
Threshold Multi-Key FHE and Applications to MPC

Saikrishna Badrinarayanan∗ Aayush Jain∗ Nathan Manohar∗ Amit Sahai∗

February 27, 2019

Abstract

In a multi-key FHE scheme (MFHE), first introduced by Lopez-Alt et. al. (STOC ’12), and
constructed by Clear-McGoldrick (CRYPTO ’15) and Mukherjee-Wichs (EUROCRYPT ’16),
any message encrypted using a public key pki can be “expanded” so that the resulting ciphertext
is encrypted with respect to a set of public keys (pk1, .., pkn). Such expanded ciphertexts can
be homomorphically evaluated with respect to any circuit to generate a ciphertext ct. Then,
this ciphertext ct can be partially decrypted using a secret key ski (corresponding to the public
key pki) to produce a partial decryption pi. Finally, these partial decryptions {pi}i∈[n] can be
combined to recover the output.

However, this definition of MFHE works only for n-out-of-n access structures and thus each
node in the system is a point of failure. In some cases, it may be useful to be able to decrypt
even when one only possesses a subset of partial decryptions (say t out of n). In order to
solve this problem, we introduce a new notion of multi-key FHE designed to handle arbitrary
access patterns that can reconstruct the output. We call it a threshold multi-key FHE scheme
(TMFHE). We give a formal definition and present a construction for any access structure given
by a monotone boolean formula, assuming LWE. Using TMFHE, we present two new results for
MPC:

• We revisit the mixed adversary model proposed by Fitzi et. al. (CRYPTO ’98, ASI-
ACRYPT ’99) and present a three-round MPC protocol in this model.

• We also achieve independently interesting consequences in the traditional MPC model.
We construct the first round-optimal (three rounds) MPC protocol in the plain model
(without a CRS) that achieves guaranteed output delivery (GOD) and is malicious-secure
in the presence of an honest majority of parties. Previously, Gordon et al. [CRYPTO’ 15]
constructed a three-round protocol that achieves GOD in the honest majority setting, but
required a CRS. They also showed that it is impossible to construct two-round protocols
for the same even in the presence of a CRS. Thus, our result is the first three-round GOD
protocol that does not require any trusted setup, and it is optimal in terms of round
complexity.

Furthermore, all of our above protocols have communication complexity proportional only
to the depth of the circuit being evaluated and are reusable.

∗UCLA and Center for Encrypted Functionalities. {saikrishna, aayushjain, nmanohar, sahai}@cs.ucla.edu.
Research supported in part from a DARPA/ARL SAFEWARE award, NSF Fron- tier Award 1413955, NSF grants
1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty
Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This ma- terial is
based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract
W911NF-15-C-0205. The views expressed are those of the authors and do not reflect the official policy or position of
the Department of Defense, the National Science Foundation, or the U.S. Government.

1

1 Introduction

Traditionally, encryption has been seen as a way to ensure confidentiality of a communication
channel between a unique sender and a unique receiver. However, with the emergence of cloud
computing, the notion of homomorphic encryption has seen tremendous growth. Starting with the
breakthrough work of Gentry [Gen09], Fully Homomorphic Encryption (FHE) has been extensively
studied over a long sequence of works [Gen09,BV11b,BV11a,BGV12,GSW13]. In an FHE scheme,
given a public key pk and a ciphertext of a message m encrypted using this public key, a user can
homomorphically evaluate this ciphertext with respect to any circuit C to generate a new ciphertext
ct that is an encryption of C(m) without learning anything about the message. Then, the decryptor,
using the secret key sk can decrypt this message to recover the output C(m). FHE schemes and
the techniques used to build them have given rise to several surprising applications in cryptography
such as in delegation [KRR14], multilinear maps [GGH13a], cryptographic obfuscation [GGH+13b]
and function secret sharing [BGG+17]. However, traditionally, FHE schemes are single-key in
nature: that is, they can be used to perform arbitrary computation on data encrypted using the
same public key.

Multi-Key FHE. Lopez-Alt et al. [LTV12] introduced the notion of Multi-Key Fully Homomor-
phic Encryption. Informally, in a multi-key FHE scheme, any message encrypted using a public key
pki can be “expanded” so that the resulting ciphertext is encrypted with respect to a set of public
keys (pk1, .., pkn). Such expanded ciphertexts can be homomorphically evaluated with respect to
any circuit to generate a ciphertext ct. Then, this ciphertext ct can be partially decrypted using
a secret key ski (corresponding to the public key pki) to produce a partial decryption pi. Finally,
these partial decryptions {pi}i∈[n] can be combined to recover the output. In addition to semantic
security of encryption, a multi-key FHE scheme also requires that given any expanded (and possibly
evaluated) ciphertext ct encrypting a message m, any set of (n − 1) secret keys {ski}i 6=i∗ for any
i∗, and the message m, it is possible to statistically simulate the partial decryption pi∗ . Multi-key
FHE has been extensively studied [CM15,MW16,PS16,BHP17] and has proven particularly useful
in the context of building round efficient secure multiparty computation protocols.

Threshold Multi-Key FHE. However, none of the existing multi-key FHE schemes enable the
output to be reconstructed unless all the n partial decryptions are given out and hence they only
“work” for n−out-of-n access structures. However, in some cases, it may be useful to be able to
decrypt even when one only possesses a subset of partial decryptions (say t out of n). In order
to solve this problem, we introduce a new notion of multi-key FHE designed to handle arbitrary
access patterns that can reconstruct the output. We call this new notion as Threshold Multi-Key
FHE.1

At first glance, it is not even clear how to define such a notion. The most direct approach
leads to a definition that is impossible to achieve. Consider for example the n/2-out-of-n access
structure. In this case, any evaluator can expand a ciphertext encrypting a message m with respect
to public key pkn to a ciphertext ct with respect to the set of public keys (pk1, ..., pkn). Then, the
evaluator can use secret keys sk1, .., skn/2 to learn the value of m, as the set {1 . . . , n/2} satisfies the
access structure. However, in doing so, an adversary can learn m without knowing skn, breaking

1We remark that in fact, some existing standard multi-key FHE schemes [MW16] also interchangeably used the
term threshold multi-key FHE for their primitive. We overload this term here to denote our stronger notion.

2

the semantic security of the encryption scheme with respect to (pkn, skn) and leading to a notion
that provides no security.

Although we seem to have arrived at a notion that is not meaningful at all, we note that
the issue with the above approach is that a ciphertext encrypted with respect to a public key
pk can be expanded to one encrypted with respect to many public keys. However, if we prevent
ciphertexts from being expanded, there is hope of achieving a meaningful notion. Expanding on
this idea, we arrive at the following (informal) definition. Any party can generate its own key
pair (pk, sk). Any encryptor can compute ct ← Encrypt(pk1, .., pkn,A,m). Given two (or more)
ciphertexts encrypted with respect to the same set of public keys and the same access structure A,
it is possible to homomorphically evaluate a circuit on these ciphertexts and partially decrypt the
resulting ciphertext using any secret key ski to recover a partial decryption pi. Given {pi}i∈B for
some B satisfying A, one can reconstruct the output. Roughly, we require two security guarantees
from the scheme.

1. Given {ski}i∈S for some S /∈ A,

Encrypt(pk1, . . . , pkn,A,m0) ≈c Encrypt(pk1, .., pkn,A,m1)

for any two equal length messages m0,m1.

2. Given a ciphertext ct for an underlying message m and {ski}i∈S for any maximally unqualified
set2 S /∈ A (for example (n/2 − 1) of the parties for the example above), it is possible to
statistically simulate a partial decryption pi for any i ∈ [n].

For technical reasons, we require a more nuanced security definition, and we refer the reader to
Section 4 for the details. In this work, we first formally define this new notion of Threshold
Multi-Key FHE and then show to construct the primitive from the Learning with Errors (LWE)
assumption. Formally, we show the following theorem:

Theorem 1 (Informal). Assuming LWE, there exists a secure threshold multi-key FHE scheme for
the class of access structures A induced by a monotone boolean formula.

In Section 2, we describe the techniques used in our construction. Our next contribution is two
applications of threshold multi-key FHE in the context of MPC.

1.1 Applications to round efficient MPC

Secure multi-party computation (MPC) [Yao82,Yao86,GMW87] has been a problem of fundamen-
tal interest in cryptography. In an MPC protocol, a set of mutually distrusting parties can evaluate
a function on their joint inputs while maintaining privacy of their respective inputs. Over the last
few decades, much of the work related to MPC has been devoted to achieving stronger security
guarantees and improving efficiency with respect to various parameters such as round complex-
ity and communication complexity. In this work, we further advance our understanding of this
landscape with threshold multi-key FHE being the main technical tool.

2By maximally unqualified set S, we mean that for any i ∈ [n] \ S, (S ∪ {i}) ∈ A. Similarly, a set S is minimally
qualified if for any i ∈ [S], (S \ {i}) /∈ A.

3

MPC with General Mixed Adversaries. In traditional MPC, every party is required to
remain online and participate completely in the protocol execution. This applies not only to
“classical” MPC protocols where every party has to participate and send a message in every round
of the protocol, but also to other interesting variants such as protocols in the client-server setting
where all the servers are required to remain active until the end of the protocol execution. We
refer the reader to Section 1.2 for a more detailed comparison with related works. In other words,
traditional MPC protocols decide to treat a “lazy” party that just aborts midway into the protocol
execution as a corrupt party that is colluding with the other corrupt parties, and this is addressed
in different ways. In some cases, all parties abort the protocol execution while in other cases, the
“lazy” party is just discarded and all the other parties compute the function on their joint inputs
alone. We believe that such an outlook is undesirable as there are several reasons why even an
honest party might have to abort and turn “lazy” during the execution of a protocol without having
to be deemed as colluding with the corrupt parties. A few potential reasons include:

• Connectivity - A party might lose connectivity and hence be unable to continue the protocol.

• Computational resources - A computationally weak party might be unable to perform inten-
sive computation and hence be forced to exit the protocol.

• Interest - At some point, a party might just lose interest in that protocol execution due to
other higher priority tasks that come up.

Motivated by the above realistic scenario, we study MPC in the presence of general mixed
adversaries introduced by Fitzi et al. [FHM98,FHM99]. In this setting, a general mixed adversary
A is allowed to corrupt three sets of parties (AMal,ASh,AFc) such that the following holds: (i)
The set of parties in AMal are maliciously corrupted meaning that the adversary can choose to
behave using any arbitrary polynomial time algorithm on behalf of each of them. (ii) The set of
parties in ASh are corrupted in a semi-honest manner and so the adversary is required to follow the
protocol execution honestly on behalf of each of them. (iii) The set of parties in AFc are corrupted
in a fail-corrupt manner meaning that for each party in this set, the adversary can specify when
that party is required to abort the protocol execution. Till then, these parties follow the protocol
execution honestly. Note that the adversary never gets to see the inputs or internal state of any
of the fail-corrupt parties and hence these parties capture our motivation of “honest but lazy”
parties - where their laziness is enforced by the adversary in the security game. We then construct
an MPC protocol that is secure against such a general mixed adversary. As a stepping stone to
that, we first consider the weaker setting of a semi-malicious mixed adversary that corrupts the
sets (ASm,ASh,AFc) of parties such that the first set of parties ASm is only corrupted in a semi-
malicious manner - that is, on behalf of each party in this set, the adversary can pick any arbitrary
randomness of its choice but using this randomness, the party is required to execute the protocol
honestly. We define this formally in the technical sections.

In this work, our goal is to build round efficient MPC protocols in this model. Prior to our work,
much of the focus in this model was to obtain feasibility results, understand under what corruption
patterns is secure computation even possible and to improve the communication complexity. To
the best of our understanding, the exact round complexity of MPC protocols in this model has not
been studied so far. We refer to Section 1.2 for a more detailed discussion on the prior work in this
model. In this work, we initiate the study of round-efficient MPC in the mixed adversary model by
constructing a three round MPC protocol in this setting. Formally, we show the following results:

4

Theorem 2 (Informal). Assuming learning with errors (LWE), for any function f , for any access
structure A induced by a monotone boolean formula, there exists a three-round MPC protocol in
the plain model that is secure against a semi-malicious mixed adversary A = (ASm,ASh,AFc) such
that (ASm ∪ ASh) /∈ A.

We bootstrap the above protocol to be secure against general mixed adversaries by further
assuming UC-secure non-interactive zero knowledge arguments (NIZKs) in the CRS model. We
know that UC-secure NIZKs can be constructed based on the existence of Zaps [GOS12]. Formally,
we get the following theorem:

Theorem 3 (Informal). Assuming LWE and Zaps, for any function f , for any access structure A

induced by a monotone boolean formula, there exists a three-round MPC protocol in the CRS model
that is secure against a general mixed adversary A = (AMal,ASh,AFc) such that (AMal∪ASh) /∈ A.

Hirt et al. [HMZ08] showed that in the setting of a general mixed adversary, MPC is possible if
and only if (2 × |AMal|+ |ASh|+ |AFc|) < N . Thus, by appropriately setting our access structure
A to satisfy this constraint, our resulting protocol is both optimal in terms of the best possible
corruption we can tolerate and also round efficient.

Also, note that if we set the access structure A to be the N out of N access structure, this will
give us a protocol in the standard MPC model against a malicious adversary that can corrupt up
to all but one of the parties.
Further, both the above protocols satisfy the following additional salient features:

• Depth-Proportional Communication Complexity: For any function f , the communi-
cation complexity of the protocol is poly(λ, d,N, ℓinp) where N is the number of parties, λ is
the security parameter, ℓinp is the input length for each party, d is the depth of the circuit
computing f .

• Reusability: The computation phase of both protocols consists of only a single round and
can be reused across an unbounded polynomial number of executions to compute different
functions on the same fixed joint inputs of all the parties.

• Robustness: Additionally, our protocol enjoys the property that the output of the com-
putation is a function of the joint inputs of all parties, including those that aborted after
a “certain point” - our protocol is divided into two phases - an input commitment phase
and a computation phase and we refer to the end of the input commitment phase as this
point. That is, in the scenario where the adversary corrupts a set of parties in a fail-corrupt
manner, for every fail-corrupt party Pi that aborts after the input commitment phase, its
input yi that is used to compute the final output C(y1, . . . , yn) is set to be its actual input
xi used in the protocol so far and not a default input ⊥. Recall that this is in line with our
original motivation where we wish to not discard lazy but honest parties and deem them to
be corrupt.

Traditional MPC: Guaranteed Output Delivery. Guaranteed output delivery is a funda-
mental property in the study of secure multiparty computation. Informally, a protocol is said to
possess this property if, at the end of the protocol execution, no matter the behavior of the ad-
versary, the honest parties can still compute the output of the function on all their joint inputs

5

(with either a default or the actual input for each of the malicious parties). In our next appli-
cation, we focus on the problem of constructing malicious-secure MPC protocols in the standard
model that achieve guaranteed output delivery (and hence fairness). Several works over the last
few decades [BOGW88, Cle86,GIKR02,DI05, AJLA+12, CL14,GLS15] have studied this problem
and we refer to the related work section for a more detailed list. Cleve [Cle86] showed that we
cannot construct fair MPC protocols unless there are an honest majority of parties. Therefore, we
restrict attention to this scenario. Gordon et al. [GLS15] constructed a three-round MPC protocol
in the CRS model that achieves guaranteed output delivery in the presence of an honest majority.
Further, they showed that even in the CRS model, a two-round protocol for the same is impossible.
In this paper, we answer the following open problem:

“Can we construct a three-round MPC protocol in the plain model that achieves guaranteed output
delivery in the presence of an honest majority?”

Formally, we show the following theorem:

Theorem 4 (Informal). Assuming LWE and Zaps, for any function f , there exists a three-round
malicious-secure MPC protocol in the plain model that achieves guaranteed output delivery in the
presence of an honest majority.

Thus, our result is optimal in terms of the number of rounds and the absence of a trusted setup.

Additionally, as in the previous section, our protocol also allows for reusability of the third
round to compute several different functions and the communication complexity of the protocol
is only proportional to the depth of the function being computed. We remark that the protocol
of Gordon et al. [GLS15] also satisfies depth-proportional communication complexity but is not
reusable.

1.2 Related Work

Client-Server MPC. Secure computation in the client-server setting has been a widely studied
problem [FKN94,IK97,NPS99,DI05,BCD+09,IKP10,KMR11,CKKC13]. The key differences from
our model are the following: (i) in a client server setting, the identity of the server/servers and
clients are decided a priori. As a result, the parties who perform the computation (the servers)
are decided in advance while in our setting, any set of “non-lazy” parties can run the computation
phase. (ii) In the client server model, all the clients can essentially turn “lazy” after submitting
their messages to the server but we typically crucially require all the servers to take part in the
computation to receive meaningful output. Once again, this is different from our setting.

Dishonest Majority MPC in the Plain Model. A long sequence of works constructed
constant-round MPC protocols against dishonest majority based on a variety of assumptions and
techniques (see, e.g., [KO04, Pas04, PW10, Wee10, Goy11, GMPP16, ACJ17, BHP17, COSV17a,
COSV17b] [BGI+, JKKR17, BGJ+17, GKP17, BGJ+, HHPV17, BL18]). We stress that while the
exact round complexity of MPC in the dishonest majority setting has been extensively studied, it
is not clear or analyzed whether any of these protocols are also secure in the more general framework
of a general mixed adversary.

