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Abstract

Indistinguishability obfuscation has become one of the most exciting cryptographic primitives
due to its far reaching applications in cryptography and other fields. However, to date, obtaining
a plausibly secure construction has been an illusive task, thus motivating the study of seemingly
weaker primitives that imply it, with the possibility that they will be easier to construct.

In this work, we provide a systematic study of compressing obfuscation, one of the most
natural and simple to describe primitives that is known to imply indistinguishability obfuscation
when combined with other standard assumptions. A compressing obfuscator is roughly an in-
distinguishability obfuscator that outputs just a slightly compressed encoding of the truth table.
This generalizes notions introduced by Lin et al. (PKC 2016) and Bitansky et al. (TCC 2016)
by allowing for a broader regime of parameters.

We view compressing obfuscation as an independent cryptographic primitive and show various
positive and negative results concerning its power and plausibility of existence, demonstrating
significant differences from full-fledged indistinguishability obfuscation.

First, we show that as a cryptographic building block, compressing obfuscation is weak. In
particular, when combined with one-way functions, it cannot be used (in a black-box way) to
achieve public-key encryption, even under (sub-)exponential security assumptions. This is in
sharp contrast to indistinguishability obfuscation, which together with one-way functions implies
almost all cryptographic primitives.

Second, we show that to construct compressing obfuscation with perfect correctness, one only
needs to assume its existence with a very weak correctness guarantee and polynomial hardness.
Namely, we show a correctness amplification transformation with optimal parameters that relies
only on polynomial hardness assumptions. This implies a universal construction assuming only
polynomially secure compressing obfuscation with approximate correctness. In the context of
indistinguishability obfuscation, we know how to achieve such a result only under sub-exponential
security assumptions together with derandomization assumptions.

Lastly, we characterize the existence of compressing obfuscation with statistical security. We
show that in some range of parameters and for some classes of circuits such an obfuscator exists,
whereas it is unlikely to exist with better parameters or for larger classes of circuits. These
positive and negative results reveal a deep connection between compressing obfuscation and
various concepts in complexity theory and learning theory.
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1 Introduction

Program obfuscation is an intriguing and powerful concept in modern cryptography. A program
obfuscator is a compiler that “scrambles” programs into ones that are hard to reverse engineer,
while preserving their functionality. The predominant notion that captures the above concept is
indistinguishability obfuscation, introduced in the seminal work of Barak et al. [15], which has
inspired a vibrant area of research in recent years. Informally, indistinguishability obfuscation
(iO) guarantees that the obfuscations of two functionally equivalent circuits of the same size are
computationally indistinguishable.

There are two main reasons why iO has become such a central primitive—its potential to exist
and its power. As opposed to stronger notions of obfuscation that are known not to exist for all
circuits (such as virtual black-box obfuscation [15]), general purpose iO might be realizable, and
in fact, since the work of Garg et al. [45] many candidate constructions of iO have emerged [45,
33, 14, 6, 88, 51, 9, 93, 50]. As for its power, iO serves as a hub for an impressive number of
cryptographic primitives, ranging from classical concepts such as one-way functions [70], public-key
encryption [90], trapdoor permutations [20], ZAPs and non-interactive witness-indistinguishable
proofs [19], to ones that are still far beyond the reach of any other assumption, such as deniable
encryption [90], fully-secure multi-input functional encryption [54], and many others.

Despite immense efforts to construct iO from concrete assumptions, all currently known can-
didate constructions have been shown to be vulnerable to attacks [8, 13, 27, 38, 39, 40, 80, 84].1

Another line of work shows how to construct iO from some seemingly “simpler” or “weaker” generic
cryptographic primitives (together with more standard assumptions). These include primitives
such as low-degree multilinear maps [73, 74, 5, 77], compact functional encryption schemes [4, 21],
compact randomized encodings [76], and variants of exponentially-efficient indistinguishability ob-
fuscation [18, 75], all of which have no known instantiations from standard assumptions.

The difficulty of constructing iO motivates the study of such seemingly weaker cryptographic
primitives, with the hope that such a study could elucidate the foundations of iO. In this paper, we
focus on the primitive which is arguably the simplest to define and the closest in its nature to iO:
indistinguishability obfuscation with nontrivial compression, or in short, compressing obfuscation.

Compressing obfuscation. For functions t(s, n) and `(s, n), we say that an obfuscator O is
(t, `)-compressing if, when given a circuit C of size s on n inputs, the obfuscator O(C) runs in time
t(s, n) and has output length `(s, n). In the case of iO, both t and ` are polynomial in s and n,
but in general, we allow them to be super-polynomial, or even (sub-)exponential. This definition
generalizes existing relaxations of iO (such as XiO and SXiO which we discuss below) and allows
us to characterize the extent to which efficiency impacts the existence, applications, and limitations
of obfuscation. Throughout this work, we mostly focus on the following two settings of parameters,
which intuitively, are relaxed versions of iO that only allow obfuscating circuits with logarithmic
input size:

– XiO. The first (and weaker) setting of parameters is that of exponentially-efficient iO (XiO),
introduced by Lin et al. [75]. XiO allows the running time of the obfuscator to be as large
as the truth table of the circuit to be obfuscated, but requires the size of the obfuscated
circuit to be slightly smaller than its truth table. More formally, for a function c (which
denotes the compression of XiO), we say that c-XiO is a (t, `)-compressing obfuscator with
t(s, n) = poly(2n, s) and `(s, n) = c(n) · poly(s). When there exists a constant ε > 0 such that
c(n) = 2n(1−ε), we denote c-XiO simply by XiO. Lin et al. [75] showed that XiO for all circuits
and Learning With Errors (LWE), both with sub-exponential security, imply iO.

1Some of the attacks apply directly to the candidate construction while some only apply to the underlying graded
encoding scheme [41, 50, 42]. See Ananth et al. [2, Appendix A] for an overview.
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– SXiO. The second (and stronger) setting of parameters is that of strong XiO (SXiO), intro-
duced by Bitansky et al. [18]. SXiO requires that the time to obfuscate a circuit is slightly
smaller than the truth table of the circuit. More formally, for a function c, we say that c-SXiO
is a (t, `)-compressing obfuscator with t(s, n) = `(s, n) = c(n) · poly(s). Similar to the above
case, when there exists some constant ε > 0 such that c(n) = 2n(1−ε), we denote this simply
by SXiO. Bitansky et al. [18] showed that SXiO and any public-key encryption, both with
sub-exponential security, imply iO. This was strengthened by Kitigawa et al. [69], who showed
that SXiO and any one-way function, with sub-exponential security, imply iO.

These two settings of parameters have seemingly minor differences, but nevertheless, are not
known to be equivalent. Moreover, as mentioned above, their known implications illustrate the
richness of the world of compressing obfuscation, and indicate that efficiency is a fundamental
property of obfuscation. Since the regime of parameters for compressing obfuscation is somewhat
non-standard (especially, the distinction between time and output length in XiO), it has not received
adequate attention, and as a result we know very little about it.

In this work, we provide a systematic study of compressing obfuscation as an independent cryp-
tographic primitive, and thus characterize the extent to which efficiency plays a role in obfuscation.

1.1 Our Results

Our results span a wide range of topics concerning compressing obfuscation, including limitations of
its power, existence in an information-theoretic setting, constructions for limited classes of functions,
and correctness amplification.

XiO vs. PKE. We start by exploring the power of XiO as an independent cryptographic primi-
tive. One the one hand, we know that when combined with LWE it implies full-fledged iO (which
in turn implies almost all cryptographic primitives). On the other hand, as opposed to iO [70], we
do not even know whether XiO by itself2 implies one-way functions — the most basic cryptographic
primitive.

One of the original applications of obfuscation, which was proposed by Diffie and Hellman back
in 1976 [43], is to transform private-key encryption into public-key encryption. When combined
with one-way functions, iO can be used to perform such a transformation, as shown by [45, 90].
This transformation can also be obtained starting from sub-exponentially secure SXiO and one-way
functions [69].

This raises the same question regarding XiO: Can it bridge the gap between the world of private-
key cryptography and that of public-key cryptography? We provide evidence that it cannot, and
thus show a concrete lower bound on its potential power.

Theorem 1.1 (informal). There is no fully black-box construction of a perfectly correct key-agreeme-
nt protocol from one-way functions and perfectly correct 2(1−ε)n-XiO for any constant ε > 0, even
with sub-exponential security.

Our result follows the extended black-box model of [48, 49], and in particular holds even if
the XiO scheme can obfuscate oracle-aided circuits which contain both XiO and one-way function
gates. This model is stronger than the one considered in [10, 11, 16], in which the obfuscator is
allowed to obfuscate circuits with only one-way function gates. By allowing circuits to contain all
possible oracle gates, our framework captures the flavor of non-black-box constructions which give
public-key encryption from one-way functions and either iO [90] or SXiO [18, 32, 71, 69]. Thus,
our result is one of the strongest forms of the classical separation between one-way functions and

2Assuming any average- or worst-case hardness assumption. This is necessary as XiO exists unconditionally if
P = NP.
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pubic-key encryption due to Impagliazzo and Rudich [65]. We note that our result does not separate
imperfectly correct key-agreement from (perfectly correct) XiO and one-way functions.

Previously, by combining [10, 18], a related result follows but in a significantly weaker black-
box model and for XiO with somewhat weak compression. Concretely, [10] showed a separation of
perfect key-agreement from imperfect private-key FE in a black-box model where one can obfuscate
functions that have only one-way function gates, and [18] showed a black-box construction of 2n/2-
XiO from such private-key FE. This implies a separation from 2(1−ε)n-XiO where 0 < ε ≤ 1/2, and
when only allowing XiO to obfuscate circuits containing one-way function gates.

Statistical security. Our result that it is unlikely that key-agreement can be constructed from
XiO and one-way functions can be viewed as “good news”, as it hints that XiO is a somewhat “weak”
primitive, and therefore it might be possible to base its existence on well-studied assumptions. In
fact, it might even be possible that compressing obfuscation exists unconditionally (even if P 6=
NP). Toward this end, we show almost matching upper and lower bounds for the existence of
compressing obfuscation with statistical security, both for the case of perfect correctness and that
of approximate correctness. Our results show tight connections between compressing obfuscation
and various concepts in complexity theory and learning and thus we view this as one of the central
takeaways of this work.

For the case of approximate correctness, we show a 2n
ε
-SXiO for ε > 0 for small classes of circuits

(such as AC0). On the other hand, we show that such an obfuscator cannot exist for larger classes
of circuits that contain a (puncturable) PRF, unless SAT ∈ AM[2n

ε
], where SAT is the problem of

deciding whether a formula is unsatisfiable and AM[t(n)] is the class of all languages on instances of
size n that have an AM protocol in which the running time of the verifier and the message sizes are
at most t(n).

Theorem 1.2 (informal). There exists a statistically secure and approximately correct 2n
ε
-SXiO for

AC0 and ε > 0. On the contrary, unless SAT ∈ AM[2n
ε
], there is no such obfuscator for any class

that contains a (puncturable) PRF.

This result naturally leads to the question of whether we can get a similar statement for the case
of perfect correctness. We are unable to get such a result for SXiO, but we do get it for XiO, albeit
with worse compression.3

Theorem 1.3 (informal). There exists a 2n(1−ε)-XiO for ε ∈ 1/poly log(n) with statistical security
and perfect correctness for AC0.

Ruling out statistically secure XiO with any compression is left as an open problem. We do
show that unless SAT ∈ AM[2c(1−ε)n] for a universal constant c ∈ N, there is no statistically secure
and perfectly correct 2n(1−ε)-SXiO for AC0 (see Theorem 6.2). It is known, by the recent result of
Williams [92], that SAT ∈ AM[Õ(2n/2)]. However, it might be that for larger values of ε (such as
ε = 1− (0.1/c) or even ε = 1− o(1)) it holds that SAT /∈ AM[2c(1−ε)n].

The positive results are based on classical (PAC) learning algorithms [91, 78] and the circuit
compression algorithm of [37]. Both negative results above rely on and extend the following analo-
gous arguments from the iO literature [56, 29]. The first is of Goldwasser and Rothblum [56] who
showed that statistical iO with perfect correctness cannot exist unless NP ⊆ SZK. The second is
of Brakerski, Brzuska, and Fleischhacker [29] who extended the result of [56] to handle statistical
iO with approximate correctness by showing that unless coNP ⊆ AM, it cannot exist (assuming
additionally one-way functions).

3The obfuscator we get is weak due to two reasons. First, the class for which we obtain XiO does not contain
(puncturable) PRFs and thus is not sufficient for known transformations to iO. Second, the compression we achieve
is not enough for cryptographic applications.
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Correctness amplification. Our results above suggest that approximate correctness might be
easier to achieve than perfect correctness, in an information theoretic setting. Is this the case also in
the computational setting? To address this question, we show a transformation from approximately
correct XiO to perfectly correct XiO, assuming the original XiO applies to a large enough class of
circuits. This transformation achieves optimal parameters and only incurs polynomial security loss,
indicating that correctness is not the bottleneck in constructing XiO from standard assumptions.

Theorem 1.4 (informal). If there exists an XiO scheme for all polynomial size circuits which is
correct with probability (1/2 + 1/poly) over the the inputs and the obfuscation, then there exists a
perfectly correct XiO scheme, assuming polynomially-secure LWE and NIZKs.4

Prior to this result, there were no correctness amplification procedures for XiO which required
only polynomial security or achieved optimal parameters. Correctness amplifications for related
primitives, such as those of [22, 3] for iO, do not apply to XiO, since they involve a random self-
reducibility step which inherently requires running the obfuscator on polynomial-size inputs. The
transformation of Bitansky et al. [17] shows how to transform an XiO which is correct with prob-
ability 0.99 over the inputs and the obfuscation to a weak notion of functional encryption. This
notion of functional encryption was known to imply a relaxed notion of XiO, namely, XiO with
preprocessing [75]. Our transformation works for a much weaker notion of correctness (as opposed
to .99) and results in full-fledged, perfectly correct XiO (as opposed to XiO with preprocessing).

Technically, our regime of parameters introduces many difficulties which require us to tailor
a construction that is based on a delicate combination of various types of error-correcting codes
together with cryptographic primitives (inspired by [83]).

While we show this transformation for the case of XiO, our result extends naturally to the case
of SXiO. In particular, we can obtain perfectly correct XiO from the transformation, or SXiO which
is correct on all but a negligible fraction of obfuscations.

Universal construction. Using our correctness amplification procedure, we obtain a universal
construction of an XiO (resp. SXiO), assuming only the mere existence of XiO (resp. SXiO) with
polynomial security and only (very weak) approximate correctness. For XiO, the resulting universal
construction satisfies perfect correctness. Note that in the context of iO, perfect correctness is known
to be achievable using only derandomization assumptions [23]. Our result is obtained by adapting
the robust combiner of Ananth et al. [2] to the setting of XiO (resp. SXiO) and then using our
correctness amplification transformation.

1.2 Related Work

Universal construction and robust combiners. It was shown in [60] that, in general, a robust
combiner implies the existence of a universal construction. A robust combiner for a cryptographic
primitive takes several candidate constructions of the primitive and outputs one construction that
is as good as any of the input constructions (see also [63, 64]). A combiner for encryption appears
already in [12], and perhaps the most known universal construction is that of one-way functions,
due to [72].

Combiners for obfuscation were given in [44, 2, 3]. The work of [2] shows a robust combiner
for indistinguishability obfuscation with sub-exponential security loss, and assuming either LWE
or DDH. The work of [3] removes the sub-exponential assumption, but does not go all the way to
iO—it shows a transforming combiner from candidates for indistinguishability obfuscation of which
one of them is polynomially secure to a secure functional encryption scheme.

4Using the recent work of [68], we believe that the assumption on NIZKs can be removed. We leave this modification
to future work.
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Existence of iO. Mahmoody et al. [81] showed that iO cannot be based on random oracles or on
constant degree multilinear maps (in a black-box way). Garg et al. [48] showed that iO cannot be
constructed from any type of encryption that has an “all-or-nothing” type of security (as in PKE
or Witness Encryption). Lastly, Garg et al. [49] studied the minimal compactness needed from a
functional encryption scheme to imply iO, and gave matching constructions, following [4, 21]. In
both [48, 49], the results hold even if the primitives upon which iO cannot be based can receive
circuits containing gates for each of the primitive’s subroutines.

Limitations on the power of iO were studied by Asharov and Segev [10, 11] and by Bitansky,
Degwekar and Vaikuntanathan [16]. So far, we know that iO and one-way functions do not imply
collision-resistant hash functions [10], domain-invariant one-way permutations [11], and hardness in
NP ∩ coNP [16]. Also, iO and one-way permutations do not imply hardness in SZK [16].

Relaxations of iO. In addition to (S)XiO, another relaxation of iO is decomposable obfuscation
(dO), which was recently introduced by Liu and Zhandry [79]. Decomposable obfuscation relaxes
the security requirement of iO by requiring that obfuscations of circuits which satisfy a new notion
of functional equivalence are indistinguishable. In particular, it is efficient to verify if two circuits
satisfy their notion of functional equivalence, unlike traditional functional equivalence. This is
similar to the case of XiO, because it is applied on circuits with only logarithmic input size for
polynomial time applications. In [79], they question whether iO with efficiently verifiable functional
equivalence implies public-key encryption. In fact, they have to assume the existence of public-key
encryption for all the applications of dO that they show which imply public-key encryption. As
mentioned above, we show a separation from XiO and OWFs to public key encryption. Therefore,
our result serves as further evidence to the hypothesis that (non) efficiently checkable functional
equivalence is one of the key factors which distinguishes iO from notions like XiO and dO.

Compressing primitives. Recently, compressing witness encryption (WE) was studied by Brak-
erski et al. [30]. Witness encryption, introduced by Garg et al. [46], allows encrypting a message
relative to a statement x ∈ L for a language L ∈ NP such that anyone holding a witness to the
statement can decrypt the message, but if x /∈ L, then it is computationally hard to decrypt. A
compressing WE is such that the encryption time (and thus size) is less than the time it takes to
solve the NP instance. Brakerski et al. showed that such a WE scheme can be constructed under
“standard” assumptions (such as LWE or bilinear maps with sub-exponential security). This is in
sharp contrast to SXiO (or even XiO).

1.3 Paper Organization

We proceed with a technical overview of our results. Then, in Section 3 we overview our definitions.
In Section 4 we show our correctness amplification, and in Section 5 we prove our impossibility
result of construction key-agreement protocol from XiO and OWFs. In Section 6 we present our
positive and negative regarding statistically secure XiO.

2 Technical Overview

In this section we provide a high level overview of our results. We start with the correctness am-
plification (and its application to universal constructions) in Section 2.1. We proceed with the
limitations on the power of XiO in Section 2.2, and conclude with our constructions and impossi-
bilities of statistically secure XiO in Section 2.3.
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2.1 Correctness Amplification

Our correctness amplification for XiO is a transformation from an approximately correct XiO scheme
to an XiO scheme that is perfectly correct. Here, by approximately correct, we mean an XiO scheme
which is correct with probability (1/2+1/poly) over the inputs and the obfuscation, and by perfectly
correct, we mean an XiO scheme which is correct on all inputs and all obfuscations with probability
1. The starting point for our correctness amplification is the transformation of Bitansky et al. [17],
which transforms an XiO scheme which is correct with probability .99 over the obfuscation and the
inputs to a functional encryption (FE) scheme which is correct on all inputs (with all but negligible
probability). At a high level, FE is a type of encryption which enables generating functional keys,
such that decryption of a ciphertext corresponding to a message m with a functional key for a circuit
C results in C(m). The hope is that if we can adapt the [17] transformation to our case, then we
can attempt to transform the correct FE back to XiO.

From approximately correct XiO to correct FE. In [17], they first observe that by averag-
ing and standard BPP-type amplification, their XiO scheme can be amplified to one which is correct
with probability .9 only over the inputs. Then, they transform this XiO to a correct FE using an
error-correcting code, as follows. To encrypt a message m, they obfuscate a circuit Gm which, on
input i, outputs an encryption of (m, i) using a succinct functional encryption scheme sFE, that
exists based on LWE [55]. Call the resulting obfuscated circuit G̃m. To generate a functional key
for a circuit C, they generate an sFE functional key for a circuit C ′ that on input (m, i) outputs the
ith bit of ECC(C(m)), where ECC is an error-correcting code. To decrypt, they first evaluate the
obfuscated circuit G̃m on every input i to obtain a list of encryptions of (m, i) for all i. Then, they
use the sFE functional key to decrypt each of these encryptions and finally, decode the result.

The reason why this is enough for [17] is that, first, by the BPP amplification, they obtain correct
encryptions of (m, i) for a .9 fraction of i’s, with all but negligible probability over the obfuscation.
This lets them calculate (ECC(C(m))i for a large (� 3/4) fraction of the i’s. Second, they rely on
the error-correcting code which, given (ECC(C(m))i for many (� 3/4) i’s, can recover C(m).

In our case, a natural attempt would be to replicate their first step and then use an error-
correcting code with better parameters for the second step. However, this approach fails: we are
only guaranteed correctness with probability (1/2 + 1/poly(λ)) over the obfuscation and the inputs,
which is not enough for averaging and BPP-type amplification. Nevertheless, the framework of [17]
is still a convenient starting point for us.

Our first challenge is to obtain every bit of the encryption of (m, i) for sufficiently many i’s.
One idea is to apply an error-correcting code to the output of Gm, so that for any index i for which
Gm correctly outputs enough of the bits of the encryption of (m, i), we can decode successfully.
While this is not possible for our regime of parameters using classical binary error-correcting codes,
this is achievable with binary list-decodable codes, which output a list of possibilities upon decoding
a codeword, rather than a unique decoding. Therefore, we modify the circuit Gm to output a
list-decodable encoding of the encryption of (m, i), one bit at a time, which will be decoded at
decryption time. This introduces the complication that list-decoding gives many possibilities for
the encryption of (m, i) for each i. To address this, we employ a combination of NIZK proofs and
commitments which enable us to uniquely decode from the decoded list. At a high level, we impose
the requirement that in addition to the ciphertext of (m, i), the circuit Gm on input i must output a
NIZK proof certifying that the ciphertext is correct. This ensures that we obtain sFE encryptions of
(m, i) for a noticeable fraction of the inputs i. Thus, we have replaced the BPP-type amplification
of [17] with list-decodable codes, NIZK proofs, and commitment schemes.

After this change, we have that for a noticeable (but small, say 1%) fraction of the i’s, we obtain
a correct encryption of (m, i). If we decrypt this with the sFE secret key of [17], we would hope
to obtain (ECC(C(m)))i for enough i’s such that ECC can successfully decode to C(m), but this
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does not quite work because we only have a very small fraction of correct encryptions. Indeed,
no (binary) error-correcting code can recover from more than 50% error! To overcome this, we
notice that we have additional information (thanks to the NIZK) – we know exactly for which i’s
we obtained correct sFE encryptions of (m, i). Therefore, we replace the error-correcting code in
the [17] construction with a code that can recover from a high fraction (say 99%) of erasures. To
obtain optimal parameters, this requires us to have sFE output alphabet symbols rather than bits,
but this does not impact the correctness of the scheme. Combining these two steps, we obtain an
FE scheme with amplified correctness. As far as we know, this combination of list-decodable codes
and erasure-correcting codes is novel to this work.

These techniques nearly work, with the caveat that our first step only gives us the correct
encryptions of enough (m, i) when the obfuscator uses “good” random coins. Nevertheless, this can
be remedied by using BPP-type amplification and leveraging the fact that our FE scheme always
decrypts to ⊥ or to the correct output, C(m). Therefore, this results in an FE scheme which is
correct for all inputs with all but negligible probability.

From correct FE to correct XiO. The only remaining step is to transform the FE back to
XiO. The FE scheme we obtain from the above transformations is weakly sublinear compact, a weak
notion of compactness which does not suffice for known transformations to XiO without assuming
sub-exponential security. FE with weak sublinear compactness has the property that while the
encryption time is proportional to the circuit size of circuits supported by the scheme, the ciphertext
lengths are compact. We take advantage of this by having an obfuscation consist of many “short”
encryptions, which exactly captures the requirement that the obfuscator has a long running time
but a nontrivial output length.

In more detail, to obfuscate a circuit C, we encrypt a circuit Cx for each x ∈ {0, 1}n/2, where
Cx(·) = C(x‖·). Then, we generate a functional key sk for a circuit T , which, given a circuit on n/2
bits, outputs its truth table. The ciphertexts and functional key serve as our obfuscation, which
gives the desired efficiency for XiO exactly because of the weak compactness of FE. To evaluate
the obfuscation on an input x = x1‖x2, we use FE to decrypt the ciphertext corresponding to Cx1

with sk, and select the element of the truth table corresponding to x2. This transformation yields
a correct and secure XiO scheme, in which for any circuit C and every input x, it holds that the
obfuscation of C at the point x agrees with C(x) with all but negligible probability.

In the technical section, we present the full construction in a more streamlined manner. In
particular, we compose the XiO to FE transformation with the FE to XiO transformation described
above, which yields a transformation from approximately correct XiO to XiO that is correct on any
input with all but negligible probability over the randomness of the obfuscator.

