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Abstract We introduce a new class of irreducible pentanomials over F2 of
the form f(x) = x2b+c + xb+c + xb + xc + 1. Let m = 2b + c and use f to
define the finite field extension of degree m. We give the exact number of
operations required for computing the reduction modulo f . We also provide a
multiplier based on Karatsuba algorithm in F2[x] combined with our reduction
process. We give the total cost of the multiplier and found that the bit-parallel
multiplier defined by this new class of polynomials has improved XOR and
AND complexity. Our multiplier has comparable time delay when compared
to other multipliers based on Karatsuba algorithm.

Keywords irreducible pentanomials · polynomial multiplication · modular
reduction · finite fields

1 Introduction

Finite field extensions F2m of the binary field F2 play a central role in many
engineering applications and areas such as cryptography. Elements in these
extensions are commonly represented using polynomial or normal bases. We
center in this paper on polynomial bases for bit-parallel multipliers.

When using polynomial bases, since F2m
∼= F2[x]/(f) for an irreducible

polynomial f over F2 of degree m, we write elements in F2m as polynomials
over F2 of degree smaller than m. When multiplying with elements in F2m , a
polynomial of degree up to 2m − 2 may arise. In this case, a modular reduc-
tion is necessary to bring the resulting element back to F2m . Mathematically,
any irreducible polynomial can be used to define the extension. In practice,
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however, the choice of the irreducible f is crucial for fast and efficient field
multiplication.

There are two types of multipliers in F2m : one-step algorithms and two-step
algorithms. Algorithms of the first type perform modular reduction while the
elements are being multiplied. In this paper, we are interested in two-step algo-
rithms, that is, in the first step the multiplication of the elements is performed,
and in the second step the modular reduction is executed. Many algorithms
have been proposed for both types. An interesting application of two-step algo-
rithms is in several cryptographic implementations that use the lazy reduction
method [23,2]. For example, in [15] it is shown the impact of lazy reduction in
operations for binary elliptic curves. An important application of the second
part of our algorithm, the reduction process, is to side-channel attacks. Indeed,
we prove that our modular reduction requires a constant number of arithmetic
operations, and as a consequence, it prevents side-channel attacks.

The complexity of hardware circuits for finite field arithmetic in F2m is
related to the amount of space and the time delay needed to perform the
operations. Normally, the number of exclusive-or (XOR) and AND gates is a
good estimation of the space complexity. The time complexity is the delay due
to the use of these gates.

Several special types of irreducible polynomials have been considered be-
fore, including polynomials with few nonzero terms like trinomials and pen-
tanomials (three and five nonzero terms, respectively), equally spaced poly-
nomials, all-one polynomials [6,11,19], and other special families of polynomi-
als [27]. In general, trinomials are preferred, but for degrees where there are
no irreducible trinomials, pentanomials are considered.

The analysis of the complexity using trinomials is known [26]. However,
there is no general complexity analysis of a generic pentanomial in the lit-
erature. Previous results (see [4] for details) have focus on special classes of
pentanomials, including:

– xm + xb+1 + xb + xb−1 + 1, where 2 ≤ b ≤ m/2− 1 [10,20,28,18,8];
– xm + xb+1 + xb + x + 1, where 1 < b < m− 1 [9,19,20,28,18,8];
– xm + xm−c + xb + xc + 1, where 1 ≤ c < b < m− c [3];
– xm + xa + xb + xc + 1, where 1 ≤ c < b < a ≤ m/2 [19];
– xm + xm−s + xm−2s + xm−3s + 1, where (m− 1)/8 ≤ s ≤ (m− 1)/3 [19];
– x4c + x3c + x2c + xc + 1, where c = 5i and i ≥ 0 [6,7].

Like our family, these previous families focus on bit operations, i.e., opera-
tions that use only AND and XOR gates. In the literature it is possible to find
studies that use computer words to perform the operations [21,17] but this is
not the focus of our work.
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1.1 Contributions of this paper

In this paper, we introduce a new class of irreducible pentanomials with the
following format:

f(x) = x2b+c + xb+c + xb + xc + 1, b > c > 0. (1)

We compare our pentanomial with the first two families from the list above.
The reason to choose these two family is that [18] presents a multiplier consid-
ering these families with complexity 25% smaller than the other existing works
in the literature using quadratic algorithms. Since our multiplier is based on
Karatsuba’s algorithm, we also compare our method with Karatsuba type al-
gorithms.

An important reference for previously used polynomials and their com-
plexities is the recent survey on bit-parallel multipliers by Fan and Hasan
[4]. Moreover, we observe that all finite fields results used in this paper can
be found in the classical textbook by Lidl and Niederreiter [12]; see [14] for
recent research in finite fields.

We prove that the complexity of the reduction depends on the exponents b
and c of the pentanomial. A consequence of our result is that for a given degree
m = 2b + c, for any positive integers b > c > 0, all irreducible polynomials
in our family have the same space and time complexity. We provide the exact
number of XORs and gate delay required for the reduction of a polynomial of
degree 2m− 2 by our pentanomials. The number of XORs needed is 3m− 2 =
6b + 3c − 2 when b 6= 2c; for b = 2c this number is 12

5 m − 1 = 12c − 1.
We also show that AND gates are not required in the reduction process. It
is easy to verify that our reduction algorithm is “constant-time” since it runs
the same amount of operations independent of the inputs and it avoids timing
side-channel attacks [5].

For comparison purposes with other pentanomials proposed in the litera-
ture, since the operation considered in those papers is the product of elements
in F2m , we also consider the number of ANDs and XORs used in the multipli-
cation prior to the reduction. In the literature, one can find works that use the
standard product or use some more efficient method of multiplication, such as
Karatsuba, and then add the complexity of the reduction.

In this paper, we use a Karatsuba multiplier combined with our fast reduc-
tion method. The total cost is then Cmlog2 3 + 3m− 2 or Cmlog2 3 + 12

5 m− 1,
depending on b 6= 2c or b = 2c, respectively. The constant C of the Karatsuba
multiplier depends on the implementation. In our experiments, C is strictly less
than 6 for all practical degrees, up to degrees 1024. For the reduction, we give
algorithms that achieve the above number of operations using any irreducible
pentanomial in our family. We compare the complexity of the Karatsuba mul-
tiplier with our reduction with the method proposed by Park et. al[18], as well
as, with Karatsuba variants given in [4].
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1.2 Structure of the paper

The structure of this paper is as follows. In Section 2 we give the number
of required reduction steps when using a pentanomial f from our family. We
show that for our pentanomials this number is 2 or 3. This fact is crucial since
such a low number of required reduction steps of our family allows for not only
an exact count of the XOR operations but also for a reduced time delay. Our
strategy for that consists in describing the reduction process throughout equa-
tions, cleaning the redundant operations and presenting the final optimized
algorithm. Section 3 provides the first component of our strategy. In this sec-
tion, we simply reduce a polynomial of degree at most or exactly 2m− 2 to a
polynomial of degree smaller than m. The second component of our strategy
is more delicate and it allows us to derive the exact number of operations in-
volved when our pentanomial f is used to define F2m . Sections 4 and 5 provide
those analyses for the cases when two and three steps of reduction are needed,
that is, when c = 1 and c > 1, respectively. We give algorithms and exact
estimates for the space and time complexities in those cases. Also, we describe
a Karatsuba multiplier implementation combined with our reduction. In Sec-
tion 6, based on our implementation, we show that the number of XOR and
AND gates is better than the known space complexity in the literature. On the
other hand, the time complexity (delay) in our implementation is worse than
quadratic methods but comparable with Karatsuba implementations. Hence,
our multiplier would be preferable in situations where space complexity and
saving energy are more relevant than time complexity. We demonstrate that
our family contains many polynomials, including degrees where pentanomials
are suggested by NIST. Conclusions are given in Section 7.

