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Abstract

Secure multiparty computation (MPC) on incomplete communication networks has been
studied within two primary models: (1) Where a partial network is fixed a priori, and thus cor-
ruptions can occur dependent on its structure, and (2) Where edges in the communication graph
are determined dynamically as part of the protocol. Whereas a rich literature has succeeded in
mapping out the feasibility and limitations of graph structures supporting secure computation
in the fixed-graph model (including strong classical lower bounds), these bounds do not apply
in the latter dynamic-graph setting, which has recently seen exciting new results, but remains
relatively unexplored.

In this work, we initiate a similar foundational study of MPC within the dynamic-graph
model. As a first step, we investigate the property of graph expansion. All existing protocols
(implicitly or explicitly) yield communication graphs which are expanders, but it is not clear
whether this is inherent. Our results consist of two types (for constant fraction of corruptions):

• Upper bounds: We demonstrate secure protocols whose induced communication graphs
are not expander graphs, within a wide range of settings (computational, information
theoretic, with low locality, even with low locality and adaptive security), each assuming
some form of input-independent setup.

• Lower bounds: In the plain model (no setup) with adaptive corruptions, we demonstrate
that for certain functionalities, no protocol can maintain a non-expanding communication
graph against all adversarial strategies. Our lower bound relies only on protocol correctness
(not privacy), and requires a surprisingly delicate argument.

More generally, we provide a formal framework for analyzing the evolving communication
graph of MPC protocols, giving a starting point for studying the relation between secure com-
putation and further, more general graph properties.
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1 Introduction
The field of secure multiparty computation (MPC), and more broadly fault-tolerant distributed
computation, constitutes a deep and rich literature, yielding a vast assortment of protocols providing
strong robustness and even seemingly paradoxical privacy guarantees. A central setting is that of n
parties who wish to jointly compute some function of their inputs while maintaining correctness (and
possibly input privacy) in the face of adversarial behavior from a constant fraction of corruptions.

Since the original seminal results on secure multiparty computation [52, 11, 28, 76], the vast
majority of MPC solutions to date assume that every party can (and will) communicate with every
other party. That is, the underlying point-to-point communication network forms a complete graph.
Indeed, many MPC protocols begin directly with every party secret sharing his input across all
other parties (or simply sending his input, in the case of tasks without privacy such as Byzantine
agreement [75, 69, 38, 43, 47]).

There are two classes of exceptions to this rule, which consider MPC on incomplete communi-
cation graphs.

Fixed-Graph Model. The first corresponds to an area of work investigating achievable secu-
rity guarantees in the setting of a fixed partial communication network. In this model, communica-
tion is allowed only along edges of a fixed graph, known a priori, and hence where corruptions can
take place as a function of its structure. This setting is commonly analyzed within the distributed
computing community. In addition to positive results, this is the setting of many fundamental lower
bounds: For example, to achieve Byzantine agreement deterministically against t corruptions, the
graph must be (t + 1)-connected [37, 44].1 For graphs with lower connectivity, the best one can
hope for is a form of “almost-everywhere agreement,” where some honest parties are not guaran-
teed to output correctly, as well as restricted notions of privacy [41, 48, 27, 55, 56]. Note that
because of this, one cannot hope to achieve protocols with standard security in this model with
o(n2) communication, even for simple functionalities such as Byzantine agreement.

Dynamic-Graph Model. The second, more recent approach addresses a model where all
parties have the ability to initiate communication with one another, but make use of only a subset of
these edges as determined dynamically during the protocol. We refer to this as the “dynamic-graph
model.” When allowing for negligible error (in the number of parties), the above lower bounds do
not apply, opening the door for dramatically different approaches and improvements in complexity.
Indeed, distributed protocols have been shown for Byzantine agreement in this model with as low
as Õ(n) bits of communication [65, 20], and secure MPC protocols have been constructed whose
communication graphs have degree o(n)—and as low as polylog(n) [36, 17, 26, 18].2 However,
unlike the deep history of the model above, the current status is a sprinkling of positive results.
Little is known about what types of communication graphs must be generated from a secure MPC
protocol execution.

Gaining a better understanding of this regime is motivated not only to address fundamental
questions, but also to provide guiding principles for future protocol design. In this work, we take
a foundational look at the dynamic-graph model, asking:

What properties of induced communication graphs
are necessary to support secure computation?

1If no setup assumptions are assumed, the connectivity bound increases to 2t+ 1.
2This metric is sometimes referred to as the communication locality of the protocol [17].
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On the necessity of graph expansion. Classical results tell us that the fully connected graph
suffices for secure computation. Protocols achieving low locality indicate that a variety of signifi-
cantly sparser graphs, with many low-weight cuts, can also be used [36, 17, 26, 18]. We thus consider
a natural extension of connectivity to the setting of low degree. Although the positive results in
this setting take different approaches and result in different communication graph structures, we
observe that in each case, the resulting sparse graph has high expansion.

Roughly, a graph is an expander if every subset of its nodes that is not “too large” has a “large”
boundary. Expander graphs have good mixing properties and in a sense “mimic” a fully connected
graph. There are various ways of formalizing expansion; in this work we consider a version of edge
expansion, pertaining to the number of outgoing edges from any subset of nodes. We consider a
variant of the expansion definition which is naturally monotonic: that is, expansion cannot decrease
when extra edges are added (note that such monotonicity also holds for the capacity of the graph
to support secure computation).

Indeed, expander graphs appear explicitly in some works [65, 26], and implicitly in others
(e.g., using random graphs [63], pseudorandom graphs [17], and averaging samplers [20], to convert
from almost-everywhere to everywhere agreement). High connectivity and good mixing intuitively
go hand-in-hand with robustness against corruptions, where adversarial entities may attempt to
impede or misdirect information flow.

This raises the natural question: Is this merely an artifact of a convenient construction, or is
high expansion inherent? That is, we investigate the question: Must the communication graph of
a generic MPC protocol, tolerating a linear number of corruptions, be an expander graph?

1.1 Our Results

More explicitly, we consider the setting of secure multiparty computation with n parties in the
face of a linear number of active corruptions. As common in the honest-majority setting, we
consider protocols that guarantee output delivery. Communication is modeled via the dynamic-
graph setting, where all parties have the ability to initiate communication with one another, and
use a subset of edges as dictated by the protocol. We focus on the synchronous setting, where the
protocol proceeds in a round-by-round manner.

Our contributions are of the following three kinds:

Formal definitional framework. As a first contribution, we provide a formal framework for
analyzing and studying the evolving communication graph of MPC protocols. The framework
abstracts and refines previous approaches concerning specific properties of protocols implicitly
related to the graph structure, such as the degree [17]. This gives a starting point for studying the
relation between secure computation and further, more general, graph properties.

Upper bounds. We present secure protocols whose induced communication graphs are decid-
edly not expander graphs, within a range of settings. This includes: with computational security,
with information-theoretic security, with low locality, even with low locality and adaptive secu-
rity (in a hidden-channels model [26]) — but all with the common assumption of some form of
input-independent setup information (such as a public-key infrastructure, PKI). The resulting com-
munication graph has a low-weight cut, splitting the n parties into two equal (linear) size sets with
only poly-logarithmic edges connecting them.
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Theorem 1.1 (MPC with non-expanding communication graph, informal). For any efficient func-
tionality f and any constant ε > 0, there exists a protocol in the PKI model, assuming digital
signatures, securely realizing f against (1/4− ε) ·n static corruptions, such that with overwhelming
probability the induced communication graph is non-expanding.

Theorem 1.1 is stated in the computational setting with static corruptions; however, this ap-
proach extends to various other settings, albeit at the expense of a lower corruption threshold. (See
Section 4 for more details.)

Theorem 1.2 (extensions of Theorem 1.1, informal). For any efficient functionality f , there exists
a protocol securely realizing f , in the settings listed below, against a linear number of corruptions,
such that with overwhelming probability the induced communication graph is non-expanding:

• In the setting of Theorem 1.1 with poly-logarithmic locality.

• Unconditionally, in the information-theoretic PKI model (with or without low locality).

• Unconditionally, in the information-theoretic PKI model, facing adaptive adversaries.

• Under standard cryptographic assumptions, in the PKI model, facing adaptive adversaries,
with poly-logarithmic locality.

As an interesting special case, since our protocols are over point-to-point channels and do not
require a broadcast channel, these results yield the first Byzantine agreement protocols whose
underlying communication graphs are not expanders.

The results in Theorems 1.1 and 1.2 all follow from a central transformation converting existing
secure protocols into ones with low expansion. At a high level, the first n/2 parties will run a
secure computation to elect two representative committees of poly-logarithmic size: one amongst
themselves and the other from the other n/2 parties. These committees will form a “communication
bridge” across the two halves (see Figure 5). The setup is used to certify the identities of the
members of both committees to the receiving parties, either via a public-key infrastructure for
digital signatures (in the computational setting) or correlated randomness for information-theoretic
signatures [79, 78] (in the information-theoretic setting).

Interestingly, this committee-based approach can be extended to the adaptive setting (with
setup), in the hidden-channels model considered by [26], where the adversary is not aware which
communication channels are utilized between honest parties.3 Here, care must be taken to not
reveal more information than necessary about the identities of committee members to protect them
from being corrupted.

As a side contribution, we prove the first instantiation of a protocol with poly-logarithmic
locality and information-theoretic security (with setup), by adjusting the protocol from [17] to the
information-theoretic setting.

Theorem 1.3 (polylog-locality MPC with information-theoretic security, informal). For any effi-
cient functionality f and any constant ε > 0, there exists a protocol with poly-logarithmic locality
in the information-theoretic PKI model, securely realizing f against computationally unbounded
adversaries statically corrupting (1/6− ε) · n parties.

3Sublinear locality is impossible in the adaptive setting if the adversary is aware of honest-to-honest communica-
tion, since it can simply isolate an honest party from the rest of the protocol.
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Lower bounds. On the other hand, we show that in some settings a weak form of expansion
is a necessity. In fact, we prove a stronger statement, that in these settings the graph must have
high connectivity.4 Our lower bound is in the setting of adaptive corruptions, computational (or
information-theoretic) security, and with common setup assumptions (but no private-coin setup
as PKI). Our proof relies only on correctness of the protocol and not on any privacy guarantees;
namely, we consider the parallel broadcast functionality (aka interactive consistency [75]), where
every party distributes its input to all other parties. We construct an adversarial strategy in
this setting such that no protocol can guarantee correctness against this adversary if its induced
communication graph at the conclusion of the protocol has any cut with sublinear many crossing
edges (referred to as a “sublinear cut” from now on).

Theorem 1.4 (high connectivity is necessary for correct protocols, informal). Let t ∈ Θ(n). Any
t(n)-resilient protocol for parallel broadcast in the computational setting, even with access to a
common reference string, tolerating an adaptive, malicious adversary cannot maintain an induced
communication graph with a sublinear cut.

Theorem 1.4 in particular implies that the resulting communication graph must have a form of
expansion. We note that in a weaker communication model, a weaker form of consensus, namely
Byzantine agreement, can be computed in a way that the underlying graph (while still an expander)
has low-weight cuts [64]. We elaborate on the differences between the two settings in the related
work, Section 1.4.

It is indeed quite intuitive that if a sublinear cut exists in the communication graph of the
protocol, and the adversary can adaptively corrupt a linear number of parties t(n), then he could
corrupt the parties on the cut and block information flow. The challenge, however, stems from the
fact that the cut is not known a priori but is only revealed over time, and by the point at which
the cut is identifiable, all necessary information may have already been transmitted across the cut.
In fact, even the identity of the cut and visible properties of the communication graph itself can
convey information to honest parties about input values without actual bits being communicated.
This results in a surprisingly intricate final attack, involving multiple indistinguishable adversaries,
careful corruption strategies, and precise analysis of information flow. See below for more detail.

1.2 Our Techniques

We focus on the technical aspects of the lower bound result.

Overview of the attack. Consider an execution of the parallel broadcast protocol over random
inputs. At a high level, our adversarial strategy, denoted Ahonest-i∗

n , will select a party Pi∗ at random
and attempt to block its input from being conveyed to honest parties. We are only guaranteed that
somewhere in the graph will remain a sublinear cut. Because the identity of the eventual cut is
unknown, it cannot be attacked directly. We take the following approach:

1. Phase I. Rather, our attack will first “buy time” by corrupting the neighbors of Pi∗ , and
blocking information flow of its input xi∗ to the remaining parties. Note that this can only
continue up to a certain point, since the degree of Pi∗ will eventually surpass the corruption

4More concretely, the graph should be at least α(n)-connected for every sublinear function α(n) ∈ o(n).
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threshold (as we prove). But, the benefit of this delay is that in the meantime, the commu-
nication graph starts to fill in, which provides more information about the locations of the
potential cuts.
For this to be the case, it must be that the parties cannot identify that Pi∗ is under attack
(otherwise, the protocol may instruct many parties to quickly communicate to/from Pi∗ ,
forcing the adversary to run out of his “corruption budget” before the remaining graph fills
in). The adversary thus needs to fool all honest parties and make each honest party believe
that he participates in an honest execution of the protocol. This is done by maintaining
two simulated executions: one pretending to be Pi∗ running on a random input, and another
pretending (to Pi∗) to be all other parties running on random inputs. Note that for this
attack strategy to work it is essential that the parties do not have pre-computed private-coin
setup such as PKI.

2. Phase II. We show that with noticeable probability, by the time we run out of the Phase I
corruption threshold (which is a linear number of parties), all parties in the protocol have
high (linear) degree. In turn, we prove that the current communication graph can have at
most a constant number of sublinear cuts.
In the remainder of the protocol execution, the adversary will simultaneously attack all of
these cuts. Namely, he will block information flow from Pi∗ across any of these cuts by
corrupting the appropriate “bridge” party, giving up on each cut one by one when a certain
threshold of edges have already crossed it.

If the protocol is guaranteed to maintain a sublinear cut, then necessarily there will remain at least
one cut for which all Phase II communication across the cut has been blocked by the adversary.
Morally, parties on the side of this cut opposite Pi∗ should not have learned xi∗ , and thus the cor-
rectness of the protocol should be violated. Proving this, on the other hand, requires surmounting
two notable challenges.

1. We must prove that there still remains an uncorrupted party Pj∗ on the opposite side of the
cut. It is not hard to show that each side of the cut is of linear size, that Pi∗ has a sublinear
number of neighbors across the cut (all of which are corrupted), and that a sublinear number
of parties get corrupted in Phase II. Hence, there exists parties across the cut that are not
neighbors of Pi∗ and that are not corrupted in Phase II. However, by the attack strategy, all
of the neighbors of the virtual Pi∗ are corrupted in Phase I as well, and this is also a linear
size set, which is independent of the real neighbors of Pi∗ . Therefore, it is not clear that there
will actually remain honest parties across the cut by the end of the protocol execution.

2. More importantly, even though we are guaranteed that no bits of communication have been
passed along any path from Pi∗ to Pj∗ , this does not imply that no information about xi∗
has been conveyed. For example, since the graph develops as a function of parties’ inputs,
it might be the case that this situation of Pj∗ being blocked from Pi∗ , only occurs when xi∗
equals a certain value.

We now discuss how these two challenges are addressed.

Guaranteeing honest parties across the cut. Unexpectedly, we cannot guarantee existence of
honest parties across the cut. Instead, we introduce a different adversarial strategy, which we prove

5



must have honest parties blocked across a cut from Pi∗ , and for which there exist honest parties
who cannot distinguish which of the two attacks is taking place. More explicitly, we consider the
“dual” version of the original attack, denoted Acorrupt-i∗

n , where party Pi∗ is corrupted and instead
pretends to be under attack as per Ahonest-i∗

n above.
Blocking honest parties from xi∗ in Acorrupt-i∗

n does not contradict correctness explicitly on its
own, as Pi∗ is corrupted in this case. It is the combination of both of these attacks that will enable
us to contradict correctness. Namely, we prove that:

• Under the attack Acorrupt-i∗
n , there exists a “blocked cut” (S, S̄) with uncorrupted parties on

both sides. By agreement, all uncorrupted parties output the same value yi∗ as the i∗’th
coordinate of the output vector.

• The view of some of the uncorrupted parties under the attack Acorrupt-i∗
n is identically dis-

tributed as that of uncorrupted parties in the original attack Ahonest-i∗
n . Thus, their output

distribution must be the same across the two attacks.

• Since under the attack Ahonest-i∗
n , the party Pi∗ is honest, by completeness, all uncorrupted

parties in Ahonest-i∗
n must output the correct value yi∗ = xi∗ .

• Thus, uncorrupted parties in Acorrupt-i∗
n (who have the same view) must output the correct

value xi∗ as well.

Altogether, this implies all honest parties in interaction with Acorrupt-i∗
n , in particular Pj∗ who is

blocked across the cut from Pi∗ , must output yi∗ = xi∗ .

Bounding information transmission about xi∗. The final step is to show that this cannot
be the case, since an uncorrupted party Pj∗ across the cut in Acorrupt-i∗

n does not receive enough
information about xi∗ to fully specify the input. This demands delicate treatment of the specific
attack strategy and analysis, as many “side channel” signals within the protocol can leak informa-
tion on xi∗ . Corruption patterns in Phase II, and their timing, can convey information “across”
the isolated cut. In fact, even the event of successfully reaching Phase II may be correlated with
the value of xi∗ .

For example, say the cut at the conclusion of the protocol is (S1, S̄1) with i∗ ∈ S1 and j∗ ∈ S̄1,
but at the beginning of Phase II there existed another cut (S2, S̄2), for which S1∩S2 6= ∅, S1∩S̄2 6= ∅,
S̄1 ∩S2 6= ∅, and S̄1 ∩ S̄2 6= ∅. Since any “bridge” party in S̄2 that receives a message from S2, gets
corrupted and discards the message, the view of honest parties in S̄1 might change as a result of
the corruption related to the cut (S2, S̄2), which in turn could depend on xi∗ . See Figure 1 for an
illustration of this situation.

Ultimately, we ensure that the final view of Pj∗ in the protocol can be simulated given only
“Phase I” information, which is independent of xi∗ , in addition to the identity of the final cut in
the graph, which reveals only a constant amount of additional entropy.

Additional subtleties. The actual attack and its analysis are even more delicate. For example,
it is important that the degree of the “simulated Pi∗ ,” by the adversarial strategy Ahonest-i∗

n , will
reach the threshold faster than the real Pi∗ . In addition, in each of these cases, the threshold, and
so the transition to the next phase, could possibly be reached in a middle of a round, requiring
detailed treatment.
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Figure 1: At the end of Phase I the communication graph is partitioned into 4 linear-size “islands”
that are connected by sublinear many edges. On the left is the potential cut (S1, S̄1) and on the
right the potential cut (S2, S̄2). If party Q1 sends a message to party Q2 then Q2 gets corrupted
and discards the message. This event can be identified by all parties in S̄1, and in particular by
Pj∗ by the end of the protocol.

1.3 Open Questions

This work leaves open many interesting lines of future study.

• Bridging the gap between upper and lower bounds. This equates to identifying the core
properties that necessitate graph expansion versus not. Natural candidates suggested by our
work are existence of setup information and adaptive corruptions in the hidden or visible (yet
private) channels model.

• What other graph properties are necessary (or not) to support secure computation? Our new
definitional framework may aid in this direction.

• Our work connects graph theory and secure protocols, giving rise to further questions
and design principles. For example, can good constructions of expanders give rise to new
communication-efficient MPC? On the other hand, can necessity of expansion (in certain
settings) be used to argue new communication complexity lower bounds?

1.4 Additional Related Work

Communication graphs induced by fault-tolerant protocols is a field that has been intensively
studied in various aspects.

In the fixed-graph model, where the parties can communicate over a pre-determined partial
graph, there have been many work for realizing secure message transmission [39, 46, 77, 9, 67, 81,
13, 10, 1, 45, 63, 80], Byzantine agreement [37, 41, 12, 83], and secure multiparty computation [8,
14, 13, 27, 24, 25].

In the setting of topology-hiding secure computation (THC) [74, 59, 2, 3, 4], parties communicate
over a partial graph, and the goal is to hide which pairs of honest parties are neighbors. This is
a stronger property than considered in this work, as we do not aim to hide the topology of the
graph (in particular, the entire communication graph can be revealed by the conclusion of the
protocol). Intuitively, topology-hiding protocols can support non-expanding graphs since sublinear
cuts should not be revealed during the protocol. A followup work [5] explored this connection,
and showed that the classical definition of THC is in fact too strong to hide sublinear cuts in the
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graph, and demonstrated how to capture this property by a weaker definition called distributional-
topology-hiding computation. The separation between these security definitions is based on the
distribution of graphs induced by the protocol in Section 3.

Another direction to study the connection between MPC and graph theory, explored in [57, 68],
is to consider MPC protocols that are based on oblivious transfer (OT), and to analyze the graph
structure that is induced by all pairwise OT channels that are used by the protocol.

King and Saia [64] presented a Byzantine agreement protocol that is secure against adaptive cor-
ruptions and (while still being an expander) its communication graph has sublinear cuts. Compared
to our lower bound (Section 5), both results do not assume any trusted setup, and both consider
adaptive corruptions and visible communication (i.e., the adversary is aware of honest-to-honest
communication). However, we highlight two aspects in which the setting in [64] is weaker. First,
[64] realize Byzantine agreement which is a weaker functionality than parallel broadcast. Indeed,
the standard techniques of reducing broadcast to Byzantine agreement do not support sublinear
cuts. The second is the communication model, as [64] consider atomic message delivery, meaning
that once a party has sent a message to the network, the adversary cannot change the content
of the message even by corrupting the sender and before any honest party received it. For more
details see [49], where atomic message delivery was used to overcome the lower bound of [58].

Paper Organization

Basic notations are presented in Section 2. In Section 3, we provide our formalization of the
communication graph induced by an MPC protocol and related properties. In Section 4, we describe
our upper bound results, constructing protocols with non-expanding graphs. In Section 5, we prove
our lower bound. We defer general preliminaries and further details to the appendix.

2 Preliminaries
Notations. In the following we introduce some necessary notation and terminology. For
n, n1, n2 ∈ N, let [n] = {1, · · · , n} and [n1, n2] = {n1, · · · , n2}. We denote by κ the security
parameter. Let poly denote the set all positive polynomials and let PPT denote a probabilistic
algorithm that runs in strictly polynomial time. A function ν : N→ R is negligible if ν(κ) < 1/p(κ)
for every p ∈ poly and sufficiently large κ. Given a random variable X, we write x← X to indicate
that x is selected according to X. The statistical distance between two random variables X and Y
over a finite set U , denoted SD(X,Y ), is defined as 1

2 ·
∑
u∈U |Pr [X = u]− Pr [Y = u]|.

Two distribution ensemblesX = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N are compu-
tationally indistinguishable (denoted X c≡ Y ) if for every non-uniform polynomial-time distinguisher
A there exists a function ν(κ) = negl(κ), such that for every a ∈ {0, 1}∗ and every κ,

|Pr [A(X(a, κ), 1κ) = 1]− Pr [A(Y (a, κ), 1κ) = 1]| ≤ ν(κ).

The distribution ensembles X and Y are statistically close (denoted X s≡ Y ) if for every a ∈ {0, 1}∗
and every κ it holds that SD(X(a, κ), Y (a, κ)) ≤ ν(κ).

Graph-theoretic notations. Let G = (V,E) be an undirected graph of size n, i.e., |V | = n.
Given a set S ⊆ V , we denote its complement set by S̄, i.e., S̄ = V \ S. Given two disjoint subsets
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U1, U2 ⊆ V define the set of all the edges in G for which one end point is in U1 and the other end
point is in U2 as

edgesG(U1, U2) ..= {(u1, u2) : u1 ∈ U1, u2 ∈ U2, and (u1, u2) ∈ E} .

We denote by |edgesG(U1, U2)| the total number of edges going across U1 and U2. For simplicity,
we denote edgesG(S) = edgesG(S, S̄). A cut in the graph G is a partition of the vertices V into two
non-empty, disjoint sets {S, S̄}. The weight of a cut {S, S̄} is defined to be |edgesG(S)|. An α-cut
is a cut {S, S̄} whose weight is smaller than α, i.e., such that |edgesG(S)| ≤ α.

Given a graph G = (V,E) and a node i ∈ V , denote by G \ {i} = (V ′, E′) the graph obtained
by removing node i and all its edges, i.e., V ′ = V \ {i} and E′ = E \ {(i, j) | j ∈ V ′}.

