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Abstract. CSIDH is a recent proposal for post-quantum non-interactive
key-exchange, presented at ASIACRYPT 2018. Based on supersingular
elliptic curve isogenies, it is similar in design to a previous scheme by
Couveignes, Rostovtsev and Stolbunov, but aims at an improved bal-
ance between efficiency and security. In the proposal, the authors sug-
gest concrete parameters in order to meet some desired levels of quantum
security. These parameters are based on the hardness of recovering a hid-
den isogeny between two elliptic curves, using a quantum subexponential
algorithm of Childs, Jao and Soukharev. This algorithm combines two
building blocks: first, a quantum algorithm for recovering a hidden shift
in a commutative group. Second, a computation in superposition of all
isogenies originating from a given curve, which the algorithm calls as a
black box.
In this paper, we give a comprehensive security analysis of CSIDH. Our
first step is to revisit three quantum algorithms for the abelian hidden
shift problem from the perspective of non-asymptotic cost. There are
many possible tradeoffs between the quantum and classical complexities
of these algorithms and all of them should be taken into account by
security levels. Second, we complete the non-asymptotic study of the
black box in the hidden shift algorithm.
This allows us to show that the parameters proposed by the authors of
CSIDH do not meet their expected quantum security.

Keywords: Post-quantum cryptography, isogeny-based cryptography, quantum
cryptanalysis, hidden shift problem

1 Introduction

Problems such as factoring and solving discrete logarithms, believed to be classi-
cally intractable, underlie the security of most asymmetric cryptographic prim-
itives in use today. After Shor found a quantum polynomial-time algorithm for
both [36], the cryptographic community has been actively working on replace-
ments, culminating with the ongoing NIST call for post-quantum primitives [31].

One of the families of problems studied concerns elliptic curve isogenies. In
this setting, we consider a graph, whose vertices are elliptic curves, and whose
edges are non constant morphisms (isogenies). The main hard problem under-
lying the security of these new systems, that should remain hard for a quan-
tum attacker, is finding a path between two curves. Originally, a key-exchange



based on ordinary curves was proposed independently by Rostovtsev and Stol-
bunov [37] and Couveignes [14]. Later, a quantum algorithm was given in [12],
that could find an isogeny between two such curves in subexponential time, a
problem for which classical algorithms still require exponential time. Although
it is not broken in quantum polynomial time, the scheme became considered as
too inefficient with respect to its post-quantum security.

Meanwhile, cryptography based on supersingular elliptic curves isogenies was
proposed [15]. In the NIST standardization process, the candidate SIKE, which is
a supersingular isogeny key-exchange protocol, was selected for the second round.
Indeed, the quantum algorithm for finding ordinary isogenies cannot be applied
for supersingular curves, whose graphs have a different structure. The best known
quantum algorithm for breaking SIKE has an exponential time complexity. Later
works on the security of the system have shown that it may be even more secure
than claimed, classically [1] and quantumly [25], and its original key sizes may
be decreased for more efficiency.

CSIDH. CSIDH is a new primitive proposed in [9]. Its name stands for “commu-
tative supersingular isogeny Diffie-Hellman”, since its point is to make isogeny-
based key exchange efficient in the commutative case. CSIDH uses supersingular
elliptic curves, with the additional constraint that they have to be defined over
Fp. In this case, the Fp-isogeny graph has a structure analogous to the ordinary
isogeny graph, and the subexponential quantum algorithm of [12] can still be
used to recover an isogeny between two given curves.

The difference with the Couveignes–Rostovtsev–Stolbunov scheme is that
CSIDH is defined in a more favorable setting: the isogenies can be computed
faster. Having a quantum subexponential attack on the scheme is not a fatal
issue, if the balance between efficiency and security can be turned to its ad-
vantage. However, this puts CSIDH in a peculiar situation. To the best of our
knowledge, it is the only post-quantum scheme actively studied3 against which
a quantum adversary enjoys more than a polynomial speedup. Indeed, all other
schemes, whether they are based on lattices, codes, or supersingular isogenies,
rely on problems whose structure seems harder to exploit by a quantum adver-
sary. The quantum acceleration seems at best quadratic, and even this speedup
can be difficult to achieve. For example, the asymptotic time for breaking SIKE
goes from a classical T to a quantum T 2/3 only.

In only one year, CSIDH has been the subject of many publications, showing
a renewed interest of the community for the protocols based on commutative
elliptic curve isogenies. The similarity of CSIDH to a regular non-interactive
Diffie-Hellman key exchange, and its conjectured quantum resistance, have made
it a very promising candidate for designing more asymmetric primitives based
on isogenies. After its publication in [9], it has been used in [19] to devise the

3 Unfortunately, CSIDH was published at ASIACRYPT 2018, hence after the begin-
ning of the NIST call, and it could not be submitted to the standardization process.
The number of related publications clearly indicates that despite its outsider status,
the scheme has attracted a wide interest.
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signature scheme SeaSign. Systems based on elliptic curve isogenies tend to have
small key sizes, but their computational efficiency is the main concern. CSIDH
and SeaSign were further studied and improved in [29, 24, 28, 17], the last two
works published at PQCRYPTO 2019.

Related work. Meanwhile, there has been a few works dealing with the security
of CSIDH. As mentioned above, this security boils down to the quantum time
for solving the underlying isogeny problem – the classical time will be massively
higher. While most NIST candidates could simply assume at most a square root
quantum speedup or take into account the asymptotic cost of the corresponding
algorithm, the bounds of security for CSIDH are deemed to be much tighter.
The asymptotic cost of running the CSIDH key-exchange was studied in [6], as
it is a crucial factor of the quantum time complexity for breaking CSIDH. Fur-
thermore, the number of quantum operations required to implement the 512-bit
instance of the CSIDH key-exchange has been studied in full detail in [4], pub-
lished at EUROCRYPT 2019. The authors remarked that a quantum adversary
running the subexponential attack on the scheme would need already strong
resources to implement it. This does not say however if the suggested CSIDH
parameters indeed match the security levels conjectured in [9], and therefore,
the computational efficiency of the scheme with respect to its security remained
unclear.

In a very recent and independent work, Peikert [32] proposed some concrete
cost estimates based on Kuperberg’s second algorithm [27], that we also analyze
in Section 3.4. As a different and complementary approach to ours, he allows
large amounts of quantumly-adressable classical RAM, while we considered this
algorithm with a small quantum memory and a large classical memory. The
technicalities to retrieve the secret key are also different, and he proposed some
simulations. The end result (the required number of group actions to compute)
obtained is 216, for CSIDH-512, and a larger estimate for the bigger instances.
Despite the differences, it is comparable with what we obtained. This is not
surprising, as the core algorithm is the same, and the considered instances of the
problem are rather small.

Contributions.

In this paper, we make a decisive move towards understanding the quantum
security of CSIDH. We revisit three quantum abelian hidden shift algorithms
from the available literature, that can be used to recover the secret key in a
CSIDH key-exchange, from the point of view of non-asymptotic cost. We give
a wide range of trade-offs between their quantum and classical time and mem-
ory complexities. This enables us to perform the first non-asymptotic quantum
security analysis of CSIDH. We show that the parameters given in [9] do not
meet the conjectured quantum security levels. Notably, the 512-bit parameters
proposed can be attacked with a total of 270 quantum gates (instead of an ex-
pected 285.9), with 285 classical computations. In isogeny-based cryptography,
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this is the first example of a “hybrid” attack that performs more classical than
quantum computations. In order to assert security levels, we would recommend
more conservative parameter choices, taking into account all known tradeoffs.
Depending on the cost metric, the initial parameters may require to be mul-
tiplied by a factor roughly between 6 and 12, which would have a significant
impact on the efficiency of the scheme.

Our study focuses on CSIDH, since this is currently the most studied cryp-
tographic scheme with an attack based on abelian hidden shifts, but our results
extend naturally to the original Couveignes–Rostovtsev–Stolbunov scheme or
the improved version of [20].

Paper Outline.

The cost of an attack on CSIDH depends on two factors: first, the complexity (in
queries, quantum and classical time) of an abelian hidden shift algorithm, which
makes black-box quantum queries to a commutative group action. Second, the
cost of a single query. The first part requires knowledge of quantum computing,
but not of the inner workings of CSIDH. The second part requires to know which
group we are dealing with and how many operations an isogeny computation
represents.