2 The number of required reductions

When operating with two elements in F2m , represented by polynomials, we
obtain a polynomial of degree at most 2m − 2. In order to obtain the corre-
sponding element in F2m , a further division with remainder by an irreducible
polynomial f of degree m is required. We can see this reduction as a pro-
cess to bring the coefficient in interval [2m − 2,m] to a position less than m.
This is done in steps. In each step, the coefficients in interval [2m − 2,m] of
the polynomial is substituted by the equivalent bits following the congruence
xm ≡ xa + xb + xc + 1. Once the coefficient in position 2m− 2 is brought to a
position less than m, the reduction is completed.

In this section, we carefully look into the number of steps needed to reduce
the polynomial by our polynomial f given in Equation (1). The most important
result of this section is that we need at most 3 steps of this reduction process
using our polynomials. This information is used in the next sections to give
the exact number of operations when the irreducible pentanomial given in
Equation (1) is employed. This computation was possible because our family
has a small number of required reduction steps.
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Let D0(x) =
∑2m−2

i=0 dix
i be a polynomial over F2. We want to compute

Dred, the remainder of the division of D0 by f , where f has the form f(x) =
x2b+c + xb+c + xb + xc + 1 with 2b + c = m and b > c > 0. The maximum
number ka of reduction steps for a pentanomial xm +xa +xb +xc + 1 in terms
of the exponent a is given by Sunar and Koç [22]

ka =

⌊
m− 2

m− a

⌋
+ 1.

In our case m = 2b + c and a = b + c, thus

kb+c =

⌊
2b + c− 2

2b + c− b− c

⌋
+ 1 =

⌊
c− 2

b

⌋
+ 3 =

{
2 if c = 1,

3 if c > 1.
(2)

Using the same method as in [22], we can derive the number of steps required
associated to the exponents b and c. These numbers are needed in Section 3.
We get

kb =

⌊
2b + c− 2

2b + c− b

⌋
+ 1 =

⌊
b− 2

b + c

⌋
+ 2 = 2, (3)

and

kc =

⌊
2b + c− 2

2b + c− c

⌋
+ 1 =

⌊
c− 2

2b

⌋
+ 2 =

{
1 if c = 1,

2 if c > 1.
(4)

Thus, the reduction process for our family of pentanomials involves at most
three steps. This is a special property that our family enjoys.

The general process for the reduction proposed in this paper is given in
the next section. The special case c = 1, that is when our polynomials have
the form f(x) = x2b+1 + xb+1 + xb + x + 1, requires two steps. This family is
treated in detail in Section 4. The general case of our family f(x) = x2b+c +
xb+c + xb + xc + 1 for c > 1 involves three steps and is treated in Section 5.

3 The general reduction process

The general process that we follow to get the original polynomial D0 reduced
to a polynomial of degree smaller than m is depicted in Figure 1. Without
loss of generality, we consider the polynomial to be reduced as always having
degree 2m− 2. Indeed, the cost to determine the degree of the polynomial to
be reduced is equivalent to checking if the leading coefficient is zero.

The polynomial D0 to be reduced is split into two parts: A0 is the piece of
the original polynomial with degree at least m and hence that requires extra
work, while B0 is formed by the terms of D0 with exponents smaller than m
and so that it does not require to be reduced. Dividing the leading term of A0

by f with remainder we obtain D1. In the same way as before, we split D1 in
two parts A1 and B1 and repeat the process obtaining the tree of Figure 1.
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D0 = A0 B0 

A1 B1 

A2 B2 

A3 B3 

+

+

+

+

D1 =

D2 =

D3 =

Fig. 1 Tree representing the general reduction strategy.

3.1 Determining A0 and B0

We trivially have

D0(x) = A0(x) + B0(x) =

2m−2∑
i=m

dix
i +

m−1∑
i=0

dix
i,

and hence

A0 =

2m−2∑
i=m

dix
i and B0 =

m−1∑
i=0

dix
i. (5)

3.2 Determining A1 and B1

Using for clarity the generic form of a pentanomial over F2, f(x) = xm +xa +
xb + xc + 1, dividing the leading term of A0 by f and taking the remainder,
we get

D1 =

m−2∑
i=0

di+mxi+a +

m−2∑
i=0

di+mxi+b +

m−2∑
i=0

di+mxi+c +

m−2∑
i=0

di+mxi.

Separating the already reduced part of D1 from the piece of D1 that still
requires more work, we obtain

A1 =

m+a−2∑
i=m

di+(m−a)x
i +

m+b−2∑
i=m

di+(m−b)x
i +

m+c−2∑
i=m

di+(m−c)x
i, (6)

and

B1 =

m−1∑
i=a

di+(m−a)x
i +

m−1∑
i=b

di+(m−b)x
i +

m−1∑
i=c

di+(m−c)x
i +

m−2∑
i=0

di+mxi.
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Since m = 2b + c and a = b + c, we have

A1 =

3b+2c−2∑
i=2b+c

di+bx
i +

3b+c−2∑
i=2b+c

di+b+cx
i +

2b+2c−2∑
i=2b+c

di+2bx
i,

B1 =

2b+c−1∑
i=b+c

di+bx
i +

2b+c−1∑
i=b

di+b+cx
i +

2b+c−1∑
i=c

di+2bx
i +

2b+c−2∑
i=0

di+2b+cx
i. (7)

3.3 Determining A2 and B2

As before, we divide the leading term of A1 by f and we obtain the remainder
D2. We get D2 = D2a + D2b + D2c , where D2a , D2b and D2c refer to the
reductions of the sums in Equation (6).

We start with D2a :

D2a =

a−2∑
i=0

di+2m−ax
i(xa + xb + xc + 1).

Separating D2a in the pieces A2a and B2a , we get A2a =
∑2a−2

i=m di+2m−2ax
i

since b + a− 2 < m, and

B2a =

m−1∑
i=a

di+2m−2ax
i+

a+b−2∑
i=b

di+2m−a−bx
i+

a+c−2∑
i=c

di+2m−a−cx
i+

a−2∑
i=0

di+2m−ax
i.

Substituting m = 2b + c and a = b + c, we get A2a =
∑2b+2c−2

i=2b+c di+2bx
i, and

B2a =

2b+c−1∑
i=b+c

di+2bx
i +

2b+c−2∑
i=b

di+2b+cx
i +

b+2c−2∑
i=c

di+3bx
i +

b+c−2∑
i=0

di+3b+cx
i.

Proceeding with the reduction now of the second sum in Equation (6), we
obtain

D2b =

a+b−2∑
i=a

di+2m−a−bx
i+

2b−2∑
i=b

di+2m−2bx
i+

b+c−2∑
i=c

di+2m−b−cx
i+

b−2∑
i=0

di+2m−bx
i.

Clearly, D2b is already reduced, and thus A2b = 0, and

B2b =

2b+c−2∑
i=b+c

di+2b+cx
i +

2b−2∑
i=b

di+2b+2cx
i +

b+c−2∑
i=c

di+3b+cx
i +

b−2∑
i=0

di+3b+2cx
i.

