
maskVerif: Automated Verification of
Higher-Order Masking in Presence of Physical

Defaults

Gilles Barthe1, Sonia Beläıd2, Gaëtan Cassiers3, Pierre-Alain Fouque4,
Benjamin Grégoire5, and Francois-Xavier Standaert3

1 MPI-SP and IMDEA Software Institute
gjbarthe@gmail.com

2 CryptoExperts
sonia.belaid@cryptoexperts.com
3 Université Catholique de Louvain

gaetan.cassiers@uclouvain.be and francois-xavier.standaert@uclouvain.be
4 Université de Rennes

pierre-alain.fouque@univ-rennes1.fr
5 Inria Sophia-Antipolis Méditerranée
benjamin.gregoire@sophia.inria.fr

Abstract. Power and electromagnetic based side-channel attacks are
serious threats against the security of cryptographic embedded devices.
In order to mitigate these attacks, implementations use countermeasures,
among which masking is currently the most investigated and deployed
choice. Unfortunately, commonly studied forms of masking rely on un-
derlying assumptions that are difficult to satisfy in practice. This is due
to physical defaults, such as glitches or transitions, which can recombine
the masked data in a way that concretely reduces an implementation’s
security.
We develop and implement an automated approach for verifying security
of masked implementations in presence of physical defaults (glitches or
transitions). Our approach helps to recover the main strengths of mask-
ing: rigorous foundations, composability guarantees, automated verifica-
tion under more realistic assumptions. Our work follows the approach of
(Barthe et al, EUROCRYPT 2015) and thus contributes to demonstrate
the benefits of language-based approaches (specifically probabilistic in-
formation flow) for masking.

Keywords: Side-Channel Attacks, Masking Countermeasure, Physical
Defaults, Glitches, Automated verification, Composability, maskVerif.

1 Introduction

While the design of cryptographic algorithms such as block ciphers is a relatively
well-understood problem [26], the secure implementation of such algorithms is
still a quite open topic. For example, the last two decades have shown that a

wide range of side-channel attacks can be performed against cryptographic im-
plementations, exploiting physical sources of leakage such as timing [27], power
consumption [28] or electromagnetic radiation [20]. If no attention is paid, mea-
suring such physical information enables retrieving cryptographic keys extremely
efficiently. As a result, various types of countermeasures have been introduced
to mitigate side-channel leakages, ranging from heuristic to more formal.

In general, checking that an implementation is protected against side-channel
attacks is a complex and error-prone process (see [29] for an overview). As a re-
sult, countermeasures relying on a more established theory have gained in rele-
vance over the last years, in order to simplify both the design and the evaluation
of protected implementations. The masking countermeasure (which consists in
performing the sensitive computations on secret-shared data) has been shown to
be a particularly interesting candidate in this landscape [11]. The main reason
is that practical security against physical leakages via masking can be reduced
(under some noise and independence assumptions) to a much simpler (and ab-
stract) security model, where the adversary just observes intermediate values
during execution of the implementation [14]. We will next refer to this simpler
abstract model as ISW model, after its inventors [25].

One advantage of the ISW model is that its conceptual simplicity makes it
amenable to formal verification. This has been demonstrated in a series of works,
including [31, 6, 17, 2, 3, 12, 34, 9, 10]. The most immediate benefit of formal veri-
fication is its automation, allowing to deal with the combinatorial complexity of
proving masked implementations secure. This complexity is specially significant
for implementations where secrets are split into a large number of shares; we call
such implementations higher-order. Perhaps more importantly, formal verifica-
tion has also been instrumental for advancing the state-of-the-art in masking.
First, formal verification tools have been used to reduce the randomness cost of
existing schemes. Second, strong non-interference, which solves a long-standing
problem of compositional reasoning for masking, has first emerged in the context
of formal verification, before being adopted in the literature on masking.

However, and to the exception of [9, 10], the abstractions in these tools still
do not prevent the risks due to specific physical defaults that may happen when
trying to implement masking in hardware or software devices. In fact, many
masking schemes that are secure in the abstract ISW model become insecure (or
at least less secure) when concretely implemented.

This is usually due to physical defaults which contradict the independence
assumption required for secure masking. For instance, glitches are a form of
physical default occurring when the information does not propagate simultane-
ously throughout execution. They introduce dependencies between the leakage of
an instruction and of its predecessors (in the sense of dataflow analysis). These
dependencies may cause hardware implementations proved secure in the ISW
model to be practically vulnerable against side-channel attacks [30]. Transitions
are another example of physical default which more typically happen in software
implementations, where the value in a register is overwritten by another value
and leads the leakages to depend on both [13, 1].

As a consequence, it is necessary to develop models and verification methods
for proving security in presence of physical defaults. Bloem et al. [9] and Faust
et al. [19] independently extend the ISW model in order to capture physical
defaults such as glitches — we will next denote this model as the ISW model
with glitches. In addition, Bloem et al. propose an automated method based on an
estimation of Fourier coefficients for proving that an implementation is secure
in their model. They also use their verification method on a set of examples,
including the S-Boxes of the AES and Keccak. Due to the computational cost
of their approach, the tool primarily applies to the first-order setting, where
secrets are split into two shares. Moreover, their method does not consider strong
non-interference, which is key to verify complete implementations. By contrast,
Faust et al. provide a hand-made analysis of some masking gadgets and prove
their strong non-interference with glitches for arbitrary number of shares (at the
cost of higher randomness requirements), and discuss simple conditions under
which the composability rules from [3] apply to implementations with glitches.
As for [10], it is built on top of this submission (from on an earlier version of the
current paper) and is still restricted to the verification of probing security only.

Contributions. We implement an efficient method for reasoning about security
of higher-order masked implementations in presence of physical defaults. Our
method follows a language-based approach based on probabilistic information
flow for proving security of masked implementations [2], and so provides further
evidence of the benefits of language-based approaches.

As in [2], our method follows a divide-and-conquer approach, embodied in two
algorithms. Our first algorithm checks if leakages are independent of secrets for a
fixed admissible set of observations. The algorithm repeatedly applies semantic-
preserving simplifications to the symbolic representation of the leakages, until
it does not depend on secrets or it fails. One significant improvement over [2]
is that our algorithm (i) is sound and complete (no attack missed and no false
negative) for linear systems of equations; (ii) it minimizes false negatives for
non-linear cases. Our second algorithm explores all admissible observation sets,
calling the first algorithm on each of them. This algorithm is carefully designed
to minimize the number of sets to explore, using the idea of large sets from [2].
One significant improvement over [2] is that our algorithm (i) minimizes the
number of large sets (ii) uses more sophisticated data structures that improve
overall efficiency.