Given an XiO which is correct on any input with all but negligible probability, we can then apply
another BPP-style transformation (this time we apply parallel repetitions and then take the majority
vote) to get an obfuscator that for all but negligible fraction of the obfuscations the obfuscated circuit
completely agrees with the input circuit. To conclude our correctness amplification, we observe that
the running time for XiO allows the obfuscator to compute the truth table of the circuit it obfuscates.
Therefore, we modify the obfuscator to check if an obfuscation C̃ of a circuit C is correct by running
over all inputs. If C̃ agrees with C, then C̃ is used as the obfuscation, and if not, we simply output
C in the clear. This takes advantage of the running time of XiO and incurs only a negligible loss in
security, resulting in a perfectly correct XiO.

2.1.1 A Universal Construction

An important application of correctness amplification is a universal construction. We show a uni-
versal construction for XiO (resp. SXiO) by combining our correctness amplification with the results
of [2].
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A universal construction for a primitive can be obtained via a robust combiner for that primitive,
which is a transformation that takes several candidate constructions of the primitive and outputs
one construction that is as good as any of the input constructions. It is robust in the sense that
it should work even if some of the candidates have weak correctness guarantees, have bad running
times, etc. A universal construction is then acquired by enumerating over all possible candidates
while making sure not to be “fooled” by bad faulty candidates so that we end up with a correct
candidate. Thus, it is guaranteed that the resulting candidate is correct and secure.

We observe that a combiner (i.e, a secure candidate assuming one exists) for XiO (resp. SXiO)
can be obtained by adapting the construction for iO of Ananth et al. [2] which further relied on
LWE. In the case of iO, their construction, on input circuit C, obfuscates a variant of C that has
the same input domain as C. In the security proof, they go “input-by-input” over this obfuscated
circuit which results in a sub-exponential security loss. We notice that, in the case of XiO (resp.
SXiO), the number of inputs in the above obfuscated circuit is at most logarithmic, so the very same
proof can be carried out, losing only a polynomial term. Then, to make the combiner robust we
use our correctness amplification procedure. This results in a universal construction of perfect XiO
(resp. imperfect SXiO), assuming the existence of XiO (resp. SXiO) with very weak correctness.

2.2 Impossibility of Key-Agreement

To illustrate the difference between the power of compressing obfuscation and iO, we revisit one of
the primary applications of iO—transforming a private-key scheme into a public-key one. In the
context of iO, this transformation is performed by obfuscating the encryption circuit of a private-key
encryption scheme, while embedding the symmetric secret key into the circuit. The public key is
then simply the obfuscated circuit. In order to encrypt a message m, one has to choose randomness
r and run the obfuscated circuit on (m, r) to obtain the ciphertext c. An important property of this
construction is the ability to obfuscate circuits with “hardwired cryptography”, e.g., the evaluation
circuit of a pseudorandom function with a hardwired PRF key.

Since XiO is efficient only when obfuscating circuits with logarithmic size input, one cannot use
the above approach with XiO even when the message space is limited to a single bit. Given the
public key, the adversary can learn the entire truth table of the obfuscated circuit by enumerating
over all inputs, thereby breaking the secrecy of the underlying message. Our proof formalizes this
intuition, and shows that other attempts at such a transformation cannot succeed. We formalize
this using a black-box separation, showing that no perfectly complete bit-agreement protocol can
be constructed from perfectly correct XiO and one-way functions.

Modeling non-black-box constructions. Constructions that are based on indistinguishability
obfuscation are almost always non-black-box in the underlying primitives. In the example above,
the circuit being obfuscated is the encryption algorithm of a private-key encryption scheme and
thus contains a specific circuit representation of the underlying one-way function as a sub-circuit.
More complex constructions also use techniques which require obfuscating a circuit which itself may
obfuscate smaller circuits (and evaluate smaller obfuscations).

To capture these types of constructions, we extend the framework of Asharov and Segev [10, 11],
which enables the obfuscator to run on oracle-aided circuits, i.e., circuits that might contain oracle
gates. In this manner, the specific representation of the one-way function in the example above is
replaced by an oracle gate, which allows the construction to be black-box relative to the one-way
function. While the results in [10, 11] hold relative to an obfuscator for circuits which can only
contain one-way function gates, our separation allows circuits to contain both XiO and one-way
function gates. This captures the known techniques to obtain public-key encryption from either
iO or SXiO, and is similar to the class of constructions captured in the framework of [48, 49]. We
refer to [10, 11] for details regarding this model (see also [16]), and for examples of how it captures
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common techniques such as the punctured programming technique of Sahai and Waters [90] and its
variants.

The oracle. Our result is obtained by presenting an oracle Γ relative to which the following prop-
erties hold: (1) there exists a one-way function f ; (2) there exists a perfectly-correct, exponentially-
secure XiO scheme xiO for all oracle-aided circuits CxiO,f ; (3) for any perfectly complete bit-
agreement protocol between two parties, there exists an eavesdropping adversary that makes poly-
nomially many queries to the oracle Γ and succeeds to recover the bit from the transcript of the
interaction. Our oracle consists of three functions, similar to that of [11]: (1) a random function f
that will serve as the one-way function; (2) a random length-increasing function O that will serve as
the obfuscator (an obfuscation of an oracle-aided circuit C is a “handle” Ĉ = O(C, r) for a random
string r), and (3) a function E that enables evaluations of obfuscated circuits: given some obfuscated
circuit Ĉ and an input x, the function E looks for the lexicographically first pair (C, r) for which
O(C, r) = Ĉ and returns CΓ(x). Note that if C is some circuit of size s, it can only make oracle
calls to Γ on inputs smaller than s, and thus the above definition is not circular.

The main difference in modeling XiO as an oracle rather than iO as in [11] is the expansion factor
of the oracle O. In order to capture compressing obfuscation, the expansion factor that we use is
(sub-)exponential in the input size of the circuit C. While this modification is somewhat minor in
syntax, it has a major effect – if the expansion factor is “small” then it is possible to construct
a polynomial time key-agreement protocol relative to such an oracle (following the construction of
Sahai and Waters [90]), whereas for a larger expansion factor this becomes impossible. As for the
existence of one-way functions and indistinguishability of obfuscated circuits, we derive these almost
for free from [11].

In what follows, we first discuss how to break a perfectly complete key-agreement protocol
relative to a random oracle as a warmup. We then discuss the challenges when dealing with our
(more structured) oracle, and discuss why our approach does not work for iO.

Separating key-agreement from a random oracle. As a warmup, we first give an overview
of the result of Impagliazzo and Rudich [65] and Brakerski et al. [31], who show that for any two
polynomial time oracle-aided algorithms A and B, if 〈Af ,Bf 〉 implements a perfectly-correct bit-
agreement protocol for all functions f , then there exists an oracle-aided algorithm E such that for
any function f learns the agreed bit with probability 1 by making only a polynomial number of
oracle queries to f . The adversary E is given a transcript T which is a result of an interaction of A
and B relative to some oracle f , and is required to find the key k? that A and B agreed on. Denote
by r?A (resp. r?B) the randomness used by A (resp. B) in the real interaction that produced T . The
adversary E initializes a set of queries/answers Q, which will contain the actual queries made by
E to the true oracle f . It also initializes a multiset K = ∅, and repeats the following polynomially
many times:

• Simulation: E simulates an oracle f ′ that is consistent with Q (i.e., f ′(w) = f(w) for every
w ∈ Q), and randomness r′A, r

′
B such that the interaction 〈Af ′(r′A),Bf ′(r′B)〉 (i.e., running the

protocol with respect to the function f ′ with randomness r′A for A and r′B for B) results in
the transcript T and key k′. E adds k′ to K.

• Update: E asks f for all queries made to f ′ by A or B in the simulation that are not already
in Q, and updates the set Q.

At the end of the attack, E outputs the majority value in K. The proof then relies on the following
observation: In each iteration, either (1) in the update phase, E finds at least one new query that
is also made by either A or B during the real interaction with the function f that produced the
transcript T ; or (2) E adds the real key k? to K.
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Intuitively, if (1) does not hold, then the perfect correctness of the bit-agreement protocol guar-
antees that (2) holds. In particular, in that case it is possible to construct a “hybrid” oracle f̃
that behaves like f in the real execution of A, i.e., Af (r?A), and behaves like f ′ in the simulated
evaluation of B, i.e., Bf ′(r′B). According to this hybrid oracle, an execution of A with randomness
r?A and an execution of B with randomness r′B would result in the transcript T , A would output k?

(as in the real execution) and B would output k′ (as in the simulation). Perfect correctness then tells
us that k? = k′. This hybrid oracle can be constructed since the intersection of the set of queries
made in the simulated execution and those made in the real execution is already contained in Q,
and therefore there are no contradicting queries (i.e., queries w that appear in both executions for
which f(w) 6= f ′(w)). As the number of oracle queries A and B make during the execution of the
protocol is some polynomial q, the majority value in K is guaranteed to be the correct key after
2q + 1 iterations.

Attacking key-agreement relative to our oracle. We extend the attack described above rel-
ative to our oracle Γ, which is a significantly more structured than a random oracle and therefore
raises several challenges. Recall that our oracle Γ consists of a three functions f , O, and E , that are
dependent. Following the above template, we construct an adversary that simulates an execution
that produces the transcript T with some simulated oracle Γ′ = (f ′,O′, E ′). There are three main
challenges with this approach:

1. The first challenge is to show that A and B cannot gain “extra” information from oracle
queries that are not in the intersection of their query sets. In particular, in the case of a
random oracle, the shared information between A and B can be recovered completely from
their shared oracle queries and the transcript T . In our setting, since the oracles f , O, and E
have dependence, this may not be the case.

2. The second challenge is due to the fact that queries made by A and B could cause “hidden”
oracle queries. Since we allow obfuscated circuits to contain oracle gates, this could occur when
obfuscated circuits are evaluated by A and B. In particular, the output of the evaluation could
reveal query-answer pairs on queries that were never directly asked by A or B. Thus, we must
show that A and B cannot indirectly learn too many query-answer pairs this way.

3. The third challenge is to show that a hybrid oracle Γ̃ = (f̃ , Õ, Ẽ) can be constructed from
the two sets of queries, i.e., from the simulated execution and the real execution. As an
example, suppose there is a query E(Ĉ, x) that is performed in the real execution and a different
query E ′(Ĉ, y) that appears in the simulated execution. Such two queries raise a challenge for
constructing a hybrid oracle Ẽ which is consistent with these two queries simultaneously. In
order to see this, suppose that in the real execution, the lexicographically first pair (C, r) for
which O(C, r) = Ĉ is some pair (C1, r1), and in the simulated execution the lexicographically
first pair (C, r) for which O′(C, r) = Ĉ is some pair (C2, r2) 6= (C1, r1). As a result, E(Ĉ, x) in
the real execution is mapped to CΓ

1 (x), whereas E ′(Ĉ, y) is mapped to CΓ′
2 (y), but C1 6= C2.

We solve the first challenge by adding additional oracle queries to the set of real queries that the
parties make, which makes the dependence between the oracles more explicit. We solve the second
challenge by showing that any oracle query can only cause polynomially many additional indirect
queries. In particular, for a circuit CΓ of size s, any indirect queries are on circuits smaller than
s. We use this in conjunction with the (sub-exponential) expansion factor of our oracle O to show
that the number of indirect queries are bounded, and thus the adversary E can learn any indirect
queries that A and B learn by only making polynomially many additional queries.

As for the third challenge, interestingly, our proof does not completely solve it, and we do not
fully control to which one of the two circuits C1 or C2 the hybrid oracle Ẽ maps Ĉ. Nevertheless,
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we design the adversary such that, whenever there is such a contradicting scenario between the real
execution and the simulated execution, it must hold that C1 and C2 are functionally equivalent with
respect to the hybrid oracle Γ̃. Otherwise, i.e., when there is some input for which C1 and C2 do
not agree, we claim that the adversary learns a new query that is associated with the real execution.
As a consequence, E learns the entire truth table of any obfuscated circuit Ĉ that is associated
with the real execution, which is possible due to the fact that querying the oracle Γ on all inputs
of Ĉ results in polynomially many queries. Notably, for a different expansion factor of the oracle O
(which results in iO and not XiO), this becomes an exponential number of queries, and the above
attack fails.

2.3 Statistically Secure Compressing Obfuscation

This set of results is composed of two main parts. One is positive results showing that for small
classes of circuits compressing obfuscation exists unconditionally. The other complements the con-
structions and shows that improvements in the above obfuscator, either in the compression factor
or in the circuit class, will imply some nontrivial speedup for protocols solving UNSAT. We have
positive and negative results both for the case of perfect correctness and for the case of approximate
correctness.

Negative results. First, we show that that approximately correct and statistically secure 2n
ε
-

SXiO cannot exist unless coNP ⊆ AM[2n
ε
] for ε > 0. Here, we follow on the approach of [29] from

the world of iO. There, they show how to use iO and puncturable PRFs to create two circuits
that differ at a single point but their obfucations (as random variables) are statistically far. Then,
they use an algorithm that can distinguish these two distributions to solve Unique-SAT which then
implies that coNP ⊆ AM by a result of Mahmoody and Xiao [82]. We modify the argument to work
with compressing obfuscation by making the two circuits receive only short inputs, and observe that
the proof still goes through, but then solving Unique-SAT on short inputs (say of poly-logarithmic
size). We then apply the result of Mahmoody and Xiao and finally obtain our result by scaling the
parameters.

Second, we show that perfectly correct and statistically secure 2n(1−ε)-SXiO cannot exist unless
coNP ⊆ AM[2(1−ε)n] (with large enough 0 < ε < 1). For this, we construct an SZK[2(1−ε)n] protocol
for all NP. In this protocol, the verifier, given x ∈ L for a language L, chooses a bit b uniformly
at random and obfuscates a circuit that gets a witness w as input, checks whether it is a valid
witness for x and if so, it outputs b (otherwise it outputs ⊥). This protocol can be shown to
be honest-verifier statistical zero-knowledge with a verifier that runs in time 2(1−ε)n for L. This
argument is reminiscent to the argument of [70, 56] in the context of iO. We then carefully apply
the transformation of Okamoto [86] to translate this protocol into an (honest-verifier) SZK protocol
for every language in coNP. This implies that coNP ⊆ AM[2(1−ε)n].

Positive results. We show that compressing obfuscators exists unconditionally for restricted
classes of circuits such as AC0 (the class of all constant-depth circuits) and Mon (the class of all
monotone functions). We again construct compressing obfuscators with perfect correctness and ap-
proximate correctness. The approximately correct obfuscators are obtained by running a classical
(PAC) learning algorithm [91] on the given circuit and outputting the hypothesis. Using the most
efficient learning algorithms for AC0 and Mon, we obtain compressing obfuscators for these classes.
This construction is aligned with the above impossibility that says that we are unlikely to be able
to get such an obfuscator for classes that contain a (puncturable) PRF.

In the perfect correctness case, we use a different tool called a circuit compression algorithm [37].
In circuit compression one is given the truth table of a Boolean function f computable by some
unknown circuit from a known class of circuits, and the goal is to find in time poly(2n) a circuit C
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(not necessarily from the aforementioned family) computing f so that the size of C is less than the
trivial circuit size ≈ 2n. We apply such an algorithm on circuits in AC0 and get an obfuscator with
small compression.

3 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For a randomized function f and an input x ∈ X , we denote by y ← f(x) the
process of sampling a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}.

Throughout the paper, unless otherwise specified, we denote the security parameter by λ. A
function negl : N→ R+ is negligible if for every constant c > 0 there exists an integer Nc such that
negl(λ) < λ−c for all λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N
are computationally indistinguishable if for any probabilistic polynomial-time algorithm A there
exists a negligible function negl(·) such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ negl(λ) for

all λ ∈ N.
When we deal with Boolean circuits, we parametrize them by their size s and the number of

inputs they accept n. As usual, the size of a circuit is defined to be the number of wires in it.

Definition 3.1. For any functions s(·) and n(·), we define Cs,n to be the class of circuits {Cλ}λ∈N
for which for any C ∈ Cλ, the size of C is at most s(λ) and the input length of C is at most n(λ).

Definition 3.2. We define the following classes of circuits:

• Plog: the collection of circuit classes Cs,n for which s is a polynomial, n is a logarithmic
function, and for which all circuits have one-bit outputs.

• P: the collection of circuit classes Cs,n for which s and n are polynomials.

Definition 3.3. For an (uniform) algorithm A with input x, we denote by Time [A(x)] an upper
bound on the running time of A on input x. We denote by Outlen [A(x)] an upper bound on the
output length of A when run on input x.

3.1 Compressing Obfuscation

We define a general notion of compressing obfuscation, generalizing the definition of [75].

Definition 3.4 (Functional equivalence). We say that two circuits C and C ′ are functionally equiv-
alent and denote it by C ≡ C ′ if they compute the same function (i.e., ∀x : C(x) = C ′(x)).

Definition 3.5 (Compressing obfuscation). An α-correct (t, `)-compressing obfuscator for the cir-
cuit class Cs,n = {Cλ}λ∈N is a pair of algorithms (Obf,Eval) with the following syntax:

• C̃ ← Obf(1λ, C): The obfuscator receives the security parameter 1λ and a circuit C ∈ Cs,n and
outputs a circuit C̃.

• Eval(C̃, x): The evaluator receives a circuit C̃ and an input x, and outputs a string y or ⊥.

• α-Correctness. For all λ ∈ N, all C ∈ Cλ, and all x ∈ {0, 1}n, it holds that

Pr
Obf

[
C̃ ← Obf(1λ, C) : C(·) ≡ Eval(C̃, ·)

]
≥ α(λ)
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• (t, `)-Compression. For all λ ∈ N and all C ∈ Cλ, there exists a polynomial poly(·) such
that the running time and output size of Obf(1λ, C) are bounded by t(s, n) · poly(λ, n) and
`(s, n) · poly(λ, n), respectively. That is, for n = n(λ) and s = s(λ),

Time
[
Obf(1λ, C)

]
= t(s, n) · poly(λ, n), Outlen

[
Obf(1λ, C)

]
= `(s, n) · poly(λ, n).

Several instantiations of s(·) and `(·) are of interest in this work. Fix ε > 0. One setting is when
the obfuscation size is exponential in (1− ε)n, but the running time is exponential in n. The other
setting is when both the running time and the output size are exponential in (1− ε)n.

Definition 3.6 (XO). An exponentially-efficient obfuscator (XO) for a class Cs,n of circuits is a
(t, `)-compressing obfuscator with

`(s, n) = 2n(1−ε) · poly(s), t(s, n) = poly(2n, s).

Definition 3.7 (SXO). A strong exponentially-efficient obfuscator (SXO) for a class Cs,n of circuits
is a (t, `)-compressing obfuscator with

t(s, n) = `(s, n) = 2n(1−ε) · poly(s)

We provide two security definitions for a compressing obfuscator as above, along the lines of
indistinguishability obfuscation [15, 45] and of virtual black-box obfuscation [15].

Definition 3.8 (Indistinguishability obfuscation). An α-correct (t, `)-compressing obfuscator O
is an indistinguishability obfuscator (iO) for the class Cs,n = {Cλ}λ∈N if for any probabilistic
polynomial-time distinguisher D, there exists a negligible function negl(·) such that for all λ,∈ N
and all C0, C1 ∈ Cλ with C0 ≡ C1, it holds that∣∣∣∣ Pr

Obf,D

[
D
(
Obf(1λ, C0)

)]
− Pr

Obf,D

[
D
(
Obf(1λ, C1)

)]∣∣∣∣ ≤ negl(λ).

3.2 Correctness of Obfuscation

In addition to the notion of α-correctness we gave above, we define three additional notions of
correctness for obfuscation, as in [22].

Definition 3.9 (Perfect correctness). An α-correct obfuscator for a circuit class Cs,n = {Cλ}λ∈N is
perfectly correct if α(λ) = 1 for all values of λ.

Definition 3.10 (Almost Perfect Correctness). An obfuscator (Obf,Eval) for a class of circuits
Cs,n = {Cλ}λ∈N is almost perfectly correct if for all λ ∈ N and all C ∈ Cλ, it holds that

Pr
Obf

[
C̃ ← Obf(1λ, C) : ∀x ∈ {0, 1}n : C(x) = Eval(C̃, x)

]
≥ α(λ).

Definition 3.11 (Approximate Correctness). An obfuscator (Obf,Eval) for a class of circuits Cs,n =
{Cλ}λ∈N is α-approximately correct if for all λ ∈ N and all C ∈ Cλ, it holds that

Pr
Obf

x←{0,1}n

[
C̃ ← Obf(1λ, C) : C(x) = Eval(C̃, x)

]
≥ α(λ).
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3.3 Puncturable Pseudorandom Functions

Definition 3.12 (Puncturable PRF [90]). A puncturable pseudorandom function PRF is given by
a tuple of efficient algorithms PRF = (Key,Punc,Eval) and a pair of computable functions `(·) and
m(·) (where the PRF maps `-bit inputs to m-bit outputs) which satisfy the following conditions:

• Functionality preserved under puncturing: For every polynomial size set S ⊆ {0, 1}`(λ)

and for every x ∈ {0, 1}`(λ) \ S, we have that:

Pr
[
K ← Key(1λ), K̃[S] = Punc(K,S) : Eval(K,x) = Eval(K̃[S], x)

]
= 1.

• Pseudorandomness at punctured points: For every probabilistic polynomial-time adver-
sary A and every point x∗ ∈ {0, 1}`(λ), there exists a negligible function negl(·) such that for
every λ ∈ N, it holds that∣∣∣Pr

[
A(K̃x∗ ,Eval(K,x

∗)) = 1
]
− Pr

[
A(K̃x∗ , Um(λ)) = 1

]∣∣∣ ≤ negl(λ),

where K ← Key(1λ), K̃x∗ = Punc(K,x∗), and Um(λ) denotes the uniform distribution over

{0, 1}m(λ).

Theorem 3.13 ([53, 26, 28, 67]). Assuming the existence of one-way functions, for any computable
functions `(·) and m(·) there exists a secure puncturable PRF family mapping {0, 1}`(λ) to {0, 1}m(λ).

3.4 Non-Interactive Zero Knowledge

In this work, we consider NIZK proof systems in the CRS model which support proving and sim-
ulating multiple statements with the same CRS. We start with the definition of a non-interactive
zero knowledge proof system as in [45].

Definition 3.14. Let L be a language with a relation RL. Without loss of generality, assume that
for any (x,w) ∈ RL, it holds that |x| = |w| = n. A non-interactive zero-knowledge proof system in
the CRS model consists of a tuple of PPT algorithms NIZK = (Gen,P,V) described as follows:

• σ ← Gen(1λ, 1n): The Gen algorithm takes as input the security parameter λ and outputs the
CRS σ.

• π ← P(σ, x, w): The prover algorithm P takes as input the CRS σ, a statement x for the
language L, and a witness w, and outputs a proof π.

• b← V(σ, x, π): The verifier algorithm V takes as input the CRS σ, a statement x, and a proof
π, and outputs a bit b ∈ {0, 1}.

We require the following properties of the NIZK scheme.

• Perfect Completeness. There exists a negligible function negl such that for every x ∈ L and
w ∈ RL(x), for all λ ∈ N,

Pr
[
σ ← Gen(1λ, 1n);π ← P(σ, x, w) : V(σ, x, π) = 1

]
= 1.

• Statistical Soundness. For every (possible unbounded) adversary A, there exists a negligible
function negl such that for every λ ∈ N:

Pr
[
σ ← Gen(1λ, 1n) : (x, π)← A(σ) : V(σ, x, π) = 1 ∧ x 6∈ L

]
≤ negl(λ).
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• Computational Zero knowledge. There exists a pair of PPT simulators (S1, S2) such that
for every x ∈ L, every w ∈ RL(x), and every λ ∈ N, the following two distributions are
computationally indistinguishable:

{σ ← Gen(1λ, 1n);π ← P (σ, x, w) : (σ, x, π)}

{(σ′, aux)← S1(1λ, 1n);π′ ← S2(σ′, x, aux) : (σ′, x, π′)}

We require the NIZK proof system to support proving and simulating polynomially many theo-
rems from one CRS. This is captured by the following definition, as in [52].

Definition 3.15. Let L be a language with relation RL. A Multi-NIZK proof system (Gen,P,V)
for L in the CRS model is multiple theorem computational zero knowledge if for any polynomial
m(·), there exists a pair of PPT simulators (S1, S2) such that for any λ ∈ N and any {xi, wi}i∈[m(λ)]

with wi ∈ RL(xi) and |xi| = |wi| = n for all i, the following two distributions are computationally
indistinguishable:{

σ ← Gen(1λ, 1n);πi ← P (σ, xi, wi) ∀i ∈ [m(λ)] :
(
σ,{xi, πi}i∈m[λ]

)}
{

(σ′, aux)← S1(1λ,{xi}i∈m[λ]);π
′
i ← S2(σ′, xi, aux) ∀i ∈ [m(λ)] :

(
σ′,
{
xi, π

′
i

}
i∈m[λ]

)}
.

It is known that NIZKs satisfying multiple-theorem computational zero knowledge can be built
from any NIZK proof system [52]. We stress that the CRS σ is of length λ, and supports proving
poly(λ) many statements of length poly(λ).

3.5 Commitment Schemes

For some of our constructions, we need a non-interactive commitment scheme such that commit-
ments of different strings have disjoint support. Jumping ahead, we will use commitments in some
encryption procedure that is not controlled by the adversary (i.e., it is honest). Therefore, we can
relax the foregoing requirement and use non-interactive commitment schemes that work in the CRS
(common random string) model (for ease of notation, we usually ignore the CRS).

