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Abstract. In a multi-key FHE scheme (MFHE), first introduced by
Lopez-Alt et al. (STOC ’12), and constructed by Clear-Mcgoldrick
(CRYPTO ’15) and Mukherjee-Wichs (EUROCRYPT ’16), any message
encrypted using a public key pki can be “expanded” so that the resulting
ciphertext is encrypted with respect to a set of public keys (pk1, .., pkn).
Such expanded ciphertexts can be homomorphically evaluated with re-
spect to any circuit to generate a ciphertext ct. Then, this ciphertext ct
can be partially decrypted using a secret key ski (corresponding to the
public key pki) to produce a partial decryption pi. Finally, these partial
decryptions {pi}i∈[n] can be combined to recover the output.

However, this definition of MFHE works only for n-out-of-n access struc-
tures and thus each node in the system is a point of failure. In some
cases, it may be useful to be able to decrypt even when only given a
subset of partial decryptions (say t out of n). In order to solve this prob-
lem, we introduce a new notion of multi-key FHE designed to handle
arbitrary access patterns that can reconstruct the output. We call it a
threshold multi-key FHE scheme (TMFHE). We give a formal definition
and present a construction for any access structure given by a monotone
boolean formula, assuming LWE.

Using TMFHE, we present a new result for MPC. We revisit the thresh-
old mixed adversary model with guaranteed output delivery proposed by
Fitzi et al. (CRYPTO ’98, ASIACRYPT ’99) and present the first round-
optimal (three-round) MPC protocol in this model, assuming LWE. Our
protocol simultaneously achieves all of the following properties:

– Security against the maximum number of corruptions under which
guaranteed output delivery is achievable.

– Communication complexity proportional only to the depth of the
circuit being evaluated.
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– Reusability (given the transcript of the first two rounds, the third
round can be repeated to compute an arbitrary number of function-
alities on the parties’ inputs).

– Input fidelity (the functionality is computed with respect to the in-
puts of all parties that send messages in the first two rounds even if
they abort in round 3).

Along the way to obtaining the above MPC result, we also construct the
first multi-string NIZK from LWE which may be of independent interest.
Indeed, we also achieve a simulation-extractable multi-string NIZK from
LWE.

1 Introduction

Starting with the breakthrough work of Gentry [41], fully homomorphic encryp-
tion (FHE) has been extensively studied over a long sequence of works (see
e.g. [41,20,19,17,42]). In an FHE scheme, given a public key pk and a ciphertext
of a messagem encrypted using this public key, a user can homomorphically eval-
uate this ciphertext with respect to any circuit C to generate a new ciphertext
ct that is an encryption of C(m) without learning anything about the message.
Then, the decryptor, using the secret key sk can decrypt this message to recover
the output C(m). However, traditionally, FHE schemes are single-key in nature:
that is, they can be used to perform arbitrary computation on data encrypted
using the same public key.

Multi-Key FHE. Lopez-Alt et al. [63] introduced the notion of multi-key fully
homomorphic encryption. Informally, in a multi-key FHE scheme, any message
encrypted using a public key pki can be “expanded” so that the resulting cipher-
text is encrypted with respect to a set of public keys (pk1, .., pkn). Such expanded
ciphertexts can be homomorphically evaluated with respect to any circuit to gen-
erate a ciphertext ct. Then, this ciphertext ct can be partially decrypted using a
secret key ski (corresponding to the public key pki) to produce a partial decryp-
tion pi. Finally, these partial decryptions {pi}i∈[n] can be combined to recover
the output. In addition to the semantic security of encryption, a multi-key FHE
scheme also requires that given any expanded (and possibly evaluated) cipher-
text ct encrypting a messagem, any set of (n−1) secret keys {ski}i6=i∗ for any i∗,
and the message m, it is possible to statistically simulate the partial decryption
pi∗ . Multi-key FHE has been extensively studied [28,64,68,18] and has proven
particularly useful in the context of building round-efficient secure multiparty
computation protocols for protocols achieving security with abort. Recall that
in security with abort, a single party that aborts could potentially prevent all
honest parties from receiving the output.

1.1 A New Primitive: Threshold Multi-Key FHE

However, none of the existing multi-key FHE schemes enable the output to
be reconstructed unless all the n partial decryptions are given out and hence
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they only “work” for n-out-of-n access structures. Unfortunately, this leads to
situations where every secret key owner in the system represents a single point
of failure, since if their partial decryption is not given out, it is not possible to
recover the output. This is sufficient for protocols only achieving security with
abort, as this security notion allows the functionality to fail if even a single party
misbehaves. If we want to create schemes that are capable of handling failures,
we would necessarily want one to be able to decrypt even when one only possesses
a subset of partial decryptions (say t out of n). In order to solve this problem,
we introduce a new notion of multi-key FHE designed to handle arbitrary access
patterns that can reconstruct the output. We call this new notion threshold
multi-key FHE.1

In this work, we first formally define threshold multi-key FHE and then show
to construct this new primitive from the learning with errors (LWE) assumption.
Formally, we show the following theorem:

Theorem 1 (Informal). Assuming LWE, there exists a secure threshold multi-
key FHE scheme for the class of access structures A induced by all monotone
boolean formulas.

In Section 2, we describe challenges we faced defining this primitive and the
techniques used in our construction. Our next contribution is an application of
threshold multi-key FHE in the context of round-optimal secure MPC protocols
with guaranteed output delivery.

1.2 Application to Round-Optimal MPC

Secure multi-party computation (MPC) [73,74,43] has been a problem of funda-
mental interest in cryptography. In an MPC protocol, a set of mutually distrust-
ing parties can evaluate a function on their joint inputs while maintaining privacy
of their respective inputs. Over the last few decades, much of the work related
to MPC has been devoted to achieving stronger security guarantees and improv-
ing efficiency with respect to various parameters such as round complexity and
communication complexity. In this work, we further advance our understanding
of this landscape with threshold multi-key FHE being the main technical tool.

MPC Supporting “Honest but Lazy” Parties. In traditional MPC, every party is
required to remain online and participate completely in the protocol execution.
This applies not only to “classical” MPC protocols where every party has to
participate and send a message in every round of the protocol, but also to other
interesting variants such as protocols in the client-server setting where all the
servers are required to remain active until the end of the protocol execution.
We refer the reader to Section 1.4 for a more detailed comparison with related
works. In other words, traditional MPC protocols decide to treat a “lazy” party

1 We remark that in fact, some existing standard multi-key FHE schemes [64] also
interchangeably used the term threshold multi-key FHE for their primitive. We over-
load this term here to denote our stronger notion.
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that just aborts midway into the protocol execution as a corrupt party that is
colluding with the other corrupt parties, and this is addressed in different ways.
In some cases, all parties abort the protocol execution while in other cases, the
“lazy” party is just discarded and all the other parties compute the function
on their joint inputs alone. We believe that such an outlook is undesirable as
there are several reasons why even an honest party might have to abort and
become “lazy” during the execution of a protocol without having to be deemed
as colluding with the corrupt parties. A few potential reasons include:

– Connectivity - A party might lose connectivity and hence be unable to con-
tinue the protocol.

– Computational resources - A computationally weak party might be unable
to perform intensive computation and hence be forced to exit the protocol.

– Interest - At some point, a party might just lose interest in that protocol
execution due to other higher priority tasks that come up.

Motivated by the above realistic scenarios, we would like to construct MPC
protocols that can handle “honest but lazy” parties without simply lumping
them in with the other corrupted parties (since treating all aborting parties as
“malicious” will unrealistically enhance the power of the adversary and limit
our protocol’s capabilities). Furthermore, we would like our protocol to be ro-
bust to aborting parties (that is, have guaranteed output delivery). Informally,
this means that at the end of the protocol execution, regardless of the behavior
of the adversary, the honest parties can still compute the output of the func-
tion on all their joint inputs (with either a default or the actual input for each
of the corrupted parties). Ideally, we would like to achieve a stronger form of
guaranteed output delivery, where, when possible, the output of the protocol is
with respect to the actual input of all the “honest but lazy” parties, rather than
some default input. This is akin to stating that provided an “honest but lazy”
party actually sent a message dependent on its input, the protocol will compute
the functionality with respect to this party’s input, regardless of whether or not
the party aborted during the rest of the protocol. We call this property input
fidelity. In this work, we ask

Can we construct round-optimal protocols in the plain model that achieve the
above desiderata?

If such a protocols are achievable, then

Can these protocols handle the maximum number of possible corruptions?

What can we say about the assumptions, communication complexity, and
reusability of such protocols?

Using our new primitive, threshold multi-key FHE, we are able to answer
all the above satisfactorily. We construct the first round-optimal (three-round)
MPC protocol in the plain model that achieves our desired properties. Moreover,
our protocol is capable on handling the maximum number of corruptions that a
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protocol can possibly support while achieving the desired properties. Our proto-
col relies only on the learning with errors (LWE) assumption. Furthermore, our
protocol has depth-proportional communication complexity and is reusable.

Formalizing Our Desired Properties. Formally, we study MPC with guaranteed
output delivery in the presence of threshold mixed adversaries, introduced by
Fitzi et al. [36,37]. In this setting, a threshold mixed adversary A is allowed
to corrupt three sets of parties (AMal,ASh,AFc) such that the following holds:
(i) |AMal| ≤ tMal, |ASh| ≤ tSh, and |AFc| ≤ tFc, for a tuple of thresholds
(tMal, tSh, tFc). (ii) The set of parties in AMal are maliciously corrupted meaning
that the adversary can choose to behave using any arbitrary polynomial time
algorithm on behalf of each of them. (iii) The set of parties in ASh are corrupted
in a semi-honest manner and so the adversary is required to follow the protocol
execution honestly on behalf of each of them. (iv) The set of parties in AFc

are corrupted in a fail-corrupt manner meaning that for each party in this set,
the adversary can specify when that party is required to abort the protocol
execution. Until then, these parties follow the protocol execution honestly. Note
that the adversary never gets to see the inputs or internal state of any of the fail-
corrupt parties and hence these parties capture our motivation of “honest but
lazy” parties - where their laziness is enforced by the adversary in the security
game.

In this work, our goal is to build a round-optimal MPC protocol with guaran-
teed output delivery in this model that also simultaneously satisfies the following
desirable properties:

Security Against the Maximum Number of Corruptions: Security
should hold against a threshold mixed adversary that can corrupt the maxi-
mum number of parties under which guaranteed output delivery is achievable.

Input Fidelity: In line with our motivation, we want our protocol to satisfy not
only guaranteed output delivery, but also the stronger property that the output
of the computation is a function of the joint inputs of all parties, including those
that aborted after a “certain point”. Intuitively, we would like our protocol to
be divided into two phases - an input commitment phase and a computation
phase. We refer to the end of the input commitment phase as this “point.” That
is, in the scenario where the adversary corrupts a set of parties in a fail-corrupt
manner, for every fail-corrupt party Pi that aborts after the input commitment
phase, its input yi that is used to compute the final output C(y1, . . . , yn) is set
to be its actual input xi used in the protocol so far and not a default input ⊥.
Recall that this aligns with our original motivation where we wish to not discard
honest but lazy parties and deem them to be corrupt.

Depth-Proportional Communication Complexity: For any function f ,
the communication complexity of the protocol should be poly(λ, d,N, ℓinp) where
N is the number of parties, λ is the security parameter, ℓinp is the input length
for each party, d is the depth of the circuit computing f .
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Reusability: Given the transcript of the input commitment phase of the pro-
tocol, the computation phase of the protocol should be able to be reused across
an unbounded polynomial number of executions to compute different functions
on the same fixed joint inputs of all the parties.

Prior to our work, much of the focus in this model was on obtaining feasibility re-
sults, understanding under what corruption patterns is secure computation even
possible, and improving the communication complexity. We refer to Section 1.4
for a more detailed discussion on the prior work in this model. In particular,
Hirt et al. [50] showed that in the setting of a threshold mixed adversary, MPC
with guaranteed output delivery is possible if and only if 2tMal+ tSh+ tFc < N ,
where N is the total number of parties. Since we are interested in constructing
protocols with guaranteed output delivery, in this work, we focus on constructing
MPC protocols that are secure against (tMal, tSh, tFc)-threshold mixed adver-
saries, for any (tMal, tSh, tFc) satisfying the above inequality. Furthermore, in
light of the result of Gordon et al. [44] showing that three rounds are required
for MPC with guaranteed output delivery in the traditional model (this can be
viewed as a special case of the threshold mixed adversary model, where tSh and
tFc are both 0), we observe that a three round protocol will be round-optimal
in this setting.

Utilizing our new primitive, threshold multi-key FHE, we construct the first
round-optimal (three round) MPC protocol with guaranteed output delivery
in the threshold mixed adversary model that simultaneously achieves all of the
above desired properties. In particular, given any tuple of thresholds (tMal, tSh, tFc)
satisfying the Hirt et al. [50] inequality, we construct a three-round MPC pro-
tocol with guaranteed output delivery that is secure against such a threshold
mixed adversary. Since guaranteed output delivery is possible if and only if the
Hirt et al. [50] inequality holds, our resulting protocol is optimal in terms of the
best possible corruption we can tolerate. Furthermore, the first two rounds of
our protocol form the input commitment phase, and round 3 is the computa-
tion phase. Our protocol has input fidelity, in the sense that the functionality
is computed with respect to the inputs of all parties that did not abort in the
first two rounds, even if that party aborts in round three. Additionally, given
the transcript of the input commitment phase (the first two rounds of the pro-
tocol), the third round can be reused across an unbounded polynomial number
of executions to compute different functions on the same fixed joint inputs of
all parties. Our protocol also has depth-proportional communication complexity.
Formally, we show the following result:

Theorem 2 (Informal). Assuming learning with errors (LWE), for any func-
tion f on N inputs, for any tuple of thresholds (tMal, tSh, tFc) satisfying 2tMal +
tSh+tFc < N , there exists a three-round MPC protocol with guaranteed output de-
livery in the plain model that is secure against a (tMal, tSh, tFc)-mixed adversary.
The protocol has input fidelity, depth-proportional communication complexity,
and is reusable.
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By instantiating Theorem 2 with the (⌈N/2 − 1⌉, 0, 0)-mixed adversary we
achieve an interesting result in the the traditional MPC world in the plain model:
in particular, notice that this setting corresponds to an honest majority of par-
ties and as a result, we get a three round MPC protocol in the plain model
with guaranteed output delivery. As mentioned previously, our protocol is round
optimal for this setting as well due to the lower bound of Gordon et al. [44]. For-
mally, we achieve the following corollary, matching the round complexity of the
recent work [1], but for the first time, also achieving input fidelity, reusability,
and depth-proportional communication complexity, assuming only LWE.

