
Polynomial direct sum masking to protect against both SCA
and FIA

Claude Carlet∗, Abderrahman Daif∗†, Sylvain Guilley‡§, Cédric Tavernier†

November 27, 2017

Abstract
Side Channel Attacks (SCA) and Fault Injection Attacks (FIA) allow an opponent to have

partial access to the internal behavior of the hardware. Since the end of the nineties, many
works have shown that this type of attacks constitute a serious threat to cryptosystems imple-
mented in embedded devices. In the state of the art, there exist several countermeasures to
protect symmetric encryption (especially AES-128). Most of them protect only against one of
these two attacks (SCA or FIA). A method called ODSM has been proposed to withstand SCA
and FIA , but its implementation in the whole algorithm is a big open problem when no par-
ticular hardware protection is possible. In the present paper, we propose a practical masking
scheme specifying ODSM which makes it possible to protect the symmetric encryption against
these two attacks.

Keywords: Masking countermeasure, Error correcting codes, Side channel attack, Fault injec-
tion attack, AES.

1 Introduction
When an algorithm is implemented on a hardware device (Chip card, TPM, FPGA . . .), the
observable physical leakage (computing time, current consumption, electromagnetic radiation . . .)
can be exploited to mount so-called side-channel attacks (SCA). The most common countermeasures
to combat such attacks aremasking [3, 2] and shuffling [4]. Shuffling is a simple solution that involves
randomizing a series of operations of the cipher so as to improve the SCA resistance. On the other
hand, masking protects by mixing the sensitive data with some random value called the mask. The
most generic known measure to protect against these attacks remains masking via homomorphic
functions. However, it is still a challenging matter to build such function which at the same time
is not intensive in terms of computation, so that it can be implemented on low-resource electrical
components, and also passes all constitutive operations of a symmetric encryption, in particular
the substitution-Box (also called S-Box, e.g. SubBytes for AES).
∗LAGA, Department of Mathematics, University of Paris 8 (and Paris 13 and CNRS), Saint–Denis cedex 02,

France.
†BU CSCS, Assystem E&OS, 23 Place de Wicklow, 78180 Montigny-le-Bretonneux, France
‡TELECOM-ParisTech, Crypto Group, Paris Cedex 13, France
§Secure-IC S.A.S. Rennes, France

1

Another mode of attack that threatens the electrical components, is called fault injection at-
tacks (FIA). It consists in disrupting the operation of encryption or decryption by the injection
of malicious faults into a cryptographic device and the observation of the corresponding erroneous
outputs [14, 15]. Despite the high cost of equipment used in this type of attacks, it remains the
most effective for obtaining information about the sensitive data. However, attacks vary depending
on the type of cryptography targeted (symmetric or asymmetric) [16].

1.1 Related works
There exists several solutions that have been proposed to protect symmetric encryption from
SCA. The most conventional masking method is to decompose the sensitive data x into several
parts (shares) x0, x1, . . . , xd such that x =

⊕d
i=0 xi, then operate on each of the parts sepa-

rately without involving the sensitive data in the calculation process. Each x 7→ F (x) transfor-
mation that composes the encryption (or decryption) algorithm must be replaced by a function
(x0, . . . , xd) 7→ (y0, . . . , yd) such that F (

∑d
i=0 xi) =

∑d
i=0 yi (which is called masking by abuse of

language), and such that the knowledge of d shares manipulated when calculating this function
gives no information about x (which is known as d-th order probing security). This method re-
mains efficient and simple for linear transformations (XOR), however, it is still greedy in terms of
calculations for the nonlinear part like SubBytes of AES. Since every function on a finite field is
polynomial, it suffices to know how to mask the addition (XOR) and multiplication. The difficulty
is to build shares c0, . . . , cd such that

⊕d
i=0 ci = ab. Ishai et al. [12] implemented a solution which

consists in securing the “NOT” and “AND” operations in a boolean circuit. If we consider two sen-
sitive bits b =

⊕d
i=0 bi and b′ =

⊕d
i=0 b

′
i, we can compute ¬b = ¬b0⊕

⊕d
i=1 bi (“¬” denotes “NOT”)

and bb′ =
⊕d

i=0
⊕d

j=0 bib
′
j . This solution makes it possible to obtain a dth-order of security level

[13], but the complexity in terms of computation and memory increases considerably according to
the order (because the bitwise products bib′j shall be masked before being summed up). Prouff and
Rivan [13] proposed a generalization of this algorithm, in particular in F28 . This solution, dedicated
to the AES, allows to reach an order as high as required. However, the quadratic complexity of the
calculations remains quite greedy for the components endowed with little resources. The order is
therefore limited to the supported capacity of the component.