Definition 3.16. A non-interactive commitment scheme is a tuple of PPT algorithms (Gen,Commit,
Open) described as follows:

• c ← Commit(x, r): The commitment algorithm Commit takes a message x ∈ {0, 1}n for n =
poly(λ) and a random string in {0, 1}λ and outputs a commitment c to x.

• x′ ← Open(c, r): The opening algorithm takes as input a commitment c and a random string
r ∈ {0, 1}λ, and outputs a message x′.

We require the following properties of a commitment scheme.

• Hiding. For any x1, x2, the distributions {Commit(x1,Uλ)}λ∈N and {Commit(x2,Uλ)}λ∈N are
computationally indistinguishable, where Uλ is the uniform distribution over {0, 1}λ.

• Binding. For any x1, x2 ∈ {0, 1}n and r1, r2 ∈ {0, 1}λ, Commit(x1, r1) 6= Commit(x2, r2).

Commitment schemes that satisfy the above definition, in the CRS model, can be constructed
based on any pseudorandom generator [85] (which can be based on any one-way functions [61]). We
say that Commit(x, r) is the commitment to the value x with the opening r.
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3.6 Error-Correcting Codes

We review the definitions of error-correcting that are relevant to this paper. A code C over an
alphabet Σ of size q that has block length n, dimension k and minimal distance d is denoted as
an (n, k, d)q code. A code C can be thought of as a mapping from Σk to Σn such that every two
outputs of the mapping differ in at least d locations. The mapping procedure is sometimes referred
to as the encoding function of C. The relative distance of C is d/n and the rate is k/n.

In this paper, we will use a Reed-Solomon code as an erasure-correcting code, which can recover
from a small enough fraction of deleted symbols in the codeword.

Theorem 3.17 (e.g., [58, Chapter 11]). The Reed-Solomon error-correcting code is an (n, k, n −
k + 1)q code for k < n ≤ q that can be uniquely decoded by a polynomial time algorithm from any
fraction e of erasures satisfying en ≤ n− k + 1.

We will also use binary error correcting codes. It is known that binary error correcting codes with
unique decoding cannot correct a 1/2 fraction of errors, so we will need the list-decoding relaxation
that allows the decoder to output a (short) list of possible messages such that the correct message
is one of them.

Definition 3.18 (List decoding). A binary error-correcting code is (e, L)-list decodable if for any
c ∈ {0, 1}n, there are at most L codewords within distance e · n of c and there is a polynomial time
algorithm decode such that on input c ∈ {0, 1}n, outputs all such codewords.

Theorem 3.19 ([59, Corollary 4]). For any integer r and γ > 0, there exists a polynomial p(·) such
that there exists a binary error correcting code of rate r and block length n where n = O

(
r/γ8

)
, that

is (1
2 −

γ
2 , p(n))-list decodable.

3.7 Functional Encryption

Definition 3.20 (Functional Encryption [87, 25]). A public-key functional encryption (FE) scheme
for a class of circuits Cs,n is a tuple of PPT algorithms (Setup,Keygen,Enc,Dec) that behave as
follows:

• (msk, pk) ← FE.Setup(1λ): The setup algorithm takes as input the security parameter λ and
outputs the master secret key msk and public key pk.

• skC ← FE.Keygen(msk, C): The key generation algorithm takes as input the master secret key
msk and some circuit C ∈ Cλ and outputs the functional secret key skC .

• ct← FE.Enc(pk,m): The encryption algorithm takes as input the public key pk and a message
m and outputs a ciphertext cipher.

• y ← FE.Dec(skC , ct): The decryption algorithm takes as input the functional secret key skC
and ciphertext ct and outputs y ∈ {0, 1}∗.

We require the following conditions to hold:

• Correctness: There exists a negligible function negl such that for every λ ∈ N, every C ∈ Cλ,
and every message m ∈ {0, 1}n(λ), we have that:

Pr [C(m) = FE.Dec (FE.Keygen(msk, C),FE.Enc(pk,m))] ≥ 1− negl(λ),

where (pk,msk)← FE.Setup(1λ), and the probability is taken over the randomness of FE.Setup,
FE.Keygen and FE.Enc.
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• q-selective security: For every probabilistic polynomial-time algorithm A, there exists a negli-
gible function negl(·) such that for every λ ∈ N, every collection of q circuits C1, . . . , Cq ∈ Cλ,
and ever pair of messages m0,m1 ∈ {0, 1}n(λ) such that Ci(m0) = Ci(m1) for all i ∈ [q], it
holds that ∣∣∣∣Pr [A (z,FE.Enc(pk,mb)) = b]− 1

2

∣∣∣∣ ≤ negl(λ),

where z = (pk, C,m0,m1,{ski}i∈[q]), (pk,msk) ← FE.Setup(1λ), ski ← FE.Keygen(msk, Ci) for
all i ∈ [q], and b← {0, 1}. When q = 1, we say that FE is selectively secure.

Definition 3.21 (Succinct Functional Encryption [22, 4, 75]). An FE scheme (Setup,Keygen,Enc,
Dec) for a class of circuits Cs,n with one-bit outputs is a succinct FE scheme if it holds that

Time [Enc(pk,m)] = poly(λ, n(λ), log(s(λ))),

for every λ ∈ N, pk← Setup(1λ) and m ∈ {0, 1}n(λ).

We will use the succinct FE scheme of Goldwasser et al. [55] which is based on LWE (see [24, 75]
for restatements). In particular, [55] gives a construction of succinct FE for NC1. This can be
bootstrapped to a succinct FE scheme for P using a tranformation in [1], which additionally relies
on the existence of symmetric-key encryption with decryption in NC1. Nevertheless, this can be
based on LWE, which gives the following theorem.

Theorem 3.22 ([55, 1]). Assuming LWE, there exists a succinct FE scheme (Setup,Keygen,Enc,
Dec) for any class of polynomial size circuits Cs,n = {Cλ}λ with one-bit outputs. Moreover, it holds
that

Outlen
[
Setup(1λ)

]
= poly(λ, n, log(s))

Outlen [Keygen(msk, C)] = s · poly(λ, log(s))

for fixed polynomials, where n = n(λ), s = s(λ), (pk,msk)← Setup(1λ), C ∈ Cλ, and m ∈ {0, 1}n(λ).

Furthermore, we will need an FE scheme that supports functions with multiple output bits and
satisfies a specific notion of efficiency. We obtain the following corollary by simple parallel repetition
of the scheme of [54].

Corollary 3.23 ([55, 57]). Let sFE be a succinct FE scheme for the class of polynomial size circuits
with one-bit outputs. Then, for every polynomial q = q(λ), there exists a q-selectively-secure FE
scheme lFE for circuits with q output bits. The output of all algorithms is q times that of sFE. We
call such a scheme a q-output succinct FE scheme.

4 Correctness Amplification

In this section, we present a correctness amplification procedure for XiO. We show that assuming
the existence of an XiO scheme with very weak correctness, there exists an XiO construction with
a very strong correctness guarantee.

Theorem 4.1. Let p(·) be any polynomial. Let xiO be an XiO scheme for Plog that is
(

1
2 + 1

p(λ)

)
-

approximately correct. Assuming LWE and the existence of NIZKs, there exists a perfectly correct
XiO scheme for Plog.
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The correctness amplification proceeds in three phases. First, in Section 4.1, we transform an
approximately-correct XiO scheme to a (1/poly(λ)−negl(λ))-worst-case correct XiO scheme. Then,
in Section 4.2, we transform the (1/poly(λ) − negl(λ))-worst-case XiO scheme to a (1 − negl(λ))-
worst-case correct XiO scheme. Then, in Section 4.3, we transform the (1 − negl(λ))-worst-case
correct XiO scheme to a perfectly correct XiO scheme. In Section 4.4, we prove Theorem 4.1 and
conclude our correctness amplification.

4.1 From Approximately-Correct XiO to Worst-Case Correct XiO

Fix any class of circuits Cs,n ∈ Plog. Throughout this section, we let s = s(λ) and n = n(λ). Our
transformation relies on the following primitives as building blocks:

• xiO = (xiO.Obf, xiO.Eval) is a (1/2 + γ)-approximately correct XiO scheme for Plog, where
γ = 1/p(λ) for some polynomial p.

• ECC is a Reed-Solomon
(

8·2
n
d

γλ , 2
n
d

λ ,
8·2

n
d

γλ −
2
n
d

λ + 1
)

2λ
erasure correcting code that can correct

up to a (1− γ
8 )-fraction of erasures using the algorithm ECC.Dec, where |ECC| is a polynomial

of degree d − 1 in its input length. We assume that all inputs to ECC are padded to size 2
n
d

bits. We note that the circuit ECC is in NC1. We let `1 = O(log(λ)) + n
d be the length of the

output of ECC.

• LDC is a binary error-correcting code that is (1
2 −

γ
4 , poly)-list decodable using the algorithm

LDC.Dec. We let `2 = O(log(λ) + log(s) + log(n)) be the output length of LDC when run on
inputs of size poly(λ, s, n).

• lFE = (lFE.Setup, lFE.Enc, lFE.Keygen, lFE.Dec) is a λ-output succinct FE scheme for the class

Cs′,n′ ∈ P where s′ =
(
s · 2

n
d

)d−1
· poly(λ) and n′ = s · poly(λ, n).

• PRF = (PRF.Key,PRF.Punc,PRF.Eval) is a puncturable PRF.

• C = (C.Commit,C.Open) is a commitment scheme.

• NIZK = (NIZK.Gen,NIZK.P,NIZK.V) is a Multi-NIZK proof system for the NP language L

given by L =
{

(ct, i, comC , com0, pk) : either

1. ∃r0, r1, C such that ct encrypts (C, i) and comC is a commitment to C, that is, ct =
lFE.Enc(pk, (C, i); r0) ∧ comC = C.Commit(C, r1), or

2. ∃r s.t. com0 = C.Commit(1, r)
}

,

We let t = t(λ) = poly(λ, s, n) denote the upper bound on the length of statements and
witnesses in L when instantiated with security parameter λ (with parameters as used in the
following scheme).

In what follows, we denote by Cx1···xk the circuit C with the first k bits hardwired to x1 · · ·xk.
We let T denote a circuit in Cs·2

n
d ,s that receives as input a circuit and outputs its truth table. The

transformation is as follows.

Worst-case correct XiO scheme xiO′:

• C̃ ← xiO′.Obf(1λ, C) :

1. Sample (msk, pk)← lFE.Setup(1λ).
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2. Generate a key skU ← lFE.Keygen(msk,U) for the circuit U such that

U(D, i) = ECC(T (D))[i],

for any input circuit D, where ECC(T (D))[i] denotes the ith block of λ bits of ECC(T (D)).

3. For every x ∈ {0, 1}n−
n
d :

(a) Sample Kx
0 ,K

x
1 ← PRF.Key(1λ), and σx ← NIZK.Gen(1λ, 1t).

(b) Create commitments comx
Cx

= C.Commit(Cx, r
x
0 ) to Cx and comx

0 = C.Commit(0, rx1 )

to 0 using randomness rx0 ← {0, 1}λ and rx1 ← {0, 1}λ.

(c) Generate the circuit Gx = Gx[Cx, pk,K
x
0 ,K

x
1 , com

x
Cx
, comx

0 , r
x
0 , σ

x] such that on input
(i, j) does the following:

i. Let ct← lFE.Enc(pk, (Cx, i); PRF.Eval(Kx
0 , i)).

ii. Construct a NIZK proof π = NIZK.P(σx, v, w;PRF.Eval(K1, i)) for the statement
v = (ct, i, comx

Cx
, comx

0 , pk) using the witness w = (Cx,PRF.Eval(K
x
0 , i), r

x
0 ).

iii. Output the jth bit of LDC(ct, π), denoted by (LDC(ct, π))j .

(d) Let G̃x ← xiO.Obf(1λ, Gx) and let C̃x = (G̃x, σx, comx
Cx
, comx

0).

4. Output C̃ =

({
C̃x
}
x∈{0,1}n−

n
d
, skU , pk

)
.

• y′ ← xiO′.Eval(C̃, x) :

1. Let x = x1||x2 where |x1| = n− n
d .

2. For every i ∈ [2`1 ]:

(a) For every j ∈ [2`2 ], let cij = xiO.Eval(G̃x1 , (i, j)).

(b) Run LDC.Dec(ci1ci2 · · · ci2`2 ) to obtain a list of possible decodings, where the kth
element of the list is (ctki , π

k
i ).

(c) Let k? be the first index k such that NIZK.V(σ, vki , π
k
i ) = 1 where vki = (ctki , i, com

x1
Cx1

,

comx1
0 , pk). Set cti = ctk

?

i if k? exists and otherwise set cti = ⊥.

(d) Run yi ← lFE.Dec(skU , cti).

3. If there are at least γ
8 · 2

`1 indices i for which cti 6= ⊥, let y = y1y2 · · · y2`1 and run
ECC.Dec(y) and output the element corresponding to x2. Otherwise, output ⊥.

Theorem 4.2. Assume that PRF is a puncturable PRF, lFE is a selectively-secure λ-output succinct
FE scheme for Cs

′,n′, C is a commitment scheme, and NIZK is a Multi-NIZK for L. Fix any class
of circuits Cs,n ∈ Plog. Let p(·) be any polynomial. Then, if xiO is a (1/2 + 1/p(λ))-approximately-

correct XiO scheme for Plog, then xiO′ is a
(

1
16p(λ) − negl(λ)

)
-worst-case correct XiO scheme for

Cs,n, for a negligible function negl.

Proof. Fix any class Cs,n = {Cλ}λ∈N ∈ Plog and let γ = 1
p(λ) such that xiO is

(
1
2 + γ

)
-approximately

correct. Let xiO′ be the scheme resulting from the above transformation. Let n = n(λ), s = s(λ),
`1 = `1(λ), and `2 = `2(λ). We show that xiO′ is a ( γ16 − negl(λ))-worst-case correct XiO for Cs,n.

Worst-Case Correctness. To show worst-case correctness for xiO′, we want to show that there
exists a negligible function negl such that for all λ ∈ N, C ∈ Cλ, and x ∈ {0, 1}n,

Pr
xiO′.Obf

[
C̃ ← xiO′.Obf(1λ, C); xiO′.Eval(C̃, x) = C(x)

]
≥ γ

2
− negl(λ).
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Towards this end, let x = x1||x2 with |x1| = n − n
d . Let R denote the random coins used by

xiO′.Obf(1λ, C) which determine the part of the obfuscation used in the evaluation of C̃ on x. In
particular, this includes the randomness for generating the key pair (pk,msk), the functional key
skU , and the values in C̃x1 .

Consider the xiO′ evaluation algorithm xiO′.Eval(C̃, x). It first evaluates G̃x1 to obtain cij ←
xiO.Eval(G̃x1 , (i, j)) for each i ∈ [2`1 ] and j ∈ [2`2 ]. We start by an averaging argument which shows
that conditioned on the choice of R, there is a noticeable size set of indices i for which the majority
of the evaluations cij are correct. Define

S =

{
R : Pr

i,j

[
G̃x1 ← xiO.Obf(1λ, Gx1 ;R) : xiO.Eval(G̃x1 , (i, j)) = Gx1(i, j)

]
≥ 1

2
+
γ

2

}
,

which will be the set of “good” random strings R, for which the obfuscated circuit, when obfuscated
using randomness R, is correct on a majority of inputs. By an averaging argument and the

(
1
2 + γ

)
-

correctness of xiO, we have that a γ
2 -fraction of the R are in S. Let

SR =

{
i : Pr

j

[
G̃x1 ← xiO.Obf(1λ, Gx1 ;R) : xiO.Eval(G̃x1 , (i, j)) = Gx1(i, j)

]
≥ 1

2
+
γ

4

}
,

which will be the set of “good” inputs i, such that when C is obfuscated using randomness R, for
any i ∈ SR, the resulting obfuscation is correct on inputs (i, j) for a majority of the j. Then, for
any R ∈ S, by an averaging argument, it holds that a γ

4 -fraction of the inputs i are in SR.
We now show that for any R ∈ S and i ∈ SR, the evaluation algorithm xiO′.Eval obtains a valid

lFE encryption of (Cx1 , i). This is due to the guarantees of LDC, NIZK, Commit, and lFE. Fix R ∈ S
and i ∈ SR.

After computing cij for all j, the evaluation algorithm runs LDC.Dec(ci1ci2 . . . ci2`2 ). Since we
are using a list-decoding algorithm, this results in a list of candidates of the form (ctki , π

k
i ) for

polynomially many k. Recall that LDC.Dec is a
(

1
2 −

γ
4 , poly

)
-list-decoding algorithm, and can

therefore correct a
(

1
2 −

γ
4

)
-fraction of errors. Since R ∈ S and i ∈ SR, we have that at most a(

1
2 −

γ
4

)
-fraction of the cij are incorrect, so the correct encryption of (Cx1 , i) is in the decoded list.

Let k? be the index of the correct element.
To identify k?, we check each proof πki . More concretely, for each k, let vki denote the statement

(ctki , i, com
x1
Cx1

, comx1
0 , pk), such that πki is a proof for the statement vki . We note that comx1

Cx1
, comx1

0 ,

and pk are part of the output of the obfuscation algorithm, and i is used as input to obtain (ctki , π
k
i ),

so the only unknown part of vki is ctki . Recall that the Multi-NIZK proof is for a language L such
that (ct, i, comx1

Cx1
, comx1

0 , pk) ∈ L if either

1. There exists a circuit C ′ such that ct is an encryption of (C ′, i) under pk and comx1
Cx1

is a

commitment of C ′. A witness for this statement consists of the randomness used to generate
ct, the opening for comx1

Cx1
, and the circuit C ′.

2. comx1
0 is a commitment to 1. A witness for this statement is the opening for comx1

0 .

We now show that the decoding can correctly identify k?. For each k, the evaluation algorithm
checks if NIZK.V(σ, vki , π

k
i ) = 1. Since k? is the index of the correct element, then vk

?

i ∈ L. As a
result, by the completeness of NIZK, the verification algorithm on vk

?

i and πk
?

i accepts, so at least
one index k passes the verification.

We now show that for any index k that passes the verification, ctki is an encryption of (Cx1 , i).

Suppose there exists k̂ such that the verification algorithm accepts πk̂i for the statement vk̂i . By

the soundness of NIZK, if vk̂i 6∈ L then the probability that the verification passes for πk̂i is neg-

ligible. Therefore, with overwhelming probability, vk̂i ∈ L. Note that by the binding property of
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the commitment scheme, there does not exist an r̂ such that comx1
0 = C.Commit(1, r̂). Therefore,

since vk̂i ∈ L, it satisfies the first condition for being in L. Thus, by definition of L, it must be the

case that there exists r̂0, r̂1, Ĉ such that ctk̂i = lFE.Enc(pk, (Ĉ, i); r̂0) and comx1
Cx1

= C.Commit(Ĉ, r̂1).

However, recall that Commit is binding, so Cx1 = Ĉ. Therefore, by the correctness of lFE.Enc, any

index k̂ such that πk̂i is an accepting proof of xk̂i corresponds to an encryption of (Cx1 , i). Therefore,
for every i,

Pr
R

[∃r̂ : cti = lFE.Enc(pk, (Cx1 , i); r̂) | i ∈ SR, R ∈ S] ≥ 1− negl(λ) (1)

for some negligible function negl, which depends on the soundness of NIZK.
Observe that even for i 6∈ SR, any index k that passes the verification corresponds to a correct

encryption of (Cx1 , i) by the argument above. Therefore, for any index i such that cti 6= ⊥, we have
that with high probability, cti is an encryption of (Cx1 , i), that is,

Pr
R

[∃r̂ : cti = lFE.Enc(pk, (Cx1 , i); r̂) | cti 6= ⊥, R ∈ S] ≥ 1− negl(λ).

After computing cti for each i, the evaluation algorithm runs yi ← lFE.Dec(skU , cti). By the cor-
rectness of lFE.Dec and by the argument above, there exists a negligible function negl such that for
every i,

Pr
R

[yi = ECC(T (Cx1))[i] | cti 6= ⊥, R ∈ S] ≥ 1− negl(λ).

Let IR be the set of all indices i for which cti 6= ⊥ when randomness R is used. Since |IR| ≤
poly(λ), by a union bound we have that for some negligible function negl,

Pr
R

[∀i ∈ IR : yi = ECC(T (Cx1))[i] | R ∈ S] ≥ 1− negl(λ). (2)

To finish the proof, we show that the evaluation algorithm correctly computes C(x) with prob-
ability γ

16 − negl(λ). The evaluation algorithm proceeds by running ECC.Dec(y1y2 · · · y2`1 ), which
can correct up to a (1 − γ

8 )-fraction of erasures. Because we know the indices i for which we did
not obtain yi, this implies that ECC.Dec(y1y2 · · · y2`1 ) = T (Cx1) if there at most a (1 − γ

8 )-fraction
of symbols that have been erased, and all symbols that have not been erased are correct. We show
that IR satisfies these requirements when R ∈ S. By Equation (1),

Pr
R,i

[i ∈ IR | R ∈ S] ≥ Pr
R,i

[i ∈ IR | i ∈ SR, R ∈ S] · Pr
R,i

[i ∈ SR | R ∈ S]

≥ Pr
R,i

[cti 6= ⊥ | i ∈ SR, R ∈ S] · γ
4

≥ Pr
R,i

[∃r̂ : cti = lFE.Enc(pk, (Cx1 , i); r̂) | i ∈ SR, R ∈ S] · γ
4

≥ γ

4
− negl(λ)

for a negligible function negl. Therefore, by an averaging argument, we have that

Pr
R

[
|IR| ≥

γ

8
· 2`1

∣∣∣ R ∈ S] ≥ γ

8
− negl(λ). (3)

Then, by a union bound, it follows from Equations (2) and (3) that

Pr
R

[
∀i ∈ IR : yi = ECC(T (Cx1))[i] ∧ |IR| ≥

γ

8
· 2`1

∣∣∣ R ∈ S] ≥ γ

8
− negl(λ)

21



for a negligible function negl. Let y′ be the element of ECC.Dec(y1y2 · · · y2`1 ) corresponding to x2.
We have that

Pr
R

[
y′ = C(x)

]
≥ Pr

R
[ECC.Dec(y1y2 · · · y2`1 ) = T (Cx1)]

≥ Pr
R

[ECC.Dec(y1y2 · · · y2`1 ) = T (Cx1) | R ∈ S] · Pr
R

[R ∈ S]

≥ Pr
R

[
∀i ∈ IR : yi = ECC(T (Cx1))[i] ∧ |IR| ≥

2`1 · γ
8

∣∣∣ R ∈ S] · Pr
R

[R ∈ S]

≥
(γ

8
− negl(λ)

)
· γ

2
≥ γ

16
− negl(λ)

for some negligible function negl, as desired.

Compression. Fix any C ∈ Cλ and x ∈ {0, 1}n, and let x = x1||x2 with |x1| = n − n
d . We

first bound the size of the circuit Gx1 obfuscated during xiO′.Obf(1λ, C). We have that Gx1(i, j)
computes an lFE encryption ct, a NIZK proof π, an LDC encoding, and evaluations of PRF. The
LDC encoding and PRF run in time polynomial in their input, thus we only have to analyze |ct| and
|π|. Observe that lFE is used to generate a key for the circuit U , which is contained in Cs′,n′ where
s′ ≤ sd · 2n · poly(λ) and n′ ≤ s · poly(λ, n). Therefore, we have that

|ct| = |lFE.Enc(pk, (Cx1 , i))| = λ · poly(λ, |Cx1 |+ |i| , log(s′)) ≤ poly(λ, s, n, log(2n)) = poly(λ, s, n)

by the λ-output succinctness of lFE and

|π| = poly
(
|ct| , |i| ,

∣∣∣comx1
Cx1

∣∣∣ , |comx1
0 | , |pk|

)
+ poly

(
|Cx1 | , |PRF.Eval(K

x1
0 , i)| ,

∣∣∣comx1
Cx1

∣∣∣)
= poly(λ, s, n),

because NIZK.P is polynomial in the length of the statements and witnesses for L, where we used
the fact that |pk| is polynomial in the depth of U and input length. This follows because ECC can be
computed in NC1 and T has depth poly(s), so the depth of U is s+log(|T (C)|·poly(λ) = poly(λ, s, n).
Therefore, we have that |Gx1 | ≤ poly(λ, s, n).

