
Quantum Security Analysis of CSIDH and
Ordinary Isogeny-based Schemes

Xavier Bonnetain1,2 and André Schrottenloher2

1 Sorbonne Université, Collège Doctoral, F-75005 Paris, France
2 Inria, France

Abstract. CSIDH is a recent proposal by Castryck, Lange, Martindale,
Panny and Renes for post-quantum non-interactive key-exchange, to be
presented at ASIACRYPT 2018. It is similar in design to a scheme by
Couveignes, Rostovtsev and Stolbunov, but it replaces ordinary elliptic
curves by supersingular elliptic curves, in order to make significant gains
in time and key lengths.
Isogeny-based key-exchange on ordinary elliptic curves can be targeted
by a quantum subexponential hidden shift algorithm found by Childs,
Jao and Soukharev. Although CSIDH uses supersingular curves, it is
analog to the case of ordinary curves, hence this algorithm applies.
In the proposal, the authors suggest a choice of parameters that should
ensure security against this.
In this paper, we reassess these security parameters. Our result relies on
two steps: first, we propose a new quantum algorithm for the hidden shift
problem and analyze precisely its complexity. This reduces the number
of group actions to compute w.r.t the authors’ estimation; second, we
show how to compute efficiently this group action.
For example, we show that only 235 quantum equivalents of a key-
exchange are sufficient to break the 128-bit classical, 64-bit quantum
security parameters proposed, instead of 262.
Finally, we extend our analysis to ordinary isogeny computations, and
show that an instance proposed by De Feo, Kieffer and Smith (also ac-
cepted at ASIACRYPT 2018) and expected to offer 56 bits of quantum
security can be attacked in 238 quantum evaluations of a key exchange.

Keywords: Post-quantum cryptography, isogeny-based cryptography, quantum
cryptanalysis, hidden shift problem, lattices

1 Introduction

Post-quantum Security. Problems such as factoring and solving discrete loga-
rithms, believed to be classically intractable, underlie the security of most asym-
metric cryptographic primitives in use today in digital signatures, key exchange,
and so on. Since Shor [31] obtained a quantum polynomial-time algorithm for
both, the cryptographic community has been actively working on replacements,
culminating with the ongoing NIST call for post-quantum primitives [28].

Isogeny-based Protocols. While the elliptic curve Discrete Logarithm Problem is
one of the targets of Shor’s algorithm, there have been proposals at post-quantum
asymmetric primitives using elliptic curve isogenies. Informally speaking, isoge-
nies are morphisms between elliptic curves and the security of these schemes is
related to the difficulty of finding an isogeny between two given curves.

The first proposals used ordinary elliptic curves, but a quantum algorithm
for constructing isogenies between them was found in [11]. It runs in subexponen-
tial time, albeit not polynomial like Shor’s algorithm, while all known classical
attacks require exponential time. Indeed, the action of isogenies on ordinary
curves is a commutative group action: it is possible to break it and recover a
secret isogeny using a subexponential number of evaluations of this group action,
via Kuperberg’s algorithm [24].

As a consequence, there has been a move towards isogeny-based cryptography
using supersingular elliptic curves [17]. The NIST candidate SIKE uses this
principle. In general, in that case, the previous algorithm does not apply, because
supersingular isogenies do not yield such a “global” structure as the classical
ones. However, much work is still required to understand precisely the hardness
of supersingular isogeny problems against quantum computers (see [20] for a
survey).

CSIDH. CSIDH is a new asymmetric primitive proposed in [7] as a replacement
for elliptic curve cryptography. It uses supersingular elliptic curves, with the
additional constraint that they have to be defined over Fp. This case turns out
to be analog to ordinary curves: in particular, as there is a commutative group
action on them, the subexponential quantum attack of [11] still applies. This
is taken into account by the authors of [7]. Their quantum security claims are
based on a query complexity of:

exp
(

(
√

2 + o(1))
√

logN log logN
)

where N = O(
√
p) is the size of the class group and p is the prime number used

for the base field. This complexity represents the number of evaluations of the
group action required to break the scheme.

This complexity is taken from [11] and the study of an algorithm by Regev,
designed to run in polynomial quantum space.

Even if there is, as with the schemes based on ordinary curves, an attack of
subexponential complexity, the structure of CSIDH allows to lower considerably
the computational cost of the scheme, obtaining an improved balance of efficiency
vs. quantum security. The query complexity given above is used in [7] to derive
quantum securities, without taking into account the cost of a query (roughly
speaking, the evaluation of a group action). The authors provide three sets of
parameters, to meet three security levels of the NIST call: levels 1, 3 and 5,
respectively equivalent to performing a key-recovery on AES-128, AES-192 and
AES-256. The corresponding base field cardinality p has size 512, 1024 and 1792
bits, respectively. They leave a precise security analysis as an open problem.

2

Further Work. Since its publication, CSIDH has been the subject of active re-
search, e.g on improved implementations [27] or on how to use its group action
for signatures [16]. We note that in this work, we are targeting the most essen-
tial building block of CSIDH, its commutative group action; hence our security
analysis extends to other contexts where this scheme is applied. Moreover, the
quantum circuits necessary to evaluate the CSIDH oracle in the attack have
been studied in [2]: this allows to derive a precise gate count for the procedures
detailed in this paper, while we primarily focus on query complexity.

Contents.

Quantumly Attacking CSIDH. In this paper, we show that the parameters pro-
posed initially in [7] offer less quantum security than expected, respectively less
than 35, 48 and 63 bits of security instead of 62, 94 and 129. 3

This is a consequence of two crucial points: first, we rely on a precise (i.e
without asymptotics) complexity estimate of Kuperberg’s algorithm, which uses
less queries than estimated in [7]. It is worth to notice that [7] considers a
polynomial-space algorithm more relevant; we go for the best time complexity
instead, using subexponential quantum memory, which we quantify as well.

Second, we show that evaluating efficiently the commutative group action
adds only little overhead w.r.t a legitimate key-exchange, using lattice reduc-
tion methods that date back to Couveignes [13]. These methods are not new:
they were used in [3] in order to compute efficiently large-degree isogenies and
were already mentioned in [7] (Section 7.2, “subexponential vs. practical”) as a
potential improvement.

Quantum Security. We consider two metrics for quantum security. The CSIDH
parameter sizes required to meet the expected security levels differ between these
two metrics, so we present both.

First, we use as metric the gap between a legitimate use (here, a key exchange
or group action evaluation) and the attack: we give complexities in multiples of
the cost of a key-exchange using CSIDH. Second, in Section 7, we elaborate on
the cost when compared to the levels of security proposed in the NIST post-
quantum call. These metrics require to count the number of quantum gates of
the attack algorithm and compare against Grover exhaustive search of secret
keys for AES instances. Since the first version of our work, this has been done
in full detail in [2]. We now use these results to benchmark the original CSIDH
parameters against the NIST levels.

3 Before making this work public, we contacted the authors of [7]. They agreed with
our analysis. Since then, their work has been accepted to ASIACRYPT 2018. This
paper is based on the eprint version of their article [8], last revised 11 may 2018.
Unfortunately, at the time of submission, we didn’t have access to the final version, so
we couldn’t take into account possible changes. As we do not know if the parameters
proposed were updated accordingly to our estimations, all assessments of the CSIDH
parameters refer only to those of [8].

3

Concrete Estimates for Ordinary Isogeny Schemes. Finally, we extend our ap-
proach to ordinary isogenies, and are able to propose better-than-expected costs
estimates for a scheme proposed by De Feo, Kieffer and Smith in [18].

Paper Outline.

Section 2 below presents the CSIDH group action, some of its mathematical
background and recalls the results from [7] (to which we refer for more details).
Section 3 presents the outline of the quantum subexponential attack on ordinary-
looking isogeny-based schemes. The two parts of the attack are then developed
in the following sections. Section 4 proposes a a new algorithm for the Hidden
Shift problem for cyclic groups and estimates its cost. Section 5 presents some
lattice reduction methods. In Section 6, we extend our study to the CRS scheme
(based on ordinary curves) and the scheme of [18] and show how to adapt the
lattice steps. Finally, in Section 7, we summarize our complexity analysis and
elaborate on the NIST metric.

2 Preliminaries

In this section, we briefly describe the design principles underlying the CSIDH
group action and its rationale, and recall the security claims of [7].

2.1 Context

Let p be a prime number. In general, supersingular elliptic curves over Fp are
defined over a quadratic extension Fp2 . However, the case of supersingular elliptic
curves defined over Fp is special: there is a correspondence with ordinary elliptic
curves of Fp-endomorphism ring Z[

√
−p] or OK , with K a quadratic imaginary

field. This fact is proven in [14], where we find it first exploited to compute
isogenies between supersingular elliptic curves.