Another method is the so-called “Polynomial Masking”, introduced separately by Prouff-Roche
[11] and Goubin-Martinelli [9], which combines Shamir’s Secret Sharing Scheme (SSS) [10] and
secure multi-party computation techniques [17]. The masking operation of a sensitive datam ∈ F28 ,
consists in constructing a function of degree d, such that fm(x) = m⊕

⊕d
i=1 aix

i, where (ai)1≤i≤d
are some random secret coefficients, then as in the previous schemem can be represented by d shares
(m1, . . . ,md), with mi = (αi, fm(αi)) for 1 ≤ i ≤ d for some random inputs (αi)1≤i≤d. To get m
(unmasked), we have to construct fm (i.e calculate the coefficients (ai)1≤i≤d) from (αi, fm(αi))1≤i≤d
by polynomial interpolation, and finally calculate m = fm(0).

In [5] Bringer et al. are used LCD codes to construct the Orthogonal Direct Sum Masking
(ODSM). This allows the sensitive data to be masked with a random mask, chosen uniformly from
a set of codewords. In this scheme, a sensitive data x ∈ Fk2 is associated with a codeword in a
vector subspace C (F2n . The codeword is then XORed with a random value from the dual of C
and we obtain the masked value: z := xG + rH, with G ∈ Fk×n2 the generating matrix of C, and
H ∈ Fk×(n−k)

2 the parity-check matrix of C, that is, the generating matrix of the dual of C (denoted
D). Moreover, the vector spaces C and D are supplementary, i.e. C ⊕ D = Fn2 , this means that
∀z ∈ Fn2 , ∃!(x, r) ∈ C × D | z = xG+ rH. To recover the sensitive data x from z, it is sufficient to

2

calculate zG>(GG>)−1. This scheme resists monovariate attacks of degree dC − 1 (dC denotes the
minimal distance of C) without increasing considerably the memory space used. Also, to the best
of our knowledge, it is the only masking schemes that combines both masking and error detection.
It allows to detect errors with a probability 1−2−n+k, assuming the attacker is able to inject faults
uniformly in Fn2 .

In [1], Azzi et al. presented a countermeasure against fault injection attacks. This method
consists in encoding the sensitive data x using a systematic linear code. Let us consider G = (I|A)
the generating matrix of a linear code C in a systematic form (I denotes the identity matrix),
Encode(x) := xG = (x|xA) the encoding operation, and f a non linear transformation of AES
(SubBytes for example). Before starting the encryption process, three tables T0 : x 7→ xA, T1 :
x 7→ f(x) and T2 : xA 7→ f(x)A must be prefilled. Thus, using these three tables, we can compute
f((x|xA)) = (f(x)|f(x)A), and thanks to the added redundancy (f(x)A) we can detect the error
injections according to the capacity of the chosen code. This method makes it possible to detect
errors; in addition, it is possible to combine it with existing masking methods by applying a mask
to the three tables (i.e instead of using x, we can use x + r). The masked version of this method
is a special case of the DSM family, in which the sensitive data x and the random mask r are
encoded using the same code (z = xG+ rG = (x+ r)G). The advantage compared to the previous
construction (ODSM) is that this scheme makes it easier to decode, since the masked word is already
a codeword. On the other hand, the disadvantage is that the mask remains identical throughout
the encryption process because the tables T0, T1, T2 depend on it.

As shown in the figure below, the DSM (ODSM without orthogonality) is a generalization of
ODSM and of Inner Product Masking (IPM) [8], which in turn is a generalization of traditional
masking.

Direct Sum Masking (DSM)
Inner Product Masking (IPM)
Traditional Masking (TM)

Figure 1: Comparison between different masking schemes

1.2 Our contribution
Our contribution is based on the last proposed solution DSM: it consists in designing a software
masking scheme of AES transformations, able to detect and correct errors that can be injected, and
furthermore, minimize the costs in terms of memory and computing time as well.

Let s and s′ be two sensitive data, we denote by Mask(s) the masked word of s, the challenge is to
design two homomorphic functions Add and SMult, such that: Add(Mask(s), Mask(s′)) = Mask(s+s′)
and SMult(Mask(s), Mask(s′)) = Mask(ss′). With these two operations we can rebuild the masked
version of AES, and redefine each of its transformations (namely: XOR, MixColumns, SubBytes).
In addition, to be able to detect and correct injected errors, the output space of the masking

3

operation must be an error correcting code. To the best of our knowledge, according to the state of
the art, there is not yet such a masking which combines these two characteristics (software masking
and detect/correct errors).

