
Optimizing Authenticated Garbling for Faster Secure Two-Party
Computation

Jonathan Katz
University of Maryland

jkatz@cs.umd.edu

Samuel Ranellucci
University of Maryland

George Mason University

samuel@umd.edu

Mike Rosulek
Oregon State University

rosulekm@eecs.oregonstate.edu

Xiao Wang
University of Maryland

wangxiao@cs.umd.edu

June 5, 2018

Abstract

Wang et al. (CCS 2017) recently proposed a protocol for malicious secure two-party compu-
tation that represents the state-of-the-art with regard to concrete efficiency in both the single-
execution and amortized settings, with or without preprocessing. We show here several opti-
mizations of their protocol that result in a significant improvement in the overall communication
and running time. Specifically:

• We show how to make the “authenticated garbling” at the heart of their protocol com-
patible with the half-gate optimization of Zahur et al. (Eurocrypt 2015). We also show
how to avoid sending an information-theoretic MAC for each garbled row. These two
optimizations give up to a 2.6× improvement in communication, and make the commu-
nication of the online phase essentially equivalent to that of state-of-the-art semi-honest
secure computation.

• We show various optimizations to their protocol for generating AND triples that, over-
all, result in a 1.5× improvement in the communication and a 2× improvement in the
computation for that step.

1 Introduction

In recent years, we have witnessed amazing progress in secure two-party computation, in both the
semi-honest and malicious settings. In the semi-honest case, there has been an orders-of-magnitude
improvement in protocols based on Yao’s garbled circuit [Yao86] since the initial implementa-
tion by Malkhi et al. [MNPS04]. This has resulted from several important techniques, including
oblivious-transfer extension [IKNP03], pipelining [HEKM11], hardware acceleration [BHKR13],
free-XOR [KS08] and other improved garbling techniques [PSSW09, KMR14], etc. Similarly, the
concrete efficiency of secure two-party computation in the malicious case has also improved tremen-
dously in both the single-execution [LP07, NO09, SS11, LP11, KSS12, FJN+13, HKE13, Lin13,
SS13, Bra13, AMPR14, WMK17, NST17, KNR+17, ZH17, WRK17a] and amortized [HKK+14,
LR14, LR15, NO16, RR16] settings. Whereas initial implementations in the malicious case could

1

One-way comm. Two-way comm.

Dep. + online Total Dep. + online Total

semi-honest 0.22 0.22 0.22 0.22

Single-execution setting

[NST17] 0.22 15 0.22 15
[WRK17a] 0.57 3.43 0.57 6.29

[HIV17] 3.39 3.39 3.39 3.39
This work, v. 1 0.33 2.24 0.33 4.15
This work, v. 2 0.22 2.67 0.22 5.12

Amortized setting (1024 executions)

[RR16] 1.60 1.60 3.20 3.20
[NST17] 0.22 6.6 0.22 6.6

[WRK17a] 0.57 2.57 0.57 4.57
[KNR+17] 1.59 1.59 1.59 1.59

This work, v. 1 0.33 1.70 0.33 3.07
This work, v. 2 0.22 2.13 0.22 4.04

Table 1: Communication complexity of different protocols (in MB) for evaluating an
AES circuit. One-way communication refers to the maximum communication one party sends
to the other; two-way communication refers to the sum of both parties’ communication. The best
prior number in each column is bolded for reference.

evaluate up to 1,000 gates at the rate of 1 gate/second [PSSW09], the current state-of-the-art pro-
tocol by Wang et al. [WRK17a] (the WRK protocol) can compute tens of millions of gates at a rate
up to 700, 000× faster. With this steady stream of improvements, it has become more and more dif-
ficult to squeeze out additional performance gains; as an illustrative example, Zahur et al. [ZRE15]
introduced a highly non-trivial optimization (“half-gates”) just to reduce communication by 33%.

We show several improvements to the WRK protocol that, overall, improve its performance
by 2–3×. Recall their protocol can be divided into three phases: a function-independent phase
(Ind.) in which the parties know an upper bound on the number of gates in the circuit to be
evaluated and the lengths of their inputs; a function-dependent phase (Dep.) in which the parties
know the circuit, but not their inputs; and an online phase in which the parties evaluate the circuit
on their respective inputs. Our results can be summarized as follows:

• We show how to make the “authenticated garbling” at the heart of the online phase of the
WRK protocol compatible with the half-gate optimization of Zahur et al. We also show that
it is possible to avoid sending an information-theoretic MAC for each garbled row. These
two optimizations result in up to a 2.6× improvement in communication and, somewhat
surprisingly, result in a protocol for malicious secure two-party computation in which the
communication complexity of the online phase is essentially equivalent to that of state-of-the-
art semi-honest secure computation.

• The function-dependent phase of the WRK protocol involves the computation of (shared)

2

“AND triples” between the parties. We show various optimizations of that step that result in
a 1.5× improvement in the communication and a 2× improvement in the computation. Our
optimizations also simplify the protocol significantly.

We can combine these improvements in various ways, and suggest in particular two instantiations
of protocols with malicious security: one that minimizes the total communication across all phases,
and one that trades off increased communication in the function-independent phase for reduced
communication in the function-dependent phase. These protocols improve upon the state-of-the-
art by a significant margin, as summarized in Table 1. For example, compared to the protocol
of Nielsen et al. [NST17] we achieve the same communication across the function-dependent and
online phases, but improve the total communication by more than 6×; compared to the prior
work with the best total communication [HIV17], we achieve a 1.5× improvement overall and, at
the same time, push almost all communication to the function-independent preprocessing phase.
(Our protocol also appears to be significantly better than that of Hazay et al. [HIV17] in terms of
computation. See Section 6 for a more detailed discussion.)

The multi-party case. It is natural to wonder whether we can extend our improved technique
for authenticated garbling to the multi-party case, i.e., to improve upon [WRK17b]. Unfortunately,
we have not yet been able to do so. In Section 7, we discuss some of the difficulties that arise.

1.1 Outline

In Section 2 we provide some background about the WRK protocol. We provide the high-level
intuition behind our improvements in Section 3. In Section 4, we describe in detail our optimizations
of the online phase of the WRK protocol, and in Section 5 we discuss our optimizations of the
preprocessing phase. In Section 6, we compare our resulting protocols to prior work.

2 Background

We begin by describing some general background, followed by an in-depth review of the authenticated-
garbling technique introduced in [WRK17a]. In the section that follows, we give a high-level
overview of our optimizations and improvements.

We use κ and ρ to denote the computational and statistical security parameters, respectively.
We sometimes use “:=” to denote assignment.

Information-theoretic MACs. As in prior work, we authenticate bits using a particular information-
theoretic MAC. Let ∆B ∈ {0, 1}ρ be a value known to PB that is chosen at the outset of the protocol.
We say a bit b known to PA is authenticated to PB if PB holds a key K[b] and PA holds the corre-
sponding tag M[b] = K[b] ⊕ b∆B. We abstractly denote such a bit by [b]A; i.e., for some fixed ∆B,
when we say the parties hold [b]A we mean that PA holds (b,M[b]) and PB holds K[b] such that
M[b] = K[b]⊕ b∆B. We analogously let [b]B denote a bit b known to PB and authenticated to PA.

A pair of authenticated bits [b1]A, [b2]B, each known to a different party, form an authenticated
share of b1 ⊕ b2. We denote this by 〈b1 | b2〉, where the value in the left slot is known to PA, and
the value in the right slot is known to PB. Both authenticated bits and authenticated shares are
XOR-homomorphic.

Authenticated bits can be computed efficiently based on oblivious transfer [NNOB12, NST17].
We abstract away the particular protocol used to generate authenticated bits, and design our

3

Functionality Fabit

Honest case:

1. Upon receiving init from both parties, choose uniform ∆A,∆B ∈ {0, 1}ρ; send ∆A to PA

and ∆B to PB.

2. Upon receiving (random,A) from both parties, choose uniform x ∈ {0, 1} and K[x] ∈
{0, 1}ρ, set M[x] := K[x]⊕ x∆B, and send (x,M[x]) to PA and K[x] to PB.

3. Upon receiving (random,B) from both parties, generate an authenticated bit for PB in a
manner symmetric to the above.

Corrupted parties: A corrupted party can specify the randomness used on its behalf by the
functionality.

Global-key queries: A corrupted PA (resp., PB) can, at any time, send ∆, and is told whether
∆ = ∆B (resp., ∆ = ∆A).

Figure 1: The authenticated-bits functionality.

protocols in the Fabit-hybrid model (cf. Figure 1) in which there is an ideal functionality that
provides them.

Opening authenticated values. An authenticated bit [b]A known to PA can be opened by
having PA send b and M[b] to PB, who then verifies that M[b] = K[b] ⊕ b∆B. As observed in prior
work [DPSZ12], it is possible to open n authenticated bits with less than n times the communication.
Specifically, PA can open [b1]A, . . . , [bn]A by sending b1, . . . , bn along with h := H(M[b1], . . . ,M[bn]),
where H is a hash function modeled as a random oracle. PA then simply checks whether h =
H(K[b1]⊕ b1∆B, . . . ,K[bn]⊕ bn∆B).

