
Quantum Lattice Enumeration
and Tweaking Discrete Pruning

Yoshinori Aono1, Phong Q. Nguyen2,3, and Yixin Shen4,3

1 Security Fundamentals Laboratory, Cybersecurity Research Institute, National
Institute of Information and Communications Technology, Japan

2 Inria Paris, France
3 CNRS, JFLI, University of Tokyo, Japan
4 IRIF, University Paris Diderot, France

Abstract. Enumeration is a fundamental lattice algorithm used in chal-
lenge records. We show how to speed up enumeration on a quantum
computer, which affects the security estimates of several lattice-based
submissions to NIST: if T is the number of operations of enumeration,
our quantum enumeration runs in roughly

√
T operations. This applies

to the two most efficient forms of enumeration known in the extreme
pruning setting: cylinder pruning but also discrete pruning introduced
at Eurocrypt ’17. Our results are based on recent quantum tree algo-
rithms by Montanaro and Ambainis-Kokainis. The discrete pruning case
requires a crucial tweak: we modify the preprocessing so that the running
time can be rigorously proved to be essentially optimal, which was the
main open problem in discrete pruning. We also introduce another tweak
to solve the more general problem of finding close lattice vectors.

1 Introduction

The main two hard lattice problems are finding short lattice vectors (SVP) and
close lattice vectors (CVP), either exactly or approximately. Both have been
widely used in cryptographic design for the past twenty years: Ajtai’s SIS [2]
and Regev’s LWE [38] are randomized variants of respectively SVP and CVP.

With the NIST standardization of post-quantum cryptography and the devel-
opment of fully-homomorphic encryption, there is a need for convincing security
estimates for lattice-based cryptosystems. Yet, in the past ten years, there has
been regular progress in the design of lattice algorithms, both in theory (e.g.
[20,31,1]) and practice (e.g. [35,21,32,17,19,25,9]), which makes security esti-
mates tricky. Lattice-based NIST submissions use varying cost models, which
gives rise to a wide range of security estimates [5]. The biggest source of diver-
gence is the cost assessment of a subroutine to find nearly shortest lattice vectors
in certain dimensions (typically the blocksize of reduction algorithms), which is
chosen among two families: sieving [3,35,32,25,13] and enumeration.

Enumeration is the simplest algorithm to solve SVP/CVP: it outputs L∩B,
given a lattice L and an n-dimensional ball B ⊆ Rn. Dating back to the early
1980s [37,24], it has been significantly improved in practice in the past twenty
years, thanks to pruning methods introduced by Schnorr et al. [41,42,40], and
later revisited and generalized as cylinder pruning [21] and discrete pruning [9]:

2 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

these methods offer a trade-off by enumerating over a subset S ⊆ B, at the
expense of missing solutions. One may only be interested in finding one point in
L ∩ S (provided it exists), or the ‘best’ point in L ∩ S, i.e. a point minimizing
the distance to a target. Enumeration and cylinder pruning compute L ∩ S by
a depth-first search of a tree with super-exponentially many nodes. Discrete
pruning is different, but the computation of S uses special enumerations.

The choice between sieving and enumeration for security estimates is not
straightforward. On the one hand, sieving methods run in time 2O(n) much
lower than enumeration’s 2O(n logn). On the other hand, the largest lattice nu-
merical challenges have all been solved by pruned enumeration, either directly
or as a subroutine: cylinder pruning [21] for NTRU challenges [43] (solved
by Ducas-Nguyen) and Darmstadt’s lattice challenges [28] (solved by Aono-
Nguyen), and discrete pruning [19,9] for Darmstadt’s SVP challenges [39] (solved
by Kashiwabara-Teruya). Sieving records only reach much lower dimensions, in
part because sieving requires exponential space, whereas enumeration runs in
linear space. Among all lattice-based submissions [36,5] to NIST, the majority
chose sieving over enumeration based on the analysis of NewHope [7, Sect. 6],
which states that sieving is more efficient than enumeration in dimension ≥ 250
for both classical and quantum computers. But this analysis is debatable: [7]
estimates the cost of sieving by a lower bound (ignoring sub-exponential terms)
and that of enumeration by an upper bound (either [17, Table 4] or [16, Table
5.2]), thereby ignoring the lower bound of [17] (see [10] for improved bounds).

The picture looks even more blurry when considering the impact of quantum
computers, which is especially relevant to NIST standardization. The quantum
speed-up is rather limited for sieving: the best quantum sieve algorithm runs
in heuristic time 20.265n+o(n), only slighty less than the best classical (heuris-
tic) time 20.292n+o(n) [25,13]. And the quantum speed-up for enumeration is
unclear, as confirmed by recent discussions on the NIST mailing-list [4]. In 2015,
Laarhoven et al. [26, Sect. 9.1] noticed that quantum search algorithms do not
apply to enumeration: indeed, Grover’s algorithm assumes that the possible so-
lutions in the search space can be indexed and that one can find the i-th possible
solution efficiently, whereas lattice enumeration explores a search tree of an un-
known structure which can only be explored locally. Three recent papers [7,18,6]
mention in a short paragraph that Montanaro’s quantum backtracking algo-
rithm [33] can speed up enumeration, by decreasing the number T of opera-
tions to

√
T . However, no formal statement nor details are given in [7,18,6].

Furthermore, none of the lattice-based submissions to NIST cite Montanaro’s
algorithm [33]: the only submission that mentions enumeration in a quantum
setting is NTRU-HSS-KEM [23], where it is speculated that enumeration might
have a

√
T quantum variant.

Our results. We show that lattice enumeration and its cylinder and discrete
pruning variants can all be quadratically sped up on a quantum computer, unlike
sieving. This is done by a careful interpretation and analysis of enumeration as
tree algorithms. Interestingly, we show that this speedup also applies to extreme
pruning [21] where one repeats enumeration over many reduced bases: a naive

Quantum Lattice Enumeration and Tweaking Discrete Pruning 3

approach would only decrease the classical cost mt (where m is the number of
bases and t is the number of operations of a single enumeration) to m

√
t quantum

operations, but we bring it down to
√
mt.

First, we clarify the application of Montanaro’s algorithm [33] to enumeration
with cylinder pruning: the analysis of [33] assumes that the degree of the tree
is bounded by a constant, which is tailored for constraint satisfaction problems,
but is not the setting of lattice enumeration. To tackle enumeration, we add
basic tools such as binary tree conversion and dichotomy: we obtain that if a
lattice enumeration (with or without cylinder pruning) searches over a tree with
T nodes, the best solution can be found by a quantum algorithm using roughly√
T poly-time operations, where there is a polynomial overhead, which can be

decreased if one is only interested in finding one solution. This formalizes earlier
brief remarks of [7,18,6], and applies to both SVP and CVP.

Our main result is that the quantum quadratic speed-up also applies to the
recent discrete pruning enumeration introduced by Aono and Nguyen [9] as a
generalization of Schnorr’s sampling algorithm [40]. To do so, we tweak discrete
pruning and use an additional quantum algorithm, namely that of Ambainis and
Kokainis [8] from STOC ’17 to estimate the size of trees. Roughly speaking, given
a parameter T , discrete pruning selects T branches (optimizing a certain metric)
in a larger tree, and derives T candidate short lattice vectors from them. Our
quantum variant directly finds the best candidate in roughly

√
T operations.

As mentioned previously, we show that the quadratic speed-up of both enu-
merations also applies to the extreme pruning setting (required to exploit the
full power of pruning): if one runs cylinder pruning over m trees, a quantum
enumeration can run in

√
T poly-time operations where T is the sum of the m

numbers of nodes, rather than
√
mT naively; and there is a similar phenomenon

for discrete pruning.

As a side result, we present two tweaks to discrete pruning [9], to make it
more powerful and more efficient. The first tweak enables to solve CVP in such a
way that most of the technical tools introduced in [9] can be reused. This works
for the approximation form of CVP, but also its exact version formalized by
the Bounded Distance Decoding problem (BDD), which appears in many cryp-
tographic applications such as LWE. In BDD, the input is a lattice basis and a
lattice point shifted by some small noise whose distribution is crucial. We show
how to handle the most important noise distributions, such as LWE’s Gaus-
sian distribution and finite distributions used in GGH [22] and lattice attacks
on DSA [34]. Enumeration, which was historically only described for SVP, can
trivially be adapted to CVP, and so does [21]’s cylinder pruning [29]. However,
discrete pruning [9] appears to be less simple.

The second tweak deals with the selection of optimal discrete pruning param-
eters, and is crucial for our quantum variant. Intuitively, given an integer T > 0,
the problem is to find the T “best” integral vectors t ∈ Nn which minimize
some objective function f(t). Aono and Nguyen [9] introduced a fast practical
algorithm to do so for a very special useful choice of f , but the algorithm was
heuristic: no good bound on the running time was known. We show that their al-

4 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

gorithm can actually behave badly in the worst case, i.e. it may take exponential
time. But we also show that by a careful modification, the algorithm becomes
provably efficient and even optimal for that f , and heuristically for more general
choices of f : the running time becomes essentially T operations.

Our theoretical analysis has been validated by experiments, which show that
in practical BDD situations, discrete pruning is as efficient as cylinder pruning.
Since discrete pruning has interesting features (such as an easier parallelization
and an easier generation of parameters), it might become the method of choice
for large-scale blockwise lattice reduction.

Impact. Fig. 1 illustrates the impact of our quantum enumeration on security
estimates: the red and yellow curves show

√
#bases ∗N where N is an upper

bound cost, i.e., number of nodes of enumeration with extreme pruning with
probability 1/#bases. The upper bounds for HKZ/Rankin bases are computed
by the optimizing technique in [10]. Here, we omitted the polynomial overhead
factor because small factors in quantum sieve have also never been investigated.
Note that the estimate 2(0.187β log β−1.019β+16.1)/2 (called Q-Enum in [5]) of
a hypothetical quantum enumeration in NTRU-HSS-KEM [23], which is the
square-root of a numerical interpolation of the upper bound of [17,16], is higher
than our HKZ estimate: however, both are less than 2128 until blocksize roughly
400.

Quantum enumeration with extreme pruning would be faster than quantum
sieve up to higher dimensions than previously thought, around 300 if we assume
that 1010 quasi-HKZ-bases can be obtained for a cost similar as enumeration,
or beyond 400 if 1010 Rankin-bases (see [17]) can be used instead. Such ranges

Fig. 1. Q-sieve vs Q-enum: (Left) Using HKZ bases (Right) Using Rankin bases

would affect the security estimates of between 11 and 17 NIST submissions
(see Table. 2), depending on which basis model is considered: these submissions
state that the best attack runs BKZ with a blocksize seemingly lower than our
threshold between quantum enumeration and quantum sieving, except in the
case of S/L NTRU Prime, for which the blocksize 528 corresponds to less than
2200 in Fig. 1, whereas the target NIST category is 5.

Furthermore, we note that our quantum speedup might actually be more
than quadratic. Indeed, the number T of enumeration nodes is actually a ran-

Quantum Lattice Enumeration and Tweaking Discrete Pruning 5

Name NIST category Blocksize
EMBLEM 1 260/337
uRound2 1 286/302/304

Ding Key Exchange 1 330-366
R EMBLEM 1 345/383

CRYSTALSDilithium 1 347
uRound2 2 355/358/386/397

CRYSTALSKyber 1 386
NewHope 1 386
uRound2 3 394/401/427/425

NTRUEncrypt 1 319
S/L NTRU Prime 5 528

Fig. 2. Lattice-based NIST submissions affected by quantum enumeration

dom variable: the average quantum running time is E(
√
T), which is ≤

√
E(T)

and potentially much less (e.g. a log-normal distribution). It would be useful
to identify the distribution of T : it cannot be log-normal for LLL bases (un-
like what seems to be suggested in [44]), because it would violate the provable

running time 2O(n2) of enumeration with LLL bases.
On the other hand, we stress that this is just a first assessment of quantum

enumeration. If one is interested in more precise estimates, such as the number
of quantum gates, one would need to assess the quantum cost of the algorithm
of Montanaro [33] and that of Ambainis and Kokainis [8].

Related work. Babai’s nearest plane algorithm [12] can be viewed as the first
form of BDD discrete pruning, using only a single cell. Lindner-Peikert’s algo-
rithm [27] generalizes it using exponentially many cells, and is the BDD analogue
of Schnorr’s random sampling [40] (see [29]). But for both [40,27], the selection
of cells is far from being optimal. In 2003, Ludwig [30] applied Grover search to
speed up [40] quantumly.

Roadmap. Sect. 2 provides background. Sect. 3 gives a general description of
enumeration to find close lattice vectors. In Sect. 4, we speed up cylinder pruning
enumeration on a quantum computer, using [33]. In Sect. 5, we adapt lattice
enumeration with discrete pruning to CVP. In Sect. 6, we show how to efficiently
select the best parameters for discrete pruning, by modifying the orthogonal
enumeration of [9]. In Sect. 7, we speed up discrete pruning enumeration on a
quantum computer, using [33,8]. Supplementary material is given in Appendix,
including proofs and experimental results.

2 Preliminaries

We follow the notations of [9].

General. N is the set of integers ≥ 0. For any finite set U , its number of elements
is #U . For any measurable subset S ⊆ Rn, its volume is vol(S). We use row

6 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

representations of matrices. The Euclidean norm of a vector v ∈ Rn is ‖v‖. We
denote by Balln(c, R) the n-dim Euclidean ball of radius R and center c, whose

volume is vol(Balln(R)) = Rn πn/2

Γ (n/2+1) . If c is omitted, we mean c = 0.