MPC Model. We consider multiparty protocols in the stand-alone, synchronous model, and
require security with guaranteed output delivery. We elaborate on the model in Appendix A.2, and
refer the reader to [21, 50] for a precise definition of the model. Throughout the paper we assume
malicious adversaries that can deviate from the protocol in an arbitrary manner. We will consider
both static corruptions, where the set of corrupted parties is fixed at the onset of the protocol,
and adaptive corruptions, where the adversary can dynamically corrupt parties during the protocol
execution, In addition, we will consider both PPT adversaries and computationally unbounded
adversaries

Recall that in the synchronous model protocols proceed in rounds, where every round consists
of a send phase followed by a receive phase. The adversary is assumed to be rushing, meaning that
he can determine the messages for corrupted parties after seeing the messages sent by the honest
parties. We assume a complete network of point-to-point channels (broadcast is not assumed),
where every party has the ability to send a message to every other party. We will normally consider
secure (private) channels where the adversary learns that a message has been sent between two
honest parties, but not its content. If a public-key encryption is assumed, this assumption can be
relaxed to authenticated channels, where the adversary can learn the content of all messages (but
not change them). For our upper bound in the adaptive setting (Section 4.4) we consider hidden
channels (as introduced in [26]), where the adversary does not even know whether two honest
parties have communicated or not.

3 Communication Graphs Induced by MPC Protocols
In this section, we present formal definitions of properties induced by the communication graph of
interactive protocols. These definitions are inspired by previous works in distributed computing [65,
62, 64, 66] and multiparty computation [17, 26, 18] that constructed interactive protocols with low
locality.

3.1 Ensembles of Protocols and Functionalities

In order to capture certain asymptotic properties of the communication graphs of generic n-party
protocols, such as edge expansion and locality, it is useful to consider a family of protocols that
are parametrized by the number of parties n. This is implicit in many distributed protocols and
in generic multiparty protocols, for example [75, 69, 38, 52, 11]. We note that for many large-scale
protocols, e.g., protocols with low locality [65, 62, 64, 66, 17, 18], the security guarantees increase
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with the number of parties, and in fact, the number of parties is assumed to be polynomially related
to the security parameter.

Definition 3.1 (protocol ensemble). Let f = {fn}n∈N be an ensemble of functionalities, where fn
is an n-party functionality, let π = {πn}n∈N be an ensemble of protocols, and let C = {Cn}n∈N be
an ensemble of classes of adversaries (e.g., Cn is the class of PPT t(n)-adversaries). We say that
π securely computes f tolerating adversaries in C if for every n that is polynomially related to the
security parameter κ, it holds that πn securely computes fn tolerating adversaries in Cn.

In Section 4, we will consider several classes of adversaries. We use the following notation for
clarity and brevity.

Definition 3.2. Let f = {fn}n∈N be an ensemble of functionalities and let π = {πn}n∈N be an
ensemble of protocols. We say that π securely computes f tolerating adversaries of the form type
(e.g., static PPT t(n)-adversaries, adaptive t(n)-adversaries, etc.), if π securely computes f toler-
ating adversaries in C = {Cn}n∈N, where for every n, the set Cn is the class of adversaries of the
form type.

3.2 The Communication Graph of a Protocol’s Execution

Intuitively, the communication graph induced by a protocol should include an edge (i, j) precisely
if parties Pi and Pj exchange messages during the protocol execution. For instance, consider the
property of locality, corresponding to the maximum degree of the communication graph. When
considering malicious adversaries that can deviate from the protocol using an arbitrary strategy,
it is important to consider only messages that are sent by honest parties and messages that are
received by honest parties. Otherwise, every corrupted party can send a message to every other
corrupted party, yielding a subgraph with degree Θ(n). We note that restricting the analysis to
only consider honest parties is quite common in the analysis of protocols.

Another issue that must be taken under consideration is flooding by the adversary. Indeed,
there is no way to prevent the adversary from sending messages from all corrupted parties to all
honest parties; however, we wish to only count those message which are actually processed by
honest parties. To model this, the receive phase of every communication round5 is composed of
two sub-phases:

1. The filtering sub-phase: Each party inspects the list of messages received in the previous
round, according to specific filtering rules defined by the protocol, and discards the messages
that do not pass the filter. The resulting list of messages is appended to the local transcript
of the protocol.

2. The processing sub-phase: Based on its local transcript, each party computes the next-message
function and obtains the list of messages to be sent in the current round along with the list
of recipients, and sends them to the relevant parties.

In practice, the filtering procedure should be “lightweight,” such as verifying validity of a signature.
However, we assume only an abstraction and defer the actual choice of filtering procedure (as well
as corresponding discussion) to specific protocol specifications. We note that the above two-phase

5Recall that in the synchronous model, every communication round is composed of a send phase and a receive
phase, see Appendix A.2.
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processing of rounds is implicit in protocols from the literature that achieve low locality [65, 62,
64, 66, 17, 26, 18]. It is also implicit when analyzing the communication complexity of general
protocols, where malicious parties can send long messages to honest parties, and honest parties
filter out invalid messages before processing them.

We now turn to define the communication graph of a protocol’s execution, by which we mean
the deterministic instance of the protocol defined by fixing the adversary and all input values and
random coins of the parties and the adversarial strategy. We consider protocols that are defined
in the correlated-randomness model (e.g., for establishing PKI). This is without loss of generality
since by defining the “empty distribution,” where every party is given an empty string, we can
model also protocols in the plain model. Initially, we focus on the static setting, where the set of
corrupted parties is determined at the onset of the protocol. In Section 3.6, we discuss the adaptive
setting.

Definition 3.3 (protocol execution instance). For n ∈ N, let πn be an n-party protocol, let κ be the
security parameter, let x = (x1, . . . , xn) be an input vector for the parties, let ρ = (ρ1, . . . , ρn) be
correlated randomness for the parties, let A be an adversary, let z be the auxiliary information of
A, let I ⊆ [n] be the set of indices of corrupted parties controlled by A, and let r = (r1, . . . , rn, rA)
be the vector of random coins for the parties and for the adversary.

Denote by instance(πn) = (πn,A, I, κ,x,ρ, z, r) the list of parameters that deterministically
define an execution instance of the protocol πn.

Note that instance(πn) fully specifies the entire views and transcript of the protocol execution,
including all messages sent to/from honest parties.

Definition 3.4 (communication graph of protocol execution). For n ∈ N, let instance(πn) =
(πn,A, I, κ,x,ρ, z, r) be an execution instance of the protocol πn. We now define the following
communication graphs induced by this execution instance. Each graph is defined over the set of n
vertices [n].

• Outgoing communication graph. The directed graph Gout(instance(πn)) = ([n], Eout) captures
all the communication lines that are used by honest parties to send messages. That is,

Eout(instance(πn)) = {(i, j) | Pi is honest and sent a message to Pj} .

• Incoming communication graph. The directed graph Gin(instance(πn)) = ([n], Ein) captures all
the communication lines in which honest parties received messages that were processed (i.e.,
excluding messages that were filtered out). That is,

Ein(instance(πn)) = {(i, j) | Pj is honest and processed a message received from Pi} .

• Full communication graph. The undirected graph Gfull(instance(πn)) = ([n], Efull) captures all
the communication lines in which honest parties received messages that were processed, or
used by honest parties to send messages. That is,

Efull(instance(πn)) = {(i, j) | (i, j) ∈ Eout or (i, j) ∈ Ein} .

We will sometimes consider ensembles of protocol instances (for n ∈ N) and the corresponding
ensembles of graphs they induce.
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Looking ahead, in subsequent sections we will consider the full communication graph Gfull.
Apart from making the presentation clear, the graphs Gout and Gin are used for defining Gfull
above, and the locality of a protocol in Definition 3.5. Note that Gout and Gin are interesting in
their own right, and can be used for a fine-grained analysis of the communication graph of protocols
in various settings, e.g., when transmitting messages is costly but receiving messages is cheap (or
vice versa). We leave it open as an interesting problem to study various graph properties exhibited
by these two graphs.

3.3 Locality of a Protocol

We now present a definition of communication locality, aligning with that of [17], with respect to
the terminology introduced above.
Definition 3.5 (locality of a protocol instance). Let instance(πn) = (πn, κ,x,ρ,A, z, I ⊆ [n], r) be
an execution instance as in Definition 3.4. For every honest party Pi we define the locality of party
Pi to be the number of parties from which Pi received and processed messages, or sent message to;
that is,

`i(instance(πn)) = |{j | (i, j) ∈ Gout} ∪ {j | (j, i) ∈ Gin}| .
The locality of instance(πn) is defined as the maximum locality of an honest party, i.e.,

`(instance(πn)) = max
i∈[n]\I

{`i(instance(πn))} .

We proceed by defining locality as a property of a protocol ensemble. The protocol ensemble
is parametrized by the number of parties n. To align with standard notions of security where
asymptotic measurements are with respect to the security parameter κ, we consider the situation
where the growth of n and κ are polynomially related.
Definition 3.6 (locality of a protocol). Let π = {πn}n∈N be a family of protocols in the correlated-
randomness model with distribution Dπ = {Dπn}n∈N, and let C = {Cn}n∈N be a family of adversary
classes. We say that π has locality `(n) facing adversaries in C if for every n that is polynomially
related to κ it holds that for every input vector x = (x1, . . . , xn), every auxiliary information z,
every adversary A ∈ Cn running with z, and every set of corrupted parties I ⊆ [n], it holds that

Pr [`(πn,A, I, κ,x, z) > `(n)] ≤ negl(κ),

where `(πn,A, I, κ,x, z) is the random variable corresponding to `(πn,A, I, κ,x,ρ, z, r) when ρ is
distributed according to Dπn and r is uniformly distributed.

The following proposition follows from the sequential composition theorem of Canetti [21].
Proposition 3.7 (composition of locality). Let f = {fn}n∈N and g = {gn}n∈N be ensembles of
n-party functionalities.
• Let ϕ = {ϕn}n∈N be a protocol ensemble that securely computes f with locality `ϕ tolerating
adversaries in C = {Cn}n∈N.

• Let π = {πn}n∈N be a protocol that securely computes g with locality `π in the f -hybrid model,
tolerating adversaries in C, using q = q(n) calls to the ideal functionality.

Then protocol πf 7→ϕ, that is obtained from {πn} by replacing all ideal calls to fn with the protocol
ϕn, is a protocol ensemble that securely computes g in the real model, tolerating adversaries in C,
with locality at most `π + q · `ϕ.

12



3.4 Edge Expansion of a Protocol

The measure of complexity we study for the communication graph of interactive protocols will be
that of edge expansion (see discussion below). We refer the reader to [60, 40] for more background
on expanders. We consider a definition of edge expansion which satisfies a natural monotonic
property, where adding more edges cannot decrease the graph’s measure of expansion (see discussion
in Section 3.5).

Definition 3.8. (edge expansion of a graph) Given an undirected graph G = (V,E), the edge
expansion ratio of G, denoted h(G), is defined as

h(G) = min
{S⊆V :|S|≤ |V |2 }

|edges(S)|
|S|

, (1)

where edges(S) denotes the set of edges between S and its complement S̄ = V \ S.

Definition 3.9. (family of expander graphs) A sequence {Gn}n∈N of graphs is a family of expander
graphs if there exists a constant ε > 0 such that h(Gn) ≥ ε for all n.

We now consider the natural extension of graph expansion to the setting of protocol-induced com-
munication graph.

Definition 3.10. (bounds on edge expansion of a protocol) Let π = {πn}n∈N, Dπ = {Dπn}n∈N,
and C = {Cn}n∈N be as in Definition 3.6.

• A function f(n) is a lower bound of the edge expansion of π facing adversaries in C, denoted
f(n) ≤ hπ,Dπ ,C(n), if for every n that is polynomially related to κ, for every x = (x1, . . . , xn),
every auxiliary information z, every A ∈ Cn running with z, and every I ⊆ [n], it holds that

Pr [h(Gfull(πn,A, I, κ,x, z)) ≤ f(n)] ≤ negl(κ),

where Gfull(πn,A, I, κ,x, z) is the random variable Gfull(πn,A, I, κ,x,ρ, z, r), when ρ is dis-
tributed according to Dπn and r is uniformly distributed.

• A function f(n) is an upper bound of the edge expansion of π facing adversaries in C, denoted
f(n) ≥ hπ,Dπ ,C(n), if there exists a polynomial relation between n and κ such that for infinitely
many n it holds that for every x = (x1, . . . , xn), every auxiliary information z, every A ∈ Cn
running with z, and every I ⊆ [n], it holds that

Pr [h(Gfull(πn,A, I, κ,x, z)) ≥ f(n)] ≤ negl(κ).

Definition 3.11 (expander protocol). Let π = {πn}n∈N, Dπ = {Dπn}n∈N, and C = {Cn}n∈N be
as in Definition 3.6. We say that the communication graph of π is an expander, facing adversaries
in C, if there exists a constant function ε(n) > 0 such that ε(n) ≤ hπ,Dπ ,C(n).

We note that most (if not all) secure protocols in the literature are expanders according to
Definition 3.11, both in the realm of distributed computing [38, 43, 47, 65, 62, 66, 64] and in
the realm of MPC [52, 11, 17, 26, 18]. Proving that a protocol is not an expander according
to this definition requires showing an adversary for which the edge expansion is sub-constant.
Looking ahead, both in our constructions of protocols that are not expanders (Section 4) and
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in our lower bound, showing that non-expander protocols can be attacked (Section 5), we use a
stronger definition, that requires that the edge expansion is sub-constant facing all adversaries, see
Definition 3.12 below. While it makes our positive results stronger, we leave it as an interesting
open question to attack protocols that do not satisfy Definition 3.11.

Definition 3.12 (strongly non-expander protocol). Let π = {πn}n∈N, Dπ = {Dπn}n∈N, and C =
{Cn}n∈N be as in Definition 3.6. We say that the communication graph of π is strongly not an
expander, facing adversaries in C, if there exists a sub-constant function α(n) ∈ o(1) such that
α(n) ≥ hπ,Dπ ,C(n).

We next prove a useful observation that will come into play in Section 5, stating that if the
communication graph of π is strongly not an expander, then there must exist a sublinear cut in the
graph.

Lemma 3.13. Let π = {πn}n∈N be a family of protocols in the correlated-randomness model with
distribution Dπ = {Dπn}n∈N, and let C = {Cn}n∈N be such that Cn is the class of adversaries
corrupting at most β · n parties, for a constant 0 < β < 1.

Assuming the communication graph of π is strongly not an expander facing adversaries in C,
there exists a sublinear function α(n) ∈ o(n) such that for infinitely many n’s the full communication
graph of πn has an α(n)-cut with overwhelming probability.

Proof. Since the full communication graph of π is strongly not an expander, there exists a sub-
constant function α′(n) ∈ o(1) such that there exists a polynomial relation between n and κ such
that for infinitely many n’s it holds that for every input x = (x1, . . . , xn) and every adversary
A ∈ Cn and every set of corrupted parties I,

Pr
[
h(Gfull(πn,A, I, κ,x, z)) > α′(n)

]
≤ negl(κ).

This means that for these n’s, with overwhelming probability there exists a subset Sn ⊆ [n] of size
at most n/2 for which

|edges(Sn)|
|Sn|

≤ α′(n).

Since |Sn| ≤ n/2 it holds that
|edges(Sn)| ≤ α′(n) · n2 .

We define α(n) = α′(n) · n2 , and the claim thus holds for α(n) ∈ o(n).

3.5 Discussion on the Definition of Expander Protocols

In addition to edge expansion, there are two other commonly studied notions of expansion in
graphs: spectral expansion and vertex expansion (see [60] for a survey on expander graphs). Spectral
expansion is a linear-algebraic definition of expansion in regular graphs, equal to the difference of
first and second largest eigenvalues of the graph’s adjacency matrix. Vertex (like edge) expansion
is combinatorial definitions of expansion, but considers the number of distinct nodes neighboring
subsets of the graph as opposed to the number of outgoing edges.

The three metrics are loosely coupled, and analyzing any of them for the communication graphs
in our setting seems a natural choice. We choose to study edge expansion, as it is particularly
amenable to our new techniques. We further consider an unscaled version of edge expansion, as
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opposed to the more stringent scaled version wherein the expansion ratio h(G) of Equation (1) is
defined with an additional scale factor of (degG)−1. The unscaled variant (while weaker) satisfies
the more natural property that it is monotonic with respect to the number of edges. That is, by
adding more edges to the graph, the value of h(G) cannot decrease; whereas, when dividing h(G)
by the degree, adding more edges to the graph might actually decrease the value of h(G), and the
graph which was an expander earlier may end up being non-expander. This monotonicity appears
more natural in the setting of communication graphs, where adding more edges cannot harm the
ability to successfully execute a protocol.

We remark that while our definitional focus is on this form of unscaled edge expansion, our
upper bounds (i.e., protocols with non-expanding communication graphs) apply to all aforemen-
tioned notions. Considering and extending our lower bound to alternative notions of expansion
(spectral/vertex/scaled) is left as an interesting open problem.

3.6 The Adaptive Setting

In the adaptive setting, the definitions of locality of protocols and of protocols with communication
graph that forms an expander follow the same spirit as in the static case, however, require a few
technical modifications.

Recall that we follow the adaptive model from Canetti [21],6 where an environment machine
interacts with the adversary/simulator. In particular, the adversary does not receive auxiliary
information at the onset of the protocol; rather the environment acts as an “interactive auxiliary-
information provider” and hands the adversary auxiliary information about parties that get cor-
rupted dynamically. In addition, the set of corrupted parties is not defined at the beginning, but
generated dynamically during the protocol based on corruption request issued by the adversary,
and also after the completion of the protocol, during the post-execution corruption (PEC) phase,
based on corruption requests issued by the environment.

Therefore, the required changes to the definitions are two-fold:

1. The parameters for defining an instance of a protocol execution are: the n-party protocol πn
the security parameter κ, the input vector for the parties x = (x1, . . . , xn), the correlated
randomness for the parties ρ = (ρ1, . . . , ρn), the environment Z, the adversaryA, the auxiliary
input for the environment z, and the random coins for the parties, the adversary, and the
environment r = (r1, . . . , rn, rA, rZ).
We denote by instanceadaptive(πn) = (πn,Z,A, κ,x,ρ, z, r).

2. The second difference considers the timing where the communication graph is set.

• After the parties generate their output, and before the PEC phase begins.
• At the end of the PEC phase, when the environment outputs its decision bit.

Since the communication graph is fixed at the end of the protocol (before the PEC phase
begins), the difference lies in the identity of the corrupted parties. More precisely, an edge
that appears in the graph before the PEC phase might not appear after the PEC phase, in
case both parties became corrupt. For this reason, we consider the communication graph
after the parties generate their outputs and before the PEC phase begins.

6We follow the modular composition framework [21] for the sake of clarity and simplicity. We note that the
definitions can be adjusted to the UC framework [22].
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All definitions as presented for static case translate to the adaptive setting with the two adjust-
ments presented above.

4 MPC with Non-Expanding Communication Graph
In this section, we show that in various standard settings, the communication graph of an MPC
protocol is not required to be an expander graph, even when the communication locality is poly-
logarithmic. In Section 4.1, we focus on static corruptions and computational security. In Sec-
tion 4.2, we extend the construction to the information-theoretic setting, and in Section 4.4 to the
adaptive-corruption setting.

4.1 Computational Security with Static Corruptions

We start by considering the computational setting with static corruptions.

Theorem 4.1 (restating Theorem 1.1 and Item 1 of Theorem 1.2). Let f = {fn}n∈N be an ensemble
of functionalities, let δ > 0, and assume that one-way functions exist. Then, the following holds in
the PKI-hybrid model with secure channels:

1. Let β < 1/4−δ and let t(n) = β ·n. Then, f can be securely computed by a protocol ensemble π
tolerating static PPT t(n)-adversaries such that the communication graph of π is strongly not
an expander.

2. Let β < 1/6−δ and let t(n) = β ·n. Then, f can be securely computed by a protocol ensemble π
tolerating static PPT t(n)-adversaries such that (1) the communication graph of π is strongly
not an expander, and (2) the locality of π is poly-logarithmic in n.

3. Let β < 1/4 − δ, let t(n) = β · n, and assume in addition the secret-key infrastructure
(SKI) model7 and the existence of public-key encryption schemes. Then, f can be securely
computed by a protocol ensemble π tolerating static PPT t(n)-adversaries such that (1) the
communication graph of π is strongly not an expander, and (2) the locality of π is poly-
logarithmic in n.8

Proof. The theorem follows from Lemma 4.2 (below) by instantiating the hybrid functionalities
using existing MPC protocols from the literature.

• The first part follows using honest-majority MPC protocols that exist assuming one-way
functions in the secure-channels model, e.g., the protocol of Beaver et al. [7] or of Damgård
and Ishai [35].9

• The second part follows using the low-locality MPC protocol of Boyle et al. [17] that exists
assuming one-way functions in the PKI model with secure channels and tolerates t = (1/3−δ)n
static corruptions.10

7In the SKI model every pair of parties has a secret random string that is unknown to other parties.
8This item hold in the authenticated-channels model, since we assume PKE.
9Generic honest-majority MPC protocols require a broadcast channel or some form of trusted setup assump-

tions [29, 32]. The PKI assumption in Theorem 4.1 is sufficient in the computational setting. Looking ahead, in the
information-theoretic setting (Section 4.2) additional adjustments are required.

10In [17] public-key encryption is also assumed, but as we show in Section 4.3, this assumption can be removed.
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• The third part follows using the low-locality MPC protocol of Chandran et al. [26] that exists
assuming public-key encryption in the PKI and SKI model with authenticated channels and
tolerates t < n/2 static corruptions.

4.1.1 Ideal Functionalities used in the Construction

The proof of Theorem 4.1 relies on Lemma 4.2 (below). We start by defining the notations and the
ideal functionalities that will be used in the protocol considered in Lemma 4.2.

Signature notations. Given a signature scheme (Gen,Sign,Verify) and m pairs of signing and
verification keys (ski, vki) ← Gen(1κ) for i ∈ [m], we use the following notations for signing and
verifying with multiple keys:

• Given a message µ we denote by Signsk1,...,skm(µ) the vector of m signatures σ = (σ1, . . . , σm),
where σi ← Signski(µ).

• Given a message µ and a signature σ = (σ1, . . . , σm), we denote by Verifyvk1,...,vkm(µ, σ) the
verification algorithm that for every i ∈ [m] computes bi ← Verifyvki(µ, σi), and accepts the
signature σ if and only if

∑m
i=1 bi ≥ m− t, i.e., even if up to t signatures are invalid.

We note that it is possible to use multi-signatures or aggregated signatures [73, 15, 71, 70] in order
to obtain better communication complexity, however, we use the notation above both for simplicity
and as a step towards the information-theoretic construction in the following section.

The functionality f (t′,n′)
elect-share

The m-party functionality f (t′,n′)
elect-share is parametrized by a signature scheme (Gen, Sign,Verify) and a

(t′, n′) ECSS scheme (Share,Recon), and proceeds with parties P1 = {P1, . . . , Pm} as follows.

1. Every party Pi sends a pair of values (xi, ski) as its input, where xi is the actual input value
and ski is a signing key. (If Pi didn’t send a valid input, set it to the default value, e.g., zero.)

2. Sample uniformly at random two subsets (committees) C1, C2 ⊆ [m] of size n′.

3. Sign each subset as σ1 = Signsk1,...,skm
(C1) and σ2 = Signsk1,...,skm

(C2).

4. For every i ∈ [m], secret share xi as (s1
i , . . . , s

n′

i )← Share(xi).

5. For every j ∈ [n′], set sj = (sj1, . . . , sjm).

6. Denote C1 = {i(1,1), . . . , i(1,n′)}. For every i /∈ C1 set the output of Pi to be C1. For every
i = i(1,j) ∈ C1 (for some j ∈ [n′]), set the output of Pi to be (C1, σ1, C2, σ2, sj).

Figure 2: The Elect-and-Share functionality

The Elect-and-Share functionality. In the Elect-and-Share m-party functionality, f (t′,n′)
elect-share,

every party Pi has a pair of inputs (xi, ski), where xi ∈ {0, 1}∗ is the “actual input” and ski is a
private signing key. The functionality starts by electing two random subsets C1, C2 ⊆ [m] of size n′,
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and signing each subset using all signing keys. In addition, every input value xi is secret shared
using a (t′, n′) error-correcting secret-sharing scheme (see Definition A.1). Every party receives as
output the subset C1, whereas a party Pi, for i ∈ C1, receives an additional output consisting of a
signature on C1, the signed subset C2, along with one share for each one of the m input values. The
formal description of the functionality can be found in Figure 2.