In [5], this correspondence gives rise to a quantum algorithm for computing
such isogenies. When O is an order in an imaginary quadratic field, each super-
singular elliptic curve defined over Fp, with O as Fp-rational endomorphism ring,
corresponds to an ideal class in C`(O). Moreover, a rational `-isogeny from such
a curve corresponds to an ideal of norm ` in C`(O). The (commutative) class
group C`(O) acts on the set of supersingular elliptic curves with Fp-rational
endomorphism ring O.

This group action exists already in the case of ordinary curves and it gives
rise to a subexponential quantum attack, based on Kuperberg’s hidden shift
algorithm [11], which recovers a “hidden” isogeny between two given curves.
The same attack applies in this particular supersingular case, however, the bal-
ance between cost and security is different, as the CSIDH scheme allows for less
intensive computations and enables easy key validation.

4

All use cases of the CSIDH scheme can be pinned down to the definition of a
one-way group action.4 A group G acts on a set X. Operations in G are easy
to compute and the action g ∗ x for g ∈ G, x ∈ X is easy to compute, while
recovering g given x and x′ = g ∗ x is hard. In the case of CSIDH, X is a set of
elliptic curves over Fp, and the group G is C`(O) for O = Z[

√
−p]. Taking g ∗ x

for an element in C`(O) (i.e an isogeny) and a curve corresponds to computing
the image curve of x by this isogeny.

Furthermore, the scheme is defined so that:

• The curves (public keys or parameters) are efficiently represented;
• The isogenies / elements of C`(O) (private keys or parameters) are efficiently

represented;
• The action of an element in C`(O) can be efficiently computed.

We present below the design strategy which enables CSIDH to reach these
requirements.

2.2 Design of the CSIDH Group Action

First, we consider a very specific set of elliptic curves.
Let E0 be the curve y2 = x3 +x with endomorphism ring O = Z[π] (π is the

Frobenius endomorphism, with π2 = −p since we consider supersingular curves).
The following proposition is proven in [7]:

Proposition 1 (Prop. 8 in [7]). Let p ≡ 3 mod 8 and let E be a supersingular
elliptic curve over Fp. Then Endp(E) = Z[π] iff there exists A ∈ Fp such that E
is Fp-isomorphic to the curve EA : y2 = x3 + Ax2 + x. Moreover, if such an A
exists, then it is unique.

It shows that by considering the action of C`(O) on elliptic curves which
are Fp-supersingular, with endomorphism ring Z[π], one obtains Montgomery
curves, which can be represented by a single element in Fp.

Short Representations of Classes. The prime p is chosen with a very specific
form: p = 4 · `1 · · · `u − 1 is selected, where `1, . . . , `u are small primes. The
number u should be chosen the highest possible in order to speed up the key
exchange.

Due to the special form of the prime p chosen, the elements of C`(O) (which
correspond to isogenies) can be represented in a way that allows for fast com-
putation of the corresponding isogenies. Indeed, since each of the `i divides
−p− 1 = π2 − 1, the ideal `iO splits and li = (`i, π − 1) is an ideal in O.

We now consider in C`(O) products of the form:

u∏
i=1

[li]
ei

4 This is also the definition of a hard homogeneous space by Couveignes [13].

5

where ei ∈ {−m. . .m} for some small m, and [li] is the class of li. It is easy
to see that, even with a small m, this method will span the whole group C`(O)
(or almost all of it) using these products. For example, for the quantum 64-bit
security example of [7], m = 5. More generally, we take 2m + 1 ' p1/(2u). The
only assumption is that products of the form above fall randomly in C`(O),
which has O(

√
p) elements. With the fact that u should be the greatest possible,

we derive optimal parameters for the three security levels from [7] in Table 1.

Table 1: Approximate parameters for the three security levels of [7].

Level Expected quantum security log2 p u m

NIST 1 64 512 74 5
NIST 3 96 1024 132∗ 7∗

NIST 5 128 1792 209∗ 10∗

*In [7], only parameters for the first instance are given. We consider the biggest
possible u, as it makes the scheme more efficient, and our attack more costly.

Once we know the decomposition of an ideal as a product
∏u
i=1[li]

ei for
−m ≤ ei ≤ m, we may simply represent it as the sequence ē = (e1 . . . eu).

Computing with Ideal Classes. Computing operations in the class group is easy
and only costs multiplications and inversions modulo p. There exists a canonical
way of representing an ideal class (using the theory of reduction of quadratic
forms). We do not go into details here.

Computing the Class Group Action. Given an element of C`(O) of the form
[b] =

∏u
i=1[li]

ei , we use this representation to compute E′ = [b] · E, which is
simply the image curve of E by the isogeny represented by [b]. The authors
of [7] provide (Section 8) an efficient implementation of the class group action,
which does not need to compute modular polynomials (usually the most costly
operation).

2.3 Claimed Security of CSIDH

We review the security claims of CSIDH in [7]. The main problem considered
is, given a Montgomery curve EA, recovering the isogeny [b] ∈ C`(O) such that
EA = [b] · E0. Moreover, the ideal b that represents it should be sufficiently
“small”, so that the action of [b] on a curve can be evaluated. Otherwise, this
secret key would be of no use to the adversary.

The authors study different ways of recovering [b]. The complexity of these
methods depends on the size of the class group C`(O), which is O(

√
p).

• Classically, the best method seems the exhaustive key search of [b] using a
meet-in-the-middle approach: it costs O(p1/4).

6

• Quantumly, the best attack comes from [11], using Kuperberg’s algorithm
to recover a hidden shift in a commutative group action. The group is C`(O)
and the cost claimed is:

exp
(

(
√

2 + o(1))
√

logN log logN
)
,

where N = #C`(O), which actually counts how many times one has to
evaluate the action of C`(O) on the curves EA and E0, in superposition over
all elements of this group. The authors from [11] give a technique to do this
in time subexponential in p, but this induces a significant overhead.

Complexity Analysis. We evaluate the complexity of our quantum procedures
in terms of corresponding classical class group actions. More precisely, we con-
sider that computing the action of

∏u
i=1[li]

ei on a curve costs O(
∑u
i=1 |ei|) =

O(||(e1 . . . eu)||1), as this is the number of small isogenies computed. The con-
stant overhead depends on the computation for one small isogeny.

Since the classical protocol computes the action of
∏u
i=1[li]

ei where |ei| ≤ m
for all i and a constant m, its cost is O(um). It is the unit of the classical security
estimates given in [7]. We shall adopt the exact same benchmark for quantum
securities. In particular, suppose that we compute a group action of an element
of L1 norm N ; we will count this cost as N/(um).

Remark 1. Since we will evaluate the class group action in quantum superpo-
sition, it is possible that the efficient method of [7], Section 8,would perform
only at its worst time complexity. This it is not a significant issue, especially
as a concrete implementation of the key exchange would require to evaluate the
isogenies in constant time to avoid timing attacks.

Remark 2. A more refined analysis could take into account that the small ideal
classes [li] represent isogenies of increasing degrees (albeit in a small range). We
put this consideration aside for the sake of simplicity.

3 Attack Outline

We suppose given access to an offline quantum computer and wish, given EA,
to find [b] such that EA = [b] · E0. We do not exactly retrieve the secret key
ē which was selected at the beginning, but we find an alternative vector ē′

whose norm L1 is bounded by ||ē||1 multiplied by a “small” factor. This is
enough for practical purposes: using the equivalent secret key, i.e computing the
corresponding isogeny, will cost more than for the legitimate user, but only by
this same factor.

Ideas. The best quantum attack on CSIDH, which we estimate below, makes
use of already available ideas, being found in [7], [13] and [3]:

• Kuperberg’s algorithm was already considered in [7, Section 7.2], but the
quantum complexity analysis was only partial. We propose a new time-
efficient variant of this algorithm.

7

• Using lattice reduction to compute efficiently the group action was mentioned
in [7] and [32] as a possible method, and already done in [13] in a very
similar setting, albeit a classical one. In [3], lattice reduction techniques are
used to obtain short representations of large-degree isogenies as elements of
C`(O). This direction is further followed in [4] where, independently from
our work, the authors study how to attack the CSIDH scheme using this
efficient isogeny evaluation oracle. As they are more interested in the space
complexity and asymptotic time complexity of the algorithms, they use a
method different from us, without relying at all on the ideal classes given by
the scheme.

The attack runs in two phases. The first one is a precomputation which de-
pends only on the public parameters p and `1, . . . `u. It does not depend on the
particular public key targeted. Consequently, there could be a trade-off between
the complexity of this first phase and the second one, where the adversary per-
forms a secret-key recovery. For the proposed parameters, the first phase only
requires a small amount of quantum and classical computations, and the cost of
our attack is the cost of the second phase.