To bound the efficiency of xiO′, we have that xiO′.Obf(1λ, C) runs PRF.Key, NIZK.Gen, C.Commit
for each x ∈ {0, 1}n−

n
d , which all have time bounded by poly(λ, s, n), as well as lFE.Setup, lFE.Keygen,

and 2n−
n
d instances of xiO.Obf. Therefore, for every λ ∈ N, C ∈ Cλ, and x ∈ {0, 1}n we have that

by the compression of xiO and λ-output succinctness of lFE,

Time
[
xiO′.Obf(1λ, C)

]
= 2n−

n
d ·
(
poly(λ, s, n) + Time

[
xiO.Obf(1λ, Gx1)

])
+ Time

[
lFE.Setup(1λ)

]
+ Time [lFE.Keygen(msk,U)]

≤ poly(λ, s, 2n) + 2n−
n
d · poly

(
λ, |Gx1 | , 2`1+`2

)
+ poly(λ, s, n, log(sd · 2n)) + poly(λ, sd, 2n)

≤ poly(λ, s, 2n) + 2n−
n
d · poly

(
λ, s, n, 2O(log(λ)+log(s)+log(n))+n

d

)
+ poly(λ, s, n) + poly(λ, s, 2n)

≤ poly(λ, s, 2n)

and

Outlen
[
xiO′.Obf(1λ, C)

]
= |skU |+ |pk|+ 2n−

n
d

(
2
∣∣∣comx1

Cx1

∣∣∣+ |σx1 |+ Outlen
[
xiO.Obf(1λ, Gx1)

])
≤
(
s · 2

n
d

)d−1
· poly(λ, s, n) + poly(λ, s, n) + 2n−

n
d

(
poly(λ, s) + poly(λ, s, n) + poly(λ, |Gx1 |) · 2(`1+`2)(1−ε)

)
≤
(

2n·(1− 1
d) + 2n(1− 1

d)+n
d

(1−ε)
)
· poly(λ, s, n) ≤ 2n(1− ε

d) · poly(λ, s)

for a constant ε which depends on the efficiency of xiO, where we used the fact that `1 = O(log(λ))+
log(s) + n

d and `2 = O(log(λ) + log(s) + log(n)) and Theorem 3.22 and Corollary 3.23.
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Indistinguishability. We now turn to the security of xiO′. Let C0, C1 ∈ Cλ be functionally
equivalent. We show that for all PPT adversaries A, the probability of outputting b on input
(C0, C1, xiO′.Obf(1λ, Cb)) is at most negligibly far from 1

2 where b← {0, 1}.
To do this, we first show that for each x ∈ {0, 1}n−

n
d , the probability of outputting b on input

(C0, C1, pk, skU , C̃
x) is at most negligibly far from 1

2 where b ← {0, 1}, and pk, skU , C̃
x are as in

xiO′.Obf(1λ, C). To formalize this, let xiO′.Obf(1λ, C)[pk, x] denote the steps of xiO′.Obf which
result in C̃x. In particular, xiO′.Obf(1λ, C)[pk, x] does the following:

1. Sample K0,K1 ← PRF.Key(1λ), and σ ← NIZK.Gen(1λ, 1t).

2. Create commitments comCx = C.Commit(Cx, r0) to Cx and com0 = C.Commit(0, r1) to 0 using
randomness r0 ← {0, 1}λ and r1 ← {0, 1}λ.

3. Generate the circuit G = G[Cx, pk,K0,K1, comCx , com0, r0, σ] such that on input (i, j) does
the following:

(a) Let ct← lFE.Enc(pk, (Cx, i); PRF.Eval(K0, i)).

(b) Construct a NIZK proof π = NIZK.P(1λ, σ, v, w;PRF.Eval(K1, i)) for the statement v =
(ct, i, comCx , com0, pk) using the witness w = (Cx,PRF.Eval(K0, i), r0).

(c) Output the jth bit of LDC(ct, π), denoted by (LDC(ct, π))j .

4. Let G̃← xiO.Obf(1λ, G) and output C̃x = (G̃, comCx , com0, σ).

Then, we can write xiO′.Obf(1λ, C) as follows:

1. Sample (msk, pk)← lFE.Setup(1λ).

2. Generate a key skU ← lFE.Keygen(msk,U) for U , where U(Cx, i) = ECC(T (C))[i].

3. For every x ∈ {0, 1}n−
n
d , run C̃x ← xiO′.Obf(1λ, C)[pk, x].

4. Output C̃ =
(
{C̃x}

x∈{0,1}n−
n
d
, skU , pk

)
.

We use this formulation and notation to prove security of xiO′.Obf (in particular, for ease of notation,
we omit the superscript x from the values K0,K1, comCx , com0, σ, r0, r1 and G used to generate C̃x

when it is clear from context). We first show that for each x, the probability of outputting b on
input (C0, C1, pk, skU , xiO′.Obf(1λ, Cb)[pk, x]) is at most negligibly far from 1

2 where b← {0, 1}. For

this part of the proof, for each x ∈ {0, 1}n−
n
d we have the following hybrids:

Phase I: Changing the commitment com0. We begin with the real execution, where pk and
skU , and xiO′.Obf(1λ, C)[pk, x] are generated honestly. In particular, xiO′.Obf(1λ, C)[pk, x]
uses xiO to obfuscate the circuit G such that on input (i, j), generates a ciphertext ct of
(Cbx, i) and a proof π that (ct, i, comCbx

, com0, pk) satisfies the first condition for being in L.
Since the opening to com0 is not used, we can change com0 to be a commitment com1 to 1,
relying on the hiding property of the commitment scheme.

Phase II: Switching the witness for the Multi-NIZK proof. We then go through a series
of hybrids to switch the witness for the proof π generated by G to be a witness for the second
condition to being in L. This relies on the witness indistinguishability of the Multi-NIZK,
which follows from the ZK property.

Phase III: Switching the commitment of Cbx. Because the Multi-NIZK π generated by G
now uses a witness to the second condition for being in L, the opening to comCbx

no longer
needs to appear in the circuit G. Therefore, we can change comCbx

to a commitment comC0
x

of

C0
x. Indistinguishability follows from the hiding property of the commitment scheme.
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Phase IV: Switching the encryption. We then go through a sequence of hybrids to switch ct
from an encryption of (Cbx, i) to an encryption of (C0

x, i). After this change, the output of
xiO′.Obf(1λ, C)[pk, x] is independent of b.

Fix any x ∈ {0, 1}n−
n
d . We now present the formal description of each hybrid.

Phase I: Changing the commitments com0.

• Hyb1(λ): In this hybrid, we first sample (msk, pk)← lFE.Setup(1λ) and skU ← lFE.Keygen(msk,
U) as in the real execution of xiO′.Obf(1λ, Cb). Then, we run xiO′.Obf(1λ, Cb)[x, pk] as in the
real execution, as follows:

1. Sample K0,K1 ← PRF.Key(1λ), and σ ← NIZK.Gen(1λ, 1t).

2. Create commitments comCbx
= C.Commit(Cbx, r0) and com0 = C.Commit(0, r1) using ran-

domness r0, r1.

3. Obfuscate the following circuit G1 = G1[Cbx, pk,K0,K1, comCbx
, com0, r0, σ] to obtain G̃,

such that G1(i, j) does the following:

(a) ct← lFE.Enc
(
pk, (Cbx, i);PRF.Eval(K0, i)

)
.

(b) π = NIZK.P
(
σ, v,

(
Cbx,PRF.Eval(K0, i), r0

)
; r̂
)

where v = (ct, i, comCbx
, com0, pk) and

r̂ = PRF.Eval (K1, i).

(c) Output LDC(ct, π))j .

4. Output C̃x = (G̃, comCbx
, com0, σ).

The output of this experiment is (pk, skU , C̃
x).

• Hyb2(λ): This experiment is obtained from the previous experiment by replacing com0 with
com1 = C.Commit(1, r0).

This is indistinguishable from the previous hybrid by the hiding property of the commitment
scheme.

Phase II: Switching the witness for the Multi-NIZK proof.

• Hyb3.1
z (λ) for z ∈ {0, 1}`1: This experiment is obtained from the previous experiment by mod-

ifying xiO′.Obf(1λ, Cb)[pk, x] as follows:

1. Generate K0,K1, σ, r0, r1, comCbx
, and com1 as in the previous hybrid.

2. Puncture K1 to obtain K̃
[z]
1 ← PRF.Punc(K1, z).

3. Set r? = PRF.Eval(K1, z).

4. Set ct? = lFE.Enc
(
pk, (Cbx, z);PRF.Eval(K0, z)

)
.

5. Set π? = NIZK.P(σ, v, w; r?), where the statement v = (ct?, z, comCbx
, com1, pk) and the

witness w = (Cbx,PRF.Eval(K0, z), r0).

6. Obfuscate the following circuit G3.1
z = G3.1

z [Cbx, pk,K0, K̃
[z]
1 , comCbx

, com1, r0, r1, σ, π
?] to

obtain G̃, such that G3.1
z (i, j) does the following:

(a) ct← lFE.Enc
(
pk, (Cbx, i);PRF.Eval(K0, i)

)
.
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(b) π =


NIZK.P (σ, v, r1; r̂) if i < z

π? if i = z

NIZK.P
(
σ, v,

(
Cbx,PRF.Eval(K0, i), r0

)
; r̂
)

if i > z

where v = (ct, i, comCbx
, com1, pk) and r̂ = PRF.Eval

(
K̃

[z]
1 , i

)
. That is, if i ≥ z, π

uses a witness for the first condition to being in L, and if i < z, then π uses a witness
for the second condition to being in L.

(c) Output (LDC(ct, π))j .

7. Output C̃x = (G̃, comCbx
, com0, σ).

For z = 0`1 , we will show that Hyb2(λ) is computationally indistinguishable from Hyb3.1
z (λ),

and for z > 0`1 , we will show that Hyb3.4
z (λ) and Hyb3.1

z+1(λ) are computationally indistin-

guishable. Both of these proofs are due to the fact that the G̃ generated in the corresponding
hybrids are obfuscations of functionally equivalent circuits.

• Hyb3.2
z (λ) for z ∈ {0, 1}`1: This experiment is obtained from the previous experiment by re-

placing r? with a truly random value.

This experiment is indistinguishable from the previous hybrid because the output of the PRF
is pseudorandom at punctured points.

• Hyb3.3
z (λ) for z ∈ {0, 1}`1: This experiment is obtained from the previous experiment by let-

ting π? = NIZK.P(σ, (ct?, z, comCbx
, com1, pk), r1; r?), that is, π? is now generated using a wit-

ness to the second condition for being in L.

This is indistinguishable from the previous hybrid due to the witness indistinguishability of
NIZK.

• Hyb3.4
z (λ) for z ∈ {0, 1}`1: This experiment is obtained from the previous experiment by

changing r? to PRF.Eval(K1, z).

This is indistinguishable from the previous hybrid because the output of the PRF is pseudo-
random at punctured points.

• Hyb4(λ): This experiment is obtained from the previous experiment by changing
xiO′.Obf(1λ, Cb)[pk, x] to do the following:

1. Generate K0,K1, σ, r0, r1, comCbx
, and com1 as in the previous hybrid.

2. Obfuscate the circuit G4 = G4[Cbx, pk,K0,K1, com1, r1, σ] to obtain G̃ such that G4(i, j)
does the following:

(a) ct← lFE.Enc(pk, (Cbx, i);PRF.Eval(K0, i)).

(b) π = NIZK.P(σ, (ct, i, comCbx
, com1, pk), r1; PRF.Eval(K1, i)), that is, π is always a

proof using r1 as the witness to the second condition for being in L.

(c) Output (LDC(ct, π))j .

3. Output C̃x = (G̃, comCbx
, com1, σ).

This is indistinguishable from the previous hybrid Hyb3.4
1`1

(λ) since the circuits generated in
both hybrids are functionally equivalent.
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Phase II: Switching the commitment comCb
x
.

• Hyb5(λ): This experiment is obtained from the previous experiment by changing the commit-
ment comCbx

to comC0
x

= Commit(C0
x, r0).

This is indistinguishable from the previous hybrid due to the hiding property of the commit-
ment scheme.

Phase III: Switching the encryption.

• Hyb6.1
z (λ) for z ∈ {0, 1}`1: This experiment is obtained from the previous experiment by

changing xiO′.Obf(1λ, Cb)[pk, x] to do the following:

1. Generate K0,K1, σ, r0, r1, comC0
x

and com1 as in the previous hybrid.

2. Puncture K0 to obtain K̃
[z]
0 ← PRF.Punc(K0, z).

3. Set r? = PRF.Eval(K0, z).

4. Set ct? = lFE.Enc(pk, (Cb, z); r?).

5. Obfuscate the following circuit G6.1
z = G6.1

z [C0
x, C

b
x, pk, K̃

[z]
0 ,K1, comC0

x
, com1, r1, σ, c

?] to

obtain G̃ such that G6.1
z (i, j) does the following:

(a) ct =


lFE.Enc

(
pk, (C0

x, i); PRF.Eval
(
K̃

[z]
0 , i

))
if i < z

ct? if i = z

lFE.Enc
(
pk, (Cbx, i); PRF.Eval

(
K̃

[z]
0 , i

))
if i > z

.

(b) π ← NIZK.P(σ, (ct, i, comC0
x
, com1, pk), r1; PRF.Eval(K1, 1)).

(c) Output (LDC(ct, π))j .

6. Output (G̃, comC0
x
, com1, σ).

We will show that Hyb6.1
0`1

(λ) and Hyb5(λ) are computationally indistinguishable and that

Hyb6.1
z+1(λ) and Hyb6.4

z (λ) are computationally indistinguishable for all z ≥ 0`1 . These hold
because the obfuscated circuits are functionally equivalent.

• Hyb6.2
z (λ) for z ∈ {0, 1}`1: This experiment is obtained from the previous experiment by re-

placing r? with a truly random value.

This is indistinguishable from the previous hybrid because the output of the PRF is pseudo-
random at punctured points.

• Hyb6.3
z (λ) for z ∈ {0, 1}`1: This experiment is obtained from the previous experiment by gen-

erating the hardcoded ciphertext as ct? = lFE.Enc(pk, (C0
x, z); r

?), that is, ct? is now an en-
cryption of C0

x.

This is indistinguishable from the previous hybrid because of the semantic security of lFE.

• Hyb6.4
z (λ) for z ∈ {0, 1}`1: This experiment is obtained from the previous experiment by cal-

culating r? as PRF.Eval(K0, z).

This is indistinguishable form the previous experiment because the output of the PRF is
pseudorandom at punctured points.

• Hyb7(λ): This experiment is obtained from the previous experiment by changing
xiO′.Obf(1λ, Cb)[pk, x] to do the following:

1. Generate K0,K1, σ, r0, r1, comC0
x
, and com1 as in the previous hybrid.
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2. Obfuscate the following circuit G7 = G7[C0
x, pk,K0,K1, comC0

x
, com1, r1, σ] to obtain G̃

such that G7(i, j) does the following:

(a) ct = lFE.Enc
(
pk, (C0

x, i); PRF.Eval(K0, i)
)
.

(b) π = NIZK.P(σ, (ct, i, comC0
x
, com1, pk), r1; PRF.Eval(K1, i)).

(c) Output (LDC(ct, π))j .

3. Output (G̃, comC0
x
, com1, σ).

This is indistinguishable from the previous hybrid because the circuit G7 is functionally equiv-
alent to the circuit G6.4

1`1
. Observe that at this point, the output of xiO′.Obf(1λ, Cb)[pk, x] is

independent of b, and therefore, no adversary can guess b in this experiment with probability
noticeably far from 1

2 .

We proceed by showing that each consecutive pair of hybrid experiments is computationally
indistinguishable.

Claim 4.3. For any PPT A, it holds that
∣∣Pr
[
A(Hyb1(λ)) = 1

]
− Pr

[
A(Hyb2(λ)) = 1

]∣∣ ≤ negl(λ)
for a negligible function negl.

Proof. The difference between these two hybrids is that in Hyb1(λ), com0 is a commitment to 0
and in Hyb2(λ), it is replaced with com1, a commitment to 1. Note that the opening r1 to com0

and com1 is not included in the circuits G1 or G2. Therefore, these hybrids are computationally
indistinguishable by the hiding property of the commitment scheme.

Claim 4.4. For any PPT A, it holds that
∣∣Pr
[
A(Hyb2(λ)) = 1

]
− Pr

[
A(Hyb3.1

0`1
(λ)) = 1

]∣∣ ≤ negl(λ)
for a negligible function negl.

Proof. The difference between these two hybrids is that in Hyb2(λ), G̃ is an obfuscation of G2

and in Hyb3.1
0`1

(λ), G̃ is an obfuscation of G3.1
0`1

. We show that these two circuits are functionally
equivalent.

When i 6= 0`1 , the difference between the two circuits is that G2(i, j) uses the PRF key K1 to

generate the proof π and G3.1
0`1

(i, j) uses the punctured PRF key K̃
[z]
1 to generate π. Since neither

circuit evaluates the PRF on the punctured point when i 6= 0`1 , the outputs of the two circuits are
the same.

For i = 0`1 , we have that the ciphertext ct generated by both circuits are the same, because both
are computed with the unpunctured PRF key K0. For the Multi-NIZK proof, the circuit G3.1

0`1
has a

hardcoded proof π? which is calculated using the ciphertext ct?. Since ct? is exactly the ciphertext
generated by G2(0`1 , j), then it holds that π? is generated exactly as the proof π in G2(0`1 , j).

Therefore, the obfuscations of G2 and G3.1
0`1

are computationally indistinguishable by the security
of xiO.

Claim 4.5. For all z ∈ {0, 1}`1, for any PPT adversary A, it holds that
∣∣∣Pr

[
A(Hyb3.1

z (λ)) = 1
]
−

Pr
[
A(Hyb3.2

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. This holds due to the pseudorandom property at punctured points. The difference between
these hybrids is that on input (z, j), the circuit G3.1

z computes π as a hardcoded proof π? calculated
using PRF.Eval(K1, z) as the randomness, and G3.2

z computes π? using a truly random value for the
randomness of the proof. If there was an adversary A that could distinguish between these two

hybrids, then one could construct an adversary B that receives as input the punctured key K̃
[z]
1 , and

a challenge r̂ which is either PRF.Eval(K1, z) or a uniformly random value. Then, B could sample
pk and skU honestly, and simulate generating C̃x for A as in Hyb3.1

z (λ), with the exception that B
would set r? = r̂ as the randomness for the hardcoded proof π?. Then, the distinguishing advantage
of A would directly translate into the distinguishing advantage for B. Therefore, these hybrids are
computationally indistinguishably by the security of the PRF.

27



Claim 4.6. For all z ∈ {0, 1}`1, For any PPT adversary A, it holds that
∣∣∣Pr

[
A(Hyb3.2

z (λ)) = 1
]
−

Pr
[
A(Hyb3.3

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. This holds due to the witness indistinguishability of the Multi-NIZK. The difference between
these hybrids is that in Hyb3.2

z (λ), π? is a proof that (ct?, z, comCbx
, com1, pk) ∈ L using a witness to

the first condition for being in L, while in Hyb3.3
z (λ), π? is a proof for the same statement using a

witness to the second condition for being in L. Indistinguishability between adjacent hybrids follows
from the witness indistinguishability of the Multi-NIZK.

Claim 4.7. For all z ∈ {0, 1}`1, for any PPT adversary A, it holds that
∣∣∣Pr

[
A(Hyb3.3

z (λ)) = 1
]
−

Pr
[
A(Hyb3.4

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof.
This holds due to the pseudorandom property at punctured points. The difference between

these hybrids is that on input (z, j), the circuit G3.3
z computes π as a hardcoded proof π? calculated

using a truly random value r? as the randomness for the proof, and G3.4
z computes π? using r? =

PRF.Eval(K1, z) for the randomness. Therefore, if there were an adversary that could distinguish
between these hybrids, one could construct an adversary that would embed a PRF challenge as r?

and thus break the security of the PRF.

Claim 4.8. For every z ∈ {0, 1}`1 \ {1`1}, for any PPT A, it holds that
∣∣∣Pr

[
A(Hyb3.4

z (λ)) = 1
]
−

Pr
[
A(Hyb3.1

z+1(λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. This holds due to the security of xiO. Specifically, the difference between these two circuits is
the way that the Multi-NIZK proofs are calculated in the circuits G3.1

z+1 and G3.4
z . When i 6∈ {z, z+1},

the computation done by the circuits is identical.
When i = z, the circuit G3.4

z (z, j) calculated π as a hardcoded proof π? for the statement v =
(ct?, z, comCbx

, com1, pk) using the witness w = r1, and using randomness PRF.Eval(K1, z). Similarly,

G3.1
z+1(z, j) generates π for the same statement v and witness w, using randomness PRF.Eval(K̃

[z]
1 , z).

Since this is the only difference between the two proofs, these are functionally equivalent, because
the functionality of the PRF at non-punctured points is preserved under puncturing.

For i = z + 1, the difference between the two circuits is that G3.1
z+1 uses a hardcoded proof π? to

calculate π, where π? is calculated using a ciphertext ct? and randomness r?. We have that

G3.4
z (z + 1, j) =

(
LDC(ct,NIZK.P(σ, (ct, z + 1, comCbx

, com1, pk), w;PRF.Eval(K̃
[z]
1 , z + 1))

)
j

=
(
LDC(ct?,NIZK.P(σ, (ct?, z + 1, comCbx

, com1, pk), w;PRF.Eval(K̃
[z]
1 , z + 1))

)
j

=
(
LDC(ct?,NIZK.P(σ, (ct?, z + 1, comCbx

, com1, pk), w;PRF.Eval(K1, z + 1))
)
j

=
(
LDC(ct?,NIZK.P(σ, (ct?, z + 1, comCbx

, com1, pk), w; r?)
)
j

= (LDC(ct?, π?))j = G3.1
z+1(z + 1, j),

where ct = lFE.Enc(pk, (Cbx, z + 1);PRF.Eval(K0, z + 1)) and w = (Cbx,PRF.Eval(K0, z + 1), r0).
Therefore, G3.1

z+1 and G3.4
z are computationally indistinguishable by the security of xiO.

Claim 4.9. For any PPT A, it holds that
∣∣∣Pr

[
A(Hyb3.4

1`1
(λ)) = 1

]
−Pr

[
A(Hyb4(λ)) = 1

] ∣∣∣ ≤ negl(λ)

for a negligible function negl.
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Proof. We show that G3.4
1`1

and G4 are functionally equivalent. For any input (i, j) where i 6= 1`1 ,

the difference between these hybrids is that the proof generated in G3.4
1`1

(i, j) is calculated using the

punctured PRF key K
[1`1 ]
1 , and the proof in G4(i, j) is calculated using the non-punctured key K1.

Both are equivalent because neither uses the PRF on the punctured point.
When i = 1`1 , we have that the ciphertexts ct generated by both circuits are both lFE.Enc(pk,

(Cbx, i);PRF.Eval(K0, i)), and thus are the same. For the proof π, the circuit G3.4
1`1

has a hardcoded
proof π? which is calculated using the ciphertext ct?. This ciphertext ct? is identical to the ciphertext
ct generated by G4, and both proofs are for the same statement and witness. Moreover, π? uses the
unpunctured key K1 to generate the randomness for the proof, just as π generated by G4. Therefore,
both the ciphertexts and proofs generated by both circuits are identical, and thus the circuits are
functionally equivalent. Therefore, these are computationally indistinguishable by the security of
xiO.

Claim 4.10. For any PPT A, it holds that
∣∣Pr
[
A(Hyb4(λ)) = 1

]
− Pr

[
A(Hyb5(λ)) = 1

]∣∣ ≤ negl(λ)
for a negligible function negl.

Proof. This is due to the computational hiding property of the commitment scheme. In particular,
the commitment comCbx

is hardwired into the circuit G4 and is part of the statement for the Multi-
NIZK proof but the opening r0 to comCbx

is not used, and in particular is not included in the circuit

G4. Therefore, if one could distinguish between these hybrids, it would break the hiding property
of the commitment scheme. Therefore, these are computationally indistinguishable.

Claim 4.11. For any PPT A, it holds that
∣∣∣Pr

[
A(Hyb5(λ)) = 1

]
− Pr

[
A(Hyb6.1

0`1
(λ)) = 1

] ∣∣∣ ≤
negl(λ) for a negligible function negl.

Proof. We show that the two circuits G5 and G6.1
0`1

agree on all inputs (i, j). When i 6= 0`1 , the

difference between the two circuits is that G5 uses the unpunctured PRF key K0 to generate the

randomness for the ciphertext ct whileG6.1
0`1

uses the punctured key K̃
[0`1 ]
0 to generate the randomness

for ct. Since neither circuit evaluates the PRF on the punctured point when i 6= 0`1 , it holds that
G5(i, j) = G6.1

0`1
(i, j) for i 6= 0`1 because functionality is preserved under puncturing.

For i = 0`1 , the difference between the two circuits is that G6.1
0`1

uses a hardcoded ciphertext ct?

to compute the ciphertext ct, which is equivalent to ct generated by G5. In particular, we have that

G5(0`1 , j) =
(
ct,NIZK.P(σ, (ct, i, comC0

x
, com1, pk), r1;PRF.Eval(K1, 0

`1)
)
j

=
(
ct?,NIZK.P(σ, (ct?, i, comC0

x
, com1, pk), r1;PRF.Eval(K1, 0

`1)
)
j

= G6.1
0`1

(0`1 , j)

where ct = lFE.Enc(pk, (C0
x, i;PRF.Eval(K0, 0

`1)). Therefore, G5 and G6.1
0`1

are functionally equiva-
lent, so these hybrids are computationally indistinguishable by the security of xiO.

Claim 4.12. For every z ∈ {0, 1}`1, for any PPT A, it holds that
∣∣∣Pr

[
A(Hyb6.1

z (λ)) = 1
]
−

Pr
[
A(Hyb6.2

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. This holds due to the pseudorandom property of the PRFs at punctured points. The
difference between these two hybrids is that Hyb6.1

z (λ) calculates r? = PRF.Eval(K0, z) and Hyb6.2
z (λ)

calculates r? as a truly random value. If there were an adversary A that could distinguish between

these two hybrids, we could construct an adversary B that receives the punctured key K̃
[z]
0 and a

value r̂ and constructs the circuits G6.1
z and G6.2

z uses r̂ as r?. Then, the distinguishing advantage
of A would translate exactly into the distinguishing advantage of B in breaking the security of the
puncturable PRF. Therefore, these are computationally indistinguishable.
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Claim 4.13. For all z ∈ {0, 1}`1, for any PPT adversary A, it holds that Pr
[
A(Hyb6.2

z (λ)) = 1
]
−

Pr
[
A(Hyb6.3

z (λ)) = 1
]
≤ negl(λ) for a negligible function negl.