We let Open([b1]A, . . .) denote the process of opening one or more authenticated bits in this way,
and overload this notation so that Open(〈b1 | b2〉) denotes the process of having each party open its
portion of an authenticated share.

Circuit-dependent preprocessing. We consider boolean circuits with gates represented as a
tuple (α, β, γ, T), where α and β are (the indices of) the input wires of the gate, γ is the output
wire of the gate, and T ∈ {⊕,∧} is the type of the gate. We use W to denote the output wires of
all AND gates, I1, I2 to denote the input wires for each party, and O to denote the output wires.

Wang et al. [WRK17a] introduced an ideal functionality called Fpre (cf. Figure 2) that is used by
the parties in a circuit-dependent, but input-independent, preprocessing phase. This functionality
sets up information for the parties as follows:

1. For each wire w that is either an input wire of the circuit or an output wire of an AND gate,

generate a random authenticated share 〈rw | sw〉. We refer to the value λw
def
= rw ⊕ sw as the

mask on wire w.

2. For the output wire γ of each XOR gate (α, β, γ,⊕), generate a random authenticated share
〈rγ | sγ〉 whose value rγ ⊕ sγ is the XOR of the masks on the input wires α, β.

4

Functionality Fpre

1. Choose uniform ∆A,∆B ∈ {0, 1}ρ. Send ∆A to PA and ∆B to PB.

2. For each wire w ∈ W ∪ I, generate a random authenticated share 〈rw | sw〉.

3. For each gate G = (α, β, γ, T), in topological order:

• If T = ⊕, generate a random authenticated share 〈rγ | sγ〉 for which rγ ⊕ sγ =
rα ⊕ sα ⊕ rβ ⊕ sβ.

• If T = ∧, generate a random authenticated share 〈r∗γ | s∗γ〉 for which r∗γ ⊕ s∗γ =
(rα ⊕ sα) ∧ (rβ ⊕ sβ).

Figure 2: Preprocessing functionality for some fixed circuit.

3. For each AND gate (α, β, γ,∧), generate a random authenticated share 〈r∗γ | s∗γ〉 such that

r∗γ ⊕ s∗γ = (rα ⊕ sα) ∧ (rβ ∧ sβ).

We refer to a triple of authenticated shares (〈rα | sα〉 , 〈rβ | sβ〉 , 〈r∗γ | s∗γ〉) for which r∗γ ⊕ s∗γ = (rα ⊕
sα)∧(rβ⊕sβ) as an authenticated AND triple. These are just (authenticated) Beaver triples [Bea92]
over the field F2.

Authenticated garbling. We now describe the idea behind the authenticated garbling technique
from the WRK protocol. We assume the reader is familiar with basic concepts of garbled circuits,
e.g., point-and-permute [BMR90], free-XOR [KS08], etc.

Following the preprocessing phase described above, every wire w is associated with a secret
mask λw, unknown to either party. If the actual value on that wire (when the circuit is evaluated
on the parties’ inputs) is zw, then the masked value on that wire is defined to be ẑw = zw ⊕ λw.
We focus on garbling a single AND gate (α, β, γ,∧). Assume PA is the circuit garbler and PB is
the circuit evaluator. Say the garbled wire labels are (Lα,0, Lα,1) and (Lβ,0, Lβ,1) for wires α and β,
respectively. Since we apply the free-XOR optimization, PA also holds ∆ such that Lw,0⊕Lw,1 = ∆
for any wire w. The protocol inductively ensures that the evaluator PB knows the wire labels
Lα,ẑα , Lα,ẑβ and masked values ẑα, ẑβ for both input wires. Note that the correct masked value for
the output wire is then

ẑγ = (λα ⊕ ẑα) ∧ (λβ ⊕ ẑβ)⊕ λγ ,

and we need to ensure that PB learns this value.
To achieve this, PA generates a garbled gate consisting of 4 rows (one for each u, v ∈ {0, 1})

Gu,v = H(Lα,u, Lβ,v)⊕ (ru,v,M[ru,v], [Lγ,ẑu,v]),

with bit ẑu,v defined as
ẑu,v = (λα ⊕ u) ∧ (λβ ⊕ v)⊕ λγ .

Here, [Lγ,ẑu,v] is PA’s share of the garbled label; ru,v is PA’s share of the bit ẑu,v; and PB holds the
corresponding share su,v such that ru,v ⊕ su,v = ẑu,v. The value M[ru,v] is the MAC authenticating

5

the underlying bit to PB. Also note that the definition of ẑu,v indicates that when u = ẑα and
v = ẑβ then ẑu,v = ẑγ .

Suppose the evaluator PB holds (u, Lα,u) and (v, Lβ,v), where u = ẑα and v = ẑβ. Then PB can
evaluate this AND gate by decrypting Gu,v to obtain ru,v and PA’s share of Lγ,ẑu,v . After verifying
the MAC on ru,v, party PB can combine these values with its own shares to reconstruct the masked
output value ẑu,v (that is, ẑγ) and its corresponding label Lγ,ẑu,v (that is, Lγ,ẑγ).

Assuming that the authenticated bits and shares of the labels can be computed securely, the
above protocol is secure against malicious adversaries. In particular, even if PA cheats and causes
PB to abort during evaluation, any such abort depends only on the masked values on the wires.
Since the masks are random and unknown to either party, this means that any abort is input-
independent. The MACs checked by PB ensure correctness, namely that evaluation has resulted in
the correct (masked) output-wire value.

From authenticated shares to shared labels. Another important optimization in the WRK
protocol is to compute shares of labels efficiently using authenticated shares. Assume the parties
hold an authenticated share 〈r | s〉 of some mask λ = s ⊕ r. It is then easy to compute a share of
λ∆A, since

λ∆A = (r ⊕ s)∆A =
(
r∆A ⊕ K[s]

)
⊕
(

M[s]
)
.

Since PA has r, ∆A, and K[s] while PB has M[s], the two parties can locally compute shares of λ∆A

(namely, [λ∆A]) given only 〈r | s〉.
We can use this fact to compute shares of labels for a secret masked bit efficiently. Assuming

the global authentication key (i.e., ∆A) is also used as the free-XOR shift, then it holds that
Lγ,ẑu,v = Lγ,0 ⊕ ẑu,v∆A. Therefore, the task of computing shares of labels reduces to the task of
computing shares of ẑu,v∆A, since Lγ,0 is known to PA.

Notice that

ẑu,v∆A = ((λα ⊕ u) ∧ (λβ ⊕ v)⊕ λγ) ∆A

= λαλβ∆A ⊕ uλα∆A ⊕ vλβ∆A ⊕ uv∆A ⊕ λγ∆A.

If the parties hold an authenticated AND triple (〈rα | sα〉, 〈rβ | sβ〉, 〈r∗γ | s∗γ〉) and a random authen-
ticated share 〈rγ | sγ〉 such that λα = rα ⊕ sα, λβ = rβ ⊕ sβ, λα ∧ λβ = r∗γ ⊕ s∗γ , and λγ = rγ ⊕ sγ .
The parties can then locally compute shares of λα∆A, λβ∆A, λγ∆A, and (λα ∧ λβ)∆A, and finally
compute shares of ẑu,v∆A by linearly combining the above shares.

3 Overview of Our Optimizations

We separately discuss our optimizations for the authenticated garbling and the preprocessing
phases. Details and proofs can be found in Sections 4 and 5.

3.1 Improving Authenticated Garbling

As a high level, the key ideas behind authenticated garbling are that (1) it is possible to share
garbled circuits such that neither party knows how rows in the garbled tables are permuted (since
no party knows the masks on the wires); moreover, (2) information-theoretic MACs can be used to
ensure correctness of the garbled tables. In the original protocol by Wang et al., these two aspects

6

are tightly integrated: each garbled row includes an encryption of the corresponding MAC tag, so
the evaluator only learns one such tag for each gate.

Here, we take a slightly different perspective on how authenticated garbling works. In particular,
we (conceptually) divide the protocol into two parts:

• In the first part, the parties compute a shared garbled circuit, without any authentication,
and let the evaluator reconstruct and evaluate that garbled circuit. We stress here that, even
though there is no authentication, corrupting one or more garbled rows does not allow a
selective-failure attack for the same reason as in the WRK protocol: any failure depends only
on the masked wire values, but neither party knows those masks.

This part is achieved by the encrypted wire labels alone, which have the form H(Lα,u, Lβ,v)⊕
[Lγ,ẑu,v]. These require 4κ bits of communication per gate.

• In the second part, the evaluator holds masked wire values for every wire of the circuit. It then
checks correctness of all these masked values. For example, it will ensure that for every AND
gate, the underlying (real) values on the wires form an AND relationship. Such verification
is needed for masked values that PB obtains during the evaluation of the garbled circuit.

The WRK protocol achieves this by encrypting authenticated shares of the formH(Lα,u, Lβ,v)⊕
(ru,v,M[ru,v]) in each row of a garbled table. The evaluator decrypts one of the rows and checks
the appropriate tag. These encrypted tags contribute 4ρ bits of communication per gate.