Phase 1: Computing a Short Basis of Multi-periods. Given `1, . . . `u and the ideal
classes [l1], . . . , [lu], we compute an approximate short basis of the lattice of all
relations f̄ = f1, . . . fu such that [l1]f1 . . . [lu]fu = 1. For comprehensiveness, we
call such relations “multi-periods” by analogy with period-finding. This phase
uses quantum order-finding (of polynomial complexity) and a classical lattice
reduction. For the given parameters, this reduction seems to be doable on a
standard computer.

Phase 2: Solving the Hidden Shift Problem. Using Kuperberg’s algorithm, we
solve a hidden shift problem instance: finding the isogeny [b] such that for each
[x] in the class group C`(O):

[x] · [b] · E0 = [x] · EA .

This requires to compute [x] · E for [x] in C`(O), in superposition over [x], for
some curve E.

To do this, we first rewrite [x] on the set [l1], . . ., [lu]: [x] = [l1]x1 . . . [lu]xu

using quantum order-finding and ad hoc computations. Then, we use the short
basis of phase 1 to solve the approximate closest vector problem, enabling us
to represent [x] by a “smaller” product [x] = [l1]y1 . . . [lu]yu , with shorter coef-
ficients. The complexity of this computation is controlled by the quality of our
approximation, which we relate to the quality of the basis obtained via lattice
reduction.

4 Hidden Shift

The Hidden Shift Problem. The hidden shift problem is defined as follows.

8

Problem 1 (Hidden shift problem). Let (G,+) be a group, f, g : G → G two
permutations such that there exists s ∈ G such that, for all x, f(x) = g(x+ s).
Find s.

Classically, this problem essentially reduces to a collision search, but in the
case of abelian groups, quantum subexponential algorithms exists. In [7], 7.2,
the authors consider a query complexity to solve this problem of:

LN (1/2,
√

2 + o(1)) = exp
(

(
√

2 + o(1))
√

logN log logN
)

where N = #cl(O), as there is a hidden shift structure in the class group action.

Quantum Algorithms. There are multiple results on solving the hidden shift
problem in commutative groups. The first result is an efficient algorithm in
query, by Ettinger and Høyer [15], which needs O(log(N)) queries and O(N)
classical computations to solve the hidden shift in Z/NZ. The first time-efficient
algorithms were proposed by Kuperberg in [24], where Algorithm 3 is shown to

have a complexity in quantum queries and memory of Õ
(

2
√

2 log2(3) log2(N)
)

for

the group Z/NZ for smooth N , and Algorithm 2 is in O
(

23
√

log2(N)
)

, for any

N . This has been followed by a memory-efficient variant by Regev, with a query
complexity in LN (1/2,

√
2) and a polynomial memory complexity, in [29], which

has been generalized by Kuperberg in [25], with an algorithm heuristically in

Õ(2
√

2 log2(N)) quantum queries and classical memory with quantum access, and
a polynomial quantum memory. Regev’s variant has been generalized to arbitrary
commutative groups in the appendix of [11], with the same complexity.

Concrete Estimates. The Õ are not practical for concrete estimates. However,
in [6], the authors showed that the polynomial of a variant of Kuperberg’s original
algorithm is a constant around 1 if N is a power of 2, and that the problem is
easier if the group is not one big cyclic group. As we will not have an N which
is a power of 2, we propose in what follows a generalization of [6, Algorithm 2]
that works for any N , at essentially the same cost.

Memory Cost. The algorithm we consider has a subexponential memory cost.
More precisely, it needs exactly one qubit per query, plus the fixed overhead of
the oracle, which can be neglected. This is a fairly important memory usage.
To take this into account, we could take other metrics, like the time-memory
product (which is very constraining, as a parallelized Grover’s algorithm has an
increased time-memory product cost), or a time-square-memory product (which
corresponds to a parallelized Grover). We believe that considering the most time-
efficient variant is relevant, since there may be trade-off algorithms between the
time-efficient and memory-efficient variants [25].

Moreover, Kuperberg’s algorithm does not need to have a highly entangled
memory for a long time, and only performs operations on 2 qubits at a time. If

9

some labeled qubits are detected as noisy, one may choose to avoid using it in
the remaining of the computation.

Application to Commutative Group Action. The hidden shift problem
can be used to retrieve an isogeny given its origin curve E0 and its image curve
E1. The isogeny corresponds to an element s of the class group that verifies
[s]E0 = E1. Moreover, as we have a group action, we have, for all element of the
class group, [x][s]E0 = [x]E1. This is an instance of the hidden shift problem, in
the class group. In order to apply Kuperberg’s algorithm, we first need to have
a representation of the class group. We can use the quantum polynomial-time
algorithm of [10], as done in [11]. We are only interested in the subgroup spanned
by ([l1], . . . , [lu]) (which should be close to the total group): we can get it using
the same method. We then obtain a generating set ([g1], . . . , [gg]).

The problem is now to efficiently compute an isogeny given its representation
[g1]e1 . . . [gg]

eg .

Efficiently Applying Kuperberg’s Algorithm. The idea is to use the same
representation as for the key exchange, that is, given ([l1], . . . , [lu]), express any
element [g1]e1 . . . [gk]ek as a product of the [li], and reduce the L1 norm of the
element in this representation. As one query requires to compute all the possible
isogenies in quantum superposition, the cost per query depends on this L1 norm.

The hidden shift problem will yield an element of the class group such that
[s]E0 = E1, that is, the wanted isogeny. We can then use the same method to
obtain a representation of this isogeny in the basis ([l1], . . . , [lu]). This may not
be the smallest possible isogeny, but it will be small enough to be usable. This
is Algorithm 1. Its cost in quantum query and memory is the one of the hidden
shift algorithm, which is summarized in Table 3.

Algorithm 1 Key Recovery

Input: The elements ([l1], . . . , [lu]), two curves E0 and EA defined over Fp, a gen-
erating set of C`(O): ([g1], . . . , [gk])
Output: A vector (e1, . . . , eu) such that

∏u
i=1[li]

ei · E0 = EA

1: Define f : [g] ∈ C`(O) 7→ [g] · E0 and g : [g] ∈ C`(O) 7→ [g] · EA , to be computed
with Algorithm 5.

2: Apply Algorithm 2 on f and g, get [s].
3: Using Algorithm 5, decompose [s] as

∏u
i=1[li]

ei with small ei.
4: return (e1, . . . , eu)

We need to add the cost per query to obtain the total cost. Each query needs
to compute [x] · E for all [x] in the group generated by ([l1], . . . , [lu]) and some
curve E. This cost will be studied in the next sections.

10

4.1 Hidden Shift Algorithm for Cyclic Groups

In this section, we present a generic hidden shift algorithm for Z/NZ, which
allows us to have the concrete estimates we need.

We suppose an access to the quantum oracle

|x〉 |0〉 |y〉 7→ |x〉 |0〉 |y ⊕ f(x)〉
|x〉 |1〉 |y〉 7→ |x〉 |1〉 |y ⊕ g(x)〉 .

We begin by constructing the uniform superposition on N × {0, 1}, that is,

1√
2N

N−1∑
x=0

|x〉 (|0〉+ |1〉) |0〉 .

Then, we apply the quantum oracle, and get

1√
2N

N−1∑
x=0

|x〉 (|0〉 |f(x)〉+ |1〉 |g(x)〉) .

We then measure the final register, to obtain an f(x0) = g(x0 + s) and the
qubit

1√
2

(|x0〉 |0〉+ |x0 + s〉 |1〉) .

Finally, we apply a quantum Fourier Transform on the first register and
measure it, we obtain a label ` and the state

|ψ`〉 =
1√
2

(
|0〉+ χ

(
s
`

N

)
|1〉
)
, χ (x) = exp (2iπx) .

This phase depends of s and `
N , and by applying a CNOT and measuring

the second qubit, we can combine two qubits `1 and `2 into `1 + `2 or `1 − `2.
This combination is destructive, and we only now which output it is after it.

In order to retrieve s, we want to produce the qubits with label 2i and apply
a Quantum Fourier Transform (QFT). Indeed, we have

QFT

n−1⊗
i=0

|ψ2i〉 =
1

2n/2
QFT

2n−1∑
k=0

χ

(
ks

N

)
|k〉 =

1

2n

2n−1∑
t=0

(
2n−1∑
k=0

χ

(
k

(
s

N
+

t

2n

)))
|t〉 .

The amplitude associated with t is 1
2n

∣∣∣∣ 1−χ(2n(sN+ t
2n))

1−χ(sN+ t
2n)

∣∣∣∣. If we note θ = s
N +

t
2n , this amplitude is 1

2n

∣∣∣ sin(2nπθ)sin(πθ)

∣∣∣. For θ ∈ [0; 1
2n+1], this value is decreasing,

from 1 to 1
2n sin(π

2n+1
) ' 2

π .