Proof. This holds due to the λ-selective security of lFE. In particular, the difference between
these two hybrids is the hardcoded ciphertext ct? in G6.2

z and G6.3
z . In the first, the hardcoded

ciphertext ct? = lFE.Enc(pk, (Cbx, i); r
?) and in the second, c? = lFE.Enc(pk, (C0

x, i); r
?). We show

that these hybrids are computationally indistinguishable in two steps. First, we show that Hyb6.2
z (λ)

is indistinguishable from an intermediate hybrid Hyb6.2.5
z (λ) which is the same as Hyb6.2

z (λ), except
that we change ct? to lFE.Enc(pk, 0s+`1 ; r?). We show that if there exists an adversary A that can
distinguish between Hyb6.2

z (λ) and Hyb6.2.5
z (λ) with noticeable probability, there exists an adversary

B that breaks the selective security of lFE.
For any set of λ circuits {Fk}k∈[λ] (in the circuit class for lFE) with Fk(C

0
x, i) = Fk(C

0
x, i) for

all k, and with F0 = U , let skk = lFE.Keygen(msk, Fk) for each k. The adversary B acts as follows.
B receives (pk,{Fk} , (Cbx, i), 0n+`1 ,{skk}), and a challenge ciphertext ĉt from the challenger, where
ĉt is either an encryption of Cbx or of 0n+`1 . We also let C0

x and C1
x be given to B. Then, B

generates K0, K̃
[z]
0 ,K1, σ, r0, r1, comC0

x
, and com1 as in Hyb6.2

z (λ). Then, B generates a circuit G′

following the description of G6.2
z in Hyb6.2

z (λ), with the only difference being that the hardwired
ciphertext ct? is set to the challenge ciphertext ĉt. B then obfuscates G′ to obtain G̃ and sends
pk, sk0, (G̃

′, comC0
x
, com1, σ) to A as the output of FE.Enc(pk, Cbx). It is easy to see that if ĉt is

an encryption of Cbx, then we are in Hyb6.2
z (λ), and if ĉ is an encryption of 0n+`1 , then we are in

Hyb6.2.5
z (λ). Therefore, the distinguishing advantage of B is the same as that of A, thereby breaking

the selective security of lFE. The same proof holds to show that Hyb6.2.5
z (λ) and Hyb6.3

z (λ) are
computationally indistinguishable, except that ĉ will either be an encryption of 0n+`1 or of C0

x.
Therefore, this shows that Hyb6.2

z (λ) and Hyb6.3
z (λ) are computationally indistinguishable by the

security of lFE.

Claim 4.14. For every z ∈ {0, 1}`1, for any PPT A, it holds that
∣∣∣Pr

[
A(Hyb6.3

z (λ)) = 1
]
−

Pr
[
A(Hyb6.4

z (λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. This holds due to the pseudorandom property of the PRFs at punctured points. The
difference between these two hybrids is that Hyb6.3

z (λ) calculates r? as a truly random value and
Hyb6.4

z (λ) calculates r? = PRF.Eval(K0, z). If there were an adversary A that could distinguish

between these two hybrids, we could construct an adversary B that receives the punctured key K̃
[z]
0

and a value r̂ and constructs the circuits G6.3
z and G6.4

z uses r̂ as r?. Then, the distinguishing
advantage of A would translate exactly into the distinguishing advantage of B in breaking the
security of the puncturable PRF. Therefore, these are computationally indistinguishable.

Claim 4.15. For every z ∈ {0, 1}`1 \ {1`1}, for any PPT A, it holds that
∣∣∣Pr

[
A(Hyb6.4

z (λ)) = 1
]
−

Pr
[
A(Hyb6.1

z+1(λ)) = 1
] ∣∣∣ ≤ negl(λ) for a negligible function negl.

Proof. This holds due to the security of xiO. Specifically, it is easy to see that the two circuits
G6.4
z and G6.1

z+1 agree on all inputs (i, j) where i 6∈ {z, z + 1} because the functionality of the PRF
at non-punctured points is preserved under puncturing.

When i = z, the difference between the two circuits is that G6.4
z (z, j) uses a hardcoded ciphertext

ct? to generate the ciphertext. We have that

ct? = lFE.Enc(pk, (C0
x, z);PRF.Eval(K0, z))

= lFE.Enc(pk, (Cbx, z + 1);PRF.Eval(K̃
[z+1]
0 , z)) = ct
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where ct is the ciphertext generated by G6.1
z+1(z, j). This implies that the proofs π generated by

both circuits are the same, because the only difference between the proofs is the use of ct in the
statement being proven.

For i = z + 1, we have a similar argument. The difference between the two circuits is that
G6.1
z+1(z + 1, j) uses a hardcoded ciphertext ct? to generate the ciphertext. We have that

ct? = lFE.Enc(pk, (Cbx, z + 1);PRF.Eval(K0, z + 1))

= lFE.Enc(pk, (Cbx, z + 1);PRF.Eval(K̃
[z]
0 , z + 1)) = ct

where ct is the ciphertext generated by G6.4
z (z + 1, j). As above, this implies that the proofs π

generated by both circuits are identical. Therefore, these circuits are functionally equivalent, so the
hybrids are computationally indistinguishable by the security of xiO.

Claim 4.16. For any PPT A, it holds that Pr
[
A(Hyb6.4

1`1
(λ)) = 1

]
−Pr

[
A(Hyb7

0(λ)) = 1
]
≤ negl(λ)

for a negligible function negl.

Proof. We show that the two circuits G6.4
1`1

and G7 agree on all inputs (i, j).

When i 6= 1`1 , the difference between the two circuits is that G7(i, j) uses the unpunctured PRF

key K0 to generate the randomness for the ciphertext ct while G6.4
1`1

uses the punctured key K̃
[1`1 ]
0

to generate the randomness for ct. Since the value of the PRF on the punctured point is not needed
for either of these computations, it holds that G6.4

1`1
(i, j) = G7(i, j) because functionality is preserved

under puncturing.
For i = 1`1 , the difference between the two circuits is that G6.4

z (1`1 , j) calculates the ciphertext
as a hardwired ciphertext ct?. We have that

ct? = lFE.Enc(pk, (C0
x, 1

`1);PRF.Eval(K0, 1
`1)) = ct

where ct is the ciphertext generated by G7. Therefore, G6.4
1`1

and G7 are functionally equivalent, so
these hybrids are compuatationally indistinguishable by the security of xiO.

By considering the sequence of hybrids, we conclude that probability of distinguishing between
Hyb1(λ) and Hyb7(λ) is (6+9 ·2`1) ·negl(λ) ≤ poly(λ) ·negl(λ) which is negligible in λ for a negligible
function negl. Since Hyb1(λ) is the real experiment, the probability of outputting b in the real
experiment is at most 1

2 +negl(λ). Recall that this shows that the probability of any PPT adversary

outputting b on input (C0, C1, pk, skU , C̃
x) is at most 1

2 + negl(λ).
We now conclude the proof by showing that no PPT adversary can output b on input (C0, C1,

xiO′.Obf(1λ, Cb)) with probability negligibly far from 1
2 . Define a sequence of hybrids Hx(λ) for

x ∈ {0, 1}n−
n
d , as follows:

• H0n−n
d (λ) : This is the real experiment, where b ← {0, 1} and the adversary receives (C0,

C1, xiO′.Obf(1λ, Cb)). In particular, in the calculation of xiO′.Obf(1λ, Cb)), for each x, C̃x is
generated as in Hyb0(λ), i.e., as an obfuscation corresponding to Cbx.

• Hx(λ) for x ∈ {0, 1}n−
n
d \

{
0n−

n
d

}
: This hybrid is obtained from Hx−1(λ) by replacing C̃x

with the value of C̃x generated according to Hyb7(λ), i.e., C̃x is now independent of b.

Observe that H0n−
n
d (λ) corresponds to the real experiment and H1n−

n
d (λ) is independent of b.

We now show the following claim.

Claim 4.17. For any PPT A, it holds that
∣∣Pr [A(Hx(λ) = 1]− Pr

[
A(Hx+1) = 1

]∣∣ ≤ negl(λ) for

every x ∈ {0, 1}n−
n
d \
{

1n−
n
d

}
for a negligible function negl.
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Proof. Let x ∈ {0, 1}n−
n
d \
{

1n−
n
d

}
and suppose for contradiction that there exists an adversary

A and polynomial p such that for infinitely many values of λ, A can distinguish between Hx(λ) and
Hx+1(λ) with probability 1

p(λ) . We construct an adversary B that can distinguish between Hyb0(λ)

and Hyb7(λ) corresponding to x+ 1.
B receives as input (pk, skU , C̃

?) where (pk,msk)← lFE.Setup(1λ) and skU ← lFE.Keygen(msk,U),
as in both Hyb0(λ) and Hyb7(λ). The value C̃? either corresponds Cbx+1 according to Hyb0(λ) or
C0
x+1 according to Hyb7(λ). Then, B chooses a bit b′ ← {0, 1}. Then, for all x′ < x+ 1, B uses pk to

generate C̃x
′

according to xiO′.Obf(1λ, C)[pk, x′] as in Hyb7(λ), and for all x′ > x+ 1, B uses pk to
generate C̃x

′
according to xiO′.Obf(1λ, C)[pk, x′] as in Hyb1(λ) using Cb

′
x′ . Then, B sets C̃x+1 = C̃?

and sends

(
pk, skU ,

{
C̃x
}
x∈{0,1}n−

n
d

)
to A. Finally, B outputs the response b′′ that B receives from

A.
Observe that if b′ = b, then if C̃? corresponds to Hyb0(λ) then A’s input is distributed exactly

as Hx(λ), and if C̃? corresponds to Hyb7(λ), then A’s input is distributed according to Hx+1(λ).
Therefore, if b′ = b, then B succeeds with probability 1

p(λ) . Therefore, B has advantage 1
2p(λ)

in distinguishing between Hyb0(λ) and Hyb7(λ) corresponding to x + 1, which is a contradiction.
Therefore, Hx(λ) is computationally indistinguishable from Hx+1(λ).

Therefore, no adversary can distinguish H0n−
n
d and H1n−

n
d with probability more than 2n−

n
d ·

negl(λ) for a negligible function negl. Since n ∈ O(log(λ)), this is negligible in λ, thus concluding
the proof of security for xiO′.

4.2 (1/poly − negl)-Worst Case XiO to (1− negl)-Worst Case XiO

In this section, we show how to modify the construction of our (1/poly(λ) − negl(λ))-worst-case
correct XiO to obtain a (1− negl(λ))-worst-case correct XiO. This transformation involves creating
many parallel repetitions of the given XiO scheme, such that one of them will be correct with high
probability. This correctness of the resulting scheme relies on the fact that we can identify repetitions
that did not succeed. Let xiO be the

( γ
16 − negl(λ)

)
-worst-case correct XiO scheme resulting from

the above transformation, for any class of circuits Cs,n ∈ Plog. We define the almost perfectly correct
scheme xiO′ as follows. This scheme is parametrized by N = 16λ

γ .

(1/poly)-worst-case correct XiO to (1− negl)-worst-case correct XiO:

• C̃ ← xiO′.Obf(1λ, C) :

1. For each z ∈ [N ], let C̃z ← xiO.Obf(1λ, C)

2. Output
{
C̃z
}
z∈[N ]

.

• y ← xiO′.Eval(C̃, x) :

1. For every z ∈ [N ], run yz = xiO.Eval(C̃z, x). Let z? be the first index for which yz 6= ⊥.

2. Output yz
?
, or ⊥ if yz

?
is not defined.

Claim 4.18. Let p(·) be any polynomial. If there exists a ( 1
16p(λ) − negl(λ))-worst-case correct XiO

scheme for a circuit class Cs,n for some negligible function negl, then there exists a (1 − negl′(λ))-
worst-case correct XiO scheme for Cs,n for some negligible function negl′.

Proof. Let xiO be the
( γ

16 − negl(λ)
)
-worst-case correct XiO scheme from the transformation in

Section 4.1 for Cs,n = {Cλ}λ∈N, where γ = 1
p(λ) . Let xiO′ be the resulting scheme in the above
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construction. The efficiency and security of xiO′ follow directly from the fact that xiO′ consists of
polynomially many parallel repetitions of xiO. Therefore, we focus on showing (1− negl(λ))-worst-
case correctness.

Worst-Case Correctness. To show correctness of xiO′, consider the probability that for C ∈ Cλ
and x ∈ {0, 1}n, C̃ ← xiO′.Obf(1λ, C) and evaluation of C̃ on x succeeds. The evaluation algorithm
xiO′.Eval(C̃, x) starts by running yz ← xiO.Eval(C̃z, x) for each z ∈ [N ], and selects the first index
z? for which yz

? 6= ⊥; we set z? = ⊥ if no such index exists. We want to show that with high
probability, such an index z? exists and yz

?
= C(x). Let rz denote the randomness used by the zth

obfuscation.
We first show that the probability that z? = ⊥ is small. Let Xz = 1 if yz = ⊥, and let Xz = 0

otherwise. Then,

Pr
rz

[Xz = 1] = Pr
rz

[yz = ⊥] ≤ Pr
rz

[yz 6= C(x)] ≤ 1− γ

16
− negl(λ)

by the worst-case correctness of xiO. Therefore, since the repetitions are independent,

Pr [z? = ⊥] = Pr [∀z,Xz = 1] = (Pr [X1 = 1])
16λ
γ

≤
(

1− γ

16
− negl(λ)

) 16λ
γ ≤

(
1− γ

16

) 16λ
γ ≤ 1

eλ
,

so the probability that z? = ⊥ is negligible in λ.
We now show that for any z for which yz 6= ⊥, it holds that yz = C(x) with high probability.

To do so, we briefly recall the xiO evaluation algorithm and introduce notation for the zth instance.
The algorithm xiO.Eval(C̃z, x) does the following:

1. Parse x = x1x2 with |x1| = n− n
d and evaluate the obfuscated circuit G̃x1,z on all inputs (i, j)

to obtain czij = xiO.Eval(G̃x1,z, (i, j)).

2. For each i, run LDC.Dec(czi1 · · · czi2`2 ) to obtain a list of (ck,zi , πk,zi ) for polynomially many k.

3. For each i and each k, run NIZK.V(σ, xk,zi , πk,zi ) to check if the statement xk,zi ∈ L, where

xk,zi = (ctk,zi , i, comx1,z
Cx1

, comx1,z
0 , pkz). For the first index k for which the verification passes,

set ctzi = ctk,zi .

4. For each i, decrypt to obtain yzi = lFE.Dec(skUz , ct
z
i ).

5. Let yz be the x2th element of ECC.Dec(yz1 · · · yz2`1 ) and output yz.

Therefore, for any z, we have that

Pr [yz 6= C(x) | yz 6= ⊥] ≤ Pr
[
ECC.Dec(yz1 · · · yz2`1 ) 6= T (Cx1) | yz 6= ⊥

]
= Pr [∃i : yzi 6= ⊥ ∧ yzi 6= ECC(T (Cx1))[i] | yz 6= ⊥] ,

where the last equality holds because yz 6= ⊥ implies that there are sufficiently many yzi which are
not ⊥, and thus ECC.Dec could only output the wrong answer due to an index i that is incorrect.
Then, by the correctness of lFE, we have that for some negligible function negl, this is

Pr [∃i : yzi 6= ⊥ ∧ yzi 6= ECC(T (Cx1))[i] | yz 6= ⊥]

≤ Pr [∃i : ctzi 6= ⊥ ∧ ∀r : ctzi 6= lFE.Enc(pkz, (Cx1 , i); r) | yz 6= ⊥] + negl(λ)

= Pr
[
∃i : NIZK.V(σ, xk,zi , πk,zi ) = 1 ∧ ∀r : ctzi 6= lFE.Enc(pk, (Cx1 , i); r) | yz 6= ⊥

]
+ negl(λ)

≤ negl(λ)
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by the soundness of NIZK, because if czi 6= lFE.Enc(pk, (Cx1 , i); r) for all r then xzi 6∈ L. Therefore,
we conclude that

Pr
[
yz

? 6= C(x)
]
≤ Pr

[
yz

? 6= C(x) ∧ yz? 6= ⊥
]

+ Pr
[
yz

?
= ⊥

]
≤ Pr [∃z : yz 6= C(x) | yz 6= ⊥] + negl(λ) ≤ negl(λ)

because there are polynomially many indices z. Therefore, Pr
[
yz

?
= C(x)

]
≥ 1 − negl(λ), thereby

showing (1− negl(λ))-worst-case correctness of xiO′.

4.3 (1− negl)-Worst Case Correct XiO to Perfectly Correct XiO

Claim 4.19. Let xiO be a (1−negl(λ))-worst case correct XiO scheme for the class of circuits Cs,n.
Then, there exists a perfectly correct XiO scheme for the class of circuits Cs,n.

Proof. Let xiO be the scheme for Cs,n = {Cλ}λ∈N. We show that xiO can be amplified to a scheme
xiO′ which satisfies almost perfect correctness, security, and compression, and that xiO′ can then be
amplified to a scheme xiO? which is perfectly correct. Let s = s(λ) and n = n(λ).

Given xiO, we apply a standard BPP-stype amplification. We define a new xiO′ that on input
circuit C runs xiO poly-many times (in n), say O(n2) times, and outputs all of the obfuscations.
Evaluation is done by running all of the obfuscations and then outputting the majority value. This
transformation reduces the probability of being wrong on each x ∈ {0, 1}n to negl(λ) · 2−n. Now, we
apply a union bound and get that

Pr
[
C̃ ← xiO.Obf(1λ, C) : ∀x ∈ {0, 1}n : xiO.Eval(C̃, x) = C(x)

]
≥ 1− negl(λ),

thereby showing that xiO′ is almost perfectly correct. xiO′ satisfies compression and security because
it consists of poly(n) parallel repetitions of xiO.

Now, we change the resulting xiO′ to a perfectly correct xiO? as follows. After obfuscating a
circuit it goes over all inputs (in time 2n which is polynomial) and checks whether the obfuscation is
perfectly correct. If so, it outputs this obfuscation. If not, it outputs the circuit in the clear (padded
to the correct length, and modifying xiO?.Eval as necessary). The resulting obfuscation is clearly
perfectly correct. The security of it suffers from an extra negligible factor due to the cases where
the obfuscation was not correct. Overall, the final obfuscation is secure and perfectly correct.5

4.4 Wrapping Up – Proof of Theorem 4.1

Let Cs,n be any class in Plog. Let xiO be a (1/2 + 1/p(λ))-approximately correct XiO scheme for all
Plog. Thus, the circuits Gx in the transformation in Section 4.1 can be obfuscated when the XiO
resulting from that transformation is for the class Cs,n ∈ P. Then, by Theorem 4.2, Corollary 3.23,

and Theorem 3.17, assuming LWE and the existence of NIZKs, there exists a
(

1
16p(λ) − negl(λ)

)
-

worst-case correct XiO scheme for the class Cs,n ∈ P. Then, by Claim 4.18, there exists a (1−negl(λ))-
worst-case correct XiO scheme for Cs,n. Then, by Claim 4.19, there exists a perfectly correct XiO
scheme for Cs,n. Since this holds for any class Cs,n ∈ Plog, we therefore obtain perfectly correct XiO
for all of Plog.

5While the whole proof can be applied to XiO, this last step does not work for SXiO since we cannot go over all
inputs and check the correctness of the obfuscation.
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5 Impossibility of Key Agreement from XIO and OWFs

In this section, we show a separation from XiO and one-way functions to key agreement. In particu-
lar, we present an oracle Γ relative to which there exists a one-way function and XiO for oracle-aided
circuits, but there does not exist an oracle-aided bit-agreement protocol. This separation is in largely
based on [10, 11], and in particular follows the framework of black-box separations presented in [65].
We extend the model of [10, 11] to capture obfuscation for oracle-aided circuits with all possible
gates, as in [48, 49]. We begin with some preliminaries.

5.1 Preliminaries

Throughout this section, for ease of notation we denote both the security parameter and the size of
circuits by s. While these could be decoupled, it is natural to combine them in this way. Therefore,
in this section, we use the notation {Cs,n}s,n∈N to denote the circuit class where each C ∈ Cs,n has
size s and input length n.

Definition 5.1 (Oracle-Aided Circuits). We say that C is a class of oracle-aided circuits if it consists
of circuits, represented as a directed acyclic graph, with gates that are either Boolean operations or
oracle gates. Without loss of generality, we consider oracle-aided circuits that output a single bit.

In the above definition, we note that oracle gates could output ⊥ (not only 0 or 1). Since we
intend to capture oracle-aided circuits for all functionalities, we define ⊥∨ 1 to output 1 and we let
all other boolean operations involving ⊥ output ⊥.6

Definition 5.2 (Query types). Let M be an oracle-aided algorithm with oracle access to Γ. Then,
any query Q that M makes to Γ is called a direct query of M . Moreover, if Γ(Q) issues a query Q′

to Γ for any such Q, we say that Q′ is an indirect query of M caused by Q.

Definition 5.3 (q-Query Algorithm). We say that an algorithm M with oracle access to Γ is a
q-query algorithm if for every s ∈ N, the total number of direct queries that M(1s) makes to Γ is at
most q(s), and each query made by M(1s) has size at most q(s).

We note that the above definition is without loss of generality. In particular, with regards to
the size of the queries made by M , in this paper we consider unbounded adversaries that make a
sub-exponential number of queries. However, an adversary that makes very large queries could use
them to learn new oracle query-answer pairs indirectly. Therefore, the above definition captures the
notion that the adversary can only learn a sub-exponential number of query-answer pairs, but may
do any amount of computation on that information.

5.1.1 Oracle-Aided Bit Agreement

We next define oracle-aided bit agreement protocols. We are interested in protocols where both par-
ties A and B run in polynomial time. Therefore we start by defining a PPT oracle-aided algorithm,
and then continue with the definition of an oracle-aided bit agreement protocol.

Definition 5.4 (PPT Oracle-Aided Algorithm). We say that an oracle-aided algorithm M is a
PPT oracle-aided algorithm with respect to an oracle Γ if there exists polynomials q1, q2, q3 such that
for any s ∈ N, it holds that M(1s) is a q1-query algorithm, all queries that M(1s) makes to Γ have
query and answer size bounded by q2(s), and M(1s) runs in time q3(s).

Definition 5.5. An oracle-aided bit agreement protocol Π = (A,B) is a tuple of PPT oracle-aided
algorithms relative to an oracle Γ with the following syntax:

6This formalization allows us to capture functionalities like mux, even if an oracle gate returns ⊥.
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• (kA, kB, T )← 〈AΓ(1s; rA),BΓ(1s; rB)〉: For random tapes rA and rB (that are poly in s), we
denote the execution of the protocol by 〈AΓ(1s; rA),BΓ(1s; rB)〉. In the output, kA is the output
bit of A, kB is the output bit of B, and T is the protocol transcript, consisting of messages
exchanged between A and B.

We require that the following conditions hold:

• Perfect Completeness. For any s ∈ N, it holds that

Pr
rA,rB

[
(kA, kB, T )← 〈AΓ(1s; rA),BΓ(1s; rB)〉 : kA = kB

]
= 1.

• Security. For any PPT oracle-aided algorithm E, there exists a negligible function negl such
that for all sufficiently large s ∈ N,

AdvKAΓ,Π,E(s)
def
=

∣∣∣∣Pr
[
ExpKAΓ,Π,E(s) = 1

]
− 1

2

∣∣∣∣ ≤ negl(s),

where the experiment ExpKAΓ,Π,E(s) is defined as follows:

1. (kA, kB, T )← 〈AΓ(1s),BΓ(1s)〉.
2. k′ ← EΓ(1s, T ).

3. If k′ = kA then output 1, otherwise output 0.

5.1.2 XiO for Oracle-Aided Circuits

We now define XiO relative to an oracle, similar to the definition of iO relative to an oracle given
in [10, 11]. We strengthen the [10, 11] framework to capture XiO for circuits which may contain all
possible oracle gates. We first need the definition of functional equivalence relative to an oracle.

Definition 5.6. Let C0 and C1 be two oracle-aided circuits relative to an oracle Γ. We say that C0

and C1 are functionally equivalent relative to Γ, denoted CΓ
0 ≡ CΓ

1 , if for all inputs x it holds that
CΓ

0 (x) = CΓ
1 (x).

Definition 5.7. A perfectly correct XiO scheme relative to an oracle Γ for a class C = {Cs,n}s,n∈N
of oracle-aided circuits is a tuple of oracle-aided algorithms xiO = (Obf,Eval) with the following
syntax:

• C̃ ← ObfΓ(1s, C): The obfuscator receives the security parameter 1s and a circuit C ∈ Cs and
outputs a circuit C̃.

• EvalΓ(C̃, x): The evaluator receives a circuit C̃ and an input x, and outputs a string y or ⊥.

We require the following conditions to hold:

• Perfect Correctness. For all s, n ∈ N and all C ∈ Cs,n it holds that

Pr
[
Ĉ ← ObfΓ(1s, C) : CΓ ≡ ĈΓ

]
= 1

• Indistinguishability. For any PPT distinguisher D = (D1,D2), there exists a negligible func-
tion negl(·) such that for every s ∈ N,

AdvXiOΓ,xiO,D,C(s)
def
=

∣∣∣∣Pr
[
ExpXiOΓ,xiO,D,C(s) = 1

]
− 1

2

∣∣∣∣ ≤ negl(s)

where the random variable ExpXiOΓ,xiO,D,C(s) is defined as follows:
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• b← {0, 1}.
• (C0, C1, state)← DΓ

1 (1s) where |C0| = |C1| = s and CΓ
0 ≡ CΓ

1 .