6

MPC with General Mixed Adversaries. Fitzi et al. [FHM98] introduced the notion of MPC
in the presence of a general mixed adversary. Starting with their work, a series of papers [FHM98,
FHM99, Hir01, IKLP06, BFH+08, HMZ08, ZHM09, SPCR09, Zik10] studied and established lower
bounds for corruption patterns under which MPC is feasible. Another line of work [CPA+08,
HT13,LO14] was focused on improving the communication complexity of MPC protocols for various
functionalities in the general mixed adversary setting with various corruption patterns.

MPC with Guaranteed Output Delivery. There have been a variety of prior works regard-
ing MPC with guaranteed output delivery and/or fairness in the broadcast model. [BOGW88]
constructed MPC protocols with fairness, and [CL14] studied the relationship between fairness and
guaranteed output delivery in MPC protocols. There have also been a variety of works constructing
MPC protocols with guaranteed output delivery. [DI05] constructed a three-round MPC protocol
with guaranteed output delivery that is secure against an adversary that can corrupt less than
one fifth of the parties. [AJLA+12] constructed five-round MPC protocols with guaranteed output
delivery secure against an adversary that corrupts a minority of parties from LWE and NIZKs.
Subsequently, Gordon et. al [GLS15] constructed a three-round MPC protocol with guaranteed
output delivery in the CRS model from LWE and NIZKs. Furthermore, [GLS15] showed that
achieving guaranteed output delivery in two rounds, even in the CRS model, is impossible. This
built upon a previous result [GIKR02] that had ruled out such protocols in the plain model when
the adversary can corrupt more than a single party.

Concurrent Work. Recently, in an independent and concurrent work, Ananth et. al [ACGJ18]
also constructed a three-round MPC protocol with guaranteed output delivery in the plain model.
The techniques differ from ours, and their construction is from PKE and Zaps, while ours is from
LWE and Zaps. However, our construction also has depth-proportional communication and is
reusable, properties not present in their scheme.

2 Technical Overview

We first describe the challenges involved in defining and constructing our new primitive of threshold
multi-key FHE in the next subsection. This is followed by the techniques involved in the applications
to round-efficient MPC protocols in the subsequent subsections.

2.1 Threshold Multi-Key FHE (TMFHE)

In order to construct TMFHE, one could try many approaches to build on top of existing multi-key
FHE schemes. For example, one could try the following. Given any set of public keys (pk1, .., pkn),
generate ciphertexts ctS ← Encrypt({pki}i∈S ,m) for all minimally valid sets S ∈ A. However, such
an approach is not feasible for access structures such as n/2−out-of-n as then the encryptor has to
compute encryptions for roughly

(n
n/2

)
subsets, which is super-polynomial.

To overcome this limitation, we use the tool of threshold FHE introduced in the work of Boneh
et al. [BGG+17]. In a threshold FHE scheme, the setup algorithm samples a single public key fpk

and n secret key shares (fsk1, .., fskn) for a secret key fsk that are shared according to the access
structure A. Using the public key fpk, an encryptor can encrypt a message m to receive a ciphertext
ct (which may be evaluated). This ciphertext can then be partially decrypted independently using

7

key shares ski to compute a partial decryption pi. Then using these {pi}i∈S for any set S ∈ A, one
can recover m. Security properties are two fold:

• Given {ski}i∈S for some S /∈ A, Encrypt(pk,A,m0) ≈c Encrypt(pk,A,m1) for any two equal
length messages m0,m1.

• Second, given a ciphertext ct with underlying message m and {ski}i∈S for any maximally
unqualified S /∈ A, it is possible to statistically simulate partial decryptions pi for any i ∈ [n].

We make the following useful observations about threshold FHE which will aid us in our con-
struction.

1. The setup algorithm of the scheme of [BGG+17] first samples (pk, sk)← FHE.Setup(1λ) and
then secret shares sk according to the access structure using a “special purpose” secret sharing
scheme to compute shares (sk1, .., skn) so that the reconstruction involves just addition of
some subset of shares. Looking ahead to the security proof, this feature allows us to easily
simulate partial decryptions.

2. The encryption procedure just involves encrypting the message m using an underlying FHE

scheme.

3. The underlying FHE scheme can be instantiated using most of the known homomorphic
encryption schemes satisfying a few general properties.

Thus, we observe that, in particular, the multi-key FHE schemes of both [MW16,BHP17], can be
used to instantiate the underlying FHE scheme in threshold FHE. This can then be used to evaluate
on multiple ciphertexts encrypted with respect to different public keys - since, using multi-key FHE,
one can expand on various ciphertexts and evaluate jointly on them. However, at this point, it
is still not clear how to compute (or simulate) partial decryptions, especially since the threshold
FHE construction of [BGG+17] only handled underlying FHE schemes where the ciphertext was
encrypted with respect to a single public key. However, we observe the following property of the
multi-key FHE schemes of both [MW16,BHP17]. Suppose we have two ciphertexts, ct1 and ct2 that
are encrypted under public keys fpk1 and fpk2, respectively. In the multi-key FHE scheme, we can
expand these ciphertexts to ĉt1 and ĉt2, each encrypted under the set of public keys {fpk1, fpk2}.
If the secret keys corresponding to fpk1 and fpk2 are fsk1 and fsk2, respectively, then the secret key
for decryption of ĉt1 and ĉt2 (and any ciphertext computed by evaluating on these ciphertexts) is
[fsk1, fsk2]. In a standard threshold FHE scheme, the secret key would be secret shared across n
parties. For simplicity, assume that we secret share according to the n out of n access structure. Let
party i’s shares of fsk1 and fsk2 be denoted by fsk1,i and fsk2,i, respectively. Since the decryption
procedure of the multi-key FHE scheme is linear and the secret sharing of fsk1 and fsk2 is also
linear and, crucially, with respect to the same access structure, one could have party i partially
decrypt by running the decryption procedure of the multi-key FHE scheme using the secret key
[fsk1,i, fsk2,i]. Given these partial decryptions, one could combine them to recover the message by
adding them as specified by the reconstruction procedure of the secret sharing scheme.

The above gives intuition as to how one might construct threshold multi-key FHE, but several
points are still unclear. In particular, we noted that in order to achieve a meaningful notion, we
want an encryptor to encrypt with respect to a public key set and an access structure. The idea
is that the public key set that an encryptor encrypts with respect to is not a public key set of

8

the underlying MFHE scheme, but rather simply a set of public keys for a public-key encryption
scheme. These public keys serve as a means to send the corresponding multi-key FHE secret key
shares to the other parties. At a high level, encryption works by generating a multi-key FHE
public key fpk and secret key shares fsk1, . . . , fskn corresponding to the access structure A. The
encryptor then encrypts fski under pki and includes this in the ciphertext. This allows a set of
parties satisfying the access structure to use their secret keys ski of the public-key scheme to recover
the necessary fski’s to decrypt the ciphertext. Furthermore, as we noted above, standard multi-key
FHE expansion and evaluation will result in a ciphertext that can be decrypted by concatenating
the secret key shares for each of the ciphertexts.

The above discussion is highly simplified and is meant to provide the reader with some intuition
behind our construction. We ignored various subtle points and refer the reader to the main technical
sections for the details. As a consequence of our techniques, we are able to directly simulate partial
decryptions against an adversary that corrupts any set S 6∈ A, not only a maximally unqualified
one. The constructions of [MW16,BHP17] could only simulate against a maximally unqualified set
(N − 1 out of the N parties in their case) and relied on a transformation to achieve simulation
security against any unqualified corrupted set.

2.2 MPC against General Mixed Adversaries

Recall that a general mixed adversary is one which corrupts three sets of parties (AMal,ASh,AFc)
that behave as follows: the set of parties in AMal are completely malicious and can behave arbitrar-
ily as per the adversary’s choice, the set of parties in ASh are corrupted in a semi-honest manner
meaning that they are required to follow the protocol behavior correctly and the set of parties in
AFc are corrupted in a fail-corrupt manner meaning that for each party in this set, the adversary
can choose to abort the protocol execution at any point. Crucially, the adversary does not get to see
the internal state of any fail-corrupt party. Intuitively, we can imagine these fail-corrupt parties as
honest “lazy” parties whose aborting/laziness is controlled by the adversary. In this work, we focus
on the setting of static corruptions where the adversary is required to specify all three sets apriori.
Of course, note that for each fail-corrupt party, the adversary still has the luxury to determine
adaptively when each party is expected to abort.

Our three-round MPC protocol secure against a general mixed adversary follows the same recipe
as in the works of Mukherjee and Wichs [MW16] and Brakerski et al. [BHP17] who construct MPC
protocols from multi-key FHE. We adapt it to instead use the underlying system as a threshold
multi-key FHE scheme. Further, we will parameterize our protocol using an access structure A

which will be used to run the setup of the threshold multi-key FHE scheme. In our protocol, A
is used to identify/constrain the corruption pattern as follows. We will show that for any access
structure A, our protocol is secure secure against a general mixed adversary A = (AMal,ASh,AFc)
such that (AMal ∪ ASh) /∈ A.

Let’s first consider the simpler setting where the first set of corrupted parties AMal can only
be semi-malicious. That is, on behalf of each of them, the adversary can pick randomness of its
choice but the parties are required to follow the protocol behavior honestly using this randomness.
A more formal definition is given in Appendix B. The overall structure of our MPC protocol with
respect to any access structure is the following:

• In round 1, each party generates its parameters and public key for the threshold multi-key
FHE scheme.

9

• In round 2, each party individually encrypts its input with respect to the combined set of
public keys and access structure and broadcasts the ciphertext.

• All parties can now homomorphically compute a threshold multi-key FHE encryption of the
output, with respect to the functionality under consideration. Then, each party broadcasts a
partial decryption of the output using its secret key. The partial decryptions can be combined
to recover the output in plaintext.

It can be readily observed from the definition of threshold multi-key FHE that this protocol satisfies
correctness and security even in the presence of a general mixed adversary (with semi-malicious
corruptions), where some lazy honest parties could drop off from the protocol execution at any
point as determined by the fail-corrupt corruption.
One key difference from the previous works [MW16,BHP17] is the following: in the standard model
MPC protocols of [MW16,BHP17], due to the design of the multi-key FHE primitive, the protocol
is secure only against a semi-malicious adversary that corrupts all but one party. They then need to
transform it to a protocol that is secure against an adversary that can corrupt any arbitrary number
of parties up to all but one of them. In our MPC protocol, the security guarantee given by the
threshold multi-key FHE scheme allows us to prove a more general statement that our protocol is in
fact secure with respect to corruption of an arbritrary subset not satisfying the access pattern (given
by any monotone boolean access structure) in addition to any arbitrary collection of fail-corrupt
corruptions. In particular, if we consider an N out of N threshold access structure, our protocol
(without an additional transformation) is secure against an adversary that can semi-maliciously
corrupt any arbitrary subset of parties up to N − 1 of them.

Finally, using the standard transformation of adding UC-secure non-interactive zero knowledge
arguments (NIZKs), we achieve a MPC protocol secure even against general mixed adversaries with
malicious corruptions in the common reference string (CRS) model.

2.3 Standard MPC: Guaranteed Output Delivery

First, note that our three-round MPC protocol secure against general mixed adversaries in the
presence of a CRS is also secure in the standard MPC setting in the presence of an honest majority
by considering an adversary that doesn’t corrupt any party in a fail-corrupt manner and setting the
access structure of the corruption pattern (and hence, of the underlying threshold multi-key FHE
scheme) to be an honest majority threshold access structure. Further, observe that this protocol, in
the CRS model, in the honest majority setting, already achieves guaranteed output delivery! The
reason being that since the access structure is an ⌊N/2 + 1⌋ out of N threshold access structure
and there are no fail-corrupt parties, we have that all the honest parties together are in the access
structure of the underlying threshold multi-key FHE scheme by themselves and hence can compute
the output even if the adversary aborts midway. However, the big issue is that our protocol requires
a CRS to compute the NIZK arguments and we need to get rid of that to achieve a plain model
construction.

Round One: Malicious. To do so, the first crucial observation we make is that the underlying
semi-malicious protocol (without a NIZK) in the plain model, is already in fact secure against an
adversary that can behave maliciously only in the first round. The reason is that the first round
message, which consists of the adversary’s parameters for the threshold multi-key FHE scheme,

10

is simply a random matrix and a public key. To argue semi-malicious security, we only need the
following two properties:

• The honest parties’ matrices are generated uniformly at random.3

• The simulator, before the beginning of round three of the protocol, only needs to know
the randomness used by the adversary in the second round to generate its ciphertext. In
particular, the simulator does not need to know a corresponding secret key for the public key
sent by the adversary in round 1.

As a result, we did not require the input or randomness used by the adversary to generate its round
one messages, and hence our protocol is secure against an adversary that can behave maliciously
in round one.

Multi-String NIZK. Armed with the above property, we note that our protocol no longer needs
to prove correctness of round one messages using a NIZK. Therefore, we will use the first round
messages of all parties to try to collectively generate a valid CRS that can then be used to generate
the NIZKs and achieve a construction in the plain model. The notion of multi-string NIZKs,
introduced in the work of Groth and Ostrovsky [GO07] exactly fits this requirement. That is, in
a multi-string NIZK argument system, a set of parties can each generate one CRS that can then
be combined to compute one unified CRS which is used to compute NIZKs. The guarantee is that
as long as an honest majority of the individual CRS strings are honestly generated, the argument
system is correct and secure4

In our protocol, we can use this primitive as follows: in round 1, each party generates an
individual CRS for the multi-string NIZK system. At the end of round 1, all parties can combine
the above set of CRS strings to compute one unified CRS that can then be used to compute NIZKs.
Security of the multi-string NIZK system holds since we work in the honest majority setting and
thus we achieve a plain model construction.

3 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to denote the set
{1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions D0,D1 are computationally
indistinguishable. We use negl(λ) to denote a function that is negligible in λ. We use x ← A to
denote that x is the output of a randomized algorithm A, where the randomness of A is sampled
from the uniform distribution. We use PPT as an abbreviation for probabilistic polynomial-time.
Whenever we write {xj}j∈S for a set of parties S, we assume that the party j that xj corresponds
to is included in xj. When we say an error distribution is E-bounded, we mean that the errors are
in [−E,E].

3.1 Multi-Key Fully Homomorphic Encryption

Multi-key FHE was first introdcuced in [LTV12] and then constructed by [CM15,MW16,BHP17].
We recall the definition of a multi-key FHE in Appendix A.1. Our definition is inspired from [BHP17].

3This was a wonderful observation made in the work of Brakerski et al. [BHP17].
4As is the case with compiling semi-malicious protocols into malicious secure ones, we need the NIZK to be

zero-knowledge and simulation-extractable.

11

3.2 Multi-String NIZKs

In order to achieve malicious security in the plain model, we will make use of simulation-extractable
multi-string NIZKs [GO07]. We recall the definition of this primitive in Appendix A.2.

3.3 MPC with General Mixed Adversary

We formally define the notion of secure multiparty computation against a general mixed adversary
as define in the works of [FHM99,FHM98] in Appendix B.

3.4 Guaranteed Output Delivery

Consider N parties P1, . . . , PN each with inputs x1, . . . , xN respectively who wish to run an MPC
protocol π to securely evaluate a function f on their joint inputs. The protocol π is said to possess
the guaranteed output delivery property in the presence of a class of adversaries Adv, if for all
possible sets of inputs {x1, . . . , xN}, for any function f , the following holds: Let S denote the set
of honest parties. At the end of the execution of π, no matter the behavior of the adversary, each
honest party in S computes the same output f(y1, . . . , yn) where yi = xi for every honest party Pi

and yi = xi/⊥ for every corrupt party Pi.

3.5 Additional Preliminaries

In this work, we will also use results regarding statistical distance and secret sharing. Preliminaries
on these topics can be found in Appendix A.

4 Threshold Multi-Key FHE: Definition

In this section, we present the definition of threshold multi-key fully homomorphic encryption
(TMFHE) in the plain model with distributed setup5. TMFHE will be the main building block in
our MPC protocols.

Definition 1 (TMFHE). Let P = {P1, . . . , PN} be a set of parties and let S be a class of efficient
access structures on P . A threshold multi-key fully homomorphic encryption scheme supporting up
to N parties is a tuple of PPT algorithms

TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:

paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ, a circuit depth d, the
maximal number of parties N , and a party index i. It outputs the public parameters paramsi
associated with the ith party. We define params = params1|| . . . ||paramsN .

5Note that we can instead define TMFHE with a single trusted setup, which will allow us to construct MPC
protocols in the CRS model as in [MW16]. However, our main focus is on the plain model, and therefore, we use
decentralized setup as in [BHP17].