Hence, when measuring, we obtain a t such that
∣∣ s
N + t

2n

∣∣ ≤ 1
2n+1 with

probability greater than 4
π2 . Such a t always exists, and uniquely defines s if

n > log2(N).

11

In order to make these qubits, the idea is then to apply Kuperberg’s algo-
rithm, but to not take into account the modulo, that is, obtain a combination
such that

∑
k ±`k = 2i. By applying the algorithm, we perform some collisions

on the lowest significant bits, but we also increase the maximum size. However,
the size can increase of at most one bit per combination, while the lowest signifi-
cant 1 position increases on average in

√
n. Hence, the algorithm will eventually

produce the correct value.

We note val2(x) = maxi 2i|x the 2-valuation of x. In Algorithm 2, each label
is associated to its corresponding qubit, and the operation ± corresponds to the
combination.

Algorithm 2 Hidden shift algorithm for Z/NZ
Input: N , a number of queries Q, a quantum oracle access to f and g such that
f(x) = g(x+ s), x ∈ Z/NZ
Output: s

1: Generate Q random labels in [0;N) using the quantum oracles
2: Separate them in pools Pi of elements e such that val2(x) = i
3: i← 0
4: R = ∅
5: n← blog2(N)c.
6: while some elements remain do
7: if i ≤ n then
8: Pop a few elements e from Pi, put (e, i) in R.
9: end if

10: for (e, j) ∈ R do
11: if val2(e− 2j) = i then
12: Pop a of Pi which maximizes val2(a+ e− 2j) or val2(e− 2j − a)
13: e = e± a
14: end if
15: end for
16: if {(2i, i)|0 ≤ i ≤ n} ⊂ R then
17: Apply a QFT on the qubits, measure a t
18: s←

⌈ −Nt
2n+1

⌋
mod N

19: return s
20: end if
21: while |Pi| ≥ 2 do
22: Pop two elements (a, b) of Pi which maximizes val2(a+ b) or val2(a− b)
23: c = a± b
24: Insert c in the corresponding Pj

25: end while
26: i← i+ 1
27: end while
28: return Failure

12

Intuitively, the behaviour of this algorithm will be close to the one of [6], as
we only have a slightly higher amplitude in the values, and a few more elements
to produce.

In practice, we can simulate this algorithm, to estimate its complexity. Em-
pirically, we only need to put 3 elements at each step in R in order to have a
good success probability.

log2(N) log2(Cost) 1.8
√

log2(N) + 2.3

20 10.1 10.3
32 12.4 12.5
50 15.1 15.0
64 16.7 16.7
80 18.4 18.4
100 20.3 20.3

Table 2: Simulation results for Algorithm 2, for 90% success

We can estimate the total complexity to be around 12×21.8
√
n, heuristically.

Table 3: Cost estimates for the hidden shift algorithm.

log2(p) n Hidden shift cost (log2) Memory cost (log2)

512 256 32.5 31
1024 512 44.5 43
1792 896 57.5 56

4.2 Generalization to products of cyclic groups

In [6], an algorithm for product of cyclic groups was proposed, with a cost that
can be drastically below the cyclic case, if there were many small groups. We
study here the situation of product groups without any constraint on the size,
with the group Z/N1Z × · · · × Z/NmZ. The same approach than in [6] seems
risky here: the proposed algorithm performed some combinations such that one
bit was gained on each component. If we try to do the same here, we could obtain
bigger numbers in each component, while only gaining a one bit per component.
Hence, we rather have the exact same approach as Algorithm 2, but instead of
only focusing on one component, we address them all, sequentially.

We have some elements |ψ`1,...,`m〉, and the addition/subtractions are re-
placed by the termwise ones. The labels become some vectors (`1, . . . , `m). The
objective, at the end, is to obtain the labels (0, . . . , 0, 2ij , 0, . . . , 0), with 0 ≤

13

ij ≤ log2(Nj) + 1. With these qubits, we can perform, as in the previous case, a
Quantum Fourier Transform on each component to retrieve the secret.

As this approach does not use the split structure of the group to obtain any
advantage, it is not expected to perform better than in the cyclic case. Moreover,
with multiple independent components on which we need to obtain exact values,
the algorithm may even perform worse.

We extend the 2-valuation to the vectors, and consider val2(x1, . . . , xm) =
(a, b), with a = mini xi 6= 0, b = val2(xa), with the lexicographic order. Intu-
itively, instead of sorting the elements by their divisibility by 2, we sort them
sequentially, with their divisibility by 2 on the first component, then, if it is
infinite, with the one on the second component, and so on.

We note δij the vector null on all components except the j-th one, where it

is 2i, and nj = dlog2(Nj)e.
Simulation results for products of Z/NZ when N ' 210 and N ' 215 are

given in Table 4. We try multiple settings, like having an increased number of
elements in R for the first cyclic groups, or allowing to drop some elements in R
instead of failing to obtain a 0. The changes in the cost seemed marginal at the
scale we were able to simulate.

These simulations did not allow us to produce a precise estimate of the com-
plexity. It seems to be still subexponential, but scales slightly worse. This may
indicate that this approach may not be the best to tackle products of cyclic
groups. There are still some settings that may be relevant, such as only comput-
ing the shift on one component at a time, or using the fact that we can choose
in which order we tackle each group. Another approach would be to build up
on [24, Algorithm 2], which produces elements in an increasingly smaller interval,
instead of elements with an increasing 2-valuation.

m log2(Cost) 2.2
√
m ∗ 10 + 0.4 |R|

1 7.6 7.4 2
2 10.4 10.2 3
3 12.5 12.4 3
4 14.3 14.3 3
5 16 16.0 3
6 17.4 17.4 3
7 18.8 18.8 3

(a) log2(N) = 10

m log2(Cost) 2.1
√
m ∗ 10 + 0.7 |R|

1 8.9 8.8 3
2 12.3 12.2 3
3 14.8 14.8 3
4 17.0 17.0 3

(b) log2(N) = 15

Table 4: Simulation results for Algorithm 3, with 90% success

The change only becomes significant when there are many small groups.
In the case of isogenies, the group is generally considered almost-cyclic. It has
huge cyclic component, plus a few small ones. Moreover, the odd part is almost

14

Algorithm 3 Hidden shift algorithm for abelian groups

Input: N , a number of queries Q, a quantum oracle access to f and g such that
f(x) = g(x+ (s1, . . . , sm)), x ∈

⊗m
k=1 Z/NkZ

Output: (s1, . . . , sm)
1: Generate Q random labels in

⊗m
k=1[0;Nk) using the quantum oracles

2: Separate them in pools Pj,i of elements e such that val2(x) = (j, i)
3: i← 0
4: R = ∅
5: for j ∈ [1; p] do
6: while ∃i : Pj,i 6= ∅ do
7: if i ≤ nj then . nj = dlog2(Nj)e
8: Pop a few elements e from Pj,i, put (e− δij) in R.
9: end if

10: for e ∈ R do
11: if val2(e) = (j, i) then
12: Pop a of Pj,i which maximizes val2(a+ e) or val2(e− a)
13: e = e± a
14: end if
15: end for
16: if {(δij)|0 ≤ i ≤ n, 1 ≤ j ≤ m} ⊂ R then
17: Apply a QFT on each component, measure a tj

18: sj ←
⌈

−Njtj

2
nj+1

⌋
mod Nj

19: return (s1, . . . , sm)
20: end if
21: while |Pj,i| ≥ 2 do
22: Pop two elements (a, b) of Pj,i which maximize val2(a+ b) or val2(a− b)
23: c = a± b
24: Insert c in the corresponding Pj,i

25: end while
26: i← i+ 1
27: end while
28: end for
29: return Failure

15

always cyclic [12], which means that the remaining groups in the product are
small groups of size a power of 2, for which we can use the more efficient methods
of [6]. Hence, for our estimates, we will consider that the group is cyclic.

5 Lattice Reduction

5.1 Finding a Basis of Multi-periods

The ideas in this section and the next one are fairly close to the ones in [3], where
the authors use lattice reduction techniques to decompose arbitrary elements of
C`(O) as products of small-degree isogenies (see Algorithm 7 in [3]). The main
difference is that we are in a more precise setting, in which the ideal classes
upon which we decompose elements of C`(O) are already given by construction
on the scheme, and that we separate the computation of the small basis as
precomputations.

Given p and the ideal classes [l1], . . . , [lu], we consider the set of integer vectors
ē = (e1, . . . eu) such that [l1]e1 . . . [lu]eu = 1, or “multi-periods”. This forms an
integer lattice in Ru, which we denote L. This section and the following one are
devoted to finding a short basis of it, but we first need to find a basis.

The complexity estimates in this section rely on the assumption that L be-
haves like a “random” lattice: in order to estimate the efficiency of lattice reduc-
tion algorithms, we apply heuristics found in the literature. It is likely that, if
these heuristics do not apply for L, then the lattice has more structure and more
properties than expected, properties that could be exploited in other ways.