In [5] Bringer et al. are used LCD codes, as recalled above. This allows the sensitive data to be
masked with a random mask, chosen uniformly from a set of codewords. In addition, the unmasking
does not need to store the chosen mask (except in the case where one wants to detect the errors).
The approach that we will present in this paper is somewhat similar. We have chosen to work on
what we shall call a polynomial field, that is F2[x]/p(x) where p(x) is an irreducible polynomial.
The operations in this field are commutative, which is not the case in [5], since matrix products are
not commutative in general; this gives us more flexibility to build the homomorphic function.

In our scheme, the same operation allows to mask and encode the sensitive information, as in
[1], but this operation does not need to store the table of all possible inputs of the S-box as in the
previous citation.

2 Preliminaries
Let K = (F2[x]/p(x),+, ·) be a polynomial field modulo an irreducible polynomial p(x) of degree k
(we can take in particular p(x) = x8 +x4 +x3 +x+1 for SubBytes and MixColumns transformations
of the AES [6]). Each equivalence class of this field is represented by a polynomial of degree at
most k − 1, (for k = 8 the polynomial can be represented by two hexadecimal digits). We denote
by Kn an n-dimensional vector space over K.

Let C and D be two 1-dimensional vector sub-spaces of Kn, whose elements will be denoted
with arrows for helping to distinct between scalars and vetors. Let ~g, ~h ∈ Kn \ {~0} be generators
of C and D respectively such that 〈~g,~h〉 = 0, 〈~g,~g〉 6= 0, and 〈~h,~h〉 6= 0. So we have:

C =
{
s · ~g, ∀s ∈ K

}
,

and
D =

{
s · ~h, ∀s ∈ K

}
,

where “ · ” denotes the product between a scalar and a vector (i.e. s · ~g = (sg1, . . . , sgn) ∈ Kn);
this operation is also known as a scaling of vector ~g by scalar s. We denote C +D ⊂ Kn by K, and
we have: ∀~z ∈ K,∃!(~c, ~d) ∈ C × D such that ~z = ~c+ ~d. For n = 2, C is an LCD code [18].

3 The masking operations
To proceed with the masking, we need to construct a homomorphic function for each of the oper-
ations that compose the symmetric cryptosystem, in particular the addition modulo 2 (XOR) and
the multiplication over K. To mask a sensitive byte s ∈ K, first we calculate the corresponding
codeword in C, then we add a random word of the dual D which will act as the mask:

Mask(s) := s · ~g + r · ~h , (1)

for some random value r ∈ K.

4

Algorithm 1 Mask(s) complexity O(n)
1: Input: a sensitive data s ∈ K
2: Output: Mask(s) ∈ K
3: r ← K . a random value
4: ~z ← 0 ∈ Kn

5: for 1 ≤ i ≤ n do
6: zi ← sgi + rhi
7: end for
8: return ~z

If ~z = Mask(s), then to extract the sensitive data s hidden in ~z, we calculate:

unmask(~z) := 〈~z,~g〉〈~g,~g〉−1 , (2)

where “〈·, ·〉” denotes the usual inner product.
Correctness. We have:

〈~z,~g〉〈~g,~g〉−1 = 〈s · ~g + r · ~h,~g〉〈~g,~g〉−1

=
(
s〈~g,~g〉+ r〈~h,~g〉︸ ︷︷ ︸

=0

)
〈~g,~g〉−1

= s .

Algorithm 2 Unmask(~z) complexity O(n)
1: Input: a masked value ~z = Mask(s) ∈ K
2: Output: s ∈ K
3: s← 0 ∈ K
4: for 1 ≤ i ≤ n do
5: s← s+ zigi
6: end for
7: s← s‖g‖−2 . We suppose that ‖g‖−2 = 〈~g,~g〉−1 is precalculated
8: return s

This masking operation is a linear function, it is therefore obvious that the AddRoundKey trans-
formation remains unchangeable, if we consider Mask(s) and Mask(k) the masked value of the cipher
and the round key respectively, then the masked value of s+ k can be calculated as follows:

Mask(s+ k) = Mask(s) + Mask(k) . (3)

Algorithm 3 Add(~z, ~z′) complexity O(n)
1: Input: two masked values: ~z = Mask(s), ~z′ = Mask(s′) ∈ K
2: Output: Mask(s+ s′) ∈ K
3: ~y ← 0 ∈ K
4: for 1 ≤ i ≤ n do
5: yi ← zi + z′i
6: end for
7: return ~y