12

(pk, sk)← KeyGen(1λ): It takes as input the security parameter λ and outputs a key pair (pk, sk).

ct← Encrypt(params, pk1, . . . , pkN ,A,m): It takes as input the public parameters params, public
keys pk1, . . . , pkN , an access structure A over P and a plaintext m ∈ {0, 1}λ and outputs a
ciphertext ct. Throughout, we will assume that all ciphertexts include the public parameters
and the public keys and access structure that they are encrypted under.

ĉt← Eval(C, ct1, . . . , ctℓ): It takes as input a boolean circuit C : ({0, 1}λ)ℓ → {0, 1} ∈ Cλ of depth
≤ d and ciphertexts ct1, . . . , ctℓ for ℓ ≤ N . It outputs an evaluated ciphertext ĉt. Note that
N is the maximal number of supported parties.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an evaluated ciphertext ĉt
and outputs a partial decryption pi.

µ̂← FinDec(B): It takes as input a set B = {pi}i∈S for some S ⊆ {P1, . . . , PN} where we recall that
we identify a party Pi with its index i. It deterministically outputs a plaintext µ̂ ∈ {0, 1,⊥}.

We require that for any parameters {paramsi ← DistSetup(1λ, 1d, 1N , i)}i∈[N], any key pairs

{(pki, ski)← KeyGen(1λ)}i∈[N], any supported access structure A over P , any plaintexts m1, . . . ,mℓ ∈

{0, 1}λ for ℓ ≤ N , and any boolean circuit C : ({0, 1}λ)ℓ → {0, 1} ∈ Cλ of depth ≤ d, the following
is satisfied:

Correctness. Let cti = Encrypt(params, pk1, . . . , pkN ,A,mi) for 1 ≤ i ≤ ℓ, ĉt = Eval(C, ct1, . . . , ctℓ),
and B = {PartDec(i, ski, ĉt)}i∈S. With all but negligible probability in λ over the coins of
DistSetup, KeyGen, Encrypt, and PartDec,

FinDec(B) =

{
C(m1, . . . ,mℓ), S ∈ A

⊥ S 6∈ A.

Compactness of Ciphertexts. There exists a polynomial, poly, such that |ct| ≤ poly(λ, d,N) for
any ciphertext ct generated from the algorithms of TMFHE.

Simulation Security. There exists a stateful PPT algorithms Sim1,Sim2 such that for any PPT
adversary A, we have that the experiments ExptA,Real(1

λ, 1d, 1n) and ExptA,Sim(1
λ, 1d, 1n) as

defined below are statistically close as a function of λ over the coins of all the algorithms.
The experiments are defined as follows:

ExptA,Real(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N] and
an access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The adversary is given
{pki}i 6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used
to generate (pki, ski) or ⊥.

13

4. Let Sparams ⊆ [N] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈ {0, 1}

λ and a set
L ⊆ Sparams\S1 of indices with |L| = ℓ for some ℓ ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni) to obtain (pki, ski)i∈S1
. Let PK = {pki}i∈Sparams . Let A′ be the

restriction of A to the parties in Sparams. The adversary is given cti ← Enc(params,
PK,A′,mi) for i ∈ L.

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i)

is defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i). Let Sct ⊆ Sparams be the set of

indices for which cti is defined.

7. The adversary issues polynomially many queries of the form
(S′

k, Sct,k, Ck : ({0, 1}λ)sk → {0, 1}), where S′
k ⊆ Sparams\S1, Sct,k ⊆ Sct, Ck ∈ C, and

sk = |Sct,k| ≤ |Sct|. Let CT k = {cti}i∈Sct,k
and let the evaluated ciphertext be ĉtk ←

Eval(Ck, CT k). After each query, the adversary receives pi,k ← PartDec(i, ski, ĉtk)
for all i ∈ S′

k.

8. A outputs out. The output of the experiment is out.

ExptA,Sim(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N] and
an access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The adversary is given
{pki}i 6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used
to generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈ {0, 1}

λ and a set
L ⊆ Sparams\S1 of indices with |L| = ℓ for some ℓ ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni) to obtain (pki, ski)i∈S1
. Let PK = {pki}i∈Sparams . Let A′ be the

restriction of A to the parties in Sparams. Run ({cti}i∈L, state)← Sim1(params,PK,
A′, S1, L) and give {cti}i∈L to the adversary.

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i)

is defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i). Let Sct ⊆ Sparams be the set of

indices for which cti is defined.

7. The adversary issues polynomially many queries of the form
(S′

k, Sct,k, Ck : ({0, 1}λ)sk → {0, 1}), where S′
k ⊆ Sparams\S1, Sct,k ⊆ Sct, Ck ∈ C,

and sk = |Sct,k| ≤ |Sct|. Let CT k = {cti}i∈Sct,k
and let the evaluated ciphertext

be ĉtk ← Eval(Ck, CT k). After each query, the adversary receives {pi,k}i∈S′

k
←

Sim2(state, µk, ĉtk, S1, S
′
k, {ski}i∈S1

), where µk = Ck({mi}i∈Sct,k
) if S1∪S

′
k ∈ A′ and

µk = ⊥ otherwise.

14

8. A outputs out. The output of the experiment is out.

The above security notion is inspired by the simulation-security definitions of multi-key FHE [MW16,
BHP17]. However, looking ahead to our MPC protocol, we will need some stronger guarantees from
the TMFHE scheme. In our MPC protocol, the adversary is allowed to choose which honest parties
abort in each round and is rushing, so he is allowed to control the randomness of corrupted parties
as a function of the honest parties. We capture this by allowing the simulator of the TMFHE
scheme to be stateful. Additionally, since the adversary in MPC is rushing, it is allowed to see the
honest parameters/ciphertexts before it picks its parameters/ciphertexts.

5 Threshold Multi-Key FHE: Construction

In this section, we construct threshold multi-key FHE as defined in Section 4. Formally, we show
the following.

Theorem 5 (TMFHE). Assuming LWE, there exists a secure threshold multi-key FHE scheme for
the class of access structures {0, 1}-LSSSD. In particular, there exists a secure TMFHE scheme for
any access structure induced by a monotone boolean formula and any t out of N access structure.

We will construct threshold multi-key FHE using several ingredients. First, we will initialize
a multi-key FHE scheme using the construction in [BHP17]. Then, we will utilize the techniques
in the construction of threshold FHE in [JRS17], which shows how to transform a generic FHE
scheme satisfying several properties into a threshold FHE scheme. We observe that the multi-key
FHE construction of [BHP17] is “compatible” with the thresholdizing transformation described
in [JRS17]. Finally, we will need a public key encryption scheme to tie everything together.

Examining the construction of [JRS17], we note that it is compatible with a generic FHE scheme
where

1. The secret key sk is a vector in Zm
q for some prime q.

2. The decryption function Dec can be broken into two algorithms Dec0,Dec1 where Dec0(sk, ct)
computes a linear function in sk and ct to output µ ⌈q/2⌉ + e for some bounded error e ∈
[−E,E] with E << q, where ct is an encryption of µ. Dec1 then takes this resulting value
and rounds to recover µ.

We note that the construction of multi-key FHE in [BHP17] satisfies these required proper-
ties. Furthermore, it satisfies the following additional properties that will be useful to note in the
construction.

1. An evaluated ciphertext ĉt that encrypts a bit µ with respect to public keys pk1, . . . , pkℓ is a
matrix that satisfies

~s · ĉt ≈ µ~s ·G

for a gadget matrix G and ~s = (sk1|| . . . ||skℓ), where ski is the secret key corresponding to
public key pki. Each ski is of the form (si||1).

2. There exists a low-norm vector ~v such that G~v = (0, 0, . . . , ⌈q/2⌉)T . Decryption proceeds by
evaluating ~s · ĉt · ~v and then outputs 1 if the resulting value is closer to ⌈q/2⌉ than 0 and 0
otherwise.

15

Furthermore, [JRS17] shows the following result.

Theorem 6 ([JRS17]). For any access structure A on N parties induced by a monotone boolean
formula, there exists a {0, 1}-LSSSD scheme of a vector s ∈ Zm

q where each party P receives at
most w shares of the form si ∈ Zm

q for w = poly(N).

5.1 Construction

Let MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be a multi-key FHE scheme instanti-
ated with the construction in [BHP17]. Let PKE = (Setup,Enc,Dec) be a public-key encryption
scheme. Let χsm denote the uniform distribution on the interval [−Esm, Esm] for a value Esm to
be determined.

Our threshold multi-key FHE construction TMFHE is given as follows:

DistSetup(1λ, 1d, 1N , i): Run MFHE.DistSetup(1λ, 1d, 1N , i)→ paramsi and output paramsi.

KeyGen(1λ): Run PKE.Setup(1λ)→ (pk, sk) and output (pk, sk).

Encrypt(params, pk1, . . . , pkN ,A,m): RunMFHE.KeyGen(params)→ (fpk, fsk). Apply the {0, 1}-LSSSD
scheme associated with A to fsk to arrive at {fski,j}i∈[N],j∈[w] for some w = poly(N). Set
ct′ ← MFHE.Enc(fpk,m) and for i ∈ [N], set cti = PKE.Enc(pki, {fski,j}j∈[w]). Output

ct = (ct′, ct1, . . . , ctN).

Eval(C, ct1, . . . , ctℓ): Parse cti as (ct
′
i, cti,1, . . . , cti,N). Let fpki be the MFHE public key associated

with ct′i. Run MFHE.Eval(C, ct′1, . . . , ct
′
ℓ)→ ĉt

′
. Output

ĉt = (ĉt′, {cti,j}(i,j)∈[ℓ]×[N]).

PartDec(i, sk, ĉt): Parse ĉt as (ĉt′, {ctk,j}(k,j)∈[ℓ]×[N]). For every k ∈ [ℓ], run PKE.Dec(sk, ctk,i) →
{fskk,i,j}j∈[w]. For t ∈ [w], compute

(fsk1,i,t||fsk2,i,t|| . . . ||fskℓ,i,t) · ĉt′ · ~v + esmt → p′t,

where esmt ← χsm and ~v is the low-norm vector used for decryption in [BHP17] described
above. Output pi = (i, {p′t}t∈[w]).

FinDec(B): Parse B as {(i, {p′t}t∈[w])}i∈S for some set S of indices. If S 6∈ A, output ⊥. If S ∈ A,
apply the {0, 1}-LSSSD reconstruction to get ≈ µ̂ ⌈q/2⌉. Then, round to recover µ̂.

5.2 Correctness and Compactness

Correctness follows from the correctness of the underlying MFHE scheme and the {0, 1}-LSSSD
scheme. Let ĉt be a correctly generated evaluated ciphertext with MFHE ciphertext component ĉt′

and let B = {pi}i∈S = {PartDec(i, ski, ĉt)}i∈S for some set of parties S as specified in the definition
of correctness. If S 6∈ A, then FinDec(B) = ⊥ as desired. If S ∈ A, then by the correctness of the

16

{0, 1}-LSSSD reconstruction procedure, there exists some subset of shares that sum to the secret.
In other words, given {pi}i∈S = {(i, {p′i,t}t∈[w])}i∈S , there exist sets Wi ⊆ [w] such that

∑

i∈[N]

∑

t∈Wi

p′i,t = (fsk1||fsk2|| . . . ||fskN) · ĉt′ · ~v +
∑

i∈[N]

∑

t∈Wi

esmi,t .

Note that this reconstruction procedure works even with the concatenation of secrets and multi-
plying by ĉt′ because each of the fski’s is shared with respect to the same secret sharing scheme
and the reconstruction procedure is linear. This gives

µ ⌈q/2⌉ + e+
∑

i∈[N]

∑

t∈Wi

esmi,t ,

where e is the error incurred by the underlying MFHE scheme. If
∣∣∣∣∣∣
e+

∑

i∈[N]

∑

t∈Wi

esmi,t

∣∣∣∣∣∣
< q/4,

then rounding will correctly recover µ. Since e is sampled from an E-bounded distribution and
each esmi,t from an Esm-bounded one, if E +NwEsm < q/4, then correctness will be satisfied.

Compactness follows immediately from the construction and the compactness of the underlying
schemes.

5.3 Security

For notational simplicity, we will prove security in the game where the adversary only submits a
single circuit C. The proof naturally extends to the full definition where the adversary is allowed
to submit polynomially many circuits, due to the adaptive nature of the result in Proposition 1.
We make a note in the proof showing this extension. We will prove security via a series of hybrid
games. We use red text to denote the difference between the current hybrid and the previous
one. One thing to note is that in the security game, each party generates their parameters paramsi
with respect to the number of parties N . However, some parties may abort and not output any
parameters, which leads to encryption being done with respect to a set of parties of size N ′ ≤ N .
Therefore, it is necessary for parameters generated with respect to N parties to be able to be used
for encryptions with respect to N ′ parties. This is not an issue in our construction because we
observe that the paramsi of each party in the MFHE construction in [BHP17] and, therefore, also
in our TMFHE construction, are simply random matrices Ai of a size dependent on N . Therefore,
truncating the matrix to the appropriate size for a scheme with N ′ parties is equivalent to having
run the distributed setup algorithm for N ′ parties.

Hyb0 : This is the same as the “real” experiment. Namely,

Hyb0(1
λ, 1d, 1n) = ExptA,Real(1

λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N] and an
access structure A ∈ S over N parties such that S 6∈ A.

17

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈ {0, 1}

λ and a set L ⊆
Sparams\S1 of indices with |L| = ℓ for some ℓ ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni) to obtain (pki, ski)i∈S1
. Let PK = {pki}i∈Sparams . Let A′ be the

restriction of A to the parties in Sparams. The adversary is given cti ← Enc(params,PK,
A′,mi) for i ∈ L.

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′
ct ⊆ Sct

with C ∈ C and s = |S′
ct| ≤ |Sct|. Let CT = {cti}i∈S′

ct
and let the evaluated ciphertext

be ĉt← Eval(C, CT).

8. The adversary outputs a set S′ ⊆ Sparams\S1. For all i ∈ S′, the adversary is given
pi ← PartDec(i, ski, ĉt).

9. A outputs out. The output of the experiment is out.

Hyb1 : This is the same as Hyb0 except we expand the TMFHE encryption and partial decryption
procedures according to our construction.

Hyb1(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈ {0, 1}

λ and a set L ⊆
Sparams\S1 of indices with |L| = ℓ for some ℓ ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni) to obtain (pki, ski)i∈S1
. Let PK = {pki}i∈Sparams . Let A′ be the

restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to fski to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set

18

ct′i ← MFHE.Enc(fpki,mi) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]).
The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′
ct ⊆ Sct

with C ∈ C and s = |S′
ct| ≤ |Sct|. Let CT = {cti}i∈S′

ct
and let the evaluated ciphertext

be ĉt← Eval(C, CT).

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′

ct×Sparams). Define Sshares as the set of all the indices of the
secret shares corresponding to the parties in S1 under the secret sharing scheme as-
sociated with A′. Notationally, these are {(j, k)}j∈S1 ,k∈[w]. Define S′

shares in an analo-
gous manner for the set S′. For (i, j) ∈ S′

ct\L × S1, decrypt cti,j using skj to recover
{fski,j,k}i∈S′

ct\L,j∈S1,k∈[w]. For (j, k) ∈ S′
shares, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of indices in S′

ct. Then, for (j, k) ∈ S′
shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb2 : This is the same as Hyb1 except that for all i ∈ L, j 6∈ S1, we set the encrypted fski,j,k’s to
0. Note that these are the secret shares that the adversary is not able to recover.

Hyb2(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

19

4. Let Sparams ⊆ [N] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈ {0, 1}

λ and a set L ⊆
Sparams\S1 of indices with |L| = ℓ for some ℓ ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni) to obtain (pki, ski)i∈S1
. Let PK = {pki}i∈Sparams . Let A′ be the

restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to fski to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set
ct′i ← MFHE.Enc(fpki,mi) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if

j ∈ S1 and cti,j = PKE.Enc(pkj ,~0) if j 6∈ S1, where ~0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′
ct ⊆ Sct

with C ∈ C and s = |S′
ct| ≤ |Sct|. Let CT = {cti}i∈S′

ct
and let the evaluated ciphertext

be ĉt← Eval(C, CT).

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′
ct×Sparams). Define Sshares as the set of all the indices of the

secret shares corresponding to the parties in S1 under the secret sharing scheme as-
sociated with A′. Notationally, these are {(j, k)}j∈S1 ,k∈[w]. Define S′

shares in an analo-
gous manner for the set S′. For (i, j) ∈ S′

ct\L × S1, decrypt cti,j using skj to recover
{fski,j,k}i∈S′

ct\L,j∈S1,k∈[w]. For (j, k) ∈ S′
shares, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of indices in S′

ct. Then, for (j, k) ∈ S′
shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb3 : This is the same as Hyb2 except that for all j ∈ S′, the partial decryptions given to the
adversary are simulated.