Lattices. A lattice L is a discrete subgroup of Rm, or equivalently the set
L(b1, . . . , bn) = {

∑n
i=1 xibi : xi ∈ Z} of all integer combinations of n linearly

independent vectors b1, . . . , bn ∈ Rm. Such bi’s form a basis of L. All the bases
have the same number n of elements, called the dimension or rank of L, and
the same n-dimensional volume of the parallelepiped {

∑n
i=1 aibi : ai ∈ [0, 1)}

they generate. We call this volume the co-volume of L, denoted by covol(L). The
lattice L is said to be full-rank if n = m. The shortest vector problem (SVP) asks
to find a non-zero lattice vector of minimal Euclidean norm. The closest vector
problem (CVP) asks to find a lattice vector closest to a target vector.

Orthogonalization. For a basis B = (b1, . . . , bn) of a lattice L and i ∈ {1, . . . , n},
we denote by πi the orthogonal projection on span(b1, . . . , bi−1)⊥. The Gram-
Schmidt orthogonalization of the basis B is defined as the sequence of orthogonal
vectors B? = (b?1, . . . , b

?
n), where b?i := πi(bi). We can write each bi as b?i +∑i−1

j=1 µi,jb
?
j for some unique µi,1, . . . , µi,i−1 ∈ R. Thus, we may represent the

µi,j ’s by a lower-triangular matrix µ with unit diagonal. πi(L) is a lattice of rank
n+ 1− i generated by πi(bi), . . . , πi(bn), with covol(πi(L)) =

∏n
j=i

∥∥b?j∥∥.

Gaussian Heuristic. The classical Gaussian Heuristic provides an estimate on
the number of lattice points inside a “nice enough” set:

Heuristic 1 Given a full-rank lattice L ⊆ Rn and a measurable set S ⊆ Rn, the
number of points in S ∩ L is approximately vol(S)/covol(L).

Both rigorous results and counter-examples are known (see [9]). One should
therefore experimentally verify its use, especially for pruned enumeration which
relies on strong versions of the heuristic, where the set S is not fixed, depending
on a basis of L.

Statistics. We denote by E() the expectation and V() the variance of a random
variable. For discrete pruning, it is convenient to extend E() to any measurable
set C of Rn by using the squared norm, that is E{C} := Ex∈C(‖x‖2).

Gaussian distribution. The CDF of the Gaussian distribution of expectation
0 and variance σ2 is 1

2 (1 + erf(x
σ
√
2
)) where the error function is erf(z) :=

2√
π

∫ z
0
e−t

2

dt. The multivariate Gaussian distribution over Rm of parameter σ

selects each coordinate with Gaussian distribution.

Quantum Tree Algorithms. Like in [8], a tree T is locally accessed given:

1. the root r of T
2. a black box which, given a node v, returns the number of children d(v) for

this node. If d(v) = 0, v is called a leaf.

Quantum Lattice Enumeration and Tweaking Discrete Pruning 7

3. a black box which, given a node v and i ∈ [d(v)], returns the i-th child of v.

We denote by V (T) its set of nodes, L(T) its set of leaves, d(T) =
maxv∈V (T) d(v) its degree and n(T) an upper-bound of its depth. When there is
no ambiguity, we use d and n directly without the argument T . We also denote
by #T the number of nodes of the tree T .

Backtracking is a classical algorithm for solving problems such as constraint
satisfaction problems, by performing a tree search in depth-first order. Each node
represents a partial candidate and its children say how to extend a candidate.
There is a black-box function P : V (T) → {true, false, indeterminate} such
that P(v) ∈ {true, false} iff v is a leaf: a node v ∈ V (T) is called marked if
P(v) = true. Backtracking determines whether T contains a marked node, or
outputs one or all marked nodes. Classically, this can be done in #V(T) queries.
Montanaro [33] studied the quantum case:

Theorem 2 ([33]). There is a quantum algorithm
ExistSolution(T , T,P, n, ε) which given ε > 0, a tree T such that d(T) = O(1),
a black box function P, and upper bounds T and n on the size and the depth of
T , determines if T contains a marked node by making O(

√
Tn log(1/ε)) queries

to T and to the black box function P, with a probability of correct answer
≥ 1− ε. It uses O(1) auxiliary operations per query and uses poly(n) qubits.

Theorem 3 ([33]). There is a quantum algorithm FindSolution(T ,P, n, ε)
which, given ε > 0, a tree T such that d(T) = O(1), a black box function P, and
an upper bound n on the depth of T , outputs x such that P(x) is true, or “not
found” if no such x exists by making O(

√
#V(T)n3/2 log(n) log(1/ε)) queries to

T and to the black box function P, with correctness probability at least 1− ε. It
uses O(1) auxiliary operations per query and uses poly(n) qubits.

Notice that Th. 3 does not require an upper-bound on #V(T) as input.

Ambainis and Kokainis [8] gave a quantum algorithm to estimate the size
of trees, with input a tree T and a candidate upper bound T0 on #V(T). The
algorithm must output an estimate for #V(T), i.e. either a number of T̂ ∈ [T0]
or a claim “T contains more than T0 vertices”. The estimate is δ-correct if:

1. the estimate is T̂ ∈ [T0] which satisfies |T − T̂ | ≤ δT where T is the actual
number of vertices;

2. the estimate is “T contains more than T0 vertices” and the actual number
of vertices T satisfies (1 + δ)T > T0.

An algorithm solves the tree size estimation problem up to precision 1± δ with
correctness probability at least 1 − ε if for any T and any T0, the probability
that it outputs a δ-correct estimate is at least 1− ε.

Theorem 4 ([8]). There is a quantum algorithm
TreeSizeEstimation(T , T0, δ, ε) which, given ε > 0, a tree T , and upper
bounds d and n on the degree and the depth of T , solves tree size estimation

8 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

up to precision 1 ± δ, with correctness probability at least 1 − ε. It makes

O
(√

nT0

δ1.5 d log2(1
ε)
)

queries to T and O(log(T0)) non-query transformations per

query. The algorithm uses poly(n, log(d), log(T0), log(δ), log(log(1/ε))) qubits.

3 Enumeration with Pruning

We give an overview of lattice enumeration and pruning, for the case of finding
close lattice vectors, rather than finding short lattice vectors: this revisits the
analysis model of both [21] and [9].

3.1 Finding Close Vectors by Enumeration

Let L be a full-rank lattice in Rn. Given a target u ∈ Qn, a basis B =
(b1, . . . , bn) of L and a radius R > 0, enumeration [37,24] outputs L ∩ S where
S = Balln(u, R): by comparing all the distances to u, one extracts a lattice vec-
tor closest to u. It performs a recursive search using projections, to reduce the
dimension of the lattice: if ‖v‖ ≤ R, then ‖πk(v)‖ ≤ R for all 1 ≤ k ≤ n. One can
easily enumerate πn(L)∩S. And if one enumerates πk+1(L)∩S for some k ≥ 1,
one can derive πk(L) ∩ S by enumerating the intersection of a one-dimensional
lattice with a suitable ball, for each point in πk+1(L) ∩ S. Concretely, it can be
viewed as a depth-first search of the enumeration tree T which is a target of the
quantum speed-up: the nodes at depth n+1−k are the points of πk(L)∩S. The
classical/quantum running-times of enumeration depends on R and the quality
of B, but is typically super-exponential in n, even if L ∩ S is small.

3.2 Finding Close Vectors by Enumeration with Pruning

We adapt the general form of enumeration with pruning introduced by [9]:
pruned enumeration uses a pruning set P ⊆ Rn, and outputs L ∩ (u + P).
The advantage is that for suitable choices of P , enumerating L∩(u+P) is much
cheaper than L ∩ S, and if we further intersect L ∩ (u + P) with S, we may
have found non-trivial points of L ∩ S. Note that we use u + P rather than P ,
because it is natural to make P independent of u, and it is what happens when
one uses the pruning of [21] to search for close vectors. Following [21], we view
the pruning set P as a random variable: it depends on the choice of basis B.

We distinguish two cases, which were considered separately in [9,21]:

Approximation setting: This was studied in [9], but not in [21]. Here, we are
interested in finding any point in L∩S∩ (u+P) by enumerating L∩ (u+P)
then intersect it with the ball S, so we define the success probability as:

Pr
succ

= Pr
P,u

(L ∩ S ∩ (u + P) 6= ∅), (1)

Quantum Lattice Enumeration and Tweaking Discrete Pruning 9

which is the probability that it outputs at least one point in L ∩ S. By
(slightly) adapting the reasoning of [9] based on the Gaussian heuristic, we
estimate that (1) is heuristically

Pr
succ
≈ min(1, vol(S ∩ (u + P))/covol(L)), (2)

and that the number of elements of L∩ S ∩ (u + P) is roughly vol(S ∩ (u +
P))/covol(L). This corresponds to approximating the closest vector problem
in a lattice, whose hardness is used in most lattice-based signature schemes.

Unique setting: Here, we know that the target u is unusually close to the
lattice, that is L ∩ S is a singleton, and we want to find the closest lattice
point to u: this is the so-called Bounded Distance Decoding problem (BDD),
whose hardness is used in most lattice-based encryption schemes. Thus, u is
of the form u = v+e where v ∈ L and e ∈ Rn is very short, and we want to
recover v. This was implicitly studied in [21], but not in [9]: [21] studied the
exact SVP case, where one wants to recover a shortest lattice vector (in our
setting, if the target u ∈ L, the BDD solution would be u, but one could
alternatively ask for the closest distinct lattice point, which can be reduced
to finding a shortest lattice vector). We are only interested in finding the
closest lattice point v ∈ L, so we define the success probability as:

Pr
succ

= Pr
P,u

(v ∈ L ∩ (u + P)), (3)

because we are considering the probability that the solution v belongs to the
enumerated set L ∩ (u + P). Usually, the target u is derived from the noise
e, which has a known distribution, then we can rewrite (3) as:

Pr
succ

= Pr
P,e

(0 ∈ e + P) = Pr
P,e

(−e ∈ P). (4)

In the context of SVP, we would instead define Prsucc = PrP (v ∈ P) where v
is a shortest lattice vector. In general, it is always possible to make u depend
solely on e: one can take a canonical basis of L, like the HNF, and use it to
reduce u modulo L, which only depends on e. Whether PrP,e(−e ∈ P) can
be evaluated depends on the choice of P and the distribution of the noise e.
For instance, if the distribution of −e is uniform over some measurable set
E, then:

Pr
P,e

(−e ∈ P) =
vol(E ∩ P)

vol(E)
.

We discuss other settings in Sect. 5.6. This can be adapted to a discrete
distribution. If the distribution of −e is uniform over a finite set E ∩ Zn,
then:

Pr
P,e

(−e ∈ P) =
#(E ∩ P ∩ Zn)

#(E ∩ Zn)
,

where #(E∩P ∩Zn) is heuristically ≈ vol(E∩P) by the Gaussian heuristic,
and #(E ∩ Zn) is usually given by the specific choice of E.

10 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

When it fails, we can simply repeat the process with many different P ’s until we
solve the problem, in the approximation-setting or the unique-setting.

We have discussed ways to estimate the success probability of pruned enu-
meration. To estimate the running time of the full algorithm, we need more
information, which depends on the choice of pruning:

– An estimate of the cost of enumerating L ∩ S ∩ (u + P).
– An estimate of the cost of computing the (random) reduced basis B.

3.3 Cylinder Pruning

The first pruning set P ever used is the following generalization [21] of pruned
enumeration of [41,42]. There, P is defined by a function f : {1, . . . , n} → [0, 1],
a radius R > 0 and a lattice basis B = (b1, . . . , bn) as follows:

Pf (B,R) = {x ∈ Rn s.t. ‖πn+1−i(x)‖ ≤ f(i)R for all 1 ≤ i ≤ n}, (5)

where the πi’s are the Gram-Schmidt projections defined by B. We call cylinder
pruning this form of enumeration, because Pf (B,R) is an intersection of cylin-
ders: each inequality ‖πn+1−i(x)‖ ≤ f(i)R defines a cylinder. Cylinder pruning
was introduced in the SVP setting, but its adaptation to CVP is straightfor-
ward [29].

Gama et al. [21] showed how to efficiently compute tight lower and upper
bounds for vol(Pf (B,R)), thanks to the Dirichlet distribution and special inte-
grals. Then we can do the same for vol(Pf (B,R) ∩ S) if S is any zero-centered
ball. Using the shape of Pf (B,R), [21] also estimated of the cost of enumerating
L∩S ∩Pf (B,R), using the Gaussian heuristic on projected lattices πi(L): these
estimates are usually accurate in practice, and they can also be used in the CVP
case [29]. To optimize the whole selection of parameters, one finally needs to take
into account the cost of computing the (random) reduced basis B: for instance,
this is done in [17,11].

4 Quantum speed-up of Cylinder Pruning

4.1 Tools

The analysis of quantum tree algorithms requires the tree to have constant de-
gree d = O(1). Without this assumption, there is an extra poly(d) term in the
complexity bound like in Th. 4. Instead, it is more efficient to first convert the
tree into a binary tree, so that the overhead is limited to poly(log(d)). We will
use the following conversion (illustrated by Fig. 3):

Theorem 5. One can transform any tree T of depth n and degree d into a
binary one T2 so that: T2 can be explored locally; T and T2 have roughly the
same number of nodes, namely #T ≤ #T2 ≤ 2#T ; the leaves of T and T2 are
identical; the depth of T2 is ≤ n log d. Moreover, a black-box function P over
T can be adapted a black box P2 for T2, so that the marked nodes of T and T2
are the same. One query to P2 requires at most one query to P with additional
O(log(d)) auxiliary operations.