Section 2 below presents some preliminaries of quantum computing, the con-
text of the CSIDH group action, and the outline of the attack on CSIDH. We
next go into the details of this attack. In Section 3, we present the three main
quantum algorithms for finding abelian hidden shifts. Our contribution here is
to give non-asymptotic estimates of them, and to write a simple algorithm for
cyclic hidden shift (Algorithm 2), which can be easily simulated. These simula-
tions are available as Supplementary Material. In Section 4, we compute the cost
of a query, putting together the cost of a quantum evaluation of the scheme and
some lattice reduction overhead. We summarize our complexity analysis in Sec-
tion 5 and show why the parameters of [9] do not meet the conjectured security
levels.

2 Preliminaries

In this section, we first introduce some preliminaries of quantum computing and
post-quantum security. Next, we present the CSIDH rationale. We close this
section with the outline of the attack on CSIDH.

2.1 Quantum Computing

For the interested reader [30] provides a comprehensive introduction to quantum
computing. We merely review some basic notions.

Since the early years of quantum computing, the quantum circuit model has
arisen as the standard way of describing the computations running on a universal
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quantum computer. In this model, we stand at the logical level of quantum com-
puting, not the implementation level. We do not estimate the physical resources
required to emulate a quantum circuit.

A quantum circuit is made of wires and gates. Contrary to classical boolean
circuits, whose wires and logical gates can be implemented as hardware, a quan-
tum circuit represents a sequence of operations performed on some quantum
system. Each wire represents a qubit, which is a two-dimensional quantum sys-
tem. Qubits are often said to be the analogue of classical logical bits. The state of
a qubit is represented by a vector in a two-dimensional Hilbert spaceH, on an ar-
bitrary basis |0〉 , |1〉 which is denoted as the computational basis. In general, it is
of the form α |0〉+β |1〉 where α and β are complex numbers and |α|2 + |β|2 = 1.
The numbers |α|2 and |β|2 = 1 represent respectively the probabilities, upon
measurement of the qubit, to obtain |0〉 or |1〉.

Due to the property of entanglement, the state of an n-qubit system lies
in H2n = H⊗n, the tensor product of n copies of H. It has 2n basis vectors,
which are all n-bit strings. Measuring gives one of this n-bit strings with some
probability corresponding to its amplitude. In practice, considering the tensor
of two quantum states simply means that we put them together.

A quantum computation starts with all qubits initialized to |0〉 and disen-
tangled. It then performs a sequence of self-adjoint (linear) operators of H2n

and measurements. During the computation, due to constructive and destruc-
tive interferences, the probability amplitudes of the states on the computational
basis are modified. All amplitude should be moved towards n-big strings giving
a meaningful result (for example, towards the expected secret).

An ubiquitous building block in the quantum algorithms studied in this paper
is the Quantum Fourier Transform (QFT). We will note χ(x) = exp(2iπx). The
QFT maps a state |k〉, representing a number between 0 and N − 1, to:

1√
N

N−1∑
j=0

χ

(
jk

N

)
|j〉 .

Its name stems from the analogy with a classical discrete Fourier transform,
although the result is a superposition. If the input is |0〉 (0 modulo N), we get

a uniform superposition over all j ∈ {0, . . . , N − 1}: 1√
N

∑N−1
j=0 |j〉.

Except in the case where we assume an online oracle access to some quantum
black-box, which is not the case in this paper, the computations performed can be
ultimately broken down into quantum gates. If the qubits are analog of classical
bits, then quantum gates are analog of classical gates. They represent a set of
basic operations with cost 1. Most of the times, a single processor model is
assumed. At each time step, the quantum computer applies a gate to a qubit, or
to a pair of qubits; so it makes sense to define the quantum time complexity as
the total number of gates. The term “ancilla qubits” refers to additional qubits
initialized to |0〉 and returned afterwards to this state. The less ancillas we use,
the more often they have to be returned to |0〉. This can induce an overhead in
quantum gates.
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There exists multiple universal gate sets, all of which allow to perform all
meaningful quantum computations. We can only compare quantum time com-
plexities between two circuits written with the same gate set. Since we wish to
compare some of our complexities with [23], we use the standard “Clifford+T”
set for all our benchmarks. The Clifford set contains the controlled-Z (or CNOT)
gate and the Hadamard gate. The (single-qubit) Hadamard gate maps |0〉 to
1√
2
|0〉+ 1√

2
|1〉 and |1〉 to 1√

2
|0〉− 1√

2
|1〉. The (two-qubit) CNOT gate maps |x〉 |b〉

to |x〉 |x⊕ b〉. The (single-qubit) T-gate maps |0〉 to |0〉 and |1〉 to exp iπ/4 |1〉.
In currently envisioned quantum computing architectures, the T-gate seems the
most costly to implement fault-tolerantly, due to its behavior with quantum
error correcting codes. It is possible to realize the Toffoli gate with 7 T-gates.

2.2 What is Post-Quantum Security?

Despite the massive investments in engineering and research, quantum comput-
ers for “practical” cryptographic applications, such as finding RSA or ECDSA
keys, do not yet exist. However, post-quantum cryptography is a blooming field.
It relies on three assertions of common sense: first, updating standards is a slow
process. Second, if a quantum adversary appears at any point in the future, all
secrets shared with quantum-unsafe cryptography will be leaked. Third, param-
eters should be designed with a strong margin with respect to the best attacks
achieved in practice. In our case, we should not wait until a quantum computer
actually breaks some RSA parameters (if it does indeed).

With this in mind, the study of post-quantum schemes becomes relevant,
even if they have higher key sizes or computational cost than before. However,
as we are studying security with respect to a non-existent computer, we have to
agree on a common ground, in order to make security assumptions and claims
similarly to the classical setting. To date, such common ground is provided by
the NIST call [31]. While it is impossible to assert the real time, in seconds, of
running a quantum computation, we have the circuit model, in which we can
count operations. We do not know which universal gate set will be used or what
overhead we might expect for emulating a quantum circuit. We overcome this
by making comparisons instead.

The NIST provided 5 security levels, among which levels 1, 3 and 5 are
considered in [9]. These levels correspond respectively to a key-recovery on AES-
128, on AES-192 and AES-256. A cryptographic scheme, instantiated with some
parameter size, matches level 1 if there is no quantum key-recovery running
faster than quantum exhaustive search of the key for AES-128, and classical
key-recovery running faster than classical exhaustive search. The corresponding
quantum gate cost for the Clifford+T set (285.9, using Grover search) is given
in [23]. This means also that an algorithm making less than 285.9 quantum
computations (counted in the Clifford+T set) and 2128 classical computations
breaks the NIST level 1 security, as it runs below the security level of AES.
Hence, we can say that level 1 corresponds to 285.9 Clifford + T gates and 2128

classical computations.
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There can be some refinements of the cost metrics. For example, is the com-
parison sound if an algorithm uses a lot of memory, and the other one much
less? This is a meaningful question classically, and also quantumly, as maintain-
ing the coherence of a massive amount of qubits should be much harder than for
a smaller set. The NIST call also gives an additional parameter MAXDEPTH. It
supposes that the depth of the attacker’s quantum circuit may be limited to, say,
240. The depth is the length of the longest sequence of gates in the circuit. There
exists quantum algorithms inherently easy to parallelize, in which many gates
can be applied concurrently. We do not consider MAXDEPTH in this paper,
and merely point out that most of the algorithms we present can run efficiently
with limited depth.

Simulations in the Quantum Circuit Model. Some of our work relies on simula-
tions of Kuperberg’s algorithm for finding an abelian hidden shift. This algorithm
can be described as a single, massive quantum circuit, but it is better under-
stood as a sequence of quantum computations and measurements. The result of
each measurement controls the next quantum computations applied. The pre-
cise time complexity, i.e. the number of quantum gates in total, can be analyzed
asymptotically. But since intermediate measurements are probabilistic, the most
precise way to study the time complexity of this algorithm is to simulate it, by
randomly selecting outputs at each measurement and counting the number of
subsequent operations to perform. The key fact is that these simulations remain
sound in the quantum circuit model. They give an average quantum time which
is meaningful, although not exact.