• Ĉ ← ObfΓ(1s, Cb).

• b′ ← DΓ
2 (state, Ĉ).

• If b′ = b then output 1. Otherwise, output 0.

• Efficiency. ObfΓ satisfies the required compression for XiO.

Exponential Security. We say that an obfuscator relative to an oracle Γ is exponentially secure if
for any q-query adversary A, if there exists some 0 ≤ γ < 1 such that q(s) ≤ 2γs, then AdvXiOΓ,xiO,A,C(s)
is at most 1/q(s).

5.1.3 The Class of Reductions

In this section, we present the class of reductions that we capture. At a high level, we say that a
black-box construction of oracle-aided key agreement relative to Γ from a one-way function and XiO
is a key agreement protocol with the property that any adversary that can break the security of
the key agreement protocol can be used either to invert the one-way function or break the security
of XiO. Moreover, this definition captures constructions from XiO for circuits which are allowed to
contain all possible oracle gates.

Definition 5.8. An (A,B,M, TM , εM,1, εM,2)-fully black-box construction of an oracle-aided bit-
agreement protocol from a one-way function f and an XiO scheme xiO for the class of oracle-aided
circuits C (which may contain circuits with both f gates and xiO gates) consists of a tuple of PPT
oracle-aided algorithms (A,B), an oracle-aided algorithm M that runs in time TM (·), and functions
εM,1(·) and εM,2(·) such that the following holds:

• Perfect completeness: For any s ∈ N, it holds that

Pr
rA,rB

[
(kA, kB, T )← 〈Af,xiO(1s; rA),Bf,xiO(1s; rB)〉 : kA = kB

]
= 1.

• Black box proof of security: For any function f = {fs}s∈N, any scheme xiO = (Obf,Eval)
satisfying the syntax of perfectly correct XiO for the circuit class C, any oracle-aided algorithm
E that runs in time TE(·), and any function εE(·), if∣∣∣∣Pr

[
ExpKA(f,xiO),(A,B),E(s)

]
− 1

2

∣∣∣∣ ≥ εE(s)

for infinitely many values of s ∈ N, then either

Pr
x←{0,1}s

[
fs

(
Mf,xiO,E(fs(x))

)
= fs(x)

]
≥ εM,1

(
TE(s) · ε−1

E (s)
)
· εM,2(s)

for infinitely many values of s ∈ N, or∣∣∣∣Pr
[
ExpXiO(f,xiO),xiO,ME ,C(s) = 1

]
− 1

2

∣∣∣∣ ≥ εM,1

(
TE(s) · ε−1

E (s)
)
· εM,2(s)

for infinitely many values of s ∈ N.
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The security loss function. Since we intend to capture constructions that may be based on
super-polynomial security assumptions, we allow the algorithm M to run in arbitrary time TM (s)
and to have an arbitrary security loss. Moreover, we distinguish between the “adversary-dependent”
security-loss εM,1(TE(s) · ε−1

E (s)), and “adversary-independent” security loss εM,2(s). See [10, 11] for
further discussion.

5.2 Proof Overview and the Oracle Γ

We prove the following theorem.

Theorem 5.9. Let (A,B,M, TM , εM,1, εM,2) be a fully black-box construction of a bit-agreement
protocol from a one-way function and from XiO for a class of oracle-aided circuits C. Then, at least
one of the following holds:

• The reduction runs in exponential time, i.e., TM (s) ≥ 2γs for some γ > 0.

• The security loss is exponential, i.e., εM,1(sd) · εM,2(s) ≤ 2−s/2 for some constant d ≥ 1.

We prove Theorem 5.9 by presenting a distribution S` over oracles Γ relative to which the
following properties hold: (1) there does not exist a key-agreement protocol; (2) there exists an
(exponentially) secure one-way function, and (3) there exists an (exponentially) secure XiO. In this
section we present the distribution over oracles for which the above occur. In Section 5.3 we prove
that there exists a one-way function relative to Γ, and in Section 5.4 we show the existence of XiO
relative to Γ. Finally, in Section 5.5 we show that there does not exist a key-agreement protocol
relative to Γ. We start by defining the distribution of oracles that we consider.

The oracle Γ. Let ` be a 2-ary function with `(s, n) > s. We now define the distribution S`

over oracles Γ = (f,O, E) =
(
{fs}s∈N ,{Os,n}s,n∈N ,{Es,n}s,n∈N

)
. In order to define Γ, for every

s ∈ N, let Γ<s consist of oracles in Γ that can be queried on inputs s′ < s. In particular, let
Γ<s = (f<s,O<s, E<s), where f<s = {fs′ }s′<s, O<s =

{
Os′,n

}
s′<s,n≤s′ , and E<s =

{
Es′,n

}
s′<s,n<s′

.

We can now define (f,O, E):

• The function f = {fs}s∈N. For every s ∈ N, the function fs : {0, 1}s → {0, 1}s is a uniformly
chosen function. We will use f to implement a one-way function.

• The function O = {Os,n}s,n∈N. For every s ∈ N and n ≤ s, the function Os,n : {0, 1}2s →
{0, 1}10`(s,n) is a uniformly chosen function. Intuitively, Os,n will receive a description of a
circuit with size s and input length n, as well as a string of length s (which represents the
randomness of the obfuscator), and will increase this to a uniformly chosen string of length
10`(s, n). This will be used to implement the XiO obfuscator.

• The function E = {EΓ<s
s,n }s∈N,n∈N. For every s ∈ N and n ≤ s, we define the function EΓ<s

s,n :

{0, 1}10`(s,n) × {0, 1}n → {0, 1}∗ as follows. On input (Ĉ, x) ∈ {0, 1}10`(s,n) × {0, 1}n, the
function EΓ<s

s,n finds the lexicographically first oracle-aided circuit C of size s and input size

n, and a string r ∈ {0, 1}s such that Os,n(C, r) = Ĉ, and outputs CΓ<s(x). In particular, C
may contain queries to any oracles in Γ<s, and Es,n forwards the queries to the corresponding
oracles. If no such (C, r) exists, it outputs ⊥. Looking ahead, the oracle E will be used to
implement the XiO evaluator.

We note that the above oracles are well-defined because any circuit of size s can only have an
oracle gate of size smaller than s. In particular, if any circuit C ∈ Cs,n has an Es′,n′ gate, then the
input to the oracle gate has size `(s′, n′) > s′ which can be at most s, and thus s′ < s. If C has an
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Os′,n′ gate, then the input to the gate has size 2s′ which can be at most s, and thus s′ < s. If C
has an fs′ gate, then there are 2s′ input and output wires in total, and thus s′ < s. We next upper
bound the number of indirect queries in an execution of a q-query algorithm, relative to any Γ in
the support of S`.

Claim 5.10. Let `(s, n) = 2nε · s2 for any constant 0 < ε < 1.7 Let Γ be any oracle in the support
of S`, and let M be an oracle-aided q-query algorithm relative to Γ. Then, every query made by M
causes at most q(s)4 indirect queries, and the total number of indirect queries made by M is bounded
by q(s)5.

Proof. We want to upper bound the number of indirect queries made by M . Suppose that M
makes q = q(s) direct queries. By construction of Γ, the only indirect queries caused by M are due
to querying E . Observe that for any Es,n query, the maximum number of oracle gates in the circuit
evaluated by Es,n is at most s. Moreover, any such oracle gate which is an Es′,n′ gate must have

s′ < s
1
2 and n′ < 1

ε log(s), because the size of the gate must be bounded by s.
Therefore, consider any Es,n query y made by M for s > 1 (if s = 1, there can be no indirect

queries). We can view the indirect queries caused by y as a tree of queries rooted at y, where each
node containing an E query has a child for every oracle gate in the circuit evaluated by E on this
query. By the above logic, for any node at depth i, if it is an E query, it corresponds to a circuit

of size si < s
1

2i and input length ni <
1

ε·2i−1 log(s). Moreover, each E query at depth i can cause
at most si queries at the depth i + 1. Therefore, letting s0 := s and noting that the tree can have
depth at most log log(s), an upper bound on the total number of nodes in the tree (and thus the
number of indirect queries caused by a single query made by M) is

log log(s)∑
i=0

i∏
j=0

sj <

log log(s)∑
i=0

i∏
j=0

s
1

2j =

log log(s)∑
i=0

s
∑i
j=0

1

2j <

log log(s)∑
i=0

s2 = (log log(s) + 1) · s2 ≤ s4

Since M is a q-query algorithm, then s ≤ q and thus the total number of indirect queries is bounded
by q · s4 ≤ q5.

We now bound the probability of certain bad events related to Γ. We start by bounding the
probability that the oracle Os,n is not injective, which will be helpful in the proof of Theorems 5.18
and 5.9.

Definition 5.11. Let injectiveΓ
s,n be the event that Os,n is injective when Γ = (f,O, E) is sampled

from S`. Let injectiveΓ
≥s =

∧
s′≥s,n′≤s′ injective

Γ
s′,n′ be the event that Os′,n′ is injective for all s′ ≥ s,

and let injectiveΓ =
∧
s,n injective

Γ
s,n be the event that Os,n is injective for all s, n.

Claim 5.12. For any s, n ∈ N with n ≤ s and any function `(s, n) > s, it holds that Pr
[
¬injectiveΓ

s,n

]
≤ 2−6s and Pr

[
¬injectiveΓ

≥s
]
≤ 2−(5s+1), where the probability is over Γ← S`.

Proof. We have that for any s, n ∈ N with n ≤ s,

Pr
Γ←S`

[
¬injectiveΓ

s,n

]
≤ Pr

Γ←S`

[
∃ C, r, C ′, r′ : (C, r) 6= (C ′, r′) ∧ Os,n(C, r) = Os,n(C ′, r′)

]
≤
(

22s

2

)
· 1

210`(s,n)
≤ 1

210`(s,n)−4s
≤ 1

210s−4s
= 2−6s ,

since `(s, n) > s. Therefore, by a union bound,

Pr
Γ←S`

[
¬injectiveΓ

≥s
]
≤
∞∑
s′=s

s′∑
n′=1

Pr
Γ←S`

[
¬injectiveΓ

s′,n′
]
≤
∞∑
s′=s

s′∑
n′=1

1

26s′
=

∞∑
s′=s

s′

26s′
≤
∞∑
s′=s

1

25s′
≤ 2

25s
.

7Throughout this section, we will restrict `(s, n) = 2nε · s2, but we note that the proof holds when `(s, n) = 2nε · sc
for any constant c > 1.
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We next bound the probability of an oracle-aided algorithm “guessing” a point in the image of
Os,n without receiving it as the answer to a query. This will be helpful in the proof of Theorem 5.18.

Definition 5.13. Let ` be any two-ary function and let Γ ← S`. For any oracle-aided algorithm
M , let spoofΓs,n be the event that there exists C̃ ∈ {0, 1}10`(s,n) and x ∈ {0, 1}n such that both of the
following occur:

1. C̃ is not the output of any direct or indirect Os,n query made by M(1s).

2. M(1s) makes either a direct or indirect query to Es,n on input (C̃, x) and Es,n(C̃, x) 6= ⊥.

Let spoofΓ =
∨
s,n spoof

Γ
s,n.

We now show that conditioned on injectiveΓ
≥s, the probability that any q-query algorithm M

causes spoofΓs,n to occur is small. This proof follows ideas similar to [47].

Claim 5.14. Let `(s, n) = 2nε · s2 for some constant 0 ≤ ε < 1. Then, for any oracle-aided q-query
algorithm M , for any (s, n), it holds that

Pr
Γ←S`

[
spoofΓs,n | injectiveΓ

≥s
]
≤ 22s · q(s)

210s − 2q(s)5
.

We prove this claim using the following lemma, which bounds the probability of an adversary
who doesn’t make queries to E \ {E<s} “guessing” a point in the image of Os,n.

Lemma 5.15. Let `(s, n) = 2nε · s2 for a constant 0 ≤ ε < 1. Let A be a q′-query adversary with
oracle access to Γ that only makes queries to f,O, E<s. Then, letting winΓ

s,n denote the event that

A(1s) outputs a value C̃ in the image of Os,n without receiving C̃ as the answer to any query, it
holds that

Pr
Γ←S`,A

[
winΓ

s,n | injectiveΓ
≥s
]
≤ 22s

210s − q′(s)
.

Proof. When Γ ← S`, the choice of Os,n is independent of the choice of f , O \{Os,n}, and E<s,
because each query to these oracles cannot reveal any point in the image of Os,n. Therefore, when
conditioning on injectiveΓ

≥s, for any adversary A which only makes queries to (f,O, E<s), the answers
to Os,n queries reveal exactly one point in the image of Os,n, while the answers to all other queries
are independent of Os,n.

Recall that Os,n is a function from {0, 1}2s to {0, 1}10`(s,n). Therefore, for any such q′-query A,
there are at most 22s points in the image of Os,n that A can output which would cause winΓ

s,n to

occur, out of a total of at least 210`(s,n) − q′(s) points for A to choose from (because A could have
learned at most q′(s) points in the image of Os,n). Therefore,

Pr
Γ←S`,A

[
winΓ

s,n | injectiveΓ
≥s
]
<

22s

210`(s,n) − q′(s)
<

22s

210s − q′(s)
,

as desired.

Proof of Claim 5.14. Let p(s) = 22s·q(s)
210s−2q(s)5 and suppose for contradiction there exists a q-query

algorithm M such that for infinitely many s, PrΓ←S`

[
spoofΓs,n | injectiveΓ

≥s
]
> p(s). Let p = p(s)

and q = q(s). We will show that M can be used to construct an adversary A that makes q′ = 2q5

queries to (f,O, E<s) and contradicts Lemma 5.15. Towards that end, let winΓ
s,n be the event that

A(1s) succeeds at outputting a point in the image of Os,n without receiving it from a query.
The adversary A does the following. First, sample i? ← [q], and then run M up until query i?,

responding to all oracle queries as follows:
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• For any query to f , O, or E<s, query the real oracle and forward the corresponding answer.
Store all query-answer pairs for O queries.

• For any query Es′,n′(C̃, x) for s′ ≥ s, if C̃ corresponds to a circuit C from a previous Os′,n′
query, evaluate CΓ<s′ (x) (responding to indirect queries as specified) and output the result.
Otherwise, output ⊥.

After M makes the query with index i?, if it is an Es,n query on some (C̃, x) where C̃ was not in

any previous Os,n query, output C̃ to the challenger. Otherwise, output ⊥.
Observe that A makes at most 2q5 queries by Claim 5.10, because it makes all of M ’s queries to

f , O, and E<s, and the remaining queries it makes are M ’s indirect queries for some oracle in the
support of S`. We now analyze the success probability of A. We have that

Pr
[
winΓ

s,n | injectiveΓ
≥s
]

= Pr
[
winΓ

s,n ∧ spoofΓs,n | injectiveΓ
≥s
]

+ Pr
[
winΓ

s,n ∧ ¬spoofΓs,n | injectiveΓ
≥s
]

= Pr
[
winΓ

s,n | spoofΓs,n ∧ injectiveΓ
≥s
]
· Pr

[
spoofΓs,n | injectiveΓ

≥s
]

≥ Pr
[
winΓ

s,n | spoofΓs,n ∧ injectiveΓ
≥s
]
· p

≥ Pr
[
i? is the first instance of spoofΓs,n | spoofΓs,n ∧ injectiveΓ

≥s
]
· p = p · 1

q
,

where the probability is over Γ ← S` and the random coins of A. The first inequality is due to
our assumption that M causes spoofΓs,n to occur with probability at least p. The second inequality

is because the view of MA
Γ

is distributed exactly as in MΓ up until the first instance of spoofΓs,n.
This is because all of M ’s queries to f , O, and E<s are answered using the real oracle, and all
queries (C̃, x) to Es′,n′ for s′ ≥ s are either answered by evaluating a pre-image of C̃ under Os′,n′ , or

with ⊥. Since we are conditioning on injectiveΓ
≥s, then if there is a pre-image of C̃ from a previous

query, it is the unique pre-image. Otherwise, since we are only considering queries before the first
instance of spoofΓs,n, then any other queries to Es′,n′ are answered with ⊥, which is consistent with
the distribution over Γ.

Therefore,

Pr
[
winΓ

s,n | injectiveΓ
≥s
]
≥ p

q
=

22s · q
q · (210s − 2q5)

=
22s

210s − 2q5
,

in contradiction with Lemma 5.15.

5.3 Existence of a OWF Relative to Γ

Theorem 5.16. Let `(s, n) = 2nε · s2 for some constant 0 ≤ ε < 1. Then, given any oracle-aided
q-query algorithm A, it holds that for all s ∈ N,

Pr
x←{0,1}s,Γ←S`

[
AΓ(fs(x)) ∈ f−1

s (fs(x))
]
≤ q(s)5

2s−1

In particular, this implies that for large enough s, if q(s) < 2s/20, this probability is bounded by
2−s/2.

Proof. The proof of this theorem is similar to that of [11], with the difference that we must emulate
indirect E queries. Suppose for the sake of contradiction that there exists a PPT oracle-aided q-
query adversary A that can invert fs with oracle access to Γ. We construct an adversary B that
only makes queries to O and f , and simulates all queries to E . The adversary B runs A(1s) and
responds to all oracle queries (including direct and indirect queries made by A) as follows:

• For any query toO or f , the adversary B forwards the query to Γ and returns the corresponding
answer.

41



• For any query to Es′,n′ for any s′ on (C̃, x), the adversary B enumerates over all pairs (C, r) ∈
{0, 1}2s; in lexicographic order, queries Os′,n′(C, r), and checks if the response is C̃. In the case
that such a pre-image (C, r) is found, B evaluates CΓ<s′ (x) (responding to all oracle queries
accordingly). Otherwise, if no pre-image is found, B returns ⊥.

Observe that B simulates an oracle in the support of S`, because for every E query, it finds the
lexicographically first pre-image and evaluates it, just as done by the real oracle. The queries that
B makes to fs fall into two categories—direct queries made by A to fs, and queries to fs caused by
indirect queries made by A. Because A is a q-query algorithm, there are at most q(s) direct queries
to fs and by Claim 5.10, at most q(s)5 indirect oracle queries. Therefore, the number of queries
made by B is bounded by 2q(s)5. Since fs is a random function, any such algorithm B can output

an inverse of fs(x) with probability at most 2q(s)5

2s .

5.4 Existence of XiO Relative to Γ

In this section we show that relative to Γ there exists an XiO scheme for the class C of all polynomial-
size oracle-aided circuits. We proceed with the construction of the obfuscator.

Construction 5.17. Let `(s, n) = 2nε · s2 for a constant 0 ≤ ε < 1, and let Γ← S`. Then, for any
class of oracle-aided circuits {Cs,n}s,n∈N relative to Γ, define xiOΓ = (ObfΓ,EvalΓ) as follows:

• C̃ ← ObfΓ(1s, C): On input C ∈ Cs,n, sample r ← {0, 1}s and query Os,n(C, r) to obtain

Ĉ. Then, enumerate over all inputs x ∈ {0, 1}n and check that Es,n(Ĉ, x) = CΓ<s(x). If this

holds for all x, output (0, Ĉ). Otherwise, output (1, C), i.e., the original circuit (padded to
size 10`(s, n)).8

• y ← EvalΓ((b, C̃), x): Eval receives as input (b, C̃) ∈ {0, 1} × {0, 1}10`(s,n) and x ∈ {0, 1}n. If
b = 0, then the algorithm Eval queries Es,n(C̃, x) and outputs the result. If b = 1, then Eval

just evaluates C̃Γ<s(x) and outputs the result.

Theorem 5.18. For any class of oracle-aided circuits C, it holds that xiOΓ is a perfectly correct
XiO for C. Moreover, for any for any q-query adversary D, if q(s) < 2s/20, then∣∣∣∣Pr

[
ExpXiOΓ,xiO,D,C(s) = 1

]
− 1

2

∣∣∣∣ ≤ 2−s/4.

Proof. We show that xiO satisfies perfect correctness, compression, and the indistinguishability
requirement.

Perfect correctness. It is straightforward to verify that the xiO construction achieves perfect
correctness. Given a circuit C as input, the algorithm Obf queriesO to obtain Ĉ and then enumerates
over all inputs of the obfuscated circuit to see that the evaluation agrees with C. If the obfuscated
circuit Ĉ is perfectly correct, it is used as the obfuscation. Otherwise, the obfuscator outputs C,
which trivially satisfies perfect correctness.

8We note that this technique, of enumerating all inputs, can only be done because we are constucting XiO. In
particular, this step is the reason that this separation does not apply to perfectly correct SXiO.
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Compression. We show that xiO satisfies the efficiency required of XiO. For any C ∈ Cs,n, it
holds that

Outlen
[
ObfΓ(1s, C)

]
≤ max{s, 10`(s, n)}+ 1 = 2nε · s2 + 1 ≤ 2nε · poly(s),

for some polynomial poly.
With respect to the running time of the obfuscator on input C, it samples r ← {0, 1}s, makes a

single Es,n query to obtain Ĉ, and then for each input x, evaluates ĈΓ<s(x). By Claim 5.10, it holds

that ĈΓ<s(x) can only cause s4 indirect queries for each x. Moreover, the input and output lengths
of each such query are bounded by 10`(s, n). Therefore, we have that

Time
[
ObfΓ(1s, C)

]
= s+ poly(2n · s4 · 10`(s, n)) ≤ poly(2n, s)

for polynomials that depend on the oracle O, thereby satisfying the compression of XiO.

Security. This proof is an adaptation of the proof in [11]. In particular, we have the following
claim.

Claim 5.19. For any for any q-query adversary D, if q(s) < 2s/20, then∣∣∣∣Pr
[
ExpXiOΓ,xiO,D,C(s) = 1

]
− 1

2

∣∣∣∣ ≤ 2−s/4.

Proof Sketch. To show this, we follow the outline in [11]. Our oracle differs from theirs in three
aspects. First, our oracle O is not necessarily injective, and [11] restrict O to be a length-increasing
injective function. Second, the expansion factor of the oracle O is different from that of [11]. Third,
we allow circuits C to be oracle-aided with oracle access to Γ<s, while [11] only allow circuits to
have oracle access to f . We address these differences throughout the proof, and use results from [11]
when relevant.

Let the challenge circuits be C0, C1 ∈ Cs,n. The proof follows from a sequence of claims.

1. Suppose that there exists a q-query distinguisher D that wins ExpXiOΓ,xiO,D,C(s) with probability

at least 1
2 + δ for some δ > 0. Let q = q(s). It is easy to see that for such a distinguisher D, if

we focus on the case where Os′,n′ is injective for all s′ ≥ s, it holds that

Pr
[
ExpXiOΓ,xiO,D,C(s) = 1 | injectiveΓ

≥s
]
≥ 1

2
+ δ − Pr

[
¬injectiveΓ

≥s
]
.

2. Given such a distinguisher D, there exists a (2q5)-query distinguisher D′ that only makes

oracle queries to (f,O, E<s) with a related success probability. Let Ẽxp
XiO

Γ,xiO,D′,C(s) denote the
experiment where the distinguisher D′ does not make oracle calls to E \E<s. It follows from [11]
that, conditioned on injectiveΓ

≥s and ¬spoofD,`s,n , the advantage of D in ExpXiOΓ,xiO,D,C(s) is equal

to that of D′ in Ẽxp
XiO

Γ,xiO,D′,C(s). In particular, by conditioning on injectiveΓ
≥s, we construct the

adversary D′ just as in [11] with the difference that D′ only has oracle access to E<s (rather
than E−s =

{
Es′,n′

}
s′<s,n′≤s′ , as in [11]) and must simulate indirect queries of D as well. Thus,

by Claim 5.10, D′ is a q′-query algorithm with q′(s) < 2q(s)5. Therefore, this implies that

Pr
[
Ẽxp

XiO

Γ,xiO,D′,C(s) = 1 | injectiveΓ
≥s

]
≥ Pr

[
ExpXiOΓ,xiO,D,C(s) = 1 | injectiveΓ

≥s
]
− Pr

[
spoofD,`s,n | injectiveΓ

≥s

]
≥ 1

2
+ δ − Pr

[
¬injectiveΓ

≥s
]
− Pr

[
spoofD,`s,n | injectiveΓ

≥s

]
.
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3. For (b, r∗) ∈ {0, 1} × {0, 1}s, we let Ẽxp
XiO

Γ,xiO,D′,C(s; b, r
∗) denote the experiment in which the

obfuscated circuit that the challenger delivers toD′ is C̃ = Os,n(Cb, r
∗). We define the following

two events:

• Let initialHits,n be the event that D′ makes an Os,n query on either (C0, r
∗) or (C1, r

∗)

prior to receiving the challenge circuit C̃ from the challenger.

• Let hits,n be the event that D′ makes an Os,n query on either (C0, r
∗) or (C1, r

∗) after

receiving the challenge circuit C̃ from the challenger.