Quantum Lattice Enumeration and Tweaking Discrete Pruning 11

(*,*)

(*,0)

(0,0) (1,0) (2,0)

(*,1)

(0,1) (1,1)

(*,2)

(*,*)

(*,*)|(0,*)

(*,0)

(*,0)|(0,*)

(0,0) (1,0)

(2,0)

(*,1)

(0,1) (2,1)

(*,2)

Fig. 3. An example of the transformation in Th. 5

In the context of enumeration with pruning, instead of enumerating the whole
set L ∩ S, we may only be interested in the ‘best’ vector in L ∩ S, i.e. which
minimize some distance. In terms of tree, this means that given a tree T with
marked leafs defined by a predicate P, we want to find a marked leaf minimizing
an integral function g which is defined on the marked leaves of T . We know that
L(T)) = L(T2). g is thus also defined on the marked leaves of T2. We denote by
gV the predicate which returns true on a node N if and only if it is a marked leaf
and g(N) ≤ V . We first find a parameter R such that there is at least one marked
leaf N such that g(N) ≤ R. Then we decrease R by dichotomy using Th. 3 with
different marking functions. We thus obtain FindMin1(T ,P, g, R, d, ε) (Alg. 1),
which is a general algorithm to find a leaf minimizing the function g with error
probability ε, using the binary tree T2.

Theorem 6. Let ε > 0. Let T be a tree with its marked leaves defined by a
predicate P. Let d be an upper-bound on the degree of T . Let g be an integral
function defined on the marked leaves such that g(N) ≤ R has at least one
solution over all of the marked leaves. Then Alg. 1 outputs N ∈ T such that g
takes its minimum on N among all of the marked leaves of T , with probability at
least 1−ε. It requires O(

√
T (n log(d))3/2 log(n log(d)) log(dlog2(R)e/ε)dlog2(R)e)

queries on T and on P, where T = #T . Each query on T requires O(log(d))
auxiliary operations. The algorithm needs poly(n log(d), log(R)) qubits.

Proof. Correctness is trivial. Regarding the query complexity, there are in to-
tal Round = dlog2(R)e calls to FindSolution. According to Th. 3, each
call requires O(

√
T (n log(d))3/2 log(n log(d)) log(Round/ε)) queries on the lo-

cal structure of T2 and on g. Thus according to Th. 5, in total, we need
O(
√
T (n log(d))3/2 log(n log(d)) log(dlog2(R)e/ε)dlog2(R)e) queries on the lo-

cal structure of T and on g. Each query on T requires O(log(d)) auxiliary
operations. For each call, we need poly(n log(d)) qubits. In total, we need
poly(n log(d), log(R)) qubits. ut
5 The access to T2 is guaranteed by Th. 5 via the access to T .

12 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

Algorithm 1 Finding a minimum: FindMin1(T ,P, g, R, d, ε)
Input: A tree T with marked leaves defined by the predicate P. An integral

function g defined on the marked leaves of T . A parameter R, such that
g(N) ≤ R has at least one solution over all of the marked leaves. An upper-
bound d of the number of children of a node in T .

Output: A marked leaf N such that g takes its minimum on N among all the
marked leaves explored by the backtracking algorithm.

1: T2 ← the corresponding binary tree of T .5

2: N ← R, N ′ ← 0, Round← dlog2(R)e, v← (0, · · · , 0)
3: while N ′ < N − 1 do
4: Call FindSolution(T2, gb(N+N ′)/2e, n log(d), ε/Round)
5: if FindSolution(T2, gb(N+N ′)/2e, n log(d), ε/Round) returns x then
6: v← x, N ← b(N +N ′)/2e
7: else
8: N ′ ← b(N +N ′)/2e
9: end if

10: end while
11: return v

If we know an upper-bound of T of the number of nodes in the tree T , we
can speed up the algorithm by replacing FindSolution by ExistSolution
in lines 4, 5: the new algorithm is given and analyzed in Appendix as Alg. 8
(FindMin2(T ,P, g, R, d, T, ε)).

4.2 Application to Cylinder Pruning

Lemma 1. Let (b1, · · · , bn) be an LLL-reduced basis. Les T be the backtracking
tree corresponding to the cylinder pruning algorithm for SVP with radius R ≤
‖b1‖ and bounding function f . Then the degree of the tree satisfies: d(T) ≤ 2n.

Proof. In T , the number of children of a node N of depth k can be upper-

bounded by dk = 2f(k) ‖b1‖
‖b?

n−k+1‖
+ 1 ≤ 2(n−k)/2+1 + 1. The result follows from

the fact that an LLL-reduced basis satisfies: ‖b1‖2
‖b?

i ‖2
≤ 2i−1 for all 1 ≤ i ≤ n. ut

Theorem 7. There is a quantum algorithm which, given ε > 0, an LLL-reduced
basis B = (b1, · · · , bn) of a lattice L in Zn, a radius R ≤ ‖b1‖ and a bounding
function f : {1, · · · , n} → [0, 1], outputs with correctness probability ≥ 1− ε:

1. a non-zero vector v in L ∩ Pf (B,R), in time

O(
√
Tn3poly(log(n), log(1/ε)))), if L ∩ Pf (B,R) 6⊆ {0}.

2. all vectors in L ∩ Pf (B,R), in time O(#(L ∩
Pf (B,R))

√
Tn3 log(n)poly(log(#(L ∩ Pf (B,R)), log(1/ε))).

3. a shortest non-zero vector v in L ∩ Pf (B,R), in time

O(
√
Tn3βpoly(log(n), log(1/ε), log(β))), if L ∩ Pf (B,R) 6⊆ {0}. Here

β is the bitsize of the vectors of B.

Quantum Lattice Enumeration and Tweaking Discrete Pruning 13

Here T is the total number of nodes in the enumeration tree T searched by the
cylinder pruning algorithm over Pf (B,R).

Proof. Let T be the enumeration tree searched by the cylinder pruning al-
gorithm in which a node of depth i, where 1 ≤ i ≤ n, is encoded as
(∗, · · · , ∗, xn−i+1, · · · , · · · , xn) and where the root is encoded as (∗, · · · , ∗). Let
T2 be the corresponding binary tree. Let P be a predicate which returns true only
on the nodes encoded as (x1, · · · , xn) in T2 (ie, the leaves of T2, where all the vari-
ables are assigned), such that ‖

∑n
i=1 xibi‖2 ≤ R2 and (x1, · · · , xn) 6= (0, · · · , 0)

.
For 1, if L ∩ Pf (B,R) 6= ∅, we apply FindSolution(T2,P, n log(d), ε). For

2, we find all marked nodes by simply repeating the algorithm FindSolution,
modifying the oracle operator to strike out previously seen marked elements,
which requires space complexity O(#(L ∩ Pf (B,R))).

For 3, if L ∩ Pf (B,R) 6= ∅, we apply Th. 6 to FindMin1(T ,P, ‖ ·
‖2, R2, 2n + 1, ε). In T2, the height of the tree can be upper-bounded by
n log(d) = O(n2). We also have Round = O(β). The time complexity is
O(
√
Tn3βpoly(log(n), log(1/ε), log(β))). ut

As corollary, we obtain the following quantum speed-up of Kannan’s algo-
rithm for the shortest vector problem:

Theorem 8. There is a quantum algorithm which, given ε > 0, and a basis B
of a full-rank lattice L in Zn, with entries of bitlength≤ β, outputs a shortest
non-zero vector of L, with error probability at most ε, in time (n

n
4e + o(n)) ·

poly(log(n), log(1/ε), β) using poly(n, β) qubits.

We can also apply the quantum tree algorithms to extreme pruning. If we run
cylinder pruning over m trees, we can combine these trees into a global one and
apply the quantum tree algorithms on it.

Theorem 9 (Quantum speed-up for SVP extreme pruning). There is
a quantum algorithm which, given ε > 0, m LLL-reduced basis B1, · · · , Bm of
a lattice L in Zn,a radius R ≤ mini ‖(Bi)1‖ where (Bi)1 is the first vector of
Bi and a bounding function f : {1, · · · , n} → [0, 1], outputs with correctness
probability ≥ 1 − ε a shortest non-zero vector v in L ∩ (∪Pf (Bi, R)), in time

O(
√
Tn3βpoly(log(n), log(1/ε), log(β), log(m))), if L∩(∪Pf (Bi, R) 6⊆ {0}. Here

β is the bitsize of the vectors of Bis, T is the sum of number of nodes in the
enumeration trees Ti searched by cylinder pruning over Pf (Bi, R) for all 1 ≤ i ≤
m.

In the case of CVP with target vector u, we use the cylinder pruning al-
gorithm with radius R ≤

√∑n
i=1 ‖b?i ‖2/2 and bounding function f . The de-

gree of the tree is now upper-bounded by d = max
√∑n

i=1 ‖b?i ‖2/‖b?j‖ + 1.
We have log(d) = O(β + n) where β is the bitsize of the vectors of the ba-
sis B. We can obtain a similar theorem as Th. 7 with different overheads.
For exemple for the first case, the time complexity becomes O(

√
Tn3/2(n +

β)3/2poly(log(n), log(1/ε), log(β)))).
For the extreme pruning for CVP the time complexity is O(

√
Tn3/2(n +

β)3/2βpoly(log(n), log(1/ε), log(β), log(m)))

14 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

5 BDD Enumeration with Discrete Pruning

We adapt Aono-Nguyen’s discrete pruning [9] to the BDD case. First, we recall
discrete pruning, then we modify it.

5.1 Discrete Pruning for the Enumeration of Short Vectors

Discrete pruning is based on lattice partitions defined as follows. Let L be a
full-rank lattice in Qn. An L-partition is a partition C of Rn such that:

– The partition is countable: Rn = ∪t∈TC(t) where T is a countable set, and
C(t) ∩ C(t′) = ∅ whenever t 6= t′.

– Each cell C(t) contains a single lattice point, which can be found efficiently:
given any t ∈ T , one can “open” the cell C(t), i.e. compute C(t) ∩ L in
polynomial time. In other words, the partition defines a function g : T → L
where C(t) ∩ L = {g(t)}, and one can compute g in polynomial time.

Discrete pruning is obtained by selecting the pruning set P as the union of
finitely many cells C(t), namely P = ∪t∈UC(t) for some finite U ⊆ T . Then
L ∩ P = ∪t∈U (L ∩ C(t)) can be enumerated by opening each cell C(t) for t ∈ U .

[9] presented two useful L-partitions: Babai’s partition where T = Zn and
each cell C(t) is a box of volume covol(L); and the natural partition where
T = Nn and each cell C(t) is a union of non-overlapping boxes, with total vol-
ume covol(L). The natural partition is preferable, and [9] explained how to select
good cells for the natural partition. In theory, one would like to select the cells
C(t) which maximize vol(C(t) ∩ S): [9] shows how to compute vol(C(t) ∩ S), but
an exhaustive search to derive the best vol(C(t) ∩ S) exactly would be too ex-
pensive. Instead, [9] shows how to approximate efficiently the optimal selection,
by selecting the cells C(t) minimizing E(C(t)): given m, it is possible to compute
in practice the m cells which minimize E(C(t)).

5.2 Universal Lattice Partitions

Unfortunately, in the worst case, L-partitions are not sufficient for our frame-
work: if P = ∪t∈UC(t), then L ∩ (P + u) = ∪t∈U (L ∩ (C(t) + u)) but the
number of elements in L ∩ (C(t) + u) is unclear, and it is also unclear how to
compute in L ∩ (C(t) + u) efficiently. To fix this, we could compute instead
L ∩ P ∩ S = ∪t∈U (L ∩ C(t)) ∩ S, but that creates two issues:

– In the unique setting, it is unclear how we would evaluate success probabil-
ities. Given a tag t and a target u = v + e where e is the noise and v ∈ L,
we would need to estimate the probability that v ∈ C(t), i.e. u− e ∈ C(t).

– We would need to select the tag set U depending on the target u, without
knowing how to evaluate success probabilities.

BDD asks to find the lattice point v ∈ L closest to some target vector
u ∈ Qn, unusually close to L. To adapt discrete pruning to BDD, the most
natural solution would be to subtract u to the lattice L as follows.

Quantum Lattice Enumeration and Tweaking Discrete Pruning 15

Definition 1. Let L be a full-rank lattice in Qn. An L-partition C is universal
if for all u ∈ Qn, the shifted partition C + u is an L-partition, i.e.:

– The partition is countable: Rn = ∪t∈TC(t) where T is a countable set, and
C(t) ∩ C(t′) = ∅ whenever t 6= t′.

– For any u ∈ Qn, each cell C(t) contains a single point in L−u = {v−u,v ∈
L}, which can be found efficiently: given any t ∈ T and u ∈ Qn, one can
“open” the cell u + C(t), i.e. compute (u + C(t)) ∩ L in polynomial time.

Unfortunately, an L-partition is not necessarily universal, even in dimension
one. Indeed, consider the L-partition C with T = Z defined as follows: C(0) =
[−1/2, 1/2]; For any k > 0, C(k) =)k − 1/2, k + 1/2]; For any k < 0, C(k) =
[k − 1/2, k + 1/2(. It can be checked that C is not universal: the shifted cell
C(0)+1/2 contains two lattice points, namely 0 and 1. Fortunately, we show that
the two L-partitions (related to Gram-Schmidt orthogonalization) introduced
in [9] for discrete pruning are actually universal:

Lemma 2. Let B be a basis of a full-rank lattice L in Zn. Let T = Zn and for
any t ∈ T , CZ(t) = tB? + D where D = {

∑n
i=1 xib

?
i s.t. − 1/2 ≤ xi < 1/2}.

Then Babai’s L-partition (CZ(), T) with Alg. 9 (in App.) is universal.

Lemma 3. Let B be a basis of a full-rank lattice L in Zn. Let T = Nn and
for any t = (t1, . . . , tn) ∈ T , CN(t) = {

∑n
i=1 xib

?
i s.t. − (ti + 1)/2 < xi ≤

−ti/2 or ti/2 < xi ≤ (ti + 1)/2}. Then the natural partition (CN(), T) with
Alg. 10 (in App.) is universal.

5.3 BDD Discrete Pruning from Universal Lattice Partitions

Any universal L-partition (C, T) and any vector u ∈ Qn define a partition Rn =
∪t∈T (u + C(t)). Following the SVP case, discrete pruning opens finitely many
cells u+ C(t), as done by Alg. 2: discrete pruning is parametrized by a finite set
U ⊆ T of tags, specifying which cells u + C(t) to open. It is therefore a pruned
CVP enumeration with pruning set P = ∪t∈UC(t).