2.3 Context of CSIDH

Let p > 3 be a prime number. In general, supersingular elliptic curves over Fp
are defined over a quadratic extension Fp2 . However, the case of supersingular
curves defined over Fp is special. When O is an order in an imaginary quadratic
field, each supersingular elliptic curve defined over Fp having O as its Fp-rational
endomorphism ring corresponds to an element of C`(O), the ideal class group
of O. Moreover, a rational `-isogeny from such a curve corresponds to an ideal
of norm ` in C`(O). The (commutative) class group C`(O) acts on the set of
supersingular elliptic curves with Fp-rational endomorphism ring O.

One-way Group Action. All use cases of the CSIDH scheme can be pinned down
to the definition of a one-way group action (this is also the definition of a hard
homogeneous space by Couveignes [14]). A group G acts on a set X. Operations
in G, and the action g ∗ x for g ∈ G, x ∈ X, are easy to compute. Recovering g
given x and x′ = g ∗ x is hard. In the case of CSIDH, X is a set of Montgomery
curves of the form EA : y2 = x3 +Ax2 +x for A ∈ Fp, and the group G is C`(O)
for O = Z[

√
−p]. Taking g ∗ x for an element in C`(O) (i.e. an isogeny) and a

curve corresponds to computing the image curve of x by this isogeny.
This action of the class group already exists in the ordinary case, which is

the reason of the similarity between CSIDH and the Couveignes – Rostovtsev
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– Stolbunov scheme. Quantum algorithms for recovering abelian hidden shifts
solve exactly this problem of finding g when G is commutative. There exists a
family of such algorithms, initiated by Kuperberg. The variant of [12] targets
precisely the context of ordinary curves, and it can be applied to CSIDH. But
a comprehensive security analysis of the scheme should consider all algorithms
available in the literature.

Representation of C`(O). The prime p is chosen with a very specific form: p =
4 ·`1 · · · `u−1 where `1, . . . , `u are small primes. The number u should be chosen
the highest possible in order to speed up the key exchange.

This enables to represent the elements of C`(O) (hence, the isogenies) in a
way that is now specific to CSIDH, and the main reason of its efficiency. Indeed,
since each of the `i divides −p−1 = π2−1, the ideal `iO splits and li = (`i, π−1)
is an ideal in O. The image curves by these ideals can be computed efficiently [9,
Section 8].

The authors of CSIDH consider a subset of C`(O), with all ideals of the form∏u
i=1[li]

ei where ei ∈ {−m. . .m} for some small m, and [li] is the class of li. If we
suppose that these products fall randomly in C`(O), which has O(

√
p) elements,

it suffices to take 2m + 1 ' p1/(2u) in order to span the group C`(O) or almost
all of it. Since a greater m yields more isogeny computations, u should be the
greatest possible. With this constraint in mind, we derive optimal parameters
for the three security levels from [9] in Table 1.

Table 1: Approximate parameters for the three security levels of [9].

Level Expected quantum security log2 p u m

NIST 1 As hard as AES-128 key-recovery 512 74 5
NIST 3 As hard as AES-192 key-recovery 1024 132∗ 7∗

NIST 5 As hard as AES-256 key-recovery 1792 209∗ 10∗

*In [9], a prime p is given only for the first instance. The value of u given for the
other instances is an upper bound.

Once we know the decomposition of an ideal as a product
∏u
i=1[li]

ei for
−m ≤ ei ≤ m, we may simply represent it as the sequence ē = (e1 . . . eu).
Computing operations in the class group is easy and only costs multiplications
and inversions modulo p. Given an element of C`(O) of the form [b] =

∏u
i=1[li]

ei ,
we compute E′ = [b] ·E by applying a sequence of

∑
i ei isogenies. The CSIDH

public keys are curves. The secret keys are isogenies with this representation.

CSIDH Original Security Analysis in [9]. The problem underlying the
security of CSIDH is: given an entry point E0 in the isogeny graph, given a
Montgomery curve EA, recover the isogeny [b] ∈ C`(O) such that EA = [b] ·E0.
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Moreover, the ideal b that represents it should be sufficiently “small”, so that
the action of [b] on a curve can be evaluated.

The authors study different ways of recovering [b]. The complexity of these
methods depends on the size of the class group C`(O), which is O(

√
p).

• Classically, the best method seems the exhaustive key search of [b] using a
meet-in-the-middle approach: it costs O(p1/4).

• Quantumly, they use the cost given in [12] for ordinary curves:

exp
(

(
√

2 + o(1))
√

logN log logN
)
, where N = #C`(O)

2.4 Attack Outline

Given EA, we find [b] such that EA = [b] · E0. We do not exactly retrieve the
secret key ē which was selected at the beginning, but we find an alternative vector
ē′ whose L1 norm is bounded by ||ē||1 multiplied by a “small” factor. This is
enough for practical purposes: using the equivalent secret key, i.e. computing
the corresponding isogeny, will cost little more than for the legitimate user. All
our concrete estimates will be given in the next sections.

An attack on CSIDH runs as Algorithm 1.

Algorithm 1 Key Recovery

Input: The elements ([l1], . . . , [lu]), two curves E0 and EA defined over Fp, a gen-
erating set of C`(O): ([g1], . . . , [gk])
Output: A vector (e1, . . . , eu) such that

∏u
i=1[li]

ei · E0 = EA

1: Define f : [x] ∈ C`(O) 7→ [x] · E0 and g : [x] ∈ C`(O) 7→ [x] · EA.
2: Apply a quantum abelian hidden shift algorithm, which recovers the “shift” be-

tween f and g using a certain number of queries to them. Obtain [s]
3: Decompose [s] as

∏u
i=1[li]

ei with small ei.
4: return (e1, . . . , eu)

To evaluate these functions f and g, we need to compute [x] · E for [x] in
C`(O), in superposition over [x], for some curve E. This means, in short, com-
puting [x]·E for any element of the class group. In [12], in the context of ordinary
curves, the authors show how to decompose any ideal as a product of smaller
ones, and they succeed in bounding the cost of evaluating the corresponding
isogenies by a subexponential factor.

The crucial difference with CSIDH is that the scheme provides an additional
structure, which can be used to compute [x] ·E more efficiently. Indeed, we have
supposed that the class group is spanned by products of the form [l1]y1 . . . [lu]yu

with small yi. If we are able to rewrite [x] as such a product, then the evaluation
of [x] · E costs no more than the “legitimate” evaluation of the scheme. This is
where lattice reduction intervenes. It was mentioned in [14], considered in [5] to
obtain short representations of large-degree isogenies as elements of C`(O) and
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further followed in [6] where, independently from our work, the authors study
how to attack the CSIDH scheme using this efficient isogeny evaluation oracle.

The (quantum) cost of the attack is roughly:

Number of evaluations of
f and g

× Cost of computing [x] · E for
any [x] in superposition

and there are some classical pre- and postcomputations.

In general, the short representation of x is not as short as in a“legitimate”
CSIDH key-exchange. There is some approximation overhead, related to the
quality of the lattice reduction that we performed. Our analysis will show that
this overhead is minor (less than 23) for the CSIDH original parameters, but it
is actually asymptotically subexponential (see [6]). The total cost becomes:

Number of
evaluations of f

and g
× Lattice reduction

overhead
×

Cost of computing [x] · E for an
[x] of the form [l1]e1 . . . [lu]eu ,

with −m ≤ ei ≤ m.

Since we give for the first time non-asymptotic estimates for the first and
second terms, we now can use the estimations of [4] for the third term, with two
limitations. First, the authors of [4] gave an exact number of operations, but
only for a CSIDH-512 isogeny evaluation; we need to extrapolate roughly for
bigger parameters. Second, they consider the same bound m for all exponents.
As some isogenies are easier to compute than others (for example [l1] is faster
than [lu]), one could take different bounds. This means that our quantum gate
counts may be slightly overestimated.

3 Quantum Abelian Hidden Shift Algorithms

In this section, we recall the literature on quantum algorithms for solving the
hidden shift problem in commutative (abelian) groups and present in detail three
algorithms. For each of them, we give tradeoff formulas and some non-asymptotic
estimates in the context of CSIDH. The first one (Algorithm 2) is a new variant
of [26] for cyclic groups, whose behavior is easy to simulate. The second is by
Regev [33] and Childs, Jao and Soukharev [12]. The third is Kuperberg’s second
algorithm [27].

3.1 Context

The hidden shift problem is defined as follows.