Hyb3(1
λ, 1d, 1n):

20

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈ {0, 1}

λ and a set L ⊆
Sparams\S1 of indices with |L| = ℓ for some ℓ ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni) to obtain (pki, ski)i∈S1
. Let PK = {pki}i∈Sparams . Let A′ be the

restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to fski to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set
ct′i ← MFHE.Enc(fpki,mi) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if

j ∈ S1 and cti,j = PKE.Enc(pkj ,~0) if j 6∈ S1, where ~0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′
ct ⊆ Sct

with C ∈ C and s = |S′
ct| ≤ |Sct|. Let CT = {cti}i∈S′

ct
and let the evaluated ciphertext

be ĉt← Eval(C, CT).

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′

ct×Sparams). Define Sshares as the set of all the indices of the
secret shares corresponding to the parties in S1 under the secret sharing scheme asso-
ciated with A′. Notationally, these are {(j, k)}j∈S1 ,k∈[w]. Define S′

shares in an analogous
manner for the set S′. If S1 ∪ S

′ 6∈ A′, set Smax = Sshares ∪ S
′
shares. Else, set Smax to be a

maximally unqualified set of shares with Sshares ⊆ Smax ⊆ Sshares∪S
′
shares. If S1∪S

′ ∈ A′,
set µ = C({mi}i∈S′

ct
). Else, set µ = ⊥.

For (i, j) ∈ S′
ct\L× S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′

ct\L,j∈S1,k∈[w].

For (j, k) ∈ Smax, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of the indices in S′

ct. Then, for every (j, k) ∈ S′
shares\Smax, let Tj,k ⊆

Smax ∪ {(j, k)} be a minimal valid share set containing (j, k). Then, set

p̃j,k = µ ⌈q/2⌉ −
∑

(α,β)6=(j,k)∈Tj,k

p̃α,β.

21

Then, for (j, k) ∈ S′
shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb4 : This is the same as Hyb3 except that for all i ∈ L, the secret key shares are generated with
respect to 0 rather than fski.

Hyb4(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈ {0, 1}

λ and a set L ⊆
Sparams\S1 of indices with |L| = ℓ for some ℓ ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni) to obtain (pki, ski)i∈S1
. Let PK = {pki}i∈Sparams . Let A′ be the

restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to 0 to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set
ct′i ← MFHE.Enc(fpki,mi) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if

j ∈ S1 and cti,j = PKE.Enc(pkj ,~0) if j 6∈ S1, where ~0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′
ct ⊆ Sct

with C ∈ C and s = |S′
ct| ≤ |Sct|. Let CT = {cti}i∈S′

ct
and let the evaluated ciphertext

be ĉt← Eval(C, CT).

22

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′

ct×Sparams). Define Sshares as the set of all the indices of the
secret shares corresponding to the parties in S1 under the secret sharing scheme asso-
ciated with A′. Notationally, these are {(j, k)}j∈S1 ,k∈[w]. Define S′

shares in an analogous
manner for the set S′. If S1 ∪ S

′ 6∈ A′, set Smax = Sshares ∪ S
′
shares. Else, set Smax to be a

maximally unqualified set of shares with Sshares ⊆ Smax ⊆ Sshares∪S
′
shares. If S1∪S

′ ∈ A′,
set µ = C({mi}i∈S′

ct
). Else, set µ = ⊥.

For (i, j) ∈ S′
ct\L× S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′

ct\L,j∈S1,k∈[w].

For (j, k) ∈ Smax, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of the indices in S′

ct. Then, for every (j, k) ∈ S′
shares\Smax, let Tj,k ⊆

Smax ∪ {(j, k)} be a minimal valid share set containing (j, k). Then, set

p̃j,k = µ ⌈q/2⌉ −
∑

(α,β)6=(j,k)∈Tj,k

p̃α,β.

Then, for (j, k) ∈ S′
shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb5 : This is the same as Hyb4 except that for all i ∈ L, the ciphertexts given to the adversary
contain MFHE encryptions of 0 rather than mi.

Hyb5(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal number of
parties 1n, the adversary A outputs a number of parties N ≤ n, a set S ⊆ [N] and an
access structure A ∈ S over N parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is given {paramsi}i 6∈S .
Sample key pairs KeyGen(1λ)→ (pki, ski) for i 6∈ S. The adversary is given {pki}i 6∈S .

3. For each i ∈ S, the adversary either outputs paramsi and randomness rKeyGeni used to
generate (pki, ski) or ⊥.

4. Let Sparams ⊆ [N] be the set of parties Pi for which paramsi is defined and let S1 =
S ∩ Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈ {0, 1}

λ and a set L ⊆
Sparams\S1 of indices with |L| = ℓ for some ℓ ≤ |Sparams\S1|.

23

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For i ∈ S1, run

KeyGen(1λ; rKeyGeni) to obtain (pki, ski)i∈S1
. Let PK = {pki}i∈Sparams . Let A′ be the

restriction of A to the parties in Sparams.

For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret sharing scheme
associated with A′ to 0 to arrive at {fski,j,k}j∈Sparams,k∈[w] for some w = poly(n). Set

ct′i ← MFHE.Enc(fpki, 0
λ) and for j ∈ Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if

j ∈ S1 and cti,j = PKE.Enc(pkj ,~0) if j 6∈ S1, where ~0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i) for a message mi and

randomness used for encryption rEncrypti or ⊥. For the i ∈ S1 for which (mi, r
Encrypt
i) is

defined, set cti = Enc(params,PK,A′,mi; r
Encrypt
i). Let Sct ⊆ Sparams be the set of indices

for which cti is defined.

7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a subset S′
ct ⊆ Sct

with C ∈ C and s = |S′
ct| ≤ |Sct|. Let CT = {cti}i∈S′

ct
and let the evaluated ciphertext

be ĉt← Eval(C, CT).

8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′

ct×Sparams). Define Sshares as the set of all the indices of the
secret shares corresponding to the parties in S1 under the secret sharing scheme asso-
ciated with A′. Notationally, these are {(j, k)}j∈S1 ,k∈[w]. Define S′

shares in an analogous
manner for the set S′. If S1 ∪ S′ 6∈ A′, set Smax = Sshares ∪ S

′
shares. Else, set Smax to be a

maximally unqualified set of shares with Sshares ⊆ Smax ⊆ Sshares∪S
′
shares. If S1∪S

′ ∈ A′,
set µ = C({mi}i∈S′

ct
). Else, set µ = ⊥.

For (i, j) ∈ S′
ct\L× S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′

ct\L,j∈S1,k∈[w].

For (j, k) ∈ Smax, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· ~v,

where ~v is the low-norm vector used for decryption in [BHP17] and the Ii’s are the
ordered sequence of the indices in S′

ct. Then, for every (j, k) ∈ S′
shares\Smax, let Tj,k ⊆

Smax ∪ {(j, k)} be a minimal valid share set containing (j, k). Then, set

p̃j,k = µ ⌈q/2⌉ −
∑

(α,β)6=(j,k)∈Tj,k

p̃α,β.

Then, for (j, k) ∈ S′
shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

24

Simulator: Note that the simulator is implicit in Hyb5. Namely, Sim1 is the algorithm in Step
5 to generate the ciphertexts and Sim2 is the algorithm in Step 8 used to generate the partial
decryptions. The state passed from Sim1 to Sim2 is

state = {fski,j,k}i∈L,j∈Sparams,k∈[w],

the shares generated by Sim1 for these indices when secret sharing 0.

Remark 1. Note that although Sim2 is given {ski}i∈S1
, it only uses these secret keys to recover

{fski,j,k}i∈S′
ct\L,j∈S1,k∈[w]. If Sim2 was instead given {(mi, r

Encrypt
i)}i∈S′

ct\L
, it could simulate in the

same manner by using (mi, r
Encrypt
i)’s to run the adversary’s encryption computation and recover

the secret key shares {fski,j,k}i∈S′

ct\L,j∈S1,k∈[w]. This observation will be useful later when analyzing
the security of our maliciously-secure MPC protocol in the plain model.

Lemma 1. Hyb0 and Hyb1 are computationally indistinguishable.

Proof. These two hybrids are identical; we merely expanded the TMFHE encryption and partial
decryption procedures for an easier comparison with future hybrids.

Lemma 2. Hyb1 and Hyb2 are computationally indistinguishable.

Proof. This follows from the semantic security of the underlying public-key encryption scheme.
Suppose there was an adversary A that can distinguish between these two hybrids. Then, if we make
a sequence of intermediate hybrids, where we switch a single fski,j,k encryption to 0 in successive
hybrids, A can distinguish between two neighboring intermediate hybrids in this sequence. A′ can
break the semantic security of PKE by interacting with A according to these intermediate hybrids.
When it needs to either give an encryption of fski,j,k or 0, A′ submits these two messages to its
challenger and receives an encryption of one of them, which it feeds to A. If A can distinguish
between the intermediate hybrids, then A′ also can distinguish between an encryption of fski,j,k
and an encryption of 0, contradicting the security of PKE.

Lemma 3. Assuming E/Esm < negl(λ), then Hyb2 and Hyb3 are statistically indistinguishable.

Proof. The only difference in the adversary’s view between Hyb2 and Hyb3 is that in Hyb2, all the
partial decryptions for (j, k) ∈ S′

shares are generated using the real secret key shares, whereas in
Hyb3, the partial decryptions for (j, k) ∈ Smax∩S

′
shares are generated using the real secret key shares,

but the partial decryptions for (j, k) ∈ S′
shares\(Smax ∩ S′

shares) are simulated using µ. Therefore,
the distributions of p̃j,k and p′j,k for (j, k) ∈ Smax ∩ S′

shares in Hyb2 and Hyb3 are identical. For the
remaining (j, k) ∈ S′

shares, note that by the properties of a {0, 1}-LSSSD scheme and the linearity
of computing the p̃j,k’s, there exists a minimal valid share set Tj,k ⊆ Smax ∪ {(j, k)} such that

∑

(α,β)∈Tj,k

p̃α,β = µ ⌈q/2⌉+ e

for some E-bounded noise e. Therefore, it follows that

p̃j,k = µ ⌈q/2⌉+ e−
∑

(α,β)∈Tj,k\{(j,k)}

p̃α,β.

25

This is the value of the p̃j,k computed in Hyb2, whereas in Hyb3, the value is

p̃j,k = µ ⌈q/2⌉ −
∑

(α,β)∈Tj,k\{(j,k)}

p̃α,β.

Setting p̃j,k to be the value computed in Hyb3, it follows that in Hyb3, the adversary receives the
value

p̃j,k + esmj,k

and in Hyb2, the adversary receives the value

p̃j,k + e+ esmj,k

for esmj,k ← χsm uniformly at random for each (j, k) ∈ S′
shares. Since

(p̃j,k + e)− p̃j,k = e ∈ [−E,E],

it follows from Proposition 1 and Lemma 7 that the statistical distance between Hyb2 and Hyb3
is ≤ nwE/Esm ≤ poly(n)E/Esm = negl(λ). Note that the adaptive nature of the adversary
in Proposition 1 allows indistinguishability to extend to the case of multiple circuits, where the
adversary may choose the circuit queries adaptively.

Lemma 4. Hyb3 and Hyb4 are computationally indistinguishable.

Proof. This follows from the fact that the secret sharing scheme associated with A is information-
theoretically secure. In both Hyb3 and Hyb4, only shares associated with unqualified sets are
used. Since unqualified sets reveal no information about the secret, these two games must be
indistinguishable.

Lemma 5. Hyb4 and Hyb5 are computationally indistinguishable.

Proof. This follows from the semantic security of the underlying MFHE scheme. Suppose there is
an adversary A that can distinguish between these two hybrids. Then, consider a sequence of ℓ
intermediate hybrids where in neighboring hybrids, we switch one of the encryptions of mi to an
encryption of 0λ. There must exist two neighboring intermediate hybrids that A can distinguish
between. A′ can break the semantic security of the MFHE scheme by interacting with A according
to these hybrids. When A′ would need to generate an encryption of either mi or 0 depending on
which intermediate hybrid it is running, A′ submits mi and 0 as two messages to its challenger
and receives an encryption of one of them, which it uses to continue interacting with A. If A
can distinguish between these two hybrid, then A′ will be able to distinguish between MFHE
encryptions of mi and 0, contradicting the semantic security of MFHE.

5.4 Instantiation

In order for correctness to hold, we required that E+NwEsm < q/4. For security, we required that
NwE/Esm = negl(λ). Recall that w = poly(N). Let W = poly(N) be an upper bound for the set
of access structures supported by the scheme. Then, setting E/Esm < λ− log2 λ and Esm < q/8NW
gives us an instantiation that satisfies both correctness and security. The MFHE scheme of [BHP17]
can be instantiated with such properties assuming a variant of the learning with errors assumption,
which is as hard as approximating the shortest vector problem to within a subexponential factor.

26

6 Three-Round MPC with General Mixed Adversaries

In this section, we initiate the study of the exact round complexity of MPC in the presence of a
general mixed adversary by constructing a three round MPC protocol secure in this model, which
was defined in Appendix B. Our protocol supports all functionalities computable by polynomial-
sized circuits and is parameterized by an access structure A in the class {0, 1}-LSSSD. The protocol
is secure against all general mixed adversaries A = (AMal,ASh,AFc) such that (AMal ∪ASh) /∈ A

and there is no restriction on the set AFc. As a stepping stone, we first construct a protocol secure
against a semi-malicious mixed adversary (defined in Appendix B) with a similar access structure
requirement on the adversarial corruption pattern. Formally, we show the following results.

Theorem 7. Assuming LWE, for any access structure A ∈ {0, 1}-LSSSD, there exists a three-round
MPC protocol in the plain model for any functionality f computable by a polynomial-sized circuit
that is secure against a semi-malicious mixed adversary A = (ASm,ASh,AFc) such that (ASm ∪
ASh) /∈ A. Furthermore, the protocol is reusable and has communication complexity poly(λ, d,N),
where d is the depth of the circuit computing f .

From Theorem 7, we can apply UC-secure NIZKs [DSDCO+01,GOS12] to obtain the following
theorem.

Theorem 8. Assuming LWE and DLIN, for any access structure A ∈ {0, 1}-LSSSD, there exists
a three-round MPC protocol in the CRS model for any functionality f computable by a polynomial-
sized circuit that is secure against a general mixed adversary A = (AMal,ASh,AFc) such that
(AMal ∪ ASh) /∈ A. Furthermore, the protocol is reusable and has communication complexity
poly(λ, d,N), where d is the depth of the circuit computing f .

Hirt et al. [HMZ08] showed that in the setting of a general mixed adversary, MPC is possible if
and only if (2 × |AMal|+ |ASh|+ |AFc|) < N . Thus, by appropriately setting our access structure
A to satisfy this constraint, our resulting protocol is both optimal in terms of the best possible
corruption we can tolerate and also round efficient.

We note that our results in the mixed adversary setting are in fact broader and more general
than the setting of standard MPC. For example, instantiating Theorem 8 with the N out of N
access structure, we arrive at the following corollary below. Another instantiation would be to the
setting of honest majority when we consider the N

2 out of N access structure and we defer that to
the next section where it is explored in more detail.

Corollary 1. Assuming LWE and DLIN, there exists a three-round MPC protocol in the CRS
model for any functionality f computable by a polynomial-sized circuit that is secure against mali-
cious adversaries that corrupt up to N − 1 parties. Furthermore, the protocol is reusable and has
communication complexity poly(λ, d,N), where d is the depth of the circuit computing f .

6.1 Plain Model: Semi-Malicious Mixed Adversary

We first describe a three-round MPC protocol for any access structure A ∈ {0, 1}-LSSSD that is
secure against a semi-malicious mixed adversary A = (ASm,ASh,AFc) such that (ASm∪ASh) /∈ A.

27

6.1.1 Construction

Notation:

• Consider N parties P1, . . . , PN with inputs x1, . . . , xN , respectively, who wish to evaluate a
boolean circuit C with depth ≤ d on their joint inputs. Let λ denote the security parameter
and without loss of generality, assume |xi| = λ for all i ∈ [N].

• Let TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be the previously constructed
threshold multi-key FHE scheme. Let A be the agreed-upon access structure.

Protocol: We now describe the construction of our three-round MPC protocol Π that is secure
against a semi-malicious mixed adversary.

• Input Commitment Phase:

– Round 1: Each party Pi does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Output (paramsi, pki).

– Round 2: Each party Pi does the following:

1. Parse the message (if one was sent) from Pj as (paramsj , pkj). Let S1 ⊆ [N] be the
set of parties that sent a message in round 1.

2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|
6. Set params as

the concatenation of the truncated paramsj’s for j ∈ S1. Set PK = {pkj}j∈S1
. Let

A′ be the access structure induced by restricting A to the parties in S1.

3. Run TMFHE.Encrypt(params,PK,A′, xi) to compute cti.

4. Output cti.

• Computation Phase:

– Round 3: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as ctj . Let S2 ⊆ [N] be the
set of parties that sent a message in round 2. Let CT = {ctj}j∈S2

. Let C ′ be the
circuit induced by hardcoding the inputs to C corresponding to parties not in S2 to
be 0λ.