Algorithm 2 Close-Vector Discrete Pruning from Universal Lattice Partitions

Input: A target vector u ∈ Qn, a universal lattice partition (C(), T), a finite
subset U ⊆ T and if we are in the approximation setting, a radius R.

Output: L ∩ (u + (S ∩ P)) where S = Balln(R) and P = ∪t∈UC(t).
1: R = ∅
2: for t ∈ U do
3: Compute L∩ (u+ C(t)) by opening u+ C(t): in the approx setting, check

if the output vector is within distance ≤ R to u, then add the vector to
the set R. In the unique setting, check if the output vector is the solution.

4: end for
5: Return R.

16 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

The algorithm performs exactly k cell openings, where k = #U is the number
of cells, and each cell opening runs in polynomial time. So the running time is
#U poly-time operations: one can decide how much time should be spent.

Since the running time is easy to evaluate like in the SVP case, there are
only two issues: how to estimate the success probability and how to select U
(which defines the pruning set P = ∪t∈UC(t)), in order to maximize the success
probability.

5.4 Success Probability

Following Sect. 3.2, we distinguish two cases:

Approximation setting: Based on (2), the success probability can be derived
from:

vol(S ∩ (u + P)) =
∑
t∈U

vol(Balln(R) ∩ C(t)). (6)

This is exactly the same situation as in the SVP case already tackled by [9].
They showed how to compute vol(Balln(R)∩C(t)) for Babai’s partition and
the natural partition by focusing on the intersection of a ball with a box
H = {(x1, . . . , xn) ∈ Rn s.t. αi ≤ xi ≤ βi}:
– In the case of Babai’s partition, each cell CZ(t) is a box.
– In the case of the natural partition, each cell CN(t) is the union of 2j

symmetric (non-overlapping) boxes, where j is the number of non-zero
coefficients of t. It follows that vol(CN(t) ∩ Balln(R)) = 2jvol(H ∩ S),
where H is any of these 2j boxes.

And they also showed to approximate a sum
∑

t∈U vol(Balln(R) ∩ C(t)) in
practice, without having to compute separately each volume.

Unique setting: Based on (4), if the noise vector is e, then the success prob-
ability is

Pr
succ

= Pr
P,e

(−e ∈ P) =
∑
t∈U

Pr
P,e

(−e ∈ C(t)) (7)

It therefore suffices to compute the cell probability PrP,e(e ∈ C(t)), instead
of an intersection volume. Similarly to the approximation setting, we might
be able to approximate the sum

∑
t∈U PrP,e(e ∈ C(t)) without having to

compute individually each probability. In Sect. 5.6, we focus on the natural
partition: we discuss ways to compute the cell probability PrP,e(e ∈ C(t))
depending on the distribution of the noise e.

In both cases, we see that the success probability is of the form:

Pr
succ

=
∑
t∈U

f(t), (8)

for some function f() : T → [0, 1] such that
∑

t∈T f(t) = 1, where the formula (8)
is rigorous for the unique setting, and heuristic for the approximation setting

Quantum Lattice Enumeration and Tweaking Discrete Pruning 17

due to the Gaussian heuristic. If ever the computation of f() is too slow to
compute individually each term of

∑
t∈U f(t), we can use the statistical inference

techniques of [9] to approximate (8) from the computation of a small number of
f(t). Note that if we know that the probability is reasonably large, say > 0.01,
we can alternatively use Monte-Carlo sampling to approximate it.

5.5 Selecting Parameters

We would like to select the finite set U of tags to maximize Prsucc given by (8).
Let us assume that we have a function g : T → R+ such that

∑
t∈T g(t) con-

verges. If (8) provably holds, then
∑

t∈T f(t) = 1, so the sum indeed converges.
Since T is infinite, this implies that for any B > 0, the set {t ∈ T s.t. f(t) > B}
is finite, which proves the following elementary result:

Lemma 4. Let T be an infinite countable set. Let f : T → R+ be a function
such that

∑
t∈T f(t) converges. Then for any integer m > 0, there is a finite

subset U ⊆ T of cardinal m such that f(t) ≤ minu∈U f(u) for all t ∈ T \ U .
Such a subset U maximizes

∑
u∈U f(u) among all m-size subsets of T .

Any such subset U would maximize Prsucc among all m-size subsets of T , so we
would ideally want to select such a U for any given m. And m quantifies the
effort we want to spend on discrete pruning, since the bit-complexity of discrete
pruning is exactly m poly-time operations.

Now that we know that optimal subsets U exist, we discuss how to find such
subsets U efficiently. In the approximation setting of [9], the actual function f()
is related to volumes: we want to select the k cells which maximize vol(Balln(R)∩
C(t)) among all the cells. This is too expensive to do exactly, but [9] provides
a fast heuristic method for the natural partition, by selecting the cells C(t)
minimizing E{CN(t)}: given as input m, it is possible to compute efficiently in
practice the tags of the m cells which minimize

E{CN(t)} =

n∑
i=1

(
t2i
4

+
ti
4

+
1

12

)
‖b?i ‖2.

In other words, this is the same as replacing the function f() related to volumes
by the function

h(t) = e
−
∑n

i=1

(
t2i
4 +

ti
4 + 1

12

)
‖b?

i ‖
2

,

and it can be verified that
∑

t∈Nn h(t) converges. In practice (see [9]), the m
cells maximizing h(t) (i.e. minimizing E{CN(t)}) are almost the same as the
cells maximizing vol(Balln(R) ∩ C(t)).

However, the method of [9] was only heuristic. In Sect. 6, we modify that
method to make it fully provable: for any integer m > 0, we can provably find
the best m cells in essentially m polynomial-time operations and polynomial
space (the m solutions are output as a stream).

18 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

5.6 Noise Distributions in the Unique Setting

We discuss how to evaluate the success probability of BDD discrete pruning
in the unique setting for the natural partition. This can easily be adapted to
Babai’s partition, because it also relies on boxes. Following (7), it suffices to
evaluate:

p(t) = Pr
P,e

(e ∈ −C(t)), (9)

where P is the (random) pruning set, e is the BDD noise and C(t) is the cell of
the tag t. We now analyze the most frequent distributions for e.

LWE and Gaussian Noise. The most important BDD case is LWE [38]. How-
ever, there are many variants of LWE using different distributions of the noise
e. We will use the continuous Gaussian distribution over Rn, like in [38]. Many
schemes actually use a discrete distribution, such as some discrete Gaussian dis-
tribution over Zn (or something easier to implement): because this is harder to
analyze, cryptanalysis papers such as [27,29] prefer to ignore this difference, and
perform experiments to check if it matches with the theoretical analysis. The
main benefit of the Gaussian distribution over Rn is that for any basis, each
coordinate is a one-dimensional Gaussian.

Lemma 5. Let t = (t1, . . . , tn) ∈ Nn be a tag of the natural partition CN()
with basis B = (b1, . . . , bn). If the noise e follows the multivariate Gaussian
distribution over Rn with parameter σ, then:

p(t) =

n∏
i=1

(
erf

(
1√
2σ
· ti + 1

2
· ‖b?i ‖

)
− erf

(
1√
2σ
· ti

2
· ‖b?i ‖

))
(10)

Spherical Noise. If the noise e is uniformly distributed over a centered ball,
we can reuse the analysis of [9]:

Lemma 6. Let (C, T) be a universal L-partition. Let t ∈ T be a tag. If the noise
e is uniformly distributed over the n-dimensional centered ball of radius R, then:

p(t) =
vol(C(t) ∩ Balln(R))

vol(Balln(R))
(11)

For both Babai’s partition CZ and the natural partition CN, C(t) is the union of
disjoint symmetric boxes, so the evaluation of (11) is reduced to the computation
of the volume of a ball-box intersection, which was done in [9].

Product of Finite Distributions. We now consider a general distribution D
for the noise e where each coordinate ei is independently sampled from the uni-
form distribution over some finite set. This includes the box distribution, which

Quantum Lattice Enumeration and Tweaking Discrete Pruning 19

is the uniform distribution over a set of the form
∏n
i=1{ai, . . . , bi}. The con-

tinuous Gaussian distribution and the uniform distribution over a ball are both
invariant by rotation. But if the noise distribution D is not invariant by rotation,
the tag probability p(t) may take different values for the same (‖b?1‖, . . . , ‖b?n‖),
which is problematic for analysing the success probability. To tackle this issue,
we reuse the following heuristic assumption introduced in [21]:

Heuristic 10 ([21, Heuristic 3]) The distribution of the normalized Gram-
Schmidt orthogonalization (b?1/||b?1||, . . . , b?n/||b?n||) of a random reduced basis
(b1, . . . , bn) looks like that of a uniformly distributed orthogonal matrix.

We obtain:

Lemma 7. Let CN be the natural partition. Let t ∈ Nn be a tag. If the distribu-
tion of the noise e has finite support, then under Heuristic 10:

p(t) =
∑
r∈E

Pr
e

(‖e‖ = r)× Pr
x←Sn

(x ∈ C(t)/r) (12)

where E ⊆ R≥0 denotes the finite set formed by all possible values of ‖e‖ and
Sn denotes the n-dimensional unit sphere.

6 Linear Optimization for Discrete Pruning

We saw in Sect. 5.6 how to compute or approximate the probability p(t) that
the cell of the tag t contains the BDD solution. From Lemma 4, we know that
for any integer m > 0, there are m tags which maximize p(t) in the sense that
any other tag must have a lower p(t). To select optimal parameters for BDD
discrete pruning, we want to find these m tags as fast as possible, possibly in m
operations and polynomial-space (by outputting the result as a stream).

6.1 Reduction to Linear Optimization

We distinguish two cases:

– Selection based on expectation. Experiments performed in [9] show that
in practice, the m tags t which maximize vol(CN(t) ∩ Balln(R)) are essen-
tially the ones which minimize the expectation E{CN(t)} where E{C} :=
Ex∈C(‖x‖2) over the uniform distribution. Cor. 3 in [9] shows that this ex-
pectation is:

E{CN(t)} =

n∑
i=1

(
t2i
4

+
ti
4

+
1

12

)
‖b?i ‖2.

So we can assume that for a noise uniformly distributed over a ball (see
Lemma 6), the m tags t which maximize p(t) are the the tags which minimize
E{CN(t)}.

20 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

– Gaussian noise. If the noise distribution is the continuous multivariate Gaus-
sian distribution, Lemma 5 shows that p(t) is given by (10). This implies that
the m tags t which maximize p(t) are the ones which minimize − log p(t)

In both cases, we want to find the m tags t ∈ Nn which minimize an objective
function g of the form g(t) =

∑n
i=1 f(i, ti), where f(i, ti) ≥ 0. The fact that the

objective function can be decomposed as a sum of individual positive functions
in each coordinate allows us to view this problem as a linear optimization. We
will see that in the case that g has integral outputs, it is possible to provably find
the best m tags which minimize such a function g in essentially m operations. If
g is not integral, it is nevertheless possible to enumerate all solutions such that
g(t) ≤ R where R is an input, in time linear in the number of solutions. A special
case is the problem of enumerating smooth numbers below a given number.

In practice, it is more efficient to rely on the expectation, because it is faster
to evaluate. Fig. 4 shows how similar are the best tags with respect to one
indicator compared to another: to compare two sets A and B formed by the best
M tags, the graph displays #(A∩B)/M . For instance, the top curve confirms the

Fig. 4. Similarity between optimal sets of tags, depending on the objective function.

experimental result of [9] that the m tags t which maximize vol(CN(t)∩Balln(R))
are almost the same as the ones which minimize the expectation E{CN(t)}. The
top second curve shows that the best tags that maximize the LWE probability are
very close to those minimizing the expectation. The bottom two curves compare
with the finite noise distribution arising in GGH challenges [22] (see Sect. B
for details). In all cases, at most 10% of the best tags are different, and more
importantly, we report that the global success probabilities are always very close,
with a relative error typically ≤ 1%.

We conclude that in practice, the expectation is a very good indicator to
select the best tags for the distributions studied in Sect. 5.6.

6.2 Limits of Orthogonal Enumeration

Aono and Nguyen [9, Sect. 6] presented a heuristic method to solve this
linear optimization problem in the special case: g(t) = E{CN(t)} =

Quantum Lattice Enumeration and Tweaking Discrete Pruning 21

∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
‖b?i ‖2, by noticing that E{CN(t)} was the squared distance

between a target point and a special lattice with a known orthogonal basis. This
allowed to find all t ∈ Nn such that E{CN(t)} ≤ R for any R, using a variant [9,
Alg. 6] of enumeration. And by using a binary search based on an early-abort
variant, it was also possible to find an R yielding slightly more than m solutions.

[9, Sect. 6] reported that this algorithm worked very well in practice: if ` is
the number of t ∈ Nn such that E{CN(t)} ≤ R, the number of nodes L of the
enumeration algorithm [9, Alg. 6] seemed to be bounded by O(`n), perhaps even
`× n. This was in contrast with the usual situation where the number of nodes
of the enumeration tree is exponentially larger than the number of solutions.
However, no rigorous result could be proved in [9], leaving it as an open problem
to show the efficiency of [9, Alg. 6].

Surprisingly, we solve this open problem of [9] in the negative. More pre-
cisely, we show that there are cases where the number of nodes L of enumer-
ation [9, Alg. 6] is exponentially larger than the number of solutions `. To
see this, consider the orthogonal lattice Zn with the canonical basis. Then:

E{CN(t)} =
∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
. But we have:

Lemma 8. Let R = n
12 + 1

2 and n′ = bn/10c. Then the number ` of t ∈ Nn

such that
∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
≤ R is exactly n + 1. But the number `′ of

(xn−n′+1, . . . , xn) ∈ Nn′ such that
∑n
i=n−n′+1

(
x2
i

4 + xi

4 + 1
12

)
≤ R is ≥ 2n

′
.