In addition, both algorithms are specifically tailored to a rich programming
model, which we introduce to maximize applicability. The critical feature of
our new programming model is that all instructions are annotated with a sym-
bolic representation of leakage. Our programming model neatly subsumes several
models from the literature, including the ISW model, the recently proposed ISW
model with glitches, and a version of the ISW model with transitions. Moreover,
our tool applies to three main security notions: probing security, threshold non-
interference, and strong non-interference (which is essential for compositional
reasoning). Our coverage of models and properties is displayed in Table 1.

Table 1. Verification of higher-order masked implementations in the ISW model (1),
the ISW model with glitches (2), and a version of the ISW model with transitions (3)

Tools
probing threshold threshold strong
security non-interference non-interference

(1) (2) (3) (1) (2) (3) (1) (2) (3)

maskVerif [2, 3] 3 7 3 3 7 3 3 7 3

Bloem et al. [9] 3 3 7 7 7 7 7 7 7

this work 3 3 3 3 3 3 3 3 3

We implement our method on top of maskVerif and evaluate our tool on
existing benchmarks. Our tool is able to verify programs efficiently for security
notions that bring stronger compositional guarantees than [9] and faster than
state-of-the-art tools. For instance, checking probing security for the ISW mul-
tiplication at order 4 (resp. order 5) takes 1 (resp. 45) second using [2], while it
takes only 0.1 (resp. 2.6) second with our tool. And checking probing security
with glitches for DOM Keccak S-box at order 3 takes only 0.49 seconds when it
takes more than 25 minutes in [9].

2 Motivating Examples

Consider the logical and, which takes as input bits a and b and produces as
output a bit c such that c = a× b (we use arithmetic notation). A (first-order)
masked implementation of this algorithm takes as input bits a[0], a[1], b[0] and
b[1], called input shares, and outputs bits c[0] and c[1], called output shares.
Couples of shares are initially built from a uniform value r generated at random
and the sum of this random value with the secret one. Doing so, any single
share remains completely independent from the secret. We consider two families
of masked implementations and outline their verification. The first family is
intended to provide protection against glitches. The second family is intended
to provide protection against transitions.

2.1 Glitches

Figure 1 introduces a first-order masked implementation of logical and from [22]
in an idealized hardware language. The program is given as a sequence of assign-
ments. The instruction r ←$ {0, 1} is a random assignment, i.e. r is sampled
uniformly from {0, 1}. The assignments t2 ←ff t1 and t6 ←ff t5 are flip-flop as-
signments; they are used to store stable computations (so have no computational
content), and stop the propagation of leakage. The remaining instructions are
standard arithmetic assignments. The masked implementation must satisfy:

correctness: the masked implementation coincides with the original algorithm,
i.e. c = a× b, with a = a[0] + a[1], b = b[0] + b[1], c = c[0] + c[1];

security: leakage does not reveal information about secrets. We make the defi-
nition of leakage precise below and sketch a proof of security.

We first consider correctness. We symbolically execute the program to compute
for each program point an expression over input shares a[0], a[1], b[0], b[1] and
probabilistic variable r, see the second column of Figure 1. We use b[i] × a as
shorthand for b[i]× a[0] + b[i]× a[1].

We now turn to security. We first define a symbolic representation of leak-
age, shown in the third column of Figure 1. The representation assigns to each
program point a tuple of expressions over input shares a[0], a[1], b[0], b[1] and
probabilistic variable r. Random assignment r ←$ {0, 1} leaks singleton {r}.
Flip-flop assignments t2 ←ff t1 and t6 ←ff t5 leak singletons {b[1]×a[0] + r} and
{b[0]×a[1]+r}, i.e. the expressions they compute. Arithmetic assignments prop-
agate transient leakages (due to glitches). For instance, assignment t1 ← t0 + r
leaks the union of the leakage of the first two assignments. More generally, the
leakage of an arithmetic assignment is defined as the leakage of its two operands
(with the convention that an input share a[i] leaks {a[i]}).

The symbolic representation of leakage can be simplified by applying rules
that preserve their semantics (defined formally in later sections). One commonly
used rule is optimistic sampling, which replaces an expression of the form e+ r,
where r only occurs once in the tuple, by r. We show the simplified leakage on
the last column of Figure 1. Note that (simplified) leakage at each program point
depends on at most one share of a (either a[0] or a[1]) and one share of b (either
b[0] or b[1]). This suffices to conclude that the implementation is thus secure. We
will make this claim precise in the next sections. For now, it suffices to get the
following intuition: assume that a and b are the secrets, and (a[0], a[1]) is a secret
sharing of a, i.e. a[0] and a[1] taken individually are uniformly distributed, and
a[0] + a[1] = a. Then knowledge of a[0] or a[1] does not reveal any information
about a. The situation is similar for b. Thus, knowledge of a single share of a
and a single share of b does not reveal anything about them.

Instruction Symbolic value Symbolic leakage Simplified

t0 ← b[1]× a[0] b[1]× a[0] {b[1], a[0]} {b[1], a[0]}
r ←$ {0, 1} r {r} {r}
t1 ← t0 + r b[1]× a[0] + r {b[1],a[0], r} {b[1],a[0], r}
t2 ←ff t1 b[1]× a[0] + r {b[1]× a[0] + r} {r}
t3 ← b[1]× a[1] b[1]× a[1] {b[1], a[1]} {b[1], a[1]}

c[1] ← t3 + t2 b[1]× a + r {b[1],a[1],b[1]× a[0] + r} {b[1],a[1], r}
t4 ← b[0]× a[1] b[0]× a[1] {b[0], a[1]} {b[0], a[1]}
t5 ← t4 + r b[0]× a[1] + r {b[0],a[1], r} {b[0],a[1], r}
t6 ←ff t5 b[0]× a[1] + r {b[0]× a[1] + r} {r}
t7 ← b[0]× a[0] b[0]× a[0] {b[0], a[0]} {b[0], a[0]}

c[0] ← t7 + t6 b[0]× a + r {b[0],a[0],b[0]× a[1] + r} {b[0],a[0], r}

Fig. 1. Masked implementation of logical bit and against glitches. The second column
contains the symbolic expression computed for each program point. The third and
fourth columns are symbolic representations of leakage, before and after simplification.
Maximal sets are written in bold. It is easy to check that c[0] + c[1] = a× b.

Now consider the variant of the algorithm that omits the second flip-flop
assignment in Figure 2. The leakage at the last program point is no longer
independent of a, since both a[0] and a[1] appear in the tuple. Concretely, an
attacker with access to the joint distribution {b[0], a[0], a[1], r} can retrieve the
second and third components and add them to obtain a.