Computing Relations. In order to compute a short base of L, one needs at least to
input some vectors in the lattice. Finding those vectors, i.e, some multi-periods
of [l1], . . . , [lu], is classically difficult. Quantumly, we cannot immediately apply
Shor’s period-finding algorithm [31], because the [li] interfere with each other:
it seems difficult to us to recover a lattice base using only period-finding in the
[li].

Instead, we use a generating set for the group spanned by ([l1], . . . , [lg]), with
independent elements ([g1], . . . , [gk]) (this generating set is already needed by
our application of Kuperberg’s algorithm). Now we can use Shor’s algorithm
to decompose the [li] on these generators, since they do not interfere (in other
words, having [g1]j1 . . . [gk]jk = 1 implies j1 = 0 mod ord([g1]), . . . , jk = 0
mod ord([gk]), while this is not the case for the [li] themselves).

This decomposition enables us to quickly find some multi-periods, although
they can be of high L1 norm, using a polynomial amount of computations.

After these computations (polynomial in log(#C`(O))), we have a basis U of the
lattice L, which is full rank since it contains the vectors (0 . . . 0 (#C`(O)) 0 . . . 0).

16

5.2 Finding a Short Basis

We now show that finding a short basis of L is a very easy step. Our estimations
suggest that, once the first basis U is known (which is actually a more difficult
step, as it involves Shor’s algorithm), reducing it can be done in less than one
hour using a simple classical processor, for all parameters considered here.

Since our goal is to output an approximate short basis, we use the best known
algorithm to date, the Block Korkine Zolotarev algorithm (BKZ) [30]. Its com-
plexity depends on the dimension u and the block size, an additional parameter
which determines the quality of the basis. Practical complexity analyses are
found in [21] and [9].

We do not study quantum lattice algorithms (see e.g [26]), since approxima-
tion algorithms are sufficient for us.

Remark 3 (Basis Quality Benchmarks). In works such as [9], the quality of the
basis is related to the Hermite factor. Roughly speaking, the Hermite factor
relates the L2 norm of the shortest vector found with the u-th root of the lattice
volume. The first vector of the basis B in output, b1, is such that

||b1||2 ≤ c
u(Vol(L))1/u

where cu is the Hermite factor, and c a constant which depends on the algorithm
used. For our purposes, it is better to work with the approximation factor, which
relates ||b1||2 and λ1(L), the euclidean norm of the smallest vector in L. An
approximation factor of c2u is guaranteed, but in practice, it is equal to (and
sometimes better than) the Hermite factor. So we consider:

||b1||2 ≤ c
uλ1(L) .

From [21], we see that BKZ-20 gives us a heuristic constant c of approxi-
mately 1.0128. Furthermore, as noted in Section 3.1, this Hermite factor seems
to be worst-case: this further justifies to consider that our lattice L behaves
“heuristically”. Furthermore, in [21, Fig. 12], the authors give a running time
for BKZ-20 of the order 1000 CPU seconds for dimension 200. Hence we take
this algorithm and c = 1.0128, ensuring that the small basis can be computed
with negligible classical computations.

In the following, we are mostly interested in bounding ||b1||2. We assumed above
that there existed at least one vector ē = (e1 . . . eu) with ei ∈ {−m, . . . ,m} such
that

∏
i[li]

ei = 1. This only assumption suffices to write that λ1(L) ≤ 2m
√
u,

hence ||b1||2 ≤ 2cum
√
u.

Remark 4. There exists a classical subexponential algorithm to compute the
class group [23]: Algorithm 4 could be performed classically in subexponential
time (this is done by Couveignes in [13]). However, since we consider a quantum
adversary, it makes sense to use quantum polynomial-time algorithms to compute
the class group structure.

17

Algorithm 4 Finding a short basis of the lattice of multi-periods.

Input : The elements ([l1], . . . , [lu]), a generating set of the class group
([g1], . . . , [gk])
Output : A basis B of the lattice L with (approximate) Hermite factor 1.0128.

1: Using Shor’s period-finding algorithm, decompose the [li] over the generating set
given in input. From this decomposition, find vectors of L and compute a (non
reduced) basis of the lattice.

2: Using BKZ-20 lattice reduction on a classical processor, find the short basis B.
3: return B

5.3 Solving the Approximate CVP with a Reduced Basis

Recall that we need to evaluate the group action for a product
∏
i[li]

ti for some
ti that can be large. This is where we use the lattice L and the short basis
B = b1, . . . bu in output of Algorithm 4. Indeed, given a vector v̄ in L, we have:∏

i

[li]
ti =

∏
i

[li]
ti−vi .

We are now interested in finding the vector v̄ in L which is the closest possible
to t̄. The closest we can be, the less evaluating the group action will cost. This
is an instance of the well-known lattice Closest Vector Problem, in our case the
approximate CVP, since we are more interested in bounding the distance than
obtaining the best possible vector.

Since the target vector is in superposition, this bound should hold for all
vectors of Zn.

We use Babai’s nearest-plane algorithm [1] (see e.g [19], chapter 18). Given
the target vector t̄, a reduced basis B and its Gram-Schmidt orthogonalization
B?, this algorithm runs in polynomial time (more precisely, O(u2) operations,
so this will be of no consequence in the complexity analyses below) and outputs
a vector v̄ in the lattice L such that:

||v̄ − t̄||2 ≤
1

2

√√√√ u∑
i=1

||b?i ||
2
2

where B? is the Gram-Schmidt orthogonalization of B. In particular, we consider
that

∑u
i=1 ||b?i ||

2
2 ≤ u ||b1||22 (we infer this from heuristics in [21] and [9] about

the decreasing norms of the b?i).

This gives:

||v̄ − t̄||2 ≤
1

2

√
u ||b1||2 ≤ umc

u

where c = 1.0128. This bound holds simultaneously for every target vector t̄
and corresponding output v̄ by Babai’s method.

18

Effect on the L1 Norm. We are interested on the L1 norm of the difference
v̄ − t̄. Indeed, we count an evaluation of the group action for

∏
i[li]

ti−vi as
||v̄ − t̄||1 /(um) equivalent classical evaluations. The closest we are to the lat-
tice L, the smallest the representation (via v̄ − t̄) of class group elements be-
comes; the closer we are to a class group action evaluation with all exponents in
{−m, . . . ,m}.

We have:
||v̄ − t̄||1 ≤

√
u ||v̄ − t̄||2 ≤ u

3/2mcu .

The multiplicative factor w.r.t the classical group action (mu) is u1/2cu.

Algorithm 5 Finding a short representation of an element of the class group,
over the [li].

Input : A vector t̄ representing an element of the class group of the form
∏

i[li]
ti ,

a basis B for the lattice L given by Algorithm 4 with Hermite factor c.
Output : A vector s̄ such that ||s||1 ≤ u

3/2mcu and
∏

i[li]
ti =

∏
i[li]

si .
1: Using Babai’s nearest-plane method with the basis B, find v̄ in L such that
||t̄− v̄||1 ≤ u

3/2mcu.
2: return t̄− v̄.

Algorithm 4 and Algorithm 5 above are the two main components of Al-
gorithm 7 in [3] for faster isogeny evaluations. The authors also use BKZ to
reduce the lattice base and Babai’s algorithm to solve the approximate CVP in-
stance. They however consider the general asymptotic ordinary case, for which
an interesting basis is not given to the attacker, and the classical case, while we
separated the two algorithms to reduce the quantum costs.

In [4], this algorithm for fast evaluation is further applied to the CSIDH scheme.
However, the authors are more focusing on the asymptotic time complexity. It
can be remarked that asymptotically, using the ideals [li] provided by the scheme
to decompose any ideal is not the best method. Indeed, the multiplicative factor
guaranteed by BKZ increases exponentially in the dimension u ; one can try to
increase the block size of BKZ in order to reduce at best the complexity of the
oracle evaluation, but this happens to be always (asymptotically) slower than
taking a basis with a limited number of ideals (less than the given u) and greater
exponents than the given m.

We are now able to give the complexity for all three NIST levels given in [7],
as guaranteed by heuristics (Table 6). We remark that computing the action of
[g] actually requires three steps:

• Decomposing [g] over the [li], as [g] =
∏
i[li]

ti . This is done using Shor’s
algorithm, as before;

• Using Babai’s nearest-plane algorithm with the basis B, finding the approxi-
mate closest vector v̄: this requires u2 multiplications of vectors coordinates,
which are approximately log2 p-bit integers;

19

• Computing the action of
∏
i[li]

ti−vi .