Proof. For the choice R = n
12 + 1

2 , we have
∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
≤ R if and only

if all the ti’s are equal to zero, except at most one, which must be equal to one.
Furthermore, for any (xn−n′+1, . . . , xn) ∈ {0, 1}n′ , we have:

n∑
i=n−n′+1

(
x2i
4

+
xi
4

+
1

12

)
≤ n′

(
1

2
+

1

12

)
≤ n

10

7

12
=

7n

120
< R.

ut

It follows in this case that the number of nodes L of the enumeration algorithm
[9, Alg. 6] for that R is at least exponential in n, though the number of solutions
is linear in n.

6.3 Solving Linear Optimization

We show that a slight modification of orthogonal enumeration can solve the
more general problem of linear optimization essentially optimally. This is based
on two key ideas. The first idea is that when solving linear optimization, we
may assume without loss of generality that each function f(i,) is sorted by
increasing value, with a starting value equal to zero, which changes the tree:
f(i, 0) = 0 and f(i, j) ≤ f(i, j′) whenever j ≤ j′. Indeed, it suffices to sort
the values of f(i,) if necessary and subtract the minimal value: however, note

22 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

that for both the expectation E{CN(t)} =
∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
‖b?i ‖2 and for

−
∑n
i=1 log

(
erf
(

1√
2σ
· ti+1

2 · ‖b?i ‖
)
− erf

(
1√
2σ
· ti2 · ‖b

?
i ‖
))

, the values of f(i,)

are already sorted. For instance,
t2i
4 + ti

4 + 1
12 is an increasing function of ti.

The second idea is that we may assume to simplify that f has integral values,
which allows us to bound the running time of dichotomy. This is not directly true

for the expectation E{CN(t)} =
∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
‖b?i ‖2. However, because we

deal with integer lattices, the basis B is integral, the ‖b?i ‖2’s are rational numbers
with denominator covol(L(b1, . . . , bi−1))2, so we can transform the expectation
into an integer, by multiplying with a suitable polynomial-size integer.

First, we present a slight modification Alg. 3 of [9, Alg. 6], whose running
time is provably essentially proportional to the number of solutions:

Theorem 11. Assume that f : {1, . . . , n} × N → R satisfies f(i, 0) = 0 and
f(i, j) ≥ f(i, j′) for all i and j > j′. Given as input a number R > 0, Alg. 3
outputs all (v1, . . . , vn) ∈ Nn such that

∑n
i=1 f(i, vi) ≤ R using O(nN + 1)

arithmetic operations and ≤ (2n − 1)N + 1 calls to the function f(), where the
number N is the number of (v1, . . . , vn) ∈ Nn such that

∑n
i=1 f(i, vi) ≤ R.

Proof. To analyze the complexity of Alg. 3, let nk denote the number of times
we enter Lines 3–18, depending on the value of k, which is ≥ 1 and ≤ n at
each Line 3. Then nk can be decomposed as nk = ak + bk, where ak (resp. bk)
denotes the number of times we enter Lines 5–10 (resp. Lines 12–17). Notice
that an+1 = 0 and a1 is exactly the number N of (v1, . . . , vn) ∈ Nn such that∑n
i=1 f(i, vi) ≤ R. And if 1 < i ≤ n, then ai is the number of times that the

variable k is decremented from i to i−1. Similarly, bn = 1, and if 1 ≤ i ≤ n, then
bi is the number of times that the variable k is incremented from i to i+ 1. By
Line 1 (resp. 14), the initial (resp. final) value of k is n (resp. n+ 1). Therefore,
for any 1 ≤ i ≤ n− 1, the number of times k is incremented from i to i+ 1 must
be equal to the number of times k is decremented from i+1 to i, in other words:
bi = ai+1. Thus, the total number of loop iterations is:

n∑
i=1

ni =

n∑
i=1

(ai + bi) = N + 1 + 2

n∑
i=2

ai.

Note that because f(i, 0) = 0, any partial assignment
∑n
i=i0

f(i, vi) ≤ R can be

extended to a larger partial assignment
∑n
i=1 f(i, vi) ≤ R, which implies that

a1 ≥ a2 ≥ . . . an. It follows that the total number of loop iterations is:

n+1∑
i=1

ni ≤ N + 1 + 2(n− 1)N = (2n− 1)N + 1.

For each loop iteration (Lines 3–18), the number of arithmetic operations per-
formed is O(1) and the number of calls to f() is exactly one. It follows that the
total number of arithmetic operations is O(nN + 1) and the number of calls to
f() is ≤ (2n− 1)N + 1. ut

Quantum Lattice Enumeration and Tweaking Discrete Pruning 23

We showed that the number of nodes in the search tree is linear in the number
of solutions. Next, we present Alg. 4, which is a counting version of Alg. 3:

Theorem 12. Assume that f : {1, . . . , n} × N → R satisfies f(i, 0) = 0 and
f(i, j) ≥ f(i, j′) for all i and j > j′. Given as input two numbers R > 0 and
M > 0, Alg. 4 decides if is N ≥ M or N < M , where N is the number of
(v1, . . . , vn) ∈ Nn such that

∑n
i=1 f(i, vi) ≤ R. Furthermore, if N ≥ M , the

number of arithmetic operations is O(N), and otherwise, the number of arith-
metic operations is O(nN + 1), and the algorithms outputs N .

Proof. Similarly to the proof of Th. 11, let nk denote the number of times we
enter Lines 3–17, depending on the value of k, which is ≥ 1 and ≤ n at each
Line 3. Then nk can be decomposed as nk = ak+bk, where ak (resp. bk) denotes
the number of times we enter Lines 5–9 (resp. Lines 11–16).

Let M be the number of (v1, . . . , vn) ∈ Nn such that
∑n
i=1 f(i, vi) ≤ R. If

M ≤ N , then Alg. 4 will perform the same operations as Alg. 3 (except Line. 6),
so the cost is O(nM+1) ≤ O(nN+1) arithmetic operations. Otherwise, M > N ,
which means that the while loop will stop after exactly N iterations, and the
total number of operations is therefore O(N). ut

Our main result states that if the function f is integral, given any M , Alg. 5
finds the best N assignments in time M where M ≤ N ≤ (n+ 1)M :

Theorem 13. Assume that f : {1, . . . , n} × N → N satisfies f(i, 0) = 0 and

f(i, j) < f(i, j′) for all i and j > j′. Assume that f(i, j) ≤ jO(1)2n
O(1)

. Given
as input a number M > 1, Alg. 5 outputs the N assignments (v1, . . . , vn) ∈ Nn
which minimize

∑n
i=1 f(i, vi) in time O(n(n+ 1)M) +nO(1) +O(log2M), where

the number N satisfies: M ≤ N ≤ (n+ 1)M .

Proof. We have the following invariant at the beginning of each loop itera-
tion: the number of (v1, . . . , vn) ∈ Nn such that

∑n
i=1 f(i, vi) ≤ R0 is < M ,

and the the number of (v1, . . . , vn) ∈ Nn such that
∑n
i=1 f(i, vi) ≤ R1 is

≥ M . Initially, this holds because the number of (v1, . . . , vn) ∈ Nn such
that

∑n
i=1 f(i, vi) ≤ 0 is 1 and the number of (v1, . . . , vn) ∈ Nn such that∑n

i=1 f(i, vi) ≤
∑n
i=1 f(i, dM1/ne) is ≥ (M1/n)n = M . Furthermore, the loop

preserves the invariant by definition of the loop. Since the length R1 − R0

decreases by a factor two, it follows that the number of loop iterations is
≤ log2(

∑n
i=1 f(i, dM1/ne)).

After the loop, we must have R0 = R1− 1. Let N1 (resp. N0) be the number
of (v1, . . . , vn) ∈ Nn such that

∑n
i=1 f(i, vi) ≤ R1 (resp. R0) after the loop. By

the invariant, we know that N0 < M ≤ N1. We claim that (N1 − N0) ≤ nM ,
which implies that N1 ≤ (n + 1)M . Notice that N1 − N0 is the number of
(v1, . . . , vn) ∈ Nn such that

∑n
i=1 f(i, vi) = R1. For any such assignment, one of

the vi’s must be ≥ 1: if we decrement that vi, we get a cost < R1, so it must be
≤ R0 because R0 = R1− 1, which means that this assignment is counted by N0.
Since we have at most n possibilities for i, it follows that N1 −N0 ≤ nM . ut

24 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

Furthermore, Alg. 5 uses negligible space, except that the output is linear in
M : the best tags are actually output as a stream. If we sort the N tags, which
requires space, we could output exactly the best M tags.

Algorithm 3 Enumeration of low-cost assignments

Input: A function f : {1, . . . , n}×N→ R≥0 such that f(i, 0) = 0 and f(i, j) ≥
f(i, j′) for all i and j > j′; a bound R > 0.

Output: All (v1, . . . , vn) ∈ Nn such that
∑n
i=1 f(i, vi) ≤ R.

1: v1 = v2 = · · · = vn = 0 and ρn+1 = 0 and k = n
2: while true do
3: ρk = ρk+1 + f(k, vk) // cost of the tag (0, . . . , 0, vk, . . . , vn)
4: if ρk ≤ R then
5: if k = 1 then
6: return (v1, . . . , vn); (solution found)
7: vk ← vk + 1
8: else
9: k ← k − 1 and vk ← 0 // going down the tree

10: end if
11: else
12: k ← k + 1 // going up the tree
13: if k = n+ 1 then
14: exit (no more solutions)
15: else
16: vk ← vk + 1
17: end if
18: end if
19: end while

7 Quantum Speed-up of Discrete Pruning

We present a quadratic quantum speed-up for discrete pruning, namely:

Theorem 14. There is a quantum algorithm which, given ε > 0, a number M >
0, and an LLL-reduced basis B of a full-rank lattice L in Zn, outputs the shortest
non-zero vector in L∩P in time O(n2

√
M)poly(log(n), log(M), log(1/ε), β) with

error probability ε. Here, β denotes the bitsize of the vectors of B, P = ∪t∈UCN(t)
where CN() is the natural partition with respect to B, U is formed by the N tags
t minimizing E{CN(t)}, for some M ≤ N ≤ 32n2M with probability at least
1 − ε/2. If the algorithm is further given a target u ∈ Zn, it also outputs the
shortest vector in (L− u) ∩ P .

By comparison, opening all the cells returned by Alg. 5 of Sect. 6 does the same
in O(M) poly-time operations, except that the upper bound on N is slightly

Quantum Lattice Enumeration and Tweaking Discrete Pruning 25

Algorithm 4 Counting low-cost assignments

Input: A function f : {1, . . . , n}×N→ R≥0 such that f(i, 0) = 0 and f(i, j) ≥
f(i, j′) for all i and j > j′; a bound R > 0 and a number M ≥ 0.

Output: Decide if the number of (v1, . . . , vn) ∈ Nn such that
∑n
i=1 f(i, vi) ≤ R

is ≥M or < M .
1: v1 = v2 = · · · = vn = 0 and ρn+1 = 0 and k = n and m = 0
2: while m < M do
3: ρk = ρk+1 + f(k, vk) // cost of the tag (0, . . . , 0, vk, . . . , vn)
4: if ρk ≤ R then
5: if k = 1 then
6: m← m+ 1 and vk ← vk + 1 (one more solution)
7: else
8: k ← k − 1 and vk ← 0 // going down the tree
9: end if

10: else
11: k ← k + 1 // going up the tree
12: if k = n+ 1 then
13: return m < M // no more solutions
14: else
15: vk ← vk + 1
16: end if
17: end if
18: end while
19: return m ≥M

Algorithm 5 Enumeration of lowest-cost assignments

Input: A function f : {1, . . . , n}×N→ R≥0 such that f(i, 0) = 0 and f(i, j) ≥
f(i, j′) for all i and j > j′; a number M > 0.

Output: Output the N assignments (v1, . . . , vn) ∈ Nn that minimize∑n
i=1 f(i, vi), where M ≤ N ≤ nM .

1: R0 ← 0 and R1 ←
∑n
i=1 f(i, dM1/ne);

2: while R0 < R1 − 1 do
3: Call Alg. 4 with R = b(R0 +R1)/2e and M
4: if number of solutions ≥M then
5: R1 ← R
6: else
7: R0 ← R
8: end if
9: end while

10: Call Alg. 3 with R1.

lower. The proof of Th. 14 has two parts: first, we show how to determine the
best N cells without computing them, for some N close to M , with high prob-
ability; then we find the best candidate inside these N cells. Both rely on a

26 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

tree interpretation. Alg. 3 can be seen as a backtracking algorithm on a tree
T (R), where each node can be encoded as (∗, · · · , ∗, vk, · · · , vn). The root is
encoded as (∗, · · · , ∗). Given a node (∗, · · · , ∗, vk, · · · , vn), if k = 1, then it is
a leaf. If

∑n
i=k f(i, vi) > R, then it is also a leaf. If

∑n
i=k f(i, vi) ≤ R, then

its children are (∗, · · · , ∗, vk−1, vk, · · · , vn), where vk−1 can take all integer val-
ues between 0 and ρvk,··· ,vn . Here ρvk,··· ,vn is the smallest integer such that
f(i−1, ρvk,··· ,vn)+

∑n
i=k f(i, vi) > R. In case of discrete pruning, f is quadratic.

We can compute ρvk,··· ,vn and build the black-box on T (R).

7.1 Determining the best cells implicitly

Given a number M > 0, Alg. 5 finds (in time essentially M) the best
N vectors t ∈ Nn (for some N close to M) minimizing E{CN(t)} =∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
‖b?i ‖2 by minimizing instead the function:

g(v1, · · · , vn) =

n∑
i=1

f(i, vi) =

n∑
i=1

vi(vi + 1)‖b?i ‖2 =

n∑
i=1

αivi(vi + 1).