Instruction Symbolic value Symbolic leakage Simplified

t0 ← b[1]× a[0] b[1]× a[0] {b[1], a[0]} {b[1], a[0]}
r ←$ {0, 1} r {r} {r}
t1 ← t0 + r b[1]× a[0] + r {b[1],a[0], r} {b[1],a[0], r}
t2 ←ff t1 b[1]× a[0] + r {b[1]× a[0] + r} {r}
t3 ← b[1]× a[1] b[1]× a[1] {b[1], a[1]} {b[1], a[1]}

c[1] ← t3 + t2 b[1]× a + r {b[1],a[1],b[1]× a[0] + r} {b[1],a[1], r}
t4 ← b[0]× a[1] b[0]× a[1] {b[0], a[1]} {b[0], a[1]}
t5 ← t4 + r b[0]× a[1] + r {b[0],a[1], r} {b[0],a[1], r}
t6 ← b[0]× a[0] b[0]× a[0] {b[0], a[0]} {b[0], a[0]}

c[0] ← t5 + t6 b[0]× a + r {b[0],a[0],a[1], r} {b[0],a[0],a[1], r}

Fig. 2. Insecure masked implementation of logical bit and against glitches. The second
column contains the symbolic expression computed for each program point. The third
and fourth columns are symbolic representations of leakage, before and after simplifi-
cation. Maximal sets are written in bold. It is easy to check that c[0] + c[1] = a× b.

We next describe how these examples are handled in our tool. The user
provides a masked Verilog implementation of these algorithms and sets vari-
ous parameters, including a security property (explained later). We first use an
off-the-shelf tool (yosis) which generates an implementation in the ilang inter-
mediate format (.ilang). The .ilang implementation is manually annotated to
specify the public variables, the secret input variables, the secret output vari-
ables, and the random variables. Next, our tool generates from the annotated
.ilang implementation an internal representation with a symbolic representation
of leakage at each program point. At this point, verification starts. Our imple-
mentation exploits the fact that tuples of expressions are naturally ordered w.r.t
the subset relation, e.g. the tuple {b[1], a[0], r} leaks more than the singleton
{b[1], a[0]}. Thus, it suffices to consider maximal leakage sets, which appear in
bold in Figure 1. Whenever verification fails, i.e. a potentially flawed tuple is
detected, our tool computes the joint distribution of this tuple, so as to verify ex-
actly whether this tuple is an attack for the weakest security notion considered.
This step is exact, therefore all false negatives are removed. Our tool successfully
concludes for the secure examples, and outputs and checks the flawed tuple of
intermediate computations for the insecure examples.

2.2 Transitions

For simplicity of exposition, we consider a model with transitions but no glitches
(and thus do not use flip-flop gates). Figure 3 introduces another first-order

masked implementation of logical and. The difference with the previous imple-
mentation is that variable t0 is reused in the last but one instruction. As a
consequence, observing the last but one instruction reveals both values of t0,
and depend on b. This is easily fixed by using a fresh variable t5 in place of t0.
Interestingly, replacing t0 with t5 places us in a model in which every instruc-
tion leaks its symbolic expression, i.e. the abstract ISW model. In both cases,
verification with our tool then proceeds as described in the previous subsection.

Instruction Symbolic value Leakage

t0 ← b[1]× a[0] b[1]× a[0] {b[1]× a[0]}
r ←$ {0, 1} r {r}
t1 ← t0 + r b[1]× a[0] + r {b[1]× a[0] + r}
t2 ← b[1]× a[1] b[1]× a[1] {b[1]× a[1]}

c[1] ← t1 + t2 b[1]× a + r {b[1]× a + r}
t3 ← b[0]× a[1] b[0]× a[1] {b[0]× a[1]}
t4 ← t3 + r b[0]× a[1] + r {b[0]× a[1] + r}
t0 ← b[0]× a[0] b[0]× a[0] {b[1]× a[0], b[0]× a[0]}

c[0] ← t4 + t0 b[0]× a + r {b[0]× a + r}

Fig. 3. Masked implementation of logical bit and against transitions. The second col-
umn contains the symbolic expression computed for each program point. The third
column contains leakage. It is easy to check that c[0] + c[1] = a× b.

3 Programming model and security definitions

This section introduces an intermediate representation which captures different
security models and notions, and presents algorithmic tools for checking that
programs are secure. For the clarity of exposition, we focus on a simple setting
without public variables. Adding public variables poses no technical difficulty,
but clutters presentation.

3.1 Syntax and semantics of programs

Our intermediate representation abstracts away from the specifics of a particular
security model, by requiring that all leakage is made explicit through program
annotations. This eliminates the need to consider flip-flop assignments.

We assume throughout this paper that programs operate over Booleans. Fig-
ure 4 presents the syntax of programs as sequences of annotated instructions.
An annotated instruction is an instruction annotated with a unique program
point p ∈ P, and a tuple ` of expressions which model its leakage. Instructions
are probabilistic or deterministic assignments. We assume code to be written in
3-address form, i.e. the right-hand side of a deterministic assignment is of the
form v1 + v2 or v1× v2, where vi is either a share a[i], a deterministic variable x,

or a probabilistic variable r. The left-hand side of an deterministic assignment
is either a share a[i] or a deterministic variable x. A probabilistic assignment is
of the form r ←$ K, where r is drawn from a set R of probabilistic variables.

v ::= r | x | a[i]
e ::= r | a[i] | e + e | e× e
` ::= {e1, . . . , en}

I ::= x← v1 ◦ v2 deterministic assignment
| a[i]← v1 ◦ v2 output assignment
| r ←$ K probabilistic assignment

C ::= p : I | ` instruction
| C;C sequential composition

Fig. 4. Syntax of expressions, instructions and commands. ◦ ranges over {+,×}. x
ranges over a set of deterministic variables V, r ranges over a set of probabilistic
variables R. a[i] is called a share; a is drawn from a set A and i ∈ {0, . . . , t} for some
fixed value t, generally called order.

We now define the leakage. Let L =
⋃

iKi. For every discrete set X, Distr(X)
denotes the set of distributions over X. A memory is a map that assigns to every
share a[i] a value in K. We let M denote the set of memories. Now consider an
observation set O, i.e. a subset of P such that |O| ≤ t. We define the function:

JsKO :M→ Distr(O → L)

which computes the joint leakage of s on observation set O on input memory
m ∈M. The definition of JsKO is obtained by pushing forward the instrumented
semantics JsK :M→ Distr(P → (K×L)) along the obvious projection function.
The definition is standard, and omitted. The function JsKO is naturally extended
to distributions over memories; we abuse notation and still write JsKO.