The Reconstruct-and-Compute functionality. The Reconstruct-and-Compute functionality,
f

(vk1,...,vkm)
recon-compute, is an m-party functionality. Denote the party-set by {Pm+1, . . . , P2m}. Every party
Pm+i has an input value xm+i ∈ {0, 1}∗, and a potential additional input value consisting of a signed
subset C2 ⊆ [m] and a vector ofm shares. The functionality starts by verifying the signatures, where
every invalid input is ignored. The signed inputs should define a single subset C2 ⊆ [m] (otherwise
the functionality aborts), and the functionality uses the additional inputs of parties Pm+i, for
every i ∈ C2, in order to reconstruct the m-tuple (x1, . . . , xm). Finally, the functionality computes
y = f(x1, . . . , x2m) and hands y as the output for every party. The formal description of the
functionality can be found in Figure 3.

The functionality frecon-compute

The m-party functionality f
(vk1,...,vkm)
recon-compute is parametrized by a signature scheme (Gen,Sign,Verify), a

(t′, n′) ECSS scheme (Share,Recon), and a vector of verification keys (vk1, . . . , vkm), and proceeds
with parties P2 = {Pm+1, . . . , P2m} as follows.

1. Every party Pm+i sends a pair of values (xm+i, zm+i) as its input, where xm+i is the actual
input value and either zm+i = ε or zm+i = (Cm+i, σm+i, sm+i).

2. For every Pm+i that provided zm+i 6= ε, verify that Verifyvk1,...,vkm
(Cm+i, σm+i) = 1 (ignore

invalid inputs). If there is no subset C2 ⊆ [m] of size n′ with an accepting signature, or if there
exists more than one such subset, then abort. Otherwise, denote C2 = {i(2,1) . . . , i(2,n′)}.

3. For every i = i(2,j) ∈ C2, let sm+i(2,j) = (sj1, . . . , sjm) be the input provided by Pm+i. (If Pm+i
provided invalid input, set sm+i(2,j) to be the default value, e.g., the zero vector.)

4. For every i ∈ [m], reconstruct xi = Recon(s1
i , . . . , s

n′

i ).

5. Compute y = f(x1 . . . , xm, xm+1, . . . , x2m).

6. Output y to every Pm+i ∈ P2.

Figure 3: The Reconstruct-and-Compute functionality

The Output-Distribution functionality. The m-party Output-Distribution functionality is
parametrized by a subset C1 ⊆ [m]. Every party Pi, with i ∈ C1, hands in a value, and the
functionality distributes the majority of these inputs to all the parties. The formal description of
the functionality can be found in Figure 4.
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The functionality fC1
out-dist

The m-party functionality fC1
out-dist is parametrized by a subset C1 ⊆ [m], and proceeds with parties

P1 = {P1, . . . , Pm} as follows.

1. Every party Pi, with i ∈ C1, gives input value yi, a party Pi with i /∈ C1 gives the empty input ε.

2. Denote y = majority{yi | i ∈ C1} (choose arbitrarily if the majority is not unique).

3. Output y to every Pi ∈ P1.

Figure 4: The Output-Distribution functionality

4.1.2 Constructing Non-Expander Protocols

High-level overview of the protocol. Having defined the ideal functionalities, we are ready
to present the main lemma. We start by describing the underlying idea behind the non-expanding
MPC protocol πne

n (Figure 6). At the onset of the protocol, the party-set is partitioned into two
subsets of size m = n/2, a left subset and a right subset (see Figure 5). The left subset will invoke
the Elect-and-Share functionality, that elects two subsets C1, C2 ⊆ [m] of size n′ = log2(n). The
parties in the left subset corresponding to C1 and the parties in the right subset corresponding to
C2 will form a “bridge.” The parties in C1 will receive shares of all inputs values of parties in the
left subset, and transfer them to C2. Next, the right subset of parties will invoke the Reconstruct-
and-Compute functionality, where each party hands its input value, and parties in C2 additionally
provide the shares they received from C1. The functionality reconstructs the left-subset’s inputs,
computes the function f and hands the output to the right subset. Finally, C2 will transfer the
output value to C1, and the left subset will invoke the Output-Distribution functionality in order
to distribute the output value to all the parties.

𝒫1 = 𝑃1, … , 𝑃𝑚 𝒫2 = 𝑃𝑚+1, … , 𝑃2𝑚

𝒞1 𝒞2

Figure 5: The non-expanding subsets in the protocol πne. The sets C1 and C2 are of poly-logarithmic
size and the sets P1 and P2 are of linear size. The number of edges between P1 and P2 is poly-
logarithmic.
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Lemma 4.2. Let f = {fn}n∈2N,11 where fn is an n-party functionality for n = 2m, let
δ > 0, and assume that one-way functions exist. Then, in the PKI-hybrid model with se-
cure channels, where a trusted party additionally computes the m-party functionality-ensembles
(felect-share, frecon-compute, fout-dist) tolerating γ ·m corruptions, there exists a protocol ensemble π that
securely computes f tolerating static PPT βn-adversaries, for β < min(1/4 − δ, γ/2), with the
following guarantees:

1. The communication graph of π is strongly not an expander.

2. Denote by f1, f2, f3 the functionality-ensembles felect-share, frecon-compute, fout-dist (resp.). If
protocol-ensembles ρ1, ρ2, ρ3 securely compute f1, f2, f3 (resp.) with locality `ρ = `ρ(m), then
πfi→ρi (where every call to fi is replaced by an execution of ρi) has locality ` = 2 ·`ρ+log2(n).

Protocol πne
n

• Hybrid Model: The protocol is defined in the (felect-share, frecon-compute, fout-dist)-hybrid model.

• Common Input: A (t′, n′) ECSS scheme (Share,Recon), a signature scheme (Gen, Sign,Verify),
and a partition of the party-set P = {P1, . . . , Pn} into P1 = {P1, . . . , Pm} and P2 = P \ P1.

• PKI: Every party Pi, for i ∈ [n], has signature keys (ski, vki); the signing key ski is private,
whereas the vector of verification keys (vk1, . . . , vkn) is public and known to all parties.

• Private Input: Every party Pi, for i ∈ [n], has private input xi ∈ {0, 1}∗.

• The Protocol:

1. The parties in P1 invoke f (t′,n′)
elect-share, where every Pi ∈ P1 sends input (xi, ski), and receives

back output consisting of a committee C1 = {i(1,1), . . . , i(1,n′)} ⊆ [m]. Every party Pi with
i = i(1,j) ∈ C1, receives an additional output consisting of a signature σ1 on C1, a committee
C2 = {i(2,1), . . . , i(2,n′)} ⊆ [m], a signature σ2 on C2, and a vector sj = (sj1, . . . , sjm).

2. For every j ∈ [n′], party Pi(1,j) sends (C1, σ1, C2, σ2) to every party in C2, and sj only to Pm+i(2,j) .
A party Pm+i ∈ P2 that receives a message (C1, σ1, C2, σ2) from Pj ∈ P1 will discard the message
in the following cases:

(a) If i /∈ C2 or j /∈ C1.
(b) If Verifyvk1,...,vkm

(C1, σ1) = 0 or Verifyvk1,...,vkm
(C2, σ2) = 0.

3. The parties in P2 invoke f (vk1,...,vkm)
recon-compute, where Pm+i ∈ P2 sends input (xm+i, zm+i) such that for

i /∈ C2, set zm+i = ε, and for i = i(2,j) ∈ C2, set zm+i = (C2, σ2, sj). Every party in P2 receives
back output y.

4. For every j ∈ [n′], party Pm+i(2,j) sends y to party Pi(1,j) . In addition, every party in P2 outputs
y and halts.

5. The parties in P1 invoke fC1
out-dist, where party Pi, with i ∈ C1, has input y, and party Pi, with

i /∈ C1 has the empty input ε. Every party in P1 receives output y, outputs it, and halts.

Figure 6: Non-expanding MPC in the (felect-share, frecon-compute, fout-dist)-hybrid model

11For simplicity, we consider even n’s. Extending the statement to any n is straightforward, however, adds more
details.
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Proof. For m ∈ N and n = 2m, we construct the n-party protocol πne
n (see Figure 6) in the

(felect-share, frecon-compute, fout-dist)-hybrid model. The parameters for the protocol are n′ = log2(n)
and t′ = (1/2 − δ) · n′. We start by proving in Proposition 4.3 that the protocol πne

n securely
computes fn. Next, in Proposition 4.4 we prove that the communication graph of πne is strongly
not an expander. Finally, in Proposition 4.5 we prove that by instantiating the functionalities
(felect-share, frecon-compute, fout-dist) using low-locality protocols, the resulting protocol has low locality.

Proposition 4.3. For sufficiently large n, the protocol πne
n securely computes the function fn,

tolerating static PPT βn-adversaries, in the (felect-share, frecon-compute, fout-dist)-hybrid model.

The proof of Proposition 4.3 can be found in Appendix B.1.

Proposition 4.4. The communication graph of the Protocol πne is strongly not an expander, facing
static PPT βn-adversaries.

Proof. For n = 2m, consider the set P1 = {P1, . . . , Pm} and its complement P2 = P \ P1. For any
input vector and for every static PPT βn-adversary it holds that with overwhelming probability
that |P1| = n/2 and edges(P1,P2) = |C1| × |C2| = log2(n) · log2(n). Therefore, considering the
function

f(n) = 2 log4(n)
n

,

it holds that f(n) ∈ o(1) and f(n) is an upper bound of the edge expansion of πne (see Defini-
tion 3.10). We conclude that the communication graph of πne is strongly not an expander.

Proposition 4.5. Let ρ1, ρ2, ρ3, and πfi→ρi be the protocols defined in Lemma 4.2, and let `ρ =
`ρ(m) be the upper bound of the locality of ρ1, ρ2, ρ3. Then πfi→ρi has locality ` = 2 · `ρ + log2(n).

Proof. Every party in P1 communicates with `ρ parties when executing ρ1, and with at most another
`ρ parties when executing ρ3. In addition, every party in C1 communicates with all n′ = log2(n)
parties in C2. Similarly, every party in P2 communicates with `ρ parties when executing ρ2, and
parties in C2 communicates with all n′ parties in C1. It follows that maximal number of parties
that a party communicates with during the protocol is 2 · `ρ + log2(n).

This concludes the proof of Lemma 4.2.

4.2 Information-Theoretic Security

The protocol in Section 4.1 relies on digital signatures, hence, security is guaranteed only in the
presence of computationally bounded adversaries. Next, we gain security facing all-powerful adver-
saries by using information-theoretic signatures (see Appendix A.1.3).

Theorem 4.6 (restating Item 2 of Theorem 1.2). Let f = {fn}n∈N be an ensemble of functionalities
and let δ > 0. The following holds in the IT-PKI-hybrid model with secure channels:

1. Let β < 1/4−δ and let t = β ·n. Then, f can be t-securely computed by a protocol ensemble π
tolerating static t(n)-adversaries such that the communication graph of π is strongly not an
expander.
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2. Let β < 1/12−δ and let t = β ·n. Then, f can be t-securely computed by a protocol ensemble π
tolerating static t(n)-adversaries such that (1) the communication graph of π is strongly not
an expander, and (2) the locality of π is poly-logarithmic in n.

Proof. The theorem follows from Lemma 4.7 (below), which is an information-theoretic variant of
Lemma 4.2, by instantiating the hybrid functionalities using appropriate MPC protocols.

• The first part follows using honest-majority MPC protocols that exist in the secure-channels
model, e.g., the protocol of Rabin and Ben-Or [76].

• In Section 4.3 we prove information-theoretic variant of the low-locality MPC protocol of
Boyle et al. [17] in the IT-PKI model with secure channels that tolerates t < (1/6 − δ) · n
static corruptions. The second part follows from that protocol.

The main differences between standard digital signatures and information-theoretic signatures
are: (1) the verification key is not publicly known, but rather, must be kept hidden (meaning that
each party Pi has a different verification key vkji with respect to every party Pj), and (2) a bound
on the number times that a secret signing key and a secret verification key are used must be a priori
known. The latter does not form a problem since, indeed, the number of signatures that are gener-
ated in Protocol πne

n (Figure 6) by any of the signing keys is 2, and likewise, each verification key is
used to verify 2 signatures. However, the former requires adjusting the functionality frecon-compute.

Instead of having the functionality be parametrized by the vector of verification keys
vk1, . . . , vkm (which, as mentioned above, will not be secure in the information-theoretic setting),
each party Pm+i, with i ∈ [m], has a vector of (secret) verification keys vk1

m+i, . . . , vkmm+i corre-
sponding to the parties in P1.

In the adjusted functionality, denoted fit-recon-compute, we change the functionality frecon-compute
by having each party Pm+i provide an additional input consisting of its verification keys
vk1

m+i, . . . , vkmm+i (and the functionality is no longer parametrized by any value). Now, on each
input consisting of a subset Cm+i and corresponding signature-vector σm+i, the functionality ver-
ifies the j’th signature of the set Cm+i using the verification keys vkjm+1, . . . , vkj2m. If at most t
verifications fail, the functionality accepts the committee, whereas if more than t verifications fail,
the functionality ignores the subset. Next, the functionality proceeds as in frecon-compute.

Signature notations. Given an information-theoretically (`S , `V )-secure signature scheme
(Gen,Sign,Verify), and m tuples of signing and verification keys (ski, ~vki) ← Gen(1κ, n, `S), where
for every i ∈ [m] the verification keys are ~vki = (vki1, . . . , vkin), we use the following notations for
signing and verifying with multiple keys:

• Given a message µ we denote by Signsk1,...,skm(µ) we consider the vector of m signatures
σ = (σ1, . . . , σm), where σi ← Signski(µ).

• Given a message µ and a signature σ = (σ1, . . . , σm), we denote by Verify ~vkm+1,..., ~vk2m
(µ, σ)

the following verification algorithm:

1. For every i ∈ [m] proceeds as follows:
(a) For every j ∈ [m] let bji ← Verifyvkim+j

(µ, σi).
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(b) Set bi = 1 if and only if
∑m
j=1 b

j
i ≥ m− t, i.e., even if up to t verification keys reject

the signature.
2. Accepts the signature σ if and only if

∑m
i=1 bi ≥ m− t, i.e., even if up to t signatures are

invalid.

Lemma 4.7. Let f = {fn}n∈2N, where fn is an n-party functionality for n = 2m, and let
δ > 0. Then, in the (2, 2)-IT-PKI-hybrid model with secure channels, where a trusted party addi-
tionally computes the m-party functionality-ensembles (felect-share, fit-recon-compute, fout-dist) tolerating
γ · m corruptions, there exists a protocol ensemble π that securely computes f tolerating static
βn-adversaries, for β < min(1/4− δ, γ/2), with the following guarantees:

1. The communication graph of π is strongly not an expander.

2. Denote by f1, f2, f3 the functionality-ensembles felect-share, fit-recon-compute, fout-dist (resp.). If
protocol-ensembles ρ1, ρ2, ρ3 securely compute f1, f2, f3 (resp.) with locality `ρ = `ρ(m), then
πfi→ρi (where every call to fi is replaced by an execution of ρi) has locality ` = 2 ·`ρ+log2(n).

Proof sketch. The proof of the lemma follows in similar lines as the proof of Lemma 4.2. We
highlight the main differences.

• IT-PKI model. The protocol is defined in the (2, 2)-IT-PKI-hybrid model, rather than the
PKI-hybrid model, meaning that each party receives a secret signing key along with a secret
verification key for every other party. At most two values can signed verified by these keys.

• Hybrid model. The protocol is defined in the fit-recon-compute-hybrid model, rather than the
frecon-compute-hybrid model, meaning that each party in P2 sends its vector of secret verification
keys as input to the functionality.

• The simulation. The simulator generates appropriate signing and verification keys for sim-
ulating the (2, 2)-IT-PKI functionality, and receives the verification keys from the adversaries
when emulating the functionality fit-recon-compute. No other changes are needed.

• The hybrid games. Claim B.1 is restated to show that the first hybrid game and the second
are statistically close when using (2, 2)-IT-PKI, rather than computationally indistinguish-
able.

The rest of the proof follows the proof of Lemma 4.2.

4.3 Information-Theoretic MPC with Low Locality

The protocol of Boyle, Goldwasser, and Tessaro [17] follows a framework common to other protocols
achieving low locality (cf. [63, 66, 20] and the references therein). First, the parties compute almost-
everywhere agreement, that is agreement among at least a 1 − o(1) fraction of parties. Next, the
parties upgrade to full agreement via a transformation that preserves low locality. The results
in [17] are in the computational setting where the main cryptographic tools that are being used
are public-key encryption, digital signatures, and pseudorandom functions (PRF). In this section,
we show that the approach of [17] can be adapted to the information-theoretic setting by removing
the need of public-key encryption and by substituting other computational primitives by their
information-theoretic analogues. Namely, we will use information-theoretic signatures instead of
digital signatures and samplers [86, 51] instead of PRF.
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Overview of the BGT protocol. The protocol consists of two parts:

1. Establishing a polylog-degree communication tree. This part of the protocol requires
digital signatures established via a PKI and a PRF.

• Initially, the parties run the protocol of King et al. [65] to reach almost everywhere
agreement on a random seed while establishing a polylog-degree communication tree,
and maintaining polylog locality. This part holds information theocratically.
• Next, certified almost everywhere agreement is obtained by having the parties sign the
seed and distribute the signatures. Specifically, every party sends its signature on the
seed up the tree to the supreme committee, which concatenates all signatures to form a
certificate on the seed, and sends it down the tree to (almost all) the parties.
• Finally, to achieve full agreement, every party that received sufficiently many signatures

on the seed locally evaluates the PRF on the seed and its identity to get a polylog subset
of parties, and sends the certified seed to each party in this set. A party that receives
the certified seed can validate the seed is properly signed and that he is a valid recipient
of the message.

Note that the PRF is used for its combinatorics properties and is not needed for security.

2. Computing the function. Having established the communication tree, the supreme com-
mittee (i.e., the parties assigned to the root) jointly generate keys to a threshold encryption
scheme such that each committee member holds a share of the decryption key and the public
key is known. Next, they distribute the public encryption key down the tree. Every party
encrypts its input using the encryption key and sends it up the tree. Finally, the supreme
committee runs a protocol to decrypt the ciphertexts and evaluate the function to obtain the
output, which is distributed to all parties.

We now turn to explain how to construct an information-theoretic analogue for this protocol.

Establishing the communication tree information theoretically. This part follows almost
immediately from [17]. The digital signatures and the PKI are replaced by information-theoretic
signatures and an IT-PKI, where every party signs the κ-bit seed (i.e., one signature operation
per party) and has to verify n signatures. As mentioned above, the PRF is used only for its
combinatorial properties (mapping each party to a polylog set of neighbors) and not for other
security purposes, and so it can be replaced by a sampler with good parameters (this approach was
adopted by [20] to construct the first BA protocol for with polylog communication complexity).
We provide more information on the samplers that are employed in Appendix A.1.4.

Computing the function information theoretically. Once the communication tree is estab-
lished, each party must send his input to the supreme-committee members in a way that allows
them to compute the function. We replace the public-key encryption used in [17] by secret sharing.
To understand this step, we will first explain the structure of the communication tree.

For any n ∈ N, the communication tree from [65] is a graph G = G(n) in which every node is
labeled by subsets of [n] that satisfies the following properties:

• G is a tree of height l∗ ∈ O(logn/ log logn). Each node from level ` > 0 has logn nodes from
level `− 1 as its children.
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• Each node of G is labeled by a subset polylog(n) parties.

• Each party is assigned to polylog(n) nodes at each level.

King et al. [65] showed that for any t = βn static corruptions, all but a 3/ logn fraction of the
leaf nodes have a good path up to the root node (i.e., a path on which each committee contains
a majority of honest parties). As observed in [17], this implies that for a 1 − o(1) fraction of the
parties, majority of the leaf nodes that they are assigned to are good. In addition, each leaf node
is connected to polylog(n) parties as determined by the sampler.

The high-level idea now is to let each party Pi, with associated leaf-nodes v1, . . . , vk, secret
share its input as (si,1, . . . , si,k)← Share(xi) and send the share si,j to vj . Each leaf-node will send
the received shares up the tree until to supreme committee (the parties associated with the root)
receive all shares, reconstruct all inputs, and compute the function. Clearly, this idea does not
provide any privacy, since the adversary may have corrupted parties in many leaves, thus recover
the honest parties’ inputs values. To overcome this problem, instead of sending si,j in the clear, each
Pi will secret share each share as (s1

i,j , . . . , s
m
i,j) ← Share(si,j), where m is the size of a committee

associated to a leaf node, and send shi,j to the h’th party in vj . Stated differently, each leaf-node
will hold the shares in a secret-shared form.

The next part of the protocol proceeds recursively. For every node v in level ` and every child
node u of v in level `−1, the parties associated with u and with v will run a secure protocol for the
following functionality: For each of the shared values held by the parties associated with u, they
enter the secret shares as input; the functionality reconstructs the value, reshares it, and outputs
the new shares to the parties associated with v.

In order to implement this functionality using BGW, we require that the union of the parties
associated with u and with v will have a 2/3 majority. Such a majority is guaranteed with over-
whelming probability if the total fraction of corruptions is 1/6−ε, for an arbitrary small constant ε.
We thus proved the following theorem.

Theorem 4.8 (restating Theorem 1.3). For any efficient functionality f and any constant ε > 0,
there exists a protocol with poly-logarithmic locality in the information-theoretic PKI model, securely
realizing f against computationally unbounded adversaries statically corrupting (1/6− ε) ·n parties.

4.4 Adaptive Corruptions

In this section, we focus on the adaptive setting, where the adversary can corrupt parties dynami-
cally, based on information gathered during the course of the protocol.

Adjusting Lemma 4.2 to the adaptive setting is not straightforward, since once the subsets C1
and C2 are known to the adversary, he can completely corrupt them. A first attempt to get around
this obstacle is not to reveal the entire subsets in the output of the Elect-and-Share functionality,
but rather, let each party in C1 learn the identity of a single party in C2 with which he will
communicate. This way, if a party in C1 (resp. C2) gets corrupted, only one additional party in C2
(resp. C1) is revealed to the adversary. This solution comes with the price of tolerating a smaller
fraction of corrupted parties, namely, (1/8− δ) fraction.

This solution, however, is still problematic in the adaptive setting if the adversary can monitor
the communication lines, even when they are completely private (as in the secure-channels setting).
The reason is that once the adversary sees the communication that is sent between C1 and C2 he
can completely corrupt both subsets. This problem is inherent when the communication lines
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are visible to the adversary, therefore, we turn to the hidden-channels setting that was used by
Chandran et al. [26], where the adversary does not learn whether a message is sent between two
honest parties (see Appendix A.2).

Theorem 4.9 (restating Items 3 and 4 of Theorem 1.2). Let f = {fn}n∈N be an ensemble of
functionalities, let δ > 0, let β < 1/8 − δ, and let t = β · n. The following holds in the hidden-
channels model:

1. Assuming the existence of one-way functions, f can be securely computed by a protocol ensem-
ble π in the PKI model tolerating adaptive PPT t(n)-adversaries such that the communication
graph of π is strongly not an expander.

2. Assuming the existence of trapdoor permutations with a reverse domain sampler, f can be
securely computed by a protocol ensemble π in the PKI and SKI model tolerating adaptive
PPT t(n)-adversaries such that (1) the communication graph of π is strongly not an expander,
and (2) the locality of π is poly-logarithmic in n.12

3. f can be securely computed by a protocol ensemble π in the IT-PKI model tolerating adaptive
t(n)-adversaries such that the communication graph of π is strongly not an expander.

Proof. The theorem follows from Lemma 4.10 (below), which is an adaptively secure variant of
Lemma 4.2, by instantiating the hybrid functionalities using MPC protocols from the literature.

• The first part follows using an adaptively secure honest-majority MPC protocol in the secure-
channels model, e.g., Cramer et al. [33] or Damgård and Ishai [35].

• The second part follows using the adaptively secure protocol of Chandran et al. [26].

• The third part follows using information-theoretic signatures via the same adjustments that
were employed in Section 4.2, and using the protocol of Cramer et al. [33].

Hiding the subsets C1 and C2 from the parties requires adjusting the ideal functionalities that
are used in Section 4.1. We now describe the adjusted functionalities.

The Adaptive-Elect-and-Share functionality. The Adaptive-Elect-and-Share m-party func-
tionality, f (t′,n′)

a-elect-share, is defined in a similar way as the Elect-and-Share functionality (Figure 2) with
the following difference. Instead of outputting the set C1 to all parties and the set C2 to parties in
C1, the functionality outputs for every party in C1 an index of a single party in C2 (and signs the
values). Parties outside of C1 receive no output. The formal description of the functionality can be
found in Figure 7.