For each set of parameters, the last step is the most costly of the three. (For
example, for u = 200, Babai’s method costs u2 = 4·104 log2 p-bit multiplications,
while the action costs approximately 3.96 ·105 small isogeny evaluations). This is
why the time complexity of the quantum group action oracle depends exclusively
on its overhead w.r.t the classical one (additional computations are negligible).

Table 5: Guaranteed cost overhead on the computation of the group action, w.r.t.
a legitimate key exchange computation.

Level log2 p u m Overhead

NIST 1 512 74 5 ≤ 25

NIST 3 1024 132 7 ≤ 26

NIST 5 1792 209 10 ≤ 28

Simulation Results. Most of the cases, the odd part of the class group C`(O) is
cyclic, as shown by the Cohen–Lenstra heuristics [12]. We took cardinalities q
at random and performed computations either with:

• Random lattices L corresponding to a cyclic group with cardinality q, taking
some u elements at random in this group and computing two-by-two relations
between them;

• Lattices L generated by u− 1 random vectors from Z[q]u and the vectors of
the form (0 . . . q . . . 0).

The results happen to be the same in both cases. Thus, our heuristics below
hold as long as we are able to find u− 1 independent relations, which is trivially
possible if the group is cyclic. If this is not the case, there are additional factors.

When given a lattice of the first family, the computational system Sage [33]
performs BKZ reduction with blocksize 20 in a handful of minutes in dimension
200 (this seems to come from the fact that the basis is, in that case, very sparse).
With the second family, the time greatly increases but remains manageable with
a single PC.

In order to bound the L1 norm of the vector in output of Babai’s algorithm,
we are interested in the quantity:

A =
√
u

1

2

√√√√ u∑
i=1

||b?i ||22

where B? is the Gram-Schmidt orthogonalization of the output basis B. We
compute this quantity, on average, for a handful of lattices with dimensions

20

Table 6: Simulation cost overhead on the computation of the group action, w.r.t.
a legitimate key exchange computation.

Level 1
2

log2 p u m A Factor

NIST 1 256 74 5 ' 550 ≤ 22

NIST 3 512 132 7 ' 2300 ≤ 22

NIST 5 896 209 10 ' 9500 ≤ 23

those of the CSIDH parameters we are interested in. The deviation from the
values found does not exceed 10%.

As a consequence, we only count the oracle overhead as a (small) factor 23

in what follows.

Remark 5. Once the secret isogeny has been recovered, the factors in Table 6
also give the multiplicative overhead on the size of the representation found w.r.t
the original one.

6 Consequences on Ordinary Curves

Although we focused until now on the specific case of CSIDH, lattice reduction
can be applied to the general ordinary isogeny problem, exactly in the lines
of Couveignes [13], Rostovtsev and Stolbunov. Indeed, if ` is an Elkies prime
(approximately a half of them), it gives rise to two prime ideals of norm ` and
corresponding isogenies of degree `. Given enough such primes (say u), it is
possible to span the whole group C`(O) with products of these ideals. For CSIDH,
we needed powers in {−m, . . . ,m} with 2m + 1 ' p1/(2u), for u was restricted
by the parameter p. In general, we do not have such a restriction.

Original CRS Scheme. The original Couveignes–Rostovtsev–Stolbunov scheme
computes the class group action using these Elkies primes. The difference with
CSIDH comes from the fact that the trace of the Frobenius is not 0, so comput-
ing one of the small isogenies is actually computationally costly. In particular,
contrary to the case chosen in the CSIDH scheme, where ` splits as (`, π−1) and
(`, π+1), finding the two neighbors in the isogeny graph requires to compute the

roots of a modular polynomial of degree ` + 1, costing Õ(` log p) operations in
Fp. Hence, while Elkies ideals are easily found, computing their action is much
slower.

Quantumly, we can use lattice reduction the same way as we do for CSIDH,
with adaptations. The multiplicative factor of computing the group action in
superposition over all elements of C`(O) depends on the dimension u as u1/2cu,
where c is the Hermite factor of the lattice basis reduction algorithm used. How-
ever, in the CRS scheme, u should be the greatest possible and m the smallest
in order to speed up the computations. There is no limit on u, since one can find
as many Elkies primes as needed. So we may take m = 1 and u = 1

2
log p
log 3 . This

21

gives a set of ideal classes in C`(O): [l1], . . . , [lu] such that each element of C`(O)
is of the form:

[g] = [l1]e1 · · · [lu]eu

with ei ∈ {−1, 0, 1}.
If we take p a 512-bit prime, the lattice dimension becomes as high as 162.

With c = 1.0128, we obtain a multiplicative overhead of u1/2cu ' 98 ≤ 27:
evaluating the group action in superposition could cost almost a hundred times
more than the classical. With log2 p = 1024, we get a dimension 323 and a factor
210, with log2 p = 1792 we have a dimension 565 and a factor 215. To reduce these
complexities, we may want to reduce the Hermite factor, but since the dimension
has increased, this will turn out to be difficult. The time complexity of BKZ-
20, that we advocated above, increases exponentially. We extrapolate from [21] a
potential cost of 260 computations in dimension 565. The cost is almost balanced
with the second step and it seems difficult to improve it significantly.

Experimental Results. As with the supersingular case, we performed experiments
with the lattice of multi-periods of random elements in a random cyclic group.
The relations by which we generate the lattice being extremely simple, the com-
putations are much faster than expected, and the results are far better than our
upper bounds. In dimension 162, the number of isogenies to be evaluated by the
quantum oracle is approximately 800 (with 10% deviation), which represents a
multiplicative overhead of approx. 5 ≤ 23, since the classical group action needs
162 isogenies (the precise dimension of the lattice). In dimension 323, we get
approximately 3500 isogenies and an overhead 10 ≤ 24.

Asymptotic Cost. In order to have a guaranteed asymptotically efficient algo-
rithm, one should apply in this case the general method given in [3] (Algorithm

7). The basis taken has dimension of the order O(log2/3(
√
p)) instead of the

maximal possible, in order to control the cost of BKZ in the basis reduction
step. The use of quantum algorithms to perform this step would have direct
consequences on the asymptotic complexity of this method.

Hybrid Approach in [18]. In [18], the authors consider a hybrid approach:
C`(O) is generated by a set of ideals among which some are baseline Elkies, while
some are evaluated faster, due to their special properties. The resulting isogeny
walks are divided into “Elkies steps” for the former ones and “Vélu steps” for the
latter ones. The goal is then to perform the most Vélu steps possible; Elkies steps
are still necessary to ensure a key space of sufficient size. Furthermore, we need to
be cautious with some Vélu ideals, that can only be used in one direction.5 This
turns out to be an optimization problem, which gives bounds on the exponents
depending on the ideals. Hence C`(O) is now spanned by products of the form:

[l1]e1 · · · [lu]eu [lu+1]eu+1 · · · [lu+v]eu+v

5 Since the trace of the Frobenius is 0 for supersingular curves, all steps in CSIDH
turn out to be Vélu steps: this is where the scheme gains its efficiency.

22

where the powers of [li], 1 ≤ i ≤ u go from −mi to mi and the powers of the
[li], u < i ≤ u+ v go from 0 to mi (only one direction should be used).

More Precomputations. A solution to the approximate CVP given by Babai’s
algorithm cannot be automatically forced to have some of its coordinates posi-
tive. To overcome this issue later, we consider the set S of vectors f̄ with u+ v
coordinates such that:

[l1]f1 · · · [lu]fu [lu+1]fu+1 · · · [lu+v]fu+v = [lu+1]−n1 · · · [lu+v]−nv

where n1, . . . nv will be chosen later. Computing this set is easy. We can find a
vector f̄0 in S using Shor’s algorithm, then S = f̄0 +L. Finding an approximate
shortest vector in S is an instance of the closest vector problem, since we look
for the vector in L closest to f̄0.

Remark 6. It is a crucial point that the mi are different. Hence, we may want
to use lattice algorithms with a weighted norm:

||e1 . . . eu+v||2 =

(
e1
m1

)2

+ . . .

(
eu+v
mu+v

)2

.

Alternatively, we consider the lattice LM obtaining by weighting the coordinates
ei by mi. We apply standard lattice reduction algorithms to LM. Given a vector
ē in L, the multiplicative factor between the quantum group action oracle and

a classical key exchange can be bounded by max
∣∣∣ eimi ∣∣∣. Hence, we are interested

in L∞ norms of elements of LM.

The norm of the shortest vector in the reduced basis of LM is bounded by:

||b1||2 ≤ cu+vλ1(LM) ≤ 2cu+v
√
u+ v .

And the shortest (weighted) vector f̄ in S (from the analysis in Section 5.2)
has norm:

||f̄ ||2 ≤ (u+ v)cu+v .

We can bound the absolute value of each of its coordinates by (u+ v)cu+v.
Now that these precomputations are done, we can solve the approximate

CVP instance for a given s̄.