With this new way of viewing authenticated garbling, we can optimize each part independently.
By doing so, we are able to reduce the communication of the first part to 2κ+ 1 bits per gate, and
reduce the communication of the second part to 1 bit per gate. In the process, we also reduce the
computation (in terms of hash evaluations) by about half. In the following, we discuss intuitively
how these optimizations work.

Applying row-reduction techniques. In garbled circuits, row reduction refers to techniques
that use fewer than four garbled rows per garbled gate [NPS99, PSSW09, ZRE15, GLNP15]. We
review the simplest row-reduction technique here, describe the challenge of applying the technique
to authenticated garbling, and then show how we overcome the challenge. This will serve as a
warm-up to our final protocol that is compatible with the half-gate technique.

In classical garbling, a garbled AND gate can be written as (in our notation):

G0,0 = H(Lα,0, Lβ,0)⊕ Lγ,ẑ0,0 = H(Lα,0, Lβ,0)⊕ Lγ,0 ⊕ ẑ0,0∆A

G0,1 = H(Lα,0, Lβ,1)⊕ Lγ,ẑ0,1 = H(Lα,0, Lβ,1)⊕ Lγ,0 ⊕ ẑ0,1∆A

G1,0 = H(Lα,1, Lβ,0)⊕ Lγ,ẑ1,0 = H(Lα,1, Lβ,0)⊕ Lγ,0 ⊕ ẑ1,0∆A

G1,1 = H(Lα,1, Lβ,1)⊕ Lγ,ẑ1,1 = H(Lα,1, Lβ,1)⊕ Lγ,0 ⊕ ẑ1,1∆A.

The idea behind GRR3 row reduction [NPS99] is to choose wire labels so G0,0 = 0κ. That is, the
garbler chooses

Lγ,0 := H(Lα,0, Lβ,0)⊕ ẑ0,0∆A.

The garbler now needs to send only (G0,1, G1,0, G1,1), reducing the communication from 4κ to 3κ
bits. If the evaluator has input wires with masked values (0, 0), it can simply set G0,0 = 0κ and
then proceed as before.

7

In authenticated garbling, the preprocessing results in shares of {ẑu,v∆A}. Hence, if PA could
compute Lγ,0 then the parties could locally compute shares of the {Gu,v} (since PA knows all the
Lα,u, Lβ,v values and their hashes). PA could then send its shares to PB to allow PB to recover the
entire garbled gate. Unfortunately, PA cannot compute Lγ,0 because PA does not know ẑ0,0! Indeed,
that value depends on the secret wire masks, unknown to either party.

Summarizing, row-reduction techniques in general compute one (or both) of the output-wire
labels as a function of the input-wire labels and the secret masks, making them a challenge for
authenticated garbling.

Our observation is that although PA does not know ẑ0,0, the garbling requires only ẑ0,0∆A for
which the parties do have shares. Let SA and SB denote the parties’ shares of this value, so that
SA ⊕ SB = ẑ0,0∆A. Our main idea is for the parties to “shift” the entire garbling process by the
value SB, as follows:

1. PA computes Lγ,0 := H(Lα,0, Lβ,0) ⊕ SA. Note this value differs from the standard garbling
value by a shift of SB. Intuitively, instead of choosing Lγ,0 so that G0,0 = 0κ, we set implicitly
set G0,0 = SB. Although PA does not know SB, it only matters that the evaluator PB knows
it.

2. Based on this value of Lγ,0, the parties locally compute shares of the garbled gateG0,1, G1,0, G1,1

defined above, and open them to PB.

3. When PB evaluates the gate on input Lα,u, Lβ,v, if (u, v) 6= (0, 0) then evaluation is the same
as usual. If (u, v) = (0, 0) then PB sets G0,0 = SB. This is equivalent to PB doing the usual
evaluation but shifting the result by SB.

Using the half-gate technique. The state-of-the-art in semi-honest garbling is the half-gate
construction of Zahur et al. [ZRE15]. It requires 2κ bits of communication per AND gate, while
being compatible with free-XOR. We describe this idea, translated from the original work [ZRE15]
to be written in terms of masks and masked wire values so as to match our notation.

The circuit garbler computes a garbled gate as:

G0 := H(Lα,0)⊕H(Lα,1)⊕ λβ∆A

G1 := H(Lβ,0)⊕H(Lβ,1)⊕ Lα,0 ⊕ λα∆A,

and computes the 0-label for that gate’s output wire as:

Lγ,0 := H(Lα,0)⊕H(Lβ,0)⊕ (λαλβ ⊕ λγ)∆A.

If the evaluator PB holds masked values u, v and corresponding labels Lα,u, Lβ,v, it computes:

Eval(u, v, Lα,u, Lβ,v) := H(Lα,u)⊕H(Lβ,v)⊕ uG0 ⊕ v(G1 ⊕ Lα,u).

This results in the value

Eval(u, v, Lα,u, Lβ,v) = H(Lα,0)⊕H(Lβ,0)⊕ (uv ⊕ vλα ⊕ uλβ)∆A

= H(Lα,0)⊕H(Lβ,0)⊕
(

(u⊕ λα)(v ⊕ λβ)⊕ λαλβ
)

∆A

= H(Lα,0)⊕H(Lβ,0)⊕ (ẑu,v ⊕ λαλβ ⊕ λγ)∆A,

8

which is the correct output Lγ,ẑu,v = Lγ,0 ⊕ ẑu,v∆A.
As before, this garbling technique is problematic for authenticated garbling, because the garbler

PA cannot compute Lγ,0 as specified. (PA does not know the wire masks, so cannot compute the
term (λαλβ ⊕ λγ)∆A.)

However, the parties hold1 shares of this value; say, SA ⊕ SB = (λαλβ ⊕ λγ)∆A. We can thus
conceptually “shift” the entire garbling procedure by SB to obtain the following interactive variant
of half-gates:

1. PA computes the output wire label as

Lγ,0 := H(Lα,0)⊕H(Lβ,0)⊕ SA,

which is “shifted” by SB from what the half-gates technique specifies.

2. The parties locally compute shares of G0, G1 as per the half-gates technique described above.
These shares are opened to PB, so PB learns (G0, G1).

3. To evaluate the gate on inputs Lα,u, Lβ,v, the evaluator PB performs standard half-gates
evaluation and then adds SB as a correction value. This results in the correct output-wire
label, since:

Eval(Lα,u, Lβ,v)⊕ SB = Eval(Lα,u, Lβ,v)⊕ (λαλβ ⊕ λγ)∆A ⊕ SA
= H(Lα,0)⊕H(Lβ,0)⊕ ẑu,v∆A ⊕ SA
= Lγ,0 ⊕ ẑu,v∆A

= Lγ,ẑu,v .

Authentication almost for free. In the WRK scheme, suppose the actual values on the wires
of an AND gate are zα, zβ, zγ with zα ∧ zβ = zγ . During evaluation, PB learn masked values
ẑα = zα ⊕ λα, ẑβ = zβ ⊕ λβ, and ẑγ = zγ ⊕ λγ . For correctness it suffices to show that

zα ∧ zβ = zγ ⇐⇒ (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ) = (ẑγ ⊕ λγ)

⇐⇒ (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ)⊕ λγ︸ ︷︷ ︸
ẑα,β

= ẑγ .

Note the parties already have authenticated shares of λα, λβ, λγ , and (λα ∧ λβ), so they can also
derive authenticated shares of related values.

In the WRK scheme the garbler PA prepares an authenticated share (MAC) of ẑα,β correspond-
ing to each of the 4 possible values of ẑα, ẑβ. It encrypts this share so that it can only be opened
using the corresponding wire labels. PB can then decrypt and verify the relevant ẑα,β value (and
take it to be the masked output value ẑγ).

Our approach is to apply a technique suggested for the SPDZ protocol [DPSZ12]: evaluate the
circuit without authentication and then perform batch authentication at the end. Thus, in our new
protocol authentication works as follows:

1. PB evaluates the circuit, obtaining (unauthenticated) masked values ẑα for every wire α.

1Note that (λαλβ ⊕ λγ) = ẑ0,0, the same secret value as in the previous example.

9

2. PB reveals the masked values of every wire (1 bit per wire). Revealing these to PA does not
affect privacy because the masks are hidden from both parties (except for certain input/output
wires where one or both of the parties already know the underlying values).

3. PA generates authenticated shares of only the relevant ẑα,β values and sends them. PB verifies
the authenticity of each share. This is equivalent to sending a MAC of PA’s shares. As
described in Section 2, this can be done by sending only a hash of the MACs.

This technique for authentication adds an extra round, but it makes the authentication almost
free in terms of communication. PB sends 1 bit per wire and PA sends only a single hash value to
authenticate.

Details of the optimizations described above can be found in Section 4.