This is done by finding a suitable radius R by dichotomy, based on logarith-
mically many calls to Alg. 4 until the number of solutions is close to M , and
eventually enumerating the marked leaves of a search tree by Alg. 3. Both Alg. 3
and Alg. 4 can be viewed as algorithms exploring a tree T (R) depending on a
radius R > 0: Alg. 4 decides if the number #S(T (R)) of marked leaves (i.e. the
number of outputs returned by Alg. 3) is ≥ or < than an input number; Alg. 3
returns all the marked leaves.

This tree interpretation gives rise to Alg. 6, which is our quantum analogue
of Alg. 5 with the following differences: we are only interested in finding a suit-
able radius R such that N = #S(T (R)) is close to M up to a factor of 32n2,
with correctness probability at least 1−ε/2, because enumerating all the marked
leaves would prevent any quadratic speed up. We replace Alg. 4 by the quantum
tree size estimation algorithm of [8]: this gives a quadratic speed up, but approx-
imation errors slightly worsen the upper bound on N . The input (α1, · · · , αn)
of Alg. 6 corresponds to (‖b?1‖2, · · · , ‖b?n‖2), where (b1, · · · , bn) is an integer
basis. We know that (‖b?1‖2, · · · , ‖b?n‖2) ∈ Qn, but by suitable multiplication
preserving polynomial sizes, we may assume that (‖b?1‖2, · · · , ‖b?n‖2) ∈ Nn. The
order between the ‖b?i ‖2’s doesn’t matter in our analysis. We can assume that
‖b?1‖2 ≤ · · · ≤ ‖b?n‖2. We show that Alg. 6 finds a radius R corresponding to
the best M cells in approximately

√
M quantum operations with probability at

least 1− ε/2:

Theorem 15. The output R of Alg. 6 satisfies M ≤ #S(T (R)) ≤
32n2M with probability ≥ 1 − ε/2. Alg. 6 runs in quantum time
O(n2

√
Mpoly(log(n), log(M), log(1/ε), β)) where β is the bitsize of the basis

vectors (b1, · · · ,bn). The algorithm needs O(poly(n, log(M), log(1/ε))) qubits.

Quantum Lattice Enumeration and Tweaking Discrete Pruning 27

Algorithm 6 Computing implicitly the best cells quantumly

Input: ε,M > 0 and (α1, · · · , αn) ∈ Nn with α1 ≤ · · · ≤ αn such that the input
f : {1, · · · , n} × N→ N of Alg. 3 satisfies f(i, x) = αix(x+ 1)

Output: R such that M ≤ #S(T (R)) ≤ 32n2M with probability ≥ 1− ε
1: r ← dlog2(

∑n
i=1 f(i, d(4nM)1/ne))e and R ←

∑n
i=1 f(i, d(4nM)1/ne) and

R0 ← 0 and R1 ← R
2: while R1 −R0 > 1 do
3: Call TreeSizeEstimation(T2(R), 16n2M, 1/2, εr/2, 2)
4: if the answer is ”T2(R) contains more than 16n2M vertices” then
5: R1 ← R and R← b(R0 +R1)/2e
6: else if the answer is ”T2(R) contains T̂ vertices” with T̂ < 3(2n − 1)M

then
7: R0 ← R and R← b(R0 +R1)/2e
8: else
9: Return R

10: end if
11: end while
12: Return R0

7.2 Finding the best lattice vector

We now know R such that the number N of (v1, · · · , vn) ∈ Nn which satis-
fies

∑n
i=1 f(i, vi) ≤ R is in [M, 32n2M] with probability at least 1 − ε/2. All

these solutions are leaves of the tree T (R) and they form the set U of the
best N tags minimizing t minimizing E{CN(t)}. Let P = ∪t∈UCN(t) where CN()
is the natural partition with respect to the input basis B. We would like to
find a shortest non-zero vector in L ∩ P for the SVP setting, or the shortest
vector in (L − u) ∩ P in the CVP setting, when we are further given tar-
get u ∈ Zn. To do this, we notice that it suffices to apply FindMin2 (in
App), provided that the basis (b1, · · · ,bn) is LLL-reduced. More precisely,
we call FindMin2(T (R),P, h, ‖b1‖2, d, 32n2M, ε/2). Here P is the predicate
which returns true on a node iff it is a leaf encoded as (x1, · · · , xn) such that
g(x1, · · · , xn) =

∑n
i=1 f(i, xi) ≤ R. hV (x1, · · · , xn) is the predicate which indi-

cates if the square of the norm of the lattice vector in the cell of tag (x1, · · · , xn)
is ≤ V . The time complexity is O(n2

√
Mpoly(log(n), log(M), log(1/ε), β)).

Since the subroutine of determining the best cells and the one of finding a
shortest non-zero vector, both have an error probability ε/2, by union bound,
the total error probability is ε. We thus have proved Th. 14.

7.3 The Case of Extreme Pruning

In this section, we explain how to tackle the extreme pruning case, where one
wants to run discrete pruning over many reduced bases. Due to space limitations,
we only give a proof sketch, but the main ideas are the same.

28 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

Given m LLL-reduced bases (B1, · · · ,Bm) of the same integer lattice L
of rank n, we define for each basis Bi a function gi : Nn → Q such that
gi(x1, · · · , xn) =

∑n
j=1 ‖b?i,j‖2xi(xi + 1), where (b?i,1, · · · , b?i,n) is the Gram-

Schmidt orthogonalization of the basis Bi. Here, we want to first find the
poly(n) ∗ M best cells with respect to all of the functions gi altogether,
and then find the shortest vector in these cells. Both steps have complex-
ity O(

√
Mpoly(n, logM, log 1/ε, β)), where ε is the total error probability and

where β is the bitsize of the vectors of the input bases.

Theorem 16. There is a quantum algorithm which, given ε > 0, a number M >
0, and m LLL-reduced bases (B1, · · · ,Bm) of an n-rank integer lattice L, outputs
the shortest non-zero vector in L ∩ P in time O(

√
Mpoly(n, logM, log 1/ε, β))

with error probability ε. Here, β denotes the maximum bitsize of the vectors of
all given bases, P = ∪(i,t)∈UCN(i, t) where CN(i, ·) is the natural partition with
respect to Bi, U is formed by the N tuples (i, t) ∈ {1, · · · ,m} × Nn minimizing
gi(t) among all tuples, for some N = poly(n) ∗ M with probability at least
1 − ε/2. If the algorithm is further given a target u ∈ Zn, it also outputs the
shortest vector in (L− u) ∩ P .

The main idea of the proof is the following. For each basis Bi, there is a back-
tracking tree with respect to the function gi as we explained in the previous
section. We put all these trees together and obtain one single tree. We first ap-
ply the TreeSizeEstimation algorithm several times to find a good common
radius R for all functions gi by dichotomy, such that the total number of good
cells in all trees is poly(n) ∗M . After that, we apply FindMin2 to find the
shortest vector among all these cells. Remark that in the previous section, we
required the function g to have integral values, and this was achieved by multi-
plying all ‖b?i ‖2 by a common denominator. Instead, we here want to keep the
output rational, which is proved sufficient by the following lemma:

Lemma 9. Given a basis (b1, · · · ,bn) of an integer lattice L, g : Nn → Q such
that g(x1, · · · , xn) =

∑n
i=1 ‖b?i ‖2xi(xi+1), we denote T (R) the backtracking tree

for finding all solutions of g(x1, · · · , xn) ≤ R, T2(R) the corresponding binary
tree. For all R ∈ R+, #S(T2(R + δ)) ≤ 2n#S(T2(R)), where δ = 1∏n

i=1∆i
and

∆i = covol(b1, · · · ,bi)2 =
∏i
j=1 ‖b?i ‖2.

The proof of this lemma is the same as the proof of Lemma 10 in the App. by
noticing that

∏n
i=1∆i is a common denominator of all ‖b?i ‖2.

For each basis Bi, we define δi as in Lemma 9. In the dichotomy step, we
stop when the difference of the two terms is smaller than minj∈{1,··· ,m} δj . The
other steps are the same as in the previous section.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 16H02780 and
16H02830, and partially supported by a mobility scholarship of the third author
at the University of Tokyo in the frame of the Erasmus Mundus Action 2 Project

Quantum Lattice Enumeration and Tweaking Discrete Pruning 29

TEAM Technologies for Information and Communication Technologies, funded
by the European Commission. This publication reflects the view only of the
authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therein.

References

1. D. Aggarwal, D. Dadush, O. Regev, and N. Stephens-Davidowitz. Solving the
shortest vector problem in 2n time using discrete gaussian sampling: Extended
abstract. In Proceedings of 47th ACM STOC, pages 733–742, 2015.

2. M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th ACM STOC,
pages 99–108, 1996.

3. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In Proc. of 33rd STOC, pages 601–610. ACM, 2001.

4. M. Albrecht, J. Schanck, and D. Bernstein. Messages on the NIST pqc mailing-list
in May, 2018.

5. M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. Postleth-
waite, F. Virdia, and T. Wunderer. Estimate all the LWE, NTRU
schemes! Posted on the pqc-forum on Feb. 1, 2018. Available at
https://estimate-all-the-lwe-ntru-schemes.github.io/paper.pdf.

6. E. Alkim, N. Bindel, J. A. Buchmann, Ö. Dagdelen, E. Eaton, G. Gutoski,
J. Krämer, and F. Pawlega. Revisiting TESLA in the quantum random oracle
model. In Proc. PQCrypto 2017, volume 10346 of Lecture Notes in Computer
Science, pages 143–162. Springer, 2017.

7. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange
- A new hope. In Proc. 25th USENIX, pages 327–343. USENIX, 2016.

8. A. Ambainis and M. Kokainis. Quantum algorithm for tree size estimation, with
applications to backtracking and 2-player games. In Proc. STOC ’17. ACM, 2017.

9. Y. Aono and P. Q. Nguyen. Random sampling revisited: Lattice enumeration with
discrete pruning. In Advances in cryptology—EUROCRYPT 2017 Part II, volume
10211 of LNCS, pages 65–102. Springer, 2017.

10. Y. Aono, P. Q. Nguyen, T. Seito, and J. Shikata. Lower bounds on lattice enu-
meration with extreme pruning. In Proc. of 38th CRYPTO. Springer, 2018. To
appear.

11. Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. Improved progressive BKZ al-
gorithms and their precise cost estimation by sharp simulator. IACR Cryptology
ePrint Archive, 2016:146, 2016. Full version of EUROCRYPT 2016.

12. L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. In
Proc. STACS’85, volume 182 of LNCS, pages 13–20. Springer, 1985.

13. A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Proc. 27th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 10–24, 2016.

14. C. H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Com-
put., 18(4):766–776, Aug. 1989.

15. J. Buchmann, N. Büscher, F. Göpfert, S. Katzenbeisser, J. Krämer, D. Micciancio,
S. Siim, C. van Vredendaal, and M. Walter. Creating cryptographic challenges
using multi-party computation: The lwe challenge. In Proceedings of the 3rd ACM
AsiaPKC, pages 11–20, New York, NY, USA, 2016. ACM.

30 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

16. Y. Chen. Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. PhD thesis, Univ. Paris 7, 2013.

17. Y. Chen and P. Q. Nguyen. BKZ 2.0: better lattice security estimates. In Proc.
ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20. Springer, 2011.

18. R. del Pino, V. Lyubashevsky, and D. Pointcheval. The whole is less than the sum
of its parts: Constructing more efficient lattice-based AKEs. In Proc. SCN 2016,
volume 9841 of Lecture Notes in Computer Science, pages 273–291. Springer, 2016.

19. M. Fukase and K. Kashiwabara. An accelerated algorithm for solving SVP based
on statistical analysis. JIP, 23(1):67–80, 2015.

20. N. Gama and P. Q. Nguyen. Predicting Lattice Reduction. In Proc. of Euro-
crypt’08, LNCS, Springer Verlag, pages 31–51, 2008.

21. N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning.
In EUROCRYPT 2010, volume 6110 of LNCS. Springer, 2010.

22. O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice
reduction problems. In Proc. CRYPTO 1997, volume 1294 of LNCS, pages 112–
131. Springer, 1997.

23. A. Hülsing, J. Rijneveld, J. M. Schanck, and P. Schwabe. Ntru-hrss-kem: Algorithm
specifications and supporting documentation. NIST submission.

24. R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proc. 15th ACM STOC, pages 193–206, 1983.

25. T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In Proc. CRYPTO 2015 - Part I, volume 9215 of LNCS. Springer, 2015.

26. T. Laarhoven, M. Mosca, and J. van de Pol. Finding shortest lattice vectors faster
using quantum search. Des. Codes Cryptography, 77(2-3):375–400, 2015.

27. R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption.
In CT-RSA, volume 6558 of LNCS, pages 319–339. Springer, 2011.

28. R. Lindner and M. Rückert. TU Darmstadt lattice challenge. Available at
http://www.latticechallenge.org/.

29. M. Liu and P. Q. Nguyen. Solving BDD by enumeration: An update. In Topics in
Cryptology - Proc. CT-RSA 2013, volume 7779 of LNCS. Springer, 2013.

30. C. Ludwig. A faster lattice reduction method using quantum search. In ISAAC
2003, Kyoto, Japan, December 15-17, 2003, Proceedings, volume 2906 of LNCS,
pages 199–208. Springer, 2003.

31. D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm
for most lattice problems based on Voronoi cell computations. In Proc. 42nd ACM
Symp. on Theory of Computing (STOC), 2010.

32. D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest
vector problem. In Proc. ACM-SIAM SODA, pages 1468–1480, 2010.

33. A. Montanaro. Quantum walk speedup of backtracking algorithms. ArXiv, 2015.
34. P. Q. Nguyen and I. Shparlinski. The insecurity of the digital signature algorithm

with partially known nonces. J. Cryptology, 15(3):151–176, 2002.
35. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are

practical. J. of Mathematical Cryptology, 2(2):181–207, 2008.
36. NIST. Round 1 submissions for post-quantum cryptography standardization.

Available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions.
37. M. Pohst. On the computation of lattice vectors of minimal length, successive

minima and reduced bases with applications. SIGSAM Bull., 15(1):37–44, 1981.
38. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.