3.2 Security notions

We recall three increasingly strong notions of security from the literature: prob-
ing security, threshold non-interference, and threshold strong non-interference.
All notions capture some form of probabilistic non-interference.

Probing security is a notion of non-interference under uniform inputs. Formally,
we define a set of universally uniform distributions and say that a command s is
t-probing secure iff for every observation set O such that |O| ≤ t and universally
uniform distributions µ and µ′, we have JsKO(µ) = JsKO(µ′). Probing security
considers a scenario where secret sharing is used to encode secret inputs, and the
masked program is executed on encoded inputs. Since encodings are universally
uniform, probing security entails that leakage does not depend on secrets.

For a concrete definition of universal uniformity, we consider the case of
memories over inputs a[0], a[1], b[0], and b[1]. In this setting, a distribution over

memories is universally uniform iff it is the image of the function mapping pairs
(a, b) to the distribution

a0←$K; b0←$K; return 〈a[0] 7→ a0, a[1] 7→ a+ a0, b[0] 7→ b0, b1 7→ b+ b0〉

Probing security guarantees that leakage does not depend on secrets. Indeed,
it is always possible to simulate leakage by generating an encoding of arbitrary
values a′ and b′, and then executing the command on this encoding. This will
result in an identical leakage.

(Threshold) non-interference can be understood as a notion of non-interference
under cardinality constraints. A command s is t-non-interfering (t-NI) if and
only if any set of at most t intermediate variables can be perfectly simulated
from at most t shares of each input. Concretely, a command s is (threshold)
non-interfering at order t iff for every observation set O such that |O| ≤ t, there
exists an indexed family of sets (Ia)a∈A ⊆ {0, . . . , t} such that |Ia| ≤ t and for
every initial memories m and m′,

m '(Ia)a∈A m′ =⇒ JsKO(m) = JsKO(m′)

where m '(Ia)a∈A m′ iff for every a ∈ A and i ∈ Ia, we have m(a[i]) = m′(a[i]).
The intuition behind threshold non-interference is similar to the one behind
probing security. In particular, threshold non-interference entails probing secu-
rity.

For a realization of threshold non-interference, consider a masked implemen-
tation that takes as inputs a[0], a[1], b[0], and b[1]. Threshold non-interference
ensures that leakage only depends on one of the sets ({a[i], b[j]})i,j∈{0,1}2 . Given
that the secret a is independent from a[i] and similarly for b, it follows that
leakage does not give any information about the secrets.

(Threshold) strong non-interference [3] is a very technical strengthening of
(threshold) non-interference. It brings very strong composability guarantees that
do not hold for (threshold) non-interference. Technically, strong non-interference
imposes more stringent cardinality constraints. For every observation set O, we
distinguish between internal observations Oin (program points where the lhs
of the assignment is a variable) and output observations Oout (program points
where the left-hand side of the assignment is a share a[i]). We say that a com-
mand s is t-strong non-interfering (t-SNI) iff for every observation set O such
that |O| ≤ t, there exists an indexed family of sets (Ia)a∈A ⊆ {0, . . . , t}, such
that |Ia| ≤ |Oin| and for every initial memories m and m′,

m '(Ia)a∈A m′ =⇒ JsKO(m) = JsKO(m′).

It is put forward in [19] that if a gadget is strongly non-interfering with glitches
(which requires storing its outputs in flip flops so that they are stable and cannot
propagate glitches), then the general composition rules introduced in [3] apply
to hardware implementations with glitches. Being able to verify such stronger
security notions is therefore helpful to analyze full ciphers and high number
of shares, since it allows analyzing smaller (computationally tractable) parts of
them independently, with global security guarantees thanks to composition.

4 Algorithmic verification

Checking probing or (S)NI security requires to verify a probabilistic non-interference
property for all observation sets of size t. We define a generic verification pa-
rameterized by a test specific to each security property. The algorithm follows
the same overall structure as maskVerif and relies on two functions. The first
function Check is a verification algorithm for proving the probabilistic non-
interference property of a fixed observation set. The function CheckAll is an
exploration algorithm which (adaptively) scans all the possible sets of obser-
vations. Verification succeeds if the algorithm proves absence of leakage for all
observation sets.

To verify that an observation set O (a tuple of expressions) is independent
from some secret, the key idea is to apply successive transformation on O into
O′, preserving its distribution, until a termination condition Test is able to syn-
tactically decide the independence. The Test function depends on the property:

– For probing security, we check if the tuple is independent from the initial
mapping by checking syntactically if the secret inputs do not appear in O′.

– For non-interference, we check if for each input parameter a, at most t shares
a[i] occur in the tuple O′.

– For strong non-interference, the condition is similar: for each parameter a,
at most |Oin| shares a[i] should occur in O′.

The transformation of O is based on optimistic sampling rule: if r 6∈ e then r
and e+ r follow the same distribution, as well as O and O′ where r is replaced
by e+ r (O{r ← e+ r}). The condition r 6∈ e (i.e r is not a variable of e) ensures
that the distributions of r and e are independent. The critical step is to select a
substitution that will guarantee that the method terminates. Take for example
O = (r, x+ r). If we replace r by x+ r, we obtain after simplification (x+ r, r)
on which we could apply the same transformation again and again.

Verification of single observation set. The Check verification algorithm
is summarized in Figure 5: it takes as input an observation set represented as
a tuple O of expressions. If Test is satisfied then Check succeeds. Otherwise, it
uses the Select procedure to perform a transformation of O into O′. To guarantee
termination, the algorithm first attempts to check if O can be rewritten (modulo
associativity and commutativity of +) as C[e + r] where C[·] is a context, and
r 6∈ e ∪ C, i.e. r does not occur in e and C). If it is the case, we apply the
optimistic sampling rule and get C[e + r]{r ← e + r} = C[e + (e + r)] = C[r].
Notice that in that case the size of C[r] is less than the size of O (i.e the size of
the resulting O′ decreases).

