A new class of irreducible pentanomials for polynomial based multipliers in binary fields

Gustavo Banegas $\,\cdot\,$ Ricardo Custódio $\,\cdot\,$ Daniel Panario

the date of receipt and acceptance should be inserted later

Abstract We introduce a new class of irreducible pentanomials over \mathbb{F}_2 of the form $f(x) = x^{2b+c} + x^{b+c} + x^b + x^c + 1$. Let m = 2b + c and use f to define the finite field extension of degree m. We give the exact number of operations required for computing the reduction modulo f. We also provide a multiplier based on Karatsuba algorithm in $\mathbb{F}_2[x]$ combined with our reduction process. We give the total cost of the multiplier and found that the bit-parallel multiplier defined by this new class of polynomials has improved XOR and AND complexity. Our multiplier has comparable time delay when compared to other multipliers based on Karatsuba algorithm.

Keywords irreducible pentanomials \cdot polynomial multiplication \cdot modular reduction \cdot finite fields

1 Introduction

Finite field extensions \mathbb{F}_{2^m} of the binary field \mathbb{F}_2 play a central role in many engineering applications and areas such as cryptography. Elements in these extensions are commonly represented using polynomial or normal bases. We center in this paper on polynomial bases for bit-parallel multipliers.

When using polynomial bases, since $\mathbb{F}_{2^m} \cong \mathbb{F}_2[x]/(f)$ for an irreducible polynomial f over \mathbb{F}_2 of degree m, we write elements in \mathbb{F}_{2^m} as polynomials over \mathbb{F}_2 of degree smaller than m. When multiplying with elements in \mathbb{F}_{2^m} , a polynomial of degree up to 2m - 2 may arise. In this case, a modular reduction is necessary to bring the resulting element back to \mathbb{F}_{2^m} . Mathematically, any irreducible polynomial can be used to define the extension. In practice,

Gustavo Banegas (E-mail: gustavo@cryptme.in) at Technische Universiteit Eindhoven, Eindhoven, The Netherlands · Ricardo Custódio (E-mail: ricardo.custodio@ufsc.br) at Universidade Federal de Santa Catarina, Florianópolis, Brazil · Daniel Panario (E-mail: daniel@math.carleton.ca) at Carleton University, Ottawa, Canada.

however, the choice of the irreducible f is crucial for fast and efficient field multiplication.

There are two types of multipliers in \mathbb{F}_{2^m} : one-step algorithms and two-step algorithms. Algorithms of the first type perform modular reduction while the elements are being multiplied. In this paper, we are interested in two-step algorithms, that is, in the first step the multiplication of the elements is performed, and in the second step the modular reduction is executed. Many algorithms have been proposed for both types. An interesting application of two-step algorithms is in several cryptographic implementations that use the lazy reduction method [23,2]. For example, in [15] it is shown the impact of lazy reduction in operations for binary elliptic curves. An important application of the second part of our algorithm, the reduction process, is to side-channel attacks. Indeed, we prove that our modular reduction requires a constant number of arithmetic operations, and as a consequence, it prevents side-channel attacks.

The complexity of hardware circuits for finite field arithmetic in \mathbb{F}_{2^m} is related to the amount of space and the time delay needed to perform the operations. Normally, the number of exclusive-or (XOR) and AND gates is a good estimation of the space complexity. The time complexity is the delay due to the use of these gates.

Several special types of irreducible polynomials have been considered before, including polynomials with few nonzero terms like trinomials and pentanomials (three and five nonzero terms, respectively), equally spaced polynomials, all-one polynomials [6,11,19], and other special families of polynomials [27]. In general, trinomials are preferred, but for degrees where there are no irreducible trinomials, pentanomials are considered.

The analysis of the complexity using trinomials is known [26]. However, there is no general complexity analysis of a generic pentanomial in the literature. Previous results (see [4] for details) have focus on special classes of pentanomials, including:

- $-x^{m} + x^{b+1} + x^{b} + x^{b-1} + 1$, where $2 \le b \le m/2 1$ [10,20,28,18,8];
- $-x^{m} + x^{b+1} + x^{b} + x + 1$, where 1 < b < m 1 [9,19,20,28,18,8];
- $-x^{m} + x^{m-c} + x^{b} + x^{c} + 1$, where $1 \le c < b < m c$ [3];
- $x^m + x^a + x^b + x^c + 1, \text{ where } 1 \le c < b < a \le m/2 \text{ [19]};$ $x^m + x^{m-s} + x^{m-2s} + x^{m-3s} + 1, \text{ where } (m-1)/8 \le s \le (m-1)/3 \text{ [19]};$
- $-x^{4c} + x^{3c} + x^{2c} + x^{c} + 1$, where $c = 5^{i}$ and $i \ge 0$ [6,7].

Like our family, these previous families focus on bit operations, i.e., operations that use only AND and XOR gates. In the literature it is possible to find studies that use computer words to perform the operations [21,17] but this is not the focus of our work.

1.1 Contributions of this paper

In this paper, we introduce a new class of irreducible pentanomials with the following format:

$$f(x) = x^{2b+c} + x^{b+c} + x^b + x^c + 1, b > c > 0.$$
 (1)

We compare our pentanomial with the first two families from the list above. The reason to choose these two family is that [18] presents a multiplier considering these families with complexity 25% smaller than the other existing works in the literature using quadratic algorithms. Since our multiplier is based on Karatsuba's algorithm, we also compare our method with Karatsuba type algorithms.

An important reference for previously used polynomials and their complexities is the recent survey on bit-parallel multipliers by Fan and Hasan [4]. Moreover, we observe that all finite fields results used in this paper can be found in the classical textbook by Lidl and Niederreiter [12]; see [14] for recent research in finite fields.

We prove that the complexity of the reduction depends on the exponents b and c of the pentanomial. A consequence of our result is that for a given degree m = 2b + c, for any positive integers b > c > 0, all irreducible polynomials in our family have the same space and time complexity. We provide the exact number of XORs and gate delay required for the reduction of a polynomial of degree 2m - 2 by our pentanomials. The number of XORs needed is 3m - 2 = 6b + 3c - 2 when $b \neq 2c$; for b = 2c this number is $\frac{12}{5}m - 1 = 12c - 1$. We also show that AND gates are not required in the reduction process. It is easy to verify that our reduction algorithm is "constant-time" since it runs the same amount of operations independent of the inputs and it avoids timing side-channel attacks [5].

For comparison purposes with other pentanomials proposed in the literature, since the operation considered in those papers is the product of elements in \mathbb{F}_{2^m} , we also consider the number of ANDs and XORs used in the multiplication prior to the reduction. In the literature, one can find works that use the standard product or use some more efficient method of multiplication, such as Karatsuba, and then add the complexity of the reduction.

In this paper, we use a Karatsuba multiplier combined with our fast reduction method. The total cost is then $Cm^{\log_2 3} + 3m - 2$ or $Cm^{\log_2 3} + \frac{12}{5}m - 1$, depending on $b \neq 2c$ or b = 2c, respectively. The constant C of the Karatsuba multiplier depends on the implementation. In our experiments, C is strictly less than 6 for all practical degrees, up to degrees 1024. For the reduction, we give algorithms that achieve the above number of operations using any irreducible pentanomial in our family. We compare the complexity of the Karatsuba multiplier with our reduction with the method proposed by Park et. al[18], as well as, with Karatsuba variants given in [4].

1.2 Structure of the paper

The structure of this paper is as follows. In Section 2 we give the number of required reduction steps when using a pentanomial f from our family. We show that for our pentanomials this number is 2 or 3. This fact is crucial since such a low number of required reduction steps of our family allows for not only an exact count of the XOR operations but also for a reduced time delay. Our strategy for that consists in describing the reduction process throughout equations, cleaning the redundant operations and presenting the final optimized algorithm. Section 3 provides the first component of our strategy. In this section, we simply reduce a polynomial of degree at most or exactly 2m-2 to a polynomial of degree smaller than m. The second component of our strategy is more delicate and it allows us to derive the exact number of operations involved when our pentanomial f is used to define \mathbb{F}_{2^m} . Sections 4 and 5 provide those analyses for the cases when two and three steps of reduction are needed, that is, when c = 1 and c > 1, respectively. We give algorithms and exact estimates for the space and time complexities in those cases. Also, we describe a Karatsuba multiplier implementation combined with our reduction. In Section 6, based on our implementation, we show that the number of XOR and AND gates is better than the known space complexity in the literature. On the other hand, the time complexity (delay) in our implementation is worse than quadratic methods but comparable with Karatsuba implementations. Hence, our multiplier would be preferable in situations where space complexity and saving energy are more relevant than time complexity. We demonstrate that our family contains many polynomials, including degrees where pentanomials are suggested by NIST. Conclusions are given in Section 7.

2 The number of required reductions

When operating with two elements in \mathbb{F}_{2^m} , represented by polynomials, we obtain a polynomial of degree at most 2m - 2. In order to obtain the corresponding element in \mathbb{F}_{2^m} , a further division with remainder by an irreducible polynomial f of degree m is required. We can see this reduction as a process to bring the coefficient in interval [2m - 2, m] to a position less than m. This is done in steps. In each step, the coefficients in interval [2m - 2, m] of the polynomial is substituted by the equivalent bits following the congruence $x^m \equiv x^a + x^b + x^c + 1$. Once the coefficient in position 2m - 2 is brought to a position less than m, the reduction is completed.