Corollary 1 (Informal). Assuming LWE, for any function f , there exists a
three-round MPC protocol with guaranteed output delivery in the plain model in
the presence of an honest majority.

1.3 Multi-String NIZK from LWE

As a stepping stone to achieving Theorem 2, we first consider the weaker set-
ting of a (tSm, tSh, tFc)-semi-malicious mixed adversary that corrupts the sets
(ASm,ASh,AFc) of parties such that the first set of parties ASm, with |ASm| ≤
tSm, is only corrupted in a semi-malicious manner - that is, on behalf of each
party in this set, the adversary can pick any arbitrary randomness of its choice
but using this randomness, the party is required to execute the protocol honestly.
We define this formally in the technical sections. Once we have constructed a
protocol that is secure against a semi-malicious mixed adversary, we are able to
bootstrap it to one that is secure against a (malicious) mixed adversary in the
plain model using a multi-string non-interactive zero knowledge (NIZK) argu-
ment.

In a multi-string NIZK argument system, introduced in the work of Groth
and Ostrovsky [47], a set of parties can each generate one CRS that can then
be combined to compute one unified CRS which is used to compute NIZKs. The
guarantee is that as long as a majority of the individual CRS strings are honestly
generated, the argument system is correct and secure. Unfortunately, one of the
tools in the construction of multi-string NIZKs in [47] was a Zap [32], which
is not known from (plain) LWE. In order to obtain Theorem 2 assuming only
LWE, we construct a (simulation-extractable) multi-string NIZK directly from
LWE, which may be of independent interest. Formally, we show the following.

Theorem 3 (Informal). Assuming LWE, there exists a simulation-extractable
multi-string NIZK for NP.

1.4 Related Work

We apologize in advance for any incorrect or missing relevant citations. Please
let us known and we will be happy to include them.
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Client-Server MPC. Secure computation in the client-server setting has been
a widely studied problem [33,53,65,31,13,55,59,24]. The key differences from
our model are the following: (i) in a client server setting, the identity of the
server/servers and clients are decided a priori. As a result, the parties who per-
form the computation (the servers) are decided in advance while in our setting,
any set of “non-lazy” parties can run the computation phase. (ii) In the client
server model, all the clients can essentially turn “lazy” after submitting their
messages to the server but we typically crucially require all the servers to take
part in the computation to receive meaningful output. Once again, this is differ-
ent from our setting.

Dishonest Majority MPC in the Plain Model. A long sequence of works con-
structed constant-round MPC protocols against dishonest majority based on a
variety of assumptions and techniques (see, e.g., [60,66,67,72,45,39,2,18,26,27]
[5,57,7,38,6,48,11]). We stress that while the exact round complexity of MPC
in the dishonest majority setting has been extensively studied, it is not clear
or analyzed whether any of these protocols are also secure in the more general
framework of a general mixed adversary.

MPC with Mixed Adversaries. Fitzi et al. [36] introduced the notion of MPC
in the presence of a mixed adversary. Starting with their work, a series of pa-
pers [36,37,49,54,8,50,76,71,75] studied and established lower bounds for cor-
ruption patterns under which MPC is feasible. Another line of work [25,51,61]
was focused on improving the communication complexity of MPC protocols for
various functionalities in the mixed adversary setting with various corruption
patterns.

MPC with Guaranteed Output Delivery. There have been a variety of prior works
regarding MPC with guaranteed output delivery and/or fairness in the broadcast
model. Cleve [29] showed that we cannot construct fair MPC protocols unless
there are an honest majority of parties. [10] constructed MPC protocols with fair-
ness, and [30] studied the relationship between fairness and guaranteed output
delivery in MPC protocols. There have also been a variety of works constructing
MPC protocols with guaranteed output delivery. [31] constructed a three-round
MPC protocol with guaranteed output delivery that is secure against an adver-
sary that can corrupt less than one fifth of the parties. [4] constructed five-round
MPC protocols with guaranteed output delivery secure against an adversary that
corrupts a minority of parties from LWE and NIZKs. Subsequently, Gordon et.
al [44] constructed a three-round MPC protocol with guaranteed output deliv-
ery in the CRS model from LWE and NIZKs. Furthermore, [44] showed that
achieving guaranteed output delivery in two rounds, even in the CRS model,
is impossible. This built upon a previous result [40] that had ruled out such
protocols in the plain model when the adversary can corrupt more than a single
party. There have also been a couple of very nice recent works that take on the
challenging task of constructing MPC protocols with guaranteed output delivery
with information-theoretic security. [3] construct a three-round protocol for NC1
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circuits that can handle a malicious adversary that corrupts up to a quarter of
the parties. [46] construct a protocol for poly-sized circuits over point-to-point
channels with round-complexity the number of multiplication gates in the circuit
that can handle a malicious adversary that corrupts up to a third of the parties.

Independent Work. Recently, in an independent work, Ananth et. al [1] also
constructed a three-round honest majority MPC protocol with guaranteed out-
put delivery in the plain model, assuming PKE and Zaps. Their techniques are
substantially different from ours, and we note that if we instantiate our protocol
with the (⌈N/2− 1⌉, 0, 0) tuple of thresholds, we are able to match their result,
assuming LWE, as shown in Corollary 1. Moreover, our protocol simultaneously
achieves depth-proportional communication complexity, reusability, and input fi-
delity, properties not achievable by their protocol. Furthermore, we note that our
general protocol can handle threshold mixed adversaries, whereas their protocol
is only secure against malicious adversaries in the honest majority setting.

2 Technical Overview

We first describe the challenges involved in defining and constructing our new
primitive of threshold multi-key FHE in the next subsection. This is followed by
the techniques involved in constructing our round-optimal MPC protocol with
guaranteed output delivery. Finally, we discuss the techniques used to construct
a multi-string NIZK from LWE.

2.1 Threshold Multi-Key FHE (TMFHE)

Definitional Challenges. Recall that we would like to construct a version of
multi-key FHE that only requires some (say t out of n) of the partial decryption
shares in order to reconstruct the output as opposed to all n partial decryptions,
as is required in all existing multi-key FHE schemes.

At first glance, it is not even clear how to define such a notion. The most
direct approach leads to a definition that is impossible to achieve. Consider for
example the n/2-out-of-n access structure. In this case, if we follow the standard
procedure used by known multi-key FHE schemes, any evaluator can expand a
ciphertext encrypting a messagem with respect to public key pkn to a ciphertext
ct with respect to the set of public keys (pk1, ..., pkn). Then, the evaluator can
use secret keys sk1, .., skn/2 to learn the value of m, as the set {1 . . . , n/2}
satisfies the access structure. However, in doing so, an adversary can learn m
without knowing skn, breaking the semantic security of the encryption scheme
with respect to (pkn, skn) and leading to a notion that provides no security.

Although we seem to have arrived at a notion that is not meaningful at all,
we note that the issue with the above approach is that a ciphertext encrypted
with respect to a public key pk can be expanded to one encrypted with respect
to many public keys. However, if we prevent ciphertexts from being expanded,
there is hope of achieving a meaningful notion. Expanding on this idea, we arrive
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at the following (informal) definition. Any party can generate its own key pair
(pk, sk). Any encryptor can compute ct← Encrypt(pk1, .., pkn,A,m). Given two
(or more) ciphertexts encrypted with respect to the same set of public keys
and the same access structure A, it is possible to homomorphically evaluate a
circuit on these ciphertexts and partially decrypt the resulting ciphertext using
any secret key ski to recover a partial decryption pi. Given {pi}i∈B for some B
satisfying A, one can reconstruct the output. Roughly, we require two security
guarantees from the scheme.

1. Given {ski}i∈S for some S /∈ A,

Encrypt(pk1, . . . , pkn,A,m0) ≈c Encrypt(pk1, .., pkn,A,m1)

for any two equal length messages m0,m1.

2. Given a ciphertext ct for an underlying message m and {ski}i∈S for any
maximally unqualified set2 S /∈ A (for example (n/2 − 1) of the parties for
the example above), it is possible to statistically simulate a partial decryption
pi for any i ∈ [n].

For technical reasons, we require a more nuanced security definition, and we
refer the reader to Section 4 for the details.

Construction Overview. In order to construct TMFHE, one could try many
approaches to build on top of existing multi-key FHE schemes. For example,
one could try the following. Given any set of public keys (pk1, .., pkn), generate
ciphertexts ctS ← Encrypt({pki}i∈S ,m) for all minimally valid sets S ∈ A. How-
ever, such an approach is not feasible for access structures such as n/2−out-of-n
as then the encryptor has to compute encryptions for roughly

(
n

n/2

)
subsets,

which is super-polynomial.

To overcome this limitation, we use the tool of threshold FHE introduced in
the work of Boneh et al. [15]. In a threshold FHE scheme, the setup algorithm
samples a single public key fpk and n secret key shares (fsk1, .., fskn) for a secret
key fsk that are shared according to the access structure A. Using the public key
fpk, an encryptor can encrypt a message m to receive a ciphertext ct (which may
be evaluated). This ciphertext can then be partially decrypted independently
using key shares ski to compute a partial decryption pi. Then using these {pi}i∈S
for any set S ∈ A, one can recover m. Security properties are two fold:

– Given {ski}i∈S for some S /∈ A, Encrypt(pk,A,m0) ≈c Encrypt(pk,A,m1)
for any two equal length messages m0,m1.

– Second, given a ciphertext ct with underlying message m and {ski}i∈S for
any maximally unqualified S /∈ A, it is possible to statistically simulate
partial decryptions pi for any i ∈ [n].

2 By maximally unqualified set S, we mean that for any i ∈ [n] \ S, (S ∪ {i}) ∈ A.
Similarly, a set S is minimally qualified if for any i ∈ [S], (S \ {i}) /∈ A.
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We make the following useful observations about threshold FHE which will
aid us in our construction.

1. The setup algorithm of the scheme of [15] first samples (pk, sk)← FHE.Setup(1λ)
and then secret shares sk according to the access structure using a “special
purpose” secret sharing scheme to compute shares (sk1, .., skn) so that the
reconstruction involves just addition of some subset of shares. Looking ahead
to the security proof, this feature allows us to easily simulate partial decryp-
tions.

2. The encryption procedure just involves encrypting the message m using an
underlying FHE scheme.

3. The underlying FHE scheme can be instantiated using most of the known
homomorphic encryption schemes satisfying a few general properties.

Thus, we observe that, in particular, the multi-key FHE schemes of both [64,18],
can be used to instantiate the underlying FHE scheme in threshold FHE. This
can then be used to evaluate on multiple ciphertexts encrypted with respect
to different public keys - since, using multi-key FHE, one can expand on vari-
ous ciphertexts and evaluate jointly on them. However, at this point, it is still
not clear how to compute (or simulate) partial decryptions, especially since the
threshold FHE construction of [15] only handled underlying FHE schemes where
the ciphertext was encrypted with respect to a single public key. However, we
observe the following property of the multi-key FHE schemes of both [64,18].
Suppose we have two ciphertexts, ct1 and ct2 that are encrypted under public
keys fpk1 and fpk2, respectively. In the multi-key FHE scheme, we can expand
these ciphertexts to ĉt1 and ĉt2, each encrypted under the set of public keys
{fpk1, fpk2}. If the secret keys corresponding to fpk1 and fpk2 are fsk1 and fsk2,
respectively, then the secret key for decryption of ĉt1 and ĉt2 (and any cipher-
text computed by evaluating on these ciphertexts) is [fsk1, fsk2]. In a standard
threshold FHE scheme, the secret key would be secret shared across n parties.
For simplicity, assume that we secret share according to the n out of n access
structure. Let party i’s shares of fsk1 and fsk2 be denoted by fsk1,i and fsk2,i,
respectively. Since the decryption procedure of the multi-key FHE scheme is
linear and the secret sharing of fsk1 and fsk2 is also linear and, crucially, with
respect to the same access structure, one could have party i partially decrypt by
running the decryption procedure of the multi-key FHE scheme using the secret
key [fsk1,i, fsk2,i]. Given these partial decryptions, one could combine them to
recover the message by adding them as specified by the reconstruction procedure
of the secret sharing scheme.

The above gives intuition as to how one might construct threshold multi-key
FHE, but several points are still unclear. In particular, we noted that in order to
achieve a meaningful notion, we want an encryptor to encrypt with respect to a
public key set and an access structure. The idea is that the public key set that
an encryptor encrypts with respect to is not a public key set of the underlying
MFHE scheme, but rather simply a set of public keys for a public-key encryption
scheme. These public keys serve as a means to send the corresponding multi-key
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FHE secret key shares to the other parties. At a high level, encryption works by
generating a multi-key FHE public key fpk and secret key shares fsk1, . . . , fskn
corresponding to the access structure A. The encryptor then encrypts fski under
pki and includes this in the ciphertext. This allows a set of parties satisfying the
access structure to use their secret keys ski of the public-key scheme to recover
the necessary fski’s to decrypt the ciphertext. Furthermore, as we noted above,
standard multi-key FHE expansion and evaluation will result in a ciphertext
that can be decrypted by concatenating the secret key shares for each of the
ciphertexts.

The above discussion is highly simplified and is meant to provide the reader
with some intuition behind our construction. We ignored various subtle points
and refer the reader to the main technical sections for the details. As a conse-
quence of our techniques, we are able to directly simulate partial decryptions
against an adversary that corrupts any set S 6∈ A, not only a maximally unqual-
ified one. The constructions of [64,18] could only simulate against a maximally
unqualified set (N − 1 out of the N parties in their case) and relied on a trans-
formation to achieve simulation security against any unqualified corrupted set.