12We note that the adaptively secure protocols in [26] are proven in a model with atomic simultaneous multi-send
operations [58, 49] and secure erasures.
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The functionality f (t′,n′)
a-elect-share

The m-party functionality f (t′,n′)
a-elect-share is parametrized by a signature scheme (Gen, Sign,Verify) and a

(t′, n′) ECSS scheme (Share,Recon), and proceeds with parties P1 = {P1, . . . , Pm} as follows.

1. Every party Pi sends a pair of values (xi, ski) as its input, where xi is the actual input value
and ski is a signing key. (If Pi didn’t send a valid input, set it to the default value, e.g., zero.)

2. Sample uniformly at random two subsets (committees) C1, C2 ⊆ [m] of size n′. Denote C1 =
{i(1,1), . . . , i(1,n′)} and C2 = {i(2,1), . . . , i(2,n′)}.

3. For every j ∈ [n′], sign σ1,j = Signsk1,...,skm
(i(1,j)) and σ2,j = Signsk1,...,skm

(m+ i(2,j)).

4. For every i ∈ [m], secret share xi as (s1
i , . . . , s

n′

i )← Share(xi).

5. For every j ∈ [n′], set sj = (sj1, . . . , sjm).

6. For every i = i(1,j) ∈ C1 (for some j ∈ [n′]), set the output of Pi to be (i2,j , σ1,j , σ2,j , sj).
(Parties outside of C1 receive the empty output ε)

Figure 7: The Adaptive-Elect-and-Share functionality

The Adaptive-Reconstruct-and-Compute functionality. The Adaptive-Reconstruct-and-
Compute functionality, f (vk1,...,vkm)

a-recon-compute, is defined in a similar way as the Reconstruct-and-Compute
functionality (Figure 3) with the following difference. Instead of having the potential additional
input value consist of a signed subset C2 ⊆ [m], it consists of a signed index. The functionality
verifies that if a party provided an additional input, then it has a valid signature of its own index,
and derives the committee C2 from the indices with a valid signature. The formal description of
the functionality can be found in Figure 8.

The functionality fa-recon-compute

The m-party functionality f (vk1,...,vkm)
a-recon-compute is parametrized by a signature scheme (Gen, Sign,Verify), a

(t′, n′) ECSS scheme (Share,Recon), and a vector of verification keys (vk1, . . . , vkm), and proceeds
with parties P2 = {Pm+1, . . . , P2m} as follows.

1. Every party Pm+i sends a pair of values (xm+i, zm+i) as its input, where xm+i is the actual
input value and either zm+i = ε or zm+i = (σm+i, sm+i).

2. For every Pm+i with zm+i 6= ε, check if Verifyvk1,...,vkm
(m+ i, σm+i) = 1 (ignore invalid inputs).

If exactly n′ indices are properly signed, denote as C2 = {i(2,1) . . . , i(2,n′)}; otherwise, abort.

3. For every i = i(2,j) ∈ C2, let sm+i(2,j) = (sj1, . . . , sjm) be the input provided by Pm+i. (If Pm+i
provided invalid input, set sm+i(2,j) to be the default value, e.g., the zero vector.)

4. For every i ∈ [m], reconstruct xi = Recon(s1
i , . . . , s

n′

i ).

5. Compute y = f(x1 . . . , xm, xm+1, . . . , x2m).

6. Output y to every Pm+i ∈ P2.

Figure 8: The Adaptive-Reconstruct-and-Compute functionality
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The Adaptive-Output-Distribution functionality. The Adaptive-Output-Distribution func-
tionality is defined in a similar way as the Output-Distribution functionality (Figure 4) with the
following difference. Instead of being parametrized by a subset C1 that specifies the input providers,
the functionality is parametrized by the verification keys vk1, . . . , vkm, every party that provides
an input value must also provide a signature of its own index. The formal description of the
functionality can be found in Figure 9.

The functionality fa-out-dist

The m-party functionality f (vk1,...,vkm)
a-out-dist is parametrized by a signature scheme (Gen, Sign,Verify) and a

vector of verification keys (vk1, . . . , vkm), and proceeds with parties P1 = {P1, . . . , Pm} as follows.

1. Every party Pi gives either the empty input ε of an input value of the form (σi, yi).

2. For every party Pi that provided a non-empty input, verify that Verifyvk1,...,vkm
(i, σi) = 1 (ignore

invalid inputs). Denote by C1 the set of indices of parties that gave valid inputs.

3. Denote y = majority{yi | i ∈ C1} (choose arbitrarily if the majority is not unique).

4. Output y to every Pi ∈ P1.

Figure 9: The Adaptive-Output-Distribution functionality

Lemma 4.10. Let f = {fn}n∈2N, where fn is an n-party functionality for n = 2m, and let δ > 0.
Then, in the PKI-hybrid model with secure channels, where a trusted party additionally computes the
m-party functionality-ensembles (fa-elect-share, fa-recon-compute, fa-out-dist) tolerating γ ·m corruptions,
there exists a protocol ensemble π that securely computes f , with computational security, tolerating
adaptive PPT βn=adversaries, for β < min(1/8− δ, γ/2) with the following guarantees:

1. The communication graph induced by π is strongly not an expander.

2. Denote by f1, f2, f3 the functionalities fa-elect-share, fa-recon-compute, fa-out-dist (resp.). If protocols
ρ1, ρ2, ρ3 securely compute f1, f2, f3 (resp.) with locality `ρ = `ρ(m), then πfi→ρi (where every
call to fi is replaced by an execution of ρi) has locality ` = 2 · `ρ + 1.

The proof of Lemma 4.10 can be found in Appendix B.2.

5 Expansion is Necessary for Correct Computation
In this section, we show that in certain natural settings there exist functionalities such that the final
communication graph of any MPC protocol that securely computes them must be an expander. In
fact, we prove a stronger statement, that removing a sublinear number of edges from such graphs
will not disconnect them. We consider the plain model, in which parties do not have any trusted
setup assumptions,13 a PPT adaptive adversary, and focus on parallel multi-valued broadcast (also
known as interactive consistency [75]), where every party has an input value, and all honest parties
agree on a common output vector, such that if Pi is honest then the i’th coordinate equals Pi’s

13The lower bound immediately extends to a setting where the parties have access to a common reference string;
we consider the plain setting for simplicity.
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input. In particular, our proof does not rely on any privacy guarantees of the protocol, merely its
correctness.

For simplicity, and without loss of generality, we assume the security parameter is the number
of parties n.

Definition 5.1 (parallel broadcast). A protocol ensemble π = {πn}n∈N is a t(n)-resilient, parallel
broadcast protocol with respect to input space {{0, 1}n}n∈N, if there exists a negligible function µ(n),
such that for every n ∈ N, every party Pi in πn has input xi ∈ {0, 1}n and outputs a vector of
n values yi = (yi1, . . . , yin) such that the following is satisfied, except for probability µ(n). Facing
any adaptive, malicious PPT adversary that dynamically corrupts and controls a subset of parties
{Pj}j∈I , with I ⊆ [n] of size |I| ≤ t(n), it holds that:

• Agreement. There exists a vector y = (y1, . . . , yn) such that for every party Pi that is honest
at the conclusion of the protocol it holds that yi = y.

• Validity. For every party Pi that is honest at the conclusion of the protocol it holds that the
i’th coordinate of the common output equals his input value, i.e., yi = xi.

Recall that a connected graph is k-edge-connected if it remains connected whenever fewer than
k edges are removed. We are now ready to state the main result of this section. We note that as
opposed to Section 4.4, where we considered adaptive corruptions in the hidden-channels model,
this section considers the parallel secure message transmission (SMT) model, formally defined in
Section 5.1, where the adversary is aware of communication between honest parties, but not of the
message content.

Theorem 5.2 (restating Theorem 1.4). Let β > 0 be a fixed constant, let t(n) = β · n, and let
π = {πn}n∈N be a t(n)-resilient, parallel broadcast protocol with respect to input space {{0, 1}n}n∈N,
in the parallel SMT hybrid model (in the computational setting, tolerating an adaptive, malicious
PPT adversary). Then, the communication graph of π must be α(n)-edge-connected, for every
α(n) ∈ o(n).

From Theorem 5.2 and Lemma 3.13 (stating that if the communication graph of π is strongly
not an expander then there must exist a sublinear cut in the graph) we get the following corollary.

Corollary 5.3. Consider the setting of Theorem 5.2. If the communication graph of π is strongly
not an expander (as per Definition 3.12), then π is not a t(n)-resilient parallel broadcast protocol.

The remainder of this section goes towards proving Theorem 5.2. We start by presenting the
communication model in Section 5.1. In Section 5.2, we prove a graph-theoretic theorem that will
be used in the core of our proof and may be of independent interest. Then, in Section 5.3 we
present the proof of Theorem 5.2.

5.1 The Communication Model

We consider secure communication channels, where the adversary can see that a message has been
sent but not its content (in contrast to the hidden-communication model, used in Section 4.4, where
the communication between honest parties was hidden from the eyes of the adversary). A standard
assumption when considering adaptive corruptions is that in addition to being notified that an
honest party sent a message, the adversary can corrupt the sender before the receiver obtained the
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message, learn the content of the message, and replace it with another message of its choice that
will be delivered to the receiver. Although the original modular composition framework [21] does
not give the adversary such power, this ability became standard after the introduction of the secure
message transmission (SMT) functionality in the UC framework [22]. As we consider synchronous
protocols, we use the parallel SMT functionality that was formalized in [30, 31].14

Definition 5.4 (parallel SMT). The parallel secure message transmission functionality fpsmt is a
two-phase functionality. For every i, j ∈ [n], the functionality initializes a value xij to be the empty
string ε (the value xij represents the message to be sent from Pi to Pj).

• The input phase. Every party Pi sends a vector of n messages (vi1, . . . , vin). The functional-
ity sets xij = vij, and provides the adversary with leakage information on the input values. As
we consider rushing adversaries, who can determine the messages to be sent by the corrupted
parties after receiving the messages sent by the honest parties, the leakage function should
leak the messages that are to be delivered from honest parties to corrupted parties. Therefore,
the leakage function is

lpsmt
(
(x1

1, . . . , x
1
n), . . . , (xn1 , . . . , xnn)

)
=
(
(y1

1, . . . , y
1
n), . . . , (yn1 , . . . , ynn)

)
,

where yij = |xij | in case Pj is honest and yij = xij in case Pj is corrupted.
We consider adaptive corruptions, and so, the adversary can corrupt an honest party during
the input phase based on this leakage information, and send a new input on behalf of the
corrupted party (note that the messages are not delivered yet to the honest parties).

• The output phase. In the second phase, the messages are delivered to the parties, i.e., party
Pi receives the vector of messages (x1

i , . . . , x
n
i ).

In addition, we assume that the parties do not have any trusted-setup assumption.

5.2 A Graph-Theoretic Theorem

Our lower-bound proof is based on the following graph-theoretic theorem, which we believe may
be of independent interest. We show that every graph in which every node has a linear degree, can
be partitioned into a constant number of linear-size sets that are pairwise connected by sublinear
many edges. These subsets are “minimal cuts” in the sense that every sublinear cut in the graph
is a union of some of these subsets. The proof of the theorem is deferred to Appendix C.1.

Definition 5.5 ((α, d)-partition). Let G = (V,E) be a graph of size n. An (α, d)-partition of G is
a partition Γ = (U1, . . . , U`) of V that satisfies the following properties:

1. For every i ∈ [`] it holds that |Ui| ≥ d.

2. For every i 6= j, there are at most α edges between Ui and Uj, i.e., |edgesG(Ui, Uj)| ≤ α.

3. For every S ⊆ V such that {S, S̄} is an α-cut, i.e., |edgesG(S)| ≤ α, it holds that there exists
a subset J ( [`] for which S =

⋃
j∈J Uj and S̄ =

⋃
j∈[`]\J Uj.

14We note that by considering secure channels, that hide the content of the messages from the adversary, we obtain
a stronger lower bound than, for example, authenticated channels.
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In Theorem 5.6 we first show that if every node in the graph has a linear degree d(n), and α(n)
is sublinear, then for sufficiently large n there exists an (α(n), d(n))-partition of the graph, and
moreover, the partition can be found in polynomial time.

Theorem 5.6. Let c > 1 be a constant integer, let α(n) ∈ o(n) be a fixed sublinear function in n,
and let {Gn}n∈N be a family of graphs, where Gn = ([n], En) is defined on n vertices, and every
vertex of Gn has degree at least n

c − 1. Then, for sufficiently large n it holds that:

1. There exists an (α(n), n/c)-partition of Gn, denoted Γ; it holds that |Γ| ≤ c.

2. An (α(n), n/c)-partition Γ of Gn can be found in (deterministic) polynomial time.

Note that if for every n there exists an α(n)-cut in Gn, then it immediately follows that |Γ| > 1,
i.e., the partition is not the trivial partition of the set of all nodes.

5.3 Proof of the Main Theorem (Theorem 5.2)

High-level overview of the attack. For n ∈ N, consider an execution of the alleged parallel
broadcast protocol πn over uniformly distributed n-bit input values for the parties (x1, . . . , xn) ∈R
({0, 1}n)n. We define two ensembles of adversarial strategies {Ahonest-i∗

n }n∈N and {Acorrupt-i∗
n }n∈N

(described in full in Section 5.3.1).
The adversary Acorrupt-i∗

n corrupts a random party Pi∗ , and simulates an honest execution on a
random input x̃i∗ until Pi∗ has degree βn/4. Next, Acorrupt-i∗

n switches the internal state of Pi∗ with
a view that is consistent with an honest execution over the initial input xi∗ , where all other parties
have random inputs. The adversary Acorrupt-i∗

n continues by computing an (α(n), n/c)-partition
{U1, . . . , U`} of the communication graph, (where c is a constant depending only on β – this is
possible due to Theorem 5.6), and blocking every message that is sent between every pair of Ui’s.
In Lemma 5.7, we show that there exist honest parties that at the conclusion of the protocol have
received a bounded amount of information on the initial input value xi∗ .

The second adversary, Ahonest-i∗
n , is used for showing that under the previous attack, every

honest party will eventually output the initial input value xi∗ (Lemma 5.15). This is done by having
Ahonest-i∗
n corrupt all the neighbors of Pi∗ , while keeping Pi∗ honest, and simulate the previous attack

to the remaining honest parties.
We show that there exist honest parties whose view is identically distributed under both attacks,

and since they output xi∗ in the latter, they must also output xi∗ in the former. By combining
both of these lemmata, we then derive a contradiction.

Proof of Theorem 5.2. First, since we consider the plain model, without any trusted setup as-
sumptions, known lower bounds [75, 69, 44] state that parallel broadcast cannot be computed for
t(n) ≥ n/3, therefore, we can focus on 0 < β < 1/3, i.e., the case where t(n) = β · n < n/3.

Assume toward a contradiction that π is t(n)-resilient parallel broadcast protocol in the above
setting, and that there exists a sublinear function α(n) ∈ o(n) such that the communication graph
of π is not α(n)-edge-connected, i.e., for sufficiently large n there exists a cut {Sn, S̄n} of weight at
most α(n).
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Notations. We start by defining a few notations. For a fixed n,15 consider the following inde-
pendently distributed random variables

InputsAndCoins =
(
X1, . . . , Xn, R1, . . . , Rn, X̃1, . . . , X̃n, R̃1, . . . , R̃n, I

∗
)
,

where for every i ∈ [n], each Xi and X̃i take values uniformly at random in the input space {0, 1}n,
each Ri and R̃i take values uniformly at random in {0, 1}∗, and I∗ takes values uniformly at
random in [n]. During the proof, (Xi, Ri) represent the pair of input and private randomness of
party Pi, whereas (X̃1, . . . , X̃n, R̃1, . . . , R̃n, I

∗) correspond to the random coins of the adversary
(used in simulating the two executions towards the honest parties). Unless stated otherwise, all
probabilities are taken over these random variables.

Let RedExec be a random variable defined as

RedExec =
(
X−I∗ , X̃I∗ , R−I∗ , R̃I∗

)
.

That is, RedExec contains Xi and Ri for i ∈ [n] \ {I∗}, along with X̃I∗ and R̃I∗ . We denote by
the “red execution” an honest protocol execution when the inputs and private randomness of the
parties are (X−I∗ , X̃I∗ , R−I∗ , R̃I∗). We denote by the “blue execution” an honest protocol execution
when the inputs and private randomness of the parties are (X̃−I∗ , XI∗ , R̃−I∗ , RI∗). Note that such
a sample fully determines the view and transcript of all parties in an honest simulated execution
of πn.

Let FinalCutcorrupt be a random variable defined over 2[n] ∪ {⊥}. The distribution of
FinalCutcorrupt is defined by running protocol πn until its conclusion with adversary Acorrupt-i∗

n

(defined in Section 5.3.1) on inputs and coins sampled according to InputsAndCoins. If at the
conclusion of the protocol there is no α(n)-cut in the graph, then set the value of FinalCutcorrupt

to be ⊥; otherwise, set the value to be the identity of the smallest α(n)-cut {S, S̄} in the communi-
cation graph according to some canonical ordering on the α(n)-cuts. We will prove that conditioned
on the value of RedExec, the FinalCutcorrupt can only take one of a constant number of values
depending only on β (and not on n).

Let E1 denote the event that PI∗ is the last among all the parties to reach degree βn/4 in both
the red and the blue honest executions of the protocol. More precisely, the event that PI∗ reaches
degree βn/4 in both executions, and if it has reached this degree in round ρ in the red (blue)
execution, then all parties in the red (blue) execution have degree at least βn/4 in round ρ.

Let E2 denote the event that the degree of PI∗ reaches βn/4 in the red execution before, or at
the same round as, in the blue execution. Note that E1 and E2 are events with respect to two honest
executions of the protocol (the red execution and the blue execution) that are defined according
to InputsAndCoins. In both adversarial stategies that will be used in the proof, the corrupted
parties will operate in a way that indeed induces the red and blue executions, respectively, and
so, the events E1 and E2 are well defined in an execution of the protocol with those adversarial
strategies.

In Section 5.3.1, we formally describe two adversarial strategies, Ahonest-i∗
n and Acorrupt-i∗

n (see
Figures 10 and 11 and Figures 12 and 13, respectively). We denote by Y corrupt

I∗ , respectively Y honest
I∗ ,

the random variable that corresponds to the I∗’th coordinate of the common output of honest par-
ties, when running the protocol over random inputs with adversarial strategyAcorrupt-i∗

n , respectively
Ahonest-i∗
n .
15For clarity, we denote the random variables without the notation n.
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Proof structure. Our proof follows from two main steps. In Lemma 5.7, stated and proven in
Section 5.3.2, we show that in an execution of πn on random inputs with adversary Acorrupt-i∗

n , it
holds that (1) Pr [E1 ∩ E2] ≥ 1/2n2 − negl(n), and that (2) conditioned on the event E1 ∩ E2, there
exists an honest party Pj∗ such that XI∗ , conditioned on E1 ∩ E2 and on the view of Pj∗ at the
conclusion of the protocol, still retains at least n/2 bits of entropy. This means, in particular,
that Pj∗ will output the value XI∗ only with negligible probability. Hence, by agreement, the
probability for any of the honest parties to output XI∗ in an execution with Acorrupt-i∗

n is negligible.
In particular,

Pr
[
Y corrupt
I∗ = XI∗ | E1 ∩ E2

]
= negl(n).

In Lemma 5.15, stated and proven in Section 5.3.3, we show that in an execution of πn on
random inputs with adversary Ahonest-i∗

n , it holds that (1) with overwhelming probability all honest
parties output XI∗ (this holds by correctness, since PI∗ remains honest), i.e.,

Pr
[
Y honest
I∗ = XI∗

]
≥ 1− negl(n),

and that (2) conditioned on the event E1∩E2, there exists an honest party whose view is identically
distributed as in an execution with Acorrupt-i∗

n , therefore,

Pr
[
Y corrupt
I∗ = Y honest

I∗ | E1 ∩ E2
]
≥ 1− negl(n).

From the combination of the two lemmata, we derive a contradiction.

5.3.1 Defining Adversarial Strategies

As discussed above, the main idea behind the proof is to construct two dual adversarial strategies
that will show that on the one hand, the output of all honest parties must contain the initial value
of a randomly chosen corrupted party, and on the other hand, there exist parties that only receive
a bounded amount of information on this value during the course of the protocol.

We use the following notation for defining the adversarial strategies. Virtual parties that only
exist in the head of the adversary are denoted with “tilde”. In particular, for a random i∗ ∈ [n],
we denote by P̃i∗ a virtual party that emulates the role of Pi∗ playing with the real parties using
a random input in the so-called “red execution,” and by {Q̃i}i 6=i∗ virtual parties that emulate an
execution over random inputs towards Pi∗ in the so-called “blue execution.”16

The adversary Ahonest-i∗
n . At a high level, the adversary Ahonest-i∗

n (see Figures 10 and 11) chooses
a random i∗ ∈ [n] and isolates the honest party Pi∗ . The adversaryAhonest-i∗

n consists of three phases.
In Phase I, Ahonest-i∗

n induces two honestly distributed executions.

• The first (red) execution is set by simulating an honest execution of a virtual party P̃i∗ over
a random input x̃i∗ towards all other parties. The adversary corrupts any party that sends a
message to Pi∗ , blocks its message, and simulates the virtual party P̃i∗ receiving this message.
Whenever the virtual party P̃i∗ should send a message to some Pj , the adversary corrupts
party Pj , and instructs him to proceed as if he received the intended message from P̃i∗ .

16Following the red pill blue pill paradigm, in the adversarial strategyAhonest-i∗
n , the chosen party Pi∗ is participating

(without knowing it) in the blue execution, which is a fake execution that does not happen in the real world. The
real honest parties participate in the red execution, where the adversary simulates Pi∗ by running a virtual party.
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• For the second (blue) execution, Ahonest-i∗
n emulates a virtual execution with virtual parties

(Q̃1, . . . , Q̃n) \ {Q̃i∗} on random inputs towards the honest party Pi∗ . To do so, whenever
Pi∗ sends a message to Pj in the real execution, the adversary corrupts Pj , instructing him
to ignore this message, and simulates this message from Pi∗ to Q̃j in the virtual execution
(that is running in the head of the adversary). Whenever a party Q̃j sends a message to Pi∗
in the virtual execution, the adversary corrupts the real party Pj and instructs him to send
this message to Pi∗ in the real execution.
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Adversary Ahonest-i∗
n

The adversary Ahonest-i∗
n attacks an n-party protocol πn = (P1, . . . , Pn). The adversary is parametrized

by β1 = β/2, by c = d4/βe, and by a sublinear function α(n) ∈ o(n), and proceeds as follows:

Phase I: (ensuring high degree in the “red execution”)

1. Choose uniformly at random i∗ ← [n].
2. Emulate in its head:

• A virtual (blue) execution of πn with virtual parties (Q̃1, . . . , Q̃n), where every Q̃i,
for i ∈ [n] \ {i∗}, is initialized with a uniformly distributed input x̃i ∈R {0, 1}n and
random coins r̃i. (Party Q̃i∗ is simulated based on the actions of party Pi∗ .)

• A virtual party P̃i∗ with a uniformly distributed input x̃i∗ ∈R {0, 1}n and random
coins r̃i∗ . (Party P̃i∗ is used to simulate a (red) execution with real Pi’s.)

3. In every round ρ, receive the leakage from fpsmt containing the messages for corrupted
parties, and which honest party sends a message to another honest party. Next:
(a) Proceed with round ρ in the red execution as follows. For every j ∈ [n] \ {i∗} (in

lexicographic order) check the following:
i. If party Pj sends a message to Pi∗ then corrupt Pj , learn the message µ, and

discard the message. Next, simulate party P̃i∗ as receiving message µ from Pj .
ii. If virtual party P̃i∗ should send a message µ to party Pj , then corrupt Pj and

instruct him to play as an honest party that received the message µ from Pi∗ .
iii. Let Gred(ρ, j) be the communication graph of the red execution at round ρ, except

for messages from P̃i∗ to Pj′ , and from P̃j′ to Pi∗ , for j′ > j. If

degGred(ρ,j)(i∗) ≥ (β1/2) · n,

then let Ghonest
phaseII = Gred(ρ, j), let ρhonest

phaseII = ρ, and proceed to Phase II.
(b) Proceed with round ρ in the blue execution as follows. For every j ∈ [n] \ {i∗} (in

lexicographic order) check the following:
i. If Pi∗ sends a message to party Pj , corrupt Pj , learn the message µ, and instruct
Pj to play as an honest party that does not receive messages from Pi∗ . In addition,
simulate virtual party Q̃i∗ sending the message µ to party Q̃j .

ii. If virtual party Q̃j sends a message µ to virtual party Q̃i∗ then corrupt Pj and
send the message µ to party Pi∗ .

iii. Let Gblue(ρ, j) be the communication graph of the blue execution at round ρ,
except for messages from Q̃i∗ to Q̃j′ , and from Q̃j′ to Q̃i∗ , for j′ > j. If

degGblue(ρ,j)(i∗) ≥ (β1/2) · n,

then output ⊥ and halt (the attack fails).
(c) In case the protocol completes before Phase II, then halt.