In this section, we carefully look into the number of steps needed to reduce the polynomial by our polynomial f given in Equation (1). The most important result of this section is that we need at most 3 steps of this reduction process using our polynomials. This information is used in the next sections to give the exact number of operations when the irreducible pentanomial given in Equation (1) is employed. This computation was possible because our family has a small number of required reduction steps. Let $D_0(x) = \sum_{i=0}^{2m-2} d_i x^i$ be a polynomial over \mathbb{F}_2 . We want to compute D_{red} , the remainder of the division of D_0 by f, where f has the form $f(x) = x^{2b+c} + x^{b+c} + x^b + x^c + 1$ with 2b + c = m and b > c > 0. The maximum number k_a of reduction steps for a pentanomial $x^m + x^a + x^b + x^c + 1$ in terms of the exponent a is given by Sunar and Koç [22]

$$k_a = \left\lfloor \frac{m-2}{m-a} \right\rfloor + 1.$$

In our case m = 2b + c and a = b + c, thus

$$k_{b+c} = \left\lfloor \frac{2b+c-2}{2b+c-b-c} \right\rfloor + 1 = \left\lfloor \frac{c-2}{b} \right\rfloor + 3 = \begin{cases} 2 & \text{if } c = 1, \\ 3 & \text{if } c > 1. \end{cases}$$
(2)

Using the same method as in [22], we can derive the number of steps required associated to the exponents b and c. These numbers are needed in Section 3. We get

$$k_b = \left\lfloor \frac{2b+c-2}{2b+c-b} \right\rfloor + 1 = \left\lfloor \frac{b-2}{b+c} \right\rfloor + 2 = 2, \tag{3}$$

and

$$k_{c} = \left\lfloor \frac{2b+c-2}{2b+c-c} \right\rfloor + 1 = \left\lfloor \frac{c-2}{2b} \right\rfloor + 2 = \begin{cases} 1 & \text{if } c = 1, \\ 2 & \text{if } c > 1. \end{cases}$$
(4)

Thus, the reduction process for our family of pentanomials involves at most three steps. This is a special property that our family enjoys.

The general process for the reduction proposed in this paper is given in the next section. The special case c = 1, that is when our polynomials have the form $f(x) = x^{2b+1} + x^{b+1} + x^b + x + 1$, requires two steps. This family is treated in detail in Section 4. The general case of our family $f(x) = x^{2b+c} + x^{b+c} + x^b + x^c + 1$ for c > 1 involves three steps and is treated in Section 5.

3 The general reduction process

The general process that we follow to get the original polynomial D_0 reduced to a polynomial of degree smaller than m is depicted in Figure 1. Without loss of generality, we consider the polynomial to be reduced as always having degree 2m - 2. Indeed, the cost to determine the degree of the polynomial to be reduced is equivalent to checking if the leading coefficient is zero.

The polynomial D_0 to be reduced is split into two parts: A_0 is the piece of the original polynomial with degree at least m and hence that requires extra work, while B_0 is formed by the terms of D_0 with exponents smaller than mand so that it does not require to be reduced. Dividing the leading term of A_0 by f with remainder we obtain D_1 . In the same way as before, we split D_1 in two parts A_1 and B_1 and repeat the process obtaining the tree of Figure 1.

Fig. 1 Tree representing the general reduction strategy.

3.1 Determining A_0 and B_0

We trivially have

$$D_0(x) = A_0(x) + B_0(x) = \sum_{i=m}^{2m-2} d_i x^i + \sum_{i=0}^{m-1} d_i x^i,$$

and hence

$$A_0 = \sum_{i=m}^{2m-2} d_i x^i \quad \text{and} \quad B_0 = \sum_{i=0}^{m-1} d_i x^i.$$
 (5)

3.2 Determining A_1 and B_1

Using for clarity the generic form of a pentanomial over \mathbb{F}_2 , $f(x) = x^m + x^a + x^b + x^c + 1$, dividing the leading term of A_0 by f and taking the remainder, we get

$$D_1 = \sum_{i=0}^{m-2} d_{i+m} x^{i+a} + \sum_{i=0}^{m-2} d_{i+m} x^{i+b} + \sum_{i=0}^{m-2} d_{i+m} x^{i+c} + \sum_{i=0}^{m-2} d_{i+m} x^i.$$

Separating the already reduced part of D_1 from the piece of D_1 that still requires more work, we obtain

$$A_{1} = \sum_{i=m}^{m+a-2} d_{i+(m-a)}x^{i} + \sum_{i=m}^{m+b-2} d_{i+(m-b)}x^{i} + \sum_{i=m}^{m+c-2} d_{i+(m-c)}x^{i}, \quad (6)$$

and

$$B_1 = \sum_{i=a}^{m-1} d_{i+(m-a)} x^i + \sum_{i=b}^{m-1} d_{i+(m-b)} x^i + \sum_{i=c}^{m-1} d_{i+(m-c)} x^i + \sum_{i=0}^{m-2} d_{i+m} x^i.$$

Since m = 2b + c and a = b + c, we have

$$A_{1} = \sum_{i=2b+c}^{3b+2c-2} d_{i+b}x^{i} + \sum_{i=2b+c}^{3b+c-2} d_{i+b+c}x^{i} + \sum_{i=2b+c}^{2b+2c-2} d_{i+2b}x^{i},$$
$$B_{1} = \sum_{i=b+c}^{2b+c-1} d_{i+b}x^{i} + \sum_{i=b}^{2b+c-1} d_{i+b+c}x^{i} + \sum_{i=c}^{2b+c-1} d_{i+2b}x^{i} + \sum_{i=0}^{2b+c-2} d_{i+2b+c}x^{i}.$$
(7)

3.3 Determining A_2 and B_2

As before, we divide the leading term of A_1 by f and we obtain the remainder D_2 . We get $D_2 = D_{2_a} + D_{2_b} + D_{2_c}$, where D_{2_a} , D_{2_b} and D_{2_c} refer to the reductions of the sums in Equation (6).

We start with D_{2_a} :

$$D_{2_a} = \sum_{i=0}^{a-2} d_{i+2m-a} x^i (x^a + x^b + x^c + 1).$$

Separating D_{2_a} in the pieces A_{2_a} and B_{2_a} , we get $A_{2_a} = \sum_{i=m}^{2a-2} d_{i+2m-2a} x^i$ since b + a - 2 < m, and

$$B_{2_a} = \sum_{i=a}^{m-1} d_{i+2m-2a} x^i + \sum_{i=b}^{a+b-2} d_{i+2m-a-b} x^i + \sum_{i=c}^{a+c-2} d_{i+2m-a-c} x^i + \sum_{i=0}^{a-2} d_{i+2m-a} x^i.$$

Substituting m = 2b + c and a = b + c, we get $A_{2a} = \sum_{i=2b+c}^{2b+2c-2} d_{i+2b}x^i$, and

$$B_{2_a} = \sum_{i=b+c}^{2b+c-1} d_{i+2b} x^i + \sum_{i=b}^{2b+c-2} d_{i+2b+c} x^i + \sum_{i=c}^{b+2c-2} d_{i+3b} x^i + \sum_{i=0}^{b+c-2} d_{i+3b+c} x^i.$$

Proceeding with the reduction now of the second sum in Equation (6), we obtain

$$D_{2_b} = \sum_{i=a}^{a+b-2} d_{i+2m-a-b} x^i + \sum_{i=b}^{2b-2} d_{i+2m-2b} x^i + \sum_{i=c}^{b+c-2} d_{i+2m-b-c} x^i + \sum_{i=0}^{b-2} d_{i+2m-b} x^i.$$

Clearly, D_{2_b} is already reduced, and thus $A_{2_b} = 0$, and

$$B_{2b} = \sum_{i=b+c}^{2b+c-2} d_{i+2b+c} x^i + \sum_{i=b}^{2b-2} d_{i+2b+2c} x^i + \sum_{i=c}^{b+c-2} d_{i+3b+c} x^i + \sum_{i=0}^{b-2} d_{i+3b+2c} x^i.$$

We finally reduce the third and last sum in Equation (6):

$$D_{2_c} = \sum_{i=a}^{a+c-2} d_{i+2m-a-c} x^i + \sum_{i=b}^{b+c-2} d_{i+2m-b-c} x^i + \sum_{i=c}^{2c-2} d_{i+2m-2c} x^i + \sum_{i=0}^{c-2} d_{i+2m-c} x^i$$

Again, we easily check that D_{2_c} is reduced and so $A_{2_c} = 0$, and

$$B_{2_c} = \sum_{i=b+c}^{b+2c-2} d_{i+3b} x^i + \sum_{i=b}^{b+c-2} d_{i+3b+c} x^i + \sum_{i=c}^{2c-2} d_{i+4b} x^i + \sum_{i=0}^{c-2} d_{i+4b+c} x^i.$$

Concluding, A_2 is given by

$$A_2 = A_{2_a} + A_{2_b} + A_{2_c} = \sum_{i=m}^{2a-2} d_{i+2m-2a} x^i,$$
(8)

and $B_2 = B_{2_a} + B_{2_b} + B_{2_c}$ is

$$B_{2} = \sum_{i=b+c}^{2b+c-1} d_{i+2b}x^{i} + \sum_{i=c}^{b+2c-2} d_{i+3b}x^{i} + \sum_{i=b+c}^{b+2c-2} d_{i+3b}x^{i} + \sum_{i=c}^{2c-2} d_{i+4b}x^{i} + \sum_{i=c}^{2b+c-2} d_{i+2b+c}x^{i} + \sum_{i=b+c}^{2b-2} d_{i+2b+2c}x^{i} + \sum_{i=0}^{b+c-2} d_{i+3b+c}x^{i} + \sum_{i=b+c}^{b+c-2} d_{i+3b+c}x^{i} + \sum_{i=0}^{b+c-2} d_{i+3b+c}x^{i} + \sum_{i=b}^{b-2} d_{i+3b+c}x^{i} + \sum_{i=0}^{b-2} d_{i+3b+c}x^{i} + \sum_{i=0}^{b-2} d_{i+3b+c}x^{i} + \sum_{i=0}^{c-2} d_{i+4b+c}x^{i}.$$
(9)