2.2 MPC with Guaranteed Output Delivery against Threshold
Mixed Adversaries

Recall that a (tMal, tSh, tFc)-threshold mixed adversary is one which corrupts
three sets of parties (AMal,ASh,AFc) with |AMal| ≤ tMal, |ASh| ≤ tSh, and
|AFc| ≤ tFc that behave as follows: the set of parties in AMal are completely
malicious and can behave arbitrarily as per the adversary’s choice, the set of
parties in ASh are corrupted in a semi-honest manner meaning that they are
required to follow the protocol behavior correctly and the set of parties in AFc

are corrupted in a fail-corrupt manner meaning that for each party in this set,
the adversary can choose to abort the protocol execution at any point. Crucially,
the adversary does not get to see the internal state of any fail-corrupt party.
Intuitively, we can imagine these fail-corrupt parties as honest “lazy” parties
whose aborting/laziness is controlled by the adversary. In this work, we focus
on the setting of static corruptions where the adversary is required to specify all
three sets apriori. Of course, note that for each fail-corrupt party, the adversary
still has the luxury to determine adaptively when each party is expected to abort.

Our three-round MPC protocol secure against a threshold mixed adversary
follows the same recipe as in the works of Mukherjee and Wichs [64] and Brak-
erski et al. [18] who construct MPC protocols from multi-key FHE. We adapt it
to instead use the underlying system as a threshold multi-key FHE scheme. Fur-
ther, we will parametrize our protocol using an access structure A which will be
used to run the setup of the threshold multi-key FHE scheme. Recall that since
we are interested in the setting where guaranteed output delivery is possible,
we require that (tMal, tSh, tFc) respect the Hirt et al. [50] inequality. That is,
2tMal + tSh + tFc < N . In our protocol, given a threshold tuple (tMal, tSh, tFc),
A will be set as the (N − tMal − tFc)-out-of-N access structure. This ensures
that tMal + tSh, the maximum number of parties for which the adversary can
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view the internal state is less than the required threshold to satisfy the access
structure.

Security Against Semi-Malicious Mixed Adversaries. Let’s first consider
the simpler setting where the first set of corrupted parties AMal can only be
semi-malicious. That is, on behalf of each of them, the adversary can pick ran-
domness of its choice but the parties are required to follow the protocol behavior
honestly using this randomness. The adversary may also choose to have these
parties abort at any time. A more formal definition is given in Appendix B. The
overall structure of our MPC protocol with respect to any access structure is the
following:

– In round 1, each party generates its parameters and public key for the thresh-
old multi-key FHE scheme.

– In round 2, each party individually encrypts its input with respect to the
combined set of public keys and access structure and broadcasts the cipher-
text.

– All parties can now homomorphically compute a threshold multi-key FHE
encryption of the output, with respect to the functionality under considera-
tion. Then, each party broadcasts a partial decryption of the output using
its secret key. The partial decryptions can be combined to recover the output
in plaintext.

It can be readily observed from the definition of threshold multi-key FHE
that this protocol satisfies correctness and security even in the presence of a
threshold mixed adversary (with semi-malicious corruptions), where some lazy
honest parties could drop off from the protocol execution at any point as deter-
mined by the fail-corrupt corruption. Furthermore, the fact that the protocol has
guaranteed output delivery can be observed by noting that at most tMal + tFc

parties will abort. So, at least N − tMal− tFc parties will remain, which is suffi-
cient to recover the output. Note that since we have restricted the adversary to
behave semi-maliciously instead of maliciously on the set AMal, every message
sent will be “valid.”
One key difference from the previous works [64,18] is the following: in the stan-
dard model MPC protocols of [64,18], due to the design of the multi-key FHE
primitive, the protocol is secure only against a semi-malicious adversary that
corrupts all but one party. They then need to transform it to a protocol that is
secure against an adversary that can corrupt any arbitrary number of parties up
to all but one of them. In our MPC protocol, the security guarantee given by the
threshold multi-key FHE scheme allows us to prove a more general statement
that our protocol is in fact secure even if the adversary chooses to corrupt fewer
parties than it is capable of (it chooses to corrupt less than the threshold number
of parties).

Handling Malicious Adversaries. The final step in achieving our MPC pro-
tocol is to allow the set AMal to be maliciously corrupted. One way to do this
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would be to use a NIZK and have each party send a proof in each round that
they computed their message properly; if the NIZK proof does not verify, the
party would be treated as malicious and ignored. Unfortunately, using a NIZK
would require us to introduce a CRS, and we want our protocol to be in the
plain model.

Round One: Malicious. To do so, the first crucial observation we make is that
the underlying semi-malicious protocol (without a NIZK) in the plain model is
already in fact secure against an adversary that can behave maliciously only in
the first round. The reason is that the first round message, which consists of
the adversary’s parameters for the threshold multi-key FHE scheme, is simply
a random matrix and a public key. To argue semi-malicious security, we only
needed the following two properties:

– The honest parties’ matrices are generated uniformly at random.3

– The simulator, before the beginning of round three of the protocol, only
needs to know the randomness used by the adversary in the second round to
generate its ciphertext. In particular, the simulator does not need to know
a corresponding secret key for the public key sent by the adversary in round
1.

As a result, we did not require the input or randomness used by the adversary
to generate its round one messages, and hence our protocol is secure against an
adversary that can behave maliciously in round one.

Multi-String NIZK. Armed with the above property, we note that our proto-
col no longer needs to prove correctness of round one messages using a NIZK.
Therefore, we will use the first round messages of all parties to try to collectively
generate a valid CRS that can then be used to generate the NIZKs and achieve a
construction in the plain model. The notion of multi-string NIZKs, introduced in
the work of Groth and Ostrovsky [47] exactly fits this requirement. As discussed
previously, in a multi-string NIZK argument system, a set of parties can each
generate one CRS that can then be combined to compute one unified CRS which
is used to compute NIZKs. The guarantee is that as long as a majority of the
individual CRS strings are honestly generated, the argument system is correct
and secure4.

In our protocol, we can use this primitive as follows: in round 1, each party
generates an individual CRS for the multi-string NIZK system. At the end of
round 1, all parties can combine the above set of CRS strings to compute one
unified CRS that can then be used to compute NIZKs. In rounds 2 and 3, each
party also sends a NIZK along with their message, and the other parties make
sure the NIZK verifies. If the NIZK does not verify, the party that submitted an

3 This was a wonderful observation made in the work of Brakerski et al.[18].
4 As is the case with compiling semi-malicious protocols into malicious secure ones,
we need the NIZK to be simulation-extractable.
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invalid message is ignored for the rest of the protocol and treated as if it had
aborted instead.

There is one additional hurdle to ensuring that a multi-string NIZK suffices
for our setting. The multi-string NIZK is only secure if a majority of the CRSs
are honestly generated. However, we want our protocol to be secure against any
(tMal, tSh, tFc)- mixed adversary, where 2tMal+ tSh+ tFc < N . In particular, we
need the multi-string NIZK to be secure in settings without an honest majority!
Fortunately, the multi-string NIZK is still secure in our setting, provided that the
CRSs are uniformly random strings. To see why this is the case, we first observe
that tFc, the number of fail-corrupt parties does not present any difficulties. This
is because these parties fall under the “honest but lazy” parties in our motivation,
and so while the adversary can force them to abort, the adversary can never
learn any internal state information of these parties or cause them to behave
dishonestly. Therefore, any CRS output by these parties will be an honest CRS,
and so choosing to not have these parties abort prior to round 1 only increases
the number of honest CRSs that are output. The second observation is that any
semi-honest corruptions also do not cause any difficulties. This is because the
honest procedure for generating a CRS is to simply sample a random string.
Therefore, even if an adversary semi-honestly corrupts a party, it can neither
prevent it from outputting an honestly generated random string nor learn any
state information that could compromise the random string. Therefore, all the
CRSs output by the semi-honest corrupt and fail-corrupt parties are honest, and
since 2tMal+ tSh+ tFc < N , it follows that a majority of the CRSs are honestly
generated. Therefore, security of the multi-string NIZK system holds and we
obtain a plain model construction. In this work, we construct a multi-string
NIZK from LWE that satisfies this additional property required of the CRS and
we elaborate more on this construction now.

2.3 Multi-String NIZK from LWE

The above demonstrated that a simulation-extractable multi-string NIZK would
allow us to obtain our round-optimal MPC protocol. However, a multi-string
NIZK is not known to exist from LWE. Previously it was known from statistically
sound ZAPS as shown in the work of [47]. However, ZAPs are not known to exist
from LWE. One might think that we could use the recent result of Peikert and
Shiehian [69], which constructs either a statistically-sound NIZK in the common
reference string model or a computationally-sound NIZK in the common random
string model. One might think that we could use the transformation of Dwork
and Naor [32] to obtain a ZAP from LWE and then apply the transformation
of [47]. However, this does not work, since their transformation crucially requires
a statistically-sound NIZK in the common random string model, which is not
known from LWE. Therefore, we require a different approach. We construct the
first multi-string NIZK from LWE and use it as a tool in obtaining our round-
optimal MPC result.

Our construction proceeds in two main steps. We first build a multi-string
non-interactive witness indistinguishable (NIWI) argument system from LWE
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and then show how to bootstrap it to obtain a simulation-extractable multi-
string NIZK.

A recent series of works [58,22,52,21,69] have developed a framework for
instantiating the Fiat-Shamir transform [35] using a hash function that satisfies
a property called correlation-intractability [23]. This culminated in the work of
Peikert and Shiehian [69], who were able to obtain the first NIZK from LWE by
constructing a correlation-intractable hash function family for (bounded) circuits
from LWE. The notion of a correlation-intractable hash function family is defined
formally in Appendix A.5. Informally, a hash function family H is correlation-
intractable for a relation R if given a sampled key K, it is hard to find an x such
that (x,HK(x)) ∈ R. Following the formula introduced in the above works, we
will apply the Fiat-Shamir transform to the Σ protocol for Graph Hamiltonicity
by Blum [12] in order to obtain our multi-string NIZK.

Multi-String NIWI from LWE. The first step is to construct a multi-string
NIWI from LWE. A multi-string NIWI is defined analogously to a multi-string
NIZK. That is, in a multi-string NIWI, a set of parties can each generate one
CRS that can then be combined to compute one unified CRS which is used to
compute NIWIs. The guarantee is that as long as a majority of the individual
CRS strings are honestly generated, the argument system is correct and secure.

To construct the multi-string NIWI, we first construct a non-interactive com-
mitment scheme in the multi-string model with the property that the scheme
remains hiding and binding provided that a majority of the CRSs are honestly
generated. At a high level, this is done by having each CRS be a public key pki
of a public key encryption (PKE) scheme. To commit to a message m, one sim-
ply secret shares m using a ⌊n/2⌋+ 1-out-of-n secret sharing scheme to obtain
shares (m1, . . . ,mn), then encrypts mi under pki, and outputs these n cipher-
texts as the commitment. Since a majority of the public keys were generated
honestly, a majority of the shares are hidden by the encryption, so the com-
mitment scheme satisfies hiding. By the correctness of the PKE scheme, the
resulting commitment scheme must also be binding. Furthermore, we observe
that this commitment scheme also has an associated trapdoor that facilitates
extraction of the message committed. In particular, any majority of the secret
keys ski can be used as a trapdoor as they can recover a majority of message
shares from the commitment and, therefore, the message.

The multi-string NIWI is built by having each party generate its CRS in the
setup phase as a public key pki of a PKE scheme and a hash key Ki from the
correlation hash function family H. To prove a statement x ∈ L using a witness
w, we run λ parallel repetitions of the Σ protocol using the above commitment
scheme as the underlying commitment scheme and making it non-interactive
via the Fiat-Shamir transformation, with the hash function instantiated using
HKi

. A proof is the transcript of all the parallel executions of the Σ protocol.
Soundness follows from the correlation-intractability of the hash function fam-
ily H, the binding property of the commitment scheme and the soundness of
the underlying Σ protocol. Witness indistinguishability follows from the witness
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indistinguishability of the underlying Σ protocol and the fact that the commit-
ment scheme is hiding even if a minority of shares are learned. We refer the
reader to Section 7.2 for more details.

Obtaining a Multi-String NIZK. In order to obtain a multi-string NIZK
from our multi-string NIWI, we use the standard trick found in [34,47] each
party also generates a random string ri as part of their CRS and the statement
that is proven using the multi-string NIWI now is that x ∈ L OR a majority of
the ri’s are actually the output of a pseudorandom generator G. Soundness and
zero knowledge then follow via standard arguments, and we refer the reader to
Section 7.3 for more details. We then observe that we can also prove simulation-
extractability of our multi-string NIZK if we additionally use the commitment
scheme from before once again and require the prover to commit to its witness
using this scheme. The statement being proved using the multi-string NIWI
would now be that either x ∈ L using a witness w that was committed OR
a majority of the ri’s are actually the output of a pseudorandom generator G.
Further, in order to prove that the scheme is simulation extractable, here, we will
instantiate all the underlying PKE schemes inside the extra commitment scheme
(for the witness) with CCA-secure PKE schemes. As a result, our extractor for
the simulation-extractable NIZK can use the secret keys of all the honest parties
for this extra commitment scheme as a trapdoor to learn the witness associated
with the adversary’s proof. We refer the reader to Section 7.3 for more details
about the proof.

Finally, recall that in order to use the multi-string NIZK in our MPC pro-
tocol, we require that the CRS generated by each party is a uniformly random
string. However, in our construction, in addition to the random string r, the
CRS consists of two public keys (one for committing to the witness and one for
the commitment used in the Σ protocol) and a hash key K for a correlation-
intractable hash function familyH. We will use an encryption scheme whose pub-
lic keys are statistically-close to uniform and we also observe that the hash key is
statistically-close to uniform. This ensures that the CRS is also statistically-close
to uniform. We then prove that this is in fact sufficient for the MPC application
and we don’t require the CRS to be a uniformly random string. We refer to
Section 7.4 for more details.

