955 St442, 514605 514795 St+94)

= by+125¢+8 D S¢4+135t+20 D bi1955t4+42 D St4605t+79 D brr120¢4955¢494.

Moreover, s¢+128 and b;4128 are computed by

St+128 = St D St47 O St438 D St+70 D St+81 D St+96,
biy128 = 8t D by D byae D bis56 D bit91 D bryoe D biy3biyer © bip11bi413
@ byg17bi118 D byg27biy 59 D byaobsyas ® byye1biyes @ byesbiisa
@ byy8sbi192b1493b1495 D byq20bi424b 425 D biy70bry78be482.
Let z; be the key stream at time ¢, and z; = y; in the stream cipher mode. On

the other hand, in the authenticated encryption mode, 2z; = Yo 42, Where w is
the tag size. Figure [3] shows the specification of Grain-128a.

5.2 Linear Approximate Representation for Grain-128a

If there are multiple linear masks with high correlation, the new algorithm can be
applied. In this section, we show that Grain-128a has many linear approximate
representations, and they produce many linear masks.

[ 1T T
. \“ LZ$ 8 % li% 2[% ()7% 424 ()l% 4 ‘H{ o
h a
plt+1) S & Yt
L
l | T T { % i i
N A, U% 8 % 1 ‘}% 2[% SL'% 12 6O 9 94 o
I
. )
b(t,‘+2) s(r,‘+2) & Yi+1
p(tm St
} 1T T % % l {
12¢ 8 139 208 959 420 GOe T7o¢ 94
A A * % % % I% 93
]
stn+l) é Yt+n

Fig. 4. Linear Approximate Representation for Grain-128a

Figure[d] shows the high-level view of the linear approximate representation.
It involves from tth to (¢ + n + 1)th rounds, where b® and b(*+"+1) must be
linearly inactive to avoid involving the state of NFSR. Moreover, ;. is linearly
active for i € T, and the linear mask of the input of the (¢ +4)-round A function
denoted by A; must be nonzero for i € T,. Otherwise, it must be zero.

We focus on the structure of the h function, where the input consists of
7 bits from the LFSR and 2 bits from the NFSR. Then, non-zero A; can take
several values, and specifically, A; can take 64 possible values (see Table under
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the condition that a linear mask for 2 bits from NFSR is fixed. Since the sum
of yiq; for ¢+ € T, is used, it implies that there are 647! linear approximate
representations. These many possible representations are obtained by exploiting
the structure of the h function, and this structure is common for all ciphers in
the Grain family. In other words, this is a new potential vulnerability of the
Grain family.

We first consider T, to construct the linear approximate representation, but
it is difficult to find an optimal T,. Our strategy is heuristic and does not guar-
antee the optimality, but the found T, is enough to break full Grain-128a. Once
T, is determined, we first evaluate the correlation of a linear approximate rep-
resentation on fixed A; for ¢ € {0,1,...,n}. The high-biased linear mask v used
in our new algorithm is constructed by A;, and the correlation of v is estimated
from the correlation of A;.

Finding Linear Masks with High Correlation. We focus on the sum of
key stream bits, i.e., @ie'ﬂ‘z Yi+i- From Eq. , the sum is represented as

@ Yiti = @ h(sHD b)) @ 54505 @ @ ity

€T, €T, JEA
= @ (h(s(t+i), b(tJrl)) D 5t+i+93) &) @ (@ bt+j+i> .
€T, JjeA \i€eT,

We first consider an appropriate set T,. We focus on 691'611‘2 bi+j+s and choose

T, such that @ie'ﬂ‘z bi+j+i is highly biased. Concretely, we tap 6 bits whose index
corresponds to linearly tapped bits in the g function, i.e., T, = {0, 26, 56, 91, 96, 128}.
Then, for any j,

@ betjti = bitj D brtjvae @ beyjt56 D bitjr91 D brtjros B beyjti12s
€T,
= 5145 ® g (V1)