Figure 10: (Phase I of Adversary Ahonest-i∗
n )

Recall that according to Definition 3.4, edges in which an honest party receives messages will be
considered in the final communication graph if the receiver actually processed the messages. In
particular, this means that the messages that are blocked during the red execution are not processed
by Pi∗ and will not be considered in the final graph, whereas the messages sent by corrupted parties
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to Pi∗ in the blue execution will be considered as long as Pi∗ will process them.

Adversary Ahonest-i∗
n

Phase II: (ensure that Pi∗ remains isolated until his degree in the real execution is high (i.e., not in
the blue execution))

1. If for some Pi with i 6= i∗, it holds degGhonest
phaseII

(i) < (β1/2) · n, output ⊥ (the attack fails).

2. Identify an (α, n/c)-partition of Ghonest
phaseII \ {i∗}, denoted Γ1 = {U1, . . . , U`} (see Defini-

tion 5.5).
3. For every round ρ ≥ ρhonest

phaseII, proceed with round ρ in the real execution as follows.
(a) For every j ∈ [n] \ {i∗} (in lexicographic order) check the following:

i. Let Greal(ρ, j) be the communication graph of the real execution at round ρ,
except for messages from Pi∗ to Pj′ , and from Pj′ to Pi∗ , for j′ > j.

ii. If Pi∗ talked to Pj in round ρ, and degGreal(ρ,j)(i
∗) < (β1/2) · n, then corrupt Pj

and instruct to play honestly as a party that does not receive messages from Pi∗ .
iii. If degGreal(ρ,j)(i

∗) ≥ (β1/2) · n, then let Ghonest
phaseIII = Greal(ρ, j), let ρhonest

phaseIII = ρ, and
proceed to Phase III.

(b) Let Greal(ρ) be the communication graph of the real execution at round ρ.
(c) For every i, j 6= i∗, such that Pi has sent a message to Pj in round ρ:

i. If i ∈ Uk and j ∈ Uk′ , for k 6= k′, and |edgesGreal(ρ)(Uk, Uk′)| ≤ α(n), then corrupt
Pj , and instruct Pj to play as an honest party that does not send/receive messages
to/from parties outside of Uk (from round ρ and onwards).

(d) In case the protocol completes before Phase III, then halt.

Phase III: (isolate low-weight cuts until the protocol completes)

1. To add i∗ to one of the sets in the partition, consider the minimum index of a set Uk for
which Pi∗ has more than α(n) neighbors as

kmin = min
{
k :
∣∣∣edgesGhonest

phaseIII
({i∗} , Uk)

∣∣∣ > α(n)
}
.

Set Vkmin = Ukmin

⋃
{i∗} and Vk = Uk for all k 6= kmin. Denote Γ2 = {V1, . . . , V`}.a

2. For every round ρ ≥ ρhonest
phaseIII, proceed with round ρ in the real execution as follows.

(a) Let Greal(ρ) be the communication graph of the real execution at round ρ.
(b) For every i and every j 6= i∗, such that Pi has sent a message to Pj in round ρ:

i. If i ∈ Vk and j ∈ Vk′ , for k 6= k′, and |edgesGreal(ρ)(Vk, Vk′)| ≤ α(n), then corrupt
Pj , and instruct Pj to play as an honest party that does not send/receive messages
to/from parties outside of Vk (from round ρ and onwards).

aNote that Γ2 may not be an (α, d)-partition of the communication graph.

Figure 11: (Phases II and III of Adversary Ahonest-i∗
n )

Phase II begins when the degree of the virtual party P̃i∗ in the red execution is at least βn/4;
if Pi∗ reaches this threshold faster in the blue execution, the attack fails. Phase III begins when
the degree of Pi∗ in the real execution is at least βn/4.
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Adversary Acorrupt-i∗
n

The adversary Acorrupt-i∗
n attacks an n-party protocol πn = (P1, . . . , Pn). The adversary is parametrized

by β1 = β/2, by c = d4/βe, and by a sublinear function α(n) ∈ o(n), and proceeds as follows:

Phase I: (ensuring high degree in the “red execution”)

1. Choose uniformly at random i∗ ← [n] and corrupt party Pi∗ .
2. Emulate in its head:

(a) A virtual (blue) execution of πn with virtual parties (Q̃1, . . . , Q̃n), where every virtual
party Q̃i, for i ∈ [n] \ {i∗}, is initialized with a uniformly distributed input x̃i ∈R
{0, 1}n and random coins r̃i. Virtual party Q̃i∗ is initialized with input xi∗ and
random coins ri∗ .

(b) A virtual party P̃i∗ with a uniformly distributed input x̃i∗ ∈R {0, 1}n and random
coins r̃i∗ . (Party P̃i∗ is used to simulate a (red) execution with real Pi’s.)

3. In every round ρ, receive the leakage from fpsmt containing the messages for corrupted
parties, and which honest party sends a message to another honest party. Next:
(a) Proceed with round ρ in the red execution (P1, . . . , P̃i∗ , . . . , Pn) as follows. For every

j ∈ [n] \ {i∗} (in lexicographic order) check the following:
i. If party Pj sends a message µ to Pi∗ , then simulate P̃i∗ as receiving message µ

from Pj .
ii. If virtual party P̃i∗ generates a message µ for party Pj , send µ to Pj on behalf

of Pi∗ .
iii. Let Gred(ρ, j) be the communication graph of the red execution at round ρ, except

for message from P̃i∗ to Pj′ , and from P̃j′ to Pi∗ , for j′ > j. If

degGred(ρ,j)(i∗) ≥ (β1/2) · n,

then let Gcorrupt
phaseII = Gred(ρ, j), let ρcorrupt

phaseII = ρ, and proceed to Phase II.
(b) Proceed with round ρ in the blue execution as follows. Generate all messages for

round ρ, and for every j ∈ [n] \ {i∗} check the following:
i. Let Gblue(ρ, j) be the communication graph of the blue execution at round ρ,

except for messages from Q̃i∗ to Q̃j′ , and from Q̃j′ to Q̃i∗ , for j′ > j. If

degGblue(ρ,j)(i∗) ≥ (β1/2) · n,

then output ⊥ and halt (the attack fails).
(c) In case the protocol completes before Phase II, then halt.

Figure 12: (Phase I of Adversary Acorrupt-i∗
n )

Ideally, Phase I will continue until all parties in the real execution have a linear degree, and
before the adversary will use half of his “corruption budget”, i.e., βn/2. This would be the case
if we were to consider a single honest execution of the protocol, since we show that there always
exists a party that will be the last to reach the linear-degree threshold with a noticeable probability.
However, as the attack induces two independent executions, in which the degree of the parties can
grow at different rates, care must be taken. We ensure that even though Pi∗ runs in the blue
execution, by the time Pi∗ will reach the threshold, all other parties (that participate in the red
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execution) will already have reached the threshold, and can be partitioned into “minimal” α(n)-
cuts, as follows.

Adversary Acorrupt-i∗
n

Phase II: (hold back any information about xi∗ until the degree of Pi∗ in the real execution is high)

1. If for some party Pi, for i 6= i∗, it holds that degGcorrupt
phaseII

(i) < (β1/2) · n, then output ⊥ and
halt (the attack fails).

2. Identify an (α, (β1/2) · n)-partition of Gcorrupt
phaseII \ {i∗}, denoted Γ1 = {U1, . . . , U`}.

3. For every round ρ ≥ ρcorrupt
phaseII , proceed with round ρ in the real execution as follows.

(a) For every j ∈ [n] \ {i∗} (in lexicographic order) check the following:
i. Let Greal(ρ, j) be the communication graph of the real execution at round ρ,

except for message from Pi∗ to Pj′ , and from Pj′ to Pi∗ , for j′ > j.
ii. If Pj sends a message µ to Pi∗ in round ρ, and degGreal(ρ,j)(i

∗) < (β1/2) · n, then
simulates virtual party Q̃i∗ receiving the message µ from Q̃j .

iii. If degGreal(ρ,j)(i
∗) ≥ (β1/2) · n, then let Gcorrupt

phaseIII = Greal(ρ, j), let ρcorrupt
phaseIII = ρ, and

proceed to Phase III.
(b) Let Greal(ρ) be the communication graph of the real execution at round ρ.
(c) For every i, j 6= i∗, such that Pi has sent a message to Pj in round ρ:

i. If i ∈ Uk and j ∈ Uk′ , for k 6= k′, and |edgesGreal(ρ)(Uk, Uk′)| ≤ α(n), then corrupt
Pj , and instruct Pj to play as an honest party that does not send/receive messages
to/from parties outside of Uk (from round ρ and onwards).

(d) In case the protocol completes before Phase III, then halt.

Phase III: (isolate low-weight cuts until the protocol completes)

1. To add i∗ to one of the sets in the partition, consider the minimum index of a set Uk for
which Pi∗ has more than α(n) neighbors as

kmin = min
{
k :
∣∣∣edgesGhonest

phaseIII
({i∗} , Uk)

∣∣∣ > α(n)
}
.

Set Vkmin = Ukmin

⋃
{i∗} and Vk = Uk for all k 6= kmin. Denote Γ2 = {V1, . . . , V`}.a

2. For every round ρ ≥ ρcorrupt
phaseIII, proceed with round ρ in the real execution as follows.

(a) Let Greal(ρ) be the communication graph of the real execution at round ρ.
(b) For every i and every j 6= i∗, such that Pi has sent a message to Pj in round ρ:

i. If i ∈ Vk and j ∈ Vk′ , for k 6= k′, and |edgesGreal(ρ)(Vk, Vk′)| ≤ α(n), then corrupt
Pj , and instruct Pj to play as an honest party that does not send/receive messages
to/from parties outside of Vk (from round ρ and onwards).

aNote that Γ2 may not be an (α, d)-partition of the communication graph.

Figure 13: (Phases II and III of Adversary Acorrupt-i∗
n )

The adversary allocates βn/4 corruptions for the red execution and βn/4 corruptions for the
blue execution. We show that with a noticeable probability, once P̃i∗ has degree βn/4 in the red
execution, all other parties in the red execution also have high degree. Consider the communication
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graph of the red execution without the virtual party P̃i∗ (i.e., after removing the node i∗ and its
edges); by Theorem 5.6 there exists an (α(n), βn/4) partition of this graph into a constant number
of linear-size subsets that are connected with sublinear many edges, denoted Γ1 = {U1, . . . , U`}
(in particular, this partition is independent of xi∗). In Phase II, the adversary continues blocking
outgoing messages from Pi∗ towards the real honest parties, until the degree of Pi∗ in the real
execution is βn/4. In addition, Ahonest-i∗

n blocks any message that is sent between two subsets in
the partition, by corrupting the recipient and instructing him to ignore messages from outside of
his subset.

In Phase III, which begins when Pi∗ has high degree in the real execution, the adversary adds
Pi∗ to one of the subsets in the partition, in which Pi∗ has many neighbors, and continues to block
messages between different subsets in the partition until the conclusion of the protocol.

We note that special care must be taken in the transition between the phases, since such a
transition can happen in a middle of a round, after processing some of the messages, but not all.
Indeed, if the transition to the next phase will happen at the end of the round, the adversary may
need to corrupt too many parties. For this reason, in Phases I and II, we analyze the messages to
and from Pi∗ one by one, and check whether the threshold has been met after each such message.

The adversary Acorrupt-i∗
n . The adversary Acorrupt-i∗

n (see Figures 12 and 13) corrupts the ran-
domly chosen party Pi∗ , and emulates the operations of an honest Pi∗ that is being attacked by
Ahonest-i∗
n .
In Phase I, the adversary Acorrupt-i∗

n induces two honestly distributed executions, by simulating
an honest execution of a virtual party P̃i∗ over a random input x̃i∗ towards all other honest parties
(the red execution), and furthermore, runs in its mind a virtual execution over the initial input xi∗
and random inputs x̃i for i 6= i∗ (the blue execution). This phase continues until P̃i∗ has degree
βn/4 in the red execution (no parties other than Pi∗ are being corrupted). If all other parties in
the red execution have high degree, then the adversary finds the partition of the red graph as in
the previous attack (the partition is guaranteed by Theorem 5.6). Note that only Pi∗ is corrupted,
hence all messages that are sent by other parties will be considered in the final communication
graph, as well as messages sent by Pi∗ that are processed by the receivers.

In Phase II, the adversary continues simulating the corrupted Pi∗ towards the real honest parties
until the degree of Pi∗ in the real execution is βn/4; however, his communication is based on the
view in the blue execution at the end of Phase I (this is no longer an honest-looking execution).
During this phase, Acorrupt-i∗

n blocks any message that is sent between two subsets in the partition.
In Phase III, that begins when Pi∗ has high degree (in the real execution), Acorrupt-i∗

n adds Pi∗
to one of the subsets in the partition, in which Pi∗ has many neighbors, and continues to block
messages between different subsets in the partition until the conclusion of the protocol.

5.3.2 Proving High Entropy of XI∗

We now proceed to prove the first of the two core lemmata.

Lemma 5.7. Consider an execution of πn on random inputs (X1, . . . , Xn) for the parties with
adversary Acorrupt-i∗

n , and the events E1 and E2 as defined in Section 5.3. Then, it holds that:

1. Pr [E1 ∩ E2] ≥ 1/2n2 − negl(n).
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2. Conditioned on the event E1 ∩ E2, there exists an honest party Pj∗ such that

H(XI∗ | E1 ∩ E2,VIEWcorrupt
j∗ ) ≥ n/2,

where VIEWcorrupt
j∗ is the random variable representing the view of Pj∗ at the end of the protocol.

Proof. We start by showing that for a randomly chosen I∗ ∈ [n], if party PI∗ does not send messages
to sufficiently many parties, the adversary Acorrupt-i∗

n can violate validity of πn.

Claim 5.8. Let Gcorrupt
phaseII denote the random variable representing the graph of the red execution

(P1, . . . , P̃I∗ , . . . , Pn) at the conclusion of Phase I with adversary Acorrupt-i∗
n . Then

Pr
[
degGcorrupt

phaseII
(I∗) < (β1/2) · n

]
≤ negl(n).

Proof. Consider an execution of πn with adversary Acorrupt-i∗
n on random inputs (X1, . . . , Xn), with

random coins (R1, . . . , Rn) for the parties and (X̃1, . . . , X̃n, R̃1, . . . , R̃n, I
∗) for the adversary. De-

note Pr
[
degGcorrupt

phaseII
(I∗) < (β1/2) · n

]
= ε(n).

In this case, the view of all honest parties (i.e., all parties but PI∗) is identically distributed as
their view in an honest execution of the protocol πn on input (X1, . . . , XI∗−1, X̃I∗ , XI∗+1, . . . , Xn),
and in particular, all honest parties output Y corrupt

I∗ = X̃I∗ as the I∗’th coordinate of the common
output, except for a negligible probability.

This is not sufficient for contradicting validity, since PI∗ is corrupted, hence, all that is required
is agreement on the coordinate Y corrupt

I∗ . However, consider the adversary Ahonest-i∗
n (Figures 10

and 11) that instead of corrupting PI∗ , isolates him by corrupting all his neighbors.17

Because the protocol is defined in the plain model, and the parties do not share correlated
randomness (such as PKI), the adversary Ahonest-i∗

n indeed manages to isolate party PI∗ such that:

1. The view of all honest parties, except for party PI∗ , is distributed identically as in an
honest execution of πn on inputs (X1, . . . , XI∗−1, X̃I∗ , XI∗+1, . . . , Xn) and random coins
(R1, . . . , RI∗−1, R̃I∗ , RI∗+1, . . . , Rn). Denote the communication graph of this distribution
by Ghonest

red .

2. The view of party PI∗ is distributed identically as in an honest execution πn on inputs
(X̃1, . . . , X̃I∗−1, XI∗ , X̃I∗+1, . . . , X̃n) and random coins (R̃1, . . . , R̃I∗−1, RI∗ , R̃I∗+1, . . . , R̃n).
Denote the communication graph of this distribution by Ghonest

blue .

Since both executions are distributed like honest executions on random inputs, it holds that

Pr
[
degGhonest

red
(I∗) < (β1/2) · n

]
= Pr

[
degGhonest

blue
(I∗) < (β1/2) · n

]
= ε(n).

Therefore, with a non-negligible probability, the number of parties corrupted by Ahonest-i∗
n is

bounded by
degGhonest

red
(I∗) + degGhonest

blue
(I∗) < β1 · n.

Hence, with a non-negligible probability, the execution of πn with Ahonest-i∗
n will complete in Phase I,

where the view of the set of honest parties, except for PI∗ is identically distributed as in an honest
17For now, we are only interested in Phase I of Ahonest-i∗

n .
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execution where PI∗ has input X̃I∗ , and therefore the I∗’th coordinate of the common output will be
Y honest
I∗ = X̃I∗ . However, since β1 ·n < β ·n = t, it follows from the validity property, that the I∗’th

coordinate of the common output is Y honest
I∗ = XI∗ except for negligible probability. Furthermore,

since for every party that is not a neighbour of PI∗ it holds that the party is honest and that its
view is identically distributed in an execution with Acorrupt-i∗

n as in an execution with Ahonest-i∗
n ,

therefore, by agreement, Y corrupt
I∗ = Y honest

I∗ except for negligible probability. Since both XI∗ and
X̃I∗ are random elements in {0, 1}n, it holds that XI∗ 6= X̃I∗ with a noticeable probability, and we
derive a contradiction.

From Claim 5.8 it follows that with overwhelming probability, Acorrupt-i∗
n will not complete the

attack in Step 3c of Phase I. We now turn to bound from below the probability of event E1 ∩ E2.
Recall events E1 and E2 as defined in Section 5.3. Loosely speaking, E1 is the event that PI∗ is the
last party to reach high-degree threshold in both red and blue executions. E2 is the event that PI∗
reaches the degree threshold in the red execution before the blue execution.

Claim 5.9. Consider an execution of protocol πn on random inputs with adversary Acorrupt-i∗
n . Then

1. Pr [E1] ≥ 1/n2 − negl(n).

2. Pr [E2 | E1] = 1/2.

3. Pr [E2 ∩ E1] ≥ 1/2n2 − negl(n).

Proof. By Claim 5.8, with overwhelming probability, a random party will have degree (β1/2) · n in
an honest execution over random inputs, by the end of the protocol. Thus, all parties must reach
degree (β1/2) · n with overwhelming probability. By choosing I∗ uniformly from [n], we conclude
that PI∗ will be the last party to do so with probability 1/n− negl(n). Since both the red and the
blue executions are independent honest executions over random inputs, it follows that PI∗ will be
last in both executions with probability 1/n2 − negl(n). The second part follows by symmetry, and
the third part by definition of conditional probability.

From Claim 5.9 it follows that with a noticeable probability, the adversaryAcorrupt-i∗
n will proceed

to Phase III. We now show that the size of the partition Γ1 (set at the beginning of Phase II) in
this case is constant, and only depends on β. In particular, we wish to argue that the identity
of the final remaining sublinear cut in the graph cannot reveal too much information about the
input XI∗ . (Recall that RedExec is the execution with XI∗ replaced by X̃I∗ .) The proof follows
from the graph-theoretic theorem (Theorem 5.6), stated in Section 5.2. We start by looking at the
communication graph at the beginning of Phase II without the chosen party PI∗ (which depends
only on the red execution). Party PI∗ is added to one of the sets in the partition based on his edges
at the end of Phase II. Finally, we show that given the red-execution graph there are at most 22c

possible choices for the final cut.

Claim 5.10. Let c > 1 be a constant integer satisfying β1/2 ≥ 1/c. Then, for sufficiently large n,
in an execution with Acorrupt-i∗

n , conditioned on the event E1 ∩ E2, it holds that:

1. There exists an (α(n), n/c)-partition Γ1 of Gcorrupt
phaseII \ {I∗} of size at most c.

2. At the end of Phase II there exists a set Uk ∈ Γ1 such that |edgesGcorrupt
phaseIII

({I∗} , Uk) | > α(n).
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3. Conditioned on the event E1∩E2 and on RedExec, the random variable FinalCutcorrupt has
at most 2c bits of entropy, i.e.,

H
(
FinalCutcorrupt | E1 ∩ E2,RedExec

)
≤ 2c.

Proof. For n ∈ N, denote by Gcorrupt
phaseII(n) the “red graph” that is obtained by πn running on in-

put/randomness from RedExec with Acorrupt-i∗
n . From the definition of the events E1 and E2, it

holds that the degree of every node in the red graph Gcorrupt
phaseII(n) is greater or equal to (β1/2)·n ≥ n/c.

By removing the red node I∗ (corresponding to the virtual party P̃I∗ running on input X̃I∗), we
obtain the graph Gn−1 = Gcorrupt

phaseII(n) \ {I∗} of size n− 1. Since by removing I∗, the degree of each
node reduces by at most 1, it holds that the degree of each vertex in Gn−1 is at least n/c− 1. By
applying Theorem 5.6 on the ensemble of graphs {Gn−1}n∈N, for sufficiently large n, there exists a
(α(n), n/c)-partition of Gn, denoted Γ1 = {U1, . . . , U`}, of size ` < c.18

From the definition of the events E1 and E2, it holds that the degree of PI∗ in the blue
execution will reach the threshold (β1/2) · n (yet not before PI∗ reaches the threshold in the
red execution). It follows that the attack will enter Phase III. If for every k ∈ [`], it holds
that |edgesGcorrupt

phaseIII
({I∗}, Uk) | ≤ α(n), then the total number of neighbors of PI∗ is bounded by

` · α(n) ∈ o(n), and we get a contradiction.
Finally, since Γ1 is an (α(n), n/c)-partition of the (n− 1)-size graph Gcorrupt

phaseII(n) \ {I∗}, it holds
that every α(n)-cut {Sn, S̄n} of Gcorrupt

phaseII(n) \ {I∗} can be represented as Sn =
⋃
k∈A Uk and S̄n =⋃

k∈[`]\A Uk for some A ( [`]. There are at most 2c such subsets. Next, consider the n-size graph
Gcorrupt

phaseII(n). When adding the node I∗ (and its edges) back to Gcorrupt
phaseII(n) \ {I∗}, the number of

potential α(n)-cuts at most doubles, since for every potential α(n)-cut {S, S̄} in Gcorrupt
phaseII(n) \ {I∗},

either {S∪I∗, S̄} is an α(n)-cut in Gcorrupt
phaseII(n), or {S, S̄∪I∗} is an α(n)-cut in Gcorrupt

phaseII(n) (or neither
options induces an α(n)-cut in Gcorrupt

phaseII(n)). Therefore, there are at most 22c potential α(n)-cuts in
Gcorrupt

phaseII(n). It follows that 2c bits are sufficient to describe the support of FinalCutcorrupt given
RedExec (which in particular fully specifies the graph Gcorrupt

phaseII(n)).

In Claims 5.11 to 5.14, we prove that there exists an honest party Pj∗ that receives a bounded
amount of information about XI∗ by the end of the protocol’s execution. For n ∈ N, denote
by Gcorrupt

end (n) the final communication graph of πn when running on input/randomness from
InputsAndCoins with Acorrupt-i∗

n .

Claim 5.11. Condition on the event E1∩E2. Then, at the conclusion of the protocol execution with
Acorrupt-i∗
n there exists an α(n)-cut, denoted {Sn, S̄n}, in the induced graph Gcorrupt

end (n), and j∗ ∈ [n]
such that party Pj∗ is honest, I∗ ∈ Sn, and j∗ ∈ S̄n.

Proof. By assumption, the communication graph of π is not α(n)-edge-connected, therefore, by
definition, for sufficiently large n there exists a cut {Sn, S̄n} of weight at most α(n) in Gcorrupt

end (n).
Let {Sn, S̄n} be such a cut, and assume without loss of generality that I∗ ∈ Sn. We now prove that
there exists an honest party in the complement set S̄n.

Let Γ1 = {U1, . . . , U`} be the (α(n), n/c)-partition of Gcorrupt
phaseII(n) \ {I∗} defined in Phase II of

the attack. By Item 2 of Claim 5.10, at the end of the Phase III there exists k ∈ [`] for which
|edges({I∗}, Uk)| ≥ α(n).