Problem 1 (Hidden shift problem). Let (G,+) be a group, f, g : G → G two
permutations such that there exists s ∈ G such that, for all x, f(x) = g(x+ s).
Find s.
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Classically, this problem essentially reduces to a collision search, but in the
case of commutative groups, there exists quantum subexponential algorithms.
The first result on this topic was an algorithm with low query complexity, by
Ettinger and Høyer [18], which needs O(log(N)) queries and O(N) classical com-
putations to solve the hidden shift in Z/NZ. The first time-efficient algorithms
were proposed by Kuperberg in [26]. His Algorithm 3 is shown to have a com-

plexity in quantum queries and memory of Õ
(

2
√

2 log2(3) log2(N)
)

for the group

Z/NZ for smooth N , and his Algorithm 2 is in O
(

23
√

log2(N)
)

, for any N . This

has been followed by a memory-efficient variant by Regev, with a query complex-
ity in LN (1/2,

√
2) and a polynomial memory complexity, in [33], which has been

generalized by Kuperberg in [27], with an algorithm in Õ
(

2
√

2 log2(N)
)

quan-

tum queries and classical memory, and a polynomial quantum memory. Regev’s
variant has been generalized to arbitrary commutative groups in the appendix
of [12], with the same complexity. A complexity analysis of this algorithm with
tighter exponents can be found in [7].

Cyclic Groups and Concrete Estimates. The Õ are not practical for con-
crete estimates of quantum costs. However, in [8], the authors showed that the
polynomial of a variant of Kuperberg’s original algorithm is a constant around
1 if N is a power of 2, and that the problem is easier if the group is not one big
cyclic group. In the context of CSIDH, the class group C`(O) does not have a
power of 2 as cardinality, but in most cases, its odd part is cyclic, as shown by
the Cohen–Lenstra heuristics [13]. So we choose to approximate the class group
as a cyclic group. This is why we propose in what follows a generalization of [8,
Algorithm 2] that works for any N , at essentially the same cost.

In order to apply Kuperberg’s algorithm, we need a representation of the
class group. We can use the quantum polynomial-time algorithm of [11], as done
in [12]. We are only interested in the subgroup spanned by ([l1], . . . , [lu]), (which
should be close to the total group): we can get it using the same method. We
then obtain a generating set ([g1], . . . , [gg]).

3.2 A First Hidden Shift Algorithm

In this section, we present a generic hidden shift algorithm for Z/NZ, which
allows us to have the concrete estimates we need. This presentation, and the
following, uses the notations of Section 2.1. We suppose an access to the quantum
oracle that maps |x〉 |0〉 |0〉 to |x〉 |0〉 |f(x)〉, and |x〉 |1〉 |0〉 to |x〉 |1〉 |g(x)〉.

Producing the Labeled Qubits. We begin by constructing the uniform superposi-
tion on N × {0, 1}, that is,

1√
2N

N−1∑
x=0

|x〉 (|0〉+ |1〉) |0〉 .

11



Then, we apply the quantum oracle, and get

1√
2N

N−1∑
x=0

|x〉 (|0〉 |f(x)〉+ |1〉 |g(x)〉) .

We then measure the final register. We obtain a value y = f(x0) = g(x0 + s)
for some random x0. The two first registers collapse on the superposition that
corresponds to this measured value:

1√
2

(|x0〉 |0〉+ |x0 + s〉 |1〉) .

Finally, we apply a Quantum Fourier Transform (QFT) on the first register
and measure it, we obtain a label ` and the state

|ψ`〉 =
1√
2

(
|0〉+ χ

(
s
`

N

)
|1〉
)
, χ (x) = exp (2iπx) .

The meaningful information in |ψ`〉 does not lie in the respective probability
amplitudes of |0〉 and |1〉, but in the phase χ

(
s `N
)
, which depends on s and `

N ,
and contains information on s. We now apply a combination routine on pairs of
labeled qubits (|ψ`〉 , `) as follows.

Combination Step. If we have obtained two qubits |ψ`1〉 and |ψ`2〉 with their
corresponding labels `1 and `2, we can write the (disentangled) joint state of
|ψ`1〉 and |ψ`2〉 as:

|ψ`1〉 ⊗ |ψ`2〉 =
1

2

(
|00〉+ χ

(
s
`1
N

)
|10〉+ χ

(
s
`2
N

)
|01〉+ χ

(
s
`1 + `2
N

)
|11〉

)
.

We apply a CNOT gate, which maps |00〉 to |00〉, |01〉 to |01〉, |10〉 to |11〉 and
|11〉 to |10〉. We obtain the state:

1

2

(
|00〉+ χ

(
s
`2
N

)
|01〉+ χ

(
s
`1 + `2
N

)
|10〉+ χ

(
s
`1
N

)
|11〉

)
.

We measure the second qubit. If we measure 0, the first qubit collapses to:

1√
2

(
|0〉+ χ

(
s
`1 + `2
N

)
|1〉
)

= |ψ`1+`2〉

and if we measure 1, it collapses to:

1√
2

(
χ

(
s
`2
N

)
|0〉+ χ

(
s
`1
N

)
|1〉
)

= χ

(
s
`2
N

)
|ψ`1−`2〉 .

A common phase factor has no incidence, so we can see that the combination ei-
ther produces |ψ`1+`2〉 or |ψ`1−`2〉, with probability 1

2 . Furthermore, the measure-
ment of the first qubit gives us which of the labels we have obtained. Although
we cannot choose between the two cases, we can perform favorable combinations:
we choose `1 and `2 such that `1 ± `2 is a multiple of 2 with greater valuation
than `1 and `2 themselves.

12



Goal of the Combinations. In order to retrieve s, we want to produce the qubits
with label 2i and apply a Quantum Fourier Transform. Indeed, we have

QFT

n−1⊗
i=0

|ψ2i〉 =
1

2n/2
QFT

2n−1∑
k=0

χ

(
ks

N

)
|k〉

=
1

2n

2n−1∑
t=0

(
2n−1∑
k=0

χ

(
k

(
s

N
+

t

2n

)))
|t〉 .

The amplitude associated with t is 1
2n

∣∣∣∣ 1−χ(2n( sN+ t
2n ))

1−χ( sN+ t
2n )

∣∣∣∣. If we note θ = s
N +

t
2n , this amplitude is 1

2n

∣∣∣ sin(2nπθ)sin(πθ)

∣∣∣. For θ ∈
[
0; 1

2n+1

]
, this value is decreasing,

from 1 to 1
2n sin π

2n+1
' 2

π .

Hence, when measuring, we obtain a t such that
∣∣ s
N + t

2n

∣∣ ≤ 1
2n+1 with

probability greater than 4
π2 . Such a t always exists, and uniquely defines s if

n > log2(N).

From 2n to any N . If N is a power of two, all of this works immediately. But
we want to apply this simple algorithm to any cyclic group, with any N . The
idea is to not take into account the modulo N in the combination of labels. We
only want combinations such that

∑
k ±`k = 2i. At each combination step, we

expect the 2-valuation of the output label to increase (we collide on the lowest
significant bits), but its maximum size can also increase: `1 + `2 is bigger than
`1 and `2. However, the size can increase of at most one bit per combination,
while the lowest significant 1 position increases on average in

√
n. Hence, the

algorithm will eventually produce the correct value.
We note val2(x) = maxi 2i|x the 2-valuation of x. In Algorithm 2, each label

is associated to its corresponding qubit, and the operation ± corresponds to the
combination.

Intuitively, the behavior of this algorithm will be close to the one of [8], as
we only have a slightly higher amplitude in the values, and a few more elements
to produce. The number of oracle queries Q is exactly the number of labeled
qubits that are used during the combination step. Empirically, we only need to
put 3 elements at each step in R in order to have a good success probability. This
algorithm is easily simulated, because we only need to reproduce the combination
step, by generating at random the new labels obtained at each combination. We
estimate the total number of queries to be around 12× 21.8

√
n.