3 Preliminaries

We denote the security parameter by λ. For an integer n ∈ N, we use [n] to denote
the set {1, 2, . . . , n}. We use D0

∼=c D1 to denote that two distributions D0,D1

are computationally indistinguishable. We use negl(λ) to denote a function that
is negligible in λ. We use x ← A to denote that x is the output of a ran-
domized algorithm A, where the randomness of A is sampled from the uniform
distribution. We use PPT as an abbreviation for probabilistic polynomial-time.
Whenever we write {xj}j∈S for a set of parties S, we assume that the party j
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that xj corresponds to is included in xj . When we say an error distribution is
E-bounded, we mean that the errors are in [−E,E].

3.1 Multi-Key Fully Homomorphic Encryption

Multi-key FHE was first introduced in [63] and then constructed by [28,64,18].
We recall the definition of a multi-key FHE in Appendix A.1. Our definition is
inspired from [18].

3.2 Multi-String NIZKs

In order to achieve malicious security in the plain model, we will make use of
simulation-extractable multi-string NIZKs [47]. We recall the definition of this
primitive in Appendix A.4.

3.3 MPC with Threshold Mixed Adversaries

We formally define the notion of secure multiparty computation against a thresh-
old mixed adversary as defined in the works of [37,36] in Appendix B.

3.4 Guaranteed Output Delivery

Consider N parties P1, . . . , PN each with inputs x1, . . . , xN respectively who
wish to run an MPC protocol π to securely evaluate a function f on their joint
inputs. The protocol π is said to possess the guaranteed output delivery property
in the presence of a class of adversaries Adv, if for all possible sets of inputs
{x1, . . . , xN}, for any function f , the following holds: Let S denote the set of
honest parties. At the end of the execution of π, no matter the behavior of the
adversary, each honest party in S computes the same output f(y1, . . . , yn) where
yi = xi for every honest party Pi and yi = xi/⊥ for every corrupt party Pi.

3.5 Additional Preliminaries

In this work, we will also use results regarding statistical distance secret sharing,
correlation intractable hash functions, and Sigma protocols. Preliminaries on
these topics can be found in Appendix A.

4 Threshold Multi-Key FHE: Definition

In this section, we present the definition of threshold multi-key fully homomor-
phic encryption (TMFHE) in the plain model with distributed setup5. TMFHE
will be the main building block in our MPC protocol.

5 Note that we can instead define TMFHE with a single trusted setup, which will allow
us to construct MPC protocols in the CRS model as in [64]. However, our main focus
is on the plain model, and therefore, we use decentralized setup as in [18].

18



Definition 1 (TMFHE). Let P = {P1, . . . , PN} be a set of parties and let
S be a class of efficient access structures on P . A threshold multi-key fully ho-
momorphic encryption scheme supporting up to N parties is a tuple of PPT
algorithms

TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:

paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ, a
circuit depth d, the maximal number of parties N , and a party index i. It
outputs the public parameters paramsi associated with the ith party. We de-
fine params = params1|| . . . ||paramsN .

(pk, sk)← KeyGen(1λ): It takes as input the security parameter λ and outputs
a key pair (pk, sk).

ct← Encrypt(params, pk1, . . . , pkN ,A,m): It takes as input the public parame-
ters params, public keys pk1, . . . , pkN , an access structure A over P and a
plaintext m ∈ {0, 1}λ and outputs a ciphertext ct. Throughout, we will as-
sume that all ciphertexts include the public parameters and the public keys
and access structure that they are encrypted under.

ĉt← Eval(C, ct1, . . . , ctℓ): It takes as input a boolean circuit C : ({0, 1}λ)ℓ →
{0, 1} ∈ Cλ of depth ≤ d and ciphertexts ct1, . . . , ctℓ for ℓ ≤ N . It outputs
an evaluated ciphertext ĉt. Note that N is the maximal number of supported
parties.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an eval-
uated ciphertext ĉt and outputs a partial decryption pi.

µ̂← FinDec(B): It takes as input a set B = {pi}i∈S for some S ⊆ {P1, . . . , PN}
where we recall that we identify a party Pi with its index i. It deterministically
outputs a plaintext µ̂ ∈ {0, 1,⊥}.

We require that for any parameters {paramsi ← DistSetup(1λ, 1d, 1N , i)}i∈[N ],

any key pairs {(pki, ski)← KeyGen(1λ)}i∈[N ], any supported access structure A

over P , any plaintexts m1, . . . ,mℓ ∈ {0, 1}λ for ℓ ≤ N , and any boolean circuit
C : ({0, 1}λ)ℓ → {0, 1} ∈ Cλ of depth ≤ d, the following is satisfied:

Correctness. Let cti = Encrypt(params, pk1, . . . , pkN ,A,mi) for 1 ≤ i ≤ ℓ, ĉt =
Eval(C, ct1, . . . , ctℓ), and B = {PartDec(i, ski, ĉt)}i∈S. With all but negligible
probability in λ over the coins of DistSetup, KeyGen, Encrypt, and PartDec,

FinDec(B) =

{
C(m1, . . . ,mℓ), S ∈ A

⊥ S 6∈ A.

Compactness of Ciphertexts. There exists a polynomial, poly, such that |ct| ≤
poly(λ, d,N) for any ciphertext ct generated from the algorithms of TMFHE.

Simulation Security. There exists a stateful PPT algorithms Sim1, Sim2 such
that for any PPT adversary A, we have that the experiments ExptA,Real(1

λ, 1d, 1n)

and ExptA,Sim(1
λ, 1d, 1n) as defined below are statistically close as a function

of λ over the coins of all the algorithms. The experiments are defined as
follows:
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ExptA,Real(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the max-
imal number of parties 1n, the adversary A outputs a number of
parties N ≤ n, a set S ⊆ [N ] and an access structure A ∈ S over N
parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is
given {paramsi}i6∈S. Sample key pairs KeyGen(1λ) → (pki, ski) for
i 6∈ S. The adversary is given {pki}i6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness

rKeyGeni used to generate (pki, ski) or ⊥.
4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is de-

fined and let S1 = S ∩ Sparams. The adversary then outputs messages
m1, . . . ,mℓ ∈ {0, 1}λ and a set L ⊆ Sparams\S1 of indices with |L| = ℓ
for some ℓ ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams. For

i ∈ S1, run KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK =
{pki}i∈Sparams

. Let A′ be the restriction of A to the parties in Sparams.
The adversary is given cti ← Enc(params,PK,A′,mi) for i ∈ L.

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a

message mi and randomness used for encryption rEncrypti or ⊥. For

the i ∈ S1 for which (mi, r
Encrypt
i ) is defined, set cti = Enc(params,

PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices for which

cti is defined.
7. The adversary issues polynomially many queries of the form

(S′k, Sct,k, Ck : ({0, 1}λ)sk → {0, 1}), where S′k ⊆ Sparams\S1, Sct,k ⊆
Sct, Ck ∈ C, and sk = |Sct,k| ≤ |Sct|. Let CT k = {cti}i∈Sct,k

and let

the evaluated ciphertext be ĉtk ← Eval(Ck, CT k). After each query,
the adversary receives pi,k ← PartDec(i, ski, ĉtk) for all i ∈ S′k.

8. A outputs out. The output of the experiment is out.
ExptA,Sim(1

λ, 1d, 1n):
1. On input the security parameter 1λ, a circuit depth 1d, and the max-

imal number of parties 1n, the adversary A outputs a number of
parties N ≤ n, a set S ⊆ [N ] and an access structure A ∈ S over N
parties such that S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i) → paramsi. The adversary is
given {paramsi}i6∈S. Sample key pairs KeyGen(1λ) → (pki, ski) for
i 6∈ S. The adversary is given {pki}i6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness

rKeyGeni used to generate (pki, ski) or ⊥.
4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is de-

fined and let S1 = S ∩ Sparams. The adversary then outputs messages
m1, . . . ,mℓ ∈ {0, 1}λ and a set L ⊆ Sparams\S1 of indices with |L| = ℓ
for some ℓ ≤ |Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams.

For i ∈ S1, run KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let
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PK = {pki}i∈Sparams
. Let A′ be the restriction of A to the parties

in Sparams. Run ({cti}i∈L, state) ← Sim1(params,PK,A′, S1, L) and
give {cti}i∈L to the adversary.

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for a

message mi and randomness used for encryption rEncrypti or ⊥. For

the i ∈ S1 for which (mi, r
Encrypt
i ) is defined, set cti = Enc(params,

PK,A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices for which

cti is defined.
7. The adversary issues polynomially many queries of the form

(S′k, Sct,k, Ck : ({0, 1}λ)sk → {0, 1}), where S′k ⊆ Sparams\S1, Sct,k ⊆
Sct, Ck ∈ C, and sk = |Sct,k| ≤ |Sct|. Let CT k = {cti}i∈Sct,k

and let

the evaluated ciphertext be ĉtk ← Eval(Ck, CT k). After each query,
the adversary receives {pi,k}i∈S′

k
← Sim2(state, µk, ĉtk, S1, S

′
k, {ski}i∈S1),

where µk = Ck({mi}i∈Sct,k
) if S1 ∪ S′k ∈ A′ and µk = ⊥ otherwise.

8. A outputs out. The output of the experiment is out.

The above security notion is inspired by the simulation-security definitions
of multi-key FHE [64,18]. However, looking ahead to our MPC protocol, we will
need some stronger guarantees from the TMFHE scheme. In our MPC protocol,
the adversary is allowed to choose which honest parties abort in each round and
is rushing, so he is allowed to control the randomness of corrupted parties as
a function of the honest parties. We capture this by allowing the simulator of
the TMFHE scheme to be stateful. Additionally, since the adversary in MPC is
rushing, it is allowed to see the honest parameters/ciphertexts before it picks its
parameters/ciphertexts.

5 Threshold Multi-Key FHE: Construction

In this section, we construct threshold multi-key FHE as defined in Section 4.
Formally, we show the following.

Theorem 4 (TMFHE). Assuming LWE, there exists a secure threshold multi-
key FHE scheme for the class of access structures {0, 1}-LSSSD. In particular,
there exists a secure TMFHE scheme for any access structure induced by a mono-
tone boolean formula and any t out of N access structure.

We will construct threshold multi-key FHE using several ingredients. First,
we will initialize a multi-key FHE scheme using the construction in [18]. Then,
we will utilize the techniques in the construction of threshold FHE in [56], which
shows how to transform a generic FHE scheme satisfying several properties into
a threshold FHE scheme. We observe that the multi-key FHE construction of [18]
is “compatible” with the thresholdizing transformation described in [56]. Finally,
we will need a public key encryption scheme to tie everything together.

Examining the construction of [56], we note that it is compatible with a
generic FHE scheme where
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1. The secret key sk is a vector in Zm
q for some prime q.

2. The decryption function Dec can be broken into two algorithms Dec0,Dec1
where Dec0(sk, ct) computes a linear function in sk and ct to output µ ⌈q/2⌉+
e for some bounded error e ∈ [−E,E] with E << q, where ct is an encryption
of µ. Dec1 then takes this resulting value and rounds to recover µ.

We note that the construction of multi-key FHE in [18] satisfies these required
properties. Furthermore, it satisfies the following additional properties that will
be useful to note in the construction.

1. An evaluated ciphertext ĉt that encrypts a bit µ with respect to public keys
pk1, . . . , pkℓ is a matrix that satisfies

s · ĉt ≈ µs ·G

for a gadget matrix G and s = (sk1|| . . . ||skℓ), where ski is the secret key
corresponding to public key pki. Each ski is of the form (si||1).

2. There exists a low-norm vector v such that Gv = (0, 0, . . . , ⌈q/2⌉)T . Decryp-
tion proceeds by evaluating s · ĉt ·v and then outputs 1 if the resulting value
is closer to ⌈q/2⌉ than 0 and 0 otherwise.

Furthermore, [56] shows the following result.

Theorem 5 ([56]). For any access structure A on N parties induced by a mono-
tone boolean formula, there exists a {0, 1}-LSSSD scheme of a vector s ∈ Zm

q

where each party P receives at most w shares of the form si ∈ Zm
q for w =

poly(N).

5.1 Construction

Let MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be a multi-key FHE
scheme instantiated with the construction in [18]. Let PKE = (Setup,Enc,Dec)
be a public-key encryption scheme. Let χsm denote the uniform distribution on
the interval [−Esm, Esm] for a value Esm to be determined.

Our threshold multi-key FHE construction TMFHE is given as follows:

DistSetup(1λ, 1d, 1N , i): Run MFHE.DistSetup(1λ, 1d, 1N , i) → paramsi and out-
put paramsi.

KeyGen(1λ): Run PKE.Setup(1λ)→ (pk, sk) and output (pk, sk).
Encrypt(params, pk1, . . . , pkN ,A,m): Run MFHE.KeyGen(params) → (fpk, fsk).

Apply the {0, 1}-LSSSD scheme associated with A to fsk to arrive at {fski,j}i∈[N ],j∈[w]

for some w = poly(N). Set ct′ ← MFHE.Enc(fpk,m) and for i ∈ [N ], set
cti = PKE.Enc(pki, {fski,j}j∈[w]). Output

ct = (ct′, ct1, . . . , ctN ).

Eval(C, ct1, . . . , ctℓ): Parse cti as (ct
′
i, cti,1, . . . , cti,N ). Let fpki be the MFHE pub-

lic key associated with ct′i. Run MFHE.Eval(C, ct′1, . . . , ct
′
ℓ)→ ĉt

′
. Output

ĉt = (ĉt′, {cti,j}(i,j)∈[ℓ]×[N ]).

22



PartDec(i, sk, ĉt): Parse ĉt as (ĉt′, {ctk,j}(k,j)∈[ℓ]×[N ]). For every k ∈ [ℓ], run
PKE.Dec(sk, ctk,i)→ {fskk,i,j}j∈[w]. For t ∈ [w], compute

(fsk1,i,t||fsk2,i,t|| . . . ||fskℓ,i,t) · ĉt′ · v + esmt → p′t,

where esmt ← χsm and v is the low-norm vector used for decryption in [18]
described above. Output pi = (i, {p′t}t∈[w]).