5

However, for MixColumns and SubBytes transformations which are composed of polynomial
products over K, two types of operations can be distinguished:

• The product between a sensitive data and a non-sensitive data, as is the case in the MixColumns
transformation, since its coefficients are public, the same case for SubBytes coefficients. For
this type of operations there is no need to mask the public coefficients. Thus, to mask an
operation λs for some public coefficient λ and sensitive data s we proceed thereby:

Mask(λs) := λ · Mask(s) = (λz1, . . . , λzn) . (4)

Algorithm 4 Mult(λ, ~z) complexity O(n)
1: Input: A public data λ ∈ K and masked values ~z = Mask(s) ∈ K
2: Output: Mask(λs) ∈ K
3: ~y ← 0 ∈ K
4: for 1 ≤ i ≤ n do
5: yi ← λzi
6: end for
7: return ~y

• The product between two sensitive data:

Mask(ss′) := 〈~g,~g〉−1·
(

Mask
(
rt + 〈Mask(s), Mask(s′)〉

)
−
[
rt + 〈~h,~h〉−1〈Mask(s),~h〉〈Mask(s′),~h〉

]
· ~g
)
.

(5)
correctness. we have:

rt + 〈Mask(s), Mask(s′)〉 = rt + 〈s · ~g + r · ~h, s′ · ~g + r′ · ~h〉
= rt + 〈s · ~g, s′ · ~g〉+ 〈s · ~g, r′ · ~h〉+ 〈r · ~h, s′ · ~g〉+ 〈r · ~h, r′ · ~h〉
= rt + ss′〈~g,~g〉+ sr′〈~g,~h〉+ s′r〈~h,~g〉︸ ︷︷ ︸

=0

+rr′〈~h,~h〉

= rt + ss′〈~g,~g〉+ rr′〈~h,~h〉 .

〈Mask(s),~h〉 = 〈s · ~g + r · ~h,~h〉
= s〈~g,~h〉+ r〈~h,~h〉
= r〈~h,~h〉 .

So we get:
〈~g,~g〉−1 ·

(
Mask

(
rt + 〈Mask(s), Mask(s′)〉

)
−
[
rt + 〈~h,~h〉−1〈Mask(s),~h〉〈Mask(s′),~h〉

]
· ~g
)

= 〈~g,~g〉−1.
((
rt + ss′〈~g,~g〉+ rr′〈~h,~h〉

)
· ~g + r′′ · ~h−

(
rt + rr′〈~h,~h〉

)
· ~g
)

= 〈~g,~g〉−1.
(
ss′〈~g,~g〉 · ~g + r′′ · ~h

)
= ss′ · ~g + r′′〈~g,~g〉−1 · ~h
= Mask(ss′) ,

where r′′ is a fresh random value.

6

Because the product rr′ is not uniformly distributed in K, we have introducted a temporary
mask rt to secure the inner product: 〈Mask(s), Mask(s′)〉.

Algorithm 5 SMult(~z, ~z′) complexity O(5n)
1: Input: Two masked values ~z = Mask(s), ~z′ = Mask(s′) ∈ K
2: Output: Mask(ss′) ∈ K
3: rt ← K∗ . A temporary mask
4: a← rt
5: b← 0 ∈ K
6: c← 0 ∈ K
7: ~y ← 0 ∈ K
8: for 1 ≤ i ≤ n do
9: a← a+ ziz

′
i

10: b← b+ zihi
11: c← c+ z′ihi
12: end for
13: ~y ← ‖g‖−2 (Mask(a)− Mult(rt + bc‖h‖−2, ~g)

)
. We suppose that ‖g‖−2 and ‖h‖−2 are

precalculated (‖g‖−2 = 〈~g,~g〉−1, ‖h‖−2 = 〈~h,~h〉−1)
14: return ~y

4 Security and performance
Property 1. Let ~g and ~h be two vectors in Kn such that 〈~g,~h〉 = 0, C = {s · ~g | ∀s ∈ K}, and
D = {s · ~h | ∀s ∈ K}. The condition “〈~g,~g〉 6= 0 and 〈~h,~h〉 6= 0” implies:

1. ~g and ~h are linearly independent;

2. C ∩ D = {0};

3. ∀~z ∈ K, ∃! (s, r) ∈ K2 such that ~z = s · ~g + r · ~h.

Proof. The two first properties are obvious and the third is a direct consequence of the rank-nullity
theorem, dimension(K) = dimension(C) + dimension(D) = 2.