3.4 Determining A_3 and B_3

Dividing the leading term of A_2 in Equation (8) by f, we have

$$D_3 = \sum_{i=b+c}^{b+2c-2} d_{i+3b} x^i + \sum_{i=b}^{b+c-2} d_{i+3b+c} x^i + \sum_{i=c}^{2c-2} d_{i+4b} x^i + \sum_{i=0}^{c-2} d_{i+4b+c} x^i.$$

We have that D_3 is reduced so $A_3 = 0$ and

$$B_3 = \sum_{i=b+c}^{b+2c-2} d_{i+3b} x^i + \sum_{i=b}^{b+c-2} d_{i+3b+c} x^i + \sum_{i=c}^{2c-2} d_{i+4b} x^i + \sum_{i=0}^{c-2} d_{i+4b+c} x^i.$$
 (10)

3.5 The number of terms in A_r and B_r

Let G(i) = 1 if i > 0 and G(i) = 0 if $i \le 0$. Let r be a reduction step. It is clear now that the precise number of terms for A_r and B_r , for $r \ge 0$, can be obtained using k_{b+c} , k_b and k_c given in Equations (2), (3) and (4). We have:

- i) The number of terms of A_0 and B_0 is 1.
- ii) For r > 0, the number of terms of A_r is $G(k_{b+c}-r)+G(k_b-r)+G(k_c-r)$, while the number of terms of B_r is 4 times the number of terms of A_{r-1} .

4 The family of polynomials $f(x) = x^{2b+1} + x^{b+1} + x^b + x + 1$

In this section, we consider the case when c = 1, that is, when $k_{b+c} = 2$, as given in Equation (2). The polynomials in this subfamily have the form $f(x) = x^{2b+1} + x^{b+1} + x^b + x + 1$. For the subfamily treated in this section, since $k_{b+c} = 2$, we immediately get $A_2 = 0$ and the expressions in the previous section simplify. As a consequence, the desired reduction is given by

$$D_{red} = B_0 + B_1 + B_2.$$

Using Equations (5), (7) and (9), we obtain

$$D_{red} = \sum_{i=0}^{2b} d_i x^i + \sum_{i=b+1}^{2b} d_{i+b} x^i + \sum_{i=1}^{b} d_{i+2b} x^i + \sum_{i=1}^{b} d_{i+3b} x^i + \sum_{i=b}^{2b} d_{i+b+1} x^i + \sum_{i=0}^{b-1} d_{i+2b+1} x^i + \sum_{i=b+1}^{2b-1} d_{i+2b+1} x^i + \sum_{i=b}^{2b-2} d_{i+2b+2} x^i + \sum_{i=0}^{b-2} d_{i+3b+2} x^i + d_{3b+1} x^i + \sum_{i=0}^{2b-2} d_{i+2b+2} x^i + d_{3b+2} x^i + d_{3b+1} x^i + d_{3b+1}$$

A crucial issue that allows us to give improved results for our family of pentanomials is the fact that redundancies occur for D_{red} in Equation (11). Let

$$T_1(j) = \sum_{i=0}^{b-2} (d_{i+2b+1} + d_{i+3b+2}) x^{i+j}, \qquad T_2(j) = d_{3b} x^j,$$

$$T_3(j) = d_{3b+1} x^j, \qquad T_4(j) = \sum_{i=0}^{b-1} (d_{i+2b+1} + d_{i+3b+1}) x^{i+j}.$$

A careful analysis of Equation (11) reveals that T_1 , T_2 and T_3 are used more than once, and hence, savings can occur. We rewrite Equation (11) as

$$D_{red} = B_0 + T_1(0) + T_1(b) + T_1(b+1) + T_2(b-1) + T_2(2b-1) + T_2(2b) + T_3(0) + T_3(2b) + T_4(1).$$
(12)

One can check that by plugging T_1 , T_2 , T_3 and T_4 in Equation (12) we recover Equation (11). Figure 2 shows these operations. We remark that even though the first row in this figure is B_0 , the following two rows are not B_1 and B_2 . Indeed, those rows are obtained from B_1 and B_2 together with the optimizations provided by T_1 , T_2 , T_3 and T_4 .

Using Equation (12), the number N_{\oplus} of XOR operations is

$$N_{\oplus} = 6b + 1 = 3m - 2.$$

It is also easy to see from Figure 2 that the time delay is $3T_X$, where T_X is the delay of one 2-input XOR gate.

We are now ready to provide Algorithm 1 for computing D_{red} given in Equation (12), and as explained in Figure 2, for the pentanomials $f(x) = x^{2b+1} + x^{b+1} + x^b + x + 1$.

Putting all pieces together, we give next the main result of this section.

Fig. 2 Representation of the reduction by $f(x) = x^{2b+1} + x^{b+1} + x^b + x + 1$.

Algorithm 1 Computing D_{red} when $f(x) =$	$x^{2b+1} + x^{b+1} + x^b + x + 1.$
input : $D_0 = d[4b0]$ bits vector of length $4b + 1$	
output: D _{red}	
for $i \leftarrow 0$ to $b - 2$ do	
$ T_1[i] \leftarrow d[i+2b+1] \oplus d[i+3b+2];$	\triangleright Definition of T_1
end	
for $i \leftarrow 0$ to $b - 1$ do	
$ T_4[i] \leftarrow d[i+2b+1] \oplus d[i+3b+1];$	\triangleright Definition of T_4
end	
$D_{red}[0] \leftarrow d[0] \oplus T_1[0] \oplus d[3b+1];$	\triangleright Column 0 of Fig. 2
for $i \leftarrow 1$ to $b - 2$ do	
$ D_{red}[i] \leftarrow d[i] \oplus T_1[i] \oplus T_4[i-1];$	\triangleright Columns 1 to $b - 2$ of Fig. 2
end	
$D_{red}[b-1] \leftarrow d[b-1] \oplus d[3b] \oplus T_4[b-2]$	
$D_{red}[b] \leftarrow d[b] \oplus T_1[0] \oplus T_4[b-1]$	
for $i \leftarrow b+1$ to $2b-2$ do	
$ D_{red}[i] \leftarrow d[i] \oplus T_1[i-b] \oplus T_1[i-b-1];$	\triangleright Columns $b + 1$ to $2b - 2$ of Fig. 2
end	
$D_{red}[2b-1] \leftarrow d[2b-1] \oplus d[3b] \oplus T_1[b-2]$	
$D_{red}[2b] \leftarrow d[2b] \oplus d[3b+1] \oplus d[3b]$	
return D _{red}	

Theorem 1 Algorithm 1 correctly gives the reduction of a polynomial of degree at most 2m - 2 over \mathbb{F}_2 by $f(x) = x^{2b+1} + x^{b+1} + x^b + x + 1$ involving $N_{\oplus} = 3m - 2 = 6b + 1$ number of XORs operations and a time delay of $3T_X$.

5 Family $f(x) = x^{2b+c} + x^{b+c} + x^b + x^c + 1, c > 1$

For polynomials of the form $f(x) = x^{2b+c} + x^{b+c} + x^b + x^c + 1$, c > 1, we have that $k_{b+c} = 3$, implying that $A_3 = 0$. The reduction is given by

$$D_{red} = B_0 + B_1 + B_2 + B_3.$$

Using Equations (5), (7), (9) and (10), we have that D_{red} satisfies

$$D_{red} = \sum_{i=0}^{2b+c-1} d_i x^i + \sum_{i=b+c}^{2b+c-1} d_{i+b} x^i + \sum_{i=c}^{b+c-1} d_{i+2b} x^i + \sum_{i=c}^{b+2c-2} d_{i+3b} x^i + \sum_{i=b+c}^{2b+c-1} d_{i+b+c} x^i + \sum_{i=0}^{b-1} d_{i+2b+c} x^i + \sum_{i=b+c}^{2b+c-2} d_{i+2b+c} x^i + \sum_{i=0}^{2b-2} d_{i+2b+2c} x^i + \sum_{i=0}^{c-1} d_{i+3b+c} x^i + \sum_{i=0}^{b-2} d_{i+3b+2c} x^i.$$
(13)

Let

4

$$T_1(j) = \sum_{i=0}^{b-2} (d_{i+2b+c} + d_{i+3b+2c}) x^{i+j}, \qquad T_2(j) = d_{3b+c-1} x^j,$$

$$T_3(j) = \sum_{i=0}^{c-1} d_{i+3b+c} x^{i+j}, \quad T_4(j) = \sum_{i=0}^{b-2} d_{i+2b+c} x^{i+j}, \quad T_5(j) = \sum_{i=0}^{b-2} d_{i+3b+2c} x^{i+j}.$$

Again, a careful analysis of Equation (13) shows that T_1 , T_2 and T_3 are used more than once. Thus, we can rewrite Equation (13) for D_{red} as

$$D_{red} = B_0 + T_1(0) + T_1(b) + T_1(b+c) + T_2(b-1) + T_2(b+c-1) + T_2(2b-1) + T_2(2b+c-1) + T_3(0) + T_3(c) + T_3(2b) + T_4(c) + T_5(2c).$$
(14)

Figure 3 depicts these operations. Using Equation (14) and Figure 3, we have Algorithm 2. For code efficiency reasons, in contrast to Algorithm 1, in Algorithm 2 we separate the last line before the equality in Figure 3. The additions of this last line are done in lines 17 to 20 of Algorithm 2. As a consequence, lines 3 to 16 of Algorithm 2 include only the additions per column from 0 to 2b + c - 1 of the first three lines in Figure 3.