FinDec(B): Parse B as {(i, {p′t}t∈[w])}i∈S for some set S of indices. If S 6∈ A,
output ⊥. If S ∈ A, apply the {0, 1}-LSSSD reconstruction to get ≈ µ̂ ⌈q/2⌉.
Then, round to recover µ̂.

5.2 Correctness and Compactness

Correctness follows from the correctness of the underlying MFHE scheme and the
{0, 1}-LSSSD scheme. Let ĉt be a correctly generated evaluated ciphertext with
MFHE ciphertext component ĉt′ and let B = {pi}i∈S = {PartDec(i, ski, ĉt)}i∈S
for some set of parties S as specified in the definition of correctness. If S 6∈
A, then FinDec(B) = ⊥ as desired. If S ∈ A, then by the correctness of the
{0, 1}-LSSSD reconstruction procedure, there exists some subset of shares that
sum to the secret. In other words, given {pi}i∈S = {(i, {p′i,t}t∈[w])}i∈S , there
exist sets Wi ⊆ [w] such that

∑

i∈[N ]

∑

t∈Wi

p′i,t = (fsk1||fsk2|| . . . ||fskN ) · ĉt′ · v +
∑

i∈[N ]

∑

t∈Wi

esmi,t .

Note that this reconstruction procedure works even with the concatenation of
secrets and multiplying by ĉt′ because each of the fski’s is shared with respect to
the same secret sharing scheme and the reconstruction procedure is linear. This
gives

µ ⌈q/2⌉+ e+
∑

i∈[N ]

∑

t∈Wi

esmi,t ,

where e is the error incurred by the underlying MFHE scheme. If

∣∣∣∣∣∣
e+

∑

i∈[N ]

∑

t∈Wi

esmi,t

∣∣∣∣∣∣
< q/4,

then rounding will correctly recover µ. Since e is sampled from an E-bounded
distribution and each esmi,t from an Esm-bounded one, if E+NwEsm < q/4, then
correctness will be satisfied.

Compactness follows immediately from the construction and the compactness
of the underlying schemes.

5.3 Security

We defer the proof of Theorem 4 to Appendix C.
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5.4 Instantiation

In order for correctness to hold, we required that E + NwEsm < q/4. For se-
curity, we required that NwE/Esm = negl(λ). Recall that w = poly(N). Let
W = poly(N) be an upper bound for the set of access structures supported by
the scheme. Then, setting E/Esm < λ− log2 λ and Esm < q/8NW gives us an
instantiation that satisfies both correctness and security. The MFHE scheme of
[18] can be instantiated with such properties assuming a variant of the learning
with errors assumption, which is as hard as approximating the shortest vector
problem to within a subexponential factor.

6 Round-Optimal MPC with Guaranteed Output
Delivery Secure Against Threshold Mixed Adversaries

In this section, we use threshold multi-key FHE to construct a round-optimal
(three-round) MPC protocol in the plain model with guaranteed output delivery
that is secure against a threshold mixed adversary (defined in Appendix B), as-
suming LWE. Our protocol supports all functionalities computable by polynomial-
sized circuits and is parameterized by a tuple of thresholds (tMal, tSh, tFc) that
represent the number of malicious, semi-honest, and fail-corrupt corruptions that
the adversary is allowed to make, respectively. Our protocol has guaranteed out-
put delivery and is secure provided that 2tMal + tSh + tFc < N , the Hirt et
al. [50] inequality that characterizes the threshold values under with guaranteed
output delivery is possible to achieve.

Thus, our resulting protocol is both optimal in terms of the best possible
corruption we can tolerate and also round-optimal (since at least three rounds
are required for a protocol to have guaranteed output delivery, as shown by
Gordon et al. [44]). Moreover, our protocol has depth-proportional communica-
tion complexity, is reusable, and has input fidelity for “honest but lazy” parties.
Formally, we show the following.

Theorem 6. Assuming LWE, for any function f on N inputs computable by
a polynomial-sized circuit, for any tuple of thresholds (tMal, tSh, tFc) satisfying
2tMal + tSh + tFc < N , there exists a three-round MPC protocol with guaranteed
output delivery in the plain model that is secure against a (tMal, tSh, tFc)-mixed
adversary. Furthermore, the protocol is reusable and has communication com-
plexity poly(λ, d,N), where d is the depth of the circuit computing f . Addition-
ally, the functionality is computed with respect to the inputs of all parties that
send valid messages in the first two rounds.

We note that our result in the mixed adversary setting is in fact broader and
more general than the traditional MPC setting. By instantiating Theorem 6 with
the (⌈N/2 − 1⌉, 0, 0)-mixed adversary (this corresponds to the honest-majority
setting against a malicious adversary), we immediately obtain the following
corollary.
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Corollary 2. Assuming LWE, for any function f on N inputs computable by a
polynomial-sized circuit, there exists a three-round MPC protocol with guaranteed
output delivery in the plain model that is secure against a malicious adversary in
the honest majority setting. Furthermore, the protocol is reusable and has com-
munication complexity poly(λ, d,N), where d is the depth of the circuit computing
f .

Like Theorem 6, this result is round-optimal and supports the maximum
possible number of corruptions.

6.1 Security Against a Semi-Malicious Mixed Adversary

As a stepping stone to showing Theorem 6, we first construct a protocol that
satisfies all the properties of Theorem 6, except that it is only secure against
a semi-malicious mixed adversary (defined in Appendix B), which is simply a
mixed adversary that corrupts some parties semi-maliciously, rather than mali-
ciously.

We first describe a three-roundMPC protocol that is secure against a (tSm, tSh, tFc)-
semi-malicious mixed adversary A = (ASm,ASh,AFc) for 2tSm+tSh+tFc < N .

Construction

Notation:

– Consider N parties P1, . . . , PN with inputs x1, . . . , xN , respectively, who
wish to evaluate a boolean circuit C with depth ≤ d on their joint inputs.
Let λ denote the security parameter and without loss of generality, assume
|xi| = λ for all i ∈ [N ].

– Let TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be the previ-
ously constructed threshold multi-key FHE scheme.

– Fix (tSm, tSh, tFc) satisfying 2tSm+ tSh+ tFc < N . Let A be the (N− tSm−
tFc)-out-of-N threshold access structure.

Protocol: We now describe the construction of our three-round MPC protocol
Π that is secure against a semi-malicious mixed adversary.

– Input Commitment Phase:
• Round 1: Each party Pi does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Output (paramsi, pki).

• Round 2: Each party Pi does the following:
1. Parse the message (if one was sent) from Pj as (paramsj , pkj). Let

S1 ⊆ [N ] be the set of parties that sent a message in round 1.
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2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|6.
Set params as the concatenation of the truncated paramsj ’s for j ∈
S1. Set PK = {pkj}j∈S1 . Let A

′ be the access structure induced by
restricting A to the parties in S1 (that is, the (N − tSm − tFc)-out-
of-|S1| access structure).

3. Run TMFHE.Encrypt(params,PK,A′, xi) to compute cti.

4. Output cti.

– Computation Phase:

• Round 3: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as ctj. Let
S2 ⊆ [N ] be the set of parties that sent a message in round 2. Let
CT = {ctj}j∈S2 . Let C′ be the circuit induced by hardcoding the
inputs to C corresponding to parties not in S2 to be 0λ.

2. Run TMFHE.Eval(C′, CT ) to obtain ĉt.

3. Run TMFHE.PartDec(i, ski, ĉt) to obtain pi.

4. Output pi.

– Output Computation: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as pj. Let S3 ⊆ [N ]
be the set of parties that sent a message in round 3.

2. Take any set S ⊆ S3 with S ∈ A and run TMFHE.FinDec(B) where
B = {pj}j∈S to recover µ̂. If no such set exists, output ⊥.

Correctness. Correctness follows immediately from the correctness of the un-
derlying TMFHE scheme. In particular, let S ⊆ [N ] be the set of parties that
finished the input commitment phase and let S′ ⊆ S be the set of parties that
finished the computation phase. Note that C′({xi}i∈S) = f(y1, . . . , yN) where
yi = xi if i ∈ S and 0λ otherwise. Furthermore, if S′ ∈ A, then S′ ∈ A′ and
therefore running TMFHE.FinDec will correctly recover f(y1, . . . , yN ) as desired.

Security We defer the proof of security of the above protocol to Appendix D.

Properties

6 Note that the params
i
of each party in the MFHE construction in [18] and, therefore,

also in our TMFHE construction, are simply random matrices Ai of a size dependent
on N . Therefore, truncating the matrix to the appropriate size for a scheme with |S1|
parties is equivalent to having run the distributed setup algorithm for |S1| parties.
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Guaranteed Output Delivery and Input Fidelity. Observe that since all the honest
parties and all the semi-honestly corrupted parties will never abort, there are
at least N − tSm − tFc partial decryption shares given out at the end of the
protocol. Therefore, the output can be recovered and our protocol has guaranteed
output delivery. Moreover, our protocol satisfies the property that the output of
the computation is a function of the joint inputs of all parties, including those
that aborted after the input commitment phase was completed. That is, in the
scenario where the adversary corrupts a set of parties in a fail-corrupt manner,
for every fail-corrupt party Pi that aborts after the input commitment phase,
its input yi that is used to compute the final output C(y1, . . . , yn) is set to be
its actual input xi used in the protocol so far and not a default input ⊥. Recall
that this is in line with our motivation for studying this setting where an honest
but lazy party is not entirely discarded and its input is still considered in the
computation if it aborted after the input commitment phase.

Communication Complexity. To see that the protocol has communication com-
plexity poly(λ, d,N), note that the round 1 message is clearly of size poly(λ, d,N).
So is the round 2 message due to the compactness of the TMFHE scheme. Simi-
larly, the size of ĉt is poly(λ, d,N) and, therefore, so too is the partial decryption.

Reusability. Reusability means that given the transcript of the input commit-
ment phase, the computation phase can be run any polynomial number of times
on different functions using the same transcript for the input commitment phase
to compute the different functionalities. Reusability follows from the following:

1. The input commitment phase of Π is function-independent.
2. Our TMFHE simulator can simulate partial decryptions for a polynomial

number of adaptively chosen circuit queries.

6.2 Handling a Malicious Mixed Adversary

The MPC protocol described above in the plain model is only secure against
semi-malicious mixed adversaries. That is, the adversary can only corrupt some
subset ASm of the parties semi-maliciously, some subset ASh in a semi-honest
manner and another subset AFc in a fail-corrupt manner. In order to show
Theorem 6, we need to allow the adversary to corrupt the first subset ASm

maliciously, as this will then show that our scheme is secure against a malicious
mixed adversary.

Our first observation is that the protocol is secure even against mixed ad-
versaries that are allowed make parties in ASm behave maliciously in round
1, but only semi-maliciously in rounds 2 and 3. After noting this, we further
observe that if we had a simulation-extractable multi-string NIZK [47] in the
plain model where the honest party’s behavior when generating a CRS is to
simply sample a uniformly random string7, then we could upgrade to security

7 For ease of exposition, we assume here that the honest CRS is a uniformly random
string. However, there is a subtle technical issue, which we handle in Section 7 where
we construct the multi-string NIZK.
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against malicious mixed adversaries. We simply have each party send a refer-
ence string CRS in round 1 and then require each party to also provide a NIZK
argument in rounds 2 and 3 using these CRSs to ensure that they submitted a
valid message in that round. As mentioned previously, the multi-string NIZK is
only secure if a majority of the CRSs are honestly generated. However, we want
our protocol to be secure against any (tMal, tSh, tFc)- mixed adversary, where
2tMal + tSh + tFc < N . In particular, we are no longer in the honest majority
setting. As discussed earlier, this is not an issue because only the CRSs corre-
sponding to a maliciously-corrupted party could be dishonestly generated and
since the honest-generation behavior is to simply output a uniformly random
string, a party that is semi-honestly corrupted will also output a perfectly good
CRS. Furthermore, since the number of maliciously-corrupted parties is a mi-
nority of the total number of parties that send a CRS, a majority of the CRSs
will be honestly generated and security of the multi-string NIZK holds.

Security Against a Round 1 Malicious Mixed Adversary. We begin by
showing security of the protocol in Section 6.1 against a semi-malicious mixed
adversary that can behave maliciously in round 1, per the template above. Since
paramsi in the MFHE construction in [18] is simply a matrix Ai of random en-
tries, it follows that every Ai output of a malicious adversary could also have
been output by a semi-malicious adversary that chose the appropriate random-
ness (we can simply truncate the message or pad it with 0’s if the malicious
adversary sends a message of inappropriate length). However, a malicious adver-
sary may send a pki that does not correspond to any possible public key output
by the TMFHE.KeyGen algorithm. So, in the proof, the simulator does not receive
the randomness rKeyGeni used by the adversary to compute the round 1 message
for a corrupted party and therefore does not receive ski for corrupted parties.
However, as we saw in Section 5.3, the simulator does not need to know ski or
rKeyGeni . Rather, it suffices to know (xi, r

Encrypt
i ), the input and randomness used

to compute a corrupted party’s round 2 message in order to simulate. There-
fore, an analogous simulator and proof can be used to show security against this
adversary.

Upgrading to Malicious Security via Multi-String NIZKs. We now show
how to use a simulation-extractable multi-string NIZK with uniformly random
CRSs to upgrade the protocol in Section 6.1 to one that achieves Theorem 6.
The final step is to show that such a multi-string NIZK can be built from LWE.
This was not previously known, and we show this in Section 7.

Construction

Notation:

– Consider N parties P1, . . . , PN with inputs x1, . . . , xN , respectively, who
wish to evaluate a boolean circuit C with depth ≤ d on their joint inputs.
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Let λ denote the security parameter and without loss of generality, assume
|xi| = λ for all i ∈ [N ].

– Let TMFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec) be the previ-
ously constructed threshold multi-key FHE scheme from Section 5 with the
underlying PKE scheme instantiated with one where any string is a valid
public key (a dense cryptosystem).

– Fix (tMal, tSh, tFc) satisfying 2tMal+tSh+tFc < N . Let A be the N−tMal−
tFc-out-of-N threshold access structure.

– Let NIZK = (Gen,Prove,Verify) be a simulation-extractable multi-string
NIZK.