Property 2. Let (F2[x]/p(x),+) be an additive group, with p(x) a polynomial of degree k, and Fk2
a vector space of dimension k. There exists a morphism δ defined by:

δ : F2[x]/p(x) → Fk2∑k−1
i=0 cix

i 7→ (c0, . . . , ck−1) ,

such that: ∀u, u′ ∈ F2[x]/p(x), we have: δ(u+ u′) = δ(u) + δ(u′) ∈ Fk2 .

Let us denote by δn : (F2[x]/p(x))n → Fkn2 defined by :

δn(u1, . . . , un) = (δ(u1), . . . , δ(un)) .

This passage from a finite field K to a vector space will be useful for the decoding part, since
we will decode the binary representation of the codewords.

7

The product s · ~g between an element s ∈ K and a vector ~g ∈ Kn corresponds to a product
between a vector δ(s) ∈ Fk2 and a matrix G ∈ Fk×kn2 , such that the i-th arrow of G corresponds to
the binary representation of xi · ~g (i.e. Gi = δn(xi~g1, . . . , x

i~gn).

Example 1. Let s = 1 + x+ x5 ∈ K, and ~g = (1, 1, x3 + x4 + x7) ∈ K3 with K = F2[x]/x8 + x4 +
x3 + x+ 1, we have: δ(s) = (11000100) and

G =

δ(xig0)︷ ︸︸ ︷
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

δ(xig1)︷ ︸︸ ︷
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

δ(xig2)︷ ︸︸ ︷
0 0 0 1 1 0 0 1
1 1 0 1 0 1 0 0
0 1 1 0 1 0 1 0
0 0 1 1 0 1 0 1
1 1 0 0 0 0 1 0
0 1 1 0 0 0 0 1
1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0

δn(~g)
δn(x · ~g)
δn(x2 · ~g)
δn(x3 · ~g)
δn(x4 · ~g)
δn(x5 · ~g)
δn(x6 · ~g)
δn(x7 · ~g)

thus :
δn(s · ~g) = (δ(x5 + x+ 1), δ(x5 + x+ 1), δ(x5 + x4 + x2 + 1))

= (110001001100010010101100)
= δ(s).G

Definition 1 (Generating matrix). Let C = {s · ~g | ∀s ∈ K} be a vector subspace of Kn, with
~g = (g1, . . . , gn), the generating matrix of C can be defined as: G ∈ Fk×nk2 such that Gi = δn(xi · ~g)
for 1 ≤ i ≤ k.

Let us denote by C′ = {vG | ∀v ∈ Fk2} the linear code that corresponds to C with parameters
[nk, k, dC′], with dC′ the minimal distance of C′.

Theorem 1. The masking algorithm (Algo. 1) is secure against a monovariate SCA at order
j < dC.

Proof. As in the foregoing, let ~g,~h ∈ Kn be two generators of C and D respectively, such that:
〈~g,~h〉 = 0, 〈~g,~g〉 6= 0 and 〈~h,~h〉 6= 0. The masking operation which consists in calculating ~z =
s · ~g + r · ~h for a sensitive data s with a random value r, is equivalent to z′ = sG + rH, with
G and H two generating matrices of C and D respectively. It is thus observed that this masking
operation forms part of the DSM family. The Theorem 2 in [5], proves that the last masking
operation (z′ = sG + rH) can be attacked by monovariate high-order SCA only at order j ≥ dC .
The only difference between the construction that we are presenting in this article and the one
in the article cited previously, is the orthogonality. Indeed, in ODSM, the matrices G and H are
supposed to be orthogonal (i.e. GH> = 0), which is not the case for us. However, orthogonality is
not required for the theorem, because, if we consider Φ : Fnk2 → R a leakage function of numerical
degree j < dC , the Proposition 3 in [5] demonstrates that there is no linear dependency between
the leakage Φ(Mask(s)) and the sensitive data s.

4.1 Algorithmic complexity
Table 1 summarizes the algorithmic complexity of each of the algorithms we have presented, this
complexity is calculated with respect to the size of the mask, and the number of operations (addition
and multiplication) performed.

8

nb. multiplication nb. XORs
Mask 2n n
Unmask n+ 1 n
Add 0 n
Mult n 0
SMult 6n+ 3 4n+ 2

Table 1: An overall view of the complexity of each function

The algorithmic complexity of the masking depends on the complexity of the multiplication
algorithm (SMult). This complexity is expressed as a function of the length of the masked word
n. In this article, the length n depends on the minimum distance of the code C, contrary in the
state of the art (except ODSM) n depends directly on the order of the masking (n = 2d + 1). In
table 2 we present a comparison between our method and other state of the art schemes in terms
of complexity.