We give the cost estimates for Algorithm 2 in Table 3, for group sizes corre-
sponding to the CSIDH parameters. We consider the number of labeled qubits
which are stored in memory, and the total number of oracle queries required to
construct them. A slight overhead in time stems from the probability of success
of 4

π2 ; the procedure needs to be repeated at most 4 times. In CSIDH, each
query has a high quantum time complexity. The number of CNOT quantum

13



Algorithm 2 Hidden shift algorithm for Z/NZ
Input: N , a number of queries Q, a quantum oracle access to f and g such that
f(x) = g(x+ s), x ∈ Z/NZ
Output: s

1: Generate Q random labels in [0;N) using the quantum oracles
2: Separate them in pools Pi of elements e such that val2(x) = i
3: i← 0
4: R = ∅
5: n← blog2(N)c.
6: while some elements remain do
7: if i ≤ n then
8: Pop a few elements e from Pi, put (e, i) in R.
9: end if

10: for (e, j) ∈ R do
11: if val2(e− 2j) = i then
12: Pop a of Pi which maximizes val2(a+ e− 2j) or val2(e− 2j − a)
13: e = e± a
14: end if
15: end for
16: if {(2i, i)|0 ≤ i ≤ n} ⊂ R then
17: Apply a QFT on the qubits, measure a t
18: s←

⌈ −Nt
2n+1

⌋
mod N

19: return s
20: end if
21: while |Pi| ≥ 2 do
22: Pop two elements (a, b) of Pi which maximizes val2(a+ b) or val2(a− b)
23: c = a± b
24: Insert c in the corresponding Pj

25: end while
26: i← i+ 1
27: end while
28: return Failure

Table 2: Simulation results for Algorithm 2, for 90% success

log2(N) log2(Q) 1.8
√

log2(N) + 2.3

20 10.1 10.3
32 12.4 12.5
50 15.1 15.0
64 16.7 16.7
80 18.4 18.4
100 20.3 20.3
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gates applied during the combination step (roughly equal to the number of la-
beled qubits at the beginning) is negligible. Notice also that the production of
the labeled qubits can be perfectly parallelized.

Table 3: Cost estimates for Algorithm 2.

log2(p) n Queries (log2) Number of qubits (log2)

512 256 33 31
1024 512 45 43
1792 896 58 56

3.3 An Approach Based on Subset-sums

The previous algorithm is only a variant of the first subexponential algorithm
by Kuperberg in [26]. We develop here on a later approach used by Regev [33]
and Childs, Jao and Soukharev [12] for odd N . Multiple tradeoffs have been
analyzed in [7].

Subset-sum Combination Routine. The main idea is to change the way the
labeled qubits are combined. Instead of a single CNOT, one can consider the
system formed by k qubits:⊗

i≤k

|ψ`i〉 =
∑

j∈{0,1}k
χ

(
j · (`1, . . . , `k)

N
s

)
|j〉

and apply
|x〉 |0〉 7→ |x〉 |bx · (`1, . . . , `k)/Bc〉

for a given B.
Measuring the second register yields a value V = bx · (`1, . . . , `k)/Bc, the

state becoming ∑
bj·(`1,...,`k)/Bc=V

χ

(
j · (`1, . . . , `k)

N
s

)
|j〉 .

In order to get a labeled qubit, one can simply project on any pair (j1, j2)
with j1 and j2 among this superposition of j. This is easy to do as long as
the j are classically known. They can be computed by solving the equation
bj · (`1, . . . , `k)/Bc = V , which is an instance of the subset-sum problem.

This labeled qubit obtained is of the form:

χ

(
j1 · (`1, . . . , `k)

N
s

)
|j1〉+ χ

(
j2 · (`1, . . . , `k)

N
s

)
|j2〉
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which, up to a common phase factor, is:

|j1〉+ χ

(
(j2 − j1) · (`1, . . . , `k)

N
s

)
|j2〉 .

We observe that the new label in the phase, given by (j2 − j1) · (`1, . . . , `k),
is less than B. If we map j1 and j2 respectively to 0 and 1, we obtain a labeled
qubit |ψ`〉 with ` < B. Now we can iterate this routine in order to get smaller
and smaller labels, until the label 1 is produced.

If N is odd, one reaches the other powers of 2 by multiplying all the initial
values by 2−a and then applying normally the algorithm.

Algorithm 3 Combination routine

Input: (|ψ`1〉 , . . . , |ψ`k 〉), r
Output: |ψ`′〉, `′ < B

1: Tensor
⊗

i |ψ`i〉 =
∑

j∈{0,1}k χ
(

j·(`1,...,`k)
N

s
)
|j〉

2: Add an ancilla register, apply |x〉 |0〉 7→ |x〉 |bx · (`1, . . . , `k)/Bc〉
3: Measure the ancilla register, leaving with

V and
∑

bj·(`1,...,`k)/Bc=V

χ

(
j · (`1, . . . , `k)

N
s

)
|j〉

4: Compute the corresponding j
5: Project to a pair (j1, j2).

The register is now χ
(

j1·(`1,...,`k)
N

s
)
|j1〉+ χ

(
j2·(`1,...,`k)

N
s
)
|j2〉

6: Map |j1〉 to |0〉, |j2〉 to |1〉
7: Return |0〉+ χ

(
(j2−j1)·(`1,...,`k)

N
s
)
|1〉

There are 2k sums, and N/B possible values, hence we can expect to have
2kB/N solutions. If we take k ' log2(N/B), we can expect 2 solutions on aver-
age. In order to obtain a labeled qubit in the end, we need at least two solutions,
and we need to successfully project to a pair (j1, j2) if there are more than two
solutions.

The case where a single solution exists cannot happen more than half of the
time, as there are twice many inputs as outputs. We consider the case where we
have strictly more than one index j in the sum. If we have an even number of
such indices, we don’t have any issue: we simply divide the indices j into a set of
pairs, project onto a pair, and map transform one of the remaining indexes to 0
and the other to 1. If we have an odd number of such indices, since it is greater
or equal than 3, we single out a solitary element, and do the projections as in
the even case. The probability to fall on this element is less than 1

t ≤
1
3 if there

are t solutions, hence the probability of success in this case is more than 2
3 .
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Complete Algorithm. The previous combination routine can be used recur-
sively to obtain the value we want.

Linear number of queries. Algorithm 3 can directly produce the label 1 if we
choose k = dlog2(N)e and B = 2. In that case, we will either produce 1 or 0
with a uniform probability, as the input labels are uniformly distributed.

If the group has a component which is a small power of two, the previous
routine can be used with B = 1 in order to force the odd cyclic component at
zero, at which point the algorithms of [8] can be used, with a negligible overhead.

Overall, the routine can generate the label 1 using log2(N) queries with
probability one half. This also requires to solve one subset-sum instances, which
can be done in only Õ

(
20.291 log2(N)

)
classical time and memory [3].

We need to obtain log2(N) labels, and then we can apply the Quantum
Fourier Transform as before, to recover s, with a success probability 4

π2 . So we
expect to reproduce this final step 3 times. The total number of queries will be
8 log2(N)2, with a classical time and memory cost in Õ

(
20.291 log2(N)

)
.

We note that this variant is the most efficient in quantum resources, as we
limit the quantum queries to a polynomial amount. The classical complexity
remains exponential.But we replace the complexity of a collision search (with an
exponent 0.5) by that of the subset-sum problem (an exponent of 0.291).

In the case N ' 2256, by taking into account the success probability of the
final Quantum Fourier Transform, we can estimate the cost to be roughly 219

quantum queries and 286 classical time and memory.

Time/query tradeoffs. There are many possible tradeoffs, as we can adjust the
number of steps and their sizes.

For example, we can proceed in two steps: the first step will produce values
smaller than

√
N , and the second will use them to produce the value 1.

The subset-sum part of each step, done classically, will cost Õ
(
20.291 log2(N)/2

)
time and memory, and it has to be repeated log(N)2/4 times per value.

Hence, the total cost in queries is in O(log(N)3), with a classical time and

and memory cost in Õ
(
20.291 log2(N)/2

)
.

For N ' 2256, we will use Algorithm 3 to obtain roughly 130 values that are
smaller than 2128, and then apply Algorithm 3 on them to obtain the value 1.
We can estimate the cost to be roughly 224 quantum queries, 260 classical time
and 245 memory.

This method generalizes to any number of steps. If we want a subexponential
classical time complexity, then the number of steps has to depend of N . Many
tradeoffs are possible, depending on the resources of the quantum attacker. This
is developed in [7].

3.4 Kuperberg’s Second Algorithm

This section revisits the algorithm from [27] and builds upon tradeoffs developed
in [7]. We remark that the objects we were using in the two previous algorithms
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were of the form

|ψ`〉 =
1√
2

(
|0〉+ χ

(
s
`

N

)
|1〉
)

.

This is a particular case of qubit registers of the form

∣∣ψ(`0,...,`k−1)

〉
=

1√
k

∑
0≤i≤k−1

χ

(
s
`i
N

)
|i〉 .