If the algorithm cannot exhibit such a context, it tries to apply the general
optimistic sampling rule (removing the condition r 6∈ C). The resulting expres-
sion is the simplification of O{r ← e+r}. For the simplification, we basically use
the ring laws but the distributivity makes harder the detection of new simplifica-
tions. Notice that this time the size of the resulting O′ = O{r ← e+ r} does not

Verification algorithm

proc Select(R,O) = proc Check(R,B,O) =
if ∃r, e, C | O = C[e + r] ∧ r 6∈ e ∪ C then if Test(O) then return B;

return (R, (e, r), C[r]); (R′, b, O′) = Select(R,O);
if ∃r, e, C | O = C[e + r] ∧ r 6∈ e ∪R then Check(R′, B :: b,O′);

O′ = Simplify(O{r ← e + r});
return (R ∪ {r}, (e, r), O′);

else fail ;

Exploration algorithm

proc Replay(B,O) = proc Extend(B,X) =
if B = [] then return Test(Simplify(O)) {O ∈ X |
if B = (e, r) :: B′ then Replay(B,O)}

Replay(B′, O{r ← e + r})

proc OptSampling(X) = proc CheckAll(X) =
if ∃r, e, CX | X = CX [e + r] ∧ r 6∈ e ∪ CX then if X = ∅ return true;

OptSampling(CX [r]); X = OptSampling(X);
else return X; O = Choose(X);

B = Check(∅, [], O);
X0 = Extend(B,X);
CheckAll(X \X0);

Fig. 5. Verification algorithm for probing security

necessarily decrease. To ensure termination, we add a set R of random variables
on which the general rule has already been used. The application of the rule is
conditioned by the fact that r 6∈ R. The termination of the Check algorithm is
ensured since either R increases or the size of O decreases (lexicographic order).

When more than one r allow to apply the rules (i.e for the selection of
the context), we define the multiplicative depth of a random variable and we
rewrite in increasing order of multiplicative depth. For instance, in the expression
r + (r′ + e)× e′ we assign multiplicative depth 0 to r and 1 to r′.

We can prove that our new algorithm always terminates and is sound, i.e. it
can detect all the attacks in our models. Note that considering only the first rule
(first if statement of Select) makes our algorithm equivalent to the one of [2].
When we apply both rules (the two if statements of Select), our algorithm
is equivalent to the one of [4], inspired from Gaussian elimination: contrary
to this last one, we do not require the expressions to be linear. An additional
advantage is the absence of false negatives when all the expressions are linear
(completeness), it is no more the case if we remove the second if in Select.

Both algorithms return the list B of optimistic sampling rules that have been
applied: successive transformations in the exploration algorithm can be replayed.

Exploration. The exploration algorithm ensures that the verification algorithm
analyzes all the possible sets of at most t intermediate variables. However, rather
than verifying each set separately, the exploration algorithm recursively checks

larger sets, as in [2]. The idea behind the exploration algorithm is that if a tuple
O is probabilistic non-interfering then all sub-tuples of O are. We present a very
high level description of the algorithm to highlight the main differences with [2].

The algorithm CheckAll is presented in figure 5. Let X be the set of all tuples
that need to be checked. If X is empty all tuples are trivially checked and the
algorithm returns true. Else, it first tries to simplify as much as possible the set
X by applying the simple optimistic sampling rule, as in the first if of Select.
This point is really crucial because it allows to share simplifications between all
tuples in X and was not done in [2]. Then, the algorithm chooses an element O
in X and tries to check it. If O is successfully verified, the result B is a list of
optimistic sampling transformations that can be applied to prove independence
of O. Next, the algorithm selects all the elements of X that can be checked
using the transformation B using Extend6. At this point all elements in X0 are
known to satisfy the desired properties. Finally the algorithm needs to check the
remaining tuples X \X0.

Initially, X represents the set of all tuples of t elements that can be generated
within the set of m possible observations. Its size is

(
m
t

)
. A naive implementation

would thus be exponential in t and it is crucial to have efficient data structures
to represent X and to implement the functions OptSampling, Extend, and X \X0.
We use the data structures presented in [2] (worklist base space splitting).

Moreover, we use a representation of expressions as imperative graphs. This
allows to detect easily if the simplest version of optimistic sampling rule can be
applied (used in the first conditional of Select and OptSampling), and to compute
efficiently the resulting expression.

5 Experiments

This section reports on experimental evaluation of our approach.

Examples. Our examples are mainly extracted from the available database pro-
vided by the authors of [9]. It gathers four different Verilog implementations of a
masked multiplication. Three of them are implemented at the first masking order
only, while DOM AND, designed in [22], is available up to order t = 4, i.e. when
sensitive data is split into t+ 1 = 5 shares. For the latter, we also consider mod-
ified versions that achieve non-interference and strong non-interference. Larger
implementations are also provided, namely three S-boxes. AES S-box as designed
in [22] and both versions of FIDES S-box as designed in [8] are implemented at
the first order. We also consider a second-order and third-order AES S-box [21],
and a Keccak S-box as designed in [23] and implemented from the first to the
third order. In addition to this existing set of examples, Keccak S-box is ana-
lyzed at two extra orders, namely t = 4 and t = 5, and two versions of a different
multiplication PARA AND [5] are verified from the first to the fourth order.

6 Missing tuples with Extend does not impact the correctness of the algorithm.

Benchmarks. First of all, we compare our tool with [2] which can only check
probing security without glitches. While our tool is a variant, the resulting im-
plementation is much more efficient. For example, checking probing security for
the ISW multiplication at order 4 (resp. order 5) takes 1 (resp. 45) second using
[2], while it takes only 0.1 (resp. 2.6) second with our tool.

Table 2 summarizes the verification outcome of the examples7. We use a
2.6 GHz Intel Core i7 with 16 GB of RAM running on macOS High Sierra,
while Bloem et al. [9] use a Intel Xeon E5-2699v4 CPU with a clock frequency
of 3.6 GHz and 512 GB of RAM running in a 64-bit Linux OS environment.
The table reports on verification for the three main security properties, namely
SNI, NI, and probing security, and for two scenarios: a hardware scenario (HW)
with glitches, and a software scenario (SW) without physical defaults. While the
tool can also take into account transitions, we omit such examples as most of
our implementations come from hardware where each wire is assigned only once
(and so do not have transition).

The first column of the table (# obs) indicates the number of possible obser-
vations in the targeted implementation. In the software scenario, it corresponds
to the number of intermediate variables. In the hardware scenario with glitches,
it corresponds to the number of optimal observations. Note the latter is much
lower than in the software scenario since non-maximal observation sets are ig-
nored. Also note that while this first column displays the number of observations
n that will be further treated, verification at order t requires the analysis of

(
n
t

)
tuples. For instance, the verification of Keccak S-box in the software scenario
at order 4 requires the analysis of

(
450
4

)
≈ 231 tuples. The second, third, and

fourth columns report on the verification times in the 6 modes. We report 0.01s
when the result is instantaneous and ∞ when the computations take more than
10 hours. When an implementation is insecure in a weaker model, then its veri-
fication time is equal for the stronger model. To report the outcome, a cross is
displayed when a concrete attack is exhibited. Otherwise, the verification ends
up successfully, indicating that the implementation is secure.