2. Run TMFHE.Eval(C ′, CT) to obtain ĉt.

3. Run TMFHE.PartDec(i, ski, ĉt) to obtain pi.

4. Output pi.

• Output Computation: Each party Pi does the following:

6Note that the paramsi of each party in the MFHE construction in [BHP17] and, therefore, also in our TMFHE
construction, are simply random matrices Ai of a size dependent on N . Therefore, truncating the matrix to the
appropriate size for a scheme with |S1| parties is equivalent to having run the distributed setup algorithm for |S1|
parties.

28

1. Parse the previous message (if one was sent) from Pj as pj. Let S3 ⊆ [N] be the set of
parties that sent a message in round 3.

2. Take any set S ⊆ S3 with S ∈ A and run TMFHE.FinDec(B) where B = {pj}j∈S to
recover µ̂. If no such set exists, output ⊥.

Correctness. Correctness follows immediately from the correctness of the underlying TMFHE
scheme. In particular, let S ⊆ [N] be the set of parties that finished the input commitment phase
and let S′ ⊆ S be the set of parties that finished the computation phase. Note that C ′({xi}i∈S) =
f(y1, . . . , yN) where yi = xi if i ∈ S and 0λ otherwise. Furthermore, if S′ ∈ A, then S′ ∈ A′ and
therefore running TMFHE.FinDec will correctly recover f(y1, . . . , yN) as desired.

6.2 Security

We will first give a description of the simulator and then argue indistinguishability between the
real and ideal worlds.

Simulator: The simulator Sim is given the security parameter λ and an auxiliary input z. Let f
be representable by a circuit C of depth ≤ d. Sim proceeds as follows:

• Before Protocol Execution: From the semi-malicious mixed adversary Adv, Sim receives
a tuple of sets (ASm,ASh,AFc) of corrupted parties.

• Input Commitment Phase (Round 1): For every fail-corrupt party that Adv wishes to
abort in this round, Sim instructs the corresponding party. For each honest and each fail-
corrupt party not yet instructed to abort, Pi, Sim does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to compute paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Give (paramsi, pki) as Pi’s round 1 message to Adv.

Sim then receives round 1 messages from Adv on behalf of every party in the sets ASm and
ASh.

• Input Commitment Phase (Round 2): For every fail-corrupt party that Adv wishes to
abort in this round, Sim instructs the corresponding party. Then, Sim parses the message (if
one was sent) from party Pj as (paramsj , pkj). Let S1 ⊆ [N] be the set of parties that sent
a message in round 1. It truncates each paramsj to the appropriate size for |S1| parties and
sets params as the concatenation of the truncated paramsj’s for all j ∈ S1. Let PK denote
{pkj}j∈S1

. Let A′ be the access structure induced by restricting A to the parties in S1. Let
S2
hon be the set of honest and fail-corrupt parties that send a message in round 2. Let S1

corr be
the set of corrupted (semi-malicious and semi-honest) parties that sent a message in round
1. Sim does the following:

1. Run Sim1(params,PK,A′, S1
corr, S

2
hon) to compute ({cti}i∈S2

hon
, state), where Sim1 is the

first algorithm of the TMFHE simulator.

2. Give cti as Pi’s round 2 message to Adv for i ∈ S2
hon.

29

Let S2 ⊆ [N] be the set of parties that sent a round 2 message. For semi-maliciously and
semi-honestly corrupted parties Pi in S2, Sim receives the input xi used by Adv and sends it
to the trusted party. For the fail-corrupt parties that already aborted, Sim sends 0λ to the
trusted party.

• Query to Ideal Functionality: Sim receives the output b from the trusted party.

• Computation Phase (Round 3): For every fail-corrupt party that Adv wishes to abort in
this round, Sim instructs the corresponding party. Let CT = {ctj}j∈S2

. Let C ′ be the circuit
induced by hardcoding the inputs to C corresponding to aborted fail-corrupt parties as 0λ.
Let S3

hon be the set of honest and fail-corrupt parties that have not yet been told to abort
in round 3 by Adv. For corrupted (semi-honest and semi-malicious) parties Pi in S1

corr, Sim
extracts the secret keys ski that they generated. Sim does the following

1. Run Sim2(state, b, ĉt, S
1
corr, S

2
hon, {ski}i∈S1

corr
) to compute {pj}j∈S2

hon
, where Sim2 is the

second algorithm of the TMFHE simulator and ĉt is the ciphertext obtain by evaluating
C ′ on the ciphertexts in CT .

2. For j ∈ S3
hon, give pj as Pj ’s round 3 message to Adv.

• Output to Honest Parties: Let S3 ⊆ [N] be the set of parties that sent a round 3 message.
If S3 ∈ A′, then Sim tells the trusted party to send b to all honest parties. If S3 6∈ A′, then
Sim does not give b to any honest party.

Lemma 6. For any semi-malicious mixed adversary Adv = (ASm,ASh,AFc), for the above simu-
lator Sim, for any (ASm ∪ ASh) 6∈ A,

|Pr[D(REALΠ,Adv(z)(λ, ~x)) = 1]− Pr[D(IDEALf,Sim(z)(λ, ~x)) = 1]| ≤ negl(λ)

for any PPT distinguisher D.

Proof. Suppose there was some semi-malicious mixed adversary Adv = (ASm,ASh,AFc) with
(ASm ∪ ASh) 6∈ A for which there existed a distinguisher D that could distinguish between the
real and ideal world experiments. Then, there exists an adversary Adv′ that could break the secu-
rity of the underlying TMFHE scheme. Adv′ proceeds as follows.

1. Adv′ runs Adv, which outputs a tuple of sets (ASm,ASh,AFc) of corrupted parties.

2. Adv outputs a set of fail-corrupt parties S1
inp ⊆ AFc that will abort in round 1 (they will never

send a message). Let Sparties = [N]\S1
inp and let N ′ = |Sparties|. Adv′ outputs N ′ ≤ N as its

number of parties, the corrupted set S = (ASm ∪ASh) ⊆ Sparties, and the access structure A′

induced by restricting A to the parties in Sparties.

3. For i ∈ Sparties\S, Adv
′ receives (paramsi, pki) and gives this to Adv as Pi’s round 1 message.

4. For each j ∈ S, Adv will output (paramsj , pkj). By running Adv, Adv′ is able to determine

the randomness rKeyGenj used by Adv to generate pkj and outputs (paramsj , r
KeyGen
j).

5. Let S2
hon be the set of honest and fail-corrupt parties that will send a round 2 message. Adv′

outputs this set along with the inputs xi ∈ {0, 1}
λ for i ∈ S2

hon. Adv
′ is given cti for i ∈ S2

hon

and gives this to Adv as Pi’s round 2 message.

30

6. By running Adv, Adv′ is able to extract the input xi and randomness rEncrypti used by Adv for

each i ∈ S. Adv′ outputs (xi, r
Encrypt
i) for all i ∈ S.

7. Let S2 = (S2
hon∪ASm∪ASh) be the set of parties that sent a round 2 message. Let C ′ be the

circuit induced by C by setting the input of all parties that did not send a round 2 message
to 0λ. Adv′ outputs C ′ along with S2.

8. Let S3
hon be the set of honest and fail-corrupt parties that send a round 3 message. Adv′

outputs S3
hon and receives partial decryptions pi for i ∈ S3

hon. Adv
′ gives these to Adv as Pi’s

round 3 message. Adv outputs some function of its view and Adv′ outputs the same value
along with {xi}i 6∈S .

If Adv′ is interacting with the real TMFHE security game, it simulates the real world experiment
for Π exactly for some fixed inputs. Similarly, if Adv′ is interacting with the simulated TMFHE
security game, it simulates the ideal world experiment for Π exactly. Therefore, the existence of Adv
would result in an adversary that could break the security of the TMFHE scheme, a contradiction.

6.3 Properties

Communication Complexity. To see that the protocol has communication complexity poly(λ, d,N),
note that the round 1 message is clearly of size poly(λ, d,N). So is the round 2 message due to the
compactness of the TMFHE scheme. Similarly, the size of ĉt is poly(λ, d,N) and, therefore, so too
is the partial decryption.

Reusability. Reusability means that given the transcript of the input commitment phase, the
computation phase can be run any polynomial number of times on different functions using the same
transcript for the input commitment phase to compute the different functionalities. Reusability
follows from the following:

1. The input commitment phase of Π is function-independent.

2. Our TMFHE simulator can simulate partial decryptions for a polynomial number of adap-
tively chosen circuit queries.

Robustness. Additionally, our protocol enjoys the property that the output of the computation is
a function of the joint inputs of all parties, including those that aborted after the input commitment
phase was completed. That is, in the scenario where the adversary corrupts a set of parties in a
fail-corrupt manner, for every fail-corrupt party Pi that aborts after the input commitment phase,
its input yi that is used to compute the final output C(y1, . . . , yn) is set to be its actual input xi
used in the protocol so far and not a default input ⊥. Recall that this is in line with our motivation
for studying this setting where an honest but lazy party is not entirely discarded and its input is
still considered in the computation if it aborted after the input commitment phase.

31

6.4 CRS Model: General Mixed Adversary

The MPC protocol described above in the plain model is only secure against semi-malicious
mixed adversaries. That is, the adversary can only corrupt some subset ASm of the parties semi-
maliciously, some subset ASh in a semi-honest manner and another subset AFc in a fail-corrupt
manner. However, our goal now is to allow the adversary to corrupt the first subset ASm mali-
ciously. That is, for each party in the set ASm, the adversary can behave arbitrarily while the
behaviour of the semi-honest and fail-corrupt corruptions remain unaffected.

Now, if we work in the common reference string (CRS) model, we can use UC-secure non-
interactive zero knowledge (NIZK) arguments [DSDCO+01,GOS12] to convert the protocol to one
that is secure against general mixed adversaries. That is, the NIZK would help to transform and
upgrade security against the semi-malicious set of parties ASm in the earlier protocol into one
that is secure even against an adversary that behaves maliciously on behalf of those parties. A
generic transformation was shown in [AJLA+12] to convert from a protocol where the adversary
only corrupts in a semi-malicious manner to one in which the adversary can corrupt maliciously,
and we refer the reader to their paper for full details. We note that their transformation trivially
extends to our setting as well - where the adversary can additionally also corrupt some set of parties
in a semi-honest manner and some in a fail-corrupt manner. Furthermore, the transformation does
not affect the communication complexity of the protocol since the statement being proved (and
witness length) is proportional only to the depth of the circuit being computed. Also, reusability
is also maintained since the CRS allows the NIZK to be reused. Similarly, the robustness property
also trivially extends.

7 MPC with Guaranteed Output Delivery

In this section, we construct a three-round honest-majority MPC protocol with fairness and guar-
anteed output delivery in the plain model that is secure against malicious adversaries. Informally,
by fairness, we mean that the adversary is unable to learn any output without the honest parties
also learning the output. By guaranteed output delivery, we mean that the honest parties will learn
some meaningful output with respect to their inputs regardless of the adversary’s behavior. Note
that guaranteed output delivery implies fairness. We refer to [Gol04] for the formal definitions. This
is the first construction of such a protocol in the plain model as previous constructions [GLS15]
operated in the common reference string (CRS) model. Furthermore, [Cle86] showed that achiev-
ing fairness and guaranteed output delivery is impossible without an honest majority and [GLS15]
showed that 2-round MPC protocols with fairness and guaranteed output delivery are impossible,
even in the CRS model. Therefore, our protocol is round-optimal and supports the maximal number
of corruptions possible to achieve guaranteed output delivery. Furthermore, our protocol inherits
the properties of the MPC protocol of Section 6 in that it has depth-proportional communication
as well as reusability of the first two rounds. Formally, we show the following.

Theorem 9. Assuming LWE and Zaps, there exists a three-round honest-majority MPC proto-
col with guaranteed output delivery in the plain model for any functionality f computable by a
polynomial-sized circuit and is secure against malicious adversaries. Furthermore, the protocol is
reusable and has communication complexity poly(λ, d,N), where d is the depth of the circuit com-
puting f , N is the number of parties and λ denotes the security parameter and input length.

32

In order to prove Theorem 9, we take the MPC protocol of Section 6 that is secure against a
semi-malicious mixed adversary and view it in the standard model with honest majority. That is,
we fix A to be the ⌊N/2 + 1⌋ out of N threshold access structure and restrict the adversary to
corrupt at most (⌊N/2 + 1⌋ − 1) parties semi-maliciously and no extra party is corrupted either
in a semi-honest or fail-corrupt manner. From Theorem 7, it follows immediately that such a
protocol is semi-malicious secure in the presence of an honest majority. Moreover, this protocol
will have guaranteed output delivery (and therefore also fairness) since the set of honest parties
always constitutes a majority and will satisfy A. However, we observe that if the underlying public-
key encryption scheme is such that any string is a valid public key (such schemes are called dense
cryptosystems [DSP92]), then the protocol is secure even against adversaries that are allowed to
behave maliciously in round 1, but only semi-maliciously in rounds 2 and 3. After noting this, we
are able to upgrade to security against malicious adversaries by utilizing multi-string NIZKs [GO07].
We simply have each party send a reference string crs in round 1 and then require each party to
also provide a NIZK argument in rounds 2 and 3 using these crs’s to ensure that they submitted a
valid message in that round.

7.1 Semi-Maliciously Secure MPC with Honest Majority

We first describe the three-round honest majority MPC protocol with fairness and guaranteed
output delivery that is secure against an adversary that behaves maliciously in round 1 and semi-
maliciously in rounds 2 and 3.

7.1.1 Construction

The construction is the same as the MPC protocol described in Section 6, except we now view it
in the standard model where there are no fail-corrupt or semi-honest corruptions. Furthermore, we
make the following changes.

1. In the instantiation of the TMFHE scheme used in the protocol, we use the previously con-
structed threshold multi-key FHE scheme from Section 5 with the underlying PKE scheme
instantiated with one where any string is a valid public key (a dense cryptosystem). Such a
PKE scheme can also be built from LWE.

2. We fix A as the ⌊N/2 + 1⌋ out of N threshold access structure.

Correctness, Communication Complexity, and Reusability. Correctness, depth-proportional
communication complexity, and reusability follow immediately from the properties of the protocol
in Section 6.

7.1.2 Security

Semi-malicious security is immediate as the protocol of Section 6 was secure against a stronger
semi-malicious general adversary that was also allowed to corrupt additional parties in a fail-
corrupt manner beyond the (⌊N/2 + 1⌋ − 1) semi-malicious corruptions. To see that the above
protocol is also secure against an adversary that can behave maliciously in round 1, we observe the
following. As shown previously, the protocol is able to handle an adversary that aborts some of its
parties in a fail-corrupt manner. Furthermore, since paramsi in the MFHE construction in [BHP17]

33

is simply a matrix Ai of random entries and every string pki is a valid public key, it follows that
every output of a malicious adversary could also have been output by a semi-malicious adversary
that chose the appropriate randomness (we can simply truncate the message or pad it with 0’s if
the malicious adversary sends a message of inappropriate length). The difference in the proof is

that the simulator does not receive the randomness rKeyGeni used by the adversary to compute the
round 1 message for a corrupted party and therefore does not receive ski for corrupted parties.
However, as we saw in Section 5.3, the simulator does not need to know ski. Rather, it suffices to
know (xi, r

Encrypt
i), the input and randomness used to compute a corrupted party’s round 2 message

in order to simulate. Therefore, an analogous simulator and proof can be used to show security
against this adversary.

7.2 Malicious Security

In this section, we show Theorem 9. Using a simulation-extractable multi-string NIZK in the plain
model, we are able to upgrade the previous MPC protocol to one that is secure against malicious
adversaries. Since the previous protocol was secure against a malicious adversary in round 1,
we can have each party send a reference string in the first round and then send a multi-string
NIZK argument in rounds 2 and 3 using the reference strings sent in round 1 to prove that the
messages sent were computed correctly. Recall from Section 3 that the security properties of a
multi-string NIZK argument hold as long as a majority of the individual reference strings were
generated honestly. Formally, the construction is as follows.

7.2.1 Construction

Notation:

• Consider N parties P1, . . . , PN with inputs x1, . . . , xN , respectively, who wish to evaluate a
boolean circuit C with depth ≤ d on their joint inputs. Let λ denote the security parameter
and without loss of generality, assume |xi| = λ for all i ∈ [N].

• Let TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be the previously constructed
threshold multi-key FHE scheme from Section 5 with the underlying PKE scheme instan-
tiated with one where any string is a valid public key (a dense cryptosystem). Let A be
the ⌊N/2 + 1⌋ out of N threshold access structure. Let NIZK = (Gen,Prove,Verify) be a
simulation-extractable multi-string NIZK.

Protocol: We now describe the construction of our three-round MPC protocol Π with guaran-
teed output delivery that is secure against malicious adversaries. To compare against our previous
protocol in Section 6, we highlight the changes in red.

• Round 1: Each party Pi does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Run NIZK.Gen(1λ) to compute crsi.

4. Output (paramsi, pki, crsi).

34

• Round 2: Each party Pi does the following:

1. Parse the message (if one was sent) from Pj as (paramsj, pkj , crsj) by appropriately
truncating or padding with 0’s if it was of incorrect length. Let S1 ⊆ [N] be the set of
parties that sent a message in round 1.