These multi-labeled qubit registers become the new building blocks. They
are not indexed by a value `, but by a vector (`0, . . . , `k−1). We can remark that
if we consider the joint state (tensor) of j single-label qubits |ψ`i〉 , we directly
obtain a multi-labeled qubit register of this form:⊗

0≤i≤j−1

|ψ`i〉 =

∣∣∣∣ψ(
`′0,...,`

′
2j−1

)〉 , with `′k = k · (`0, . . . , `j−1).

Combination Routine. These multi-labeled qubits, as before, can be com-
bined to obtain better ones, by computing and measuring a partial sum, as
presented in Algorithm 4.

Algorithm 4 A general combination routine

Input: (
∣∣ψ(`0,...,`M−1)

〉
,
∣∣∣ψ(`′0,...,`

′
M−1

)

〉
) : ∀i, `i < 2a, `′i < 2a, r

Output:
∣∣∣ψ(v0,...,vM′−1)

〉
: ∀i, vi < 2a−r

1: Tensor
∣∣ψ(`0,...,`M−1)

〉 ∣∣∣ψ(`′0,...,`
′
M−1

)

〉
=
∑M−1

i,j=0 χ
(

s(`i+`′j)

N

)
|i〉 |j〉

2: Add an ancilla register, apply |i〉 |j〉 |0〉 7→ |i〉 |j〉
∣∣b(`i + `′j)/2

a−rc
〉

3: Measure the ancilla register, leaving with

V and
∑

i,j:b(`i+`′j)/2
a−rc=V

χ

(
s(`i + `′j)

N

)
|i〉 |j〉

4: Compute the M ′ corresponding pairs (i, j)
5: Apply to the state a transformation f from (i, j) to [0;M ′ − 1].
6: Return the state and the vector v with vf(i,j) = `i + `′j .

If Algorithm 3 was essentially a subset-sum routine, Algorithm 4 is a 2-
list merging routine. Step 4 simply consists in iterating trough the sorted lists
of (`0, . . . , `M−1) and (`′0, . . . , `

′
M−1) to find the matching values (and this is

exactly a classical 2-list problem). Hence, it costs Õ(M) classical time, with the
lists stored in classical memory. The memory cost is max(M,M ′). The quantum
cost comes from the computation of the partial sum and from the relabeling.
Both can be done sequentially, in O(max(M,M ′)) quantum time.
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This routine can also be generalized to merge more than two lists. The only
difference will be that at Step 4, we will need to apply another list-merging
algorithm to find all the matching values. In particular, if we merge 4k lists, we
can use the Schroeppel-Shamir algorithm [35], to obtain the solutions in O(M2k)
classical time and O(Mk) classical memory.

Once we are finished, we have to project the vector to a pair of value whose
difference is 1, as in Algorithm 3. Hence, the success probability is the same,
better than 1/3.

Complete Algorithm. The complete algorithm uses the combination routine 4
recursively. As before, the final cost depends on the size of the lists, the number
of steps and the number of lists we merge at each step. Then, we can see the
algorithm as a merging tree.

The most time-efficient algorithms use 2-list merging. The merging tree is
binary, the number of lists at each level is halved. We can save some time if we
allow the lists to double in size after a merging step. In that case, the merging
of two lists of size 2m to one list of size 2m+1 allows to constrain m − 1 bits4,
at a cost of O(2m) in classical and quantum time and classical memory. If we
have e levels in the tree and begin with lists of size 2`0 , then the quantum query
cost is `02e. The time cost will be in Õ

(
2`0+e

)
, as the first step is performed 2e

times, the second 2e−1 times, and so on.
Allowing the lists to grow saves some time, but costs more memory. To save

memory, we can also combine lists and force the output lists to be of roughly
the same size. Hence, the optimal algorithm will double the list sizes in the first
levels until the maximal memory is reached, when the list size has to stay fixed.

Overall, let us omit polynomial factors and denote the classical and quantum
time as 2t. We use at most 2m memory and make 2q quantum queries, begin
with lists of size 2`0 and double the list sizes until we reach 2m. Hence, the list
size levels are distributed as in Figure 1. We have q equal the number of levels,
and t equals the number of levels plus `0. As each level constrains as many bits
as the log of its list size, the total amount of bits constrained by the algorithm
corresponds to the hatched area.

Hence, with max(m, q) ≤ t ≤ m + q, we can solve the hidden shift problem
for N < 2n with

−1

2
(t−m− q)2 +mq = n

We directly obtain the cost of Õ
(

2
√
2n
)

from [27] if we consider t = m = q.

Classical/Quantum Tradeoffs. The previous approach had the inconvenient of
using equal classical and quantum times, up to polynomial factors. In practice,
we can expect to be allowed more classical operations than quantum gates. We
can obtain different tradeoffs by reusing the previous 2-list merging tree, and

4 As in the end, we only need a list of size two, the bit we lose here is regained in the
last step.
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0
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t− q = `0

m
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q

n

Fig. 1: Size of the lists in function of the tree level, in log2 scale, annotated with
the different parameters.

seeing it as a 2k-list merging tree. That is, we see k levels as one, and merge the
2k lists at once. This allows to use the Schroeppel-Shamir algorithm for merging,

with a classical time in 22
k/2 and a classical memory in 22

k/4. This operation is
purely classical, as we are computing lists of labels, and it does not impact the
quantum cost. Moreover, while we used to have a constraint on log(k)m bits, we
now have a constraint on (k − 1)m bits.

For k = 2, omitting polynomial factors, with a classical time of 22t and
quantum time of 2t, a memory of 2m, a number of quantum queries of 2q and
max(m, q) ≤ t ≤ m+ q, we can solve the hidden shift problem for N < 2n with

−1

2
(t−m− q)2 +mq = 2n/3

In particular, if we consider that t = m = q, we obtain an algorithm with a

quantum time and query and classical memory complexity of Õ
(

22
√

n
3

)
and a

classical time complexity of Õ
(

24
√

n
3

)
.

Concrete estimates. If we consider N ' 2256, then using the 2-list merging
method we can succeed with 223 initial lists of size 2, and doubling the size of the
list at each level, until we obtain a list of size 224. In that case, we obtain classical
and quantum time cost in 239, a classical memory in 229 and 234 quantum queries.

Using the 4-list merging, we can achieve the same in 10 steps with roughly
255 classical time, 223 classical memory, 235 quantum time, 231 quantum queries.

Other tradeoffs are also possible. We can reduce the number of queries by
beginning with larger lists. We can also combine the k-list approach with the
subset-sum approach to reduce the quantum time (or the classical memory, if
we use a low-memory subset-sum algorithm).

For example, if we consider a 4-level tree, with a 4-list merging, an initial
list size of 224 and lists that quadruple in size, the first combination step can
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constrain 24×3−2 = 70 bits, the second 26×3−2 = 76 and the last 28×4−1 =
111 bits (for the last step, we do not need to end with a large list, but only with
an interesting element, hence we can constrain more). We bound the success
probability by the success probability of one complete merging (greater than
1/3) times the success probability of the quantum Fourier Transform (greater
than π2/4), for a total probability greater than 1/8.

The cost in memory is of 230, as we store at most 4 lists of size 228. For the
number of quantum queries: there are 43 = 64 initial lists in the tree, each costs
24 queries (to obtain a list of 224 labels by combining). We have to redo this
256 times to obtain all the labels we want, and to repeat this 8 times due to the
probability of success. Hence, the query cost is 24 × 64 × 256 × 8 ' 222. The
classical time cost is in 256× 8× 3× 228×2 ' 269. The quantum time cost is in
256× 8× 3× 228 ' 241.

4 Computing the CSIDH Group Action

The previous section dealt with the cost of quantum abelian hidden shift algo-
rithms, abstracting out the functions f and g that we query in these algorithms.
In the context of CSIDH, a “query” means computing the group action, [x] · E
with some curve E and an ideal [x], with an arbitrary representation. In this
section, we show that this costs only a little more than an evaluation of [li]

xi

with −m ≤ xi ≤ m.
First of all, we use Shor’s algorithm to decompose [x] over the [li]. The

decomposition [x] =
∏
i[li]

ti can contain high exponents ti. This section deals
with reducing these exponents using lattice reduction. This idea was used in [5]
to decompose arbitrary elements of C`(O) as products of small-degree isogenies.
The main difference with Algorithm 7 in [5] is that the ideal classes upon which
we decompose are already given by the scheme, and we want a non-asymptotic
bound.