We finally reduce the third and last sum in Equation (6):

D2c =

a+c−2∑
i=a

di+2m−a−cx
i+

b+c−2∑
i=b

di+2m−b−cx
i+

2c−2∑
i=c

di+2m−2cx
i+

c−2∑
i=0

di+2m−cx
i.
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Again, we easily check that D2c is reduced and so A2c = 0, and

B2c =

b+2c−2∑
i=b+c

di+3bx
i +

b+c−2∑
i=b

di+3b+cx
i +

2c−2∑
i=c

di+4bx
i +

c−2∑
i=0

di+4b+cx
i.

Concluding, A2 is given by

A2 = A2a + A2b + A2c =

2a−2∑
i=m

di+2m−2ax
i, (8)

and B2 = B2a + B2b + B2c is

B2 =

2b+c−1∑
i=b+c

di+2bx
i +

b+2c−2∑
i=c

di+3bx
i +

b+2c−2∑
i=b+c

di+3bx
i +

2c−2∑
i=c

di+4bx
i+

2b+c−2∑
i=b

di+2b+cx
i +

2b+c−2∑
i=b+c

di+2b+cx
i +

2b−2∑
i=b

di+2b+2cx
i +

b+c−2∑
i=0

di+3b+cx
i+

b+c−2∑
i=c

di+3b+cx
i +

b+c−2∑
i=b

di+3b+cx
i +

b−2∑
i=0

di+3b+2cx
i +

c−2∑
i=0

di+4b+cx
i.

(9)

3.4 Determining A3 and B3

Dividing the leading term of A2 in Equation (8) by f , we have

D3 =

b+2c−2∑
i=b+c

di+3bx
i +

b+c−2∑
i=b

di+3b+cx
i +

2c−2∑
i=c

di+4bx
i +

c−2∑
i=0

di+4b+cx
i.

We have that D3 is reduced so A3 = 0 and

B3 =

b+2c−2∑
i=b+c

di+3bx
i +

b+c−2∑
i=b

di+3b+cx
i +

2c−2∑
i=c

di+4bx
i +

c−2∑
i=0

di+4b+cx
i. (10)

3.5 The number of terms in Ar and Br

Let G(i) = 1 if i > 0 and G(i) = 0 if i ≤ 0. Let r be a reduction step. It is
clear now that the precise number of terms for Ar and Br, for r ≥ 0, can be
obtained using kb+c, kb and kc given in Equations (2), (3) and (4). We have:

i) The number of terms of A0 and B0 is 1.
ii) For r > 0, the number of terms of Ar is G(kb+c−r)+G(kb−r)+G(kc−r),

while the number of terms of Br is 4 times the number of terms of Ar−1.
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4 The family of polynomials f(x) = x2b+1 + xb+1 + xb + x + 1

In this section, we consider the case when c = 1, that is, when kb+c = 2,
as given in Equation (2). The polynomials in this subfamily have the form
f(x) = x2b+1 + xb+1 + xb + x + 1. For the subfamily treated in this section,
since kb+c = 2, we immediately get A2 = 0 and the expressions in the previous
section simplify. As a consequence, the desired reduction is given by

Dred = B0 + B1 + B2.

Using Equations (5), (7) and (9), we obtain

Dred =

2b∑
i=0

dix
i +

2b∑
i=b+1

di+bx
i +

b∑
i=1

di+2bx
i +

b∑
i=1

di+3bx
i +

2b∑
i=b

di+b+1x
i+

b−1∑
i=0

di+2b+1x
i +

2b−1∑
i=b+1

di+2b+1x
i +

2b−2∑
i=b

di+2b+2x
i +

b−2∑
i=0

di+3b+2x
i + d3b+1.

(11)

A crucial issue that allows us to give improved results for our family of
pentanomials is the fact that redundancies occur for Dred in Equation (11).
Let

T1(j) =

b−2∑
i=0

(di+2b+1 + di+3b+2)xi+j , T2(j) = d3bx
j ,

T3(j) = d3b+1x
j , T4(j) =

b−1∑
i=0

(di+2b+1 + di+3b+1)xi+j .

A careful analysis of Equation (11) reveals that T1, T2 and T3 are used more
than once, and hence, savings can occur. We rewrite Equation (11) as

Dred =B0 + T1(0) + T1(b) + T1(b + 1) + T2(b− 1)+

T2(2b− 1) + T2(2b) + T3(0) + T3(2b) + T4(1).
(12)

One can check that by plugging T1, T2, T3 and T4 in Equation (12) we recover
Equation (11). Figure 2 shows these operations. We remark that even though
the first row in this figure is B0, the following two rows are not B1 and B2. In-
deed, those rows are obtained from B1 and B2 together with the optimizations
provided by T1, T2, T3 and T4.

Using Equation (12), the number N⊕ of XOR operations is

N⊕ = 6b + 1 = 3m− 2.

It is also easy to see from Figure 2 that the time delay is 3TX , where TX is
the delay of one 2-input XOR gate.

We are now ready to provide Algorithm 1 for computing Dred given in
Equation (12), and as explained in Figure 2, for the pentanomials f(x) =
x2b+1 + xb+1 + xb + x + 1.

Putting all pieces together, we give next the main result of this section.
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m-1

T1

m-2

T4

T2

T3

T3 T2

T2

T1

T1

m-3 ba c......

B0  +  B1  +  B2

2b

⊕

⊕

=

B0

Dred

2b-1 2b-2 b+1 b-1 b-2 1 0

Fig. 2 Representation of the reduction by f(x) = x2b+1 + xb+1 + xb + x + 1.

Algorithm 1 Computing Dred when f(x) = x2b+1 + xb+1 + xb + x + 1.

input : D0 = d[4b . . . 0] bits vector of length 4b + 1
output: Dred

for i← 0 to b− 2 do
T1[i]← d[i + 2b + 1]⊕ d[i + 3b + 2]; . Definition of T1

end
for i← 0 to b− 1 do

T4[i]← d[i + 2b + 1]⊕ d[i + 3b + 1]; . Definition of T4

end
Dred[0]← d[0]⊕ T1[0]⊕ d[3b + 1]; . Column 0 of Fig. 2
for i← 1 to b− 2 do

Dred[i]← d[i]⊕ T1[i]⊕ T4[i− 1]; . Columns 1 to b− 2 of Fig. 2
end
Dred[b− 1]← d[b− 1]⊕ d[3b]⊕ T4[b− 2]
Dred[b]← d[b]⊕ T1[0]⊕ T4[b− 1]
for i← b + 1 to 2b− 2 do

Dred[i]← d[i]⊕ T1[i− b]⊕ T1[i− b− 1]; . Columns b + 1 to 2b− 2 of Fig. 2
end
Dred[2b− 1]← d[2b− 1]⊕ d[3b]⊕ T1[b− 2]
Dred[2b]← d[2b]⊕ d[3b + 1]⊕ d[3b]
return Dred

Theorem 1 Algorithm 1 correctly gives the reduction of a polynomial of de-
gree at most 2m − 2 over F2 by f(x) = x2b+1 + xb+1 + xb + x + 1 involving
N⊕ = 3m− 2 = 6b + 1 number of XORs operations and a time delay of 3TX .