3.2 Improving the Preprocessing Phase

We also improve the efficiency of preprocessing in the WRK protocol significantly; specifically:
(1) we design a new protocol for generating so-called leaky-AND triples. Compared to the best
previous protocol by Wang et al., it reduces the number of hash calls by 2.5× and reduces commu-
nication by κ bits. (2) we propose a new function-dependent preprocessing protocol that can be
computed much more efficiently. We remark that the second optimization is particularly suitable
for RAM-model secure computation, where CPU circuits are fixed ahead of time.

To enable the above optimizations, we set lsb(∆A) := 1 and lsb(∆B) := 0, where lsb(x) denotes
the least significant bit of x.

A new leaky-AND protocol. The output of a leaky-AND protocol is a random authenticated
AND triple (〈rα | sα〉 , 〈rβ | sβ〉 , 〈r∗γ | s∗γ〉) with one caveat: the adversary can choose to guess the
value of rα ⊕ sα. A correct guess remains undetected while an incorrect guess will be caught. (See
Figure 4 for a formal definition.) The leaky-AND protocol by Wang et al. works in two steps.
Two parties first run a protocol whose outputs are triples that are leaky without any correctness
guarantee; then a checking procedure is run to ensure correctness. The leakage is later eliminated
by bucketing. In our new protocol, we observe that these two steps can be computed at the same
time, reducing the number of rounds as well as the amount of computation (i.e., H-evaluations).
Moreover, computing and checking can be further improved by adopting ideas from the half-gate
technique. Details are below.

Recall that in the half-gate approach, if a wire is associated with wire labels (L0, L1 = L0⊕∆A),
the first row of the gate computed by the garbler has the form

G = H(L0)⊕H(L1)⊕ C,

for some C. An evaluator holding (b, Lb) can evaluate it as

E = bG⊕H(Lb)

= b(H(L0)⊕H(L1)⊕ C)⊕H(Lb)

= b(H(L0)⊕H(L1))⊕H(Lb)⊕ bC
= H(L0)⊕ bC.

(1)

Correctness ensures that E ⊕H(L0) = bC, which means that after the evaluation the two parties
hold shares of bC. Note that when free-XOR is used with shift ∆A, then a pair of garbled labels

10

(L0, L1) and the IT-MAC for a bit (i.e., (K[b],M[b])) have the same structure. Therefore the above
can be reformulated and extended as follows:

G = H(K[b])⊕H(M[b])⊕ C1

E = bG⊕H(M[b])⊕ bC2

. Assuming the two parties have an authenticated bit [b]B, then E ⊕H(K[b]) = b(C1 ⊕ C2). If we
view C1 and C2 as shares of some value C = C1 ⊕ C2, then this can be interpreted as a way to
select on a shared value such that the selection bit b is known only to one party and at the same
time the output (namely, bC = H(K[b])⊕ E) is still shared.

Now we are ready to present our protocol. We will start with a set of random authenticated
bits (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉). We want the two parties to directly compute shares of

S = ((x1 ⊕ x2) ∧ (y1 ⊕ y2)⊕ z1 ⊕ r) (∆A ⊕∆B).

Assuming lsb(∆A⊕∆B) = 1, revealing d = lsb(S) allows the parties to “fix” these random authen-
ticated shares to a valid triple (by computing [z2]B = [r]B ⊕ d). Once the parties hold shares of S
(for example, PA holds S1 and PB holds S2 = S ⊕ S1), checking the correctness of d also becomes
easy: d is valid if and only if S1 ⊕ d∆A from PA equals to S2 ⊕ d∆B from PB. A wrong d can
pass the equality check only if the adversary guesses the other party’s ∆ value. Now the task is to
compute shares of S, where S can be rewritten as

S = x1(y1 ⊕ y2)(∆A ⊕∆B)⊕ x2(y1 ⊕ y2)(∆A ⊕∆B)⊕ (z1 ⊕ r)(∆A ⊕∆B).

Here, we will focus on how to compute shares of

x2(y1∆A ⊕ y1∆B ⊕ y2∆A ⊕ y2∆B).

Now we apply the half-gate observation: PA has C1 = y1∆A ⊕ K[y2] ⊕ M[y1] and PB has C2 =
y2∆B ⊕ K[y1]⊕M[y2], and we have

x2(C1 ⊕ C2) = x2(y1∆A ⊕ y1∆B ⊕ y2∆A ⊕ y1∆B).

Therefore, this value can be computed by PA sending one ciphertext to PB. Given the above
observations, the final protocol can be derived in a straightforward way. Overall this new approach
improves communication by 1.2× and improves computation by 2×.

For details and a security proof corresponding to the above, see Section 5.1.

New function-dependent preprocessing. Here we show how to further improve the efficiency
of function-dependent preprocessing. Recall that in the WRK protocol, each AND triple is derived
from B leaky-AND triples, for B ≈ ρ

logC ; these triples are then used to multiply authenticated
masked values for each AND gate of the circuit. Our observation is that we can reduce the number
of authenticated shares needed per gate from 3B + 2 to 3B − 1. This idea was initially used by
Araki et al. [ABF+17] in the setting of honest-majority three-party computation. See Section 5.2
for details.

11

Protocol Π2pc

Inputs: PA holds x ∈ {0, 1}I1 and PA holds y ∈ {0, 1}I2 . Parties agree on a circuit for a function

f : {0, 1}I1 × {0, 1}I2 → {0, 1}O.

1. PA and PB call Fpre, which sends ∆A to PA, ∆B to PB, and sends {〈rw | sw〉}w∈I∪W , {〈r∗w | s∗w〉}w∈W
to PA and PB. For each w ∈ I1 ∪ I2, PA also picks a uniform κ-bit string Lw,0.

2. Following the topological order of the circuit, for each gate G = (α, β, γ, T),

• If T = ⊕, PA computes Lγ,0 := Lα,0 ⊕ Lβ,0

• If T = ∧, PA computes Lα,1 := Lα,0 ⊕∆A, Lβ,1 := Lβ,0 ⊕∆A, and

Gγ,0 := H(Lα,0, γ)⊕H(Lα,1, γ)⊕ K[sβ]⊕ rβ∆A

Gγ,1 := H(Lβ,0, γ)⊕H(Lβ,1, γ)⊕ K[sα]⊕ rα∆A ⊕ Lα,0
Lγ,0 := H(Lα,0, γ)⊕H(Lβ,0, γ)⊕ K[sγ]⊕ rγ∆A ⊕ K[s∗γ]⊕ r∗γ∆A

bγ := lsb(Lγ,0)

PA sends Gγ,0, Gγ,1, bγ to PB.

3. For each w ∈ I2, two parties compute rw := Open([rw]A). PB then sends yw ⊕λw := yw ⊕ sw ⊕ rw
to PA. Finally, PA sends Lw,yw⊕λw to PB.

4. For each w ∈ I1, two parties compute sw := Open([sw]B). PA then sends xw⊕λw := xw⊕ sw⊕ rw
and Lw,xw⊕λw to PB.

5. PB evaluates the circuit in topological order. For each gate G = (α, β, γ, T), PB initially holds
(zα ⊕ λα, Lα,zα⊕λα) and (zβ ⊕ λβ , Lβ,zβ⊕λβ), where zα, zβ are the underlying values of the wires.

(a) If T = ⊕, PB computes zγ⊕λγ := (zα⊕λα)⊕(zβ⊕λβ) and Lγ,zγ⊕λγ := Lα,zα⊕λα⊕Lβ,zβ⊕λβ .

(b) If T = ∧, PB computes G0 := Gγ,0 ⊕ M[sβ], and G1 := Gγ,1 ⊕ M[sα]. PB evaluates the
garbled table (G0, G1) to obtain the output label

Lγ,zγ⊕λγ := H(Lα,zα⊕λα , γ)⊕H(Lβ,zβ⊕λβ , γ)⊕M[sγ]⊕M[s∗γ]

⊕ (zα ⊕ λα)G0 ⊕ (zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα)

and zγ ⊕ λγ := bγ ⊕ lsb(Lγ,zγ⊕λγ)

6. For each w ∈ W, PB sends ẑw := zw ⊕ λw to PA.

7. For each AND gates (α, β, γ,∧), both parties know ẑα = zα⊕λα, ẑβ = zβ⊕λβ , and ẑγ = zγ ⊕λγ .
Two parties compute authenticated share of bit cγ defined as

cγ = (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ)⊕ (ẑγ ⊕ λγ).

Note that cγ is a linear combination of λα, λβ , λγ and λ∗γ = λα ∧ λβ , therefore authenticated
share of cγ can be computed locally.

8. Two parties use Open to check that cγ is 0 for all gates γ, and abort if any check fails.

9. For each w ∈ O, two parties compute rw := Open([rw]A). PB computes zw := (λw⊕zw)⊕rw⊕sw.

Figure 3: The main protocol in the Fpre hybrid model

12

4 Technical Details: Improved Authenticated Garbling

Since we already discussed the main intuition of the protocol in the previous section, we will present
our main protocol in the Fpre-hybrid model. Detailed protocol description is shown in Figure 3.
Each step in the protocol can be summarized as follows:

1. Parties generate circuit preprocessing information using Fpre.

2. PA computes its own share of the garbled circuit and sends to PB.

3-4. Parties process PA and PB’s input and let PB learn the corresponding masked input wire
values and garbled labels.