Fig. 3 Representation of the reduction by $f(x) = x^{2b+c} + x^{b+c} + x^{b} + x^{c} + 1, c > 1.$

The time delay is $3T_X$; after removal of redundancies and not counting repeated terms, we obtain that the number N_{\oplus} of XORs is

$$N_{\oplus} = 6b + 3c - 2 = 3m - 2.$$

Algorithm 2 Computing D_{red} for $f(x) = x^{2b+c} + x^{b+c} + x^b + x^c + 1$. **input** : $D_0 = d[2b + c - 1 \dots 0]$ bits vector of length 2b + coutput: D_{red} for $i \leftarrow 0$ to b - 2 do $\mid T_1[i] \leftarrow d[i + 2b + 1] \oplus d[i + 3b + 2c];$ \triangleright Definition of T_1 end for $i \leftarrow 0$ to c - 1 do $| \quad D_{red}[i] \leftarrow d[i] \oplus T_1[i];$ \triangleright Columns 0 to c-1 of the first three lines of Fig. 3 end for $i \leftarrow c$ to b - 2 do $| \quad D_{red}[i] \leftarrow d[i] \oplus T_1[i] \oplus d[i+2b]$ end $D_{red}[b-1] \leftarrow d[b-1] \oplus d[3b+c-1] \oplus d[3b-1]$ for $i \leftarrow b$ to b+c-2 do $| D_{red}[i] \leftarrow d[i] \oplus T_1[i-b] \oplus d[i+2b]$ \mathbf{end} $D_{red}[b+c-1] \leftarrow d[b+c-1] \oplus d[3b+c-1] \oplus T_1[c-1]$ for $i \leftarrow b+c$ to 2b-2 do $| \overset{\circ}{D}_{red}[i] \leftarrow d[i] \oplus T_1[i-b] \oplus T_1[i-b-c]$ end $D_{red}[2b-1] \leftarrow d[2b-1] \oplus d[3b+c-1] \oplus T_1[b-c-1]$ for $i \leftarrow 2b$ to 2b+c-2 do $| \quad \dot{D}_{red}[i] \leftarrow d[i] \oplus T_1[i-b-c] \oplus d[i+b+c]$ end $D_{red}[2b+c-1] \leftarrow d[2b+c-1] \oplus d[3b+c-1] \oplus d[3b-1] \ \, \text{for} \ i \leftarrow 0 \ \text{to} \ c-1 \ \text{do}$ \triangleright Columns 0 to c-1 of the 4th line of Fig. 3 $| D_{red}[i] \leftarrow D_{red}[i] \oplus d[i+3b+c];$ end for $i \leftarrow c$ to b + 2c - 2 do \triangleright Cols c to b + 2c - 2 of the 4^{th} line of Fig. 3 $| \quad D_{red}[i] \leftarrow D_{red}[i] \oplus d[i+3b];$ \mathbf{end} return D_{red}

Theorem 2 Algorithm 2 correctly gives the reduction of a polynomial of degree at most 2m - 2 over \mathbb{F}_2 by $f(x) = x^{2b+c} + x^{b+c} + x^b + x^c + 1$ involving $N_{\oplus} = 3m - 2 = 6b + 3c - 2$ number of XORs operations and a time delay of $3T_X$.

5.1 Almost equally spaced pentanomials: the special case b = 2c

Consider the special case b = 2c. In this case we obtain the almost equally spaced polynomials $f(x) = x^{5c} + x^{3c} + x^{2c} + x^c + 1$. Our previous analysis when applied to these polynomials entails

$$D_{red} = \sum_{i=0}^{5c-1} d_i x^i + \sum_{i=3c}^{5c-1} d_{i+2c} x^i + \sum_{i=c}^{3c-1} d_{i+4c} x^i + \sum_{i=c}^{4c-2} d_{i+6c} x^i + \sum_{i=2c}^{5c-1} d_{i+3c} x^i + \sum_{i=2c}^{2c-1} d_{i+5c} x^i + \sum_{i=3c}^{5c-2} d_{i+5c} x^i + \sum_{i=2c}^{4c-2} d_{i+6c} x^i + \sum_{i=0}^{c-1} d_{i+7c} x^i + \sum_{i=0}^{2c-2} d_{i+8c} x^i.$$
(15)

Let

$$T_{1}(j) = \sum_{i=c}^{2c-2} (d_{i+5c} + d_{i+4c}) x^{i+j}, \quad T_{2}(j) = \sum_{i=c}^{2c-2} (d_{i+8c} + d_{i+6c}) x^{i+j},$$

$$T_{3}(j) = d_{8c-1} x^{j}, \quad T_{4}(j) = \sum_{i=0}^{c-1} d_{i+8c} x^{i+j}, \quad T_{5}(j) = \sum_{i=0}^{c-1} d_{i+5c} x^{i+j},$$

$$T_{6}(j) = \sum_{i=0}^{c-2} d_{i+7c} x^{i+j}, \quad T_{7}(j) = \sum_{i=4c}^{5c-1} d_{i+2c} x^{i+j}.$$

In the computation of D_{red} , T_1 , T_2 , T_3 and T_4 are used more than once. Figure 4 shows, graphically, these operations. After removal of redundancies, the number N_{\oplus} of XORs is $N_{\oplus} = 12c - 1 = \frac{12}{5}m - 1$. This number of XORs is close to 2.4m providing a saving of about 20% with respect to the other pentanomials in our family. Irreducible pentanomials of this form are rare but they do exist, for example, for degrees 5, 155 and 4805. We observe that the extension 155 is used in [1].

Fig. 4 Representation of the reduction by the almost equally spaced pentanomials (the special case b = 2c).

Using Equation (15) and Figure 4, we naturally have Algorithm 3.

6 Multiplier in $\mathbb{F}_2[x]$, complexity analysis and comparison

So far, we have focused on the second step of the algorithm, that is, on the reduction part. For the first step, the multiplication part, we simply use a standard Karatsuba recursive algorithm implementation; see Algorithm 4.

Recursivity in hardware can be an issue; see [24] and [13], for example, for efficient hardware implementations of polynomial multiplication in finite fields using Karatsuba's type algorithms.

As can be seen our multiplier consists of two steps. The first is the multiplication itself using Karatsuba arithmetic or, if necessary, the school book

Algorithm 3 Computing D_{red} for $f(x) = x^{5c} + x^{3c}$	$+x^{2c} + x^c + 1.$
input : $D_0 = d[5c - 10]$ bits vector of length $5c$	
output: D_{red}	
for $i \leftarrow 0$ to $c - 2$ do	
$ T_1[i] \leftarrow d[i+6c] \oplus d[i+5c]$	\triangleright Definition of T_1
end	
for $i \leftarrow 0$ to $c - 2$ do	
$ T_2[i] \leftarrow d[i+9c] \oplus d[i+7c]$	\triangleright Definition of T_2
end	
for $i \leftarrow 0$ to $c - 2$ do	
$ D_{red}[i] \leftarrow d[i] \oplus d[i+8c] \oplus d[i+5c] \oplus d[i+7c]$	
end	
$D_{red}[c-1] \leftarrow d[c-1] \oplus d[9c-1] \oplus d[6c-1]$	
for $i \leftarrow c$ to $2c - 2$ do	
$ D_{red}[i] \leftarrow d[i] \oplus T_1[i-c] \oplus T_2[i-c]$	
end	
$D_{red}[2c-1] \leftarrow d[2c-1] \oplus d[8c-1] \oplus T_1[c-1]$	
for $i \leftarrow 2c$ to $3c - 1$ do	
$D_{red}[i] \leftarrow d[i] \oplus T_1[i-2c]$	
end	
for $i \leftarrow 3c$ to $4c - 1$ do	
$D_{red}[i] \leftarrow d[i] \oplus T_1[i-3c] \oplus d[i+5c]$	
end	
for $i \leftarrow 4c$ to $5c - 2$ do	
$ D_{red}[i] \leftarrow d[i] \oplus T_2[i-4c] \oplus d[i+2c]$	
end	
$D_{red}[5c-1] \leftarrow d[5c-1] \oplus d[8c-1] \oplus d[7c-1]$	
return D_{red}	

Algorithm 4 Karatsuba Algorithm for \mathbb{F}_{2^m}

input : $A(x) = \sum_{i=0}^{m-1} a_i x^i$ and $B(x) = \sum_{i=0}^{m-1} b_i x^i$ **output:** $C(x) = A(x)B(x) = \sum_{i=0}^{2m-2} c_i x^i$ Function Karatsuba(A, B): $m \leftarrow maxDegree(A, B)$ \triangleright compute the larger degree between polynomials A and B if m = 0 then | return (A & B) \triangleright & is a bitwise AND operator end m2 = floor(m/2) \triangleright split A and B $\operatorname{high}_a, \operatorname{low}_a \leftarrow split(A, m2)$ $\operatorname{high}_b, \operatorname{low}_b \leftarrow split(B, m2)$ $d_0 \leftarrow \text{Karatsuba}(\text{low}_a, \text{low}_b)$ \triangleright recursive call of Karatsuba $d_1 \leftarrow \text{Karatsuba}((\text{low}_a \oplus \text{high}_a), (\text{low}_b \oplus \text{high}_b))$ \triangleright recursive call of Karatsuba $\begin{array}{l} d_2 \leftarrow \operatorname{Karatsuba}(\operatorname{high}_a, \operatorname{high}_b) \\ c \leftarrow d_2 x^m \oplus (d_1 \oplus d_2 \oplus d_0) x^{m2} \oplus d_0 \end{array}$ \triangleright recursive call of Karatsuba | return cEnd Function

method, and the second is the reduction described in the previous sections. The choice of the first step method will basically depend on whether the application requirement is to minimize area (Karatsuba), i.e., the number of ANDs and XORs gates, or to minimize the arithmetic delay (School book); see [4] for several variants of both the schoolbook and Karatsuba algorithms. Minimizing the area is interesting in applications that need to save power at the expense of a longer runtime.