Comparison with Bloem et al (EUROCRYPT 2018). Bloem et al. [9] present
a formal technique for proving security of implementations in the ISW model
with glitches. Their method is based on Xiao-Massey lemma, which provides
a necessary and sufficient condition for a boolean function to be statistically
independent from a subset of its variables. Informally, the lemma states that a
boolean function f is statistically independent of a set of variables X iff the so-
called Fourier coefficients of every non-empty subset of X is null. However, since
the computation of Fourier coefficients is computationally expensive, they use
instead an approximation method whose correctness is established in their paper.
By encoding their approximation in logical form, they are able to instantiate
their approach using SAT-based solvers. Their tool can verify implementations
of AES, Keccak and FIDES S-Boxes, but the verification cost is significant.

7 Programs/logs are available at https://gitlab.com/benjgregoire/maskverif/

The last column indicates the timings from [9] which are only available for
probing security with and without glitches8. A dash is displayed when the ex-
ample is not tested in [9]. The results show that our tool performs significantly
better than the algorithm provided in [9]. For instance, the verification of the
hardware first-order masked implementation of AES S-box is at the very least
7826 times much faster with our tool. In particular, note that some of the bench-
marks provided for the tool of Bloem et al. only concern the verification of one
secret (the ranking corresponds to the fastest and the lowest verification of the
secrets). They are highlighted with a symbol ∗. As a consequence, without par-
allelization, these timings would probably be significantly higher. Our algorithm
can also be parallelized (it is an option of our tool), but we only use this option
for Keccak at order 5 since it makes the timing measurement less accurate.

6 Related work

This section reviews the state-of-the-art verification tools for software (without
physical defaults but transitions) and hardware masked implementations.

Software implementations. Moss et al. [31] were the first to consider the use
of automated methods to build or verify masked implementations. Specifically,
they implement a type-based masking compiler that tracks which variables are
masked by random values and iteratively modifies an unprotected program until
all secrets are masked. This strategy ensures security against first-order DPA.

While type-based verification is generally efficient and scalable, it is also often
overly conservative, i.e. it rejects secure programs. Logic-based verification often
strikes interesting trade-offs between efficiency and expressiveness. This possi-
bility was first explored in the context of masked implementations by Bayrak et
al. [6]. Concretely, they propose a SMT-based method for analyzing the secu-
rity of masked implementations against first-order DPA. Contrary to [31] which
targets proving a stronger property of programs, their method directly targets
proving statistical independence between secrets and leakage. While it is lim-
ited to first-order masking, it was extended to higher orders by Eldib, Wang and
Schaumont [17]. Their approach is based on a logical characterization of security,
akin to non-interference, and is based on model counting. While model counting
incurs an exponential blow-up in the security order, and becomes infeasible even
for relatively small orders, Eldib et al. circumvent the issue using incremental
verification. Although such methods help, the scope of application of their meth-
ods remains limited. Recently, Zhang et al. [34] show how abstraction-refinement
techniques provide significant improvement in terms of precision and scalabil-
ity. Their tool, called SCInfer, alternates between fast and moderately precise
approaches (partly inspired from [2] below) and computationally expensive but
precise approaches.

8 Note that the timings of [9] are obtained with a more powerful machine than ours.

Table 2. Overview of verification of masked hardware circuits

#
o
b
s

S
N

I
N

I
p
ro

b
in

g
p
ro

b
in

g
[9

]
H

W
S
W

H
W

S
W

H
W

S
W

H
W

S
W

H
W

S
W

fi
rs

t-
o
rd

er
v
er

ifi
ca

ti
o
n

T
ri

ch
in

a
A

N
D

[3
3
]

2
1
3

0
.0

1
s

7
0
.0

1
s

7
0
.0

1
s

7
0
.0

1
s

7
0
.0

1
s

7
0
.0

1
s

7
≤

2
s

7
≤

1
s

7

IS
W

A
N

D
[2

5
]

1
1
3

0
.0

1
s

7
0
.0

1
s

0
.0

1
s

7
0
.0

1
s

0
.0

1
s

7
0
.0

1
s

≤
2
s

7
≤

1
s

T
I

A
N

D
[3

2
]

3
2
1

0
.0

1
s

7
0
.0

1
s

7
0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

≤
3
s

≤
1
s

D
O

M
A

N
D

[2
2
]

4
1
3

0
.0

1
s

7
0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

≤
2
s

≤
1
s

D
O

M
A

N
D

S
N

I
6

1
3

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

P
A

R
A

A
N

D
[5

]
6

1
6

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

D
O

M
K

ec
ca

k
S
-b

ox
[2

3
]

2
0

7
6

0
.0

1
s

7
0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

≤
2
0
s

≤
1
s

D
O

M
A

E
S

S
-b

ox
[2

2
]

9
6

5
7
1

0
.0

2
s

7
0
.0

4
s

7
0
.0

2
s

7
0
.0

4
s

7
0
.0

6
s

0
.6

s
≤

5
-1

0
h
∗
≤

3
0
s∗

T
I

F
id

es
-1

6
0

S
-b

ox
[8

]
1
9
2

6
6
5
7

0
.2

s
7

0
.2

s
7

0
.3

s
5
7
s

0
.3

s
2
.8

s
≤

1
-3

s∗
≤

1
-2

s∗

T
I

F
id

es
-1

9
2

A
P

N
[8

]
1
2
8

6
9
2
8
1

2
.3

s
7

2
.4

6
s

7
2
.2

5
s

∞
2
.3

s
3
m

4
9
s
≤

5
s-

2
h
≤

2
s-

2
0
m

se
co

n
d
-o

rd
er

v
er

ifi
ca

ti
o
n

D
O

M
A

N
D

[2
2
]

1
2

3
0

0
.0

1
s

7
0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

≤
1
s

≤
1
s

D
O

M
A

N
D

S
N

I
1
5

3
0

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

P
A

R
A

A
N

D
[5

]
1
5

3
0

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

0
.0

1
s

D
O

M
K

ec
ca

k
S
-b

ox
[2

3
]

6
0

1
6
5

0
.0

1
s

7
0
.2

0
.0

7
s

0
.1

4
s

0
.0

3
s

0
.0

3
s

≤
4
0
s∗

≤
1
0
s∗

D
O

M
A

E
S

S
-b

ox
[2

1
]

1
6
8

1
2
0
5

3
s

7
3
m

9
s

7
3
s

7
3
m

9
s

7
1
0
.7

s
1
5
m

4
5
s

th
ir

d
-o

rd
er

v
er

ifi
ca

ti
o
n

D
O

M
A

N
D

[2
2
]