CVP with Some Positive Coordinates. Given a (weighted) vector s̄, Babai’s
algorithm returns a vector t̄ = (t1, . . . tu, tu+1, . . . tu+v) of LM such that:

||s̄− t̄||2 ≤ cu+v(u+ v) .

The problem is that the last v coordinates of s̄− t̄ should all be positive, in order
to compute efficiently the group action.

To ensure that, we now take the (weighted) vector f̄ of above with n1, . . . ,
nv all equal to 2cu+v(u+ v).

23

This ensures that: su+1 − tu+1 + fu+1 + n1 ≥ 0, and so on.

We output the vector with (weighted) coordinates si − ti + fi for i ≤ u and
si − ti + fi + ni for u < i ≤ u + v. (It suffices to multiply the i-th coordinate
by mi to obtain the corresponding actual integer values of the exponents). Its
L∞ norm can be bounded by ||s̄ − t̄||2 + ||f̄ ||2 + n1 ≤ 4(u + v)cu+v, giving the
multiplicative factor w.r.t the classical group action.

Consequences. In the following, we perform computations with the example
given in [18], Section 6. There are 13 Vélu primes used in two directions, 11
in one direction, 29 Elkies primes. The total dimension is u + v = 53. It is
relatively small, so that exact lattice methods could even be performed in order
to speed up the computations (we should be able to solve the exact shortest
vector problem in LM). With c = 1.0128, we estimate 4(u+ v)cu+v ' 416 ≤ 29.
Although decomposing the class group and ideal classes given in [18] seems
not computationally feasible, we performed some experiments with the same
dimension and weights, but on a random lattice from a cyclic group as before.
The results suggest that this factor could actually be lower than 25 (we compute
it as four times the quantity 1

2

√∑
||b?i ||2 for the reduced basis, which is the

bound on the euclidean norm given by Babai’s algorithm).

If we computed instead the class group action using a maximal basis of Elkies
primes, dismissing the refined structure from [18], we would obtain a dimension
162 in this example (with a 511-bit prime). Our experimental estimates give a
multiplicative overhead of 23 in that case, but the cost of evaluating the group
action would be at least 4 times greater than using the refined structure (we
estimate even 12). In the end, and since our cost analysis above was very ap-
proximate, the advantage goes to the refined group action computation.

If we add the cost of the hidden shift, we obtain a quantum cost of at most
237 time and 231 memory. We do not generalize this cost, as unlike for CSIDH,
we do not see a clear asymptotical behaviour for the parameters of the scheme.

This seems to be a general principle: whenever there is a way to classically
speed up the class group action using a refined basis, the lattice reduction step
can be adapted to use it as well in the quantum oracle. Besides, the latter can
benefit from a reduced dimension.

7 Complexities and NIST Benchmarks

The parameters in [7] are aimed at three NIST security levels, defined as follows
in the post-quantum public-key cryptography standardization process [28]:

• NIST 1: breaking the scheme requires as much resources as a quantum key-
recovery on AES-128;

• NIST 3: as hard as a quantum key-recovery on AES-192;

• NIST 5: as hard as a quantum key-recovery on AES-256.

24

A key-recovery on AES is done using Grover’s algorithm, which runs in ap-
proximately 2|k|/2 iterations, where |k| is the length of the key, each iteration
requiring one or more evaluations of a quantum circuit implementing AES. Such
a circuit was designed in [22]. It costs approximately 220 quantum gates, when
counting on the universal Clifford+T set (we will use this same set for all quan-
tum circuits below).

Quantum Circuits for the CSIDH Group Action. In the first version of this pa-
per, we gave an estimation of the quantum gate cost required to evaluate the
CSIDH group action and, by consequence, to attack the scheme using Kuper-
berg’s algorithm. Since then, more precise estimations have been given in [2].
We can now base our analysis on these results. The authors of [2] give 0.7× 240

nonlinear bit operations for the CSIDH-512 instance, in order to reach a success
probability of the order 2−32, necessary since we require that much queries. This
cost comes mainly from the 221.4 multiplications in Fp needed, each one costing
218.7 Toffoli gates, with log2 p = 512. The number of T gates is 243.3. The total
number of gates (Clifford + T) is of the order 245.3. Furthermore, in order to
keep the number of ancilla qubits sufficiently low, some inner levels of uncompu-
tation are needed, possibly increasing the computation by some factor (at least
4). In the end, the quantum CSIDH group action oracle for a prime of 512 bits
should cost, in our setting, approx. 248 Clifford+T gates, instead of the 237.

This cost is not given in [2] for other values of p, but we can roughly es-
timate the increasing number of multiplications to be performed (counting the
increasing dimension, the increasing value of the little primes and the increasing
precision needed). Furthermore, when p is doubled, the cost of a multiplication
at most quadruples. For CSIDH-1024, we can take 253 gates and 256 for CSIDH-
1792. Notice that from the point of view of depth, the oracle contains almost all
the depth of the whole circuit (due to the structure of Kuperberg’s algorithm).

Counting in Classical Group Actions. If we count in multiples of the quantum
CSIDH group action evaluation, and do not go into the quantum implementation
details, the cost of the attack is given in Table 7.

Table 7: Attacking CSIDH. Complexities are given in log2 scale, in number of
key exchanges.

Level Memory Requests Appr. factor Total cost Expected

NIST 1 31 32.5 2 34.5 62
NIST 3 43 44.5 2 46.5 94
NIST 5 56 57.5 3 60.5 129

Counting in Quantum Gates. The benchmarks advocated in the NIST call [28]
do not count the complexity of an attack comparatively to that of the scheme,

25

but instead, completely rely on a comparison with attacks on AES variants. In
order to check whether the security levels are met, we compare the complexity
in Clifford+T gates with the AES instance corresponding to the targeted level
(given in [22]; we reduce the gate counts by supposing that we use only respec-
tively one, two and two plaintext-ciphertext pairs, since this seems enough to
guarantee a good success probability).

Table 8: CSIDH attack time complexities in log2 scale, compared with the cor-
responding Grover key-recovery on AES.

Level
AES instance Time cost of the Total time cost Previous Updated

attacked corresponding Grover of our attack log2 p log2 p

NIST 1 AES-128 85.9 82.5 512 600
NIST 3 AES-192 119.1 99.5 1024 1900
NIST 5 AES-256 151.3 114.5 1792 4100

Table 8 shows that the parameters proposed in [7] all fall below the targeted
security levels, albeit by a short margin for the 512-bit proposal. This mainly
comes from the cost of quantumly evaluating CSIDH. The oracle accounts for
more than half of the exponent in all cases.

We provide indicative values of log2 p that should make our attack cost more
than the reference AES key-recovery.

With the maxdepth Assumption. The NIST document suggests to assess the
security against quantum attackers when they are restricted to “a fixed running
time, or circuit depth” [28]. To this respect, there is a significant difference
between Kuperberg’s and Grover’s algorithms.

Kuperberg’s circuit, forming a tree of combinations between qubits, is actu-
ally very “flat”: the total amount of quantum gates applied to a given qubit is
bounded by that of the group action oracle, with a negligible overhead due to the
combinations. Implementations of this algorithm would likely use this specific
structure at their advantage.

On the contrary, Grover’s algorithm performs a long, sequential computation.
Restricting the depth means restricting the number of iterations. When dividing
the number of iterations by S, the probability of success is roughly divided by
S2. It is well-known [34] that this square factor cannot be overcome. In total,
this induces a significant overhead on the quantum running time, since we run
S2 instances with T/S gates each instead of a single instance with T gates.

Introducing the parameter maxdepth, we suppose that only a limited num-
ber of operations can be performed on a given qubit. This does not mean that the
whole quantum computation stops after maxdepth operations. In a first step,
the group action oracle is applied 2O(

√
n) times, but to separate qubits. Only

then are combinations performed; a given qubit is used in at most a logarithmic
number of them (negligible depth). Therefore, as long as maxdepth is greater

26

than the oracle depth, the quantum time of this attack is not affected. Otherwise,
one would need to reduce the depth of Fp-multiplications. The T-depth of AES
quantum oracles is given in [22] as approximately 217. In both cases, one would
trade off improvements in depth for increased time and memory complexities.

Taking maxdepth between 260 and 296 gives an advantage to the adver-
sary, in that Grover’s time complexity is increased while the attack complexity
remains the same. This counterintuitive conclusion actually accounts for the
advantage, for a quantum adversary, to be able to run efficiently a massively
parallel computation instead of a long, serial (and badly parallelized) one. In
the case of CSIDH, it appears much more meaningful to drop the maxdepth
assumption and set it to +∞.

8 Conclusion

We presented a comprehensive quantum security assessment of CSIDH. In par-
ticular, when compared to the cost of a classical key-exchange, we showed that
the parameters set in [7] actually seem to provide only around half of the ex-
pected security, as summarized in Table 7.