14

Fig. 5 Karatsuba constant for degrees up to 1024.

We chose the Karatsuba multiplier since our goal is to minimize the area, i.e. to minimize the number of gates AND and XOR. A summary of our results compared with related works is given in Tables 1 and 2. Table 1 presents comparison costs among multipliers that perform two steps for the multiplication, that is, they execute a multiplication followed by a reduction. The table shows the multiplication algorithm used in each case. Table 2 gives a comparison among the state-of-the-art bit multipliers in the literature. The main target for us is [18] since it presents the smallest area in the literature. However, Type 3 polynomials are also considered; this is another practically relevant family of polynomials. With respect to Karatsuba variants, Table 3 of survey [4] shows asymptotic complexities of several Karatsuba multiplication algorithms without reduction.

For each entry in Table 1, we give the multiplication algorithm and the amount of gates AND, XOR as well its delay. We point that for [19] and [25], their multipliers are general for any pentanomial with $a \leq \frac{m}{2}$ instead of for a specific family such as [20]. In the case of our family, in addition to the number of XORs for the reduction, we include the cost for the multiplication due to the recursive Karatsuba implementation multiplier, that is, the XOR count is formed by the sum of the XORs of the Karatsuba multiplier and the ones of the reduction part. In our implementation, the constant of Karatsuba is strictly less than 6; see Figure 5 for degrees up to 1024. As can be seen, for degrees powers of 2 minus 1 $(2^k - 1, k \geq 1)$, the constant achieves local minimum. For the number of AND gates, we provide an interval. The actual number of AND gates depends on the value of m; it only reaches a maximum when $m = 2^k - 1$, for $k \geq 1$.

In Table 2, we provide the number of XORs and ANDs gates for Type 1 and Type 2 families in [18] and [20], Type 3 in [19] and our family of pentanomials. We point out that in [18] the authors compute multiplication and reduction as a unique block with a divide-and-conquer approach using squaring. In contrast,

$x^m + x^a + x^b + x^c + 1$ [25.20] Multiplication algorithm: Schoolbook				
Costs	$\begin{array}{c} x + x + x + x + \\ + 4 \text{ ND} \end{array}$	#XOB	Delay	
Deduction	#HILD	#AOR 4(m 1)	27	
Meduction	0	4(m-1)	3IX	
Multiplication	2	$(m-1)^{-2}$	$I_A + (\log_2 m)I_X$	
Turne	m^2	$m^2 + 2m - 3$	$I_A + (3 + \log_2 m) I_X$	
Costs	-x + x + x + x + x + x + x + x + x + x +	¹ [20], Multiplication algorithm: Ma	Delew	
Costs	#AND	#AOR	Delay	
Reduction	0	3m + 2n - 1	$3T_X$	
Multiplication	m ²	$m^2 - 2m + 1$	$T_A + (\log_2 m)T_X$	
Multiplier	<u>m²</u>	$m^2 + m + 2n$	$T_A + (3 + \log_2 m)T_X$	
Type I	$x^{m} + x^{m+1} + x^{n} + x + x^{n+1} + x^{n} + x^{n$	1 [19], Multiplication algorithm: Mas	strovito-like Multiplier.	
Costs	#AND	#XOR	Delay	
Reduction	0	3m - 2	$3T_X$	
Multiplication	m^2	$m^2 - 2m + 1$	$T_A + (\lceil \log_2 (m-1) \rceil) T_X$	
Multiplier	m^{2}	$m^2 + m^{\dagger}$	$T_A + (3 + \lceil \log_2 (m-1) \rceil) T_X$	
Т	ype $II - x^m + x^{n+2} + x^n$	$^{+1} + x^n + 1$ [20], Multiplication algorithm	rithm: Dual basis.	
Costs	#AND	#XOR	Delay	
Reduction	0	3m - [(m-2)/2] + 3n - 4	$3T_X$	
Multiplication	m^2	$m^2 - m$	$T_A + (\lceil \log_2 m \rceil) T_X$	
Multiplier	m^{2}	$m^{2} + 2m - \lceil (m-2)/2 \rceil + 3n - 4$	$T_A + (3 + \lceil \log_2 m \rceil)T_X$	
x^m	$+x^{a} + x^{b} + x^{c} + 1, c > 1$	19], Multiplication algorithm: Mastr	ovito-like Multiplier.	
Costs	#AND	#XOR	Delay	
Reduction	0	4m - 4	$4T_X$	
Multiplication	m^2	$m^2 - 2m + 1$	$T_A + (\lceil \log_2{(m-1)} \rceil)T_X$	
Multiplier	m^{2}	$m^2 + 2m - 3$	$T_A + (4 + \lceil \log_2{(m-1)} \rceil)T_X$	
	Ours - $x^{2b+c} + x^{b+c} + $	$x^{b} + x^{c} + 1$, Multiplication algorithm	n: Karatsuba.	
Costs	#AND	#XOR	Delay	
Reduction	0	3m - 2	$3T_X$	
Multiplication	$(3^{\lfloor \log_2 m \rfloor}, 3^{\lfloor \log_2 m \rfloor + 1}]$	$< 6m^{\log_2 3}$	$T_A + 3 \lceil \log_2{(m-1)} \rceil T_X$	
Multiplier	$(3^{\lfloor \log_2 m \rfloor}, 3^{\lfloor \log_2 m \rfloor + 1}]$	$< 6m^{\log_2 3} + 3m - 2$	$T_A + 3(\lceil \log_2{(m-1)} \rceil + 1)T_X$	
Ours - $x^{5c} + x^{3c} + x^{2c} + x^c + 1$, Multiplication algorithm: Karatsuba.				
Costs	#AND	#XOR	Delay	
Reduction	0	(12/5)m - 1	$3T_X$	
Multiplication	$(3^{\lfloor \log_2 m \rfloor}, 3^{\lfloor \log_2 m \rfloor + 1})$	$< 6m^{\log_2 3}$	$T_A + 3 \lceil \log_2{(m-1)} \rceil T_X$	
Multiplier	$(3^{\lfloor \log_2 m \rfloor}, 3^{\lfloor \log_2 m \rfloor + 1})$	$< 6m^{\log_2 3} + (12/5)m - 1$	$T_A + 3(\lceil \log_2{(m-1)} \rceil + 1)T_X$	
	· · · · · · · · · · · · · · · · · · ·			

 ${\bf Table \ 1} \ \ {\rm Two \ steps \ multipliers \ cost \ comparison \ for \ different \ family \ of \ pentanomials.}$

[†] There is an additional XOR to reduce the time delay; see [19, page 955].

we separate these two parts and use Karatsuba for the multiplier followed by our reduction algorithm.

Type		# XOR	# AND	Delay
Type 1	$x^m + x^{b+1} + x^b + x + 1$	$1 < b \le \frac{m}{2} - 1$		
[18]	b is odd	$\frac{3m^2 + 24m + 8b + 21}{4}$	$\frac{3m^2 + 2m - 1}{4}$	$T_A + (3 + \lceil \log_2(m+1) \rceil) T_x$
[18]	b is even	$\frac{3m^2 + 24m + 8b + 17}{4}$	$\frac{3m^2 + 2m - 1}{4}$	$T_A + (3 + \lceil \log_2(m+1) \rceil) T_x$
Type 2	$x^m + x^{c+2} + x^{c+1} + x^c$	+1		
[18]	c is odd, $c \leq \frac{3}{8}(m-7)$	$\frac{3m^2 + 24m + 14c + 35}{4}$	$\frac{3m^2 + 2m - 1}{4}$	$T_A + (3 + \lceil \log(m+1) \rceil)T_x$
[18]	c is even, $c \leq \frac{m}{2} - 1$	$\frac{3m^2 + 24m^4 + 14c + 45}{4}$	$\frac{3m^2 + 2m - 1}{4}$	$T_A + (3 + \lceil \log(m+1) \rceil)T_x$
[20]	c > 1	$m^2 + 2m - [(m-2)/2] + 3n - 4$	m^2	$T_A + (3 + \lceil \log(m - 1) \rceil)T_x$
[20]	c = 1	$m^2 + m - 2$	m^2	$T_A + (3 + \lceil \log_2(m-1) \rceil)T_x$
Type 3	$x^m + x^{m-c} + x^{m-2c} + $	$x^{m-3c} + 1$		
[19]	$\frac{m-1}{4} \le c \le \frac{m-1}{3}$	$m^2 + m - c - 1$	m^2	$T_A + (3 + \lceil \log_2(m - 1) \rceil)T_x$
[19]	$\frac{m-1}{5} \le c < \frac{m-1}{4}$	$m^2 + 2m - 5c - 2$	m^2	$T_A + (3 + \lceil \log_2(m-1) \rceil)T_x$
[19]	$\frac{m^{-1}}{8} \le c < \frac{m^{-1}}{5}$	$m^2 + m - 2$	m^2	$T_A + (3 + \lceil \log_2(m-1) \rceil + 1)T_x$
Ours	$x^{2b+c} + x^{b+c} + x^{b} + x^{c}$	+1		
Ours	$c \ge 1, b \ne 2c$	$< 6m^{\log_2 3} + 3m - 2$	$(3^{\lfloor \log_2 m \rfloor}, 3^{\lfloor \log_2 m \rfloor + 1}]$	$T_A + 3(\lceil \log_2{(m-1)} \rceil)T_x$
Ours	$c \ge 1, b = 2c$	$< 6m^{\log_2 3} + \frac{12}{5}m - 1$	$(3^{\lfloor \log_2 m \rfloor}, 3^{\lfloor \log_2 m \rfloor + 1}]$	$T_A + 3(\lceil \log_2{(m-1)} \rceil + 1)T_x$