4.1 Finding a Basis of Multi-periods

Given p and the ideal classes [l1], . . . , [lu], the integer vectors ē = (e1, . . . eu)
such that [l1]e1 . . . [lu]eu = 1 form an integer lattice in Ru. We note L this lattice
of “multi-periods”. First, in a precomputation step, we find a short basis of L.

Computing Relations. Computing a basis of L means computing the kernel of
the map:

Z`1 × . . .× Z`u → C`(O)

(e1, . . . eu) 7→ [l1]e1 . . . [lu]eu

So we can just use a quantum Hidden Subgroup algorithm in an abelian
group. In other words, we are decomposing the group {[l1]e1 . . . [lu]eu , e1, . . . eu ∈
Z} as a product Z`1 × . . .×Z`u , using the technique of [11]. After these precom-
putations, we obtain a basis of the lattice L.
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4.2 Finding a Short Basis

We compute an approximate short basis using the best known algorithm to date,
the Block Korkine Zolotarev algorithm (BKZ) [34]. Its complexity depends on
the dimension u and the block size, an additional parameter which determines
the quality of the basis. Practical complexity analyses can be found in [22] and
[10]. The dimension of the lattice L for CSIDH parameters is between 74 and
209. Even for a priori random lattices, this is small, suggesting that even the
shortest lattice vector problem could be solved in reasonable time.

Basis Quality. Generally, the quality of the basis is related to the Hermite factor.
The first vector of the basis B in output, b1, is such that

||b1||2 ≤ c
u(Vol(L))1/u

where cu is the Hermite factor, and c a constant which depends on the algorithm
used. For our purposes, it is better to work with the approximation factor, which
relates ||b1||2 and λ1(L), the euclidean norm of the smallest vector in L. An
approximation factor of c2u is guaranteed, but in practice, it is equal to (and
sometimes better than) the Hermite factor. So we consider:

||b1||2 ≤ c
uλ1(L) .

BKZ-20 gives a heuristic constant c of approximately 1.0128 [22]. Further-
more, in [22, Fig. 12], the authors give a running time for BKZ-20 of the order
1000 CPU seconds for dimension 200.

We assumed above that there existed at least one vector ē = (e1 . . . eu) with
ei ∈ {−m, . . . ,m} such that

∏
i[li]

ei = 1. This only assumption suffices to write
that λ1(L) ≤ 2m

√
u, hence ||b1||2 ≤ 2cum

√
u.

4.3 Solving the Approximate CVP with a Reduced Basis

Recall that we need to evaluate the group action for a product
∏
i[li]

ti for some
ti that can be large. This is where we use the lattice L and the short basis
B = b1, . . . bu of L. Indeed, given a vector v̄ = (v1 . . . vu) in L, we have:∏

i

[li]
ti =

∏
i

[li]
ti−vi .

We are now interested in finding the vector v̄ in L which is the closest possible
to t̄. The closest we can be, the less evaluating the group action will cost. This
is an instance of the well-known lattice Closest Vector Problem, in our case the
approximate CVP, since we are more interested in bounding the distance than
obtaining the best possible vector. Since the target vector is in superposition,
this bound should hold simultaneously for all vectors of Zn.

We use Babai’s nearest-plane algorithm [2] (see e.g. [21], chapter 18). Given
the target vector t̄, a reduced basis B and its Gram-Schmidt orthogonalization
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B?, this algorithm outputs in polynomial time a vector v̄ in the lattice L such
that:

||v̄ − t̄||2 ≤
1

2

√√√√ u∑
i=1

||b?i ||
2
2

where B? is the Gram-Schmidt orthogonalization of B. In particular, we consider
that

∑u
i=1 ||b?i ||

2
2 ≤ u ||b1||22 (we infer this from heuristics in [22] and [10] about

the decreasing norms of the b?i ). This gives:

||v̄ − t̄||2 ≤
1

2

√
u ||b1||2 ≤ umc

u

where c = 1.0128. This bound holds simultaneously for every target vector t̄
and corresponding output v̄ by Babai’s method.

Effect on the L1 Norm. We are interested on the L1 norm of the difference v̄− t̄.
Indeed, the L1 norm counts the number of successive isogenies to be applied.
We can count (roughly) the action of

∏
i[li]

ti−vi as ||v̄ − t̄||1 /(um) equivalent
“legitimate” class group actions. The closest we are to the lattice L, the smallest
the representation (via v̄ − t̄) of class group elements becomes. Naturally, if
we manage to solve the exact CVP, and obtain always the closest vector to t̄,
any class group action evaluation will have exponents in {−m, . . . ,m} and cost
exactly the same as a “legitimate” one. We have:

||v̄ − t̄||1 ≤
√
u ||v̄ − t̄||2 ≤ u

3/2mcu .

The multiplicative factor w.r.t the classical group action (mu) is u1/2cu.

Algorithm 5 Finding a short representation of an element of the class group,
over the [li].

Input : A vector t̄ representing an element of the class group of the form
∏

i[li]
ti ,

a basis B for the lattice L with Hermite factor c.
Output : A vector s̄ such that ||s||1 ≤ u

3/2mcu and
∏

i[li]
ti =

∏
i[li]

si .
1: Using Babai’s nearest-plane method with the basis B, find v̄ in L such that
||t̄− v̄||1 ≤ u

3/2mcu.
2: return t̄− v̄.

Algorithm 5 is one of the main components of Algorithm 7 in [5] for faster
isogeny evaluations. In a classical context, the authors also use BKZ to reduce the
lattice basis and Babai’s algorithm to solve the approximate CVP instance. They
however consider the general asymptotic ordinary case, for which an interesting
basis is not given to the attacker.

In [6], this algorithm for fast evaluation is further applied to the CSIDH
scheme. However, the authors are more focusing on the asymptotic time com-
plexity; and asymptotically, using the ideals [li] provided by the scheme as a
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decomposition basis is not the best method. Indeed, the multiplicative factor
guaranteed by BKZ increases exponentially in the dimension u; one can try to
increase the block size of BKZ in order to reduce at best the complexity of the
oracle evaluation, but this happens to be always (asymptotically) slower than
taking a basis with a limited number of ideals (less than the given u) and greater
exponents than the given m.

4.4 Computing the Group Action

We are now ready to compute the action of any [g], in three steps:

• Using Shor’s algorithm, we decompose [g] over the [li], as [g] =
∏
i[li]

ti .

• Using Babai’s nearest-plane algorithm with the basis B, we find the approxi-
mate closest vector v̄: this requires u2 multiplications of vectors coordinates,
which are approximately log2 p-bit integers;

• We compute the action of
∏
i[li]

ti−vi .

For each set of parameters, computing the isogenies remains the major cost. For
example, for u = 200, Babai’s method costs u2 = 4·104 log2 p-bit multiplications,
while the action costs approximately 3.96 · 105 small isogeny evaluations.

If the Shortest Vector Problem is solvable exactly for lattices from the CSIDH
parameters, the cost overhead of the group action with respect to a legitimate
key exchange computation becomes

√
u (with c = 1 as approximation factor),

hence smaller than 24 for all parameters.

Simulations. In practice, we performed simulations by taking a cyclic class group
C`(O) of random cardinality q ' √p. Then we take u elements at random in this
group, of the form gai for some generator g and compute two-by-two relations
between them, as: (gai)ai+1 · (gai+1)−ai = 1. The sparsity of the basis obtained
seems to help. The computational system Sage [38] performs BKZ reduction
with blocksize 20 in a handful of minutes in dimension 200. We can also directly
compute the quantity:

√
u

1

2

√√√√ u∑
i=1

||b?i ||22

which bounds the L1 norm of the vector in output of Babai’s algorithm. We
compute its average for some lattices generated as above (the standard deviation
from the values found does not exceed 10%). We find an approximation factor
in L1 of less than 23 in all three dimensions for Babai’s algorithm.