5 Family f(x) = x2b+c + xb+c + xb + xc + 1, c > 1

For polynomials of the form f(x) = x2b+c +xb+c +xb +xc + 1, c > 1, we have
that kb+c = 3, implying that A3 = 0. The reduction is given by

Dred = B0 + B1 + B2 + B3.
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Using Equations (5), (7), (9) and (10), we have that Dred satisfies

Dred =

2b+c−1∑
i=0

dix
i +

2b+c−1∑
i=b+c

di+bx
i +

b+c−1∑
i=c

di+2bx
i +

b+2c−2∑
i=c

di+3bx
i+

2b+c−1∑
i=b

di+b+cx
i +

b−1∑
i=0

di+2b+cx
i +

2b+c−2∑
i=b+c

di+2b+cx
i+

2b−2∑
i=b

di+2b+2cx
i +

c−1∑
i=0

di+3b+cx
i +

b−2∑
i=0

di+3b+2cx
i.

(13)

Let

T1(j) =

b−2∑
i=0

(di+2b+c + di+3b+2c)x
i+j , T2(j) = d3b+c−1x

j ,

T3(j) =

c−1∑
i=0

di+3b+cx
i+j , T4(j) =

b−2∑
i=0

di+2b+cx
i+j , T5(j) =

b−2∑
i=0

di+3b+2cx
i+j .

Again, a careful analysis of Equation (13) shows that T1, T2 and T3 are used
more than once. Thus, we can rewrite Equation (13) for Dred as

Dred =B0 + T1(0) + T1(b) + T1(b + c)+

T2(b− 1) + T2(b + c− 1) + T2(2b− 1) + T2(2b + c− 1)+

T3(0) + T3(c) + T3(2b) + T4(c) + T5(2c).

(14)

Figure 3 depicts these operations. Using Equation (14) and Figure 3, we have
Algorithm 2. For code efficiency reasons, in contrast to Algorithm 1, in Algo-
rithm 2 we separate the last line before the equality in Figure 3. The additions
of this last line are done in lines 17 to 20 of Algorithm 2. As a consequence,
lines 3 to 16 of Algorithm 2 include only the additions per column from 0 to
2b + c− 1 of the first three lines in Figure 3.

m-1 ...

B0  +  B1  +  B2 +  B3

B0

Dred

T2 T2

b+c

a... ...... ...m-2 c... b

T2 T2 T1T1

T1

T3T3

T3

T4

T5

b-2 0b2b-2

b+c2b+c-2

2b+c-1 2b+c-2

0c-1c2c-1

2b2b+c-1

cb+c-2

2cb+2c-2

0c-1b-12cb+c-12b-12b

⊕

⊕

⊕

=

Fig. 3 Representation of the reduction by f(x) = x2b+c + xb+c + xb + xc + 1, c > 1.

The time delay is 3TX ; after removal of redundancies and not counting
repeated terms, we obtain that the number N⊕ of XORs is

N⊕ = 6b + 3c− 2 = 3m− 2.
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Algorithm 2 Computing Dred for f(x) = x2b+c + xb+c + xb + xc + 1.

input : D0 = d[2b + c− 1 . . . 0] bits vector of length 2b + c
output: Dred

for i← 0 to b− 2 do
T1[i]← d[i + 2b + 1]⊕ d[i + 3b + 2c]; . Definition of T1

end
for i← 0 to c− 1 do

Dred[i]← d[i]⊕ T1[i]; . Columns 0 to c− 1 of the first three lines of Fig. 3
end
for i← c to b− 2 do

Dred[i]← d[i]⊕ T1[i]⊕ d[i + 2b]
end
Dred[b− 1]← d[b− 1]⊕ d[3b + c− 1]⊕ d[3b− 1] for i← b to b + c− 2 do

Dred[i]← d[i]⊕ T1[i− b]⊕ d[i + 2b]
end
Dred[b + c− 1]← d[b + c− 1]⊕ d[3b + c− 1]⊕ T1[c− 1] for i← b + c to 2b− 2 do

Dred[i]← d[i]⊕ T1[i− b]⊕ T1[i− b− c]
end
Dred[2b− 1]← d[2b− 1]⊕ d[3b + c− 1]⊕ T1[b− c− 1] for i← 2b to 2b + c− 2 do

Dred[i]← d[i]⊕ T1[i− b− c]⊕ d[i + b + c]
end
Dred[2b + c− 1]← d[2b + c− 1]⊕ d[3b + c− 1]⊕ d[3b− 1] for i← 0 to c− 1 do

Dred[i]← Dred[i]⊕ d[i + 3b + c]; . Columns 0 to c− 1 of the 4th line of Fig. 3
end
for i← c to b + 2c− 2 do

Dred[i]← Dred[i]⊕ d[i + 3b]; . Cols c to b + 2c− 2 of the 4th line of Fig. 3
end
return Dred

Theorem 2 Algorithm 2 correctly gives the reduction of a polynomial of de-
gree at most 2m − 2 over F2 by f(x) = x2b+c + xb+c + xb + xc + 1 involving
N⊕ = 3m − 2 = 6b + 3c − 2 number of XORs operations and a time delay of
3TX .

5.1 Almost equally spaced pentanomials: the special case b = 2c

Consider the special case b = 2c. In this case we obtain the almost equally
spaced polynomials f(x) = x5c + x3c + x2c + xc + 1. Our previous analysis
when applied to these polynomials entails

Dred =

5c−1∑
i=0

dix
i +

5c−1∑
i=3c

di+2cx
i +

3c−1∑
i=c

di+4cx
i +

4c−2∑
i=c

di+6cx
i +

5c−1∑
i=2c

di+3cx
i+

2c−1∑
i=0

di+5cx
i +

5c−2∑
i=3c

di+5cx
i +

4c−2∑
i=2c

di+6cx
i +

c−1∑
i=0

di+7cx
i +

2c−2∑
i=0

di+8cx
i.

(15)
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Let

T1(j) =

2c−2∑
i=c

(di+5c + di+4c)x
i+j , T2(j) =

2c−2∑
i=c

(di+8c + di+6c)x
i+j ,

T3(j) = d8c−1x
j , T4(j) =

c−1∑
i=0

di+8cx
i+j , T5(j) =

c−1∑
i=0

di+5cx
i+j ,

T6(j) =

c−2∑
i=0

di+7cx
i+j , T7(j) =

5c−1∑
i=4c

di+2cx
i+j .

In the computation of Dred, T1, T2, T3 and T4 are used more than once.
Figure 4 shows, graphically, these operations. After removal of redundancies,

the number N⊕ of XORs is N⊕ = 12c− 1 =
12

5
m− 1. This number of XORs

is close to 2.4m providing a saving of about 20% with respect to the other
pentanomials in our family. Irreducible pentanomials of this form are rare but
they do exist, for example, for degrees 5, 155 and 4805. We observe that the
extension 155 is used in [1].

m-1 ...

B0  +  B1  +  B2 +  B3

B0

Dred

3c

a ......m-2 cb

5c-1 0c-12c-12c3c-14c-14c5c-2

T4T2T3

T5T1T1T1T2T3

T4

...

T6

T7

⊕

⊕

⊕

=

Fig. 4 Representation of the reduction by the almost equally spaced pentanomials (the
special case b = 2c).

Using Equation (15) and Figure 4, we naturally have Algorithm 3.

6 Multiplier in F2[x], complexity analysis and comparison

So far, we have focused on the second step of the algorithm, that is, on the
reduction part. For the first step, the multiplication part, we simply use a
standard Karatsuba recursive algorithm implementation; see Algorithm 4.

Recursivity in hardware can be an issue; see [24] and [13], for example, for
efficient hardware implementations of polynomial multiplication in finite fields
using Karatsuba’s type algorithms.