Order d Masked word length n Secure multiplication complexity
This paper 1 3 6n+ 3 = 21

2 3 6n+ 3 = 21
3 3 6n+ 3 = 21
4 3 6n+ 3 = 21

[11] 1 3 4d3 + 8d2 + 3d = 15
2 5 4d3 + 8d2 + 3d = 70
3 7 4d3 + 8d2 + 3d = 189
4 9 4d3 + 8d2 + 3d = 396

[8] 1 3 2n2 − n = 15
2 5 2n2 − n = 45
3 7 2n2 − n = 91
4 9 2n2 − n = 153

Table 2: Secure multiplication complexity, comparison with other state of the art schemes

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

S
u
cc

e
ss

 r
a
te

Number of traces

Regular second-order masking
This paper masking

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

S
u
cc

e
ss

 r
a
te

Number of traces

Regular second-order masking
This paper masking

Figure 2: A comparison of the success rate of the attack in theorem 1 in [19] compared to the
number of traces between the regular masking of second order (s⊕ r|r) and the proposed masking
(with n = 3).

4.2 Example (S-Box)
The SubBytes transformation of AES is mathematically defined by [7]:

SubBytes(s) = 63 + 05s−1 + 09s−2 +F9s−4 + 25s−8 +F4s−16 + 01s−32 +B5s−64 + 8Fs−128 ∈ K ,

10

the coefficients are polynomials in K, and are represented by hexadecimal bytes. This transforma-
tion encompasses the three types of operation we have seen previously:

• The addition (XOR),

• The multiplication between a public data (the coefficients) and a sensitive data (s),

• The multiplication between the sensitive data and itself (the powers of s).

Before defining the masked version of SubBytes, we need to define the function Inverse.

Definition 2. The Euler totient function is defined, for integer n ≥ 1, by :

ϕ(n) := card{x ≤ n, | gcd(n, x) = 1} ,

i.e. the number of integers in the range [1, n] that are relatively prime to n.

Theorem 2. In number theory, Euler’s theorem states that if n and a are coprime positive integers,
then :

aϕ(n) ≡ 1 (mod n) .

For the AES case, K = F2[x]/x8 + x4 + x3 + x+ 1 ≈ F28 . So we have ∀s ∈ K, sϕ(p(x)) = 1 with
ϕ the Euler totient function, and p(x) = x8 + x4 + x3 + x + 1. We know that p is an irreducible
polynomial, which implies that ∀a ∈ F28 \ {0}, a does not devide p, and hence ϕ(p(x)) = 255, we
conclude that: s−1 = sϕ(p(x))−1 = s254 ∈ K. Bruneau N., Guilley S., Heuser A., Rioul O., Standaert
FX., Teglia Y. (2016) Taylor Expansion of Maximum Likelihood Attacks for Masked and Shuffled
Implementations. In: Cheon J., Takagi T. (eds) Advances in Cryptology – ASIACRYPT 2016.
ASIACRYPT 2016. Lecture Notes in Computer Science, vol 10031. Springer, Berlin, Heidelberg

To calculate s254, we are going to use the “Left-to-right binary algorithm”, it consists in scanning
the bits of the exponent in left to right order. If the bit is 1, the algorithm calculates the square
of the previous result (Which is initialized to 1) multiplied by s, otherwise it calculates just the
square. In our case the exponent is 254 = 111111102. So the first 7 operations are square and
multiplication, and the 8-th operation (associated with bit 0) is just a square. We can also see that
: s254 = s2(1+2(1+2(1+2(1+2(1+2(1+2×1)))))) =

((((((
s2×1s

)2
s
)2
s
)2
s
)2
s
)2
s
)2.

Algorithm 6 Inverse(~z) complexity O(65n)
1: Input: a masked value ~z = Mask(s) ∈ K
2: Output: Mask(s−1) ∈ K
3: ~y ← ~z . ~y = Mask(12s)
4: for 1 ≤ i ≤ 6 do
5: ~y ← SMult(SMult(~y, ~y), ~z)
6: end for
7: ~y ← SMult(~y, ~y)
8: return ~y

11

Algorithm 7 MSubBytes(~z) complexity O(117n)
1: Input: a masked values ~z = Mask(s) ∈ K
2: Output: Mask(SubBytes(s)) ∈ K
3: ~y ← Inverse(~z) . ~y = ~z−1