Protocol: We now describe the construction of our three-round MPC protocol Π
with guaranteed output delivery that is secure against a (tMal, tSh, tFc)-mixed
adversary. To compare against our previous protocol in Section 6.1, we highlight
the changes in red.

– Round 1: Each party Pi does the following:

1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to obtain paramsi.

2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).

3. Run NIZK.Gen(1λ
′

) to compute crsi, where λ′ = poly(λ, d,N) is the size
of statements that will be proven.

4. Output (paramsi, pki, crsi).

– Round 2: Each party Pi does the following:

1. Parse the message (if one was sent) from Pj as (paramsj , pkj , crsj) by
appropriately truncating or padding with 0’s if it was of incorrect length.
Let S1 ⊆ [N ] be the set of parties that sent a message in round 1.

2. Truncate each paramsj for j ∈ S1 to the appropriate size given |S1|. Set
params as the concatenation of the truncated paramsj ’s for j ∈ S1. Set
PK = {pkj}j∈S1 . Let CRS = {crsj}j∈S1 . Let A

′ be the access structure
induced by restricting A to the parties in S1 (that is, the (N−tSm−tFc)-
out-of-|S1| access structure).

3. Sample randomness ri and run TMFHE.Encrypt(params,PK,A′, xi; ri) to
compute cti.

4. Run NIZK.Prove(CRS, yi, (xi, ri)) to compute πi, where yi is the state-
ment that there exists some input x and randomness r such that
TMFHE.Encrypt(params,PK,A′, x; r) = cti.

5. Output (cti, πi).

– Round 3: Each party Pi does the following:
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1. Parse the previous message (if one was sent) from Pj as (ctj , πj) and
check that
NIZK.Verify(CRS, yj , πj) = 1. Let S2 ⊆ S1 be the set of parties that sent
a message in round 2 that passed the verification. Let CT = {ctj}j∈S2 .
Let C′ be the circuit induced by hardcoding the inputs to C correspond-
ing to parties not in S2 to be 0λ.

2. Run TMFHE.Eval(C′, CT ) to compute ĉt.

3. Sample randomness r′i and run TMFHE.PartDec(i, ski, ĉt; r
′
i) to compute

pi.

4. Run NIZK.Prove(CRS, zi, (ski, r′i)) to compute π′i, where zi is the state-
ment that there exists some randomness r, r′ such that TMFHE.KeyGen(1λ; r) =
(pki, sk) and
TMFHE.PartDec(i, sk, ĉt; r′) = pi.

5. Output (pi, π
′
i).

– Output Computation: Each party Pi does the following:

1. Parse the previous message (if one was sent) from Pj as (pj , π
′
j) and

check that
NIZK.Verify(CRS, zj , π′j) = 1. Let S3 ⊆ S2 be the set of parties that sent
a message in round 3 that passed verification.

2. Take any set S ⊆ S3 with S ∈ A′ and run TMFHE.FinDec(B) where
B = {pj}j∈S to recover µ̂. If no such set exists, output ⊥.

Correctness and Communication Complexity. Correctness follows from the cor-
rectness of the protocol in Section 6 and perfect completeness of the multi-string
NIZK. Depth-proportional communication complexity follows from the fact that
the communication complexity of the protocol in Section 6 was poly(λ, d,N) and
the size of the NIZK reference strings and proofs are poly(λ, d,N) because the
evaluated ciphertext can be computed publicly and the NIZK is only used to
prove correctness of encryption and partial decryption, which only depends on
the depth of the function.

Guaranteed Output Delivery and Input Fidelity. Guaranteed output delivery
and input fidelity follow the fact that these properties held for the protocol in
Section 6.1 and that since honestly generated CRSs are always a majority (since
honest strings are simply uniformly random and the number of malicious cor-
ruptions is a minority), by soundness of the multi-string NIZK, an adversary
cannot cheat and submit an invalid ciphertext as its round 2 message since this
message will be discarded with overwhelming probability. The output recov-
ered is the same as that in the protocol of Section 6.1. Namely, they compute
C(y1, . . . , yN ) where yi = xi if Pi sent valid messages in rounds 1 and 2 and
yi = 0λ otherwise.
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Security We defer the proof of Theorem 6 to Appendix E.

Reusability. Reusability follows from the following:

1. The reusability of the protocol in Section 6.1.
2. The NIZK in round 3 can be generated afresh for different invocations of the

protocol while preserving security.

7 Multi-String NIZKs

In this section, we build a simulation-extractable multi-string NIZK argument
system (Appendix A.4) for NP based on the learning with errors (LWE) as-
sumption. We first show how to build a multi-string non-interactive witness
indistinguishable argument system (NIWI) from LWE. We then give a trans-
formation from multi-string NIWI to multi-string simulation-extractable NIZK
that follows along the lines of the work of Groth and Ostrovsky [47]. Formally,
we show the following results:

Theorem 7. Assuming LWE, there exists a multi-string non-interactive witness
indistinguishable argument system for NP.

Theorem 8. Assuming LWE, there exists a multi-string simulation-extractable
NIZK argument system for NP.

One of the key tools in our constructions is a Sigma protocol (Appendix A.6).
Before we describe the construction of our multi-string NIWI protocol, in the
next subsection, we describe a specific trapdoor commitment scheme that we will
use to instantiate the Sigma protocol with, in the multi-string NIWI protocol.
In the following subsection, we give the construction and security proof of our
multi-string NIWI protocol and in the final subsection, we describe the generic
transformation from multi-string NIWI to multi-string NIZK.

7.1 Commitment Scheme

In this section, we construct a new non-interactive commitment scheme (Setup,
Commit,Decom) in the CRS model assuming LWE. In addition to the standard
properties of a commitment scheme, we require that the scheme has a trapdoor
td such that given the commitment string, the trapdoor can be used to effi-
ciently generate the decommitment information with overwhelming probability.
Furthermore, we additionally have the feature that even if the adversary gener-
ates some portion of the CRS, the scheme still remains hiding and binding as
long as a majority of the components are honestly generated. We elaborate more
on this after the construction.

The construction and properties of the scheme are below. Let λ be the se-
curity parameter. Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically
secure public key encryption scheme based on LWE. Let (Share,Recon) be a
(⌊n/2⌋+ 1)−out-of-n threshold secret sharing scheme [70].
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1. Setup(1λ, 1n): For each i ∈ [n], compute (pki, ski) ← PKE.Setup(1λ). Set
crs = (pk1, . . . , pkn).

2. Commit(crs = pk1, ..., pkn,msg) : The commitment algorithm does the fol-
lowing:

– Compute m1, ....,mn ← Share(msg) - that is, they are the shares upon
secret sharing the input msg.

– For each i ∈ [n], compute cti ← PKE.Enc(pki,mi; ri) where ri is uni-
formly generated.

– Output ct = (ct1, ..., ctn).

3. Decom(ct) : The decommitment algorithm outputs the tuples of values {(mi, ri)}i∈[n]
where mi is the share of the message and ri is the randomness used to en-
crypt mi. The verifier outputs 1 if:

– For each i ∈ [n], cti = PKE.Enc(mi, pki; ri).

– Recon(m1, . . . ,mn) 6= ⊥.

We now list some properties of the commitment scheme. For both hiding and
binding, we consider the stronger scenario where there exists a set S ⊂ [n] of
size (⌊n/2⌋+1), where {pki}i∈S are generated honestly using PKE.Setup and pki
for i ∈ [n] \ S are chosen by a PPT adversary on seeing {pki}i∈S . That is, the
adversary gets to pick part of the CRS. This will be crucial in the application
of our commitment scheme to the Multi-String NIWI protocol.

Hiding: Since an honest majority of the public key-secret key pairs in the CRS
were honestly generated, from the security of the public key encryption scheme
and the threshold secret sharing scheme, it is easy to see that the commitment
scheme satisfies hiding.

Binding: Now, for any commitment string ct = (ct1, ...., ctn), with overwhelming
probability over the choice of the randomness used to honestly generate pki for
i ∈ S, there exists at most one message m such that there exists mi, ri for i ∈ [n]
satisfying:

1. m1, ...,mn forms a secret sharing of m.

2. cti = PKE.Enc(pki,mi; ri) for i ∈ [n].

Thus, the scheme satisfies binding.

Trapdoor: Note that given a set of secret keys {ski}i∈S where |S| > n
2 and a

commitment string ct = (ct1, . . . , ctn), the message committed can be recovered
efficiently as follows: for each i ∈ S, compute mi = PKE.Dec(ski, cti). Then,
recover the message committed as msg = Recon({mi}i∈S). Thus, given a CRS
(pk1, . . . , pkn), the associated trapdoor td = ({ski}i∈S) for any set S with |S| >
n
2 where ski is the secret key corresponding to the public key pki.
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7.2 Multi-String NIWI

We now describe our construction of a multi-string non-interactive witness in-
distinguishable argument system below. Let λ de the security parameter which
also denotes the size of the input instances x. Let L be the NP language un-
der consideration. Let Σ be a Sigma protocol as defined in Appendix A.6 which
can be based on LWE (due to the commitment scheme). Let m be the number
of parallel repetitions used inside the protocol Σ. Let n denote the maximum
number of parties in the system. Consider a relation family R = {Rλ}λ∈Z de-
fined as follows: Rλ consists of tuples ((x, a), y) where: |x| = λ, |a| = size of
the first message of protocol Σ, |y| = m = size of the second message of proto-
col Σ and given (x, a), y can be efficiently computed by a circuit of size equal
to the size of the circuit computing the second message of the Sigma protocol.
Let ℓ denote the size of representing any relation in Rλ. Let H be a corre-
lation intractable function (Appendix A.5) for the relation family R. Peikert
and Shiehian [69] recently constructed such a hash function based on LWE.
Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a semantically secure public key
encryption scheme based on LWE.

1. Setup(1λ, 1n) : The setup algorithm takes as input the security parameter λ
(which also fixes the length of the instances) and the maximum number of
parties n and does the following.
– Sample (pk, sk)← PKE.Setup(1λ)
– Sample K ← H.Setup(1λ, 0ℓ) where ℓ is defined before the construction.
– Output crs = (pk,K).

2. Prove(CRS, x, w) : The prove algorithm takes as input CRS = (crs1, ..., crsn)
where each crsi = (pki,Ki) and does the following:
– For each index i ∈ [n], compute ai = (ci,1, ci,2) where ci,1 and ci,2 are

commitments computed according to the first message of the Σ protocol
for the statement x ∈ L by running the algorithm Commit from the
previous section with the input crs being (pk1, . . . , pkn).

– Compute H.Eval(Ki, x, ai)→ ei.
– For each i ∈ [n], use ai, ei and the witness w to compute the third

message zi of the Σ protocol for the statement x ∈ L.
– Output ({ai, ei, zi}i∈[n]) as the proof.

3. Verify(CRS, x, σ) : Parse σ = ({ai, ei, zi}i∈[n]), CRS = (crs1, ..., crsn) where
each crsi = (pki,Ki). For each i ∈ [n], do:
– Check if H.Eval(Ki, x, ai) = ei.
– Check if ai, ei, zi verifies according to the Σ protocol.

Output 1 if all the above verifications pass.

Completeness. Completeness of the protocol can be easily observed from the
correctness of the underlying primitives: the protocol Σ and the hash function
H .

Security Proof We defer the proof of soundness and witness indistinguishabil-
ity to Appendix F.
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7.3 Multi-String NIZK from Multi-String NIWI

We now describe the transformation from a multi-string NIWI argument sys-
tem to a multi-string simulation-extractable NIZK argument system. Let λ be
the security parameter which also denotes the size of the input instances x.
Let L be the NP language under consideration and R be the corresponding
relation. Let n denote the maximum number of parties in the system. Let
MSNIWI = (MSNIWI.Setup, MSNIWI.Prove,MSNIWI.Verify) be a multi-string
NIWI argument system based on LWE from the previous section. Let G be a
length doubling pseudorandom generator that takes a seed of length λ as input.
Let PKE = PKE.Setup,PKE.Enc,PKE.Dec) be a CCA secure encryption scheme.
Let (Share,Recon) be a (⌊n/2⌋ + 1)−out-of-n threshold secret sharing scheme.
The construction of the multi-string simulation-extractable NIZK is described
below.

1. Setup(1λ, 1n) : The setup algorithm takes as input the security parameter λ
(which also fixes the length of the instances) and the maximum number of
parties n and does the following.

– Compute crs′ ← MSNIWI.Setup(1λ, 1n).
– Pick a string r of length 2 · λ uniformly at random.
– Compute (pk, sk)← PKE.Setup(1λ).
– Output crs = (crs′, r, pk).

2. Prove(CRS, x, w) : The prove algorithm takes as input CRS = (crs1, ..., crsn)
where each crsi = (crs′i, ri, pki) and does the following:

– Compute w1, ...., wn ← Share(w).
– Compute ct = (ct1, . . . , ctn) where for each i ∈ [n], cti = PKE.Enc(pki, wi; rwi).
– Compute π ← MSNIWI.Prove(CRS′ = (crs′1, . . . , crs

′
n), y = (x, ct, r1, . . . , rn), w

′)
for the statement y ∈ L1 using witness w′ = (w, rw1, . . . , rwn,⊥) where
the NP language L1 is defined by the following relation R1:
statement: y = (x, ct, r1, . . . , rn)
witness: w′ = (w, rw1, . . . , rwn, s1, . . . , sn)
R1(y, w

′) = 1 iff

• cti = PKE.Enc(pki, wi; rwi) for each i ∈ [n] such that Recon(w1, . . . , wn) =
w and (x,w) ∈ R (OR)
• ∃ a set S of size (⌊n2 ⌋+ 1) such that for each i ∈ S, G(si) = ri.

– Output (x, π, ct).

3. Verify(CRS, x, (π, ct)) : Output MSNIWI.Verify(CRS′ = (crs′1, . . . , crs
′
n), y =

(x, ct, r1, . . . , rn), π) for the language L1.

Completeness. Completeness of the protocol can be easily observed from the cor-
rectness of the underlying primitives: the multi-string NIWI protocol MSNIWI,
the encryption scheme PKE and the pseudorandom generator G.