2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|. Set params as
the concatenation of the truncated paramsj ’s for j ∈ S1. Set PK = {pkj}j∈S1

. Let
CRS = {crsj}j∈S1

. Let A′ be the access structure induced by restricting A to the parties
in S1.

3. Sample randomness ri and run TMFHE.Encrypt(params,PK,A′, xi; ri) to compute cti.

4. Run NIZK.Prove(CRS, yi, (xi, ri)) to compute πi, where yi is the statement that there
exists some input x and randomness r such that
TMFHE.Encrypt(params,PK,A′, x; r) = cti.

5. Output (cti, πi).

• Round 3: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as (ctj , πj) and check that
NIZK.Verify(CRS , yj, πj) = 1. Let S2 ⊆ S1 be the set of parties that sent a message in
round 2 that passed the verification. Let CT = {ctj}j∈S2

. Let C ′ be the circuit induced
by hardcoding the inputs to C corresponding to parties not in S2 to be 0λ.

2. Run TMFHE.Eval(C ′, CT) to compute ĉt.

3. Sample randomness r′i and run TMFHE.PartDec(i, ski, ĉt; r
′
i) to compute pi.

4. Run NIZK.Prove(CRS, zi, (ski, r
′
i)) to compute π′

i, where zi is the statement that there
exists some randomness r, r′ such that TMFHE.KeyGen(1λ; r) = (pki, sk) and
TMFHE.PartDec(i, sk, ĉt; r′) = pi.

5. Output (pi, π
′
i).

• Output Computation: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as (pj , π
′
j) and check that

NIZK.Verify(CRS , zj , π
′
j) = 1. Let S3 ⊆ S2 be the set of parties that sent a message in

round 3 that passed verification.

2. Take any set S ⊆ S3 with S ∈ A′ and run TMFHE.FinDec(B) where B = {pj}j∈S to
recover µ̂. If no such set exists, output ⊥.

Correctness and Communication Complexity. Correctness follows from the correctness of
the protocol in Section 6 and perfect completeness of the multi-string NIZK. Depth-proportional
communication complexity follows from the fact that the communication complexity of the protocol
in Section 6 was poly(λ, d,N) and the size of the NIZK reference strings and proofs are poly(λ, d,N)
because the evaluated ciphertext can be computed publicly and the NIZK is only used to prove
correctness of encryption and partial decryption, which only depends on the depth of the function.

35

Fairness and Guaranteed Output Delivery. Guaranteed output delivery follows from the fact
that the underlying access structure is the ⌊N/2 + 1⌋ out of N majority threshold access structure
and the honest parties are always a majority. By soundness of the multi-string NIZK, an adversary
cannot cheat and submit an invalid ciphertext as its round 2 message since this message will be
discarded with overwhelming probability. The output recovered is the same as that in the protocol
of Section 6. Namely, they compute C(y1, . . . , yN) where yi = xi if Pi sent valid messages in rounds
1 and 2 and yi = 0λ otherwise.

7.2.2 Security

We provide a description of the simulator.

Simulator: The simulator Sim is given the security parameter λ and an auxiliary input z. Let
f be representable by a circuit C of depth ≤ d. Let ExtGen,Ext,SimProve be the extraction and
simulation algorithms associated with the simulation-extractable multi-string NIZK. Sim proceeds
as follows:

• Before Protocol Execution: Sim receives a set S ⊆ [N] of corrupted parties.

• Round 1: For each honest party Pi, Sim does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to compute paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Run ExtGen(1λ) to compute (crsi, τi, ξi).

4. Give (paramsi, pki, crsi) as Pi’s round 1 message to Adv.

Sim then receives round 1 messages from Adv.

• Round 2: Sim parses the message (if one was sent) from party Pj as (paramsj, pkj , crsj). Let
S1 ⊆ [N] be the set of parties that sent a message in round 1. It truncates each paramsj to
the appropriate size for |S1| parties and sets params as the concatenation of the truncated
paramsj ’s for all j ∈ S1. Let PK denote {pkj}j∈S1

. Let CRS denote {crsj}j∈S1
. Let A′ be the

access structure induced by restricting A to the parties in S1. Let Shon be the set of honest
parties. Let T = {τj}j∈Shon

. Let E = {ξj}j∈Shon
. Let S1

corr be the set of corrupted parties that
sent a message in round 1. Sim does the following:

1. Run Sim1(params,PK,A′, S1
corr, Shon) to obtain ({cti}i∈Shon

, state), where Sim1 is the first
algorithm of the TMFHE simulator.

2. For each honest party Pi, run SimProve(CRS, T, yi) to compute πi where yi is the state-
ment that there exists some input x and randomness r such that
TMFHE.Encrypt(params,PK,A′, x; r) = cti.

3. Give (cti, πi) as Pi’s round 2 message to Adv for i ∈ Shon.

• Query to Ideal Functionality:

36

1. Parse the round 2 message (if one was sent) from Pj as (ctj , πj) and check that
NIZK.Verify(CRS , yj, πj) = 1. Let S2 ⊆ S1 be the set of parties that sent a round 2 mes-
sage that passed verification. For corrupted parties Pj in S2, Sim runs Ext(CRS , E, yj , πj)
to extract a witness (xj , rj) used by Adv and sends xj to the trusted party as Pj ’s input.
For corrupted parties Pj that are not in S2, Sim sends 0λ to the trusted party.

2. Sim receives the output b from the trusted party.

• Round 3: Let CT = {ctj}j∈S2
. Let C ′ be the circuit induced by hardcoding the inputs to C

corresponding to parties not in S2 as 0λ. Let S2
corr be the set of corrupted parties that sent a

round 2 message that passed verification. Sim does the following

1. Run Sim2(state, b, ĉt, S
1
corr, Shon, {(xi, ri)}i∈S2

corr
) to obtain {pj}j∈Shon

, where Sim2 is the
second algorithm of the modified TMFHE simulator that uses the (xi, ri)’s of the cor-
rupted parties round 2 messages to simulate and ĉt is the evaluated ciphertext obtained
by evaluating C ′ on the ciphertexts in CT .

2. For j ∈ Shon, run SimProve(CRS , T, zj) to compute π′
j where zj is the statement that

there exists some randomness r, r′ such that
TMFHE.KeyGen(1λ; r) = (pkj , sk) and TMFHE.PartDec(j, sk, ĉt; r′) = pj.

3. For j ∈ Shon, give (pj, π
′
j) as Pj ’s round 3 message to Adv.

• Output to Honest Parties: Sim tells the trusted party to send b to all honest parties.

Security with respect to this simulator follows from the properties of the simulation-extractable
multi-string NIZK and the security of the underlying TMFHE scheme with respect to Sim1,Sim2.

Reusability. Reusability follows from the following:

1. The reusability of the protocol in Section 6.

2. The NIZK in round 3 can be generated afresh for different invocations of the protocol while
preserving security.

References

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek
Jain. Round-optimal secure multiparty computation with honest major-
ity. in CRYPTO 2018. Cryptology ePrint Archive, Report 2018/572, 2018.
https://eprint.iacr.org/2018/572.

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In CRYPTO, pages 468–499, 2017.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication,
computation and interaction via threshold fhe. In EUROCRYPT, 2012.

37

https://eprint.iacr.org/2018/572

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,
Jakob Pagter, Michael Schwartzbach, and Tomas Toft. Secure multiparty compu-
tation goes live. In Financial Cryptography and Data Security, Berlin, Heidelberg,
2009.

[Bei96] Amos Beimel. Phd thesis. Israel Institute of Technology, Technion, Haifa, Israel,,
1996.

[BFH+08] Zuzana Beerliová-Trub́ıniová, Matthias Fitzi, Martin Hirt, Ueli M. Maurer, and
Vassilis Zikas. MPC vs. SFE: perfect security in a unified corruption model. In
TCC, pages 231–250, 2008.

[BGG+17] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M.R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homo-
morphic encryption. IACR Cryptology ePrint Archive, 2017, 2017.

[BGI+] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay
Wadia. Two-message witness indistinguishability and secure computation in the
plain model from new assumptions. In ASIACRYPT.

[BGJ+] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dak-
shita Khurana, and Amit Sahai. Promise zero knowledge and its applications to
round optimal MPC. IACR Cryptology ePrint Archive, 2017:1088. In CRYPTO
2018.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and
Amit Sahai. Round optimal concurrent MPC via strong simulation. In TCC, pages
743–775, 2017.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In ITCS, pages 309–325, 2012.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure com-
putation without setup. In Theory of Cryptography, 2017.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round mpc from k-round ot via garbled
interactive circuits. EUROCRYPT, 2018.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In STOC, 1988.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In FOCS, pages 97–106, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-lwe and security for key dependent messages. In CRYPTO, pages 505–524,
2011.

[CKKC13] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid. Multi-client
non-interactive verifiable computation. In Theory of Cryptography, 2013.

38

[CL14] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure
multiparty computation. In ASIACRYPT, 2014.

[Cle86] R Cleve. Limits on the security of coin flips when half the processors are faulty. In
STOC, New York, NY, USA, 1986.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled fhe from
learning with errors. In CRYPTO, 2015.

[COSV17a] Michele Ciampi, Rafail Ostrovsky, Siniscalchi, and Ivan Visconti. Delayed-input
non-malleable zero knowledge and multi-party coin tossing in four rounds. In TCC,
2017.

[COSV17b] Michele Ciampi, Rafail Ostrovsky, Siniscalchi, and Ivan Visconti. Round-optimal
secure two-party computation from trapdoor permutations. In TCC, 2017.

[CPA+08] Ashish Choudhary, Arpita Patra, B. V. Ashwinkumar, K. Srinathan, and C. Pandu
Rangan. Perfectly reliable and secure communication tolerating static and mobile
mixed adversary. In ICITS, pages 137–155, 2008.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In CRYPTO, Berlin, Heidelberg, 2005.

[DSDCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor, Advances
in Cryptology — CRYPTO 2001, pages 566–598, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

[DSP92] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without inter-
action. In Proceedings of the 33rd Annual Symposium on Foundations of Computer
Science, SFCS ’92, pages 427–436, Washington, DC, USA, 1992. IEEE Computer
Society.

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy
in unconditional multi-party computation (extended abstract). In CRYPTO, pages
121–136, 1998.

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. General adversaries in uncondi-
tional multi-party computation. In ASIACRYPT, pages 232–246, 1999.

[FKN94] Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation
(extended abstract). In STOC, New York, NY, USA, 1994.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, pages 1–17, 2013.

39

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, pages 40–49. IEEE Computer Society, 2013.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure
multiparty computation. In CRYPTO, 2002.

[GKP17] Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. On the exact round com-
plexity of self-composable two-party computation. In EUROCRYPT, pages 194–224,
2017.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness
and guarantee of output delivery. In Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part II, pages 63–82, 2015.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou.
The exact round complexity of secure computation. In EUROCRYPT, pages 448–
476, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In STOC, pages 218–229. ACM, 1987.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Alfred
Menezes, editor, Advances in Cryptology - CRYPTO 2007, pages 323–341, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. J. ACM, 59(3):11:1–11:35, June 2012.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
STOC, 2011.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
CRYPTO, pages 75–92, 2013.

[HHPV17] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Round-optimal secure multi-party computation. 2017. In
CRYPTO 2018.

[Hir01] Martin Hirt. Multi party computation: efficient protocols, general adversaries, and
voting. PhD thesis, ETH Zurich, Zürich, Switzerland, 2001.

[HMZ08] Martin Hirt, Ueli M. Maurer, and Vassilis Zikas. MPC vs. SFE : Unconditional and
computational security. In ASIACRYPT, pages 1–18, 2008.

40

[HT13] Martin Hirt and Daniel Tschudi. Efficient general-adversary multi-party computa-
tion. In ASIACRYPT, pages 181–200, 2013.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with
applications. In ISTCS, Washington, DC, USA, 1997.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combin-
ing privacy with guaranteed output delivery in secure multiparty computation. In
CRYPTO, pages 483–500, 2006.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. In CRYPTO, Berlin, Heidelberg, 2010.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In CRYPTO,
pages 158–189, 2017.

[JRS17] Aayush Jain, Peter M. R. Rasmussen, and Amit Sahai. Threshold fully ho-
momorphic encryption. Cryptology ePrint Archive, Report 2017/257, 2017.
https://eprint.iacr.org/2017/257.

[KMR11] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-
party computation. Cryptology ePrint Archive, Report 2011/272, 2011.
https://eprint.iacr.org/2011/272.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In CRYPTO, pages 335–354, 2004.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In STOC, pages 485–494, 2014.

[LO14] Joshua Lampkins and Rafail Ostrovsky. Communication-efficient MPC for general
adversary structures. In SCN, pages 155–174, 2014.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC,
pages 1219–1234, 2012.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In
EUROCRYPT, 2011.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key fhe. In EUROCRYPT, 2016.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and
mechanism design. In EC, 1999.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, USA, June 13-16, 2004, pages 232–241, 2004.

41

https://eprint.iacr.org/2017/257
https://eprint.iacr.org/2011/272

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from lwe, revisited. In TCC Part
II, 2016.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from
sub-exponential one-way functions. In EUROCRYPT, pages 638–655, 2010.

[SPCR09] Kannan Srinathan, Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Un-
conditionally secure message transmission in arbitrary directed synchronous networks
tolerating generalized mixed adversary. In ASIACCS, pages 171–182, 2009.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability
amplification. In FOCS, pages 531–540, 2010.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS ’82, pages 160–164,
Washington, DC, USA, 1982. IEEE Computer Society.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

[ZHM09] Vassilis Zikas, Sarah Hauser, and Ueli M. Maurer. Realistic failures in secure multi-
party computation. In TCC, pages 274–293, 2009.

[Zik10] Vassilis Zikas. Generalized corruption models in secure multi-party computation. PhD
thesis, ETH Zurich, 2010.

A Deferred Preliminaries

A.1 Multi-Key FHE

In this section, we present the definition of multi-key fully homomorphic encryption in the plain
model with distributed setup as found in [BHP17].

Definition 2 (MFHE). A multi-key fully homomorphic encryption scheme is a tuple of PPT
algorithms

MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:

paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ, a circuit depth d, the
maximal number of parties N , and a party index i. It outputs the public parameters paramsi
associated with the ith party, where paramsi ∈ {0, 1}

poly(λ,d,N) for some polynomial poly. We
assume implicitly that all the following algorithms take the public parameters of all parties as
input, where we define params = params1|| . . . ||paramsN .

(pk, sk)← KeyGen(params): It takes as input the public parameters params and outputs a key pair
(pk, sk).

ct← Encrypt(pk,m): It takes as input a public key pk and a plaintext m ∈ {0, 1}λ and outputs a
ciphertext ct. Throughout, we will assume that all ciphertexts include the public key(s) that
they are encrypted under.

42

ĉt← Eval(C, ct1, . . . , ctℓ): It takes as input a boolean circuit C : ({0, 1}λ)ℓ → {0, 1} ∈ Cλ of depth
≤ d and ciphertexts ct1, . . . , ctℓ for ℓ ≤ N . It outputs an evaluated ciphertext ĉt.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an evaluated ciphertext ĉt
and outputs a partial decryption pi.

µ̂← FinDec(p1, . . . , pℓ): It takes as input partial decryptions p1, . . . , pℓ and deterministically outputs
a plaintext µ̂ ∈ {0, 1,⊥}.

We require that for any parameters {paramsi ← Setup(1λ, 1d, 1N , i)}i∈[N], any key pairs {(pki, ski)←

KeyGen(params)}i∈[N], any plaintexts m1, . . . ,mℓ ∈ {0, 1}
λ for ℓ ≤ N , any sequence I1, . . . , Iℓ ∈ [N]

of indices, and any boolean circuit C : {0, 1}ℓ → {0, 1} ∈ Cλ of depth ≤ d, the following is satisfied:

Correctness. Let cti = Encrypt(pkIi ,mi) for 1 ≤ i ≤ ℓ, ĉt = Eval(C, ct1, . . . , ctℓ), and pi =
PartDec(i, skIi , ĉt) for all i ∈ [ℓ]. With all but negligible probability in λ over the coins of
Setup, KeyGen, Encrypt, and PartDec,

FinDec(p1, . . . , pℓ) = C(m1, . . . ,mℓ).

Compactness of Ciphertexts. There exists a polynomial, poly, such that |ct| ≤ poly(λ, d,N) for
any ciphertext ct generated from the algorithms of MFHE.

Semantic Security of Encryption. Any PPT adversary A has only negligible advantage as a
function of λ over the coins of all the algorithms in the following game:

1. On input the security parameter 1λ, a circuit depth 1d, and the number of parties 1N ,
the adversary A outputs a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.

3. The adversary outputs {paramsj}j∈[N]\{i}.

4. params is set to params1|| . . . ||paramsN . Run KeyGen(params) → (pki, ski). The adver-
sary is given pki.