4: ~u← Mask(63)
5: λ = {05, 09, F9, 25, F4, 01, B5} . The SubBytes coefficients
6: for 1 ≤ i ≤ 7 do
7: ~u← Add(~u, Mult(λi, ~y)) . ~u = ~u+ λ · ~y
8: ~y ← SMult(~y, ~y)
9: end for
10: ~u← Add(~u, Mult(8F, ~y)) . ~u = ~u+ 8F · ~y
11: return ~u

nb. multiplication nb. XORs
Inverse 78n+ 39 52n+ 26
MSubBytes 130n+ 60 89n+ 40

Table 3: The complexity of masked version of SubBytes transformation

5 Detection and correction of errors
In order to detect and correct errors, it is important that the masked value be a codeword, for
n = 2 the output space of ~z = s · ~g + r · ~h is the vector space F16

2 , the minimum distance being 1,
so it is impossible to detect errors. To sweep this, it is necessary that the output space be an error
correcting code with a minimum distance greater than 2. We therefore propose to increase the size
of the starting space to n = 3, and thus we work on K = K3 instead of K2.

Let ~g,~h ∈ K3 \ {~0} be two generators so that 〈~g,~h〉 = 0, C = {s · ~g = (sg1, sg2, sg3) | ∀s ∈ K}
the linear code generated by ~g, and D = {r · ~h = (rh1, rh2, rh3) | ∀r ∈ K} its dual. The cardinal
of C and D is |C| = |D| = 28. Let G ∈ F8×24

2 and H ∈ F8×24
2 be the generating matrix of C and

D respectively. We note that the two matrices G and H are not orthogonal (G.H> 6= 0). Let
K = C ⊕ D be the set of masked words, i.e. K =

{
~c+ ~d | ∀(~c, ~d) ∈ C × D

}
. The generating matrix

of K is J =
(
G
H

)
∈ F16×24

2 .

Property 3. K is a linear code, with the correction capacity equal
⌈
dK
2 − 1

⌉
, such that dK denotes

the minimum distance of K.

Property 4. Let us denote L the parity matrix of K, i.e. JL> = 0. Let z = sG+ rH = (s, r)J a
masked value, we have: zL> = 0.

Property 5 (Single error correction). If we consider z′ = z+ e the erroneous masked word, with e
the error vector. The syndrome decoding consists in calculating ε = z′L> = eL>. If the syndrome
is not zero, which means an error injection, then the error position corresponds to the position of
the column of L that equal ε.

12

Example. In this example, for n = 3, and ~g = (1, 1, x7 + x4 + x3),~h = (x7 + x4 + x3 + 1, 1, 1)
the minimal distance of K is dK = 3, thus the code can correct at most one error, which is sufficient
to protect against single fault injection attack.

J =

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0

1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

,

We denote by L the parity matrix of K:

L =

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 1 1
0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0

.

Let s = x7 + x3 + 1 be a sensitive data, and ~z = Mask(s) = (x5 + x+ 1, x6 + x4 + x3 + 1, x7 +
x6 + x3 + x), imagine that ~z has undergone an error at a position i = 13 which corresponds to a
vector ~e = (0, x4, 0), we thus obtain, ~z′ = (x5 + x + 1, x6 + x3 + 1, x7 + x6 + x3 + x) ∈ K that
corresponds to y = (1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1) ∈ F24

2 . The syndrome
ε = y.L> = (0, 0, 0, 1, 1, 0, 0, 0) corresponds to the 13th column of the matrix L which is the error
position.

In this example, the minimum distance of C′ and D′ is 5, thus, the masking operation is secure
against a monovariate SCA at order at most 4. The detection of error in this case (n = 3) costs 24
XORs, and the correction costs 25 XORs.

13

6 Conclusion
In this paper we have presented a solution to protect the AES against attacks of type SCA and
FIA. The advantage of our solution compared to the state of the art is that it allows using the same
structure to mask the sensitive information and at the same time to encode them. Moreover, the
length of the mask does not directly depend on the masking order as shown in Table 2.

References
[1] Sabine Azzi, Bruno Barras, Maria Christofi, David Vigilant: Using linear codes as a fault

countermeasure for nonlinear operations: application to AES and formal verification. J. Cryp-
tographic Engineering 7(1): 75-85 (2017)

[2] Chari S., Jutla C.S., Rao J.R., Rohatgi P. (1999) Towards Sound Approaches to Counter-
act Power-Analysis Attacks. In: Wiener M. (eds) Advances in Cryptology — CRYPTO’ 99.
CRYPTO 1999. Lecture Notes in Computer Science, vol 1666.