18To be more precise, applying Theorem 5.6 on {Gn−1}n∈N gives an (α(n − 1), (n − 1)/c)-partition. For clarity,
we abuse the notation and write (α(n), n/c). This will not affect the subsequent calculations.
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Since {Sn, S̄n} is an α(n)-cut of Gcorrupt
end (n), it holds that {Sn \ {I∗}, S̄n} is an α(n)-cut of

Gcorrupt
phaseII \ {I∗} (since any α-cut in a graph remains an α-cut when removing additional edges). It

holds that Sn \ {I∗} =
⋃
k∈A Uk for some ∅ 6= A ( [`]. Similarly, S̄n =

⋃
k∈[`]\A Uk. Recall that in

an execution with Acorrupt-i∗
n we have the following corruption pattern:

• During Phase I only PI∗ gets corrupted.

• During Phase II, for every pair of Uk, Uk′ ∈ Γ1, at most α(n) communicating parties get
corrupted.

• During Phase III, for every pair of Vk, Vk′ ∈ Γ2, at most α(n) communicating parties get
corrupted. (Recall that Vk ∈ Γ2 either equals Uk or equals Uk ∪ {I∗}.)

It follows that there are at most `2 · α(n) corrupted parties in S̄n. By definition, |S̄n| ≥ n/c (since
|Uk| ≥ n/c, for each k ∈ [`]). By Item 1 of Claim 5.10, ` ≤ c for some constant c, meaning that there
is a linear number of parties in each side of the cut, but only a sublinear number of corruptions,
and the claim follows.

We now prove that the view of an honest Pj∗ ∈ S̄n can be perfectly simulated given: (1) All
inputs and random coins that were used in the red execution. This information is captured in
the random variable RedExec, and deterministically determines the partition Γ1 at the beginning
of Phase II. (2) The identities of the parties in S̄n. This information is captured in the random
variable FinalCutcorrupt.

Claim 5.12. Conditioned on the event E1 ∩ E2, the view VIEWcorrupt
j∗ of honest party Pj∗ at the end

of the protocol is simulatable by RedExec and by FinalCutcorrupt.

Proof. Let {Sn, S̄n} be the α(n)-cut that is guaranteed to exist at the end of the protocol (the
“minimal” such cut according to some canonical ordering). Assume that I∗ ∈ Sn, and let j∗ ∈ S̄n
be an index of the honest party that exists by Claim 5.11. The view of Pj∗ is defined as its input,
random coins, and the messages it received during the protocol.19

During Phase I the view of Pj∗ is identically distributed as a view of an honest party in an honest
execution over inputs (X1, . . . , X̃I∗ , . . . , Xn) and random coins (R1, . . . , R̃I∗ , . . . , Rn) (without loss
of generality, we can assume that the joint view of all honest parties is exactly (X1, . . . , X̃I∗ , . . . , Xn)
and (R1, . . . , R̃I∗ , . . . , Rn), i.e., all the information that deterministically defines the red execution).
Indeed, this can be easily simulated given the random variable RedExec by running an honest
execution until all parties have degree (β1/2) · n. Furthermore, the partition Γ1 = (U1, . . . , U`) is
deterministically determined by RedExec, as well as the view of every honest party at the end of
Phase I (except for PI∗).

Next, consider the parties in S̄n (which are determined by the random variable FinalCutcorrupt).
By Theorem 5.6, for large enough n it holds that S̄n = ∪k∈AUk for some nonempty A ( [`]. That
is, given Γ1 = {U1, . . . , U`}, the random variable FinalCutcorrupt is fully specified by A ⊆ [`],
which can be described as an element of {0, 1}`. As before, and without loss of generality, for every
j ∈ S̄n, the view of party Pj at the end of Phase I can also be set as (X1, . . . , X̃I∗ , . . . , Xn) and
(R1, . . . , R̃I∗ , . . . , Rn).

19Formally, in every round every party receives a vector of n messages from fpsmt, where some may be the empty
string. Therefore, a party also knows the identity of the sender of every message.
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Observe that given the final cut {Sn, S̄n}, it holds that during Phases II and III every message
that is being sent to a party in S̄n by a party in Sn is ignored. Therefore, it may seem that the
simulation can be resumed by continuing an honest execution of all parties in S̄n based on their
joint view at the end of Phase I. However, this approach will not suffice since the adversary in the
real execution blocks any message that is sent by parties in different Uk’s, even if both parties are
members of S̄n. To simulate this behavior, it is important to know exactly when to block a message
sent between different Uk’s and when to keep it. Indeed, this is the reason for keeping track of the
number of edges between every pair of Uk’s and blocking message only until the threshold α(n) is
reached.

The simulation of Phases II and III therefore proceeds by running the protocol honestly for
every Pj , with j ∈ S̄n, however, with the following two exceptions. First, every party is simulated
as if he does not receive any message from parties outside of S̄n, and whenever he is instructed to
send a message to a party outside of S̄n, a dummy party is simulated as receiving this message.
Second, any message that is sent between two parties Pj1 and Pj2 is discarded whenever j1 ∈ Uk
and j2 ∈ Uk′ (respectively, j1 ∈ Vk and j2 ∈ Vk′ \ {I∗}), for some k 6= k′, and it holds that
|edges(Uk, Uk′)| < α(n) (respectively, |edges(Vk, Vk′)| < α(n)).

The above simulation identically emulates the view of very honest party in S̄n, since the adver-
sary indeed discards every message that is sent from some party in Sn to some party in S̄n, as well
as from parties in different Uk’s, but otherwise behaves honestly.

The core of the proof (Claim 5.14) is showing that a constant number of bits suffices to describe
FinalCutcorrupt. We note that while RedExec is independent of XI∗ conditioned on E1 and on
I∗ (as shown in Claim 5.13 below), there is some correlation between FinalCutcorrupt and XI∗ .

Claim 5.13. Conditioned on I∗ and on the event E1, the random variables XI∗ and RedExec are
independent. That is,

I (XI∗ ; RedExec | E1, I
∗) = 0.

Proof. Recall that over the sampling of

InputsAndCoins =
(
X1, . . . , Xn, R1, . . . , Rn, X̃1, . . . , X̃n, R̃1, . . . , R̃n, I

∗
)
,

the random variable RedExec is defined as

RedExec =
(
X−I∗ , X̃I∗ , R−I∗ , R̃I∗

)
.

Similarly, define
BlueExec =

(
X̃−I∗ , XI∗ , R̃−I∗ , RI∗

)
.

Note that (even) given the value of I∗, RedExec and BlueExec are simply uniform distributions,
independent of each other. That is, for every i∗ ∈ [n]

I (BlueExec ; RedExec | I∗ = i∗) = 0.

This in turn implies that
I (BlueExec ; RedExec | I∗) = 0.
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We observe that given I∗, the event E1 decomposes as a conjunction of independent events.
Namely, consider the (deterministic) predicate

LastParty ((x−i∗ , xi∗ , r−i∗ , ri∗) , i∗) ,

which simulates an honest execution of πn with corresponding inputs and randomness, and outputs 1
if party Pi∗ is the last party to reach degree βn/4. Then,

E1 = (LastParty (BlueExec, I∗) = 1) ∧ (LastParty (RedExec, I∗) = 1) .

It follows that

I (XI∗ ; RedExec | I∗, E1) ≤ I (BlueExec ; RedExec | I∗, E1)

= I

 BlueExec ; RedExec
LastParty (RedExec, I∗) = 1
LastParty (BlueExec, I∗) = 1

I∗
 .

We will show that the last term is equal to zero. This proves our claim, as mutual information
cannot be negative.

0 = I (BlueExec ; RedExec | I∗)
= I (BlueExec,LastParty (BlueExec, I∗) ; RedExec,LastParty (RedExec, I∗) | I∗)

≥ I

 BlueExec ; RedExec
LastParty (RedExec, I∗)
LastParty (BlueExec, I∗)

I∗
 ,

where the second equality follows from the fact that LastParty is a deterministic function of
inputs and randomness of all the parties and I∗. This implies that

I

 BlueExec ; RedExec
LastParty (RedExec, I∗)
LastParty (BlueExec, I∗)

I∗
 = 0.

Finally, since the event E1 occurs with non-zero probability, it holds that

I

 BlueExec ; RedExec
LastParty (RedExec, I∗) = 1
LastParty (BlueExec, I∗) = 1

I∗
 = 0,

This concludes the proof of Claim 5.13.

Claim 5.14. For sufficiently large n, conditioned on the event E1 ∩ E2, the input XI∗ retains n/2
bits of entropy given the view of honest party Pj∗, i.e.,

H(XI∗ | E1 ∩ E2,VIEWcorrupt
j∗ ) ≥ n/2.
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Proof. First, since Pr [E1] ≥ 1/n2, it holds that

H(XI∗ | E1) ≥ n− log(n2). (2)

Indeed, for an arbitrary x ∈ {0, 1}n,

Pr [XI∗ = x | E1] = Pr [XI∗ = x, E1]
Pr [E1] ≤ Pr [XI∗ = x]

Pr [E1] ≤ n2

2n ,

where the last inequality uses the fact that XI∗ is uniformly distributed in {0, 1}n and that Pr [E1] ≥
1/n2. Equation (2) follows by the following computation.

H(XI∗ | E1) =
∑

x∈{0,1}n
Pr [XI∗ = x | E1] · log

( 1
Pr [XI∗ = x | E1]

)

≥
∑

x∈{0,1}n
Pr [XI∗ = x | E1] · log

(2n

n2

)

= log
(2n

n2

)
·
∑

x∈{0,1}n
Pr [XI∗ = x | E1]

︸ ︷︷ ︸
= 1

= n− log(n2).

Since I∗ represents an element of the set [n], the support of I∗ is {0, 1}log(n), and it holds that

H(XI∗ | E1, I
∗) ≥ H(XI∗ | E1)− log(n). (3)

In addition, since conditioned on E1 and I∗, the random variables RedExec and XI∗ are indepen-
dent (Claim 5.13), it holds that

H(XI∗ | E1, I
∗,RedExec) = H(XI∗ | E1, I

∗)− I (XI∗ ; RedExec | E1, I
∗)

= H(XI∗ | E1, I
∗). (4)

Next, since Pr [E2 | E1] = 1/2 (Claim 5.9), it follows that

H(XI∗ | E1 ∩ E2, I
∗,RedExec) ≥ 2 ·H(XI∗ | E1, I

∗,RedExec)− n− 2. (5)

To prove this, we define an indicator random variable Ind2 for the event E2, i.e., Pr [Ind2 = 1] =
Pr [E2], and use the fact that since Ind2 is an indicator random variable, the mutual information
I (XI∗ ; Ind2 | RedExec, E1, I

∗) cannot be more than 1. Therefore,

H(XI∗ | E1, I
∗,RedExec, Ind2) = H(XI∗ | E1, I

∗,RedExec)− I (XI∗ ; Ind2 | E1, I
∗,RedExec)

≥ H(XI∗ | E1, I
∗,RedExec)− 1.

Equation (5) now follows by the following computation.

H(XI∗ | E1, I
∗,RedExec)− 1 ≤ H(XI∗ | E1, I

∗,RedExec, Ind2)
= Pr [Ind2 = 1 | E1] ·H(XI∗ | E1, I

∗,RedExec, Ind2 = 1)
+ Pr [Ind2 = 0 | E1] ·H(XI∗ | E1, I

∗,RedExec, Ind2 = 0)︸ ︷︷ ︸
≤ n

≤ Pr [E2 | E1]︸ ︷︷ ︸
= 1/2

·H(XI∗ | E1 ∩ E2, I
∗,RedExec) + Pr [¬E2 | E1]︸ ︷︷ ︸

= 1/2

·n

≤ 1/2 ·H(XI∗ | E1 ∩ E2, I
∗,RedExec) + n/2.
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By Claim 5.10, the support of FinalCutcorrupt is {0, 1}2c and it holds that

H(XI∗ | E1 ∩ E2, I
∗,RedExec,FinalCutcorrupt)

= H(XI∗ | E1 ∩ E2, I
∗,RedExec)− I

(
XI∗ | E1 ∩ E2, I

∗,RedExec,FinalCutcorrupt)
≥ H(XI∗ | E1 ∩ E2, I

∗,RedExec)−H(FinalCutcorrupt | E1 ∩ E2, I
∗,RedExec)

≥ H(XI∗ | E1 ∩ E2, I
∗,RedExec)− 2c. (6)

The first inequality holds since the conditional mutual information is upper-bounded by the con-
ditional entropy term. Finally, by Claim 5.12 it holds that

H(XI∗ | E1 ∩ E2,VIEWcorrupt
j∗ ) ≥ H(XI∗ | E1 ∩ E2, I

∗,RedExec,FinalCutcorrupt). (7)

By combining Equations (2) to (7) together, it holds that

H(XI∗ | E1 ∩ E2,VIEWcorrupt
j∗ ) ≥ H(XI∗ | E1 ∩ E2, I

∗,RedExec,FinalCutcorrupt)
≥ H(XI∗ | E1 ∩ E2, I

∗,RedExec)− 2c
≥ 2 ·H(XI∗ | E1, I

∗,RedExec)− n− 2− 2c
= 2 ·H(XI∗ | E1, I

∗)− n− 2− 2c
≥ 2 ·H(XI∗ | E1)− 2 · log(n)− n− 2− 2c
≥ 2n− 2 · log(n2)− 2 · log(n)− n− 2− 2c
≥ n− 2 · (log(n2) + log(n) + 1 + c).

The claim follows for sufficiently large n.

This concludes the proof of Lemma 5.7.

5.3.3 Proving the Common Output Contains XI∗

We now turn to the second main lemma of the proof. We show that although party PI∗ is corrupted
in the execution with Acorrupt-i∗

n , all honest parties must output its initial input value XI∗ at the
conclusion of the protocol. This is done by analyzing an execution with the dual adversary, Ahonest-i∗

n

(described in Section 5.3.1), that does not corrupt the chosen party PI∗ but simulates the attack
by Acorrupt-i∗

n towards the honest parties.

Lemma 5.15. Consider an execution of πn on random inputs (X1, . . . , Xn) for the parties with
adversary Ahonest-i∗

n . Then, conditioned on the event E1 ∩ E2 it holds that:

1. The I∗’th coordinate of the common output Y honest
I∗ equals the initial input XI∗ of PI∗, except

for negligible probability, i.e.,

Pr
[
Y honest
I∗ = XI∗ | E1 ∩ E2

]
≥ 1− negl(n).

2. The I∗’th coordinate of the common output Y honest
I∗ in an execution with Ahonest-i∗

n equals the
I∗’th coordinate of the common output Y corrupt

I∗ in an execution with Acorrupt-i∗
n , except for

negligible probability, i.e.,

Pr
[
Y honest
I∗ = Y corrupt

I∗ | E1 ∩ E2
]
≥ 1− negl(n).
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Proof. The first part of the lemma follows (almost) from the validity property of parallel broadcast.
It is only left to prove that the event E1∩E2 is non-negligible in an execution withAhonest-i∗

n . However,
as E1 and E2 are events on honest executions (mirrored by both Ahonest-i∗

n and Acorrupt-i∗
n in Phase I),

this follows by Claim 5.9. We spell this out in Claims 5.16 and 5.17.

Claim 5.16. Let Ghonest
phaseII denote the random variable representing the graph of the red execution

(P1, . . . , P̃I∗ , . . . , Pn) at the conclusion of Phase I with adversary Ahonest-i∗
n . Then

Pr
[
degGhonest

phaseII
(I∗) < (β1/2) · n

]
≤ negl(n).

Proof. As proven in Claim 5.8, in an execution on random inputs with adversary Ahonest-i∗
n , it holds

that the degree of every party reaches (β1/2) · n except for negligible probability.

Claim 5.17. Consider an execution of protocol πn on random inputs with adversary Ahonest-i∗
n .

Then
Pr [E2 ∩ E1] ≥ 1/2n2 − negl(n).

Proof. By Claim 5.16 every party has degree (β1/2) · n with overwhelming probability. The rest of
the proof follows exactly as the proof of Claim 5.9.

This complete the proof of the first part of the Lemma 5.15.
For proving the second part of the lemma, we show that in an execution with Ahonest-i∗

n there
exists an honest party whose view, and in particular his output, is identically distributed as in an
execution with Acorrupt-i∗

n . This follows from a simple counting argument.
First, denote by Chonest

n the random variable representing the set of corrupted parties in an
execution with Ahonest-i∗

n . Since β < 1/3 and there are at most βn corrupted parties, it holds that
|Chonest
n | < n/3. Note that by construction, Ahonest-i∗

n corrupts during Phase I all neighbors of the
virtual party P̃I∗ in the red execution and all neighbors of PI∗ in the blue execution, and in Phases
II and III, all parties that belong to some Uk ∈ Γ1 (respectively, Vk ∈ Γ2) and receive messages
from parties in Uk′ (respectively, Vk′) for k 6= k′ (until there are α(n) such edges, and except for
PI∗).

Second, denote by Ccorrupt
n the random variable representing the following set of parties in an

execution with Acorrupt-i∗
n (note that these parties are not necessarily corrupted here): All neighbors

of the virtual party P̃I∗ in the red execution and all neighbors of PI∗ in the blue execution during
Phase I, and all parties that get corrupted during Phases II and III, i.e., all parties that belong
to some Uk ∈ Γ1 (respectively, Vk ∈ Γ2) and receive messages from parties in Uk′ (respectively,
Vk′) for k 6= k′ (until there are α(n) such edges, and except for PI∗). By symmetry, it holds that
|Ccorrupt
n | < n/3.
For every value of InputsAndCoins, the size of the union of these sets Chonest

n ∪ Ccorrupt
n is at

most 2n/3. By the constructions of Ahonest-i∗
n and Acorrupt-i∗

n , the view of any party outside of this
union is identically distributed in an execution with Ahonest-i∗

n as in an execution with Acorrupt-i∗
n ,

conditioned on the event E1 ∩ E2. Indeed, in both executions the view of every party outside of
Chonest
n ∪Ccorrupt

n is distributed according to an honest execution on random inputs during Phase I.
During Phase II, the view is distributed according the continuation of the protocol under omission
failures between every pair Uk, Uk′ ∈ Γ1. During Phase III, the view is distributed according the
continuation of the protocol under omission failures between every pair Vk, Vk′ ∈ Γ2, with the
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exception that the internal state of a random party PI∗ is replaced by a view of PI∗ in a honest
execution with an independently distributed random inputs for all parties.

This concludes the proof of Lemma 5.15.
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A Preliminaries (Cont’d)
In Appendix A.1, we define the cryptographic primitives used in the paper, in Appendix A.2, we
define the MPC model, and in Appendix A.3, we present the correlated-randomness functionalities
that are used in the paper.

A.1 Cryptographic Primitives

A.1.1 Error-Correcting Secret Sharing

We present the definition of error-correcting secret sharing, also known in the literature as robust
secret sharing.

Definition A.1. A (t, n) error-correcting secret-sharing scheme (ECSS) over a message space M
consists of a pair of algorithms (Share,Recon) satisfying the following properties:

1. t-privacy: For every m ∈ M, and every subset I ⊆ [n] of size |I| ≤ t, the distribution of
{si}i∈I is independent of m, where (s1, . . . , sn)← Share(m).

2. Reconstruction from up to t erroneous shares: For every m ∈ M, every s =
(s1, . . . , sn), and every s′ = (s′1, . . . , s′n) such that PrS←Share(m) [S = s] > 0 and |{i | si =
s′i}| ≥ n− t, it holds that m = Recon(s′) (except for a negligible probability).

ECSS can be constructed information-theoretically, with a negligible positive error probability,
when t < n/2 [76, 34, 23].

A.1.2 Committee Election

A committee-election protocol is a protocol for electing a subset (committee) of n′ parties out
of a set of n parties. In this work we consider electing uniformly at random committees of size
n′ = ω(logn). If the fraction of corrupted parties is constant at the original n-party set, then the
fraction of corrupted parties in the committee is only slightly larger. This follows immediately by
the analysis of Boyle et al. [16, Lem. 2.6] of Feige’ lightest-bin protocol [42].

Lemma A.2 ([16]). For any n′ < n and 0 < β < 1, Feige’s lightest-bin protocol is a 1-round,
n-party protocol for electing a committee C, such that for any set of corrupted parties I ⊆ [n] of
size t = βn, the following holds.

1. |C| ≤ n′.
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2. For every constant ε > 0, Pr [|C \ I| ≤ (1− β − ε)n′] < n
n′ e
− ε2n′

2(1−β) .

3. For every constant ε > 0, Pr
[
|C∩I|
|C| ≥ β + ε

]
< n

n′ e
− ε2n′

2(1−β) .

The following corollary follows.

Corollary A.3. Let C ⊆ [n] be a uniformly random subset of size n′ = ω(logn). Let I ⊆ [n] be a
set of corrupted parties of size t = β · n, for a constant 0 < β < 1. Then, except for a negligible
probability (in n), it holds that for an arbitrary small ε > 0

|C ∩ I| ≤ (β + ε) · n′.

A.1.3 Information-Theoretic Signatures

Parts of the following section are taken almost verbatim from [61].

P-verifiable Information-Theoretic Signatures. We recall the definition and construction of
information-theoretic signatures [79, 78] but slightly modify the terminology to what we consider
to be more intuitive. The signature scheme (in particular the key-generation algorithm) needs to
know the total number of verifiers or alternatively the list P of their identities. Furthermore, as
usually for information-theoretic primitives, the key-length needs to be proportional to the number
of times that the key is used. Therefore, the scheme is parameterized by two natural numbers `S
and `V which will be upper bounds on the number of signatures that can be generated and verified,
respectively, without violating the security.

A P-verifiable signature scheme consists of a triple of randomized algorithms (Gen, Sign,Verify),
where:

1. Gen(1κ, n, `S , `V ) outputs a pair (sk, ~vk), where sk ∈ {0, 1}κ is a signing key, ~vk =
(vk1, . . . , vkn) ∈ ({0, 1}κ)n is a verification-key-vector consisting of (private) verification sub-
keys, and `S , `V ∈ N.

2. Sign(m, sk) on input a messagem and the signing-key sk outputs a signature σ ∈ {0, 1}poly(κ).

3. Verify(m,σ, vki) on input a message m, a signature σ and a verification sub-key vki, outputs
a decision bit d ∈ {0, 1}.

Definition A.4. A P-verifiable signature scheme (Gen, Sign,Verify) is said to be information-
theoretically (`S , `V )-secure if it satisfies the following properties:

• (completeness) A valid signature is accepted from any honest receiver:

Pr[Gen→ (sk, (vk1, . . . , vkn)); for i ∈ [n] : (Verify(m, Sign(m, sk), vki) = 1)] = 1.

• Let OSsk denote a signing oracle (on input m, OSsk outputs σ = Sign(m, sk)) and OV~vk denote

a verification oracle (on input (m,σ, i), OV~vk outputs Verify(m,σ, vki)). Also, let AO
S
sk ,OV~vk

denote a computationally unbounded adversary that makes at most `S calls to OSsk and at
most `V calls to OV~vk , and gets to see the verification keys indexed by some subset I ( [n].
The following properties hold:
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– (unforgeability) AO
S
sk ,OV~vk cannot generate a valid signature on message m′ of his choice,

other than the one he queries OSsk on (except with negligible probability). Formally,

Pr


Gen→ (sk, ~vk); for some I ( [n] chosen by AO

S
sk ,OV~vk :(

A
OSsk ,OV~vk

(
~vk |I

)
→ (m,σ, j)

)
∧ (m was not queried to OSsk) ∧

(j ∈ [n] \ I) ∧
(
Verify(m,σ, vkj) = 1

)
 = negl(κ).

– (consistency)20 AO
S
sk ,OV~vk cannot create a signature that is accepted by some (honest)

party and rejected by some other even after seeing `S valid signatures and verifying `V
signatures (except with negligible probability). Formally,

Pr

 Gen→ (sk, ~vk); for some I ( [n] chosen by AO
S
sk ,OV~vk (sk) :

A
OSsk ,OV~vk (sk, ~vk |I)→ (m,σ)

∃i, j ∈ [n] \ I s.t. Verify(m,σ, vki) 6= Verify(m,σ, vkj)

 = negl(κ).

In [79, 82] a signature scheme satisfying the above notion of security was constructed. These
signatures have a deterministic signature generation algorithm Sign. In the following (Figure 14)
we describe the construction from [79] (as described by [82] but for a single signer). We point
out that the keys and signatures in the described scheme are elements of a sufficiently large finite
field F (i.e., |F | = O(2poly(κ))); one can easily derive a scheme for strings of length ` = poly(κ)
by applying an appropriate encoding: e.g., map the i’th element of F to the i’th string (in the
lexicographic order) and vice versa. We say that a value σ is a valid signature on message m (with
respect to a given key setup (sk, ~vk)), if for every honest Pi it holds that Verify(m,σ, vki) = 1.