 ${\bf Table \ 2} \ {\rm Space \ and \ time \ complexities \ of \ state-of-the-art \ bit \ multipliers.}$

The costs for using our pentanomials for degrees proposed by NIST can be found in Table 3. The amount of XOR and AND gates are the exact value obtained from Table 1. The delay costs can be separated in T_A and T_X , delay for AND gates and XOR gates, respectively. The delay for AND gates is due to only 1 AND gate at the lowest level of the Karatsuba recursion. The delay for the XOR gates in the Karatsuba multiplier is $3\lceil \log_2(m-1)\rceil$ since there are 3 delay XORs per level of the Karatsuba recursion. For the reduction part, we only have 3 delay XORs. Hence, the total number of XOR delays is $3\lceil \log_2(m-1)\rceil + 3$.

Table 4 shows the number of irreducible pentanomials of degrees 163, 283 and 571 for the families considered since those are NIST degrees where pentanomials have been recommended [16]. Analyzing the table, we have that family Type 1 has the most irreducible pentanomials, but few of them have degrees recommended by NIST [16]. The first family of Type 2, proposed in [18], has restrictions in the range of c; this family presents the highest number of representatives with NIST degrees of interest. The second family of Type 2, proposed in [20], has no restrictions for c; this family presents the largest number of irreducible polynomials. Type 3 is the special case from [19]. Our family for $b \neq 2c$ has less irreducible polynomials and it has no irreducible polynomials with degrees 163, 283 and 571. In the other side, when $b \neq 2c$ our family has 730 polynomials of degrees up to 1024 and it presents 5 pentanomials of NIST degrees.

In the following we comment on the density of irreducible pentanomials in our family. Table 5 lists all irreducible pentanomials of our family for degrees up to 1024; N_{\oplus} is the number of XORs required for the reduction. We leave as an open problem to mathematically characterize under which conditions our pentanomials are irreducible.

Table 3 Costs for fixed degree pentanomials proposed by NIST.

Dogroo	XORs			ANDe	Dolar
Degree	Karatsuba	Reduction	Total	ANDS	Delay
163	17,944	487	18,431	4,419	$T_A + 27T_X$
283	43,162	847	44,009	10,305	$T_A + 30T_X$
571	132,280	1,711	133,991	31,203	$T_A + 33T_X$

Table 4 Number of irreducible pentanomials for NIST degrees.

Type	#Irred.	163	283	571
Type 1 [18]	2025	1	2	0
Type 2 [18]	1676	3	2	2
Type 2 [20]	3430	6	4	4
Type 3 [19]	539	0	0	0
Ours, $b \neq 2c$	728	2	2	1
Ours, $b = 2c$	2	0	0	0

2.1.11	[3, 2, 22]	[4, 1, 25]	5.1.31	5.2.34
6'1'97	Ĕ' <u>5' 57</u>	7 9 46	0'5'67	0'7'67
0, 1, 57	0, 0, 0, 0	1, 2, 40	9, 5, 67	0,1,01
9.6.70	12.1.73	11.3.73	10.7.79	13.3.85
10 0 85	15' 1' 00	15, 6, 106	14'0'100	10' 2' 110
10, 9, 65	13, 4, 66	10, 0, 100	14, 9, 109	19, 2, 110
17.6.118	15.10.118	17.11.133	17.12.136	21.5.139
$\frac{1}{20}, \frac{7}{7}, \frac{1}{120}$	16, 15, 120	51' C 1 40	99'E 1E1	22, 7, 151
20, 7, 159	10, 10, 109	21, 0, 142	25, 5, 151	22, 7, 151
25.2.154	21.11.157	21.13.163	27.5.175	23.13.175
20, 2, 101		221, 10, 100	05, 10, 104	
29, 2, 178	25, 10, 178	23, 14, 178	25, 12, 184	28, 7, 187
3211103	28 0 103	31 / 106	23 20 106	30 7 100
32, 1, 130	20, 3, 190	31, 1, 1, 1, 0	20, 20, 100	07, 05, 000
28, 15, 211	27, 18, 214	35, 3, 217	31, 11, 217	27, 22, 226
20, 20, 232	35 10 238	31 10 2/1	38 7 947	31 91 947
41, 20, 202	100, 10, 200	01, 10, 211 07, 10, 070	25, 10, 25	10, 10, 000
41, 3, 253	38, 9, 253	37, 12, 250	35, 19, 265	39, 12, 268
34 95 977	45 1 280	33, 30, 383	17 2 286	40 17 280
54,25,211	40, 4, 200	10, 29, 200	40, 17, 200	40, 17, 200
38, 23, 295	48, 7, 307	40,23,307	46, 15, 319	42, 23, 319
53 9 399	15 18 322	41 26 322	45 10 325	28' 22' 225
00, 2, 022	40, 10, 022	41,20,022	40, 13, 520	100, 00, 020
41,28,328	[52, 7, 331]	41, 29, 331	47, 20, 340	45, 26, 346
43 30 346	40 10 340	41 35 340	45 28 252	57 6 358
45, 50, 540	43, 13, 343	41, 55, 542	40, 20, 302	121,0,000
51.18.358	45.30.358	46.31.367	55.14.370	152.25.385
63 1 288	62 7 201	45 44 400	51 34 406	50 10 400
05, 4, 500	02, 1, 591	40,44,400	31, 34, 400	59, 19, 409
50, 41, 421	63, 18, 430	68, 9, 433	63, 19, 433	[59, 27, 433]
56 22 422	67 19 436	60 11 445	60 21 451	75 9 454
20, 00, 400	101, 12, 100	00, 11, 110	20, 31, 101	10, 4, 104
56, 41, 457	103, 29, 463	[02, 31, 371]	59, 37, 463	[75, 6, 466]
71 14 466	65' 26' 466	61 36 472	77 5 475	74 15 487
11, 11, 100	100, 20, 100	25, 34, 105	79, 10, 100	71, 20, 201
03, 37, 487	107, 30, 490	05, 34, 490	73, 19, 493	[71, 30, 514]
87 9 596	87 6 538	75 30 538	60 12 528	89 17 541
51, 4, 040	100,000	10,00,000	22, 12, 130	02, 11, 21
71, 46, 562	[70, 49, 565]	81, 28, 568	77, 36, 568	[85, 21, 571]
65 61 571	83 28 580	95 10 598	85'30'598	75 50 508
05, 01, 011	00, 20, 000	00, 10, 000	01, 49, 619	70, 40, 610
95, 12, 604	98,9,013	80, 33, 013	81,43,013	18,49,013
77 51 613	103 3 625	91 28 628	87 37 631	78 55 631
101 11 697	74 65 697	104 7 642	91 E4 C4C	70, 60, 655
101, 11, 037	14,05,037	104, 7, 043	81, 54, 640	19,00,052
79.61.655	101.18.658	85.53.667	112.1.673	91.44.676
00 47 670	70 60 670	91 66 699	105 10 695	00' 10' 695
90, 47, 079	19,09,019	01,00,002	100, 19, 000	90, 49, 000
95.43.697	79.75.697	102.31.703	99.37.703	91.53.703
07' 12' 706	01'10'700	104' 31' 715	110 2'718	105 20 718
31, 42, 100	34,43,103	104, 51, 710	119, 2, 110	100, 50, 710
110, 23, 727	103, 37, 727	105, 34, 730	99,46,730	88,73,745
99 52 748	118 15 751	103 45 751	95 61 751	115 23 757
105 49 757		105, 40, 701	00,01,101	107, 20, 101
105, 43, 757	93,67,757	125, 4, 760	93,68,760	127, 2, 766
87.83.769	123.14.778	130.1.781	97.67.781	128.7.787
100 47 707	102' 50' 702	100,1,705	110 20 802	100 70, 805
100,47,707	105, 59, 795	92, 81, 795	119, 50, 802	99, 10, 802
117.36.808	120.31.811	105.61.811	119.34.814	106.63.823
121 14 296	199 19 095	140 1 941	05 01 9/1	199 97 947
131, 14, 020	133, 13, 639	140, 1, 041	90,91,041	140,01,041
111.61.847	115.54.850	118.49.853	113.59.853	141.6.862
107 76 868	120 21 871	195 49 874	125 43 877	149 15 805
107, 70, 808	130, 31, 071	120, 42, 014	120,40,011	142, 10, 090
139, 22, 898	125, 50, 898	115, 70, 898	131, 43, 913	154, 1, 925
142 25 925	155 3 937	107 102 946	154 9 949	114 89 949
100,00,010	145, 94, 070	107, 102, 010	101, 0, 010	100, 70, 070
109, 99, 949	140, 34, 970	137, 50, 970	135, 54, 970	123, 18, 910
146 33 973	145 36 976	133 60 976	121 85 979	161 6 982
149,44,000	102 04 000	100, 74, 004	152,00,1,002	150 05 1000
145, 44, 900	125, 64, 966	129, 14, 994	155, 29, 1.005	150, 25, 1009
115, 107, 1.009	118.105.1.021	169.4.1.024	145.52.1.024	137.68.1024
125 92 1 024	139 67 1 032	135 78 1 049	129'90'1075	129 91 1045
120, 32, 1.024	155,07,1.055	150, 10, 1.042	123, 30, 1.042	123, 31, 1040
135, 84, 1.060	1174, 7, 1.063	[126, 103, 1.063]	157, 42, 1.066	101, 35, 1069
154 49 1 069	133 93 1 075	171 18 1 078	153 54 1 078	135 90 1078
170 5 1 007	120, 102 1 007	100, 07, 1,000	100, 41, 1,002	140,01,1002
119,0,1.001	130, 103, 1.087	109,27,1.093	102, 41, 1.093	142,01,1093
133,99.1.093	122, 121, 1.093	124, 121, 1.105	130, 113, 1.117	173, 29, 1123
167 43 1 120	144'89 1 120	189 4 1 144	177 28 1 144	161'60'1177
107, 40, 1.129	144,05,1.125	100, 4, 1, 144	117,20,1.144	101,00,1144
103, 62, 1.162	[133, 123, 1.165]	140, 111, 1.171	147, 101, 1.183	193, 10, 1186
185 27 1 189	189 20 1 192	197.6.1 198	175 50 1 198	160.81 1201
125 120 1 004	170,62,1.007	166 71 1 207	140 100 1 010	152 100 1000
130, 132, 1.204	110,05,1.207	100, 11, 1.201	149, 109, 1.219	103, 102, 1222
191.28.1.228	189.37.1.243	161.93.1.243	159.100.1.252	179.61.1255
155 100 1 255	203'14'1 258	161'98'1 958	198' 25 1 261	170' 81' 1961
150,103,1.200	140, 190, 1, 200	101, 30, 1.200	100, 20, 1.201	100,01,1201
150, 121, 1.261	[149, 132, 1.288]	[205, 21, 1.291]	189, 54, 1.294	103, 109, 1303
151 134 1 306	173 93 1 315	148 143 1 315	209 22 1 318	187 66 1318
106 40 1 201	100, 69, 1, 907	109 77 1 907	104 27 1 222	170 105 104
190, 49, 1.321	190, 03, 1.327	103, 11, 1.321	194, 57, 1.333	11(2, 105, 1345)
223.4.1.348	173.108.1.360	225.6.1.366	204.49.1.369	155.149.1375
160 197 1 901	161 140 1 204	204 55 1 207	102 77 1 207	100 60 1200
102, 137, 1.381	101, 140, 1.384	204, 20, 1.387	190, 11, 1.381	133,03,1333
225, 18.1.402	213, 42, 1.402	195,78.1.402	197,76.1.408	183,108.1420
234 7 1 422	203'60'1 132	200 50 1 420	161 155 1 490	235 10 1428
204,1,1.420	200,00,1.420	203, 03, 1.429	101, 100, 1.429	200, 10, 1400
235, 12, 1.444	179, 124, 1.444	218, 49, 1.453	169, 147, 1.453	201, 90, 1474
225 44 1 480	173 148 1 480	220 63 1 507	248.9.1.513	247 12 1516
254 1 1 505	212 00 1 540	017 09 1 EAD	201 115 1 540	1004 71 1EEE
$_{204}, 1, 1.020$	[213, 90, 1.040]	211,00,1.049	201, 110, 1.049	[424, (1, 1000)]
238, 47, 1.567	261, 6, 1.582	183, 163, 1.585	227, 76, 1.588	218, 95, 1591
178 175 1 501	265 1 1 600	241 53 1 602	106 1/3 1 603	267 2 1606
110, 110, 1.091	200, 4, 1.000	241,00,1.000	100, 140, 1.000	201, 2, 1000
269, 2, 1.618	265, 10, 1.618	261, 18, 1.618	[241, 58, 1.618]	225, 90, 1618
221.98.1.618	207.126.1.618	205, 130, 1.618	246, 49, 1.621	272.1.1633
106 159 1 699	102 161 1 622	202 140 1 626	254 20 1 620	104 161 1645
130, 100, 1.000	1132, 101, 1.033	[200, 140, 1.030]	204,00,1.009	1134, 101, 1040