5. PB locally reconstructs the garbled circuit and evaluates it.

6-8. PB sends all masked wire values (including all input, output, and internal wires) to PA; two
parties check the correctness of all masked wire values.

9. PA reveals the masks of output wires to PB, who can recover the output.

Note that steps 2 through 9 are performed in the online phase, with 2κ+ 2 bits of communication
per AND gate, κ+ 1 bits of communication per input bit, and 1 bit of communication per output
bit.

4.1 Proof of Security

We start by stating our main theorem.

Theorem 1. If H is modeled as a random oracle, the protocol in Figure 3 securely computes f
against malicious adversaries in the Fpre-hybrid model.

Before proceeding to the formal proof, we first introduce two important lemmas. The first
lemma addresses correctness of our distributed garbling scheme in the semi-honest case; the second
lemma addresses correctness of the whole protocol when PA is corrupted.

Lemma 1. When both parties follow the protocol honestly then, after step 5, for each wire w in
the circuit PB holds (zw ⊕ λw, Lw,zw⊕λw).

Proof. We prove this by induction on the gates in the circuit.

Base case. It is easy to verify from step 3 and step 4 that the lemma holds for input wires.

Induction step. XOR-gates are trivial and so focus on an AND gate (α, β, γ,∧). First, the
garbled tables are computed distributively, therefore we first write down the table after PB merged
its own share as follows. Note that we ignore the gate id (γ) for simplicity.

G0 = H(Lα,0)⊕H(Lα,1)⊕ K[sβ]⊕ rβ∆A ⊕M[sβ]

= H(Lα,0)⊕H(Lα,1)⊕ λβ∆A

G1 = H(Lβ,0)⊕H(Lβ,1)⊕ K[sα]⊕ ra∆A ⊕M[sα]⊕ Lα,0

= H(Lβ,0)⊕H(Lβ,1)⊕ λα∆A ⊕ Lα,0.

13

PA locally computes the output garbled label for 0 values, namely Lγ,0 as:

Lγ,0 := H(Lα,0)⊕H(Lβ,0)⊕ K[sγ]⊕ rγ∆A ⊕ K[s∗γ]⊕ r∗γ∆A.

PB, who holds (zα ⊕ λα, Lα,zα⊕λα) and (zβ ⊕ λβ, Lβ,zβ⊕λβ) by the induction hypothesis, evaluates
the circuit as follows:

Lγ,zγ⊕λγ := H(Lα,zα⊕λα)⊕H(Lβ,zβ⊕λβ)⊕ (zα ⊕ λα)G0

⊕ (zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα)⊕M[sγ]⊕M[s∗γ].

Observe that

(zα ⊕ λα)G0 ⊕H(Lα,zα⊕λα)

= (zα ⊕ λα) (H(Lα,0)⊕H(Lα,1)⊕ λβ∆A)⊕H(Lα,zα⊕λα)

= (zα ⊕ λα) (H(Lα,0)⊕H(Lα,1)⊕ λβ∆A)⊕ (zα ⊕ λα) (H(Lα,0)⊕H(Lα,1))⊕H(Lα,0)

= H(Lα,0)⊕ λβ(zα ⊕ λα)∆A,

and

(zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα)⊕H(Lβ,zβ⊕λβ)

= (zβ ⊕ λβ) (H(Lβ,0)⊕H(Lβ,1)⊕ λα∆A ⊕ (zα ⊕ λα)∆A)⊕H(Lβ,zβ⊕λβ)

= (zβ ⊕ λβ) (H(Lβ,0)⊕H(Lβ,1)⊕ zα∆A)⊕ (zβ ⊕ λβ) (H(Lβ,0)⊕H(Lβ,1))⊕H(Lβ,0)

= H(Lβ,0)⊕ (λβ ⊕ zβ)zα∆A.

Therefore, we conclude that

Lγ,0 ⊕ Lγ,zγ⊕λγ

= H(Lα,0)⊕H(Lβ,0)⊕H(Lα,zα⊕λα)⊕H(Lβ,zβ⊕λβ)⊕ (zα ⊕ λα)G0

⊕ (zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα)⊕ λγ∆A ⊕ (λα ∧ λβ)∆A

= (λα ⊕ zα)λβ∆A ⊕ (λβ ⊕ zβ)zα∆A ⊕ λγ∆A ⊕ (λα ∧ λβ)∆A

= ((zα ∧ zβ)⊕ λγ)∆A = (zγ ⊕ λγ)∆A.

This means that, with respect to PA’s definition of Lγ,zγ⊕λγ , PB’s label is always correct. The
masked value is correct because the least-significant bit of ∆A is 1; thus,

bγ ⊕ lsb(Lγ,zγ⊕λγ) = lsb(Lγ,0)⊕ lsb(Lγ,zγ⊕λγ)

= lsb(Lγ,0 ⊕ Lγ,zγ⊕λγ)

= lsb((zγ ⊕ λγ)∆A) = zγ ⊕ λγ .

Lemma 2. Let x
def
= x̂w ⊕ λw and y

def
= ŷw ⊕ λw, where x̂w is what PB sends in step 3, ŷw is

what PA sends in step 4, and λw is defined by Fpre. If PA is malicious, then PB either aborts or
outputs f(x, y).

14

Proof. After step 5, PB obtains a set of masked values zw⊕λw for all wires w in the circuit. In the
following, we will show that if these masked values are not correct, then PB will abort with all but
negligible probability.

Again we will prove by induction. Note that the lemma holds for all wires w ∈ I1∪I2, according
to how x, y are defined, as well as for XOR-gates. In the following, we will focus on an AND gate
(α, β, γ,∧). Now, according to induction hypothesis, we already know that PB hold correct values
of (zα ⊕ λα, zβ ⊕ λβ).

Recall that the checking is done by computing

c = (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ)⊕ (ẑγ ⊕ λγ).

The correctness of input masked values means that

c = zα ∧ zβ ⊕ ẑγ ⊕ λγ .

Since Open does not abort, c = 0, which means that ẑγ = zα ∧ zβ ⊕ λγ = zγ ⊕ λγ . This means that
the output masked wire value is also correct.

Given the above two lemmas, the proof of security of our main protocol is relatively easy. We
provide all details below.

Proof. We consider separately a malicious PA and PB.

Malicious PA. Let A be an adversary corrupting PA. We construct a simulator S that runs
A as a subroutine and plays the role of PA in the ideal world involving an ideal functionality F
evaluating f . S is defined as follows.

1. S plays the role of Fpre and records all values that Fpre sends to two parties.

2. S receives all values that A sends.

3. S acts as an honest PB using input y := 0.

4. For each wire w ∈ I1, S receives x̂w and computes xw := x̂w ⊕ rw ⊕ sw, where rw, sw are the
values used by Fpre in the previous steps.

6. S picks random bits for all ẑw and send them to A.

7–9. S acts as an honest PB If an honest PB would abort, S aborts; otherwise S computes the
input x of A. from the output of Fpre and the values A sent. S then sends x to F .

We show that the joint distribution of the outputs of A and the honest PB in the real world is
indistinguishable from the joint distribution of the outputs of S and PB in the ideal world. We
prove this by considering a sequence of experiments, the first of which corresponds to the execution
of our protocol and the last of which corresponds to execution in the ideal world, and showing that
successive experiments are computationally indistinguishable.

Hybrid1. This is the hybrid-world protocol, where we imagine S playing the role of an honest
PB using PB’s actual input y, while also playing the role of Fpre.

15

Hybrid2. Same as Hybrid1, except that in step 6, for each wire w ∈ I1 the simulator S receives
x̂w and computes xw := x̂w ⊕ rw ⊕ sw, where rw, sw are the values used by Fpre. If an honest
PB would abort in any later step, S sends abort to F ; otherwise it sends x = {xw}w∈I1 to F .

The distributions on the view of A in Hybrid1 and Hybrid2 are identical. The output PB

gets are the same due to Lemma 1 and Lemma 2.

Hybrid3. Same as Hybrid2, except that S uses y′ = 0 in step 3 and ignore what A sends back.
Then in step 6, S sends random bits instead of the value for zw ⊕ λw.

The distributions on the view of A in Hybrid3 and Hybrid2 are again identical (since the
{sw}w∈I2 are uniform).

Note that Hybrid3 corresponds to the ideal-world execution described earlier. This completes the
proof for a malicious PA.

Malicious PB. Let A be an adversary corrupting PB. We construct a simulator S that runs
A as a subroutine and plays the role of PB in the ideal world involving an ideal functionality F
evaluating f . S is defined as follows.

1. S plays the role of Fpre and records all values sent to both parties.

2. S acts as an honest PA and send the shared garbled tables to PB.

3. For each wire w ∈ I2, S receives ŷw and computes yw := ŷw ⊕ rw ⊕ sw, where rw, sw are the
values used by Fpre in the previous steps.

4. S acts as an honest PA using input x = 0.

6–8. S acts as an honest PA. If an honest PA would abort, S abort.