As can be seen our multiplier consists of two steps. The first is the mul-
tiplication itself using Karatsuba arithmetic or, if necessary, the school book
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Algorithm 3 Computing Dred for f(x) = x5c + x3c + x2c + xc + 1.

input : D0 = d[5c− 1 . . . 0] bits vector of length 5c
output: Dred

for i← 0 to c− 2 do
T1[i]← d[i + 6c]⊕ d[i + 5c] . Definition of T1

end
for i← 0 to c− 2 do

T2[i]← d[i + 9c]⊕ d[i + 7c] . Definition of T2

end
for i← 0 to c− 2 do

Dred[i]← d[i]⊕ d[i + 8c]⊕ d[i + 5c]⊕ d[i + 7c]
end
Dred[c− 1]← d[c− 1]⊕ d[9c− 1]⊕ d[6c− 1]
for i← c to 2c− 2 do

Dred[i]← d[i]⊕ T1[i− c]⊕ T2[i− c]
end
Dred[2c− 1]← d[2c− 1]⊕ d[8c− 1]⊕ T1[c− 1]
for i← 2c to 3c− 1 do

Dred[i]← d[i]⊕ T1[i− 2c]
end
for i← 3c to 4c− 1 do

Dred[i]← d[i]⊕ T1[i− 3c]⊕ d[i + 5c]
end
for i← 4c to 5c− 2 do

Dred[i]← d[i]⊕ T2[i− 4c]⊕ d[i + 2c]
end
Dred[5c− 1]← d[5c− 1]⊕ d[8c− 1]⊕ d[7c− 1]
return Dred

Algorithm 4 Karatsuba Algorithm for F2m

input : A(x) =
∑m−1

i=0 aix
i and B(x) =

∑m−1
i=0 bix

i

output: C(x) = A(x)B(x) =
∑2m−2

i=0 cix
i

Function Karatsuba(A, B):
m← maxDegree(A,B) . compute the larger degree between polynomials A and B
if m = 0 then

return (A & B) . & is a bitwise AND operator
end
m2 = floor(m/2) . split A and B
higha, lowa ← split(A,m2)
highb, lowb ← split(B,m2)
d0 ← Karatsuba(lowa, lowb) . recursive call of Karatsuba
d1 ← Karatsuba((lowa ⊕ higha), (lowb ⊕ highb)) . recursive call of Karatsuba
d2 ← Karatsuba(higha, highb) . recursive call of Karatsuba
c← d2xm ⊕ (d1 ⊕ d2 ⊕ d0)xm2 ⊕ d0
return c

End Function

method, and the second is the reduction described in the previous sections.
The choice of the first step method will basically depend on whether the appli-
cation requirement is to minimize area (Karatsuba), i.e., the number of ANDs
and XORs gates, or to minimize the arithmetic delay (School book); see [4] for
several variants of both the schoolbook and Karatsuba algorithms. Minimizing
the area is interesting in applications that need to save power at the expense
of a longer runtime.
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Fig. 5 Karatsuba constant for degrees up to 1024.

We chose the Karatsuba multiplier since our goal is to minimize the area,
i.e. to minimize the number of gates AND and XOR. A summary of our re-
sults compared with related works is given in Tables 1 and 2. Table 1 presents
comparison costs among multipliers that perform two steps for the multipli-
cation, that is, they execute a multiplication followed by a reduction. The
table shows the multiplication algorithm used in each case. Table 2 gives a
comparison among the state-of-the-art bit multipliers in the literature. The
main target for us is [18] since it presents the smallest area in the literature.
However, Type 3 polynomials are also considered; this is another practically
relevant family of polynomials. With respect to Karatsuba variants, Table 3 of
survey [4] shows asymptotic complexities of several Karatsuba multiplication
algorithms without reduction.

For each entry in Table 1, we give the multiplication algorithm and the
amount of gates AND, XOR as well its delay. We point that for [19] and [25],
their multipliers are general for any pentanomial with a ≤ m

2 instead of for
a specific family such as [20]. In the case of our family, in addition to the
number of XORs for the reduction, we include the cost for the multiplication
due to the recursive Karatsuba implementation multiplier, that is, the XOR
count is formed by the sum of the XORs of the Karatsuba multiplier and the
ones of the reduction part. In our implementation, the constant of Karatsuba
is strictly less than 6; see Figure 5 for degrees up to 1024. As can be seen,
for degrees powers of 2 minus 1 (2k − 1, k ≥ 1), the constant achieves local
minimum. For the number of AND gates, we provide an interval. The actual
number of AND gates depends on the value of m; it only reaches a maximum
when m = 2k − 1, for k ≥ 1.

In Table 2, we provide the number of XORs and ANDs gates for Type 1 and
Type 2 families in [18] and [20], Type 3 in [19] and our family of pentanomials.
We point out that in [18] the authors compute multiplication and reduction as
a unique block with a divide-and-conquer approach using squaring. In contrast,
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Table 1 Two steps multipliers cost comparison for different family of pentanomials.

xm + xa + xb + xc + 1 [25,20], Multiplication algorithm: Schoolbook.
Costs #AND #XOR Delay

Reduction 0 4(m− 1) 3TX

Multiplication m2 (m− 1)2 TA + (dlog2 me)TX

Multiplier m2 m2 + 2m− 3 TA + (3 + dlog2 me)TX

Type I - xm + xn+1 + xn + x + 1 [20], Multiplication algorithm: Mastrovito-like Multiplier.
Costs #AND #XOR Delay

Reduction 0 3m + 2n− 1 3TX

Multiplication m2 m2 − 2m + 1 TA + (dlog2 me)TX

Multiplier m2 m2 + m + 2n TA + (3 + dlog2 me)TX

Type I - xm + xn+1 + xn + x + 1 [19], Multiplication algorithm: Mastrovito-like Multiplier.
Costs #AND #XOR Delay

Reduction 0 3m− 2 3TX

Multiplication m2 m2 − 2m + 1 TA + (dlog2 (m− 1)e)TX

Multiplier m2 m2 + m† TA + (3 + dlog2 (m− 1)e)TX

Type II - xm + xn+2 + xn+1 + xn + 1 [20], Multiplication algorithm: Dual basis.
Costs #AND #XOR Delay

Reduction 0 3m− d(m− 2)/2e+ 3n− 4 3TX

Multiplication m2 m2 −m TA + (dlog2 me)TX

Multiplier m2 m2 + 2m− d(m− 2)/2e+ 3n− 4 TA + (3 + dlog2 me)TX

xm + xa + xb + xc + 1, c > 1 [19], Multiplication algorithm: Mastrovito-like Multiplier.
Costs #AND #XOR Delay

Reduction 0 4m− 4 4TX

Multiplication m2 m2 − 2m + 1 TA + (dlog2 (m− 1)e)TX

Multiplier m2 m2 + 2m− 3 TA + (4 + dlog2 (m− 1)e)TX

Ours - x2b+c + xb+c + xb + xc + 1, Multiplication algorithm: Karatsuba.
Costs #AND #XOR Delay

Reduction 0 3m− 2 3TX

Multiplication (3blog2 mc, 3blog2 mc+1] < 6mlog2 3 TA + 3dlog2 (m− 1)eTX

Multiplier (3blog2 mc, 3blog2 mc+1] < 6mlog2 3 + 3m− 2 TA + 3(dlog2 (m− 1)e+ 1)TX

Ours - x5c + x3c + x2c + xc + 1, Multiplication algorithm: Karatsuba.
Costs #AND #XOR Delay

Reduction 0 (12/5)m− 1 3TX

Multiplication (3blog2 mc, 3blog2 mc+1] < 6mlog2 3 TA + 3dlog2 (m− 1)eTX

Multiplier (3blog2 mc, 3blog2 mc+1] < 6mlog2 3 + (12/5)m− 1 TA + 3(dlog2 (m− 1)e+ 1)TX

† There is an additional XOR to reduce the time delay; see [19, page 955].

we separate these two parts and use Karatsuba for the multiplier followed by
our reduction algorithm.