2
0

5
4

0
.0

1
s

7
0
.0

4
s

0
.0

2
s

0
.0

5
s

0
.0

2
s

0
.0

3
s

≤
2
0
s

≤
4
s

D
O

M
A

N
D

S
N

I
2
4

5
4

0
.0

4
s

0
.0

4
s

0
.0

3
s

0
.0

5
s

0
.0

3
s

0
.0

3
s

P
A

R
A

A
N

D
N

I
[5

]
2
0

4
8

0
.0

1
s

7
0
.0

1
s

7
0
.0

2
s

0
.0

3
s

0
.0

2
s

0
.0

2
s

P
A

R
A

A
N

D
S
N

I
[5

]
2
8

5
3

0
.0

4
s

0
.0

5
s

0
.0

2
s

0
.0

4
s

0
.0

2
s

0
.0

2
s

D
O

M
K

ec
ca

k
S
-b

ox
[2

3
]

1
0
0

2
9
0

0
.0

1
s

7
4
1
s

3
.6

s
1
1
.6

s
0
.4

9
s

0
.6

8
s

≤
2
5
m
∗
≤

4
m
∗

D
O

M
A

E
S

S
-b

ox
[2

1
]

2
9
6

2
0
1
1

0
.0

5
s

7
0
.0

5
s

7
0
.0

5
s

7
0
.0

5
s

7
1
2
m

3
6
s
∞

fo
u
rt

h
-o

rd
er

v
er

ifi
ca

ti
o
n

D
O

M
A

N
D

[2
2
]

3
0

8
7

0
.0

3
s

7
0
.3

4
s

0
.1

s
0
.1

5
s

0
.1

s
0
.1

s
≤

7
m

≤
2
m

P
A

R
A

A
N

D
N

I
[5

]
3
5

7
5

0
.0

1
s

7
0
.0

1
s

7
0
.1

5
s

0
.4

2
s

0
.1

8
s

0
.1

5
s

P
A

R
A

A
N

D
S
N

I
[5

]
4
0

8
5

0
.3

4
s

0
.8

1
s

0
.1

7
s

0
.4

7
s

0
.1

6
s

0
.1

6
s

D
O

M
K

ec
ca

k
S
-b

ox
[2

3
]

1
5
0

4
5
0

0
.0

2
s

7
∞

4
m

1
3
m

2
0

2
0
s

4
1
s

fi
ft

h
-o

rd
er

v
er

ifi
ca

ti
o
n

D
O

M
K

ec
ca

k
S
-b

ox
[2

3
]

2
1
0

6
1
8

0
.0

2
s

7
∞

1
h
6
m

∞
3
m

5
9
s

1
4
m

6
s

Independently, Barthe et al. [2] propose a different approach for proving prob-
ing security. They establish and leverage a tight connection between the security
of masked implementations and probabilistic non-interference, for which they
propose efficient verification methods. Specifically, they show how a relational
program logic previously used for mechanizing proofs of provable security can be
specialized into an efficient procedure for proving probabilistic non-interference,
and develop techniques that overcome the combinatorial explosion of observation
sets for high orders. The concrete outcome of their work is the maskVerif frame-
work, which achieves practicality at reasonably high orders, and prove security
in all introduced non-interference security notions. A tweaked version addition-
ally handles verification in presence of transitions, but hardware physical defaults
(e.g., glitches) are not supported. This work remains also permissive to false neg-
atives. In the same line of work, Coron [12] presents an alternative tool, called
checkMasks, which achieves similar functionalities as maskVerif, but exploits
a more extensive set of transformations for operating on tuples of expressions.
This is useful to achieve better verification times on selected examples.

A follow-up work by Barthe et al. [3] addresses the problem of compositional
reasoning by introducing the notion of strong non-interference (SNI), and adapts
maskVerif to check SNI. The adaptation achieves similar coverage as the orig-
inal tool, i.e. it achieves practicality at reasonably high-orders. In addition, [3]
proposes an information flow type system with cardinality constraints, which
forms the basis of a compiler, called maskComp. This compiler transforms an
unprotected implementation into an implementation that is protected at any
desired order. Somewhat similar to the masking compiler of [31], maskComp uses
typing information to control and to minimize the insertion of mask refreshing
gadgets. In the same line of work, Beläıd, Goudarzi, and Rivain recently pro-
pose tightPROVE [7] which exactly and directly verifies the software probing
security of a circuit based on standard gadgets at any order.

Hardware implementations. As recalled in the previous section, Bloem et
al. [9] provide a tool for proving probing security of masked implementations in
the ISW model with glitches. While this tool benefits from the new treatment
of physical defaults, it faces efficiency issues and cannot handle classical higher-
order examples. Recently Bloem, Iusupov, Krenn, and Mangard [10] provide
some technical optimizations based on an earlier version of this paper (using our
same tool), but that are still restricted to proofs on probing security. Namely,
proven implementations thus cannot be safely composed to achieve larger se-
cure ones. The work of Faust et al. follows the alternative approach of proving
the strong non-interference of some basic gadgets with glitches, which allows
composing circuits at arbitrary orders (but less efficiently) [19].

7 Conclusions

We have developed and implemented an automated method for verifying masked
implementations in presence of physical defaults. Our tool is based on novel and

efficient algorithms for proving probabilistic non-interference for all admissible
observation sets by an attacker. Our tool conveniently supports the three main
notions of security (probing security, threshold non-interference and strong non-
interference) and is able to verify efficiently implementations at high orders.

In the future, it would be interesting to extend our work beyond purely
qualitative security definitions, and to consider quantitative definitions that
upper bound how much leakage reveals about secrets — using total variation
distance [18] or more recent metrics that directly or indirectly relate to noisy
leakage security [15, 16]. More speculatively, it would also be interesting to ex-
tend our framework and verification methodologies to active adversaries, who
can tamper with computations [24]. A first step would be to extend the corre-
spondence between information flow and simulation-based security to the case of
active adversaries. An appealing possibility would be to exploit the well-known
dual view of information flow security for confidentiality and integrity. It would
also be interesting to build tools based on our algorithms to synthesize masked
implementations.

Acknowledgements. This work is partially supported by the French FUI-
AAP25 VeriSiCC project and ONR project N00014-19-1-2292. Gaëtan Cassiers
and François-Xavier Standaert are resp. Research Fellow and and Senior Asso-
ciate Researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

References

1. J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert. On the cost
of lazy engineering for masked software implementations. In Smart Card Research
and Advanced Applications - 13th International Conference, CARDIS 2014, Paris,
France, November 5-7, 2014. Revised Selected Papers, pages 64–81, 2014.