9. S sends y computed in step 3 to F , which returns z = f(x, y). S then computes z′ := f(0, y)
and defines r′w = zw ⊕ z′w ⊕ rw for each w ∈ O. S then acts as an honest PA and opens values
r′w to A. If an honest PA would abort, S S outputs whatever A outputs.

We now show that the distribution on the view of A in the real world is indistinguishable from the
distribution on the view of A in the ideal world. (Note PA has no output.)

Hybrid1. This is the hybrid-world protocol, where S acts as an honest PA using PA’s actual
input x, while playing the role of Fpre.

Hybrid2. Same as Hybrid1, except that in step 3, S receives ŷw and computes yw := ŷw⊕rw⊕sw,
where rw, sw are the values used by Fpre. If an honest PA abort in any step, send abort to F .

Hybrid3. Same as Hybrid2, except that in step 4, S acts as an honest PA with input x = 0. S
sends x computed in step 3 to F , which returns z = f(x, y). S then computes z′ := f(0, y)
and defines r′w = zw ⊕ z′w ⊕ rw for each w ∈ O. S then acts as an honest PA and opens values
r′w to A. If an honest PA would abort, S S outputs whatever A outputs.

The distributions on the view of A in Hybrid3 and Hybrid2 are identical.

Note that Hybrid3 is identical to the ideal-world execution.

16

Functionality FLand

Honest case:

1. Generate uniform 〈x1 |x2〉, 〈y1 | y2〉, 〈z1 | z2〉 such that z1⊕ z2 = (x1⊕x2)∧ (y1⊕ y2), and
send the respective shares to the two parties.

2. PA can choose to send (P1, p2, P3) ∈ {0, 1}κ × {0, 1} × {0, 1}κ. The functionality checks

P3 ⊕ x2P1 = (p2 ⊕ x2lsb(P1)) ∆B.

If the check fails, the functionality sends fail to both parties and abort. (PB can do the
same symmetrically.)

Corrupted parties: A corrupted party gets to specify the randomness used on its behalf by
the functionality.

Figure 4: Functionality FLand for computing a leaky AND triple.

5 Technical Details: Improved Preprocessing

In this section, we provide details for our two optimizations of the preprocessing phase. The first
optimization improves the efficiency to compute a leaky AND gate. Leaky AND gate is a key
component towards a preprocessing with full security. This functionality (FLand) outputs triples
with guaranteed correctness but the adversary can choose to guess the x value from the honest
party: an incorrect guess will be caught immediately; while a correct guess remain undetected.

The second optimization focuses on how to combine leaky triples in a more efficient way. In
particular, we observe that a recent optimization in the honest-majority secret sharing protocol by
Araki et al. [ABF+17], can be applied to our setting too. As a result, we can roughly reduce the
bucket size by one.

5.1 Improved Leaky AND

Before giving the details, we point out a minor difference in the leaky-AND functionality (FLand)
as compared to [WRK17a]. As shown in Figure 4, instead of letting A directly learn the value
of x, the functionality allows A to send a query in a form of (P1, p2, P3) and return if P3 ⊕ x2P1 =
(p2 ⊕ x2lsb(P1))∆B. It can be seen that this special way is no more than a query on x and two
queries on ∆, and the A cannot learn any information on y or z.

The main intuition of the protocol is already discussed in Section 3.2. We will proceed to present
the protocol, in Figure 5.

Theorem 2. The protocol in Figure 5 securely realizes FLand in the (Fabit,Feq)-hybrid model.

Proof. As the first step, we will show that the protocol is correct if both parties are honest. We
recall that

1. G1 := H(K[x2]⊕∆A)⊕H(K[x2])⊕ CA

17

Protocol ΠLand

Protocol:

1. PA and PB obtain random authenticated shares (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉).
PA locally computes CA := y1∆A ⊕ K[y2]⊕M[y1], and
PB locally computes CB := y2∆B ⊕M[y2]⊕ K[y1].

2. PA sends G1 := H(K[x2]⊕∆A)⊕H(K[x2])⊕ CA to PB.
PB computes E1 := x2G1 ⊕H(M[x2])⊕ x2CB.

3. PB sends G2 := H(K[x1]⊕∆B)⊕H(K[x1])⊕ CB to PA.
PA computes E2 := x1G2 ⊕H(M[x1])⊕ x1CA.

4. PA computes S1 := H(K[x2])⊕E2⊕(z1∆A⊕K[r]⊕M[z1]), PB computes S2 := H(K[x1])⊕
E1 ⊕ (r∆B ⊕M[r]⊕K[z1]). PA sends lsb(S1) to PB; PB sends lsb(S2) to PA. Both parties
computes d := lsb(S1)⊕ lsb(S2).

5. PA sends L1 := S1 ⊕ d∆A to Feq, PB sends L2 := S2 ⊕ d∆B to Feq. If Feq returns 0,
parties abort, otherwise, they compute [z2]B := [r]B ⊕ d.

Figure 5: Our improved leaky-AND protocol.

2. G2 := H(K[x1]⊕∆B)⊕H(K[x1])⊕ CB

3. CA := y1∆A ⊕ K[y2]⊕M[y1]

4. CB := y2∆B ⊕M[y2]⊕ K[y1]

Note that
E1 ⊕H(K[x2]) = x2G1 ⊕H(M[x2])⊕ x2CB ⊕H(K[x2]).

When x2 = 0, we have

E1 ⊕H(K[x2]) = x2G1 ⊕H(M[x2])⊕ x2CB ⊕H(K[x2])

= H(M[x2])⊕H(K[x2])

= 0 = x2(CA ⊕ CB).

When x2 = 1, we have

E1 ⊕H(K[x2]) = x2G1 ⊕H(M[x2])⊕ x2CB ⊕H(K[x2])

= x2(G1 ⊕ CB)⊕H(M[x2])⊕H(K[x2])

= x2(G1 ⊕ CB)⊕H(K[x2]⊕∆A))⊕H(K[x2])

= x2(CA ⊕ CB).

Therefore,

E1 ⊕H(K[x2]) = x2(CA ⊕ CB)

18

= x2(y1∆A ⊕ K[y2]⊕M[y1]⊕ y2∆B ⊕M[y2]⊕ K[y1]))

= x2(y1∆A ⊕ y2∆A ⊕ y1∆B ⊕ y2∆B)

= x2(y1 ⊕ y2)(∆A ⊕∆B).

Similarly,
E2 ⊕H(K[x1]) = x1(y1 ⊕ y2)(∆A ⊕∆B).

Taking these two equations, we know that

S1 ⊕ S2 = (E1 ⊕H(K[x2]))⊕ (E2 ⊕H(K[x1]))

⊕ (z1∆A ⊕ K[r]⊕M[z1]⊕ r∆B ⊕M[r]⊕ K[z1])

= (x1 ⊕ x2)(y1 ⊕ y2)(∆A ⊕∆B)

⊕ (z1∆A ⊕ K[z1]⊕M[z1]⊕ r∆B ⊕ K[r]⊕M[r])

= (x1 ⊕ x2)(y1 ⊕ y2)(∆A ⊕∆B)

⊕ (z1∆A ⊕ z1∆B ⊕ r∆B ⊕ r∆A)

= (x1 ⊕ x2)(y1 ⊕ y2)(∆A ⊕∆B)⊕ (z1 ⊕ r)(∆A ⊕∆B)

= ((x1 ⊕ x2) ∧ (y1 ⊕ y2)⊕ z1 ⊕ r)(∆A ⊕∆B).

Since lsb(∆A ⊕∆B) = 1, it holds that

d = lsb(S1 ⊕ S2) = (x1 ⊕ x2) ∧ (y1 ⊕ y2)⊕ z1 ⊕ r.

Therefore, (x1 ⊕ x2) ∧ (y1 ⊕ y2) = d⊕ z1 ⊕ r = z1 ⊕ z2.
Now we will focus on the security of the protocol in the malicious setting. First note that the

protocol is symmetric, therefore we only need to focus on the case of a malicious PA. The local
computation of both parties is deterministic, with all inputs sent from Fabit. Therefore, all messages
sent during the protocol can be anticipated (emulated) by S after S sending out the shares. This is
not always possible if A uses local random coins or if A has private inputs. This fact significantly
reduces the difficulty of the proof. Intuitively, S will be able to immediately catch A cheating by
comparing what it sends with what it would have sent (which S knows by locally emulating). The
majority of the work then is to extract A’s attempt to perform a selective failure attack.

Define a simulator S as follows.

0a. S interacts with FLand and obtains PA’s share of (〈x1 |x2〉, 〈y1 | y2〉, 〈z1 | z2〉). S also gets ∆A

from Fabit. S randomly picks ∆B and PB’s share of (〈x1 |x2〉, 〈y1 | y2〉, 〈z1 | z2〉) in a way that
makes it consistent with PA’s share. S now randomly picks d and computes [r]B := [z2]B⊕ d.

0b. Using values (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉) from both parties, S locally emulates all messages
sent by each party, namely (G1, d1, L1) sent by an honest PA and (G2, d2, L2) sent by an
honest PB.