Table 2 Space and time complexities of state-of-the-art bit multipliers.

Type # XOR # AND Delay

Type 1 xm + xb+1 + xb + x + 1, 1 < b ≤ m
2
− 1

[18] b is odd
3m2 + 24m + 8b + 21

4

3m2 + 2m− 1

4
TA + (3 + dlog2(m + 1)e)Tx

[18] b is even
3m2 + 24m + 8b + 17

4

3m2 + 2m− 1

4
TA + (3 + dlog2(m + 1)e)Tx

Type 2 xm + xc+2 + xc+1 + xc + 1

[18] c is odd, c ≤ 3
8

(m− 7)
3m2 + 24m + 14c + 35

4

3m2 + 2m− 1

4
TA + (3 + dlog(m + 1)e)Tx

[18] c is even, c ≤ m
2
− 1

3m2 + 24m + 14c + 45

4

3m2 + 2m− 1

4
TA + (3 + dlog(m + 1)e)Tx

[20] c > 1 m2 + 2m− d(m− 2)/2e+ 3n− 4 m2 TA + (3 + dlog(m− 1)e)Tx

[20] c = 1 m2 + m− 2 m2 TA + (3 + dlog2(m− 1)e)Tx

Type 3 xm + xm−c + xm−2c + xm−3c + 1

[19] m−1
4
≤ c ≤ m−1

3
m2 + m− c− 1 m2 TA + (3 + dlog2(m− 1)e)Tx

[19] m−1
5
≤ c < m−1

4
m2 + 2m− 5c− 2 m2 TA + (3 + dlog2(m− 1)e)Tx

[19] m−1
8
≤ c < m−1

5
m2 + m− 2 m2 TA + (3 + dlog2(m− 1)e+ 1)Tx

Ours x2b+c + xb+c + xb + xc + 1

Ours c ≥ 1, b 6= 2c < 6mlog2 3 + 3m− 2 (3blog2 mc, 3blog2 mc+1] TA + 3(dlog2 (m− 1)e)Tx

Ours c ≥ 1, b = 2c < 6mlog2 3 + 12
5
m− 1 (3blog2 mc, 3blog2 mc+1] TA + 3(dlog2 (m− 1)e+ 1)Tx
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The costs for using our pentanomials for degrees proposed by NIST can
be found in Table 3. The amount of XOR and AND gates are the exact value
obtained from Table 1. The delay costs can be separated in TA and TX , delay
for AND gates and XOR gates, respectively. The delay for AND gates is due
to only 1 AND gate at the lowest level of the Karatsuba recursion. The delay
for the XOR gates in the Karatsuba multiplier is 3dlog2 (m− 1)e since there
are 3 delay XORs per level of the Karatsuba recursion. For the reduction
part, we only have 3 delay XORs. Hence, the total number of XOR delays is
3dlog2 (m− 1)e+ 3.

Table 4 shows the number of irreducible pentanomials of degrees 163, 283
and 571 for the families considered since those are NIST degrees where pen-
tanomials have been recommended [16]. Analyzing the table, we have that
family Type 1 has the most irreducible pentanomials, but few of them have
degrees recommended by NIST [16]. The first family of Type 2, proposed in
[18], has restrictions in the range of c; this family presents the highest number
of representatives with NIST degrees of interest. The second family of Type 2,
proposed in [20], has no restrictions for c; this family presents the largest num-
ber of irreducible polynomials. Type 3 is the special case from [19]. Our family
for b 6= 2c has less irreducible polynomials and it has no irreducible polynomi-
als with degrees 163, 283 and 571. In the other side, when b 6= 2c our family
has 730 polynomials of degrees up to 1024 and it presents 5 pentanomials of
NIST degrees.

In the following we comment on the density of irreducible pentanomials in
our family. Table 5 lists all irreducible pentanomials of our family for degrees
up to 1024; N⊕ is the number of XORs required for the reduction. We leave as
an open problem to mathematically characterize under which conditions our
pentanomials are irreducible.

Table 3 Costs for fixed degree pentanomials proposed by NIST.

Degree
XORs

ANDs Delay
Karatsuba Reduction Total

163 17, 944 487 18, 431 4, 419 TA + 27TX

283 43, 162 847 44, 009 10, 305 TA + 30TX

571 132, 280 1, 711 133, 991 31, 203 TA + 33TX

Table 4 Number of irreducible pentanomials for NIST degrees.

Type #Irred. 163 283 571
Type 1 [18] 2025 1 2 0
Type 2 [18] 1676 3 2 2
Type 2 [20] 3430 6 4 4
Type 3 [19] 539 0 0 0
Ours, b 6= 2c 728 2 2 1
Ours, b = 2c 2 0 0 0
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Table 5: Our family of irreducible pentanomials and their number of XORs (b, c,N⊕), 2b 6= c.