2. G. Barthe, S. Beläıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y. Strub.
Verified proofs of higher-order masking. In E. Oswald and M. Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 457–485. Springer, Hei-
delberg, Apr. 2015.

3. G. Barthe, S. Beläıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and
R. Zucchini. Strong non-interference and type-directed higher-order masking. In
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors,
ACM CCS 2016, pages 116–129. ACM Press, Oct. 2016.

4. G. Barthe, M. Daubignard, B. M. Kapron, Y. Lakhnech, and V. Laporte. On
the equality of probabilistic terms. In E. M. Clarke and A. Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected
Papers, volume 6355 of Lecture Notes in Computer Science, pages 46–63. Springer,
2010.

5. G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F.-X. Standaert, and P.-Y. Strub.
Parallel implementations of masking schemes and the bounded moment leakage
model. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume
10210 of LNCS, pages 535–566. Springer, Heidelberg, Apr. / May 2017.

6. A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne. Sleuth: Automated verification
of software power analysis countermeasures. In G. Bertoni and J.-S. Coron, editors,
CHES 2013, volume 8086 of LNCS, pages 293–310. Springer, Heidelberg, Aug.
2013.

7. S. Beläıd, D. Goudarzi, and M. Rivain. Tight private circuits: Achieving prob-
ing security with the least refreshing. In T. Peyrin and S. Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 343–372. Springer, Hei-
delberg, Dec. 2018.

8. B. Bilgin, A. Bogdanov, M. Knežević, F. Mendel, and Q. Wang. Fides: Lightweight
authenticated cipher with side-channel resistance for constrained hardware. In
G. Bertoni and J.-S. Coron, editors, CHES 2013, volume 8086 of LNCS, pages
142–158. Springer, Heidelberg, Aug. 2013.

9. R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. Formal
verification of masked hardware implementations in the presence of glitches. In
J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821
of LNCS, pages 321–353. Springer, Heidelberg, Apr. / May 2018.

10. R. Bloem, R. Iusupov, M. Krenn, and S. Mangard. Sharing independence & re-
labeling: Efficient formal verification of higher-order masking. Cryptology ePrint
Archive, Report 2018/1031, 2018. https://eprint.iacr.org/2018/1031.

11. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In M. J. Wiener, editor, CRYPTO’99, volume
1666 of LNCS, pages 398–412. Springer, Heidelberg, Aug. 1999.

12. J.-S. Coron. Formal verification of side-channel countermeasures via elementary
circuit transformations. In B. Preneel and F. Vercauteren, editors, ACNS 18,
volume 10892 of LNCS, pages 65–82. Springer, Heidelberg, July 2018.

13. J.-S. Coron, C. Giraud, E. Prouff, S. Renner, M. Rivain, and P. K. Vadnala. Con-
version of security proofs from one leakage model to another: A new issue. In
W. Schindler and S. A. Huss, editors, COSADE 2012, volume 7275 of LNCS,
pages 69–81. Springer, Heidelberg, May 2012.

14. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From prob-
ing attacks to noisy leakage. In P. Q. Nguyen and E. Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 423–440. Springer, Heidelberg, May
2014.

15. A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing
attacks to noisy leakage. Journal of Cryptology, 32(1):151–177, Jan. 2019.

16. A. Duc, S. Faust, and F.-X. Standaert. Making masking security proofs concrete
- or how to evaluate the security of any leaking device. In E. Oswald and M. Fis-
chlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 401–429.
Springer, Heidelberg, Apr. 2015.

17. H. Eldib, C. Wang, and P. Schaumont. Formal verification of software countermea-
sures against side-channel attacks. ACM Trans. Softw. Eng. Methodol., 24(2):11:1–
11:24, 2014.

18. H. Eldib, C. Wang, M. M. I. Taha, and P. Schaumont. Quantitative masking
strength: Quantifying the power side-channel resistance of software code. IEEE
Trans. on CAD of Integrated Circuits and Systems, 34(10):1558–1568, 2015.

19. S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F.-X. Standaert. Com-
posable masking schemes in the presence of physical defaults & the robust probing
model. IACR TCHES, 2018(3):89–120, 2018. https://tches.iacr.org/index.

php/TCHES/article/view/7270.
20. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results.

In Çetin Kaya. Koç, D. Naccache, and C. Paar, editors, CHES 2001, volume 2162
of LNCS, pages 251–261. Springer, Heidelberg, May 2001.

21. H. Groß, M. Krenn, and S. Mangard. Second and third order verilog implementa-
tions of AES s-box, 2018.

22. H. Groß, S. Mangard, and T. Korak. An efficient side-channel protected AES
implementation with arbitrary protection order. In H. Handschuh, editor, CT-
RSA 2017, volume 10159 of LNCS, pages 95–112. Springer, Heidelberg, Feb. 2017.

23. H. Gross, D. Schaffenrath, and S. Mangard. Higher-order side-channel protected
implementations of keccak. Cryptology ePrint Archive, Report 2017/395, 2017.
http://eprint.iacr.org/2017/395.

24. Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits II: Keeping
secrets in tamperable circuits. In S. Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 308–327. Springer, Heidelberg, May / June 2006.

25. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, Heidelberg, Aug. 2003.

26. L. R. Knudsen and M. Robshaw. The Block Cipher Companion. Information
Security and Cryptography. Springer, 2011.

27. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS,
pages 104–113. Springer, Heidelberg, Aug. 1996.

28. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer, Heidelberg,
Aug. 1999.

29. S. Mangard, E. Oswald, and T. Popp. Power analysis attacks - revealing the secrets
of smart cards. Springer, 2007.

30. S. Mangard, T. Popp, and B. M. Gammel. Side-channel leakage of masked CMOS
gates. In A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 351–365.
Springer, Heidelberg, Feb. 2005.

31. A. Moss, E. Oswald, D. Page, and M. Tunstall. Compiler assisted masking. In
E. Prouff and P. Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages
58–75. Springer, Heidelberg, Sept. 2012.

32. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-
channel attacks and glitches. In P. Ning, S. Qing, and N. Li, editors, ICICS 06,
volume 4307 of LNCS, pages 529–545. Springer, Heidelberg, Dec. 2006.

33. E. Trichina. Combinational logic design for AES subbyte transformation on masked
data. Cryptology ePrint Archive, Report 2003/236, 2003. http://eprint.iacr.

org/2003/236.
34. J. Zhang, P. Gao, F. Song, and C. Wang. Scinfer: Refinement-based verification of

software countermeasures against side-channel attacks. In Computer Aided Verifi-
cation - 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II,
pages 157–177, 2018.