1. S plays the role of Fabit and sends out (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉) as defined above.

2. S acts as an honest PB and receive G′1 sent by A. S computes P1 = G′1 ⊕G1.

3. S randomly picks a G2 and send it to A.

4. S acts as an honest PB and receives d′1. S computes p2 := d′1 ⊕ d1.

19

Protocol Πpre

Inputs: Two parties agree on a circuit for a function f : {0, 1}I1 × {0, 1}I2 → {0, 1}O.
Protocol:

1. Two parties initialize Fabit, which sends ∆A to PA and ∆B to PB.

2. For each wire w ∈ I1 ∪ I2 ∪W, two parties obtain an authenticated share 〈rw | sw〉 from
Fabit.

3. For each gate G = (α, β, γ,⊕), two parties compute 〈rγ | sγ〉 := 〈sα | rα〉 ⊕ 〈rβ | sβ〉.

4. For each gate G = (α, β, γ,∧), two parties have (〈rα | sα〉 , 〈rβ | sβ〉), and run step 2 to
step 5 in ΠLand to obtain 〈r∗γ | s∗γ〉, such that r∗γ ⊕ s∗γ = (rα ⊕ sα) ∧ (rβ ⊕ sβ)

5. PA and PB call FLand to obtain (B − 1)|C| number of leaky AND triples
(〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | z2〉).

6. Two parties perform secure coin-flipping to determine a random permutation and permute
the triples obtained in step 4. For each AND gate G = (α, β, γ,∧) in the circuit, perform
secure merging for B − 1 times.

(a) Obtain the next triple in the permuted list, namely (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | z2〉)
(b) Compute 〈d1 | d2〉 := 〈y1 | y2〉 ⊕ 〈rβ | sβ〉, and d := Open(〈d1 | d2〉).
(c) Update triple: 〈rα | sα〉 := 〈rα | sα〉 ⊕ 〈x1 |x2〉, 〈r∗γ | s∗γ〉 := 〈r∗γ | s∗γ〉 ⊕ 〈z1 | z2〉 ⊕

d 〈x1 |x2〉.

Figure 6: Protocol Πpre instantiating Fpre in the (Fabit, FLand)-hybrid model.

5. S plays the role of Feq and obtain L1. S computes P3 = L′1⊕L1. S sends (P1, p2, P3) to FLand

as the selective failure attack query. If FLand abort, S plays the role of Feq and aborts. If the
value d in the protocol equals to r defined in step 0a, Feq returns 0; otherwise Feq returns 1.

6. S sends (P1, p2, P3) to FLand as the selective failure query. If FLand returns fail, S sends 0 to
A as the output of Feq.

Note that messages that S sends to A in the protocol are changed from (G2, d2, L2) to (G2, d2 ⊕
x2lsb(P1), L2⊕x2P1⊕d′∆B), where d′ = p2⊕x2 · lsb(P1) and the equality checking in step 5 changed
from comparing L1 = L2 to

L1 ⊕ P3 = L2 ⊕ x2P1 ⊕ (p2 ⊕ x2lsb(P1)) ∆B,

that is
P3 ⊕ x2P1 = (p2 ⊕ x2lsb(P1)) ∆B.

This is the same form as the selective failure query in FLand.

20

One-way Communication (Max) Two-way Communication

Ind. Dep. Online Total Ind. Dep. Online Total
(MB) (MB) (KB) (MB) (MB) (MB) (KB) (MB)

Single execution

[NST17] 15 0.22 16 15 15 0.22 16 15
[WRK17a] 2.9 0.57 4.9 3.4 5.7 0.57 6.0 6.3
[HIV17] - 3.4 ≥ 4.9 3.4 - 3.4 ≥ 4.9 3.4

This work, v. 1 1.9 0.33 5.0 2.2 3.8 0.33 5.0 4.2
This work, v. 2 2.5 0.22 5.0 2.7 4.9 0.22 5.0 5.1

Amortized cost over 1024 executions

[RR16] - 1.6 17 1.6 - 3.2 17 3.2
[NST17] 6.4 0.22 16 6.6 6.4 0.22 16 6.6
[KNR+17] - 1.6 19 1.6 - 1.6 19 1.6
[WRK17a] 2.0 0.57 4.9 2.6 4.0 0.57 6.0 4.6

This work, v. 1 1.4 0.33 5.0 1.7 2.7 0.33 5.0 3.1
This work, v. 2 1.9 0.22 5.0 2.1 3.8 0.22 5.0 4.0

Table 2: Communication complexity of different protocols for evaluating AES, rounded
to two significant figures. As in Table 1, one-way communication refers to the maximum
communication one party sends to the other; two-way communication refers to the sum of both
parties’ communication. The best prior number in each column is bolded for reference.

5.2 Improved Function-Dependent Preprocessing

In this section, we will focus on improving the preprocessing in the Leaky AND triple generation
(FLand) hybrid model. The main observation is that in the protocol of WRK, each wire is associated
with a mask (in the authenticated share format). Then the AND of input masks are computed
using one AND triple. This is a waste of randomness, since we also directly construct all triples in
place for all wires. Note that the idea is similar to Araki et al. [ABF+17]. The detailed protocol is
presented in Figure 6

Note that although the above optimization aims to reduce the overall cost of the protocol,
but it turns out that even in this case, most of the computation and communication (including
computation of all authenticated bits as well as all leaky-AND triples in step 5) can be still done
in the function-independent phase. The function-dependent cost is increased by only κ bits per
AND gate only. Therefore, here we have an option to trade-off between total communication and
communication in the offline stage. By increasing the function-dependent cost by κ bits per gate,
we reduce bucket size by 1. We believe both versions can be useful depending on the application,
and the concrete cost of both versions of the protocol are presented in the performance section.

6 Performance

In this section, we discuss the concrete efficiency of our protocol. We consider two variants of our
protocol that optimize the cost of different phases: The first version of our protocol is optimized to
minimize the total communication; the second version is optimized to minimize the communication
in the function-dependent phase. (The cost of the online phase is identical in both versions.)

21

Ind. Dep. Online Total

WRK 10B 8 2 10B + 10
This work, v. 1 4B − 4 8 2 4B + 6
This work, v. 2 4B 4 2 4B + 6

Table 3: Number of H-evaluations. We align the security parameters in both protocols and set
B = ρ/ logC + 1 for a fair comparison.

6.1 Communication Complexity

Table 2 shows the communication complexity of recent two-party computation protocols in the
malicious setting. Numbers for these protocols are obtained from the respective papers, while
numbers for our protocol are calculated. We tabulate both one-way communication and total
communication. If parties’ data can be sent at the same time over a full-duplex network, then
one-way communication is a better reflection of the running time. In general, for a circuit that
requires a bucket size of B, we can obtain an estimation of the concrete communication cost:
our first version has function dependent cost of 3κ per gate, and function independent cost of
(4B − 2)κ+ (3B − 1)ρ per gate; our second version has a function dependent cost of 2κ per gate,
and a function independent cost of (4B + 2)κ+ (3B + 2)ρ per gate.

We see that our protocol and the protocol by Nielsen et al. [NST17] are the only ones that,
considering the function-dependent phase and the online phase, have cost similar to that of the state-
of-the-art semi-honest garbled-circuit protocol. In other words, the overhead induced by malicious
security can be completely pushed to the preprocessing stage. Compared to the protocol by Nielsen et
al., we are able to reduce the communication in the preprocessing stage by 6× in the single-execution
setting, and by 3.4× in the amortized setting. Our protocol also has the best total communication
complexity in both settings, excepting the work of [RR16, KNR+17] which are 6% better but do
not support function-independent preprocessing.

6.2 Computational Complexity

Since the WRK protocol represents the state-of-the-art as far as implementations are concerned,
we compare the computational complexity of our protocol to theirs. We also include a comparison
to the more recent protocol by Hazay et al. [HIV17] (the HIV protocol), which has not yet been
implemented.

Comparing to the WRK protocol. Our protocol follows the same high-level approach as the
WRK protocol. Almost all H-evaluations in our protocol can be accelerated using fixed-key AES,
as done in [BHKR13]. We tabulate the number of H-evaluations for both protocols in Table 3.
Due to our improved FLand, we are able to achieve a 2–2.5× improvement.
Comparing to the HIV protocol. As noted by the authors, the HIV protocol has polylogarith-
mic computational overhead compared to semi-honest garbled circuits. This is due to their use of
the MPC-based zero-knowledge proof by Ames et al. [AHIV17]. On the other hand, in our protocol,
the computation is linear in the circuit size. Furthermore, almost all cryptographic operations in
our protocol can be accelerated using hardware AES instructions.

Taking an AES circuit as example, the ZK protocol by Ames et al. for a circuit of that size has

22

a prover running time of around 70 ms and a verifier running time of around 30 ms. Therefore,
even if we ignore the cost of computing and sending the garbled circuit, the oblivious transfers, and
other operations, the end-to-end running time of the HIV protocol will still be at least 100 ms. On
the other hand, the entire WRK protocol runs within 17 ms for the same circuit. As our protocol
results in at least a 2× improvement, our protocol will be at least an order of magnitude faster
than the HIV protocol.