Protecting CSIDH Against this Attack. In Section 7, we provided extensive com-
plexity estimates of this attack on CSIDH, depending on the benchmark. In
particular, Kuperberg’s algorithm as a quantum circuit has a much lower depth
than Grover’s, a particularity that may help to overcome possible limitations
on running large serial quantum computations. We also reach the limits of the
NIST benchmarking: by forcing the quantum circuits to have a maximal depth,
in order to limit the capacities of a quantum adversary, we actually give an ad-
vantage to Kuperberg’s algorithm against Grover. Reaching the same security
levels would then require much higher parameters.

If we consider a gap and not the NIST benchmark, the base field size should
by multiplied by around 4, that is, for example a p of size around 2048 would
induce a gap of 264 between the attack and the key exchange.

Other Isogeny-based Schemes. The NIST candidate SIKE [17] is not affected by
this attack, as it uses supersingular elliptic curves on Fp2 .

We stated above that lattice reduction could be used in the quantum crypt-
analysis of the original Couveignes–Rostovtsev–Stolbunov scheme on ordinary
curves, as remarked by multiple authors [18, 7, 3], by setting up a quantum class
group action oracle alternative to the one given in [11], and we provided explicit
cost estimates.

Recently, De Feo, Kieffer and Smith [18] proposed to refine the CRS scheme
for ordinary curves in order to make it more practical, while maintaining the
same level of security against a quantum adversary. Their approach can be seen
as a hybrid between CRS and CSIDH. We showed that lattice techniques could
be adapted to such a situation, in order to achieve a better time complexity for
the quantum class group action oracle.

27

The recent signature scheme proposal SeaSign [16] uses the same security
assumptions as CSIDH, and is just as much affected.

Other Quantum Algorithms. We based the quantum attack of this paper on an
algorithm whose complexity is close to the one of [6]. The algorithm presented
in [25] may be more efficient in our cases, which would improve this attack.

Our estimates show that when attacking an isogeny-based primitive using the
commutative action of C`(O), such as CRS or CSIDH, the superposition oracle
for computing the action of C`(O) based on the ideals used by the scheme itself
is practical. Although its asymptotic time complexity is not optimal, in practice,
lattice reduction steps can be performed efficiently and make the overhead small
w.r.t the classical group action. In our experiments, this factor was reduced below
23 and we believe that a conservative security estimate should take it equal to 1.
Moreover, as very little is known on the explicit complexity of the hidden shift
problem in the general case, we consider that a conservative approach should
take into account the most time-efficient algorithm known.

Acknowledgements. The authors want to thank Maŕıa Naya-Plasencia for her
helpful comments, Alain Couvreur and Jean-Pierre Tillich for helpful discussions
on isogeny-based cryptography, Lorenz Panny and Joost Renes for their valuable
comments on a draft of this paper. Thanks to Jean-François Biasse for pointing
out the reference [3], Luca De Feo, Ben Smith and Steven Galbraith for helpful
comments on Kuperberg’s algorithm and discussions on the NIST benchmark.

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement no 714294 - acronym QUASYModo).

References

1. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986), https://doi.org/10.1007/BF02579403

2. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum cir-
cuits for the csidh: optimizing quantum evaluation of isogenies. Cryptol-
ogy ePrint Archive, Report 2018/1059 (2018), https://quantum.isogeny.org,
https://eprint.iacr.org/2018/1059

3. Biasse, J.F., Fieker, C., Jacobson, M.J.: Fast heuristic algorithms for computing
relations in the class group of a quadratic order, with applications to isogeny
evaluation. LMS Journal of Computation and Mathematics 19(A), 371–390 (2016)

4. Biasse, J.F., Jacobson, M.J., Iezzi, A.: A note on the security of CSIDH. CoRR
(2018), https://arxiv.org/abs/1806.03656

5. Biasse, J., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies
between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D. (eds.)
Progress in Cryptology - INDOCRYPT 2014 - 15th International Conference on
Cryptology in India, New Delhi, India, December 14-17, 2014, Proceedings. Lecture
Notes in Computer Science, vol. 8885, pp. 428–442. Springer (2014)

28

6. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanaly-
sis and implications. Cryptology ePrint Archive, Report 2018/432 (2018),
https://eprint.iacr.org/2018/432

7. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An efficient
post-quantum commutative group action. To appear in: Advances in Cryptology -
ASIACRYPT 2018 - 24th Annual International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Brisbane, Australia, December
02-06, 2018

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. Cryptology ePrint Archive, Report
2018/383 (2018), https://eprint.iacr.org/2018/383

9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) Advances in Cryptology - ASIACRYPT 2011 - 17th International
Conference on the Theory and Application of Cryptology and Information Security,
Seoul, South Korea, December 4-8, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 7073, pp. 1–20. Springer (2011)

10. Cheung, K.K.H., Mosca, M.: Decomposing finite abelian groups.
Quantum Information & Computation 1(3), 26–32 (2001),
http://portal.acm.org/citation.cfm?id=2011341

11. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in
quantum subexponential time. J. Mathematical Cryptology 8(1), 1–29 (2014),
https://doi.org/10.1515/jmc-2012-0016

12. Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields. In: Number
Theory Noordwijkerhout 1983, pp. 33–62. Springer (1984)

13. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

14. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular el-
liptic curves over Fp. Des. Codes Cryptography 78(2), 425–440 (2016),
https://doi.org/10.1007/s10623-014-0010-1

15. Ettinger, M., Høyer, P.: On quantum algorithms for noncommutative hidden sub-
groups. In: Meinel, C., Tison, S. (eds.) STACS 99. pp. 478–487. Springer Berlin
Heidelberg, Berlin, Heidelberg (1999)

16. Feo, L.D., Galbraith, S.D.: Seasign: Compact isogeny signatures from
class group actions. Cryptology ePrint Archive, Report 2018/824 (2018),
https://eprint.iacr.org/2018/824

17. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Mathematical Cryptology 8(3), 209–247 (2014),
https://doi.org/10.1515/jmc-2012-0015

18. Feo, L.D., Kieffer, J., Smith, B.: Towards practical key exchange from or-
dinary isogeny graphs. Cryptology ePrint Archive, Report 2018/485 (2018),
https://eprint.iacr.org/2018/485

19. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press (2012), https://www.math.auckland.ac.nz/ sgal018/crypto-book/crypto-
book.html

20. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular el-
liptic curve isogenies. IACR Cryptology ePrint Archive 2017, 774 (2017),
http://eprint.iacr.org/2017/774

21. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) Ad-
vances in Cryptology - EUROCRYPT 2008, 27th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,

29

April 13-17, 2008. Proceedings. Lecture Notes in Computer Science, vol. 4965, pp.
31–51. Springer (2008)

22. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s al-
gorithm to AES: quantum resource estimates. In: Takagi, T. (ed.) Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan,
February 24-26, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9606,
pp. 29–43. Springer (2016)

23. Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation
of class groups. Journal of the American mathematical society 2(4), 837–850 (1989)

24. Kuperberg, G.: A Subexponential-Time Quantum Algorithm for the Di-
hedral Hidden Subgroup Problem. SIAM J. Comput. 35(1), 170–188
(2005), http://dx.doi.org/10.1137/S0097539703436345; http://dblp.uni-
trier.de/rec/bib/journals/siamcomp/Kuperberg05

25. Kuperberg, G.: Another Subexponential-time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem. In: 8th Conference on the Theory of Quantum Compu-
tation, Communication and Cryptography, TQC 2013, May 21-23, 2013, Guelph,
Canada. pp. 20–34 (2013), http://dx.doi.org/10.4230/LIPIcs.TQC.2013.20

26. Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors
faster using quantum search. Des. Codes Cryptography 77(2-3), 375–400 (2015),
https://doi.org/10.1007/s10623-015-0067-5

27. Meyer, M., Reith, S.: A faster way to the csidh. Cryptology ePrint Archive, Report
2018/782 (2018), https://eprint.iacr.org/2018/782

28. NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016), https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf

29. Regev, O.: A Subexponential Time Algorithm for the Dihedral Hidden Sub-
group Problem with Polynomial Space. CoRR (2004), http://arxiv.org/abs/quant-
ph/0406151

30. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. Math. Program. 66, 181–199 (1994),
https://doi.org/10.1007/BF01581144

31. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994. pp. 124–134. IEEE Computer Society
(1994), http://dx.doi.org/10.1109/SFCS.1994.365700

32. Stolbunov, A.: Cryptographic schemes based on isogenies (2012)
33. The Sage Developers: SageMath, the Sage Mathematics Software System,

http://www.sagemath.org

34. Zalka, C.: Grover’s quantum searching algorithm is optimal. Physical Review A
60(4), 2746 (1999)

30