[3] Goubin L., Patarin J. (1999) DES and Differential Power Analysis The “Duplication” Method.
In: Koç Ç.K., Paar C. (eds) Cryptographic Hardware and Embedded Systems. CHES 1999.
Lecture Notes in Computer Science, vol 1717.

[4] M. Rivain, E. Prouff, and J. Doget. (2009) Higher-order Masking and Shuffling for Software
Implementations of Block Ciphers. Published in: Proceeding CHES ’09 Proceedings of the
11th International Workshop on Cryptographic Hardware and Embedded Systems Pages 171
- 188.

[5] Bringer J., Carlet C., Chabanne H., Guilley S., Maghrebi H. (2014) Orthogonal Direct Sum
Masking. In: Naccache D., Sauveron D. (eds) Information Security Theory and Practice. Se-
curing the Internet of Things. WISTP 2014. Lecture Notes in Computer Science, vol 8501.
Springer, Berlin, Heidelberg

[6] Federal Information Processing Standards Publication 197 (2001). ADVANCED ENCRYP-
TION STANDARD (AES). November 26, 2001. http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.197.pdf

[7] Daemen, J., & Rijmen, V. (1999). AES proposal: Rijndael. ISO 690

[8] Balasch J., Faust S., Gierlichs B. (2015) Inner Product Masking Revisited. In: Oswald E.,
Fischlin M. (eds) Advances in Cryptology – EUROCRYPT 2015. EUROCRYPT 2015. Lecture
Notes in Computer Science, vol 9056.

[9] Goubin L., Martinelli A. (2011) Protecting AES with Shamir’s Secret Sharing Scheme. In:
Preneel B., Takagi T. (eds) Cryptographic Hardware and Embedded Systems – CHES 2011.
CHES 2011. Lecture Notes in Computer Science, vol 6917.

[10] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (November 1979), 612-613.
DOI=http://dx.doi.org/10.1145/359168.359176

14

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

[11] Prouff E., Roche T. (2011) Higher-Order Glitches Free Implementation of the AES Using
Secure Multi-party Computation Protocols. In: Preneel B., Takagi T. (eds) Cryptographic
Hardware and Embedded Systems – CHES 2011. CHES 2011. Lecture Notes in Computer
Science, vol 6917. Springer, Berlin, Heidelberg.

[12] Ishai Y., Sahai A., Wagner D. (2003) Private Circuits: Securing Hardware against Probing
Attacks. In: Boneh D. (eds) Advances in Cryptology - CRYPTO 2003. CRYPTO 2003. Lecture
Notes in Computer Science, vol 2729. Springer, Berlin, Heidelberg

[13] Rivain M., Prouff E. (2010) Provably Secure Higher-Order Masking of AES. In: Mangard S.,
Standaert FX. (eds) Cryptographic Hardware and Embedded Systems, CHES 2010. CHES
2010. Lecture Notes in Computer Science, vol 6225. Springer, Berlin, Heidelberg

[14] Anderson R., Kuhn M. (1998) Low cost attacks on tamper resistant devices. In: Christianson
B., Crispo B., Lomas M., Roe M. (eds) Security Protocols. Security Protocols 1997. Lecture
Notes in Computer Science, vol 1361. Springer, Berlin, Heidelberg

[15] Boneh, D., DeMillo, R. & Lipton, R. J. Cryptology (2001) 14: 101. doi:10.1007/s001450010016

[16] A. Barenghi, L. Breveglieri, I. Koren and D. Naccache, "Fault Injection Attacks on Crypto-
graphic Devices: Theory, Practice, and Countermeasures," in Proceedings of the IEEE, vol.
100, no. 11, pp. 3056-3076, Nov. 2012. doi: 10.1109/JPROC.2012.2188769

[17] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the twentieth annual
ACM symposium on Theory of computing (STOC ’88). ACM, New York, NY, USA, 1-10.
DOI=http://dx.doi.org/10.1145/62212.62213

[18] Massey, J. L. (1992). Linear codes with complementary duals. Discrete Mathematics, 106,
337-342.

[19] Bruneau N., Guilley S., Heuser A., Rioul O., Standaert FX., Teglia Y. (2016) Taylor Expansion
of Maximum Likelihood Attacks for Masked and Shuffled Implementations. In: Cheon J.,
Takagi T. (eds) Advances in Cryptology – ASIACRYPT 2016. ASIACRYPT 2016. Lecture
Notes in Computer Science, vol 10031. Springer, Berlin, Heidelberg

15

	Introduction
	Related works
	Our contribution

	Preliminaries
	The masking operations
	Security and performance
	Algorithmic complexity
	Example (S-Box)

	Detection and correction of errors
	Conclusion