7 Challenges in Extending to the Multi-Party Case

Wang et al. [WRK17b] have also shown how to extend their authenticated-garbling protocol to the
multi-party case. In this section, we discuss the challenges involved in applying our new techniques
to that setting. Note that Ben-Efraim et al. [BE17] recently proposed new techniques for multi-
party garbling, making it compatible with some of the half-gate optimizations. Despite being based
on half-gates, they still require 4 garbled rows per AND gate, and thus their work still leaves open
the question of reducing the communication complexity of the online phase in the multi-party case.

In the multi-party WRK protocol, there are n − 1 garbling parties and one evaluating party.
For each wire, each garbler chooses their own set of wire labels (called “subkeys”). As in the 2-
party case, the preprocessing defines some authenticated bits, and as a result all parties can locally
compute additive shares of any garbler’s subkey corresponding to any authenticated value.

In each gate, each garbler Pi generates standard Yao garbled gate consisting of 4 rows. Each
row of Pi’s gate is encrypted by only Pi’s subkeys, and the payload of the row is Pi’s shares of all
garblers’ subkeys. That way, the evaluator can decrypt the correct row of everyone’s garbled gates,
obtain everyone’s shares of everyone’s subkeys, and combine them to get everyone’s appropriate
subkey for the output wire.

Now suppose we modify things so each garbler generates a half-gates-style garbled gate instead
of a standard Yao garbled gate. The half-gate uses garbler Pi’s subkeys as its “keys” and encodes
Pi’s shares of all subkeys as its “payloads”. Now the protocol may not be secure against an
adversary corrupting the evaluator and a garbler. In particular, half-gates garbling defines G0 =
H(Lα,0)⊕H(Lα,1)⊕λβ∆. When Pi is acting as garbler, these Lα,u values correspond to Pi’s subkeys.
Now suppose Pi colludes with the evaluator. If the evaluator comes to learn G0 (which is necessary
to evaluate the gate in half of the cases), then the adversary can learn the secret mask λβ since
it is the only unknown term in G0. Clearly revealing the secret wire mask breaks the privacy of
the protocol. This is not a problem with Yao garbled gates, where each row can be written as
Gu,v = H(Lα,u, Lβ,v)⊕ [payload already known to garbler]. The secret masks do not appear in the
garbled table, except indirectly through the payloads (subkey shares).

It is even unclear if row-reduction can be made possible. In the multi-party setting, the garbler
has no control over the “payload” (i.e., output wire label) of the garbled gate when using row-
reduction. Indeed, this is what makes it possible to reduce the size of a garbled gate. This is not
a problem in the two-party case, where there is only one garbler who has control over all garbled
gates and all wire labels. He generates a garbled table, and then computes his output wire label
(subkey) as a function of the payload in the table. However, in the multi-party case, Pi generates a
half-gate whose payloads include Pi’s shares of Pj ’s subkeys! We would need Pj ’s choice of subkeys
to depend on the payloads of Pi’s garbling (for all i and j!). It is not clear how this can be done,
and even if it were possible it would apparently require additional rounds proportional to the depth
of the circuit.

23

Acknowledgments

This material is based on work supported by NSF awards #1111599, #1563722, #1564088, and
#1617197. Portions of this work were also supported by DARPA and SPAWAR under contract
N66001-15-C-4065. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes not withstanding any copyright notation thereon. The views, opinions,
and/or findings expressed are those of the authors and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S. Government.

References

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof,
Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority MPC
for malicious adversaries - breaking the 1 billion-gate per second barrier. In 2017 IEEE
Symposium on Security and Privacy, pages 843–862, San Jose, CA, USA, May 22–26,
2017. IEEE Computer Society Press.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In ACM CCS
17, pages 2087–2104. ACM Press, 2017.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 387–404, Copenhagen, Den-
mark, May 11–15, 2014. Springer, Heidelberg, Germany.

[BE17] Aner Ben-Efraim. On multiparty garbling of arithmetic circuits. Cryptology ePrint
Archive, Report 2017/1186, 2017. https://eprint.iacr.org/2017/1186.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 420–432, Santa Barbara,
CA, USA, August 11–15, 1992. Springer, Heidelberg, Germany.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and Pri-
vacy, pages 478–492, Berkeley, CA, USA, May 19–22, 2013. IEEE Computer Society
Press.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols. In Proceedings of the twenty-second annual ACM symposium on Theory of
computing, pages 503–513. ACM, 1990.

[Bra13] Lúıs T. A. N. Brandão. Secure two-party computation with reusable bit-commitments,
via a cut-and-choose with forge-and-lose technique - (extended abstract). In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 441–463, Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Germany.

24

https://eprint.iacr.org/2017/1186

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662, Santa Barbara,
CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian
Nordholt, and Claudio Orlandi. MiniLEGO: Efficient secure two-party computation
from general assumptions. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 537–556, Athens, Greece, May 26–30,
2013. Springer, Heidelberg, Germany.

[GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits
under standard assumptions. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:,
editors, ACM CCS 15, pages 567–578, Denver, CO, USA, October 12–16, 2015. ACM
Press.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security 2011, 2011.

[HIV17] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Actively
secure garbled circuits with constant communication overhead in the plain model. In
TCC 2017, Part II, LNCS, pages 3–39. Springer, Heidelberg, Germany, March 2017.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computa-
tion using symmetric cut-and-choose. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 18–35, Santa Barbara, CA,
USA, August 18–22, 2013. Springer, Heidelberg, Germany.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J.
Malozemoff. Amortizing garbled circuits. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 458–475, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161,
Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible garbling
for XOR gates that beats free-XOR. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 440–457, Santa Barbara, CA,
USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[KNR+17] Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu, and Roberto Tri-
filetti. DUPLO: Unifying cut-and-choose for garbled circuits. In ACM CCS 17, pages
3–20. ACM Press, 2017.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.

25

Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP, Part II, vol-
ume 5126 of LNCS, pages 486–498, Reykjavik, Iceland, July 7–11, 2008. Springer,
Heidelberg, Germany.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation
with malicious adversaries. In USENIX Security 2012, 2012.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 1–17, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In Moni Naor, editor, EUROCRYPT 2007,
volume 4515 of LNCS, pages 52–78, Barcelona, Spain, May 20–24, 2007. Springer, Hei-
delberg, Germany.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose
oblivious transfer. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
329–346, Providence, RI, USA, March 28–30, 2011. Springer, Heidelberg, Germany.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 476–494, Santa Barbara, CA,
USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online setting with secu-
rity for malicious adversaries. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:,
editors, ACM CCS 15, pages 579–590, Denver, CO, USA, October 12–16, 2015. ACM
Press.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a secure two-
party computation system. In USENIX Security 2004, 2004.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 681–700, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg,
Germany.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 368–386. Springer,
Heidelberg, Germany, March 15–17, 2009.

[NO16] Jesper Buus Nielsen and Claudio Orlandi. Cross and clean: Amortized garbled circuits
with constant overhead. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part I, volume 9985 of LNCS, pages 582–603, Beijing, China, October 31 – November 3,
2016. Springer, Heidelberg, Germany.

26

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mech-
anism design. In 1st ACM Conference on Electronic Commerce, 1999.

[NST17] Jesper Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant-round maliciously
secure 2PC with function-independent preprocessing using LEGO. In Network and
Distributed System Security Symposium (NDSS), 2017.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure
two-party computation is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 250–267, Tokyo, Japan, December 6–10, 2009. Springer,
Heidelberg, Germany.

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with
online/offline dual execution. In USENIX Security 2016, 2016.

[SS11] Abhi Shelat and Chih-Hao Shen. Two-output secure computation with malicious ad-
versaries. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 386–405, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Germany.

[SS13] Abhi Shelat and Chih-Hao Shen. Fast two-party secure computation with minimal
assumptions. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 13, pages 523–534, Berlin, Germany, November 4–8, 2013. ACM Press.

[WMK17] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster secure two-party computa-
tion in the single-execution setting. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 399–424, Paris,
France, May 8–12, 2017. Springer, Heidelberg, Germany.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and effi-
cient maliciously secure two-party computation. In ACM CCS 17, pages 21–37. ACM
Press, 2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty
computation. In ACM CCS 17, pages 39–56. ACM Press, 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE
Computer Society Press.

[ZH17] Ruiyu Zhu and Yan Huang. JIMU: Faster LEGO-based secure computation using
additive homomorphic hashes. In ASIACRYPT 2017, Part II, LNCS, pages 529–572.
Springer, Heidelberg, Germany, December 2017.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250, Sofia,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

27

	Introduction
	Outline

	Background
	Overview of Our Optimizations
	Improving Authenticated Garbling
	Improving the Preprocessing Phase

	Technical Details: Improved Authenticated Garbling
	Proof of Security

	Technical Details: Improved Preprocessing
	Improved Leaky AND
	Improved Function-Dependent Preprocessing

	Performance
	Communication Complexity
	Computational Complexity

	Challenges in Extending to the Multi-Party Case