Security Proof We defer the proofs of soundness, zero-knowledge, and simulation-
extractability to Appendix G.
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Common Random String. Observe that if the CCA secure encryption scheme
used in our construction and the one underlying the multi-string NIWI has the
property that the public keys are statistically-close to uniform, then the CRS
generated in the setup by each party is statistically-close to uniform. We note
that CCA secure encryption schemes with public keys statistically-close to uni-
form exist from the LWE assumption [14,16]. To see that the CRS is statistically-
close to uniform, note that the CRS consists of the following components:

– Two public keys of a CCA-secure encryption scheme.
– A uniformly random string r.
– A hash key K for a correlation-intractable hash function family H, which is

known from LWE with hash keys statistically-close to uniform [69].

7.4 Semi-Honest Corruptions

We now observe another interesting property of our multi-string NIZK argument
that is crucial in its application the MPC protocol in the presence of a thresh-
old mixed adversary. In particular, we note that our multi-string simulation-
extractable NIZK remains secure not only in the presence of an honest majority
but even in the following scenario: the adversary corrupts two sets of parties
(A1,A2) such that A1 consists of all parties maliciously corrupted with |A1| <

n
2

as before, A2 consists of parties that are semi-honestly corrupted and in partic-
ular, follow the protocol behaviour correctly, and |A1 ∪ A2| < n.

Protocol Description. First, we describe a slight modification to the above pro-
tocol. Observe that if we ran the multi-string NIZK Setup algorithm, it would
output CRSs that are statistically-close to uniform. Instead, in our protocol, we
have honest parties instead run a Setup′ algorithm, which simply outputs a uni-
formly random string of the appropriate length. With overwhelming probability,
this will correspond to a CRS that could have been output by the “real” setup
algorithm, and all the required properties of the multi-string NIZK hold. It is
only in the ideal world that we will run the honest setup algorithm Setup as part
of the simulated setup on behalf of every honest party since the extractor Ext

needs the secret keys sk to extract the adversary’s witness.

Proof. Now, in order to prove that our scheme is still secure, we are faced with
the following challenge: we now have a dishonest majority of corrupt parties
unlike before which could break zero knowledge or soundness. Lets focus on the
set of parties in A2 that were corrupted in a semi-honest manner. For each of
these parties, the simulator will set its randomness appropriately to ensure the
following two things:

– The public key pk and the randomness r generated as part of the CRS by
that party in round 1 are honestly generated.

– Furthermore, the simulator knows the corresponding secret key sk associated
with that public key and that r is the output of the pseudorandom generator
G for which the simulator knows the pre-image s.
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Thus, as long as the number of maliciously corrupt parties A is of size less
than n

2 , the simulator will be able to both produce fake proofs (via the PRG
preimages) and extract the witness from the adversary’s proofs (by running the
Ext algorithm using knowledge of majority of the secret keys). Additionally, the
adversary will also not be able to cheat since it knows only less than half of the
simulation trapdoors that were generated by the maliciously corrupt parties.
Therefore, our proofs from before would work as is and this scheme still remains
secure.
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A Deferred Preliminaries

A.1 Multi-Key FHE

In this section, we present the definition of multi-key fully homomorphic encryp-
tion in the plain model with distributed setup as found in [18].

Definition 2 (MFHE). A multi-key fully homomorphic encryption scheme is
a tuple of PPT algorithms

MFHE = (DistSetup,KeyGen,Enc,Eval,PartDec,FinDec)

satisfying the following specifications:

paramsi ← DistSetup(1λ, 1d, 1N , i): It takes as input a security parameter λ, a
circuit depth d, the maximal number of parties N , and a party index i. It
outputs the public parameters paramsi associated with the ith party, where
paramsi ∈ {0, 1}

poly(λ,d,N) for some polynomial poly. We assume implicitly
that all the following algorithms take the public parameters of all parties as
input, where we define params = params1|| . . . ||paramsN .

(pk, sk)← KeyGen(params): It takes as input the public parameters params and
outputs a key pair (pk, sk).

ct← Encrypt(pk,m): It takes as input a public key pk and a plaintext m ∈
{0, 1}λ and outputs a ciphertext ct. Throughout, we will assume that all
ciphertexts include the public key(s) that they are encrypted under.

ĉt← Eval(C, ct1, . . . , ctℓ): It takes as input a boolean circuit C : ({0, 1}λ)ℓ →
{0, 1} ∈ Cλ of depth ≤ d and ciphertexts ct1, . . . , ctℓ for ℓ ≤ N . It outputs
an evaluated ciphertext ĉt.

pi ← PartDec(i, sk, ĉt): It takes as input an index i, a secret key sk and an eval-
uated ciphertext ĉt and outputs a partial decryption pi.

µ̂← FinDec(p1, . . . , pℓ): It takes as input partial decryptions p1, . . . , pℓ and de-
terministically outputs a plaintext µ̂ ∈ {0, 1,⊥}.

We require that for any parameters {paramsi ← Setup(1λ, 1d, 1N , i)}i∈[N ],
any key pairs {(pki, ski) ← KeyGen(params)}i∈[N ], any plaintexts m1, . . . ,mℓ ∈

{0, 1}λ for ℓ ≤ N , any sequence I1, . . . , Iℓ ∈ [N ] of indices, and any boolean
circuit C : {0, 1}ℓ → {0, 1} ∈ Cλ of depth ≤ d, the following is satisfied:

Correctness. Let cti = Encrypt(pkIi ,mi) for 1 ≤ i ≤ ℓ, ĉt = Eval(C, ct1, . . . , ctℓ),
and pi = PartDec(i, skIi , ĉt) for all i ∈ [ℓ]. With all but negligible probability
in λ over the coins of Setup, KeyGen, Encrypt, and PartDec,

FinDec(p1, . . . , pℓ) = C(m1, . . . ,mℓ).

Compactness of Ciphertexts. There exists a polynomial, poly, such that |ct| ≤
poly(λ, d,N) for any ciphertext ct generated from the algorithms of MFHE.

Semantic Security of Encryption. Any PPT adversary A has only negligi-
ble advantage as a function of λ over the coins of all the algorithms in the
following game:
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1. On input the security parameter 1λ, a circuit depth 1d, and the number
of parties 1N , the adversary A outputs a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.
3. The adversary outputs {paramsj}j∈[N ]\{i}.
4. params is set to params1|| . . . ||paramsN . Run KeyGen(params)→ (pki, ski).

The adversary is given pki.
5. The adversary outputs two messages m0,m1 ∈ {0, 1}λ.
6. The adversary is given ct← Encrypt(pki,mb) for a random b ∈ {0, 1}.
7. The adversary outputs b′ and wins if b = b′.

Simulation Security. There exists a stateful PPT algorithm Sim such that for
any PPT adversary A, we have that the experiments ExptA,Real(1

λ, 1d, 1N )

and ExptA,Sim(1
λ, 1d, 1N) as defined below are statistically close as a function

of λ over the coins of all the algorithms. The experiments are defined as
follows:
ExptA,Real(1

λ, 1d, 1N):
1. On input the security parameter 1λ, a circuit depth 1d, and the num-

ber of parties 1N , the adversary A a non-corrupted party i.
2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.
3. The adversary outputs {paramsj}j∈[N ]\{i}.
4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs

KeyGen(params)→ (pkj , skj) for j ∈ [N ]\{i}. The adversary is given
{(pkj , skj)}j∈[N ]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski),
m1, . . . ,mℓ ∈ {0, 1}λ, I1, . . . , Iℓ ∈ [N ], and a set of circuits {Ck :
({0, 1}λ)ℓ → {0, 1}}k∈[t] with each Ck ∈ C for some ℓ ≤ N and some
t = poly(λ, d,N).

6. Set (pki, ski) ← KeyGen(params; rKeyGeni ). The adversary is given
ctj ← Enc(pkIj ,mj) for 1 ≤ j ≤ ℓ and the evaluated ciphertexts

ĉtk ← Eval(Ck, ct1, . . . , ctℓ) for all k ∈ [t].
7. The adversary is given pi,k ← PartDec(i, ski, ĉtk) for all k ∈ [t].
8. A outputs out. The output of the experiment is out.

ExptA,Sim(1
λ, 1d, 1N):

1. On input the security parameter 1λ, a circuit depth 1d, and the num-
ber of parties 1N , the adversary A a non-corrupted party i.

2. Run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given paramsi.
3. The adversary outputs {paramsj}j∈[N ]\{i}.
4. params is set to params1|| . . . ||paramsN . Sample N − 1 key pairs

KeyGen(params)→ (pkj , skj) for j ∈ [N ]\{i}. The adversary is given
{(pkj , skj)}j∈[N ]\{i}.

5. The adversary outputs randomness rKeyGeni used to generate (pki, ski),
m1, . . . ,mℓ ∈ {0, 1}λ, I1, . . . , Iℓ ∈ [N ], and a set of circuits {Ck :
({0, 1}λ)ℓ → {0, 1}}k∈[t] with each Ck ∈ C for some ℓ ≤ N and some
t = poly(λ, d,N).

6. Set (pki, ski) ← KeyGen(params; rKeyGeni ). The adversary is given
ctj ← Enc(pkIj ,mj) for 1 ≤ j ≤ ℓ and the evaluated ciphertexts

ĉtk ← Eval(Ck, ct1, . . . , ctℓ) for all k ∈ [t].
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7. Define µk = Ck(m1, . . . ,mℓ). For all k ∈ [t], the adversary is given
pi,k ← Sim(µk, ĉt, i, {skj}j∈[N ]\{i}).

8. A outputs out. The output of the experiment is out.

A.2 Statistical Distance

In this section, we state results related to the statistical closeness of distributions
that will be used in the security proof of our TMFHE construction. This section
was adapted from one in [56], and we defer the reader to their paper for the
proofs of these results.

Definition 3 (Statistical Distance). Let E be a finite set, Ω a probability
space, and X,Y : Ω → E random variables. We define the statistical distance
between X and Y to be the function ∆ defined by

∆(X,Y ) =
1

2

∑

e∈E

∣∣∣Pr
X
(X = e)− Pr

Y
(Y = e)

∣∣∣ .

Proposition 1 ([56]). Let E be a finite set, Ω a probability space, and let
{Xb

s}s∈S,b∈{0,1} be a family of random variables Xb
s : Ω → E indexed by an

element s ∈ S and a state b ∈ {0, 1}. Further, assume that for every s ∈ S we
have ∆(X0

s , X
1
s ) ≤ δ. Now, for a stateful PPT algorithm A, define the following

experiment:

ExptA,b,m :
– The algorithm A issues m queries. Each query is an element si ∈ S and

after each query, A receives in return xi ← Xb
si sampled independently

of the other samples.
– The output of the experiment is (s1, x1), . . . , (sm, xm).

Then ∆(ExptA,0,m,ExptA,1,m) ≤ mδ.

Another useful lemma is the following, which demonstrates a technique to
“smudge” or hide the presence of error (e1 in the lemma) by adding a much larger
error. While no values are specifically given in the statement of the lemma, B1 is
meant to be negligible compared to B2 such that the statistical distance between
the two distributions is negligible.

Lemma 1 (Smudging Lemma [64]). Let B1, B2 ∈ N. For any e1 ∈ [−B1, B1]
let E1 and E2 be independent random variables uniformly distributed on [−B2, B2]
and define the two stochastic variables X1 = E1 + e1 and X2 = E2. Then
∆(E1, E2) < B1/B2.

A.3 Secret Sharing

Throughout this paper we will use secret sharing terminology and techniques.
This section provides an introduction to the basic terms, notation, and concepts
that will be needed later. Large portions of this section were taken verbatim
from [56].
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Secret Sharing Basics. We assume that the reader is familiar with the notion
of a information theoretic secret sharing scheme and, in particular, the Shamir
secret sharing scheme. We now describe concepts about access structures and
specific secret sharing schemes that we consider in this paper. We adapt some
definitions from [62].

Definition 4 (Monotone Access Structure). Let P = {P1, . . . , PN} be a set
of parties. A collection A ⊆ P(P ) is monotone if whenever we have sets B,C
satisfying B ∈ A and B ⊆ C ⊆ P then C ∈ A. A monotone access structure on
P is a monotone collection A ⊆ P(P ) \ ∅. The sets in A are called the valid sets
and the sets in P(P ) \ A are called the invalid sets.

Definition 5 (Restriction of Access Structure). Let P = {P1, . . . , PN} be
a set of parties and A be an access structure over these parties. Let PS ⊆ P
be a subset of these parties. We say that A′ is the access structure induced by
restricting A to the parties in PS if A′ is an access structure on PS such that a
set A ∈ A′ for some A ⊆ PS if and only if A ∈ A.

For ease of notation, we will generally identify a party with its index. Fur-
ther, since this presentation will only consider monotone access structures, the
terms monotone access structure and simply access structure will be used inter-
changeably throughout the text. Let P = {P1, . . . , PN} be a set of parties and
let S be a subset of P . We denote by XS the vector XS = (x1, . . . , xN ) where
xi = 1 if Pi ∈ S and xi = 0 otherwise.

Definition 6 (Efficient Access Structure). Let P = {P1, . . . , PN} be a set
of parties and A ⊆ P(P ) a monotone access structure on P . We say that A is
efficient if there exists a polynomial size circuit fA : {0, 1}N → {0, 1} such that
for all S ⊆ P , fA(XS) = 1 if and only if S ∈ A.

Definition 7 (Class of Monotone Access Structures). Let P = {P1, . . . , PN}
be a set of parties. A class of monotone access structures is a collection S =
{A1, . . . ,At} ⊆ P(P(P )) of monotone access structures on P .

Being interested in secret sharing, we will only consider efficient access structures
in this work.

One of the most canonical classes of access structures is the t-out-of-n class.

Definition 8 (t-out-of-n secret sharing). Let P = {P1, . . . , PN} be a set of
parties. An access structure A is a t-out-of-n access structure if for every S ⊆ P ,
S ∈ A if and only if |S| ≥ t.

A more general form of secret sharing is linear secret sharing.