In [11], it is shown that for all s, n ∈ N, the distinguishing probability of D′ is exactly 1/2
when both initialHits,n and hits,n do not occur. This applies to our case as well, because we
are conditioning on injectiveΓ

≥s, and there are no indirect queries that can reveal points in the
image of Es,n or Os,n. Therefore, the results of [11] imply that if D′ succeeds to distinguish
with probability greater than 1/2 + δ′ conditioned on injectiveΓ

≥s, then the probability that

initialHits,n or hits,n occur, conditioned on injectiveΓ
≥s, is greater than δ′.

4. On the other hand, [11] also showed that for every q′-query algorithm that does not make any
queries to Es,n, it holds that

Pr
O

(b,r∗)

[initialHits,n ∨ hits,n] <
q′

2s − q′
(4)

which applies to our case when conditioning on injectiveΓ
≥s and because D′ does not make any

queries to E \ E<s.

Putting everything together, assume towards a contradiction that there exists a q-query distinguisher
D such that ∣∣∣∣∣ Pr

O
(b,r∗)

[
ExpXiOΓ,xiO,D,C(s; b, r

∗)
]
− 1

2

∣∣∣∣∣ > δ

for infinitely many s ∈ N. This implies the existences of a q′-query algorithm D′ with q′(s) < 2q(s)5

that does not make any queries to E \ E<s for which∣∣∣∣∣∣ Pr
O

(b,r∗)

[
Ẽxp

XiO

Γ,xiO,D′,C(s; b, r
∗) | injectiveΓ

≥s

]
− 1

2

∣∣∣∣∣∣
≥ 1

2
+ δ − Pr

[
¬injectiveΓ

≥s
]
− Pr

[
spoofD,`s,n | injectiveΓ

≥s

]
≥ 1

2
+ δ − 1

25s−1
− 22s · q

210s − 2q5
≥ 1

2
+ δ − 1

24s
− 22s · q

210s − 2q5

for infinitely many s ∈ N and n = n(s), by Claims 5.12 and 5.14. Taking q < 2s/20, and δ = 2−s/4,
we have that q5 < 2s/4 and thus the above implies that

Pr
O

(b,r∗)

[
initialHits,n ∨ hits,n | injectiveΓ

≥s
]
>

1

2s/4
− 1

24s
− 22s · 2s/20

210s − 2s/4+1
>

1

2s/4
− 1

24s
− 1

26s
>

1

2s/4+1
.

On the other hand, applying q < 2s/20 in Eq. (4) with q′ = 2q5, we get that

Pr
O

(b,r∗)

[
initialHits,n ∨ hits,n | injectiveΓ

≥s
]
<

2q5

2s − 2q5
<

2s/4+1

2s − 2s/4+1
=

1

23s/4−1 − 1
≤ 1

2s/4+1

for s ≥ 5. Since the above holds for infinitely many s, this is a contradiction.
This completes the proof of Theorem 5.18.
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5.5 Breaking Perfect Key Agreement Relative to Γ

In this section, we will consider a key agreement protocol relative to Γ between A and B, and
construct an adversary E that breaks the key agreement protocol.

Theorem 5.20. Let `(s, n) = 2nε · s2 for a constant 0 < ε < 1. Then, for any perfectly correct
oracle-aided bit agreement protocol 〈A,B〉 in which A and B run in time at most most q(s), there
exists an oracle-aided adversary E that makes q(s)O(1) oracle queries such that∣∣∣∣Pr

[
ExpKAΓ,(A,B),E(s) = 1

]
− 1

2

∣∣∣∣ ≥ 7

16
,

where the probability is over Γ← S`, and the randomness of A, B, and E. Moreover, the algorithm
E can be implemented in polynomial time given access to a PSPACE-complete oracle.

Proof. Fix `(s, n) as above and an execution of the key agreement protocol 〈AΓ(1s; r?A),BΓ(1s; r?B)〉.
We start by defining some notation.

Notation. Let QA, QB, and QE denote the set of oracle queries made by A, B, and E, respectively.
Let [O(x) = y] ∈ Qp denote that a party p queried an oracle O on x and received y. Let QAB =
QA ∪QB be the set of oracle queries in the real protocol.

Since A and B are PPT algorithms, let q = q(s) be a polynomial which upper bounds on the
number of queries, size of each query-answer pair, and running time of A and B. Thus, all Os,n and
Es,n queries in the real execution of the protocol satisfy s ≤ q and 2nε · s2 ≤ q. This implies that
n ≤ 1

ε log q. We will use this bound on n to show that A and B can only query O on circuits with
logarithmic size input, and thus the adversary can learn the truth table of any circuit queried this
way by only making a polynomial number of queries.

We now define an extended set of queries for any query-answer set Q. Intuitively, this captures
queries that are “known” to an algorithm that makes the queries in Q. For example, suppose an
algorithm M queries Os,n on some (C, r) and obtains C̃, and queries Γ<s on all queries in the

evaluation of CΓ<s(x) and learns that CΓ<s(x) = y. Then, intuitively M knows that Es,n(C̃, x) = y
(up to the probability of O being injective), even without making any Es,n query. The following
definition captures this dependence between the oracles.

Definition 5.21. Given a query-answer set Q and an oracle Γ, the augmented query-answer set
Aug(Q) with respect to Γ is defined recursively as follows:

1. Every query-answer pair in Q is also in Aug(Q).

2. For every C̃ such that there exists a query [Os,n(C, r) = C̃] ∈ Aug(Q) or [Es,n(C̃, x) = y] ∈
Aug(Q), the set Aug(Q) contains the following queries (and the corresponding answers):

(a) Os,n(C ′, r′), if there exists a pair (C ′, r′) which is the lexicographically first such pair such

that Os,n(C ′, r′) = C̃.

(b) Es,n(C̃, w) for all w ∈ {0, 1}n.

(c) All indirect queries made in the evaluation of Es,n(C̃, w) for all w ∈ {0, 1}n.

We note that while the above definition is recursive, the set Aug(Q) is well-defined. In particular,
for every C̃ for which there is a related query in Aug(Q) to Os,n or Es,n, the set adds one Os,n query,
2n queries to Es,n, and all indirect queries due to those queries. The Os,n and Es,n queries correspond

to the same circuit, C̃, and thus do not cause circularity, and the indirect queries must be for circuits
of smaller sizes. We now bound the size of Aug(Q) for any query-answer set Q made by a PPT
algorithm. This will be helpful in bounding the number of queries that the adversary makes when
simulating queries made by A and B.
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Claim 5.22. Let `(s, n) = 2nε · s2 for a constant 0 ≤ ε < 1, and let Γ ← S`. Let M be a PPT
oracle-aided algorithm relative to Γ, and let Q be the set of queries made by M(1s). Then, there
exists a polynomial poly such that |Aug(Q)| = poly(s).

Proof. Let q = q(s) be a polynomial upper bound on the size of the queries and answers for all
queries made by M . Without loss of generality, assume that Q contains only one query (if Q contains
k queries, the resulting bound will have an additional multiplicative factor of k). For any value C̃,
let C̃ be associated with Q if there is a query Os,n(C, r) = C̃ or Es,n(C̃, x) = y in Q. Moreover, for

any C̃ associated with Q, let Extend(C̃) denote the set of queries added in one iteration of Step 2 of
Definition 5.21 due to C̃. With this notation, the process to form Aug(Q) from Q can be written as:

While there exists a value C̃ associated Aug(Q) such that Extend(C̃) 6⊆ Aug(Q), add
Extend(C̃) to Aug(Q).

To prove the claim, we first bound the size of Extend(C̃) for any C̃ associated with Aug(Q), and
then we bound the number of such associated values. To bound |Extend(C̃)|, observe that for any
C̃ associated with Q, by definition there is a query Os,n(C, r) = C̃ or Es,n(C̃, x) = y in Q. Both of
these queries have size greater than `(s, n) = 2nε · s2. Therefore, the size of each query is bounded

above by q, it holds that s < q
1
2 and n < 1

ε log(q). By definition of the augmented set, this extends

to any C̃ associated with Aug(Q). Moreover, for any C̃ ∈ {0, 1}10`(s,n) associated with Aug(Q), the
set Extend(C̃) contains at most 1 query to Os,n, 2n queries to Es,n, and at most 2n · s5 queries to
Γ<s, because each query to Es,n can cause at most s5 indirect queries by Claim 5.10. Therefore, we
have that

|Extend(C̃)| ≤ 1 + 2n + 2n · s5 ≤ 1 + 2
1
ε

log(q) + 2
1
ε

log(q) · q
5
2 ≤ 3q

5
2

+ 1
ε = 3qd

for a constant d = 5
2 + 1

ε .

We now turn to bound the number of values C̃ associated with Aug(Q). Towards this end,
observe that for any C̃, the set Extend(C̃) can be partioned into two sets A and B as follows:

• A contains all queries to Os,n, Es,n, and f .

• B contains all queries to O<s and E<s. In particular, since B contains all indirect queries due

to queries to Es,n, any query in B must be to Os′,n′ or Es′,n′ for some s′ ≤ s
1
2 .

Using this notation, we have that Aug(Q) can be written as A ∪ Aug(B), because the queries in A
are those that do not cause new values to be associated with Aug(Q), while the queries in B are

those that cause further recursion. Moreover, the queries in B all have size bounded by s
1
2 ≤ q

1
2 .

Therefore, letting T (q) denote an upper bound on the size of the augmented set for any set of queries
with query size bounded by q, we have that

T (q) ≤ |A|+ |B| · T (q
1
2 ) ≤ 3qd + 3qd · T (q

1
2 ),

where we used the fact that both A and B have size bounded by |Extend(C̃)| ≤ 3qd. Noting that
there can be at most log log(q) levels of recursion and enumerating shows that

T (q) ≤
log log(q)∑
i=0

3i+1 · q
∑i
j=0

d

2j ≤ 3log log(q)+1

log log(q)∑
i=0

·q
∑i
j=0

d

2j < 3 log2(q) ·
log log(q)∑
i=0

q
d
∑i
j=0

1

2j

< 3 log2(q) ·
log log(q)∑
i=0

q2d = 3 log2(q) · (log log(q) + 1) · q2d = qO(1).

Therefore, |Aug(Q)| is polynomial in q and thus polynomial in s, as desired.
Let q′ = q′(s) denote the polynomial upper bound on |Aug(QAB)| computed in Claim 5.22. We

are now ready to define the adversary E.
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The adversary E.

• Input: A transcript T of an execution 〈AΓ(1s; r?A),BΓ(1s; r?B)〉.

• Oracle Access: Γ = (f,O, E).

• Algorithm:

1. Initialize a set QE = ∅ and a multiset K = ∅.
2. Learning Im(Γs) for small s: For every s such that 210s − 22s < 2q′, query Γs on all

inputs and add these query-answer pairs to QE .

3. Repeat the following 2q′ + 1 times:
(a) Simulation phase: Find a valid oracle Γ′ = (f ′,O′, E ′) and random strings r′A, r

′
B

such that the following holds:
i. Every query in QE is answered the same way in Γ′ as in QE .

ii. O′s,n is injective for all s, n ∈ N.

iii. The transcript T ′ outputted by 〈AΓ′(1s; r′A),BΓ′(1s, r′B)〉 is the same as T .

Abort if no such Γ′, r′A, r
′
B exist. Let k′A be the key outputted by A in this simulation,

and add k′A to K.

(b) Update phase: Let QSim be the queries made by A and B in the execution
〈AΓ′(1s; r′A),BΓ′(1s, r′B)〉, and consider the set Aug(QSim) with respect to Γ′. Query
Γ with all queries in Aug(QSim)\QE and update QE with these queries and answers.

• Output: The majority key k in K.

Lemma 5.23. E makes poly(q) many queries some polynomial poly.

Proof. E first queries Γs on all inputs for small integers s′ satisfying 210s′ − 22s′ < 2q′. Since q′ is
polynomial in q, this can be done by querying Os′,n′ on all inputs for s′ ∈ O(log(q)), thus resulting
in polynomially many queries in q. E then makes at most |Aug(QSim)| queries in the update phase
in each iteration. Since |QSim| < q, it holds that |Aug(QSim)| is polynomial in q. Moreover, E runs
for 2q′ + 1 iterations, which is polynomial in q, thus proving the lemma.

Bad event. We will show that the adversary E always succeeds to find the key computed in the
real protocol, assuming that O is an injective function. We define injectiveΓ

s,n and injectiveΓ as in
Definition 5.11. By Claim 5.12, we have that

Pr
[
¬injectiveΓ

]
≤
∞∑
s=1

1

26s
≤ 2−4.

We proceed to our main lemma.

Lemma 5.24. Let k? denote the key computed by A and B in the real execution of the protocol. If
injectiveΓ holds, then E does not abort, and in each iteration either (1) E adds a query in Aug(QAB)
to QE, or (2) E adds k? to K.

Proof. We first show that assuming injectiveΓ holds, E does not abort. Recall that E aborts if it
cannot find a valid oracle Γ′ and strings r′A, r

′
B such that Γ′ is consistent with QE , the oracle O′s,n

is injective, and the transcript T ′ outputted by the simulated execution with respect to Γ′, r′A and
r′B is the same as the real transcript T . As the real oracle Γ and the real randomness r?A, r?B satisfy
these properties, there exists at least one valid oracle and pair of random strings and therefore E
does not abort.
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We now show that in every iteration, either (1) E adds a query in Aug(QAB) to QE , or (2)
E adds k? to K. Consider some iteration in which (1) does not hold. We will show that E adds
k? to K in this iteration. Let Γ′, r′A, r

′
B be the oracle and random strings chosen by E in this

iteration. By definition, the transcript of this execution is T . Let k′ be the key outputted by
〈AΓ′(1s; r′A),BΓ′(1s; r′B)〉. Assuming that (1) does not hold, we now show that there exists a hybrid

oracle Γ̃ for which
(k′, k?, T )← 〈AΓ̃(1s; r′A),BΓ̃(1s; r?B)〉.

That is, we show an oracle Γ̃ such that when A uses the randomness of the simulation and B uses the
randomness of the real protocol and both run with respect to Γ̃, A outputs k′ (as in the simulation)
while B outputs k? (as in the real), and the execution produces the transcript T (as in both the real
and simulated protocols). Given the existence of such an oracle, by the perfect correctness, it must
hold that k′ = k?, and therefore, since E adds k′ = k? to K, the claim follows.

We construct the hybrid oracle Γ̃ = (f̃ , Õ, Ẽ) as follows:

• The oracle f̃ . For every s, for every x such that [f ′s(x) = y] ∈ Aug(QSim), set f̃s(x) = y. For
every x such that [fs(x) = y] ∈ Aug(QAB), set f̃s(x) = y. For every other x, set f̃s(x) = 0.

• The oracle Õ. For every s and n, proceed as follows. For every (C, r) ∈ {0, 1}2s for which
[O′s,n(C, r) = Ĉ] ∈ Aug(QSim), set Õs,n(C, r) = Ĉ. Likewise, for every (C, r) ∈ {0, 1}2s for

which [Os,n(C, r) = Ĉ] ∈ Aug(QAB), set Õs,n(C, r) = C̃. For every other (C, r) ∈ {0, 1}2s for

which Õs,n is not yet defined, set the value Os,n(C, r) arbitrarily, such that it avoids the set
avoids,n, defined as

avoids,n
def
=
{
C̃ : [Os,n(?, ?) = C̃] ∈ Aug(QAB) or [Es,n(C̃, ?) = ?] ∈ Aug(QAB)

}
∪
{
C̃ : [O′s,n(?, ?) = C̃] ∈ Aug(QSim) or [E ′s,n(C̃, ?) = ?] ∈ Aug(QSim)

}
where ? represents an arbitrary value (that may be ⊥). In particlar, the set avoids,n will ensure

that for any string C̃ ∈ {0, 1}10`(s,n) that is associated with Aug(QAB) or Aug(QSim), there
will not be a pre-image of C̃ under Õ other than the one specified by Aug(QAB) or Aug(QSim).
This helps us show that there are no conflicting evaluations under Ẽs,n. Moreover, note that
avoids,n has size at most |Aug(QAB)| + |Aug(QSim)| ≤ 2q′, while Os,n has a domain of size
22s and a range of size 210`(s,n) > 210s. Note that for any s such that 210s − 2q′ < 22s, all C
already have images under Õ because E queries Γs on all queries for these s. Thus, for any
s such that an arbitrary image of (C, r) is chosen under Os,n, there are enough strings such
(C, r) will have an image under Os,n.

• The oracle Ẽ. This oracle is defined iteratively. For each s ∈ N and each n ≤ s, define Ẽs,n
deterministically based on f̃<s, Õ<s and Ẽ<s, exactly as Es,n is defined with respect to Γ<s.

We now analyze an execution of the protocol with respect to the oracle Γ̃ whileA uses the randomness
r′A (as in the simulation) and B uses randomness r?B (as in the real). Let

(k̃A, k̃B, T̃ )← 〈AΓ̃(1s; r′A),BΓ̃(1s; r?B)〉.

We will show that T̃ = T , k̃A = k′, and k̃B = k?. Towards this end, it is enough to show that Γ̃
agrees with Γ on all queries in Aug(QAB) and that Γ̃ agrees with Γ′ on all queries in Aug(QSim).
Since E adds all queries in Aug(QSim) \QE to QE in each round, and we assumed that E does not
add any queries in Aug(QAB) to QE in this iteration, it implies that all query and answer pairs in
Aug(QSim)∩Aug(QAB) agree with the real oracle Γ. As a result, it is enough to show that all queries
in Aug(QSim) ∪ Aug(QAB) are answered the same in Aug(QSim) ∪ Aug(QAB) as in Γ̃.
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First, it is easy to see that f̃ is consistent with all queries to f and f ′ in Aug(QAB)∪Aug(QSim)
because there are no contradicting queries between Aug(QAB) and Aug(QSim). Similarly, Õ is
consistent with all queries to O and O′ in Aug(QAB) ∪ Aug(QSim).

As for Ẽ , to show that Ẽ is consistent with E and E ′ queries in Aug(QAB)∪Aug(QSim), we show
the following stronger statement by induction on s. For every s ∈ N, the following holds:

(a) For every n ≤ s, consider any query on (C, r) to Os,n or O′s,n in Aug(QAB) ∪ Aug(QSim).

If there exists a (C ′, r′) such that Õs,n(C, r) = Õs,n(C ′, r′), then C and C ′ are functionally

equivalent with respect to Γ̃.

(b) Assuming (a) holds for s, then for any n ≤ s, any Es,n or E ′s,n query that appears in Aug(QSim)∪
Aug(QAB) is answered the same by Ẽs,n.

We show (a) for O queries in Aug(QAB) and (b) for E queries in Aug(QAB). The cases of O′ or E ′
queries in Aug(QSim) follow analogously.

Base case of (a). Consider any query [O1,1(C, r) = Ĉ] ∈ Aug(QAB). The existence of this query

implies that Õ1,1(C, r) = Ĉ. Suppose there is a pair (C ′, r′) 6= (C, r) such that Õ1,1(C, r) =

Õ1,1(C ′, r′) = Ĉ. We want to show that C is functionally equivalent to C ′ relative to Γ̃. Note that
C and C ′ have no oracle gates due to their size, so we only need to show that that C and C ′ are
functionally equivalent.

Recall that Õ “inherits” all query-answer pairs from queries to O and O′ in Aug(QAB) ∪
Aug(QSim), and chooses arbitrary images for inputs that are independent of Aug(QAB)∪Aug(QSim).
Thus, the only way that there exists a (C ′, r′) 6= (C, r) such that Õ1,1(C ′, r′) = Ĉ is if there is a

query [O′1,1(C ′, r′) = Ĉ] ∈ Aug(QSim). In particular, O1,1(C ′, r′) cannot result in Ĉ because O1,1 is

injective, and Ĉ cannot be chosen as an arbitrary image of C ′, r′ under Õ because it is in avoid1,1.

Therefore, there exist queries [O1,1(C, r) = Ĉ] ∈ Aug(QAB) and [O′1,1(C ′, r′) = Ĉ] ∈ Aug(QSim),
and our goal is to show that C and C ′ are functionally equivalent. BecauseO′1,1 andO1,1 are injective,

by definition of Aug(QAB) and Aug(QSim), there exist queries [E ′1,1(Ĉ, x) = C ′(x)] ∈ Aug(QSim) and

[E1,1(Ĉ, x) = C(x)] ∈ Aug(QAB) for every x ∈ {0, 1}. Since there are no contradicting queries in
Aug(QAB) ∪ Aug(QSim), this implies that C(x) = C ′(x) for every x ∈ {0, 1}. Therefore, C and C ′

are functionally equivalent.

Base case of (b). Here, we show that any E1,1 query that appears in Aug(QAB) is answered the

same by Ẽ1,1. There are two cases to consider.

• [E1,1(Ĉ, x) = y] ∈ Aug(QAB) with y 6= ⊥. In this case, because O is injective, there exists

a unique pair (C, r) such that [O1,1(C, r) = Ĉ] ∈ Aug(QAB) with C(x) = y. Now, consider

the hybrid oracle Ẽ1,1. On input (Ĉ, x), the oracle Ẽ1,1 finds the lexicographically first pair

(C ′, r′) with Õ1,1(C ′, r′) = Ĉ. Here, since [O1,1(C, r) = Ĉ] ∈ Aug(QAB), it implies that

Õ1,1(C, r) = Ĉ, so we can apply the base case of (a) which gives us that C is functionally

equivalent to C ′. Therefore, Ẽ1,1(Ĉ, x) = C ′(x) = C(x) = y, as desired.

• [E1,1(Ĉ, x) = ⊥] ∈ Aug(QAB). In this case, observe that any pre-image of Ĉ under O1,1 would

be too small to have oracle gates. Thus, if an E1,1 query on (Ĉ, x) returns ⊥, it must be that Ĉ
is not in the image of O1,1. This also holds with respect to the simulated and hybrid oracles.

Therefore, since our goal is to show that Ẽ1,1(Ĉ, x) = ⊥, it is enough to show that Ĉ is not in

the image of Õ1,1. Suppose for contradiction that Ĉ is in the image of Õ1,1. By construction

of Õ1,1, it must be that there exists a (C, r) such that [O′1,1(C, r) = Ĉ] ∈ Aug(QSim). By
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definition of the augmented set and the fact that O′1,1 is injective, this implies the existence

of a query [E ′1,1(Ĉ, x) = C(x)] ∈ Aug(QSim). Note that C is too small to have oracle gates
and thus C(x) 6= ⊥. However, this implies that E learns a new query in Aug(QAB) during the
update phase, in contradiction.

We now show the inductive step. Suppose that (a) and (b) hold for all s′ with s′ < s.

Inductive step for (a). We now show that (a) holds for s. Fix any n ≤ s and consider any
query [Os,n(C, r) = Ĉ] ∈ Aug(QAB). This implies that Õs,n(C, r) = Ĉ. Suppose that there exists

a pair (C ′, r′) 6= (C, r) with Õs,n(C, r) = Õs,n(C ′, r′) = Ĉ. Our goal is to show that C and C ′ are

functionally equivalent under Γ̃. By the same logic as the base case of (a), by construction of Γ̃,
the only way that such a (C ′, r′) exists is if there is a query [O′s,n(C ′, r′) = Ĉ] ∈ Aug(QSim).

Therefore, there exists queries [Os,n(C, r) = Ĉ] ∈ Aug(QAB) and [O′s,n(C ′, r′) = Ĉ] ∈ Aug(QSim).
Because both Os,n and O′s,n are injective, these queries imply that (C, r) and (C ′, r′) are the unique

pre-images of Ĉ under Os,n and O′s,n, respectively. Therefore, there exist queries [Es,n(Ĉ, x) =

CΓ<s(x)] ∈ Aug(QAB) and [E ′s,n(Ĉ, x) = C ′Γ
′
<s(x)] ∈ Aug(QSim) for all x ∈ {0, 1}n (where the

evaluations of CΓ<s and C ′Γ
′
<s may be ⊥), by definition of the augmented sets.

Recall that we want to show that C is functionally equivalent to C ′ under Γ̃. This amounts

to showing that CΓ̃<s(x) = C ′Γ̃<s(x) for every x. Therefore, fix any x ∈ {0, 1}n. Because there
can be no contradicting queries between Aug(QAB) and Aug(QSim), the existence of the E and E ′
queries mentioned above imply that CΓ<s(x) = C ′Γ

′
<s(x). All indirect queries by C and C ′ have

sizes smaller than s. Moreover, all indirect queries made by CΓ<s(x) appear in Aug(QAB), and all
indirect queries made by C ′Γ

′
<s(x) appear in Aug(QSim). Therefore, by part (b) of the inductive

hypothesis, Γ̃<s agrees with Γ<s and Γ′<s on each of these queries. Therefore,

CΓ̃<s(x) = CΓ<s(x) = C ′Γ
′
<s(x) = C ′Γ̃<s(x),

so C and C ′ are functionally equivalent under Γ̃.

Inductive step for (b). Assuming (a) holds for s, we now show that (b) holds for s. Let n ≤ s
and suppose there is a query [Es,n(Ĉ, x) = y] ∈ Aug(QAB), where y may be ⊥. We want to show

that Ês,n(Ĉ, x) = y, that is, the hybrid oracle agrees with the given query. There are two cases to
consider.