Table 5: Our family of irreducible pentanomials and their number of XORs $(b, c, N_{\oplus}), 2b \neq c$.

257, 37, 1.651	212, 127, 1.651	239, 77, 1.663	255, 46, 1.666	227, 102, 1666
245, 67, 1.669	234, 89, 1.669	197, 163, 1.669	209, 140, 1.672	244, 71, 1675
247,08,1.084 102 180 1 606	190, 172, 1.084 280, 0, 1, 705	190, 173, 1.087 215, 120, 1, 705	213, 138, 1.090	274, 17, 1093 218, 125, 1711
193, 100, 1.090 230, 04, 1, 714	200, 9, 1.705 210, 134, 1, 714	210, 109, 1.700 241, 01, 1, 717	243, 64, 1.700 216 145 1 720	210, 130, 1711 225, 130, 1738
223, 134, 1.738	215, 154, 1.714 215, 150, 1.738	249, 84, 1,744	256, 71, 1.747	208, 167, 1747
211, 163, 1.753	231, 124, 1.756	255, 77, 1,759	199, 189, 1.759	230, 129, 1765
213, 163, 1.765	249, 92, 1.768	295, 2, 1.774	265, 66, 1.786	255, 86, 1786
286, 25, 1.789	285, 30, 1.798	255, 90, 1.798	225, 150, 1.798	267, 67, 1801
263, 75, 1.801	211, 181, 1.807	293, 18, 1.810	285, 36, 1.816	247, 116, 1828
259, 94, 1.834	266, 81, 1.837	253, 107, 1.837	221, 171, 1.837	285, 44, 1840
300, 17, 1.049 244, 137, 1.873	202, 110, 1.049 207, 170, 1.876	279,01,1.000	200, 91, 1.001 252, 127, 1.801	249, 124, 1004 311, 13, 1003
271 93 1 903	266, 103, 1, 903	259 117 1 90	252, 127, 1.091 265, 109, 1, 915	255 131 1921
252, 137, 1,921	215, 212, 1.924	298, 47, 1, 927	231, 181, 1.927	305, 36, 1936
245, 157, 1.939	323, 2, 1.942	243, 162, 1.942	2 259, 131, 1.945	223, 203, 1945
279, 92, 1.948	238, 175, 1.951	274, 105, 1.957	325, 6, 1.966	292, 73, 1969
322, 15, 1.975	319, 22, 1.978	303, 54, 1.978	253, 154, 1.978	310, 47, 1999
329, 14, 2.014	314, 47, 2.023	[323, 30, 2.026]	257, 162, 2.026	314, 49, 2029
323, 34, 2.038	289, 102, 2.038 252, 170, 2.052	255, 170, 2.038 227, 211, 2.059	5 307, 68, 2.044	243, 198, 2050
329, 27, 2.000 308, 73, 2.065	203, 179, 2.005	237,211,2.03	230, 175, 2.059 287, 116, 2.068	[339, 11, 2000] [243, 205, 2071]
266, 161, 2.003	305, 85, 2.005 305, 91, 2, 101	32063200, 20000, 20000, 2000, 20000, 20000, 20000, 200000, 200000000	301, 101, 2.000	343 19 2113
243, 220, 2,116	293, 122, 2,122	349, 11, 2,125	285, 139, 2,125	253, 203, 2125
266, 183, 2.143	254, 207, 2.143	307, 102, 2.146	325, 69, 2.155	357, 6, 2158
315, 90, 2.158	349, 26, 2.170	329, 67, 2.173	340, 49, 2.185	347, 37, 2191
341, 50, 2.194	297, 138, 2.194	285, 164, 2.200	283, 173, 2.215	270, 199, 2215
349, 42, 2.218	301, 139, 2.221	301, 141, 2.22	261, 221, 2.227	365, 18, 2242
297, 100, 2.240 287, 182, 2.266	300, 21, 2.201 374, 0, 2, 260	200, 217, 2.207 361, 36, 2, 272	371, 10, 2.200 328, 102, 2.275	371, 14, 2200 375, 10, 2278
260, 241, 2.281	279, 204, 2, 284	313, 139, 2, 293	257, 251, 2, 293	297, 173, 2299
264, 239, 2.299	381, 6, 2.302	304, 161, 2.305	260, 249, 2.305	355, 62, 2314
321, 130, 2.314	372, 31, 2.323	341, 93, 2.323	293, 189, 2.323	364, 49, 2329
287, 203, 2.329	351, 76, 2.332	[377, 26, 2.338]	369, 42, 2.338	[325, 130, 2338]
299, 182, 2.338 361, 66, 2, 362	378, 20, 2.341 303, 182, 2.362	321, 140, 2.344 278 223 236 266 278 236 266	1 347, 91, 2.303 1 305 187 2 380	332, 121, 2333 302, 15, 2305
311, 180, 2.404	386, 31, 2.407	271, 261, 2.407	395.14.2410	307, 190, 2410
297, 210, 2.410	320, 169, 2.425	351, 108, 2.428	3389, 35, 2.437	361, 93, 2443
357, 102, 2.446	404, 9, 2.449	343, 133, 2.455	287, 245, 2.455	403, 14, 2458
335, 150, 2.458	[325, 170, 2.458]	293, 234, 2.458	3397, 27, 2.461	286, 255, 2479
393, 42, 2.482 281 76 2 512	300, 101, 2.491 207, 45, 2, 515	395, 44, 2.500	411, 14, 2.000	283,270,2500
299 254 2554	397, 40, 2.010 321, 211, 2, 557	236 185 2 560	1321, 203, 2.333 1320, 217, 2.569	407, 38, 2554
403, 54, 2.578	355, 150, 2.578	339, 182, 2.578	322, 217, 2.581	423, 18, 2590
403, 59, 2.593	389,91,2.605	358, 153, 2.605	321, 228, 2.608	320, 231, 2611
379, 115, 2.617	425, 27, 2.629	389, 99, 2.629	353, 173, 2.635	435, 10, 2638
400, 81, 2.641	396, 89, 2.641	[351, 181, 2.64]	326, 231, 2.647	295, 294, 2650
422, 41, 2.005 311, 270, 2.674	$401 \ 91 \ 2 \ 677$	303, 104, 2.000 325, 243, 2.675	2373 148 2 680	303, 284, 2008 443, 14, 2698
417.66.2.698	413, 74, 2.698	375, 150, 2.698	345, 210, 2.698	301, 298, 2698
362, 177, 2.701	381, 140, 2.704	364, 175, 2.707	443, 19, 2.713	367, 173, 2719
405, 98, 2.722	448, 17, 2.737	375, 163, 2.737	407, 102, 2.746	405, 106, 2746
377, 162, 2.746	427, 67, 2.761	[316, 289, 2.76]	439, 45, 2.767	[339, 245, 2767]
318, 287, 2.707	401, 4, 2.770 403, 124, 2.788	393, 140, 2.770	1437, 13, 2.779	440, 37, 2779
344 249 2 809	$387\ 166\ 2\ 818$	355 230 2 818	389 164 2 824	466 15 2839
362, 223, 2.839	321, 306, 2.842	353, 243, 2.845	462, 31, 2.863	411, 133, 2863
394, 169, 2.869	441, 76, 2.872	436, 89, 2.881	338, 287, 2.887	443, 78, 2890
373, 218, 2.890	421, 123, 2.893	480, 7, 2.899	380, 207, 2.899	435, 102, 2914
411, 150, 2.914	405, 162, 2.914	[369, 234, 2.914]	376, 223, 2.923	420, 137, 2929
430, 108, 2.932 437, 107, 2.041	399, 100, 2.932 401 179 2 041	400,00,2.930	440,09,2.935	350 287 2050
429, 132, 2,968	369.252.2.968	397.197.2971	392, 207, 2.971	364, 265, 2977
494, 7, 2.983	387, 222, 2.986	494, 9, 2.989	429, 139, 2.989	475, 50, 2998
425, 150, 2.998	[375, 250, 2.998]	431, 140, 3.004	466, 71, 3.007	419, 165, 3007
337, 332, 3.016	427, 156, 3.028	407, 196, 3.028	347,316,3.028	487, 37, 3031
407,98,3.034 418 183 3 055	555, 302, 3.034	400, 45, 5.037	303, 284, 3.040	415, 187, 3049
110, 100, 0.000			1	