Once (a representation of) the secret isogeny has been recovered, this factor
also gives the multiplicative overhead on the size (in L1) of the representation
found against the original one.
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Quantum Circuits for the CSIDH Group Action. The number of quantum gates
required to evaluate a CSIDH group action, with exponents in the range−m. . .m,
has been estimated in full detail in [4]. The authors give 765325228976 nonlinear
bit operations for the CSIDH-512 instance, in order to reach a success proba-
bility of the order 2−32, necessary since we require that many queries. This cost
comes mainly from the 221.4 multiplications in Fp needed, each one costing 218.7

Toffoli gates, with log2 p = 512. The number of T gates is 243.3. The total num-
ber of gates (Clifford + T) is of the order 245.3. Furthermore, in order to keep
the number of ancilla qubits sufficiently low, some inner levels of uncomputation
are needed, possibly increasing the computation by some factor (at least 4). In
the end, the quantum CSIDH group action oracle for a prime of 512 bits should
cost, in our setting, approx. 248 Clifford+T gates.

This cost is not given in [4] for other values of p, but we can roughly es-
timate the increasing number of multiplications to be performed (counting the
increasing dimension, the increasing value of the little primes and the increasing
precision needed). Furthermore, when p is doubled, the cost of a multiplica-
tion at most quadruples. For CSIDH-1024, we can take 253 gates and 256 for
CSIDH-1792. Notice that from the point of view of depth, the oracle contains
almost all the depth of the whole circuit (due to the structure of the hidden shift
algorithms).

By combining these costs with the approximation factors of 23 that we esti-
mated above, we are now able to give an estimation of the number of Clifford
+ T gates required for an evaluation of [x] · E in superposition over the whole
class group C`(O), for a given bit-size of p. This is Table 4.

Table 4: Number of Clifford + T gates required to compute [x]·E in superposition
over the class group C`(O).

Targeted level in [9] log2 p Number of gates (in log2)

NIST 1 512 3 + 48 = 51
NIST 3 1024 3 + 53 = 56
NIST 5 1792 3 + 56 = 59

The costs of Table 4 seem high, but they are directly related to the implemen-
tation of the scheme. A massive improvement in the quantum implementation of
CSIDH, although it seems unlikely, would reduce these costs dramatically, even
if the number of queries required by the hidden shift algorithm is unchanged.

5 Estimating the Security of CSIDH Parameters

The parameters in [9] are aimed at three security levels defined by the NIST
call [31]: NIST 1 should be as computationally hard as recovering the secret key
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of AES-128 (with quantum or classical resources), NIST 3 should be as hard as
key-recovery of AES-192 and NIST 5 key-recovery of AES-256.

A key-recovery on full AES is done using Grover’s algorithm, which runs in
approximately 2|k|/2 iterations, where |k| is the length of the key. Each iteration
requires one or more evaluations of a quantum circuit implementing AES. Such
a circuit was designed in [23]. It costs approximately 220 quantum gates of the
universal Clifford+T set. Without the MAXDEPTH assumption, the time com-
plexity of running Grover’s algorithm for AES-128, 192 and 256 is respectively5

285.9, 2119.1 and 2151.3.
If the first algorithm has a time cost below Grover’s algorithm, it uses a large

amount of quantum memory. This issue is resolved in the two other approaches,
that only need classical memory, their only quantum memory requirement being
the memory cost of the oracle, plus a polynomial number of qubits.

Table 5: CSIDH attack cost with Algorithm 2 in log2 scale, compared with the
corresponding Grover key-recovery on AES.

Level
Reference Grover Attack quantum Attack quantum

AES instance Cost time cost memory cost

NIST 1 AES-128 85.9 83.5 31
NIST 3 AES-192 119.1 100.5 43
NIST 5 AES-256 151.3 114.5 56

Minimal quantum cost. As the quantum queries are very costly in the case of
CSIDH, we can first try to use the variant of Section 3.3. The quantum time
complexity now falls far below the expected level, but the dominating complexity
is the cost of the classical subset-sum instance. We estimate that each instance
costs 20.291 log2N , dismiss the subset-sum polynomial factor, and compare this
cost to the classical query cost of AES exhaustive search, which is a standard
approach of security estimates. However, we take into account a factor 8(log2N)
due to the number of subset-sum instances that have to be solved (one for each
label produced before the final QFT, and a success probability of 1

8 in total). We
also count as 8(log2N)2 the number of quantum queries to the oracle, where N
is the cardinality of the class group (roughly

√
p).

The attack using the subset-sum approach of Section 3.3 already allows to
break the parameters proposed for NIST levels 1 and 3, as showed in Table 6. A
quantum adversary can find the secret-key using only a million quantum queries
to the scheme (respectively 219 and 221) and less classical computations than
what an AES secret-key recovery requires. The quantum memory used is also
limited, and depends mostly on the implementation of the CSIDH oracle.

5 We have reduced the gate counts of [23] by supposing that we use only respectively
one, two and two plaintext-ciphertext pairs.
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Table 6: CSIDH quantum attack with minimal quantum cost, in log2 scale.

Targeted level Expected Grover Proposed Quantum time Classical time/mem.
in [9] classical time cost log2 p in [9] of our attack of our attack

NIST 1 128 85.9 512 19 + 51 = 70 86
NIST 3 192 119.1 1024 21 + 56 = 77 161
NIST 5 256 151.3 1792 22 + 59 = 81 274

Classical/Quantum tradeoffs. We can trade between classical and quantum cost
with the algorithm of Section 3.4. We summarize in Table 7 the cost with 4-list
merging, minimal and equal quantum query and classical memory (excluding

polynomial factors). Hence, we considered that we had lists of size 2
√

2 log2(N)/3

everywhere and
√

log2(N)/6 steps, and computed the costs accordingly.

Table 7: A possible tradeoff with Kuperberg’s algorithm, in log2 scale.

Level
Expected Grover Attack Attack Attack

classical time time Quantum time Class. time Class. mem

NIST 1 128 85.9 76 51 18
NIST 3 192 119.1 87 69 25
NIST 5 256 151.3 96 87 31

Safe parameters. As we can see, all the proposed instances fall below their
targeted security levels. As the algorithms are subexponential and allow for
many tradeoffs, the minimal size for an instance to be safe is hard to estimate,
and vastly depend on the precise cost metrics. Even if the NIST offer some cost
metrics for quantum attacks, there is still some margin of interpretation.

For example, if we neglect the polynomial factors and want an attack to cost
at least 2128 classical time and 264 quantum time, quantum queries and classical
memory, then p should have roughly 6000 bits. A different interpretation may
restrict the allowed resources to 264 classical time, quantum time and classical
memory and 230 quantum queries (in order to take into account the cost of
a single query). In that case, p should have roughly 3000 bits. The optimal
algorithm for a given set of resources may involve different techniques, and in
order to find the best combination, it may be relevant to use a MILP solver.

6 Conclusion

We performed the first non-asymptotic quantum security assessment of CSIDH,
a recent and promising key-exchange primitive based on supersingular elliptic
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curve isogenies. We presented the main variants of quantum commutative hidden
shift algorithms, which are used as a building block in attacking CSIDH. We gave
tradeoffs, estimates and experimental simulations of their complexities. Next, we
showed that evaluating the oracle in these algorithms adds little overhead to an
evaluation of the class group action in CSIDH. Putting together and completing
the available literature on quantum hidden shift algorithms, lattice reduction
techniques in isogeny-based cryptography, and quantum circuits for evaluating
isogenies in a CSIDH context, we were able to propose the first non-asymptotic
cost estimates of attacking CSIDH.

These estimates are given as a number of gates in the quantum circuit model
and can be compared to the targeted security levels, as defined in the ongoing
NIST call. Using different tradeoffs, we showed that the parameters proposed [9]
did not meet these levels.

There are many tradeoffs in quantum hidden shift algorithms. This makes
the security analysis of CSIDH all the more challenging, and we tried to be as
exhaustive as possible regarding the current literature. In particular, the CSIDH-
512 instance is roughly 50 000 times easier to break quantumly than AES-128,
using a variant polynomial in quantum queries and exponential in classical com-
putations.

Other Isogeny-based Schemes. The NIST candidate SIKE [15] is not affected,
as it uses supersingular elliptic curves on Fp2 , for which there is no clear global
group action.

The idea of using lattice reduction in order to speed up the computation of
the class group action in superposition can be applied to ordinary isogenies, as
remarked by multiple authors [16, 9, 5], by setting up an oracle alternative to the
one given in [12].

Recently, De Feo, Kieffer and Smith [20] proposed to refine the CRS scheme
for ordinary curves in order to make it more practical, while maintaining the
same level of security against a quantum adversary. Their approach can be seen
as a hybrid between CRS and CSIDH. With refinements, the same lattice reduc-
tion technique can be adapted to their situation.
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