• There exists a query [Os,n(C, r) = Ĉ] ∈ Aug(QAB). Then, because O is injective, it holds that

(C, r) is the unique pre-image of Ĉ under Os,n. Thus, Es,n(Ĉ, x) evaluates CΓ<s(x) to obtain

y. Now, consider the hybrid oracle Ẽs,n(Ĉ, x), which looks for the lexicographically first pre-

image of Ĉ under Õs,n. Because there are no contradicting queries in Aug(QAB)∪Aug(QSim),

we know that Õs,n(C, r) = Ĉ, but (C, r) may not be the lexicographically first pair for which
this holds. Nevertheless, we can apply part (a) of the inductive hypothesis for s to show that

Ẽs,n(Ĉ, x) = CΓ̃<s(x). Since Γ̃<s agrees with Γ<s on all queries in the evaluation of CΓ̃<s(x)

by part (b) of the inductive hypothesis, it holds that CΓ̃<s(x) = CΓ<s(x) = y. Therefore,
Ẽs,n(Ĉ, x) = y as desired.

• There is no (C, r) such that [Os,n(C, r) = Ĉ] ∈ Aug(QAB). In this case, it must be that there

is no pre-image of Ĉ under Os,n, so y = ⊥. Thus, we want to show that Ẽs,n(Ĉ, x) = ⊥. If

Ĉ is not in the image of Õs,n, it directly implies that Ẽs,n(Ĉ, x) = ⊥, so we focus on the case

where Ĉ is in the image of Õs,n. This case could only only if there exists a pair (C ′, r′) such

that [O′s,n(C ′, r′) = Ĉ] ∈ Aug(QSim), by construction of Õs,n.
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We show that this is analogous to the first case of the inductive step. The query [O′s,n(C ′, r′) =

Ĉ] ∈ Aug(QSim) implies the existence of the query [E ′s,n(Ĉ, x) = ⊥] ∈ Aug(QSim), because if
this query did not result in ⊥, there would be a contradicting query in Aug(QAB)∪Aug(QSim).
Thus, we can apply the same logic as the first case, replacing queries to Γ with those to Γ′

and replacing y with ⊥, which completes the proof.

We reiterate that the cases for (a) and (b) corresponding to queries in Aug(QSim) rather than
Aug(QAB) are analogous. This completes the proof of Lemma 5.24.

Wrapping up. Given a perfectly-correct key agreement protocol 〈A,B〉 bounded by some running
time q(s), we showed the existence of an adversary E that makes qO(1) queries and finds the key
k? with probability at least 1 − 2−4. Because q(·) is a polynomial, we conclude that E makes at
most polynomial number of oracle queries to Γ. Moreover, all other computations that are done by
E can be done using a polynomial number of queries to a PSPACE-complete oracle (as in the work
of Impagliazzo and Rudich [65]): In each iteration, sampling r′A, r

′
B and Aug(QSim) can be done in

polynomial space, requires access only to Q which is of polynomial size and does not require access
to Γ.

5.6 Proof of Theorem 5.9

Equipped with Theorems 5.16, 5.18 and 5.20, we are now ready to prove Theorem 5.9.

Proof of Theorem 5.9. Let (A,B,M, TM , εM,1, εM,2) be a fully black-box construction of a bit-
agreement protocol from a one-way function f and an XiO scheme xiO for a class of oracle-aided
circuits C = {Cs,n}s,n∈N relative to Γ ← S`, where `(s, n) = 2nε · s2 for a constant 0 ≤ ε < 1. By
Theorem 5.20, there exists an oracle-aided algorithm E that runs in polynomial time TE(s) such
that ∣∣∣∣Pr

[
ExpKAΓ,(A,B),E(s) = 1

]
− 1

2

∣∣∣∣ ≥ 7

16
,

where the probability is over Γ← S`, and the internal randomness of A,B, and E. By Definition 5.8,
it therefore holds that either E can be used to invert the one-way function f , or to break the security
of xiO.

E can be used to invert the one-way function f . In the first case, by Definition 5.8, it holds
that

Pr
[
MEPSPACE,Γ(f(x)) ∈ f−1(f(x))

]
≥ εM,1

(
16

7
· TE(s)

)
· εM,2(s).

for infinitely many values of s ∈ N, where the probability is taken over the choice of s← {0, 1}s and
over the internal randomness of M . The algorithm M may invoke E on various security parameters
(i.e., in general M is not restricted to invoking E only on the security parameter s), and we denote
by L(s) the maximal security parameter on which M invokes E (when M itself is invoked on the
security parameter s). This, viewing ME as a single oracle-aided algorithm that has access to a
PSPACE-complete oracle and to Γ, its running times TME (s) satisfies TME (s) ≤ TM (s) · TE(L(s)),
as M may invoke E at most TM (s)-times, and the running time of E on each invocation is at most

TE(L(s)). Viewing M ′
def
=MEPSPACE

as a single oracle-aided algorithm that has oracle access to Γ,
this implies that M ′ is a q-query algorithm where q(s) = TME (s). Theorem 5.16 then implies that
either q(s) ≥ 2s/20 or εM,1 (TE(s) · 16/7) · εM,2(s) ≤ 2−s/2. We have:

• In the first case (i.e., q(s) ≥ 2s/20), noting that L(s) ≤ TM (s), we obtain that

2s/20 ≤ q(s) = TME (s) ≤ TM (s) · TE(L(s)) ≤ TE(s) · TE(TM (s)) .
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The running times TE(s) of the adversary E (when given access to a PSPACE-complete oracle)
is some fixed polynomial in s, and therefore TM (s) ≥ 2γs for some constant γ > 0.

• In the second case, i.e., εM,1 (TE(s) · 16/7)·εM,2(s) ≤ 2−s/2, since TE(s) < sd for some constant
c, we obtain that εM,1(sd) · εM,2(s) ≤ 2−s/2 for some constant d ≥ 1.

E can be used to break xiO. In the second case we obtain from Definition 5.8 that∣∣∣∣Pr
[
ExpXiO(f,xiO),xiO,ME ,C(s) = 1

]
− 1

2

∣∣∣∣ ≥ εM,1

(
16

7
· TE(s)

)
· εM,2(s)

for infinitely many values of s ∈ N, where Γ← S`. As in the previous case, viewing M ′
def
=MEPSPACE

as a single oracle-aided algorithm that has oracle access to Γ, implies that M ′ is a q-query algorithm
where q(s) = TME (s). Theorem 5.18 then implies that either 2s/20 ≤ q(s) or εM,1(TE(s) · 16/7) ·
εM,2(s) ≤ 2−s/4. As previously, this implies that either TM (s) ≥ 2γs for some constant γ > 0, or
εM,1(sd) · εM,2(s) ≤ 2−s/4 for some constant d > 1.

6 Compressing Obfuscation with Statistical Security

In this section we study the possibility for compressing obfuscation with perfect (information-
theoretic) security. We will distinguish between approximately correct and perfectly correct com-
pressing obfuscators and show almost tight results.

For approximately correct obfuscators, one the one hand, we show that there exists a statistically
secure compressing obfuscator for the class of bounded depth circuits. On the other hand, we show
that this is almost tight as any class that contains a (puncturable) PRF cannot be obfuscated with
statistical secure (under complexity theoretic conjectures). See Theorems 6.4 and 6.6 for the precise
parameters.

For perfectly correct obfuscators, on the one hand, we show that there exists a statistically secure
compressing obfuscator for the class of bounded depth circuits, but the compression factor will be
very weak (the obfuscation time is poly(2n)). On the other hand, we show that even for depth two
circuits, better compression with better running time is implausible. See Theorems 6.2 and 6.8 for
the precise parameters.

6.1 Negative Results

We show that it is unlikely that there is a statistically secure compressing obfuscator with good
enough compression.

Our first result says that if such an obfuscator exists with strong enough compression, namely
a (2εn, 2εn)-compressing obfuscator with statistical security and perfect correctness, then SAT (the
problem of deciding whether a SAT formula is unsatisfiable) has an AM protocol in which the
verifier’s running time is bounded by 2εn. This is not believed to be likely for small enough values of
ε > 0, according to the best of our knowledge. Note that for this result we only need an obfuscator
for depth-2 circuits. This argument relies on ideas from [70] and can be seen as an extension of an
argument from [56].

Definition 6.1. We denote by AM[t, `] the class of all languages on instances of size n that have
an AM protocol in which the running time of the verifier is at most t(n) and its messages size
is at most `(n). The class coAM[t, `] is defined, analogously, to be the class that contains all the
complement languages. In case that t = `, we will write AM[t] to denote AM[t, t] and coAM[t] to
denote coAM[t, t].
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Theorem 6.2. There exists a universal constant c > 0 such that the following holds. If there
is 0 < ε < 1 and a statistically secure and perfectly correct (2εn, 2εn)-compressing obfuscation for
depth-2 circuits, then SAT ∈ AM[2cεn].

The conclusion in Theorem 6.2 can be stated more generally as a conjecture that is interesting
on its own right. This conjecture is parametrized by an 0 < ε < 1 and it says that SAT is not in
AM[2εn].

Definition 6.3 (Conjecture). There exist ε > 0 for which SAT /∈ AM[2εn].

It is known that the conjecture is false for ε = 1/2 by the recent result of Williams [92] who
showed that SAT ∈ AM[Õ(2n/2)]. However, for smaller values of ε it is still unknown. The conjecture
is particularly appealing in the case that ε is sub-constant (some o(1)).

Additionally, we give evidence that a compressing obfuscator with statistical security and only
approximate correctness cannot exist for classes of functions that contain a (puncturable) PRF. This
argument relies on and extends the proof of [29].

Theorem 6.4. [Restatement of Theorem 1.2, part II] There exists a universal constant c > 0 such
that the following holds. If there is 0 < ε < 1 and a statistically secure and approximately correct
(2n

ε
, 2n

ε
)-compressing obfuscation for all circuits, then SAT ∈ AM[2n

ε
].

Proof of Theorem 6.2. Our proof will work by constructing a compressing (2-round) SZK protocol
for all NP (in the analogue sense of the nontrivial AM above where the verifier’s running time and
message size are of slightly nontrivial size). Then, we observe that this protocol can be used to get
a protocol for for the complement of NP, thereby implying that NP has a nontrivial AM protocol.

We define the class HVSZK[t, `] to consists of all languages for which there is an (honest-verifier)
statistical zero-knowledge protocol in which the verifier runs in time at most t and sends a message
of size at most `. We show that compressing obfuscation with statistical security implies a nontrivial
SZK protocol for all NP.

Claim 6.5. If statistically secure and perfectly correct (t, `)-compressing obfuscation O exists, then
NP ⊆ HVSZK[t, `].

Note that when t = 2n, where n is the input size to the NP instance, it is true that NP ⊆
HVSZK[t, `] since the verifier can solve the instance by itself. However, to the best of our knowledge,
as long as ` = t� 2n (say, t = 2n

ε
or even t = 2εn for small ε > 0) it is not believed to hold. Thus,

the above claim is useful only when t� 2n.

Proof of Claim 6.5. We construct such a (2-round) protocol for a language L ∈ NP with associated
relation RL. In this protocol, the prover gets an instance x and a witness w and the verifier gets
only the instance. Let Πs

x(w) be a circuit that outputs s if w ∈ RL(x); otherwise, it outputs ⊥. The
verifier V on input a statement x ∈ {0, 1}n picks a random s ← {0, 1}n, generates an obfuscation
C ← O(Πs

x) and sends it to the prover. The prover P , on input x, a witness w, and receiving C
from V , lets s′ ← C(w) and sends s′ back to V . V accepts if and only if s = s′.

The protocol is complete since if the prover has a valid witness w, she can evaluate the obfuscated
circuit, get s, and send it back to the verifier. Also, perfect honest-verifier zero-knowledge holds
since we can construct a simulator that simulates the whole view of the verifier. The simulator
samples a random tape for the verifier, which includes s and just outputs it.

To show soundness, consider some cheating prover P ∗ that convinces V with inverse polynomial
probability 1/p(|x|) for infinitely many x /∈ L. Consider some x /∈ L. Note that Πs

x is functionally
equivalent to the “dummy” circuit Π⊥ that always outputs ⊥. Thus, by the indistinguishability
property of O, C is indistinguishable from C ′ = O(Π⊥). It follows that in a modified experiment
where V sends C ′ instead of C, P ∗ also convinces V with inverse polynomial probability 1/p′(|x|)
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for infinitely many x /∈ L. However, in this experiment P ∗’s view is independent of s and it can
thus only guess s with probability 2−|s|, which is a contradiction.

Next, by applying the transformation of Okamoto [86], we can transform the above HVSZK
protocol into a HVSZK protocol for coNP. The transformation is done in two steps. First, the
HVSZK protocol is turned into a public-coin HVSZK protocol, where the verifier’s messages are
just its coin flips. Applying this transformation, we get a verifier whose running time is a fixed
polynomial in the running time of the simulator of the original protocol. Second, we transform
the latter HVSZK public-coin protocol into an HVSZK protocol for the complement language (i.e.,
coNP). This step also blows up the complexity of the verifier by a fixed polynomial in the running
time of the simulator of the protocol we started with (the public-coin one).

Overall, the overhead in the transformation above is some fixed polynomial in the running time
of the simulator of the original protocol. Let c ∈ N be the exponent of this polynomial. Thus, since
the simulator runs in time at most t(n) = 2εn, then the complexity of the verifier in the new HVSZK
protocol will be a fixed polynomial in t(n), namely 2cεn. This completes the proof since:

SAT ∈ coNP ⊆ SZK[2cεn, 2cεn] ⊆ AM[2cεn, 2cεn].

Proof of Theorem 6.4. We will largely follow the argument in [29] who showed an analogous result
for iO. Let us sketch their argument. Based on puncturable PRFs and an approximately correct
statistically secure iO, the construct a distribution over pairs of circuits (that will be later indexed
by SAT formulas) such that the circuits differ only on one point and yet the obfuscator will produce
distributions that are statistically far.

Let k be a key for a puncturable PRF family F , let x0 be a random point in the domain, and let
k{x0} be the punctured key k at the point x0. They consider the function fk{x0},y that, on input
x outputs Fk(x) if x 6= x0, and outputs y if x = x0. On the one hand, by definition, fk{x0},y for
a random y and fk{x0},y0

for y = Fk(x0), are functionally equivalent at any point except maybe at
x0. On the other hand, by the security of the puncturable PRF, when k, x0, and y are chosen at
random the distributions iO(fk{x0},y) and iO(fk{x0},y0

), are statistically far.
They use this idea to distinguish between (uniquely) satisfiable and unsatisfiable formulas. The

idea is to hardwire in f the formula ψ and instead of checking whether x = x0, we check ψ(x) = 1
and if so output the hardwired point y. To make the argument work, they need ψ(x) = 1 to hold
(if it holds at some point) at a random point, so they hardwire a randomly “shifted” version of
the formula. Now, the above argument can be repeated and the result is that USAT ∈ BPPGapSD,
where USAT is the problem of deciding whether a SAT formula is uniquely satisfiable and where
GapSD is the SZK complete problem [89] that requires to distinguish between efficient samplers for
statistically close distributions from statistically far distributions. They then apply an argument of
Mahmoody and Xiao [82] that says that if USAT ∈ BPPGapSD, then SAT ∈ AM ∩ coAM.

We will repeat the above argument with a (2n
ε
, 2n

ε
)-compressing obfuscator as assumed in the

statement. The only change we need to make is to modify the circuit fk{x0},y to accept inputs of size

n′ = log1/ε n so that an obfuscation is of size at most polynomial in n. Denote the USAT problem
on formulas with n′ variables by USAT[n′]. The above argument shows that USAT[n′] ∈ BPPGapSD.
By the result of [82], this implies that SAT[n′] ∈ AM ∩ coAM, or in other words that SAT[n′] ∈ AM.
The result in the statement now follows by scaling the parameters and applying the result with a
formula with n′′ = 2n

ε
.

6.2 Positive Results

We show that for small classes of circuits there is a compressing obfuscation with perfect security.
We start with the constructions that give approximate correctness.
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Theorem 6.6. [Restatement of Theorem 1.2, part I] There exist constants 0 < α < 1 and 0 < β < 1

such that there exists a (1 − s/2n
β
)-approximately correct (2n

α
, 2n

α
)-compressing obfuscator with

perfect security for the class of polynomial-size constant-depth n-input Boolean circuits.

Theorem 6.7. There exists a polynomial p(·) and a constant α > 0 such that there exists a (1 −
1/p(n))-approximately correct (2(1−α)n, 2(1−α)n)-compressing obfuscator with perfect security for the
class of monotone n-input Boolean functions.

We show that the class of bounded-depth circuits above can also be obfuscated with perfect
correctness, while still resulting with a compressing obfuscator. However, the resulting compression
is very weak (in particular, such compression, even for compressing obfuscation for all circuits is not
known to imply full-fledged obfuscation).

Theorem 6.8. [Restatement of Theorem 1.3] There exists a perfectly correct (poly(2n),

2n−n/O(log s)d−1
)-obfuscator with perfect security for the class of size s depth d, n-input Boolean

circuits.

All of the obfuscators above treat their input circuit as a black box and run a classical learning
or compression algorithm on it. We introduce these tasks next.

Preliminaries on PAC learning. We begin by introducing the concept of PAC learning. The
Probably Approximately Correct (PAC) learning model, introduced by Valiant [91], is one of the
most central definitions in the learning community and in computer science in general. We focus
on PAC learning over the uniform distribution with membership queries. In this setting the learner
may query the oracle at any point x and get back the value of the oracle at that point.

Definition 6.9 (PAC learning over the uniform distribution with membership queries). Let F be
a class of Boolean functions over n inputs. The class F is (ε, δ)-PAC learnable if there exists an
algorithm A that gets as input two parameters ε, δ > 0, has membership query access to a function
f ∈ F , and outputs with probability 1− δ (over its internal randomness) a circuit C that agrees with
f on all but an ε-fraction of the inputs. That is,

Pr
A

[
C ← Af (ε, δ); Pr

x←{0,1}n
[C(x) 6= f(x)] ≤ ε

]
≥ 1− δ.

The running time of A is measures as a function of n, 1/ε, 1/δ, and the circuit size of f .

There has been a tremendous amount of work on obtaining efficient algorithms for PAC learning
various classes of functions (see [62] for a survey). It is known that no poly(n)-time algorithm can
learn arbitrary Boolean functions f : {0, 1}n → {0, 1} to accuracy non-negligibly better than 1/2,
but many positive results are known for restricted classes of functions. We fix δ = 2/3, and note
that this choice is somewhat arbitrary and enough for all of our applications. We thus say that a
class is ε-PAC learnable if it is (ε, 2/3)-PAC learnable.

One well known example is the quasi-polynomial time algorithm of Linial, Mansour, and Nisan [78]
for the class of functions computed by AC0 circuits (constant depth circuits with AND, OR, and
NOT gates of unbounded fan-in and fan-out).

Theorem 6.10 (Learning bounded-depth circuits [78]). The class of size-s depth-d circuits is ε-PAC

learnable within nO(logd−1(s/ε)) queries.9

Another notable example that is relevant for us is the algorithm of Bshouty and Tamon [34] for
learning arbitrary monotone functions.

9In Theorems 6.10 and 6.11 it is enough that the labels are for uniformly random inputs (i.e., random examples).
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Theorem 6.11 (Learning monotone functions [34]). The class of monotone functions is ε-PAC
learnable within nO(

√
n/ε) queries.

A more recent result of Carmosino et al. [35] showed a (quasi-polynomial-time) learner for
AC0[p], the class of Boolean constant depth circuits with unbounded fan-in and fan-out with AND,
OR, NOT, and MOD-p gates.10

Theorem 6.12 (Learning bounded-depth circuits with mod gates [35]). For every prime p > 1, the
class of AC0[p] circuits of size s is ε-PAC learnable within 2poly log(ns/ε) queries.

We are now ready to show that the above learning procedures imply the claimed obfuscators.

Proof of Theorem 6.6. Given an n-input circuit C of size s and depth d, we obfuscate it by running
the learning algorithm from Theorem 6.10, simulating each oracle query with input x by executing
C on x and returning the reply.

It is guaranteed that the resulting circuit is of size nO(logd−1(s/ε)) and it approximates the original
circuit on all but ε fraction of the inputs. Since the dependence on 1/ε is logarithmic in the exponent
we can choose it to be ε = s

2
2d−2√n

. This bounds the running time of the learner (and thus its output

size) by

nO(logd−1(s/ε)) ≤ 2logn·O(logd−1(2
2d−2√n)) = 2O(

√
n·logn).

Since our obfuscator treats its input circuit as a black-box, the resulting obfuscation can be
perfectly simulated with only oracle access to the circuit.

Proof of Theorem 6.7. Given an n-input circuit C that computes a monotone function we obfuscate
it by running the learning algorithm from Theorem 6.11, simulating each oracle query with input x
by executing C on x and returning the reply.

It is guaranteed that the resulting circuit is of size nO(
√
n/ε) and it approximates the original

circuit on all but ε fraction of the inputs. We set ε = 1/n0.499 and get that the running time of the
obfuscator and size of the resulting circuit are bounded by 20.9999n. As before, since our obfuscator
treats the input circuit as a black-box, the resulting obfuscation is perfectly secure.

Tightness of the approach. The approach of constructing obfuscators via learning algorithms
is inherently limited. As observed by Valiant [91], any class that contains a pseudorandom function
cannot be learned with nontrivial savings. Moreover, this approach, as shown above, gives the very
strong notion of perfect security, which does not exist for all functions (even the computational
version, known as virtual black-box, does not exist for circuits that contain a PRF [15]). Thus, to
get an obfuscator (that satisfies only indistinguishability obfuscation) for a larger class of functions,
one has to use the fact that the obfuscator has access to a circuit rather than treating it as a
black-box.

Preliminaries on circuit compression. In the problem of circuit compression, studied by Chen
et al. [37], one is given the truth table of a Boolean function f computable by some unknown circuit
from a known class of circuits, and the goal is to find in time poly(2n) a circuit C (not necessarily
from the aforementioned family) computing f so that the size of C is less than the trivial circuit
size ≈ 2n. For general functions this is impossible as a counting argument shows that there are
functions that require this size, so the focus is on restricted classes.

10Recently, Carmosino et al. [36] generalized their result to get an implication from “tolerant” natural proofs to
agnostic learning [66]. In agnostic learning, is the same as in PAC learning except that the learner is only guaranteed
that f is close to the concept class C (rather than assuming it belongs to it).
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Definition 6.13 (C-compression). Given the truth table of an n-variate Boolean function f ∈ C,
find a Boolean circuit of size < 2n/n that is functionally equivalent to f .

As mentioned in [37], compression of Boolean functions is related to the setting of exact learning
with membership and equivalence queries [7]. In this learning setting, the size of the hypothesis
produced by the learning algorithm is upper-bounded by the running time of the algorithm. In
the circuit compression setting, the hypothesis (compressed image) size and the running time of
the learning (compression) algorithm are decoupled: we allow more running time, but ask for a
small-size compression. This may enable improvements in the class of circuits that we can handle.
Concretely, exact learning is strictly stronger as any result in exact learning yields a compression
algorithm for the corresponding class of functions, but the opposite direction is not known.

We notice that in general good enough compression implies compressing obfuscation where the
output size is nontrivial but the running time can be large enough to read the truth table of
the function (i.e., as in XiO). However, the other direction is not known since in the obfuscation
setting one is given a witness (i.e., a circuit rather than the truth table). The most relevant circuit
compression result that is relevant for us is stated next.

Theorem 6.14 ([37]). If a Boolean n-variate function is computed by an AC0 circuit of size s and

depth d, then it is compressible to a circuit of size at most 2n−n/O(log s)d−1
.

As in the case of learning algorithms, the above compression algorithm directly implies a perfectly
correct compressing obfuscator satisfying perfect security. We will avoid repetition and skip the proof
of Theorem 6.8 (which follows directly from Theorem 6.14).

Note that, as in the case of learning, it is impossible to compress a class of circuits that contains
a PRF. For this, consider a PRF with key size n2 and input size n which is exponentially secure
(namely, secure for adversaries running in time 2Ω(n2)).11 In this case, the PRF-or-Random adversary
is allowed to query the oracle at all 2n inputs and yet it still cannot distinguish PRF from random.
The impossibility of compression for such a family of circuits now follows from the fact that random
functions cannot be compressed.
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Obfustopia through secret-key functional encryption. In Theory of Cryptography - TCC, pages
391–418, 2016.

[19] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability from
indistinguishability obfuscation. In Theory of Cryptography - TCC, pages 401–427, 2015.

58



[20] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos - trapdoor
permutations from indistinguishability obfuscation. In Theory of Cryptography - TCC, pages
474–502, 2016.

[21] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS, pages
171–190, 2015.

[22] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation: From approximate
to exact. In Theory of Cryptography - TCC, pages 67–95, 2016.

[23] Nir Bitansky and Vinod Vaikuntanathan. A note on perfect correctness by derandomization.
In Advances in Cryptology - EUROCRYPT, pages 592–606, 2017.

[24] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arith-
metic circuit ABE and compact garbled circuits. In Advances in Cryptology - EUROCRYPT,
pages 533–556, 2014.

[25] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for public-key
cryptography. Commun. ACM, 55(11):56–64, 2012.

[26] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Advances in Cryptology - ASIACRYPT, pages 280–300, 2013.

[27] Dan Boneh, David J Wu, and Joe Zimmerman. Immunizing multilinear maps against zeroizing
attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

[28] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Public-Key Cryptography - PKC, pages 501–519, 2014.

[29] Zvika Brakerski, Christina Brzuska, and Nils Fleischhacker. On statistically secure obfuscation
with approximate correctness. In Advances in Cryptology - CRYPTO, pages 551–578, 2016.

[30] Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelègue, and Daniel Wichs. Non-
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