7 Conclusions

In this paper, we present a new class of pentanomials over \mathbb{F}_2 , defined by $x^{2b+c} + x^{b+c} + x^b + x^c + 1$. We give the exact number of XORs in the reduction process; we note that in the reduction process no ANDs are required.

It is interesting to point out that even though the cases c = 1 and c > 1, as shown in Figures 2 and 3, are quite different, the final result in terms of number of XORs is the same. We also consider a special case when b = 2cwhere further reductions are possible.

There are irreducible pentanomials of this shape for several degree extensions of practical interest. We provide a detailed analysis of the space and time complexity involved in the reduction using the pentanomials in our family. For the multiplication process, we simply use the standard Karatsuba algorithm.

The proved complexity analysis of the multiplier and reduction considering the family proposed in this paper, as well as our analysis suggests that these pentanomials are as good as or possibly better to the ones already proposed.

We leave for future work to produce a one-step algorithm using our pentanomials, that is, a multiplier that performs multiplication and reduction in a single step using our family of polynomials, as well as a detailed study of the delay obtained using this algorithm.

References

- 1. G.B. Agnew, R.C. Mullin, and S.A. Vanstone. An implementation of elliptic curve cryptosystems over $\mathbb{F}_{2^{155}}.$ IEEE Journal on Selected Areas in Communications, 11(5):804-813, 1993
- D. J. Bernstein and P. Schwabe. Neon crypto. In International Workshop on Cryptographic Hardware and Embedded Systems, pages 320339. Springer, 2012.
- A. Cilardo. Fast parallel GF(2^m) polynomial multiplication for all degrees. IEEE Transactions on Computers, 62(5):929-943, 2013.
- 4. H. Fan and M.A. Hasan. A survey of some recent bit-parallel $GF(2^n)$ multipliers. Finite Fields and Their Applications, 32:5-43, 2015.
- J. Fan, X. Guo, E. De Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede. Stateof-the-art of secure ECC implementations: a survey on known side-channel attacks and countermeasures. In Hardware-Oriented Security and Trust (HOST), 2010 IEEE International Symposium on, pages 76-87. IEEE, 2010.
- A. Halbutogullari and C.K. Koç. Mastrovito multiplier for general irreducible polynomials. IEEE Transactions on Computers, 49:503-518, 2000.
- M.A. Hasan, M. Wang, and V.K. Bhargava. Modular construction of low complexity parallel multipliers for a class of finite fields GF(2^m). IEEE Transactions on Computers, 41:962-971, 1992.
- 8. J.L. Imaña. High-speed polynomial basis multipliers over $GF(2^m)$ for special pentanomials. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(1):58-69, 2016.
- J.L. Imaña, R. Hermida, and F. Tirado. Low complexity bit-parallel multipliers based on a class of irreducible pentanomials. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(12):1388-1393, 2006.
- J.L. Imaña, R. Hermida, and F. Tirado. Low complexity bit-parallel polynomial basis multipliers over binary fields for special irreducible pentanomials. Integration, the VLSI Journal, 46(2):197-210, 2013.
- 11. T. Itoh and S. Tsujii. Structure of parallel multipliers for a class of fields $GF(2^m)$. Information and Computation, 83(1):21-40, 1989.

- R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, Cambridge, 1997.
- M. Machhout, M. Zeghid, B. Bouallegue, and R. Tourki. Efficient hardware architecture of recursive Karatsuba-Ofman multiplier. In Design and Technology of Integrated Systems in Nanoscale Era, 2008. DTIS 2008. 3rd International Conference on, pages 1-6. IEEE, 2008.
- 14. G.L. Mullen and D. Panario. Handbook of Finite Fields. CRC Press, 2013.
- C. Negre and J. Robert. Impact of optimized field operations AB, AC and AB+CD in scalar multiplication over binary elliptic curve. In International Conference on Cryptology in Africa, pages 279-296. Springer, 2013.
- 16. NIST. Digital signature standard. Report P-41, National Institute of Standards and Technology (NIST), 2000.
- T. Oliveira, J. López, and F. Rodríguez-Henríquez. Software implementation of Koblitz curves over quadratic fields. In International Conference on Cryptographic Hardware and Embedded Systems, pages 259-279. Springer, 2016.
- S.-M. Park, K.-Y. Chang, D. Hong, and C. Seo. New efficient bit-parallel polynomial basis multiplier for special pentanomials. Integration, the VLSI Journal, 47(1):130-139, 2014.
- 19. A. Reyhani-Masoleh and M.A. Hasan. Low complexity bit parallel architectures for polynomial basis multiplication over $GF(2^m)$. IEEE Transactions on Computers, 53:945-959, 2004.
- F. Rodríguez-Henríquez and C.K. Koç. Parallel multipliers based on special irreducible pentanomials. IEEE Transactions on Computers, 52:1535-1542, 2003.
- M. Scott. Optimal irreducible polynomials for GF(2^m) arithmetic. IACR Cryptology ePrint Archive, 2007:192, 2007.
- B. Sunar and C.K. Koç. Mastrovito multiplier for all trinomials. IEEE Transactions on Computers, 48:522-527, 1999.
- T. Unterluggauer and E. Wenger. Efficient pairings and ECC for embedded systems. In International Workshop on Cryptographic Hardware and Embedded Systems, pages 298-315. Springer, 2014.
- 24. J. von zur Gathen and J. Shokrollahi. Efficient FPGA-based Karatsuba multipliers for polynomials over F₂. In International Workshop on Selected Areas in Cryptography, pages 359-369. Springer, 2005.
- H. Wu. Low complexity bit-parallel finite field arithmetic using polynomial basis. Cryptographic Hardware and Embedded Systems, pages 280-291. Springer, 1999.
- H. Wu. Bit-parallel finite field multiplier and squarer using polynomial basis. IEEE Transactions on Computers, 51(7):750-758, 2002.
- H. Wu. Bit-parallel polynomial basis multiplier for new classes of finite fields. IEEE Transactions on Computers, 57:1023-1031, 2008.
- T. Zhang and K.K. Parhi. Systematic design of original and modified Mastrovito multipliers for general irreducible polynomials. IEEE Transactions on Computers, 50(7):734-749, 2001.