2, 1, 11 3, 2, 22 4, 1, 25 5, 1, 31 5, 2, 34
6, 1, 37 5, 3, 37 7, 2, 46 9, 5, 67 8, 7, 67
9, 6, 70 12, 1, 73 11, 3, 73 10, 7, 79 13, 3, 85
10, 9, 85 13, 4, 88 15, 6, 106 14, 9, 109 19, 2, 118
17, 6, 118 15, 10, 118 17, 11, 133 17, 12, 136 21, 5, 139
20, 7, 139 16, 15, 139 21, 6, 142 23, 5, 151 22, 7, 151
25, 2, 154 21, 11, 157 21, 13, 163 27, 5, 175 23, 13, 175
29, 2, 178 25, 10, 178 23, 14, 178 25, 12, 184 28, 7, 187
32, 1, 193 28, 9, 193 31, 4, 196 23, 20, 196 30, 7, 199
28, 15, 211 27, 18, 214 35, 3, 217 31, 11, 217 27, 22, 226
29, 20, 232 35, 10, 238 31, 19, 241 38, 7, 247 31, 21, 247
41, 3, 253 38, 9, 253 37, 12, 256 35, 19, 265 39, 12, 268
34, 25, 277 45, 4, 280 33, 29, 283 47, 2, 286 40, 17, 289
38, 23, 295 48, 7, 307 40, 23, 307 46, 15, 319 42, 23, 319
53, 2, 322 45, 18, 322 41, 26, 322 45, 19, 325 38, 33, 325
41, 28, 328 52, 7, 331 41, 29, 331 47, 20, 340 45, 26, 346
43, 30, 346 49, 19, 349 41, 35, 349 45, 28, 352 57, 6, 358
51, 18, 358 45, 30, 358 46, 31, 367 55, 14, 370 52, 25, 385
63, 4, 388 62, 7, 391 45, 44, 400 51, 34, 406 59, 19, 409
50, 41, 421 63, 18, 430 68, 9, 433 63, 19, 433 59, 27, 433
56, 33, 433 67, 12, 436 69, 11, 445 60, 31, 451 75, 2, 454
56, 41, 457 63, 29, 463 62, 31, 371 59, 37, 463 75, 6, 466
71, 14, 466 65, 26, 466 61, 36, 472 77, 5, 475 74, 15, 487
63, 37, 487 67, 30, 490 65, 34, 490 73, 19, 493 71, 30, 514
87, 2, 526 87, 6, 538 75, 30, 538 69, 42, 538 82, 17, 541
71, 46, 562 70, 49, 565 81, 28, 568 77, 36, 568 85, 21, 571
65, 61, 571 83, 28, 580 95, 10, 598 85, 30, 598 75, 50, 598
95, 12, 604 98, 9, 613 86, 33, 613 81, 43, 613 78, 49, 613
77, 51, 613 103, 3, 625 91, 28, 628 87, 37, 631 78, 55, 631
101, 11, 637 74, 65, 637 104, 7, 643 81, 54, 646 79, 60, 652
79, 61, 655 101, 18, 658 85, 53, 667 112, 1, 673 91, 44, 676
90, 47, 679 79, 69, 679 81, 66, 682 105, 19, 685 90, 49, 685
95, 43, 697 79, 75, 697 102, 31, 703 99, 37, 703 91, 53, 703
97, 42, 706 94, 49, 709 104, 31, 715 119, 2, 718 105, 30, 718
110, 23, 727 103, 37, 727 105, 34, 730 99, 46, 730 88, 73, 745
99, 52, 748 118, 15, 751 103, 45, 751 95, 61, 751 115, 23, 757
105, 43, 757 93, 67, 757 125, 4, 760 93, 68, 760 127, 2, 766
87, 83, 769 123, 14, 778 130, 1, 781 97, 67, 781 128, 7, 787
108, 47, 787 103, 59, 793 92, 81, 793 119, 30, 802 99, 70, 802
117, 36, 808 120, 31, 811 105, 61, 811 119, 34, 814 106, 63, 823
131, 14, 826 133, 13, 835 140, 1, 841 95, 91, 841 123, 37, 847
111, 61, 847 115, 54, 850 118, 49, 853 113, 59, 853 141, 6, 862
107, 76, 868 130, 31, 871 125, 42, 874 125, 43, 877 142, 15, 895
139, 22, 898 125, 50, 898 115, 70, 898 131, 43, 913 154, 1, 925
142, 25, 925 155, 3, 937 107, 102, 946 154, 9, 949 114, 89, 949
109, 99, 949 145, 34, 970 137, 50, 970 135, 54, 970 123, 78, 970
146, 33, 973 145, 36, 976 133, 60, 976 121, 85, 979 161, 6, 982
143, 44, 988 123, 84, 988 129, 74, 994 153, 29, 1.003 156, 25, 1009
115, 107, 1.009 118, 105, 1.021 169, 4, 1.024 145, 52, 1.024 137, 68, 1024
125, 92, 1.024 139, 67, 1.033 135, 78, 1.042 129, 90, 1.042 129, 91, 1045
135, 84, 1.060 174, 7, 1.063 126, 103, 1.063 157, 42, 1.066 161, 35, 1069
154, 49, 1.069 133, 93, 1.075 171, 18, 1.078 153, 54, 1.078 135, 90, 1078
179, 5, 1.087 130, 103, 1.087 169, 27, 1.093 162, 41, 1.093 142, 81, 1093
133, 99, 1.093 122, 121, 1.093 124, 121, 1.105 130, 113, 1.117 173, 29, 1123
167, 43, 1.129 144, 89, 1.129 189, 4, 1.144 177, 28, 1.144 161, 60, 1144
163, 62, 1.162 133, 123, 1.165 140, 111, 1.171 147, 101, 1.183 193, 10, 1186
185, 27, 1.189 189, 20, 1.192 197, 6, 1.198 175, 50, 1.198 160, 81, 1201
135, 132, 1.204 170, 63, 1.207 166, 71, 1.207 149, 109, 1.219 153, 102, 1222
191, 28, 1.228 189, 37, 1.243 161, 93, 1.243 159, 100, 1.252 179, 61, 1255
155, 109, 1.255 203, 14, 1.258 161, 98, 1.258 198, 25, 1.261 170, 81, 1261
150, 121, 1.261 149, 132, 1.288 205, 21, 1.291 189, 54, 1.294 163, 109, 1303
151, 134, 1.306 173, 93, 1.315 148, 143, 1.315 209, 22, 1.318 187, 66, 1318
196, 49, 1.321 190, 63, 1.327 183, 77, 1.327 194, 57, 1.333 172, 105, 1345
223, 4, 1.348 173, 108, 1.360 225, 6, 1.366 204, 49, 1.369 155, 149, 1375
162, 137, 1.381 161, 140, 1.384 204, 55, 1.387 193, 77, 1.387 199, 69, 1399
225, 18, 1.402 213, 42, 1.402 195, 78, 1.402 197, 76, 1.408 183, 108, 1420
234, 7, 1.423 203, 69, 1.423 209, 59, 1.429 161, 155, 1.429 235, 10, 1438
235, 12, 1.444 179, 124, 1.444 218, 49, 1.453 169, 147, 1.453 201, 90, 1474
225, 44, 1.480 173, 148, 1.480 220, 63, 1.507 248, 9, 1.513 247, 12, 1516
254, 1, 1.525 213, 90, 1.546 217, 83, 1.549 201, 115, 1.549 224, 71, 1555
238, 47, 1.567 261, 6, 1.582 183, 163, 1.585 227, 76, 1.588 218, 95, 1591
178, 175, 1.591 265, 4, 1.600 241, 53, 1.603 196, 143, 1.603 267, 2, 1606
269, 2, 1.618 265, 10, 1.618 261, 18, 1.618 241, 58, 1.618 225, 90, 1618
221, 98, 1.618 207, 126, 1.618 205, 130, 1.618 246, 49, 1.621 272, 1, 1633
196, 153, 1.633 192, 161, 1.633 203, 140, 1.636 254, 39, 1.639 194, 161, 1645
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257, 37, 1.651 212, 127, 1.651 239, 77, 1.663 255, 46, 1.666 227, 102, 1666
245, 67, 1.669 234, 89, 1.669 197, 163, 1.669 209, 140, 1.672 244, 71, 1675
247, 68, 1.684 195, 172, 1.684 195, 173, 1.687 213, 138, 1.690 274, 17, 1693
193, 180, 1.696 280, 9, 1.705 215, 139, 1.705 243, 84, 1.708 218, 135, 1711
239, 94, 1.714 219, 134, 1.714 241, 91, 1.717 216, 145, 1.729 225, 130, 1738
223, 134, 1.738 215, 150, 1.738 249, 84, 1.744 256, 71, 1.747 208, 167, 1747
211, 163, 1.753 231, 124, 1.756 255, 77, 1.759 199, 189, 1.759 230, 129, 1765
213, 163, 1.765 249, 92, 1.768 295, 2, 1.774 265, 66, 1.786 255, 86, 1786
286, 25, 1.789 285, 30, 1.798 255, 90, 1.798 225, 150, 1.798 267, 67, 1801
263, 75, 1.801 211, 181, 1.807 293, 18, 1.810 285, 36, 1.816 247, 116, 1828
259, 94, 1.834 266, 81, 1.837 253, 107, 1.837 221, 171, 1.837 285, 44, 1840