5. The adversary outputs two messages m0,m1 ∈ {0, 1}
λ.

6. The adversary is given ct← Encrypt(pki,mb) for a random b ∈ {0, 1}.

7. The adversary outputs b′ and wins if b = b′.

Simulation Security. There exists a stateful PPT algorithm Sim such that for any PPT adversary
A, we have that the experiments ExptA,Real(1

λ, 1d, 1N) and ExptA,Sim(1
λ, 1d, 1N) as defined

below are statistically close as a function of λ over the coins of all the algorithms. The
experiments are defined as follows:

ExptA,Real(1
λ, 1d, 1N):

1. On input the security parameter 1λ, a circuit depth 1d, and the number of parties
1N , the adversary A a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.

3. The adversary outputs {paramsj}j∈[N]\{i}.

43

4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs KeyGen(params)→
(pkj , skj) for j ∈ [N]\{i}. The adversary is given {(pkj , skj)}j∈[N]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski), m1, . . . ,mℓ ∈
{0, 1}λ, I1, . . . , Iℓ ∈ [N], and a set of circuits {Ck : ({0, 1}λ)ℓ → {0, 1}}k∈[t] with
each Ck ∈ C for some ℓ ≤ N and some t = poly(λ, d,N).

6. Set (pki, ski)← KeyGen(params; rKeyGeni). The adversary is given ctj ← Enc(pkIj ,mj)

for 1 ≤ j ≤ ℓ and the evaluated ciphertexts ĉtk ← Eval(Ck, ct1, . . . , ctℓ) for all k ∈ [t].

7. The adversary is given pi,k ← PartDec(i, ski, ĉtk) for all k ∈ [t].

8. A outputs out. The output of the experiment is out.

ExptA,Sim(1
λ, 1d, 1N):

1. On input the security parameter 1λ, a circuit depth 1d, and the number of parties
1N , the adversary A a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.

3. The adversary outputs {paramsj}j∈[N]\{i}.

4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs KeyGen(params)→
(pkj , skj) for j ∈ [N]\{i}. The adversary is given {(pkj , skj)}j∈[N]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski), m1, . . . ,mℓ ∈
{0, 1}λ, I1, . . . , Iℓ ∈ [N], and a set of circuits {Ck : ({0, 1}λ)ℓ → {0, 1}}k∈[t] with
each Ck ∈ C for some ℓ ≤ N and some t = poly(λ, d,N).

6. Set (pki, ski)← KeyGen(params; rKeyGeni). The adversary is given ctj ← Enc(pkIj ,mj)

for 1 ≤ j ≤ ℓ and the evaluated ciphertexts ĉtk ← Eval(Ck, ct1, . . . , ctℓ) for all k ∈ [t].

7. Define µk = Ck(m1, . . . ,mℓ). For all k ∈ [t], the adversary is given
pi,k ← Sim(µk, ĉt, i, {skj}j∈[N]\{i}).

8. A outputs out. The output of the experiment is out.

A.2 Multi-String NIZK

We adapt the definition from [GO07]. Let R be an efficiently computable binary relation and L an
NP-language of statements x such that (x,w) ∈ R for some witness w.

Definition 3 (Multi-String NIZK). A multi-string NIZK using N strings for a language L is a
tuple of PPT algorithms

NIZK = (Gen,Prove,Verify)

satisfying the following specifications:

crs← Gen(1λ): It takes as input the security parameter λ and outputs a uniformly random string
crs.

π ← Prove(CRS , x, w): It takes as input a set of N random strings CRS, a statement x, and a
witness w. It outputs a proof π.

{0, 1} ← Verify(CRS, x, π): It takes as input a set of N random strings CRS, a statement x, and
a proof π. It outputs 1 if it accepts π and 0 if it rejects it.

44

We require that the algorithms satisfy the following properties for all non-uniform PPT adver-
saries A:

Perfect Completeness.

Pr

[
S := ∅; (CRS , x, w)← AGen;π ← Prove(CRS, x, w) :

Verify(CRS, x, π) = 0 and (x,w) ∈ R

]
= 0,

where Gen is an oracle that on a query q outputs crsq ← Gen(1λ) and sets S := S ∪ {crsq}.
Note that this says that even if the adversary arbitrarily picks all the random strings, perfect
completeness still holds.

Soundness.

Pr

[
S := ∅; (CRS , x, π)← AGen :

Verify(CRS, x, π) = 1 and x 6∈ L and |CRS ∩ S| > N/2

]
≤ negl(λ),

where Gen is an oracle that on a query q outputs crsq ← Gen(1λ) and sets S := S ∪ {crsq}.
Note that this says that as long as at least half of the random strings are honestly generated,
the adversary cannot forge a proof except with negligible probability.

Composable Zero-Knowledge. There exist PPT algorithms SimGen,SimProve such that

Pr[crs← Gen(1λ) : A(crs) = 1] ∼=c Pr[(crs, τ)← SimGen(1λ) : A(crs) = 1]

and

Pr

[
S := ∅; (CRS , x, w)← ASimGen(1λ);π ← Prove(CRS, x, w) :

A(π) = 1 and (x,w) ∈ R and |CRS ∩ S| > N/2

]

∼=c

Pr

[
S := ∅; (CRS , x, w)← ASimGen(1λ);π ← SimProve(CRS, T, x) :

A(π) = 1 and (x,w) ∈ R and |CRS ∩ S| > N/2

]
,

where T is the set containing all simulation trapdoors τ generated by SimGen. Note that this is
saying that random strings with simulation trapdoors can be generated that are indistinguish-
able from honestly generated random strings and that using these trapdoors, it is possible to
simulate a proof that is indistinguishable from a real proof even to an adversary that possesses
all the simulation trapdoors.

In this work, we will deal with multi-string NIZKs that are simulation-extractable. Informally,
this means that it is possible to extract a witness from an adversary’s proof even if the adversary
is allowed to see many simulated proofs. Formally, we have the following definition from [GO07].

Definition 4 (Simulation-Extractable Multi-String NIZK). A simulation-extractable multi-string
NIZK is a multi-string NIZK with the following additional property.

45

Simulation-Extractability. There exist PPT algorithms ExtGen,Ext such that ExtGen(1λ) out-
puts (crs, τ, ξ), a random string, a simulation trapdoor, and an extraction key, such that the
output distribution (crs, τ) is identical to that of SimGen and

Pr

S := ∅;Q := ∅; (CRS , x, π)← AExtGen′,SimProve(1λ);
w← Ext(CRS, E, x, π) :

(x, π) 6∈ Q and (x,w) 6∈ R and Verify(CRS , x, π) = 1
and |CRS ∩ S| > N/2

 ≤ negl(λ),

where ExtGen′ is an oracle that runs ExtGen to generate (crs, τ, ξ), outputs (crs, τ) and sets
S := S ∪ {crs}, SimProve outputs a proof π for a statement x given the set of simulation
trapdoors and sets Q := Q ∪ {(x, π)}, and E is the set of the ξ’s generated by ExtGen.

[GO07] show the following.

Theorem 10 ([GO07]). Assuming Zaps, there exist simulation-extractable multi-string NIZKs.

A.3 Statistical Distance

In this section, we state results related to the statistical closeness of distributions that will be used
in the security proof of our TMFHE construction. This section was adapted from one in [JRS17],
and we defer the reader to their paper for the proofs of these results.

Definition 5 (Statistical Distance). Let E be a finite set, Ω a probability space, and X,Y : Ω→ E
random variables. We define the statistical distance between X and Y to be the function ∆ defined
by

∆(X,Y) =
1

2

∑

e∈E

∣∣∣∣PrX (X = e)− Pr
Y
(Y = e)

∣∣∣∣ .

Proposition 1 ([JRS17]). Let E be a finite set, Ω a probability space, and let {Xb
s}s∈S,b∈{0,1} be

a family of random variables Xb
s : Ω → E indexed by an element s ∈ S and a state b ∈ {0, 1}.

Further, assume that for every s ∈ S we have ∆(X0
s ,X

1
s) ≤ δ. Now, for a stateful PPT algorithm

A, define the following experiment:

ExptA,b,m :

• The algorithm A issues m queries. Each query is an element si ∈ S and after each
query, A receives in return xi ← Xb

si sampled independently of the other samples.

• The output of the experiment is (s1, x1), . . . , (sm, xm).

Then ∆(ExptA,0,m,ExptA,1,m) ≤ mδ.

Another useful lemma is the following, which demonstrates a technique to “smudge” or hide the
presence of error (e1 in the lemma) by adding a much larger error. While no values are specifically
given in the statement of the lemma, B1 is meant to be negligible compared to B2 such that the
statistical distance between the two distributions is negligible.

Lemma 7 (Smudging Lemma [MW16]). Let B1, B2 ∈ N. For any e1 ∈ [−B1, B1] let E1 and E2

be independent random variables uniformly distributed on [−B2, B2] and define the two stochastic
variables X1 = E1 + e1 and X2 = E2. Then ∆(E1, E2) < B1/B2.

46

A.4 Secret Sharing

Throughout this paper we will use secret sharing terminology and techniques. This section provides
an introduction to the basic terms, notation, and concepts that will be needed later. Large portions
of this section were taken verbatim from [JRS17].

A.4.1 Secret Sharing Basics.

We assume that the reader is familiar with the notion of a information theoretic secret sharing
scheme and, in particular, the Shamir secret sharing scheme. We now describe concepts about
access structures and specific secret sharing schemes that we consider in this paper. We adapt
some definitions from [LW11].

Definition 6 (Monotone Access Structure). Let P = {P1, . . . , PN} be a set of parties. A collection
A ⊆ P(P) is monotone if whenever we have sets B,C satisfying B ∈ A and B ⊆ C ⊆ P then
C ∈ A. A monotone access structure on P is a monotone collection A ⊆ P(P) \ ∅. The sets in A

are called the valid sets and the sets in P(P) \A are called the invalid sets.

Definition 7 (Restriction of Access Structure). Let P = {P1, . . . , PN} be a set of parties and A be
an access structure over these parties. Let PS ⊆ P be a subset of these parties. We say that A′ is
the access structure induced by restricting A to the parties in PS if A′ is an access structure on PS

such that a set A ∈ A′ for some A ⊆ PS if and only if A ∈ A.

For ease of notation, we will generally identify a party with its index. Further, since this
presentation will only consider monotone access structures, the terms monotone access structure
and simply access structure will be used interchangeably throughout the text.

Notation 1. Let P = {P1, . . . , PN} be a set of parties and let S be a subset of P . We denote by
XS the vector XS = (x1, . . . , xN) where xi = 1 if Pi ∈ S and xi = 0 otherwise.

Definition 8 (Efficient Access Structure). Let P = {P1, . . . , PN} be a set of parties and A ⊆ P(P)
a monotone access structure on P . We say that A is efficient if there exists a polynomial size circuit
fA : {0, 1}

N → {0, 1} such that for all S ⊆ P , fA(XS) = 1 if and only if S ∈ A.

Definition 9 (Class of Monotone Access Structures). Let P = {P1, . . . , PN} be a set of parties. A
class of monotone access structures is a collection S = {A1, . . . ,At} ⊆ P(P(P)) of monotone access
structures on P .

Being interested in secret sharing, we will only consider efficient access structures in this work.
One of the most canonical classes of access structures is the t-out-of-n class.

Definition 10 (t-out-of-n secret sharing). Let P = {P1, . . . , PN} be a set of parties. An access
structure A is a t-out-of-n access structure if for every S ⊆ P , S ∈ A if and only if |S| ≥ t.

A more general form of secret sharing is linear secret sharing.

Definition 11 (Linear Secret Sharing Scheme (LSSS)). Let P = {P1, . . . , PN} be a set of parties.
The class of access structures LSSS (or LSSSN to emphasize the number of parties) consists of all
access structure A such that there exists a secret sharing scheme Π satisfying:

1. For a prime p, the share of each party Pi is a vector ~wi ∈ Zni
p for some ni ∈ N.

47

2. There exists a matrix M ∈ Zℓ×n
p , ℓ =

∑N
i=1 ni called the share matrix for Π with size poly-

nomial in the number of parties and such that for a secret s, the shares are generated as
follows. Values r2, . . . , rn ∈ Zp are chosen at random and the vector ~v = M · (s, r2, . . . , rn)

T

is generated. Now, denote by Ti ⊆ [ℓ], 1 ≤ i ≤ N a partition of [ℓ] such that Ti has size
|Ti| = ni and is associated with party Pi. The share of Pi is the vector ~wi = (vi)i∈Ti

.

3. For any set S ⊆ P , S ∈ A if and only if

(1, 0, . . . , 0) ∈ span({M [i]}i∈
⋃

j∈S Tj
)

over Zp where M [i] denotes the ith row of M .

We denote by LSSSN the class of linear secret sharing schemes on N parties.

Note that keeping with the notation of the LSSS definition above, any set of parties S ⊆ P such
that S ∈ A can recover the secret by finding coefficients {ci}i∈

⋃
j∈S Tj

satisfying

∑

i∈
⋃

j∈S Tj

ciM [i] = (1, 0, . . . , 0).

Given such coefficients, the secret can be recovered simply by computing

s =
∑

i∈
⋃

j∈S Tj

civi.

Since such coefficients can be found in time polynomial in the size of M using linear algebra, LSSS
is a class of efficient access structures [Bei96]. Further, LSSS has the property that it information
theoretically hides the value s, i.e. for any secrets s0 and s1, it holds that the distributions of shares
{~wi}i∈S for a set S 6∈ A, are identical.

In our application of linear secret sharing, we will always be sharing a vector over Zp, ~s ∈ Zn
p

instead of just a single element of Zp. Simply linearly secret sharing each entry of the vector ~s
using fresh randomness for each entry yields shares ~s1, . . . , ~sℓ ∈ Zn

p . It is easy to see that the secret
~s ∈ Zn

q can now be reconstructed as a linear combination of the shares ~si using the same coefficients
as for a single field element. Further, information theoretical hiding is maintained.

A.4.2 {0, 1}-LSSS and {0, 1}-LSSSD.

For the purposes of this paper, we will need a more restricted class of access structures. The
access structures of the class {0, 1}-LSSS are those that can be realized as LSSS schemes such that
each party only has one share and such that it always is possible to only use recovery coefficients
ci ∈ {0, 1}.

Definition 12 ({0, 1}-Linear Single Share Scheme ({0, 1}-LSSS)). Let P = {P1, . . . , PN} be a set
of parties. The set {0, 1}-LSSSN ⊆ LSSSN is the collection of access structures A ∈ LSSSN such
that there exists an efficient linear secret sharing scheme Π for A satisfying the following:

1. For a prime p, the share of each party Pi consists of a single element wi ∈ Zp.

2. Let s be a secret and let wi ∈ Zp be the share of party Pi for each i. For every valid set S ∈ A,
there exist a subset S′ ⊆ S such that s =

∑
i∈S′ wi.

48

In our application, we will need {0, 1}-LSSS schemes that work over a certain prime q corre-
sponding to the modulus of an FHE scheme. The constructions of later sections will be designed in
a way that allows for the access structure to work over any modulus, but for now we will denote
by {0, 1}-LSSSq the set of access structures contained in {0, 1}-LSSS that can be realized as secret
sharing schemes by a share matrix over Zq.

That every access structure A ∈ {0, 1}-LSSS is efficient follows directly from the efficiency of
the LSSS class. However, it is not obvious that the set S′ of the above definition can be found
efficiently given any S ⊆ P . To see that this is indeed the case, we first establish a lemma.

Definition 13 (Maximal Invalid Share Set). Let P = {P1, . . . , PN} be a set of parties and A be
a monotone access structure on P . A set S ⊆ P is a maximal invalid share set if S 6∈ A but for
every p ∈ P \ S, S ∪ {p} ∈ A.

Definition 14 (Minimal Valid Share Set). Let P = {P1, . . . , PN} be a set of parties and A be a
monotone access structure on P . A set S ⊆ P is a minimal valid share set if S ∈ A and for every
S′ (S, S′ 6∈ A.

Although the following lemma is trivial to show it will turn out to be a useful observation both
for the efficiency of reconstruction of {0, 1}-LSSS and for our construction.

Lemma 8 ([JRS17]). Let P = {P1, . . . , PN} be a set of parties, A ∈ {0, 1}-LSSS, and Π be a linear
secret sharing scheme as specified in the definition of {0, 1}-LSSS. Let s be a secret, let wi ∈ Zp be
the share of party Pi for each i, and let S ⊆ P be a minimal valid share set of A. Then s =

∑
i∈S wi.

Finally, the following lemma shows that given a linear secret sharing scheme Pi for A ∈
{0, 1}-LSSS, we can find recovery coefficients efficiently. However, it is worth noting that this
does not mean that deciding whether an access structure belongs to {0, 1}-LSSS is feasible. In our
applications we will instead specifically construct secret sharing schemes that belong to {0, 1}-LSSS.

Lemma 9 ([JRS17]). Finding recovery coefficients ci ∈ {0, 1} in a linear secret sharing scheme Π
for an access structure A ∈ {0, 1}-LSSS can be done efficiently.

In applications, we will need the following access structure, which removes the constraint on
the number of shares per party, but retains the overall property of the shares.