In Proc. 37th ACM STOC, pages 84–93, 2005.
39. M. Schneider and N. Gama. SVP challenge. Available at

http://www.latticechallenge.org/svp-challenge/.

Quantum Lattice Enumeration and Tweaking Discrete Pruning 31

40. C. P. Schnorr. Lattice reduction by random sampling and birthday methods. In
Proc. STACS 2003, volume 2607 of LNCS, pages 145–156. Springer, 2003.

41. C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Math. Programming, 66:181–199, 1994.

42. C.-P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by
improved lattice reduction. In Proc. of Eurocrypt ’95, volume 921 of LNCS, pages
1–12. IACR, Springer-Verlag, 1995.

43. Security Innovation. NTRU challenge. Available at
https://www.securityinnovation.com/products/ntru-crypto/ntru-challenge.

44. Y. Yu and L. Ducas. Second order statistical behavior of LLL and BKZ. In Proc.
SAC 2017, pages 3–22, 2017.

32 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

A Revisiting Lindner-Peikert and Liu-Nguyen

We show that Lindner-Peikert’s Nearest Planes algorithm [27] as randomized by
Liu-Nguyen [29] can be viewed as a special case of discrete pruning.

Let B = (b1, . . . , bn) be a basis of a full-rank lattice L in Zn: denote by
B? = (b?1, . . . , b

?
n) its Gram-Schmidt orthogonalization. Lindner and Peikert [27]

presented a generalization of Babai’s nearest plane algorithm, by adding some ex-
haustive search to increase the success probability, at the expense of the running
time. Instead of choosing the closest plane in every i-th level, the NearestPlanes
algorithm (Alg. 7) enumerates di distinct planes. We note that Alg. 7 is actually
enumerating the set L ∩ (P + u) where P = {

∑n
i=1 xib

?
i : −di2 ≤ xi <

di
2 }. This

corresponds to BDD discrete pruning with the natural partition using all the∏n
i=1 di tags (t1, . . . , tn) ∈

∏n
i=1{0, 1, · · · , di − 1}.

Here, we see that the choice
∏n
i=1{0, 1, · · · , di−1} of tags is rather arbitrary,

and intuitively explains why [27] is not optimal. Note that [27, Sect. 4] mentions
as a footnote: “One could further generalize the algorithm to search within an
approximate ball made up of ‘bricks’, thus capturing even more of the Gaussian
without adding much more to the search space. However, this would significantly
complicate the analysis, and we find that the present approach is already very
effective. ”, which seems to correspond to discrete pruning with Babai’s partition.
Our framework allows to handle this “significantly more complicated analysis”.

Algorithm 7 The NearestPlanes Algorithm [27]

Input: A lattice basis B = (b1, . . . , bn), a vector d = (d1, d2, . . . , dn) ∈ Nn, a
target point u ∈ Qn.

Output: A set of
∏n
i=1 di distinct lattice vectors in L(B) close to u.

1: if m = 0 then
2: Return 0
3: else
4: Compute the dn integers c1, c2, . . . , cdn ∈ Z closest to 〈b?n,u〉/〈b?n, b?n〉
5: Return

⋃
i∈[dn]

(cibn + NearestP lanes({b1, . . . , bn−1, (d1, . . . , dn−1),u −

cibn})
6: end if

B Experiments

Most of our experiments were performed by a standard server with two Intel
Xeon E5-2660 CPUs and 256-GB RAMs. We used the following public instances.

Random Lattices from the SVP Challenge. Throughout this section, we use n-
dim random lattices generated by the SVP challenge generator [39]; these lattices
are uniformly distributed among integer lattices of co-volume a fixed random
prime of bit-length 10n. We sometimes use the words “random PBKZ-β basis”

Quantum Lattice Enumeration and Tweaking Discrete Pruning 33

or “random LLL basis” to denote the basis generated by the generator and
reduced using the progressive BKZ library with target reduction level β [11].

LWE Challenge. The LWE Challenge [15] provides instances parametrized by
the dimension n and the error ratio α, and other parameters are derived from
them: the number m of samples is n2, the modulus q is the first prime number
larger than n2 and the noise distribution is a discrete Gaussian distribution over
Zm with parameter s =

√
2παq, which we heuristically assume to be close to

a multivariate Gaussian over Rm of parameter σ = αq. Any LWE instance is a
BDD instance of some m-dim lattice. However, in practice, it is more efficient to
choose a random subset of m′ ≤ m samples, in which case the BDD lattice has
dimension m′: this is the folklore sublattice attack, where the optimal choice of
m′ depends on the basis reduction quality.

B.1 Accuracy of the Success Probability Analysis

We report on experiments supporting the validity of the success probability
analysis of Sect. 5.4.

Approximation Setting of CVP. For a random PBKZ-40 reduced 100-dim
basis B, we selected the 1,000 best tags by Alg. 5 with respect to cell
expectation. Based on (2) and (6), the theoretical success probability is∑

t∈T vol(Balln(1.4GH(L)) ∩ C(t))/covol(L). Then we generated random tar-
get points u as integer points uniformly distributed over [0, covol(L) − 1]n. We
computed the experimental success rate that u ∈

⋃
C(t) over the 1,000 tags.

Fig. 5 shows the experimental results over 1,000 random target vectors for each
random lattice with 122 different seeds. Overall, the average theoretical success
probability is 0.183, while the experimental success rate is 0.192.

Fig. 5. Comparison between the theoretical and experimental success probability on
randomly generated CVP instances in dimension 100.

34 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

Unique Setting: GGH-Key Recovery. We illustrate the analysis of Sect. 5.6
with GGH-key recovery in dimension 200: these instances were used by [29]
to illustrate cylinder pruning, solutions correspond to the secret key in public
challenges of the GGH cryptosystem [22]. An n-dim GGH key-recovery can be
viewed as n BDD instance over a given basis B and n targets u of the form
wi = (0, . . . , 0, z, 0, . . . , 0) where z = 4b

√
n+ 1e [29]. By construction, we know

that each coordinate of the noise e is uniformly distributed over {−4,−3, . . . , 3}.
To compute the radius probability Pre[‖e‖2 = r2], we use the method of

Sect. 5.6 starting with F[i:i],0 = F[i:i],16 = 1/8 and F[i:i],1 = F[i:i],4 = F[i:i],9 =
1/4 for all i = 1, . . . , n: results are shown on the left-side of Figure 6. The
success probability was derived from Sect. 5.4. The right-hand side of Fig. 6
shows the comparison between theoretical and experimental success probability
for many PBKZ-60-reduced bases, using the M = 1, 10, 100, 1000 and 10000
best tags. This allows to compare the efficiency of discrete pruning with that

Fig. 6. (Left) The graph of Pre[‖e‖2 = r2] for GGH-200’s noise; (Right) Theoretical
and experimental success probability on PBKZ-60 bases of the GGH-200 lattice.

of cylinder pruning (as experimented in [29]): the leftmost points corresponding
to x = −1 recall the success probabilities obtained by [29]. For instance, [29,
Table 3] reported that 666 nodes achieve a success probability of 0.0418 on the
average. Here, discrete pruning with just 10 tags achieve a success probability
0.0833 on the average. We conclude that in this setting, discrete pruning has
similar performances as cylinder pruning.

B.2 Discrete vs Cylinder Pruning: the case of LWE

We compared the cost and success probability between discrete and cylinder
pruning when solving LWE via BDD. For each LWE instance, we computed
the cost and success probability for discrete pruning by running Alg. 5 and by

Quantum Lattice Enumeration and Tweaking Discrete Pruning 35

computing the exact sum (8) with LWE probability (10). We also computed
the upper bound of success probability and approximated cost by the methods
in [21]. To optimize the bounding function, we used a modified version of the
cross-entropy method in Chen’s thesis [16].

Fig. 7 shows the comparison in high and low probability areas. A very precise
comparison is difficult: the complexity of discrete pruning is measured by the
number of tags, whereas the complexity of cylinder pruning is measured by the
number of nodes in the enumeration tree. There is no very accurate equivalence
between tags and nodes: one tag costs at most m nodes in the enumeration tree,
but it could be less, especially for an optimized implementation. Even if we take
into account this factor m, it appears that discrete pruning is a bit faster than
cylinder pruning in the low-probability regime, but the difference is limited.

From our experiments on LWE and GGH, we conclude that discrete pruning
is at least as fast as cylinder pruning (which was considered to be the fastest
method), in the BDD setting. However, the selection of parameters is easier with
discrete pruning and can be done online, which should be helpful in blockwise
lattice reduction like BKZ. Furthermore, there is room for improvement in terms
of implementations, as noted in [9].

Fig. 7. Comparing costs of discrete and cylinder pruning for high (Left) and low prob-
ability (Right). Experiments done with PBKZ-60 on LWE challenges for (n, σ) =
(60, 0.005) and m′ = 3n = 180 (Left) and (80, 0.005) and m′ = 3n = 240 (Right).
The graph of cylinder pruning is irregular because it is difficult to find optimal costs.

B.3 Optimal Bases

Fukase and Kashiwabara [19] evaluated the quality of a basis for discrete pruning
by the sum

∑n
i=1 ||b?i ||2, which we call the energy of the basis. It was reported

in [19] that the lower this quantity, the higher the success probability.
However, we show that the energy is insufficient in the worst case to measure

the success of discrete pruning. Fig. 8 shows that two bases with similar energy
can have a completely different success probability: more precisely, it shows the

36 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

evolution of three measurements (the energy, the value C0 = vol(C(0))/covol(L),
and the value C1000 defined by the sum of vol(C(ti))/covol(L) over top 1,000
tags) when we modify the last k vectors (using some “random” k-dimensional
unimodular matrix) of a reduced basis of the GGH-200 lattice, and reapply the
LLL algorithm. The original basis has measurements 7.99 · 106, 0.00602 and
0.21148 respectively. For k = 90, the energy becomes 8.09 · 106, which is about
1% larger than the original value. However, the intersection volumes decrease to
zero, which means that discrete pruning is much less likely to succeed.

Fig. 8. Evolution of three measurements by randomly modifying the last k vectors.

C Proofs and missing materials of Section 4

C.1 Proof of Theorem 5

Proof (Proof of Theorem 5). For any node N ∈ T which is not a leaf, we want
to transform the subtree N+its children into a binary subtree in T . By making
queries to the black box, we know the number of children d(N) of N . We also
know the i-th child of N for all 1 ≤ i ≤ d(N). There is thus a bijection fN
between [|0, · · · , d(N)−1|] and the children of N . We define lN = dlog2(d(N))e.
For each node of the tree N , we encode the corresponding node in T2 in the
same way.

For those nodes which are in the local binary sub-tree in T2 corresponding
to the local sub-tree N+its children, and which does not correspond to N or its
children, we can encode them as: E(N)|((x1 ∈ {0, 1}, · · · , xi ∈ {0, 1}, ∗, · · · , ∗))
where E(N) is the encoding of the node N , where i ≤ lN and where the number
in base 10 corresponding to (x1, · · · , xi, 0, · · · , 0) in base 2 is smaller than d(N)−
1. Note that in the representation in base 2 (x1, · · · , xi, 0, · · · , 0), the heaviest
bit is on the left.

Quantum Lattice Enumeration and Tweaking Discrete Pruning 37

Given an encoding of a node N2 in T2 which is in the local binary sub-tree
in T2 corresponding to the local sub-tree N+its children in T , we can easily
build a black box which gives the children of this node by using the function
fN and the value d(N). We omit the details here. Depending on if the node N2

corresponds to a node in T or not, a query on the node N2 requires a query
on T or not. If N2 does not correspond to a node in T , we need O(log(d))
auxiliary operations on the extra encoding to see if its children correspond to
nodes in T . These operations can then be quantized using standard techniques:
one first transforms them to reversible maps using standard techniques [14],
with potentially additional garbage of size polylogarithmic of the initial memory
space.

According to our construction, the leaves of both trees are identical.
We will now prove that: #T ≤ #T2 ≤ 2#T . The left-hand inequality is

obvious. If a node N of T is a leaf or has a single child, the subtree of N+its
child (in case that it exists) will not change in T2. If N has at least two children,
the subtree of N+its children will be transformed into a binary subtree in T2.
Assume that N has k ≥ 2 children, the corresponding subtree in T2 has 2k − 1
nodes. It has 2k − 2 < 2k nodes if we don’t count the root corrsponding to N
itself. Thus the k children of N are transformed into 2k− 2 nodes in T2 if k ≥ 2.
By combining the previous two cases, we obtain that #T2 ≤ 2#T . ut

C.2 FindMin2(T ,P, g, R, d, T, ε)

Theorem 17. Let ε > 0. Let T be a tree with its marked leaves defined
by a predicate P Let g be an integral function defined on the marked leaves
such that g(N) ≤ R has at least one solution over all of the marked leaves
and an upper-bound d of the number of children of a node in T . Then
FindMin2(T ,P, g, R, d, T, ε) outputs a marked leaf N , such that g takes its
minimum on N among all of the marked leaves of T , with probability at least
1− ε. It requires
O(
√
Tn log(d) log((dlog2(R)e)/ε)dlog2(R)e+

√
T (n log(d))3/2 log(n log(d)) log((dlog2(R)e)/ε))

queries on the tree T and on g. Each query on T requires O(log(d)) auxiliary
operations. The algorithm needs poly(n log(d), log(R)) qubits.