300, 17, 1.849 252, 113, 1.849 279, 61, 1.855 265, 91, 1.861 249, 124, 1864
244, 137, 1.873 227, 172, 1.876 273, 84, 1.888 252, 127, 1.891 311, 13, 1903
271, 93, 1.903 266, 103, 1.903 259, 117, 1.903 265, 109, 1.915 255, 131, 1921
252, 137, 1.921 215, 212, 1.924 298, 47, 1.927 231, 181, 1.927 305, 36, 1936
245, 157, 1.939 323, 2, 1.942 243, 162, 1.942 259, 131, 1.945 223, 203, 1945
279, 92, 1.948 238, 175, 1.951 274, 105, 1.957 325, 6, 1.966 292, 73, 1969
322, 15, 1.975 319, 22, 1.978 303, 54, 1.978 253, 154, 1.978 310, 47, 1999
329, 14, 2.014 314, 47, 2.023 323, 30, 2.026 257, 162, 2.026 314, 49, 2029
323, 34, 2.038 289, 102, 2.038 255, 170, 2.038 307, 68, 2.044 243, 198, 2050
329, 27, 2.053 253, 179, 2.053 237, 211, 2.053 256, 175, 2.059 339, 11, 2065
308, 73, 2.065 303, 83, 2.065 243, 203, 2.065 287, 116, 2.068 243, 205, 2071
266, 161, 2.077 305, 91, 2.101 320, 63, 2.107 301, 101, 2.107 343, 19, 2113
243, 220, 2.116 293, 122, 2.122 349, 11, 2.125 285, 139, 2.125 253, 203, 2125
266, 183, 2.143 254, 207, 2.143 307, 102, 2.146 325, 69, 2.155 357, 6, 2158
315, 90, 2.158 349, 26, 2.170 329, 67, 2.173 340, 49, 2.185 347, 37, 2191
341, 50, 2.194 297, 138, 2.194 285, 164, 2.200 283, 173, 2.215 270, 199, 2215
349, 42, 2.218 301, 139, 2.221 301, 141, 2.227 261, 221, 2.227 365, 18, 2242
297, 156, 2.248 365, 21, 2.251 268, 217, 2.257 371, 13, 2.263 371, 14, 2266
287, 182, 2.266 374, 9, 2.269 361, 36, 2.272 328, 103, 2.275 375, 10, 2278
260, 241, 2.281 279, 204, 2.284 313, 139, 2.293 257, 251, 2.293 297, 173, 2299
264, 239, 2.299 381, 6, 2.302 304, 161, 2.305 260, 249, 2.305 355, 62, 2314
321, 130, 2.314 372, 31, 2.323 341, 93, 2.323 293, 189, 2.323 364, 49, 2329
287, 203, 2.329 351, 76, 2.332 377, 26, 2.338 369, 42, 2.338 325, 130, 2338
299, 182, 2.338 378, 25, 2.341 321, 140, 2.344 347, 91, 2.353 332, 121, 2353
361, 66, 2.362 303, 182, 2.362 278, 233, 2.365 305, 187, 2.389 392, 15, 2395
311, 180, 2.404 386, 31, 2.407 271, 261, 2.407 395, 14, 2.410 307, 190, 2410
297, 210, 2.410 320, 169, 2.425 351, 108, 2.428 389, 35, 2.437 361, 93, 2443
357, 102, 2.446 404, 9, 2.449 343, 133, 2.455 287, 245, 2.455 403, 14, 2458
335, 150, 2.458 325, 170, 2.458 293, 234, 2.458 397, 27, 2.461 286, 255, 2479
393, 42, 2.482 365, 101, 2.491 395, 44, 2.500 411, 14, 2.506 283, 270, 2506
381, 76, 2.512 397, 45, 2.515 285, 269, 2.515 321, 203, 2.533 407, 38, 2554
299, 254, 2.554 321, 211, 2.557 336, 185, 2.569 320, 217, 2.569 411, 38, 2578
403, 54, 2.578 355, 150, 2.578 339, 182, 2.578 322, 217, 2.581 423, 18, 2590
403, 59, 2.593 389, 91, 2.605 358, 153, 2.605 321, 228, 2.608 320, 231, 2611
379, 115, 2.617 425, 27, 2.629 389, 99, 2.629 353, 173, 2.635 435, 10, 2638
400, 81, 2.641 396, 89, 2.641 351, 181, 2.647 326, 231, 2.647 295, 294, 2650
422, 41, 2.653 382, 121, 2.653 363, 164, 2.668 319, 252, 2.668 303, 284, 2668
311, 270, 2.674 401, 91, 2.677 325, 243, 2.677 373, 148, 2.680 443, 14, 2698
417, 66, 2.698 413, 74, 2.698 375, 150, 2.698 345, 210, 2.698 301, 298, 2698
362, 177, 2.701 381, 140, 2.704 364, 175, 2.707 443, 19, 2.713 367, 173, 2719
405, 98, 2.722 448, 17, 2.737 375, 163, 2.737 407, 102, 2.746 405, 106, 2746
377, 162, 2.746 427, 67, 2.761 316, 289, 2.761 439, 45, 2.767 339, 245, 2767
318, 287, 2.767 461, 4, 2.776 393, 140, 2.776 457, 13, 2.779 445, 37, 2779
423, 83, 2.785 403, 124, 2.788 335, 262, 2.794 413, 107, 2.797 392, 151, 2803
344, 249, 2.809 387, 166, 2.818 355, 230, 2.818 389, 164, 2.824 466, 15, 2839
362, 223, 2.839 321, 306, 2.842 353, 243, 2.845 462, 31, 2.863 411, 133, 2863
394, 169, 2.869 441, 76, 2.872 436, 89, 2.881 338, 287, 2.887 443, 78, 2890
373, 218, 2.890 421, 123, 2.893 480, 7, 2.899 380, 207, 2.899 435, 102, 2914
411, 150, 2.914 405, 162, 2.914 369, 234, 2.914 376, 223, 2.923 420, 137, 2929
435, 108, 2.932 399, 180, 2.932 458, 63, 2.935 445, 89, 2.935 354, 271, 2935
437, 107, 2.941 401, 179, 2.941 425, 133, 2.947 483, 18, 2.950 350, 287, 2959
429, 132, 2.968 369, 252, 2.968 397, 197, 2.971 392, 207, 2.971 364, 265, 2977
494, 7, 2.983 387, 222, 2.986 494, 9, 2.989 429, 139, 2.989 475, 50, 2998
425, 150, 2.998 375, 250, 2.998 431, 140, 3.004 466, 71, 3.007 419, 165, 3007
337, 332, 3.016 427, 156, 3.028 407, 196, 3.028 347, 316, 3.028 487, 37, 3031
457, 98, 3.034 355, 302, 3.034 485, 43, 3.037 365, 284, 3.040 415, 187, 3049
418, 183, 3.055
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7 Conclusions

In this paper, we present a new class of pentanomials over F2, defined by
x2b+c +xb+c +xb +xc +1. We give the exact number of XORs in the reduction
process; we note that in the reduction process no ANDs are required.

It is interesting to point out that even though the cases c = 1 and c > 1,
as shown in Figures 2 and 3, are quite different, the final result in terms of
number of XORs is the same. We also consider a special case when b = 2c
where further reductions are possible.

There are irreducible pentanomials of this shape for several degree exten-
sions of practical interest. We provide a detailed analysis of the space and time
complexity involved in the reduction using the pentanomials in our family. For
the multiplication process, we simply use the standard Karatsuba algorithm.

The proved complexity analysis of the multiplier and reduction considering
the family proposed in this paper, as well as our analysis suggests that these
pentanomials are as good as or possibly better to the ones already proposed.

We leave for future work to produce a one-step algorithm using our pen-
tanomials, that is, a multiplier that performs multiplication and reduction in
a single step using our family of polynomials, as well as a detailed study of
the delay obtained using this algorithm.
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