Theorem A.5 ([82]). Assuming |F | = Ω(2κ) and `S = poly(κ) the above signature scheme (Fig-
ure 14) is an information-theoretically (`S , poly(κ))-secure P-verifiable signature scheme.

A.1.4 Averaging Samplers

Samplers [86, 51] were used in distributed protocols as a technique for universe reduction [54, 66, 20].
Specifically, they allow to sample points of a given universe such that the probability of hitting any
particular subset approximately matches its density.

Definition A.6 ([66, 20]). A function Samp : X → Y is a (θ, δ)-sampler if for any set S ⊆ Y , at
most a δ fraction of the inputs x ∈ X satisfy

|Samp(x) ∩ S|
|S|

>
|S|
|Y |

+ θ.

The constructions of samplers in [66, 20] provide the additional guarantee that the sampled
subsets do not have “large” intersections. This is an important property when the sampler is
used to select committees (quorums), so that no committee member ends up being overloaded.
Specifically, let H(x, i) = Samp(x · n + i) for x ∈ X and i ∈ [n], and denote by H−1(x, i) the set
of nodes y such that i ∈ H(x, y). We say that a node i is d-overloaded by H if for some constant
a, there is exists x ∈ X such that |H−1(x, i)| > a · d. Samplers that are not overloading can be
constructed with the following parameters.

20This property is often referred to as transferability.
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Lemma A.7 ([66, 20]). For every constant c, for δ = |X|−1, and any θ > 0, there is a (θ, δ)-sampler
H : X × [n]→ [n]d with d = O

(
log(1/δ)
θ2

)
such that for all x ∈ X, no i ∈ [n] is d-overloaded.

Key Generation: The algorithm for key generation Gen(1κ, n, `S) is as follows:

1. For (j, k) ∈ {0, . . . , n− 1}×{0, . . . , `S}, choose aij ∈R F uniformly at random and set the
signing key to be (the description of) the multi-variate polynomial

sk ..= f(y1, . . . , yn−1, x) =
`S∑
k=0

a0,kx
k +

n−1∑
j=1

`S∑
k=0

aj,kyjx
k.

2. For i ∈ [n], choose vector ~vi = (vi,1, . . . , vi,n−1) ∈R Fn−1 uniformly at random and set the
i’th verification key to be

vki = (~vi, f~vi
(x)),

where f~vi
(x) = f(vi,1, . . . , vi,n−1, x).

Signature Generation: The algorithm for signing a message m ∈ F , given the above signing key,
is (a description of) the following polynomial

Sign(m, sk) ..= g(y1, . . . , yn−1) ..= f(y1, . . . , yn−1,m)

Signature Verification: The algorithm for verifying a signature σ = g(y1, . . . , yn) on a given mes-
sage m using the i’th verification key is

Verify(m,σ, vki) =
{

1, if g(~vi) = f~vi
(m)

0, otherwise

Figure 14: Construction of information-theoretic signatures [82]

A.2 Model Definition

We provide the basic definitions for secure multiparty computation according to the real/ideal
paradigm, for further details see [50] (which in turn follows [53, 6, 72, 21]). Informally, a protocol is
secure according to the real/ideal paradigm, if whatever an adversary can do in the real execution
of protocol, can be done also in an ideal computation, in which an uncorrupted trusted party
assists the computation. We consider security with guaranteed output delivery, meaning that the
ideal-model adversary cannot prematurely abort the ideal computation. For the sake of clarity, we
focus in this section on the simpler case of static adversaries, that decide on the set of corrupted
parties before the protocol begins. The case of adaptive adversaries, that can decide which party
to corrupt based on information gathered during the course of the protocol, follows in similar lines,
but is more technically involved. We refer the reader to [21] for a precise definition of adaptively
secure MPC.

Definition A.8 (functionalities). An n-party functionality is a random process that maps vectors
of n inputs to vectors of n outputs. Given an n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n, let
fi(x) denote its i’th output coordinate, i.e., fi(x) = f(x)i.
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Real-model execution. An n-party protocol π = (P1, . . . , Pn) is an n-tuple of probabilistic
interactive Turing machines. The term party Pi refers to the i’th interactive Turing machine. Each
party Pi starts with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. An adversary A is another
probabilistic interactive Turing machine describing the behavior of the corrupted parties. It starts
the execution with input that contains the identities of the corrupted parties, their private inputs,
and an additional auxiliary input. The parties execute the protocol in a synchronous network.
That is, the execution proceeds in rounds: each round consists of a send phase (where parties send
their messages for this round) followed by a receive phase (where they receive messages from other
parties). The adversary is assumed to be rushing, which means that it can see the messages the
honest parties send in a round before determining the messages that the corrupted parties send in
that round.

We consider the point-to-point (communication) model, where all parties are connected via a
fully connected point-to-point network. We emphasize that although every party has the ability to
send a message to every other party, and to receive a message from every other party, we will focus
on protocols where each party will only communicate with a subset of the parties. We consider
three models for the communication lines between the parties: In the authenticated-channels model,
the communication lines are assumed to be ideally authenticated but not private (and thus the
adversary cannot modify messages sent between two honest parties, but can read them). In the
secure-channels model, the communication lines are assumed to be ideally private (and thus the
adversary cannot read or modify messages sent between two honest parties, but he learns the size
of the message that was sent on the channel). In the hidden-channels model, the communication
lines are assumed to hide the very fact that a message has been sent on the channel (and thus
the adversary is not aware that a message has been sent between two honest parties). We do not
assume the existence of a broadcast channel, however, we will occasionally assume the availability
of a trusted preprocessing phase, that is required for executing a broadcast protocol.

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary.
The adversary is considered to be malicious, meaning that it can instruct the corrupted parties
to deviate from the protocol in any arbitrary way. At the conclusion of the execution, the honest
parties output their prescribed output from the protocol, the corrupted parties output nothing,
and the adversary outputs an (arbitrary) function of its view of the computation (containing the
views of the corrupted parties). The view of a party in a given execution of the protocol consists
of its input, its random coins, and the messages it sees throughout this execution.

Definition A.9 (real-model execution). Let π = (P1, . . . , Pn) be an n-party protocol and let I ⊆ [n]
denote the set of indices of the parties corrupted by A. The joint execution of π under (A, I) in the
real model, on input vector x = (x1, . . . , xn), auxiliary input z, and security parameter κ, denoted
REALπ,I,A(z)(x, κ), is defined as the output vector of P1, . . . , Pn and A(z) resulting from the protocol
interaction, where for every i ∈ I, party Pi computes its messages according to A, and for every
j /∈ I, party Pj computes its messages according to π.

Ideal-model execution. An ideal computation of an n-party functionality f on input x =
(x1, . . . , xn) for parties (P1, . . . , Pn) in the presence of an ideal-model adversary A controlling the
parties indexed by I ⊆ [n], proceeds via the following steps.

Sending inputs to trusted party: An honest party Pi sends its input xi to the trusted party. The
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adversary may send to the trusted party arbitrary inputs for the corrupted parties. Let x′i be
the value actually sent as the input of party Pi.

Trusted party answers the parties: If x′i is outside of the domain for Pi, for some index i, or if no
input was sent for Pi, then the trusted party sets x′i to be some predetermined default value.
Next, the trusted party computes (y1, . . . , yn) = f(x′1, . . . , x′n) and sends yi to party Pi for
every i.

Outputs: Honest parties always output the message received from the trusted party and the cor-
rupted parties output nothing. The adversary A outputs an arbitrary function of the initial
inputs {xi}i∈I , the messages received by the corrupted parties from the trusted party {yi}i∈I ,
and its auxiliary input.

Definition A.10 (ideal-model execution). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function-
ality and let I ⊆ [n]. The joint execution of f under (A, I) in the ideal model, on input vector
x = (x1, . . . , xn), auxiliary input z to A, and security parameter κ, denoted IDEALf,I,A(z)(x, κ), is
defined as the output vector of P1, . . . , Pn and A(z) resulting from the above described ideal process.

Security definition. Having defined the real and ideal models, we can now define security of
protocols according to the real/ideal paradigm.

Definition A.11. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, and let π be a proba-
bilistic polynomial-time protocol computing f . The protocol π is a protocol that t-securely computes
f with computational security, if for every probabilistic polynomial-time real-model adversary A,
there exists a probabilistic polynomial-time adversary S for the ideal model, such that for every
I ⊆ [n] of size at most t, it holds that{

REALπ,I,A(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

c≡
{

IDEALf,I,S(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N
.

The protocol π is a protocol that t-securely computes f with information-theoretic security, if for
every real-model adversary A, there exists an adversary S for the ideal model, whose running time
is polynomial in the running time of A, such that for every I ⊆ [n] of size at most t, it holds that{

REALπ,I,A(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N

s≡
{

IDEALf,I,S(z)(x, κ)
}

(x,z)∈({0,1}∗)n+1,κ∈N
.

The Hybrid Model. The hybrid model is a model that extends the real model with a trusted
party that provides ideal computation for specific functionalities. The parties communicate with
this trusted party in exactly the same way as in the ideal model described above.

Let f and g be n-party functionalities. Then, an execution of a protocol π computing g in the
f -hybrid model, involves the parties sending normal messages to each other (as in the real model)
and in addition, having access to a trusted party computing f . It is essential that the invocations
of f are done sequentially, meaning that before an invocation of f begins, the preceding invocation
of f must finish. In particular, there is at most one call to f per round, and no other messages are
sent during any round in which f is called.

Let A be an adversary with auxiliary input z and let I ⊆ [n] be the set of corrupted parties.
We denote by HYBRIDfπ,I,A(z)(x, κ) the random variable consisting of the view of the adversary and
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the output of the honest parties, following an execution of π with ideal calls to a trusted party
computing f on input vector x = (x1, . . . , xn), auxiliary input z to A, and security parameter κ.

In this work, we will employ the sequential composition theorem of Canetti [21].

Theorem A.12 ([21]). Let f and g be n-party functionalities. Let ρ be a protocol that t-securely
computes f , and let π be a protocol that t-securely computes g in the f -hybrid model. Then, protocol
πf→ρ, that is obtained from π by replacing all ideal calls to the trusted party computing f with the
protocol ρ, is a protocol that t-securely computes g in the real model.

Extended functionalities and extended protocols. As mentioned above, in the sequential
composition theorem (Theorem A.12) an n-party protocol π is considered, in which all n parties
invoke the trusted party for computing an n-party functionality f . Next, the adjusted protocol
πf→ρ, where all hybrid calls to f are replaced by an n-party protocol ρ for computing f , is proven
secure. It is essential that the same set of n parties, defined by π, will run all executions of the
sub-protocol ρ in order to claim security of πf→ρ. Looking ahead, in some of our constructions (in
Section 4) we will use sub-protocols that are executed only by a subset of the parties. During the
rounds in which the sub-protocol takes place, the remaining parties (that do not patriciate in the
sub-protocol) should remain idle, i.e., not send any message and not receive any message. Towards
this goal, we show how to extend functionality and protocols, that are defined for a subset of the
n parties, into functionalities and protocols that are defined for the entire party-set, such that the
parties outside of the original subset remain idle.

Letm < n. Given anm-party functionality f , anm-party protocol ρ that t-securely computes f ,
and a subset P = {i1, . . . , im} ⊆ [n] of sizem, we define the “extended functionality” extendP↪→[n](f)
as the n-party functionality in which the output vector (y1, . . . , yn) is defined as follows: for every
i /∈ P the output yi = ε is defined to be the empty string, and for every i ∈ P, the output is
computed via (yi1 , . . . , yim) = f(xi1 , . . . , xim). In addition, we define the protocol extendP↪→[n](ρ)
as the n-party protocol where every party Pi, with i ∈ P, follows the code of ρ, and ignores messages
from parties outside of P, and every party Pi, with i /∈ P, doesn’t send any message, ignores all
incoming messages, and outputs ε. The following lemma is straightforward.

Lemma A.13. If ρ is an m-party protocol that t-securely computes the m-party functionality
f , then extendP↪→[n](ρ) is an n-party protocol that t-securely computes the n-party functionality
extendP↪→[n](f).

A.3 Correlated Randomness Functionalities

The positive results presented in Section 4 are defined in the a model where the parties receive
correlated randomness generated by a trusted setup phase (formally, in the correlated-randomness
hybrid model). The correlated randomness that we consider is public-key infrastructure (PKI),
which is “minimal” in a sense, and commonly used in MPC protocols. In the computational setting,
we consider PKI that is based on digital signatures (which exist assuming one-way functions exist),
and in the information-theoretic setting a PKI that relies on information-theoretic signatures (see
Appendix A.1.3).

Public-key infrastructure. The PKI functionality fpki (Figure 15) generates a pair of signing
and verification keys for every party, and hands each party its signing key along with all verification
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keys. For simplicity, when we say that a protocol π is in the PKI model, we mean that π is defined
in the fpki-hybrid model.

The functionality fpki

The n-party functionality fpki is parametrized by a signature scheme (Gen, Sign,Verify) and proceeds
with parties P1 = {P1, . . . , Pn} as follows.

1. For every i ∈ [n] generate (ski, vki)← Gen(1κ).

2. The output for party Pi is the signing key ski and the vector of verification keys (vk1, . . . , vkn).

Figure 15: The PKI functionality

Information-theoretic PKI. The (`S , `V )-IT-PKI functionality f (`S ,`V )
it-pki (Figure 16) generates

n tuples of signing and verification keys, and hands each party its signing key along with all
corresponding verification keys. For simplicity, when we say that a protocol π is in the (`S , `V )-
IT-PKI model, we mean that π is defined in the f (`S ,`V )

it-pki -hybrid model. By the IT-PKI model we
mean (`S , `V )-IT-PKI model where `S and `V are polynomial in κ.

The functionality fit-pki

The n-party functionality f (`S ,`V )
it-pki is parametrized by an information-theoretically (`S , `V )-secure sig-

nature scheme (Gen, Sign,Verify) and proceeds with parties P1 = {P1, . . . , Pn} as follows.

1. For every i ∈ [n] generate (ski, ~vki)← Gen(1κ, n, `S , `V ), where ~vki = (vki1, . . . , vkin).

2. The output for party Pi is the signing key ski and the vector of verification keys (vk1
i , . . . , vkni ).

Figure 16: The information-theoretic PKI functionality

B MPC with Non-Expanding Communication Graph (Cont’d)
We now provide complementary material for Section 4.

B.1 Proof of Proposition 4.3

Proof. Let A be an adversary attacking the execution of πne
n , and let I ⊆ [n] be a subset of size at

most t = βn. We construct the following adversary S for the ideal model computing f . On inputs
{xi}i∈I and auxiliary input z, the simulator S starts by emulating A on these inputs. Initially,
S generates a pair of signature keys (ski, vki) ← Gen(1κ) for every i ∈ [n], and hands {ski}i∈I
and (vk1, . . . , vkn) to A. Next, S plays towards A the roles of the honest parties and the ideal
functionalities felect-share, frecon-compute, and fout-dist. For simplicity, assume that all input values are
elements in {0, 1}κ.

To simulate Step 1, the simulator emulates f (t′,n′)
elect-share towards A as follows. S receives from A

input values {(x′i, sk′i)}i∈I∩[m] (replace invalid inputs with default). Next, S samples uniformly at
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random two subsets C1 = {i(1,1), . . . , i(1,n′)} ⊆ [m] and C2 = {i(2,1), . . . , i(2,n′)} ⊆ [m], sets sk′i = ski
for every i ∈ [m] \ I, and signs the subsets as σ1 = Signsk′1,...,sk′m(C1) and σ2 = Signsk′1,...,sk′m(C2).
Finally, S generates secret shares of zero for every i ∈ [m] as (s1

i , . . . , s
n′
i )← Share(0κ), and hands

A the output C1 for every Pi with i ∈ ([m] ∩ I) \ C1, and (C1, σ1, C2, σ2, sj), with sj = (sj1, . . . , sjm),
for every i = i(1,j) ∈ C1 ∩ I.

To simulate Step 2, the simulator sends (C1, σ1, C2, σ2) on behalf of every honest party Pi with
i ∈ C1 \ I to every corrupted party Pm+i(2,j) with i(2,j) ∈ C2 and m + i(2,j) ∈ I, and receives such
values from the adversary (S ignores any invalid messages from A). In addition, for every j ∈ [n′]
such that i(1,j) /∈ I and m + i(2,j) ∈ I, the simulator S sends to A on behalf of the honest party
Pi(1,j) the vector sj , intended to Pm+i(2,j) .

To simulate Step 3, the simulator emulates fvk1,...,vkm
recon-compute towards A as follows. S receives from

A input values {(x′m+i, zm+i)}m+i∈I∩[m+1,2m], where either zm+i = ε or zm+i = (Cm+i, σm+i, sm+i)
(replace invalid inputs with default). Next, S sends the values {x′i}i∈I to the trusted party (for
i ∈ I ∩ [m] the values x′i were obtained in the simulation of Step 1, and for i ∈ I ∩ [m+ 1, 2m] in
the simulation of Step 3) and receives back the output value y. Finally, S hands y to A for every
corrupted party Pm+i, with m+ i ∈ I ∩ [m+ 1, 2m].

To simulate Step 4, the simulator sends y on behalf of every honest party Pm+i(2,j) with i(2,j) ∈ C2
and m+ i(2,j) /∈ I to every corrupted party Pi(1,j) with i(1,j) ∈ C1∩I, and receives such values from
the adversary.

To simulate Step 5, the simulator emulates the functionality fC1
out-dist by receiving a value yi from

A for every i ∈ I ∩ C1, and sending y to every corrupted party Pi with i ∈ I ∩ [m]. Finally, S
outputs whatever A outputs and halts.

We prove computational indistinguishability between the execution of the protocol πne
n running

with adversary A and the ideal computation of f running with S via a series of hybrids experiments.
The output of each experiment is the output of the honest parties and of the adversary.

The game HYB1
π,I,A(z)(x, κ). This game is defined to be the execution of the protocol πne

n in the
(felect-share, frecon-compute, fout-dist)-hybrid model on inputs x ∈ ({0, 1}∗)n and security parameter κ
with adversary A running on auxiliary information z and controlling parties in I.

The game HYB2
π,I,A(z)(x, κ). In this game, we modify HYB1

π,I,A(z)(x, κ) as follows. Instead of
verifying the signatures of the input values C2 and σ2, the functionality frecon-compute considers the
subset C2 that was sampled by felect-share.

Claim B.1. {HYB1
π,I,A(z)(x, κ)}x,z,κ

c≡ {HYB2
π,I,A(z)(x, κ)}x,z,κ.

Proof. The claim follows from two observations. First, the signed subset C2 that was computed by
felect-share will be given as input to frecon-compute by at least one party, as long as there exist honest
parties in C1 and C2. This is guaranteed to occur except for a negligible probability following
Corollary A.3.

Second, by the security of the signature scheme, the functionality frecon-compute will not receive a
second signed subset. Indeed, if two subsets C2 and C′2 with accepting signatures σ2 and σ′2 (resp.)
are given to frecon-compute with a noticeable probability, one can construct a forger to the signature
scheme.
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The game HYB3
π,I,A(z)(x, κ). In this game, we modify HYB2

π,I,A(z)(x, κ) as follows. instead of
computing the function f based on the inputs of P2 provided to frecon-compute and the reconstructed
input values of P1 based on the shares provided by the parties in C2, the computation of f is
performed as follows. The input values {x′i}i∈I∩[m] provided by the adversary to felect-share and the
input values {x′i}i∈I∩[m+1,2m] provided by the adversary to frecon-compute are sent to an external
party that computes y = f(x′1, . . . , x′n), where x′i = xi for every i ∈ [n] \ I.

Claim B.2. {HYB2
π,I,A(z)(x, κ)}x,z,κ

s≡ {HYB3
π,I,A(z)(x, κ)}x,z,κ.

Proof. The claim will follow as long as |(C1 ∪ {m + i | i ∈ C2}) ∩ I| ≤ t′. In order to prove this,
we will show separately that |C1 ∩ I| < t′/2 and that |{m + i | i ∈ C2} ∩ I| < t′/2, except for a
negligible probability.

Since β < 1/4 − δ, for some fixed δ > 0, and there are at most β · n corruptions, and n = 2m
parties, it holds that |I| < β · 2m < (1/2 − 2δ) · m, therefore, |[m] ∩ I| < (1/2 − 2δ) · m, and
similarly, |[m+ 1, 2m]∩I| < (1/2− 2δ) ·m. Now, since n′ = ω(log(n)) = ω(log(m)), it follows from
Corollary A.3 that |C1 ∩ I| < (1/2− δ) · n′ and |{m+ i | i ∈ C2} ∩ I| < (1/2− δ) · n′, except for a
negligible probability.

The game HYB4
π,I,A(z)(x, κ). In this game, we modify HYB3

π,I,A(z)(x, κ) as follows. instead of
computing shares of the input values {xi}i∈[m], the functionality felect-share computes shares of 0κ.

Claim B.3. {HYB4
π,I,A(z)(x, κ)}x,z,κ

s≡ {HYB3
π,I,A(z)(x, κ)}x,z,κ.

Proof. The claim follows from the privacy of the ECSS scheme and since |C1 ∩I| ≤ t′ and |{m+ i |
i ∈ C2} ∩ I| ≤ t′, except for a negligible probability.

The proof now follows since HYB4
π,I,A(z)(x, κ) exactly describes the simulation done by S, and

in particular, does not depend on the input values of honest parties. This concludes the proof of
Proposition 4.3.

B.2 Proof of Lemma 4.10

Proof. For m ∈ N and n = 2m, we construct the n-party protocol πa-ne
n (see Figure 17) in the

(fa-elect-share, fa-recon-compute, fa-out-dist)-hybrid model. As in the proof of Lemma 4.2, the parameters
for the protocol are n′ = log2(n) and t′ = (1/2−δ) ·n′. We start by proving in Proposition B.4 that
the protocol πa-ne

n securely computes fn. Next, in Proposition B.8 we prove that the communication
graph of πa-ne is strongly not an expander. Finally, in Proposition B.9 we prove that by instantiating
the functionalities (fa-elect-share, fa-recon-compute, fa-out-dist) using low-locality protocols, the resulting
protocol has low locality.
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Protocol πa-ne
n

• Hybrid Model: The protocol is defined in (fa-elect-share, fa-recon-compute, fa-out-dist)-hybrid model.

• Common Input: A (t′, n′) ECSS scheme (Share,Recon), a signature scheme (Gen, Sign,Verify),
and a partition of the party-set P = {P1, . . . , Pn} into P1 = {P1, . . . , Pm} and P2 = P \ P1.

• PKI: Every party Pi, for i ∈ [n], has signature keys (ski, vki); the signing key ski is private,
whereas the vector of verification keys (vk1, . . . , vkn) is public and known to all parties.

• Private Input: Every party Pi, for i ∈ [n], has private input xi ∈ {0, 1}∗.

• The Protocol:

1. The parties in P1 invoke f (t′,n′)
a-elect-share, where every Pi ∈ P1 sends input (xi, ski), and receives back

either the empty output, or an output consisting of an index i(2,j) ∈ [m], a signature σ1,j of its
own index (denoted i1,j), a signature σ2,j of the index m+ i(2,j), and a vector sj = (sj1, . . . , sjm).

2. Denote C1 = {i1,1, . . . , i1,n′}. Every Pi with i = i(1,j) ∈ C1 sends (σ1,j , σ2,j , sj) to Pm+i(2,j) .
A party Pi2 ∈ P2 that receives a message (σ1,j , σ2,j , sj) from Pi1 ∈ P1 will discard the message
in the following cases:

(a) If Verifyvk1,...,vkm
(i1, σ1,j) = 0.

(b) If Verifyvk1,...,vkm
(i2, σ2,j) = 0.

3. Denote the set of parties that received a valid message in Step 2 by C2. The parties in P2 invoke
f

(vk1,...,vkm)
a-recon-compute, where Pm+i ∈ P2 sends input (xm+i, zm+i) such that for m+i /∈ C2, set zm+i = ε,
and for m+ i = m+ i(2,j) ∈ C2, set zm+i = (σ(2,j), sj). Every party in P2 receives the output y.

4. For every j ∈ [n′], party Pm+i(2,j) sends y to party Pi(1,j) . In addition, every party in P2 outputs
y and halts.

5. The parties in P1 invoke f (vk1,...,vkm)
a-out-dist , where party Pi, with i ∈ C1, has input (σ(1,j), y), and

party Pi, with i /∈ C1 has the empty input ε. Every party in P1 receives output y, outputs it,
and halts.