Definition 15 (Derived {0, 1}-LSSS ({0, 1}-LSSSD)). Let P = {P1, . . . , PN} be a set of parties. We
denote by {0, 1}-LSSSDN the class of access structures A ∈ LSSSN such that there exists an ℓ ∈ N

polynomial in N and an access structure B ∈ {0, 1}-LSSSℓn for parties P ′ = {P ′
1, . . . , P

′
Nℓ} such

that we can associate the party Pi ∈ P with the parties P ′
ℓ(i−1), P

′
ℓ(i−1)+1, . . . , P

′
ℓi ∈ P ′ as follows.

For every S ⊆ [N], S ∈ A if and only if the set S′ of parties of P ′ associated with a party in S,
S′ ∈ B. More precisely, for every S ⊆ [N],

⋃

i∈S

{Pi} ∈ A if and only if
⋃

i∈S

{P ′
ℓ(i−1), P

′
ℓ(i−1)+1, . . . , P

′
ℓi} ∈ B.

In other words, a {0, 1}-LSSSD scheme is a secret sharing scheme where the shares satisfy a
{0, 1}-LSSS scheme, but each party receives multiple shares.

Theorem 11 ([JRS17]). The class of access structures {0, 1}-LSSSDN contains all those induced
by monotone boolean formulas, which, in turn contains all t out of N threshold access structures.

In this work, all access structures will be those in the class {0, 1}-LSSSD.

49

B MPC with General Mixed Adversaries: Definition

In this section, we formally define the notion of secure multiparty computation against a general
mixed adversary as defined in the works of Fitzi et al. [FHM98, FHM99]. Recall that a general
mixed adversary A = (AMal,ASh,AFc) is one that corrupts a set of parties AMal maliciously, a set
of parties ASh in a semi-honest manner and a set of parties AFc in a fail-corrupt manner. While
the former two notions are quite standard, we recall that in a fail-corrupt corruption, the adversary
can instruct the corrupted party to stop its protocol execution at any point. Note that in the case
of fail-corrupt corruption, the adversary does not get to learn the internal state of the corrupted
parties at any point.

We now present the formal definition of an MPC protocol secure against a general mixed
adversary A = (AMal,ASh,AFc) with static corruption.

Syntax. A multi-party protocol is cast by specifying a random process that maps pairs of inputs
to pairs of outputs (one for each party). We refer to such a process as a functionality. The
security of a protocol is defined with respect to a functionality f . In particular, let N denote the
number of parties. A non-reactive N -party functionality f is a (possibly randomized) mapping of
N inputs to N outputs. A multiparty protocol with security parameter λ for computing a non-
reactive functionality f is a protocol running in time poly(λ) and satisfying the following correctness
requirement: if parties P1, . . . , PN with inputs (x1, . . . , xN) respectively, all run an honest execution
of the protocol, then the joint distribution of the outputs y1, . . . , yN of the parties is statistically
close to f(x1, . . . , xN). The above can also be extended to the setting of reactive functionalities.

B.1 Defining Security.

Informally, the security requirement is similar to that in standard multi-party computation where
we consider only a single adversary type - either malicious or semi-honest. The difference here
is that the adversary is additionally allowed to specify different sets (AMal,ASh,AFc) of parties
apriori that will respectively correspond to malicious/semi-honest/ fail-corrupt corruptions. Fur-
thermore, for each party in the fail-corrupt set, the adversary can adaptively decide when that
party would abort the computation. We say that our protocol is secure if For simplicity, we will
consider only static corruptions which is the focus of this work.

Formally, the security of a multi-party computation protocol against a general mixed adversary
with respect to a functionality f is defined by comparing the real-world execution of the protocol
with an ideal-world evaluation of f by a trusted party. More concretely, it is required that for every
adversary Adv = (AMal,ASh,AFc), which attacks the real execution of the protocol, there exists
an ideal world adversary Sim, which can achieve the same effect in the ideal-world. Let’s denote
~x = (x1, . . . , xn).

The real execution. In the real world execution of the n-party protocol Π for computing f ,
Π is executed in the presence of an adversary Adv. The honest parties follow the instructions of
Π. Initially, the Adv is given as input the security parameter λ and some auxiliary information z.
Then, Adv outputs a tuple of sets AMal,ASh,AFc ⊆ [N] of parties to corrupt and gets as input the
inputs of all the parties in the sets AMal and ASh. Adv sends all messages in place of corrupted
parties in the sets AMal and ASh. For each party in the set AMal, it may follow an arbitrary

50

polynomial-time strategy. For each party in the set ASh, the adversary is required to execute the
protocol honestly. For each party in the set AFc, the adversary can choose to instruct that party
to abort the execution at any point in the protocol. Once again, note that the adversary does not
learn the internal state of any fail-corrupt party.

The interaction of Adv in the protocol Π defines a random variable REALΠ,Adv(z)(λ, ~x), where
~x = (x1, . . . , xN), whose value is determined by the coin tosses of the adversary and the hon-
est parties. This random variable contains the output of the adversary (which may be an ar-
bitrary function of its view subject to the restriction on the semi-honest parties’ behaviour) as
well as the outputs of the honest parties. We let REALΠ,Adv(z) denote the distribution ensemble
{REALΠ,Adv(z)(λ, ~x)}λ∈N,~x∈({0,1}λ)N ,z∈{0,1}∗ .

The ideal execution. In the ideal execution of the n-party protocol Π for computing function
f , an ideal world adversary Sim interacts with a trusted party. The ideal execution proceeds as
follows.

• Adversary picks corrupted sets: Sim is given the security parameter λ and an auxiliary
input z and outputs a tuple of sets AMal,ASh,AFc ⊆ [N] of parties to corrupt.

• Parties send inputs to the trusted party: The parties send their inputs to the trusted
party, and we let x′i denote the value sent by Pi. Note that for each party Pi in ASh, the
adversary is required to send its actual input xi. For each party Pk in AFc, the adversary
can decide whether Pk should send its input or not but the adversary can’t change the input.
For each party in AMal, the adversary is free to interact as it wishes.

• Trusted party sends output to the adversary: For every party Pi whose input it did
not receive, the trusted party sets yi to 0λ. For other parties that did send their inputs, the
trusted party sets yi = x′i. The trusted party outputs f(y1, . . . , yN) to Sim.

• Adversary chooses to deliver output to other parties: For each honest party Pi, Sim
instructs the trusted party whether or not to deliver output to Pi.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the
value obtained from the trusted party (or ⊥ if no value is given).

The interaction of Sim with the trusted party defines a random variable IDEALf,Sim(z)(λ, ~x),
which we use to denote the distribution ensemble
{IDEALf,Sim(z)(λ, ~x)}λ∈N,~x∈({0,1}λ)N ,z∈{0,1}∗ .

Having defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition 16. Let λ be the security parameter. Let f be an N -party functionality and Π be an
N -party protocol for N ∈ N for computing f .

• We say that Π securely computes f in the presence of general mixed adversaries if for every
PPT general mixed adversary Adv , there exists a PPT simulator Sim such that for every
PPT distinguisher D, the following quantity is negligible in λ if S 6∈ A:

|Pr[D(REALΠ,Adv(z)(λ, ~x)) = 1]− Pr[D(IDEALf,Sim(z)(λ, ~x)) = 1]|

where ~x = {xi}i∈[N] ∈ ({0, 1}λ)N and z ∈ {0, 1}∗.

51

B.2 Security against Semi-Malicious Mixed Adversaries

Semi-Malicious Adversary. We take the definition of a semi-malicious adversary almost ver-
batim from [AJLA+12]. A semi-malicious adversary is modeled as an interactive Turing machine
(ITM) which, in addition to the standard tapes, has a special witness tape. In each round of the
protocol, whenever the adversary produces a new protocol message m on behalf of some party Pi,
it must also write to its special witness tape some pair (x, r) of input x and randomness r that
explains its behavior. More specifically, all of the protocol messages sent by the adversary on be-
half of Pi up to that point, including the new message m, must exactly match the honest protocol
specification for Pi when executed with input x and randomness r. Note that the witnesses given
in different rounds need not be consistent. Also, we assume that the attacker is rushing and hence
may choose the message m and the witness (x, r) in each round adaptively, after seeing the protocol
messages of the honest parties in that round (and all prior rounds). Lastly, the adversary may also
choose to abort the execution on behalf of Pi in any step of the interaction.

Semi-Malicious Mixed Adversaries. We now consider a weaker adversarial setting when com-
pared to the general mixed adversary called a semi-malicious mixed adversary. Here, the adversarial
structure is similar to a general mixed adversary except that it can not pick a set of parties to be
malicious but instead, those parties can only be semi-malicious. That is, for any semi-malicious
mixed adversary A = (ASm,ASh,AFc), ASm denotes the set of parties that are semi-maliciously
corrupted, ASh denotes the set of parties that are corrupted in a semi-honest manner and AFc

denotes the set of fail-corrupt corruptions.

Definition 17. Let λ be the security parameter. Let f be an N -party functionality and Π be an
N -party protocol for N ∈ N for computing f .

• We say that Π securely computes f in the presence of semi-malicious mixed adversaries if for
every PPT semi-malicious mixed adversary Adv , there exists a PPT simulator Sim such that
for every PPT distinguisher D, the following quantity is negligible in λ if S 6∈ A:

|Pr[D(REALΠ,Adv(z)(λ, ~x)) = 1]− Pr[D(IDEALf,Sim(z)(λ, ~x)) = 1]|

where ~x = {xi}i∈[N] ∈ ({0, 1}λ)N and z ∈ {0, 1}∗.

C Multi-Key FHE Construction in [BHP17]

Since we frequently refer to the multi-key FHE construction in [BHP17], we give the construction
here. This section is taken verbatim from [BHP17].

A “Dual” LWE-Based Multi-Key FHE with Distributed Setup. For our protocol, we
use an adaption of the “dual” of the multi-key FHE scheme from [CM15,MW16]. Just like the
“primal” version, our scheme uses the GSW FHE scheme [GSW13], and its security is based on
the hardness of LWE.

Recall that the LWE problem is parametrized by integers n,m, q (with m > n log q) and a
distribution χ over Z that produces whp integers much smaller than q. The LWE assumption says
that given a random matrix A ∈ Zn×m

q , the distribution sA+ e with random s ∈ Zn
q and e ← χm

is indistinguishable from uniform in Zm
q .

52

For the “dual” GSW scheme below, we use parameters n < m < w < q with m > n log q and
w > m log q, and two error distributions χ, χ′ with χ′ producing much larger errors than χ (but
still much smaller than q). Specifically, consider the distribution

χ′′ = {a← {0, 1}m, b← χm, c← χ′, output c− 〈a, b〉}.

We need the condition that the statistical distance between χ′ and χ′′ is negligible (in the security
parameter n). This condition holds, for example, if χ, χ′ are discrete Gaussian distributions around
zero with parameters p, p′, respectively, such that p′/p is super-polynomial (in n).

Distributed Setup paramsi ← MFHE.DistSetup(1κ, 1N , i): Set the parameters q = poly(N)nω(1)

(as needed for FHE correctness), m > (Nn + 1) log q + 2κ, and w = m log q.7 Sample and

output a random matrix Ai ∈ Z
(m−1)×n
q .

Key Generation (pki, ski)← MFHE.KeyGen(params, i): Recall that params = {paramsi}i∈[N] =
{Ai}i∈[N]. The public key of party i is a sequence of vectors pki = {bi,j}j∈[N] to be formally
defined below. The corresponding secret key is a low-norm vector ti ∈ Zm

q .

We will define bi,j, ti such that for Bi,j =

(
Aj

−bi,j

)
, it holds that tiBi,j = bi,i− bi,j (modq) for

all j.

In more detail, sample a random binary vector si ← {0, 1}
m−1, we set bi,j = siAj mod q.

Denoting ti = (si, 1), we indeed have tiBi,j = bi,i − bi,j (modq).

Encryption C ← MFHE.Encrypt(pki, µ): To encrypt a bit µ under the public-key pki, choose a
random matrix R ∈ Zn×w

q and a low-norm error matrix E ∈ Zm×w
q , and set

C := Bi,iR+E + µG mod q,

where G is a fixed m-by-w “gadget matrix” (whose structure is not important for us here).
Furthermore, as in [CM15,MW16], encrypt all bits of R in a similar manner. For our protocol,
we use more error for the last row of the error matrix E than for the top m−1 rows. Namely,

we choose Ê ← χ(m−1)×w and e′ ← χ′w and set E =

(
Ê
e′

)
.

Decryption µ := MFHE.Dec((sk1, . . . , skN), C): The invariant satisfied by ciphertexts in the scheme,
similarly to GSW, is that an encryption of a bit µ relative to secret key t is a matrix C that
satisfies

tC = µ · tG+ e (modq)

for a low-norm error vector e, where G is the same “gadget matrix”. The vector t is the
concatenation of all ski = ti for all parties i participating in the evaluation.

This invariant holds for freshly encrypted ciphertexts since tiBi,i = 0 (mod q), and so ti(Bi,iR+
E + µG) = µ · tiG + tiE (modq), where e = tiE has low norm (as both ti and E have low
norm).

To decrypt, the secret-key holders compute u = t · C mod q, outputting 1 if the result is
closer to tG or 0 if the result is closer to 0.

7Parameters q, n, w are global and fixed once at the onset of the protocol.

53

Evaluation C := MFHE.Eval(params, C, (c1, . . . , cℓ)): Since ciphertexts satisfy the same invariant
as in the original GSW scheme, then the homomorphic operations in GSW work just as well
for this “dual” variant. Similarly the ciphertext-extension technique from [CM15,MW16]
works also for this variant exactly as it does for the “primal” scheme (see below). Hence we
get a multi-key FHE scheme.

The ciphertext-expansion procedure. The “gadget matrix” G used for these schemes has the
property that there exists a low-norm vector u such that Gu = (0, 0, . . . , 0, 1). Therefore, for every
secret key t = (s|1), we have tGu = 1 (modq). It follows that if C is an encryption of µ wrt secret
key t = (s|1), then the vector v = Cu satisfies

〈t, v〉 = tCu = (µtG+ e)u = µtGu+ 〈e, u〉 = µ+ ǫ (modq)

where ǫ is a small integer. In other words, given an encryption of µ wrt t we can construct a vector
v such that 〈t, v〉 ≈ µ (modq). Let A1, A2 be public parameters for two users with secret keys

t1 = (s1|1), t2 = (s2|1), and recall that we denote bi,j = siAj and Bi,i =

(
Ai

−siAi

)
=

(
Ai

−bi,i

)
.

Let C = B1,1R + E + µG be fresh encryption of µ w.r.t. B1,1, and suppose that we also
have an encryption under t1 of the matrix R. We note that given any vector δ, we can apply
homomorphic operations to the encryption of R to get an encryption of the entries of the vector
ρ = ρ(δ) = δR. Then, using the technique above, we can compute for every entry ρi a vector xi
such that 〈t1, xi〉 ≈ ρi (modq). Concatenating all these vectors, we get a matrix X = X(δ) such
that t1X ≈ ρ = δR (modq).

We consider the matrix C ′ =

(
C X
0 C

)
, where X = X(δ) for a δ to be determined later. We

claim that for an appropriate δ this is an encryption of the same plaintext µ under the concatenated
secret key t′ = (t1|t2). To see this, notice that

t2C = (s1|1)

((
A1

−s1A1

)
R+ E + µG

)
≈ (b2,1 − b1,1)R + µt2G (modq),

and therefore setting δ = b1,1 − b2,1, which is value that can be computed from pk1, pk2 we get

t′C ′ = (t1C|t1X + t2C) ≈ (µt1G|(b1,1 − b2,1)R+ (b2,1 − b1,1)R+ µt2G)

= µ(t1G|t2G) = µ(t1|t2)

(
G

G

)
,

as needed. As in the schemes from [CM15,MW16], this technique can be generalized to extend the
ciphertext C into an encryption of the same plaintext µ under the concatenation of any number of
keys.

54

	Introduction
	Applications to round efficient MPC
	Related Work

	Technical Overview
	Threshold Multi-Key FHE (TMFHE)
	MPC against General Mixed Adversaries
	Standard MPC: Guaranteed Output Delivery

	Preliminaries
	Multi-Key Fully Homomorphic Encryption
	Multi-String NIZKs
	MPC with General Mixed Adversary
	Guaranteed Output Delivery
	Additional Preliminaries

	Threshold Multi-Key FHE: Definition
	Threshold Multi-Key FHE: Construction
	Construction
	Correctness and Compactness
	Security
	Instantiation

	Three-Round MPC with General Mixed Adversaries
	Plain Model: Semi-Malicious Mixed Adversary
	Construction

	Security
	Properties
	CRS Model: General Mixed Adversary

	MPC with Guaranteed Output Delivery
	Semi-Maliciously Secure MPC with Honest Majority
	Construction
	Security

	Malicious Security
	Construction
	Security

	Deferred Preliminaries
	Multi-Key FHE
	Multi-String NIZK
	Statistical Distance
	Secret Sharing
	Secret Sharing Basics.
	{0, 1}-LSSS and {0, 1}-LSSSD.

	MPC with General Mixed Adversaries: Definition
	Defining Security.
	Security against Semi-Malicious Mixed Adversaries

	Multi-Key FHE Construction in BHP17