Proof. The correctness of the algorithm is easy to prove. We will compute
the query complexity. There are in total Round − 1 = dlog2(R)e calls on
ExistSolution and one call on FindSolution. According to Theorem 2, for
each call of ExistSolution, we need O(

√
Tn log(d) log(Round/ε)) queries on

T2 and on g. According to Theorem 3, the call on FindSolution requires
O(
√
T (n log(d))3/2 log(n log(d)) log(Round/ε)) queries on the local structure of

the tree T2 and on g.
In total, we need O(

√
Tn log(d) log(Round/ε) ∗ (Round − 1)) +√

T (n log(d))3/2 log(n log(d)) log(Round/ε))
= O(

√
Tn log(d) log((dlog2(R)e + 1)/ε)dlog2(R)e +√

T (n log(d))3/2 log(n log(d)) log((dlog2(R)e+ 1)/ε))
= O(

√
Tn log(d) log((dlog2(R)e)/ε)dlog2(R)e +

38 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

Algorithm 8 Finding a minimum, given an upper-bound of the tree-size

Input: A tree T with marked leaves defined by the predicate P. An integral
function g defined on the marked leaves of T . A parameter R, such that
g(N) ≤ R has at least one solution over all of the marked leaves. An upper-
bound d of the number of children of a node in T .

Output: A marked leaf N such that g takes its minimum on N among all the
marked leaves explored by the backtracking algorithm.

1: T2 ← the corresponding binary tree of T
2: N ← R, N ′ ← 0
3: Round← dlog2(R)e+ 1
4: v← (0, · · · , 0)
5: while N ′ < N − 1 do
6: Call ExistSolution(T2, T, gb(N+N ′)/2e, n log(d), ε/Round)
7: if ExistSolution(T2, T, gb(N+N ′)/2e, n log(d), ε/Round) returns ”marked

node exists” then
8: N ← b(N +N ′)/2e
9: else

10: N ′ ← b(N +N ′)/2e
11: end if
12: end while
13: Call FindSolution(T2, gN , n log(d), ε/Round)
14: if FindSolution(T2, gN , n log(d), ε/Round) returns x then
15: v← x
16: return v
17: else
18: return
19: end if

√
T (n log(d))3/2 log(n log(d)) log((dlog2(R)e)/ε)) queries on T2 and on g. Ac-

cording to Th. 5, in total, we need O(
√
Tn log(d) log((dlog2(R)e)/ε)dlog2(R)e+√

T (n log(d))3/2 log(n log(d)) log((dlog2(R)e)/ε)) queries on T and on g. Each
query on T requires O(log(d)) auxiliary operations.

Each call of ExistSolution and FindSolution requires poly(n log(d))
qubits. In total the algorithm needs poly(n log(d), log(R)) qubits.

D Proofs of Section 5

D.1 Proof of Lemma 2

Proof (Proof of 2). We already know from [9] that (CZ(), T) is a L-partition.
To show that it is actually universal, it suffices to show that for all u ∈ Qn,
(u + CZ(t)) ∩ L is always a singleton, which can be found in polynomial time.
To see this, note that Babai’s nearest plane algorithm [12] implies that for any
t ∈ Zn and any u ∈ Rn, there is a unique v ∈ L such that v − u − tB? ∈ D,

Quantum Lattice Enumeration and Tweaking Discrete Pruning 39

and that v can be found in polynomial time when u ∈ Qn. It follows that
(u + CZ(t)) ∩ L = {v}. ut

Algorithm 9 Universal cell opening for Babai’s partition from Babai’s Nearest
Plane algorithm [12]

Input: A tag t ∈ Zn, a target u ∈ Qn, and a basis B = (b1, . . . , bn) ∈ Qn of a
lattice L, with Gram-Schmidt orthogonalization B?.

Output: v ∈ L such that {v} = L ∩ (u + CZ(t))
1: v ← 0 and w ← u + tB?

2: for i := n downto 1 do
3: Compute the integer c closest to 〈b?i ,w〉/〈b?i , b?i 〉
4: w ← w − cbi and v ← v + cbi
5: end for
6: Return v

Algorithm 10 Universal cell opening for the natural partition: adaptation of [9,
Alg. 3]

Input: A tag t ∈ Nn, a target u =
∑n
i=1 uib

?
i ∈ Qn, and a basis B =

(b1, . . . , bn) ∈ Qn of a lattice L, with Gram-Schmidt matrix µ.
Output: v ∈ L such that {v} = L ∩ (u + CN(t))
1: for i := n downto 1 do
2: y ← −

∑n
j=i+1 vjµj,i and vi ← bui + y + 0.5c

3: if vi < ui + y then
4: vi ← vi − (−1)tidti/2e
5: else
6: vi ← vi + (−1)tidti/2e
7: end if
8: end for
9: Return

∑n
i=1 vibi

D.2 Proof of Lemma 3

Proof (Proof of 3). We already know that (CN(), T) is an L-partition. Let u ∈ Qn:
we can write u =

∑n
i=1 uib

?
i . Then we only need to show that the shifted cell

u + CN(t) = {
∑n
i=1(ui + xi)b

?
i s.t. − (ti + 1)/2 < xi ≤ −ti/2 or ti/2 < xi ≤

(ti + 1)/2} contains only one lattice point which can be found in polynomial
time using Alg. 10. Consider the projection π over the orthogonal supplement
to the subspace spanned by b1, . . . , bn−1. Then:

π(u+CN(t)) = {(un+xn)b?n s.t. −(tn+1)/2 < xn ≤ −tn/2 or tn/2 < xn ≤ (tn+1)/2}.

40 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

Notice that the union (un − (tn + 1)/2, un − tn/2]∪ (un + tn/2, un + (tn + 1)/2]
only contains one integer: this is because the number of integers in an interval
of the form (x, y] is byc − bxc when x ≥ y. And that integer can be found in
polynomial time, as shown by Alg. 10. This shows that π(u+ CN(t))∩ π(L) is a
singleton, which can be found in polynomial time. Alg. 10 iterates this process
using projections orthogonally to b1, . . . , bi. ut

D.3 Proof of Lemma 5

Proof (Proof of Lemma 5). Each cell is a product of 2n boxes, so the CDF of
the Gaussian distribution gives:

p(t) = 2n
n∏
i=1

1

2

(
erf

(
1√
2σ
· ti + 1

2
· ‖b?i ‖

)
− erf

(
1√
2σ
· ti

2
· ‖b?i ‖

))

=

n∏
i=1

(
erf

(
1√
2σ
· ti + 1

2
· ‖b?i ‖

)
− erf

(
1√
2σ
· ti

2
· ‖b?i ‖

))
ut

D.4 Proof of Lemma 7

Proof (Proof of Lemma 7). It suffices to decompose the noise e as e = ‖e‖× e
‖e‖ .

The variable ‖e‖ only takes finitely many values, and because of Heuristic 10,

Pr
e

(
−r e

‖e‖
∈ C(t)

)
= Pr

x←Sn

(x ∈ C(t)/r).

ut

E Proofs of Th. 15 in Section 7

In order to prove the theorem, we will need the two following lemmas:

Lemma 10. For all R ∈ N, we have #T2(R)−2
2(2n−1) ≤ #S(T2(R)) ≤ #T2(R). We

also have #T2(R+ 1) ≤ 2n#T2(R).

Proof (Proof of Lemma 10). Under the transformation, the number of tags
that we find in the tree with the parameter R won’t change, i.e. #S(T (R)) =
#S(T2(R)).

Since we have: #T (R)−1
2n−1 ≤ #S(T (R)) ≤ #T (R) and we also know: #T (R) ≤

#T2(R) ≤ 2#T (R)

We thus have #T2(R)−2
2(2n−1) ≤ #S(T2(R)) ≤ #T2(R)

Now we will prove the second inequality. If there exists
(∗, · · · , ∗, vk, · · · , vn) ∈ T (R) where vk 6= 0 such that

∑n
j=k f(j, vj) = R + 1,

Quantum Lattice Enumeration and Tweaking Discrete Pruning 41

then (∗, · · · , ∗, vk + 1, · · · , vn) ∈ T (R + 1)\T (R). And for all i ∈ [|1, k − 1|],
(∗, · · · , ∗, vi ∈ {0, 1}, 0, · · · , 0, vk, · · · , vn) ∈ T (R+ 1)\T (R).

(∗, · · · , ∗, vk + 1, · · · , vn) generates two nodes in T2(R+ 1)\T2(R).
Each (∗, · · · , ∗, vi ∈ {0, 1}, 0, · · · , 0, vk, · · · , vn) generates one node in T2(R+

1)\T2(R).
On the other hand, a node in T2(R + 1)\T2(R) can only be derived from a

node (∗, · · · , ∗, vk, · · · , vn) ∈ T (R) (and thus from the equivalent node in T2(R))
such that

∑n
j=k f(j, vj) = R+ 1 and vk 6= 0, by using the above processus.

Therefore, #T2(R+ 1) ≤ 2n#T2(R). ut

Lemma 11. d can be upper-bounded by
∑n

i=1 αi

α1
d(4nM)1/ne).

Proof (Proof of Lemma 11). At the beginning,

R =
n∑
i=1

f(i, d(4nM)1/ne) = (

n∑
i=1

αi)d(4nM)1/ne)(d(4nM)1/ne) + 1)

<

n∑
i=1

αid(4nM)1/ne)(
∑n
i=1 αi
α1

d(4nM)1/ne)) + 1)

= f(1,

∑n
i=1 αi
α1

d(4nM)1/ne)) = g(

∑n
i=1 αi
α1

d(4nM)1/ne)), 0, · · · , 0)

Since α1 ≤ · · · ≤ αn, we also have: for all 1 ≤ j ≤ n,

R < g(0, · · · , 0,
∑n

i=1 αi

α1
d(4nM)1/ne), 0, · · · , 0) where

∑n
i=1 αi

α1
d(4nM)1/ne) is on

the jth position.
Since R decreases during the execution of the algorithm, d can be upper-

bounded by
∑n

i=1 αi

α1
d(4nM)1/ne). ut

Proof (Proof of Th. 15).
We will prove that the output R satisfies 2(2n − 1)M ≤ #T2(R) ≤ 32n2M

with probability at least 1 − ε/2. Since we have #T (R)−2
2(2n−1) ≤ #S(T2(R)) ≤

#T2(R), this proves that M ≤ #S(T (R)) ≤ 32n2M with probability at least
1− ε/2.

Since the algorithm will end after at most Round =
dlog2(

∑n
i=1 f(i, d(4nM)1/ne))e calls of the tree size estimation algorithm

with correctness probability at least
1− ε/2(dlog2(

∑n
i=1 f(i, d(4nM)1/ne))e), by using the union bound, the correct-

ness probability of our algorithm is at least 1 − ε/2. Now we can assume that
all the answers of the tree size estimation algorithm are correct.

In the following we will omit the last four parameters in
TreeSizeEstimation for the clarity of the proof.

In case that the algorithm returns R inside the while loop, the output of the
first TreeSizeEstimation(T2(R)) is ”T2(R) contains T̂ vertices” with
3(2n − 1)M ≤ T̂ ≤ 16n2M . Since the tree size estimation is up to precision

1± 1/2, the real tree size should be in the interval [3(2n−1)N1+1/2 , 16n
2M

1−1/2] ⊂ [2(2n−
1)M, 32n2M].

42 Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen

In case that the algorithm returns R after the while loop, we have R1 =
R0 + 1. The estimation of TreeSizeEstimation(T (R1)) with the parameters
as in the while loop is ”T (R1) contains more than 16n2M vertices”. Since the

precision parameter is 1/2, we have #T2(R1) ≥ 16n2M
1+1/2 > 8n2M .

The estimation of TreeSizeEstimation(T (R0)) with the parameters as in
the while loop is ”T (R0) contains T̂ vertices” with T̂ < d3(2n−1)Me. Since the

precision parameter is 1/2, we have #T2(R0) ≤ 3(2n−1)M
1−1/2 = 6(2n− 1)M .

By using Lemma 10, we know that for all R ∈ N, #T (R + 1) ≤
2n#T (R).Thus, there exists R > 0 such that 2(2n − 1)M ≤ #T2(R) ≤
4n(2n− 1)M < 8n2M . This R should be R0.

We proved that in each case, Alg. 6 outputs R such that 2(2n − 1)M ≤
#T (R) ≤ 32n2M . Therefore, R satisfies M ≤ #S(T (R)) ≤ 32n2M with proba-
bility at least 1− ε/2.

The number of queries to the trees is
O(
√
n log(d)16n2M log2(Round/ε) ∗ Round) =

O(n2
√
Mpoly(log(n), log(M), log(1/ε), β)). Since each query needs

O(log(16n2M)) = poly(log(n), log(M)) non-query transformations, the
time complexity of Alg. 6 is O(n2

√
Mpoly(log(n), log(M), log(1/ε), β)).

The algorithm needs O(poly(n, log(M), log(1/ε))) qubits by using Th. 4.

	Quantum Lattice Enumeration and Tweaking Discrete Pruning
	Introduction
	Preliminaries
	Enumeration with Pruning
	Finding Close Vectors by Enumeration
	Finding Close Vectors by Enumeration with Pruning
	Cylinder Pruning

	Quantum speed-up of Cylinder Pruning
	Tools
	Application to Cylinder Pruning

	BDD Enumeration with Discrete Pruning
	Discrete Pruning for the Enumeration of Short Vectors
	Universal Lattice Partitions
	BDD Discrete Pruning from Universal Lattice Partitions
	Success Probability
	Selecting Parameters
	Noise Distributions in the Unique Setting
	LWE and Gaussian Noise.
	Spherical Noise.
	Product of Finite Distributions.

	Linear Optimization for Discrete Pruning
	Reduction to Linear Optimization
	Limits of Orthogonal Enumeration
	Solving Linear Optimization

	Quantum Speed-up of Discrete Pruning
	Determining the best cells implicitly
	Finding the best lattice vector
	The Case of Extreme Pruning

	Revisiting Lindner-Peikert and Liu-Nguyen
	Experiments
	Accuracy of the Success Probability Analysis
	Discrete vs Cylinder Pruning: the case of LWE
	Optimal Bases

	Proofs and missing materials of Section 4
	Proof of Theorem 5
	FindMin2(T,P,g,R,d,T,)

	Proofs of Section 5
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 5
	Proof of Lemma 7

	Proofs of Th. 15 in Section 7