Figure 17: Non-expanding MPC in the (fa-elect-share, fa-recon-compute, fa-out-dist)-hybrid model

Proposition B.4. For sufficiently large n, the protocol πa-ne
n securely computes the function fn,

tolerating adaptive, PPT βn corruptions, in the (fa-elect-share, fa-recon-compute, fa-out-dist)-hybrid model.

Proof. Let A be an adversary attacking the execution of πa-ne
n and let Z be an environment. We con-

struct an ideal-process adversary S, interacting with the environment Z, the ideal functionality fn,
and with ideal (dummy) parties P̃1, . . . , P̃n. The simulator S constructs virtual parties P1, . . . , Pn,
and runs the adversary A. Note that the protocol πa-ne is deterministic and the only randomness
arrives from the ideal functionalities. Therefore, upon a corruption request, the simulator is only
required to provide the party’s input, interface with the ideal functionalities, and possibly the out-
put. Denote by I the set of corrupted parties (note that this set is dynamic: initially it is set to ∅
and it grows whenever an honest party gets corrupted).

Simulating communication with the environment: In order to simulate the communication
with Z, every input value that S receives from Z is written on A’s input tape. Likewise, every

64



output value written by A on its output tape is copied to S’s own output tape.

Simulating the PKI: The simulator S generates (ski, vki)← Gen(1κ) for every i ∈ [n].

Simulating the protocol: To simulate Step 1, the simulator emulates f (t′,n′)
a-elect-share towards A

as follows. S receives from A input values {(x′i, sk′i)}i∈I∩[m] (replace invalid inputs with de-
fault). Next, S samples uniformly at random two subsets C1 = {i(1,1), . . . , i(1,n′)} ⊆ [m] and
C2 = {i(2,1), . . . , i(2,n′)} ⊆ [m], and sets sk′i = ski for every i ∈ [m] \ I. For every j ∈ [n′], sign
σ(1,j) = Signsk1,...,skm(i(1,j)) and σ(2,j) = Signsk1,...,skm(m+ i(2,j)). Finally, generate secret shares of
zero for every i ∈ [m] as (s1

i , . . . , s
n′
i )← Share(0κ), and hand A the output (i(2,j), σi(1,j) , σi(2,j) , sj),

with sj = (sj1 . . . , sjm), for every i = i(1,j) ∈ C1 ∩ I.
To simulate Step 2, for every j ∈ [n′] such that i(1,j) /∈ I and m + i(2,j) ∈ I, the simulator S

sends to A on behalf of the honest party Pi(1,j) the value (σi(1,j) , σi(2,j) , sj), intended to Pm+i(2,j) .
In addition, S receives such values from the adversary (S ignores any invalid messages from A).

To simulate Step 3, the simulator emulates fvk1,...,vkm
a-recon-compute towards A as follows. S receives from

A input values {(x′m+i, zm+i)}m+i∈I∩[m+1,2m], where either zm+i = ε or zm+i = (σi(2,j) , sj) (replace
invalid inputs with default). Next, S sends the values {x′i}i∈I to the trusted party (for i ∈ I ∩ [m]
the values x′i were obtained in the simulation of Step 1, and for i ∈ I ∩ [m+1, 2m] in the simulation
of Step 3) and receives back the output value y. Finally, S hands y to A for every corrupted party
Pm+i, with m+ i ∈ I ∩ [m+ 1, 2m].

To simulate Step 4, the simulator sends y on behalf of every honest party Pm+i(2,j) with i(2,j) ∈ C2
and m+ i(2,j) /∈ I to every corrupted party Pi(1,j) with i(1,j) ∈ C1∩I, and receives such values from
the adversary.

To simulate Step 5, the simulator emulates the functionality f (vk1,...,vkm)
a-out-dist by receiving either a

value (σi, yi) or an empty string ε from A for every i ∈ I ∩ [m], and sending y to every corrupted
party Pi with i ∈ I ∩ [m].

Simulating corruption requests by A: Whenever the adversary A requests to corrupt an
honest party Pi, the simulator S corrupts P̃i, learn its input xi and continues as follows to compute
the internal state of Pi, based on the timing of the corruption request:

• In Step 1, before calling fa-elect-share: The simulator S sets the contents of Pi’s input
tape to be xi. The secret signing key is set to be ski and the verification keys are set to be
vk1, . . . , vkn.

• In Step 1, after calling fa-elect-share: In addition to the above, if Pi ∈ P1, the simulator
S sets the input of Pi to fa-elect-share to be (xi, ski). If i = i(1,j) ∈ C1, set the output from
fa-elect-share to be (i(2,j), σi(1,j) , σi(2,j) , sj) as computed in the simulation.

• In Step 2: In addition to the above, if i = i(1,j) ∈ C1, the simulator sets the outgoing message
of Pi to Pm+i(2,j) to be (σi(1,j) , σi(2,j) , sj). If i = m+ i(2,j) with i(2,j) ∈ C1, the simulator set the
incoming message of Pi from Pi(1,j) as follows: if Pi(1,j) is honest set it to be (σi(1,j) , σi(2,j) , sj);
otherwise, set it according to the values sent by A.

• In Step 3, before calling fa-recon-compute: In addition to the above, if Pi ∈ P2, the simulator
S sets the input of Pi to fa-recon-compute to be (xi, zi), where if i = m + i(2,j) with i(2,j) ∈ C2,
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set zi = (σi(2,j) , s̃j) where s̃j = (s̃1
j , . . . , s̃

n′
j ), such that if party Pi(1,k) was corrupted during

Step 2 then s̃kj is set according to the values sent by A, and if Pi(1,k) was honest then set
s̃kj = skj . Otherwise, set zi = ε.

• In Step 3, after calling fa-recon-compute: In addition to the above, if Pi ∈ P2, the simulator
S sets the output of Pi from fa-recon-compute to be y.

• In Step 4: In addition to the above, if i = m+ i(2,j) with i(2,j) ∈ C2, the simulator sets the
outgoing message of Pi to Pi(1,j) to be y. If i = i(1,j) ∈ C1, the simulator sets the incoming
message of Pi from Pm+i(2,j) as follows: if Pm+i(2,j) is honest set it to be y; otherwise, set it
according to the values sent by A.

• In Step 5, before calling fa-out-dist: In addition to the above, if i = i(1,j) ∈ C1, the simulator
S sets the input of Pi to fa-out-dist to be (σi(1,j) , y).

• In Step 5, after calling fa-out-dist: In addition to the above, if i = [m], the simulator S sets
the output of Pi from fa-out-dist to be y.

Next, S sends the internal state of Pi to A.

Simulating post-execution corruption requests by Z: Whenever the environment Z re-
quests to corrupt an honest party Pi in the post-execution corruption phase, the simulator S
proceeds to compute the internal state of Pi as in a corruption request from A in Step 5, after
calling fa-out-dist, and sends it to Z.

Proving security. We prove computational indistinguishability between the execution of the
protocol πa-ne

n running with adversary A and the ideal computation of fn running with S via a
series of hybrids experiments. The output of each experiment is the output of the honest parties
and of the adversary.

The game HYB1
π,A,Z(x, z, κ). This game is defined to be the execution of the protocol πa-ne

n in the
(fa-elect-share, fa-recon-compute, fa-out-dist)-hybrid model on inputs x ∈ ({0, 1}∗)n and security parameter
κ with adversary A and environment Z running on auxiliary information z.

The game HYB2
π,A,Z(x, z, κ). In this game, we modify HYB1

π,A,Z(x, z, κ) as follows. Instead of
verifying the signatures of the index of every party that provides an additional input, the function-
ality fa-recon-compute takes the shares sj from parties Pm+i(2,j) , with the i(2,j) ∈ C2 that was sampled
by fa-elect-share.

Claim B.5. {HYB1
π,A,Z(x, z, κ)}x,z,κ

c≡ {HYB2
π,A,Z(x, z, κ)}x,z,κ.

Proof. The claim follows from the following observations. First, For a fixed j ∈ [n′], if both parties
Pi(1,j) and Pm+i(2,j) are honest, then Pm+i(2,j) will provide fa-recon-compute with the correct signature
of its index.

Second, with overwhelming probability, for at least dn′/2e of the j’s it holds that both Pi(1,j)
and Pm+i(2,j) are honest. This follows from the strong honest-majority assumption. In more detail,
since the communication between honest parties is hidden from the adversary, he can identify that
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an honest party Pi is in the committee C1, i.e., i = i(1,j), only if the corresponding party Pm+i(2,j) in
C2 is corrupted and receives a message from Pi(1,j) (and vice versa). Assume towards a contradiction
that for dn′/2e of the j’s at least one of Pi(1,j) or Pm+i(2,j) is corrupted. This means that the fraction
of corrupted parties in one of the committees C1 and C2 is β′ ≥ 1/4. However, since by assumption
there are at most (1/8− δ) ·n = (1/4− 2δ) ·m corrupted parties at any point during the protocol’s
execution (and after its completion), it holds that in P1 and in P2 the fraction of corrupted parties
is at most (1/4 − 2δ). Now, since n′ = ω(logn) it follows from Corollary A.3 with overwhelming
probability that if all the corruption took place at the onset of the protocol, then the fraction of
corrupted parties in the committees is at most (1/4− δ) (by setting ε = δ).

It is now remains to show that other then identifying “matching parties” in the committees (i.e.,
the pair of parties Pi(1,j) and Pm+i(2,j)) in Steps 2 and 4, the adversary does not gain any advantage
in increasing the fraction of corrupted parties in the committees by dynamically corrupting parties.
This follows since the communication is hidden from the adversary, and its view in the protocol
(except for Steps 2 and 4) is independent of the committees. Therefore we derive a contradiction.

Finally, by the security of the signature scheme, the functionality fa-recon-compute will not receive
input with signed index from parties outside of C2.

The game HYB3
π,A,Z(x, z, κ). In this game, we modify HYB2

π,A,Z(x, z, κ) as follows. Instead of
computing the function f using the inputs of P2 as provided to fa-recon-compute, and the input values of
P1 as reconstructed from the shares provided by the parties in C2, the computation of f is performed
as follows. Let I be the set of corrupted parties in Step 3 when calling fa-recon-compute. The input
values {x′i}i∈I∩[m] provided by the adversary to fa-elect-share and the input values {x′i}i∈I∩[m+1,2m]
provided by the adversary to fa-recon-compute are sent to an external party that computes y =
f(x′1, . . . , x′n), where x′i = xi for every i ∈ [n] \ I.

Claim B.6. {HYB2
π,A,Z(x, z, κ)}x,z,κ

s≡ {HYB3
π,A,Z(x, z, κ)}x,z,κ.

Proof. The claim will follow as long as |(C1∪{m+ i | i ∈ C2})∩I| ≤ t′. This follows from the proof
of Claim B.5.

The game HYB4
π,A,Z(x, z, κ). In this game, we modify HYB3

π,A,Z(x, z, κ) as follows. instead of
computing shares of the input values {xi}i∈[m], the functionality fa-elect-share computes shares of 0κ.

Claim B.7. {HYB4
π,A,Z(x, z, κ)}x,z,κ

s≡ {HYB3
π,A,Z(x, z, κ)}x,z,κ.

Proof. The claim follows from the privacy of the ECSS scheme and since |C1 ∩I| ≤ t′ and |{m+ i |
i ∈ C2} ∩ I| ≤ t′ at any point during the protocol, except for a negligible probability.

The proof now follows since HYB4
π,I,A(z)(x, κ) exactly describes the simulation done by S, and

in particular, does not depend on the input values of honest parties. This concludes the proof of
Proposition B.4.

Proposition B.8. The communication graph of πne is strongly not an expander.

Proof. The proof follows in a similar way as the proof of Proposition 4.4.

Proposition B.9. Let ρ1, ρ2, ρ3, and πfi→ρi be the protocols defined in Lemma 4.10, and let `ρ =
`ρ(m) be the upper bound of the locality of ρ1, ρ2, ρ3. Then πfi→ρi has locality ` = 2 · `ρ + 1.
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Proof. Every party in P1 communicates with `ρ parties when executing ρ1, and with at most
another `ρ parties when executing ρ3. In addition, every party in C1 communicates with exactly
one party in C2. Similarly, every party in P2 communicates with `ρ parties when executing ρ2, and
parties in C2 communicates with exactly one party in C1. It follows that maximal number of parties
that a party communicates with during the protocol is 2 · `ρ + 1.

This concludes the proof of Lemma 4.10.

C Expansion is Necessary for Correct Computation (Cont’d)
We now provide complementary material for Section 5.

C.1 Proof of the Graph-Theoretic Theorem (Theorem 5.6)

In this section, we prove Theorem 5.6, stating that an (α, d)-partition exists and can be efficiently
computed when the minimal degree of a vertex in the graph is sufficiently large.

Theorem 5.6. Let c > 1 be a constant integer, let α(n) ∈ o(n) be a fixed sublinear function in n,
and let {Gn}n∈N be a family of graphs, where Gn = ([n], En) is defined on n vertices, and every
vertex of Gn has degree at least n

c − 1. Then, for sufficiently large n it holds that:

1. There exists an (α(n), n/c)-partition of Gn, denoted Γ; it holds that |Γ| ≤ c.

2. An (α(n), n/c)-partition Γ of Gn can be found in (deterministic) polynomial time.

In Lemma C.1, we prove the existence of such a partition; and in Lemma C.5, we present a
deterministic polynomial-time algorithm for computing it. Recall that given a graph G with n
vertices and a subset S ⊆ [n], we denote by edges(S) = edges(S, S̄) the set of edges from S to its
complement.

Lemma C.1. Consider the setting of Theorem 5.6. Then, there exists an (α(n), n/c)-partition Γ
of Gn, and it holds that |Γ| ≤ c. Furthermore, the number of α(n)-cuts in Gn is at most 2c−1.

Proof. Let n ∈ N and let {
{S1, S̄1}, . . . , {S`, S̄`}

}
be the set of all α(n)-cuts in Gn, i.e., for every i ∈ [`] it holds that∣∣edgesGn(Si)

∣∣ ≤ α(n). (8)

We proceed by defining the following family of subsets

Γ =
{⋂̀
i=1

Sbii : (b1, b2, . . . , b`) ∈ {0, 1}`
}
\ {∅} ,

where for every i ∈ [`] and b ∈ {0, 1}, the set Sbi is defined as

Sbi
..=
{
Si if b = 0,
S̄i if b = 1.

We will show that for sufficiently large n, the set Γ is an (α(n), n/c)-partition of Gn and that
|Γ| ≤ c. We start by proving two useful claims.
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Claim C.2. For every S ⊆ [n], if 1 ≤ |S| ≤ n
c − 1 then |edgesGn(S)| ≥ n

c − 1.

Proof. Consider an arbitrary set S ⊆ [n]. The claim follows from the following set of inequalities:

|edgesGn(S)| = (total degree of the vertices in S)
− 2 · (total number of edges whose both vertices are inside S)

≥ |S| ·
(
n

c
− 1

)
− 2 ·

(
|S|
2

)

= |S| ·
(
n

c
− 1

)
− |S| · (|S| − 1)

= |S| ·
(
n

c
− |S|

)
(∗)
≥ n

c
− 1.

The last inequality (∗) follows since for a constant a and 1 ≤ x ≤ a − 1, if f(x) = x(a − x) then
a− 1 ≤ f(x) ≤ a2

4 . In our case 1 ≤ |S| ≤ n
c − 1, therefore

n

c
− 1 ≤ |S| ·

(
n

c
− |S|

)
≤ n2

4c2 .

This concludes the proof of Claim C.2.

Claim C.3. For every (b1, b2, . . . , b`) ∈ {0, 1}`, either
⋂`
i=1 S

bi
i = ∅ or |

⋂`
i=1 S

bi
i | ≥ n/c.

Proof. Suppose, to the contrary, that there exists an `-bit vector (b1, b2, . . . , b`) ∈ {0, 1}` such that
1 ≤ |

⋂`
i=1 S

bi
i | ≤ n

c − 1. Let us consider the following nested sequence of sets

A` ⊆ . . . ⊆ A2 ⊆ A1,

where for every j ∈ [`] the set Aj is defined as Aj ..=
⋂j
i=1 S

bi
i . Since A1 = Sb1

1 and S1 satisfies
Equation (8), it holds that

|edgesGn(A1)| ≤ α(n). (9)

Also, since A` =
⋂`
i=1 S

bi
i and |

⋂`
i=1 S

bi
i | ≤ n

c − 1 (by assumption), it follows from Claim C.2 that

|edgesGn(A`)| ≥
n

c
− 1. (10)

The following two cases can occur:

Case 1. For every j ∈ [` − 1], either Aj \ Aj+1 = ∅ or |Aj \ Aj+1| ≥ n/c: Consider the set I =
{i ∈ [`− 1] : Ai \Ai+1 6= ∅}. It follows from the assumption that for every i ∈ I, |Ai \Ai+1| ≥ n/c.
Since these sets are disjoint and A` is non-empty, we have |I| ≤ c− 1. Note that there are at least
n/c−1 edges which are coming out of A`. Since |edges(A1)| ≤ α(n), at least n/c−1−α(n) of these
edges (whose one end-point is inside A`) must have their other end-point inside A1 \ A`. Observe
that A1 \A` =

⋃I
i=1Ai \Ai+1, which implies |edges(A`, Ak \Ak+1)| ≥ (n/c)−1−α(n)

c−1 for some k ∈ I.
Since A` ⊆ S

bk+1
k+1 , which is disjoint from Ak \ Ak+1, we have |edges(Sbk+1

k+1 )| ≥ (n/c)−1−α(n)
c−1 . Now,

since α(n) is a sub-linear function in n, for sufficiently large n we have that |edges(Sb+1
k+1)| > α(n),

which is a contradiction to Equation (8).
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Case 2. 0 < |Aj \ Aj+1| ≤ n/c − 1 for some j ∈ [` − 1]: As in the previous case, consider the
set I = {i ∈ [` − 1] : Ai \ Ai+1 6= ∅}. Let k ∈ I be the first index such that 0 < |Ak \ Ak+1| ≤
n/c − 1. Define another set I ′ = {i ∈ I : i ≤ k}. Since k ∈ I is the first index such that
0 < |Ak \ Ak+1| ≤ n/c − 1, the number of i’s such that i ∈ I and i ≤ k must be less than c,
which implies that |I ′| ≤ c − 1. Note that Ak and Ak \ Ak+1 can be written as Ak =

⋂
i∈I′ S

bi
i

and Ak \ Ak+1 =
⋂
i∈I′ S

bi
i

⋂
S
bk+1⊕1
k+1 , respectively. Let s ..= |I ′|. For simplicity of notation, let

us renumber these cuts from 1 to s + 1, i.e., let {S1, S2, . . . , Ss+1} ..= {Si : i ∈ I ′}
⋃
Sk+1. With

this notation, there exists some (b̂1, b̂2, . . . , b̂s+1) ∈ {0, 1}s+1, such that Ak \Ak+1 =
⋂s+1
i=1 S

b̂i
i Since

0 < |Ak \Ak+1| ≤ n/c− 1, we have from Claim C.2 that |edges(
⋂s+1
i=1 S

b̂i
i )| ≥ n/c− 1.

Note that for any edge (u, v) ∈ edges(
⋂s+1
i=1 S

b̂i
i ), it holds that v ∈

⋂s+1
i=1 S

ei
i for some

(e1, e2, . . . , es+1) ∈ {0, 1}s+1. Since |edges(
⋂s+1
i=1 S

b̂i
i )| ≥ n/c − 1, there exists (ê1, ê2, . . . , ês+1) ∈

{0, 1}s+1 such that |edges(
⋂s+1
i=1 S

b̂i
i ,
⋂s+1
i=1 S

êi
i )| ≥ (n/c)−1

2s+1 . Since s+ 1 = |I ′|+ 1 ≤ c, we have∣∣∣∣∣edges
(
s+1⋂
i=1

S b̂ii ,
s+1⋂
i=1

S êii

)∣∣∣∣∣ ≥ (n/c)− 1
2c . (11)

Since (b̂1, b̂2, . . . , b̂s+1) 6= (ê1, ê2, . . . , ês+1), there exists l ∈ [s+ 1] such that b̂l 6= êl. This, together
with Equation (11), implies that |edges(Sl)| ≥ (n/c)−1

2c . Since c is a constant, it holds (n/c)−1
2c > α(n)

for sufficiently large n, implying that |edges(Sl)| > α(n), which is a contradiction to Equation (8).
This concludes the proof of Claim C.3.

Now we show that Γ is an (α(n), n/c)-partition of Gn. First observe that the union of all the
sets in Γ is indeed [n]. By Claim C.3 for every S ∈ Γ it holds that |S| ≥ n/c. Furthermore, for
every α(n)-cut {Sj , S̄j} it holds that Sj and S̄j can be represented as a union of some sets from Γ,
more precisely

Sj =
⋃

(~b∈{0,1}` : bj=0)

⋂̀
i=1

Sbii and S̄j =
⋃

(~b∈{0,1}` : bj=1)

⋂̀
i=1

Sbii .

In addition, it is easy to see that the sets in Γ are pairwise disjoint, and since each is of size at least
n/c it holds that |Γ| ≤ c.

To show that distinct sets from Γ have at most α(n) crossing edges, consider two different
sets Ui, Uj ∈ Γ. There exist distinct binary vectors ~b,~e ∈ {0, 1}` such that Ui =

⋂`
k=1 S

bk
k and

Uj =
⋂`
k=1 S

ek
k . Let k̂ ∈ [`] be an index such that bk̂ 6= ek̂. Since (1) Ui ⊆ S

bk̂
k̂
, (2) Uj ⊆ S

ek̂
k̂
, (3)

S
bk̂
k̂
∩ Sek̂

k̂
= ∅, and (4) |edges(Sbk̂

k̂
, S

ek̂
k̂

)| ≤ α(n), it holds that |edges(Ui, Uj)| ≤ α(n).
Finally, since |Γ| ≤ c and for every α(n)-cut {Sj , S̄j} it holds that Sj and S̄j can be represented

as a union of some sets from Γ, we have that ` ≤ 2c − 1 (which is the total number of nonempty
subsets of Γ). However, a cut is defined by two such subsets, therefore it holds that the total
number of α(n)-cuts is at most 2c−1.

This completes the proof of Lemma C.1.

Lemma C.1 proved existence of a partition. In Lemma C.5, we show how to efficiently find
such a partition. A core element of our algorithm is the algorithm for enumerating all cuts of a
weighted graph due to Vazirani and Yannakakis [84] that runs in polynomial time with Õ(n2m)
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delay between two successive outputs (i.e., once the i’th cut was found, this is the running time
needed to produce the (i+ 1)’th cut). Yeh et al. [85] reduced the delays to Õ(nm).

Theorem C.4 ([84, 85]). Let G = (V,E) be a weighted undirected graph on n vertices and m
edges. There exists a deterministic polynomial-time algorithm to enumerate all the cuts of G by
non-decreasing weights with Õ(nm) delay between two successive outputs.

Lemma C.5. Consider the setting of Theorem 5.6. Then, for sufficiently large n, an (α(n), n/c)-
partition Γ of Gn can be found in polynomial time (precisely in Õ(n3) time).

Proof. We start by assigning weight 1 to every edge of our graph Gn and run the algorithm from
Theorem C.4 on this weighted graph. We enumerate all cuts by non-decreasing weights until we
hit a cut whose weight is more than α(n). Since the total number of α(n)-cuts is at most 2c−1, we
stop this algorithm after it has enumerated at most 2c−1 cuts.

Let {S1, S̄1}, . . . , {S`, S̄`} denote all the α(n)-cuts of Gn. We define the partition Γ as above

Γ =
{⋂̀
i=1

Sbii : (b1, b2, . . . , b`) ∈ {0, 1}`
}
\ {∅} .

Following the proof of Lemma C.1, the partition Γ is an (α(n), n/c)-partition of Gn.

Running time analysis. Since c is a constant and total number of edges in our graph is O(n2),
we can generate all the α(n)-cuts in Õ(n3) time using the algorithm of Yeh et al. [85]. Once
we have found all the α(n)-cuts, generating the (α(n), n/c)-partition takes O(n) time: since the
total number of cuts ` is constant, computing

⋂`
i=1 S

bi
i for any fixed vector (b1, b2, . . . , b`) ∈ {0, 1}`

takes O(n) time. We are computing 2` ≤ 22c−1 such intersections corresponding to the 2` vectors.
Because c is a constant, the total time is still O(n). Hence, the total time required by our procedure
for finding an (α(n), n/c)-partition is Õ(n3). This completes the proof of Lemma C.5.
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