Definition 9 (Linear Secret Sharing Scheme (LSSS)). Let P = {P1, . . . , PN}
be a set of parties. The class of access structures LSSS (or LSSSN to emphasize
the number of parties) consists of all access structure A such that there exists a
secret sharing scheme Π satisfying:
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1. For a prime p, the share of each party Pi is a vector wi ∈ Zni
p for some

ni ∈ N.

2. There exists a matrix M ∈ Zℓ×n
p , ℓ =

∑N
i=1 ni called the share matrix for

Π with size polynomial in the number of parties and such that for a secret
s, the shares are generated as follows. Values r2, . . . , rn ∈ Zp are chosen at
random and the vector v = M · (s, r2, . . . , rn)T is generated. Now, denote by
Ti ⊆ [ℓ], 1 ≤ i ≤ N a partition of [ℓ] such that Ti has size |Ti| = ni and is
associated with party Pi. The share of Pi is the vector wi = (vi)i∈Ti

.

3. For any set S ⊆ P , S ∈ A if and only if

(1, 0, . . . , 0) ∈ span({M [i]}i∈
⋃

j∈S
Tj
)

over Zp where M [i] denotes the ith row of M .

We denote by LSSSN the class of linear secret sharing schemes on N parties.

Note that keeping with the notation of the LSSS definition above, any set
of parties S ⊆ P such that S ∈ A can recover the secret by finding coefficients
{ci}i∈

⋃
j∈S

Tj
satisfying

∑

i∈
⋃

j∈S Tj

ciM [i] = (1, 0, . . . , 0).

Given such coefficients, the secret can be recovered simply by computing

s =
∑

i∈
⋃

j∈S
Tj

civi.

Since such coefficients can be found in time polynomial in the size of M using
linear algebra, LSSS is a class of efficient access structures [9]. Further, LSSS
has the property that it information theoretically hides the value s, i.e. for any
secrets s0 and s1, it holds that the distributions of shares {wi}i∈S for a set
S 6∈ A, are identical.

In our application of linear secret sharing, we will always be sharing a vector
over Zp, s ∈ Zn

p instead of just a single element of Zp. Simply linearly secret
sharing each entry of the vector s using fresh randomness for each entry yields
shares s1, . . . , sℓ ∈ Zn

p . It is easy to see that the secret s ∈ Zn
q can now be recon-

structed as a linear combination of the shares si using the same coefficients as
for a single field element. Further, information theoretical hiding is maintained.

{0, 1}-LSSS and {0, 1}-LSSSD. For the purposes of this paper, we will need
a more restricted class of access structures. The access structures of the class
{0, 1}-LSSS are those that can be realized as LSSS schemes such that each party
only has one share and such that it always is possible to only use recovery
coefficients ci ∈ {0, 1}.
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Definition 10 ({0, 1}-Linear Single Share Scheme ({0, 1}-LSSS)). Let P =
{P1, . . . , PN} be a set of parties. The set {0, 1}-LSSSN ⊆ LSSSN is the collection
of access structures A ∈ LSSSN such that there exists an efficient linear secret
sharing scheme Π for A satisfying the following:

1. For a prime p, the share of each party Pi consists of a single element wi ∈ Zp.
2. Let s be a secret and let wi ∈ Zp be the share of party Pi for each i. For

every valid set S ∈ A, there exist a subset S′ ⊆ S such that s =
∑

i∈S′ wi.

In our application, we will need {0, 1}-LSSS schemes that work over a certain
prime q corresponding to the modulus of an FHE scheme. The constructions of
later sections will be designed in a way that allows for the access structure to
work over any modulus, but for now we will denote by {0, 1}-LSSSq the set of
access structures contained in {0, 1}-LSSS that can be realized as secret sharing
schemes by a share matrix over Zq.

That every access structure A ∈ {0, 1}-LSSS is efficient follows directly from
the efficiency of the LSSS class. However, it is not obvious that the set S′ of the
above definition can be found efficiently given any S ⊆ P . To see that this is
indeed the case, we first establish a lemma.

Definition 11 (Maximal Invalid Share Set). Let P = {P1, . . . , PN} be a
set of parties and A be a monotone access structure on P . A set S ⊆ P is a
maximal invalid share set if S 6∈ A but for every p ∈ P \ S, S ∪ {p} ∈ A.

Definition 12 (Minimal Valid Share Set). Let P = {P1, . . . , PN} be a set
of parties and A be a monotone access structure on P . A set S ⊆ P is a minimal
valid share set if S ∈ A and for every S′ ( S, S′ 6∈ A.

Although the following lemma is trivial to show it will turn out to be a useful
observation both for the efficiency of reconstruction of {0, 1}-LSSS and for our
construction.

Lemma 2 ([56]). Let P = {P1, . . . , PN} be a set of parties, A ∈ {0, 1}-LSSS,
and Π be a linear secret sharing scheme as specified in the definition of {0, 1}-LSSS.
Let s be a secret, let wi ∈ Zp be the share of party Pi for each i, and let S ⊆ P
be a minimal valid share set of A. Then s =

∑
i∈S wi.

Finally, the following lemma shows that given a linear secret sharing scheme Pi
for A ∈ {0, 1}-LSSS, we can find recovery coefficients efficiently. However, it is
worth noting that this does not mean that deciding whether an access structure
belongs to {0, 1}-LSSS is feasible. In our applications we will instead specifically
construct secret sharing schemes that belong to {0, 1}-LSSS.

Lemma 3 ([56]). Finding recovery coefficients ci ∈ {0, 1} in a linear secret
sharing scheme Π for an access structure A ∈ {0, 1}-LSSS can be done efficiently.

In applications, we will need the following access structure, which removes
the constraint on the number of shares per party, but retains the overall property
of the shares.
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Definition 13 (Derived {0, 1}-LSSS ({0, 1}-LSSSD)). Let P = {P1, . . . , PN}
be a set of parties. We denote by {0, 1}-LSSSDN the class of access structures
A ∈ LSSSN such that there exists an ℓ ∈ N polynomial in N and an access
structure B ∈ {0, 1}-LSSSℓn for parties P ′ = {P ′1, . . . , P

′
Nℓ} such that we can

associate the party Pi ∈ P with the parties P ′ℓ(i−1), P
′
ℓ(i−1)+1, . . . , P

′
ℓi ∈ P ′ as

follows. For every S ⊆ [N ], S ∈ A if and only if the set S′ of parties of P ′

associated with a party in S, S′ ∈ B. More precisely, for every S ⊆ [N ],
⋃

i∈S

{Pi} ∈ A if and only if
⋃

i∈S

{P ′ℓ(i−1), P
′
ℓ(i−1)+1, . . . , P

′
ℓi} ∈ B.

In other words, a {0, 1}-LSSSD scheme is a secret sharing scheme where the
shares satisfy a {0, 1}-LSSS scheme, but each party receives multiple shares.

Theorem 9 ([56]). The class of access structures {0, 1}-LSSSDN contains all
those induced by monotone boolean formulas, which, in turn contains all t out
of N threshold access structures.

In this work, all access structures will be those in the class {0, 1}-LSSSD.

A.4 Multi-String NIZK

We adapt the definition from [47]. Let R be an efficiently computable binary
relation and L an NP-language of statements x such that (x,w) ∈ R for some
witness w.

Definition 14 (Multi-String NIZK). A multi-string NIZK using N strings
for a language L is a tuple of PPT algorithms

NIZK = (Gen,Prove,Verify)

satisfying the following specifications:

crs← Gen(1λ): It takes as input the security parameter λ and outputs a uni-
formly random string crs.

π ← Prove(CRS, x, w): It takes as input a set of N random strings CRS, a state-
ment x, and a witness w. It outputs a proof π.

{0, 1} ← Verify(CRS, x, π): It takes as input a set of N random strings CRS, a
statement x, and a proof π. It outputs 1 if it accepts π and 0 if it rejects it.

We require that the algorithms satisfy the following properties for all non-
uniform PPT adversaries A:

Perfect Completeness.

Pr

[
S := ∅; (CRS, x, w)← AGen;π ← Prove(CRS, x, w) :

Verify(CRS, x, π) = 0 and (x,w) ∈ R

]
= 0,

where Gen is an oracle that on a query q outputs crsq ← Gen(1λ) and sets
S := S ∪ {crsq}. Note that this says that even if the adversary arbitrarily
picks all the random strings, perfect completeness still holds.
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Soundness.

Pr

[
S := ∅; (CRS, x, π)← AGen :

Verify(CRS, x, π) = 1 and x 6∈ L and |CRS ∩ S| > N/2

]
≤ negl(λ),

where Gen is an oracle that on a query q outputs crsq ← Gen(1λ) and sets
S := S∪{crsq}. Note that this says that as long as at least half of the random
strings are honestly generated, the adversary cannot forge a proof except with
negligible probability.

Composable Zero-Knowledge. There exist PPT algorithms SimGen, SimProve

such that

Pr[crs← Gen(1λ) : A(crs) = 1] ∼=c Pr[(crs, τ)← SimGen(1λ) : A(crs) = 1]

and

Pr

[
S := ∅; (CRS, x, w)← ASimGen(1λ);π ← Prove(CRS, x, w) :

A(π) = 1 and (x,w) ∈ R and |CRS ∩ S| > N/2

]

∼=c

Pr

[
S := ∅; (CRS, x, w)← ASimGen(1λ);π ← SimProve(CRS, T, x) :

A(π) = 1 and (x,w) ∈ R and |CRS ∩ S| > N/2

]
,

where T is the set containing all simulation trapdoors τ generated by SimGen.
Note that this is saying that random strings with simulation trapdoors can be
generated that are indistinguishable from honestly generated random strings
and that using these trapdoors, it is possible to simulate a proof that is in-
distinguishable from a real proof even to an adversary that possesses all the
simulation trapdoors.

In this work, we will deal with multi-string NIZKs that are simulation-
extractable. Informally, this means that it is possible to extract a witness from an
adversary’s proof even if the adversary is allowed to see many simulated proofs.
Formally, we have the following definition from [47].

Definition 15 (Simulation-Extractable Multi-String NIZK). A simulation-
extractable multi-string NIZK is a multi-string NIZK with the following addi-
tional property.

Simulation-Extractability. There exist PPT algorithms ExtGen,Ext such that
ExtGen(1λ) outputs (crs, τ, ξ), a random string, a simulation trapdoor, and
an extraction key, such that the output distribution (crs, τ) is identical to
that of SimGen and

Pr




S := ∅;Q := ∅; (CRS, x, π)← AExtGen′,SimProve(1λ);
w ← Ext(CRS, E, x, π) :

(x, π) 6∈ Q and (x,w) 6∈ R and Verify(CRS, x, π) = 1
and |CRS ∩ S| > N/2


 ≤ negl(λ),
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where ExtGen′ is an oracle that runs ExtGen to generate (crs, τ, ξ), outputs
(crs, τ) and sets S := S ∪ {crs}, SimProve outputs a proof π for a statement
x given the set of simulation trapdoors and sets Q := Q∪ {(x, π)}, and E is
the set of the ξ’s generated by ExtGen.

A.5 Correlation Intractable Hash Functions

We adapt definitions of a correlation intractable hash function family from
[69,21].

Definition 16. We say that a relation R ⊆ X × Y is searchable in size S if
there exists a function f : X → Y that is implementable in a boolean circuit of
size S, such that if (x, y) ∈ R then y = f(x).

Having defined efficiently searchable relation, we define correlation intractabil-
ity for a class of relations R.

Definition 17. Let R = {Rλ}λ∈Z be a relation family. A hash function fam-
ily H = (Setup,Eval) is correlation intractable (CI) if for every non-uniform
polynomial-size adversary A, there exists a negligible function such that for ev-
ery R ∈ Rλ

Pr
K←H.Setup(1λ,R)

[A(K) = (x,H.Eval(K,x)) ∈ R] ≤ negl

We also require additional property which we refer to as statistical indistin-
guishability of hash keys. This property states that for all large enough λ and
R1, R2 ∈ Rλ, for any adversary A (even unbounded),

| Pr
K←H.Setup(1λ,R1)

[A(K) = 1]− Pr
K←H.Setup(1λ,R2)

[A(K) = 1]| ≤ 2−λ
O(1)

The work of [69] showed how to construct correlation intractable for the
family of circuits given by all polynomial sized circuits of depth λ from LWE
with subexponential approximation factors.

A.6 Sigma-Protocol

In this section we recall the Σ protocol for Graph Hamiltonicity (which is an NP
complete language) by Blum [12] that can be based on commitment schemes and
one way functions. The Graph Hamiltonicity language has as instance a graph

G, which can be represented as an adjacency matrix in {0, 1}(
λ
2) where λ is the

number of nodes. Its witness is a subgraph H which forms a cycle in G. The Σ
protocol consists of three messages. For a complete description refer to [12]. The
protocol is a parallel repetition of the following basic protocol between a prover
P and verifier V .

– Prover send c1 = Com(π(G)) and c2 = Com(π) where π is a random permu-
tation. Here Com is a perfectly binding bit commitment scheme.
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– Verifier chooses e← {0, 1} and sends it over to P .
– If e = 0, prover opens up both commitments c1, c2 to reveal π(G) and π.

Otherwise it opens up a cycle in c1.

Properties:

– This protocol is a honest verifier zero-knowledge protocol with constant
soundness error.

– We can consider a parallel repetition of the basic protocol to amplify the
soundness guarantee and reduce the error8. Such a protocol satisfies statisti-
cal soundness with soundness error bounded by 2−m where m is the number
of parallel repetitions. Thus, for every instance G not admitting a hamil-
tonian cycle and first message {aj = (cj,1, cj,2)}j∈[m], there exists at most
one string e ∈ {0, 1}m for which there exists a third message {zj}j∈[m] such
that (aj , ej , zj) verifies with respect to the basic protocol for all j ∈ [m].
Also, string e can be computed by an efficient function if the commitment
scheme used to compute the first message has a trapdoor sk9. Let this func-
tion be called fbad,λ,m,sk and it is parameterized by the number of nodes in
the graph λ, the number of parallel repetitions m, and the trapdoor sk for
the commitment scheme. The size of the circuit representing fbad,λ,m,sk is
polynomial in (λ,m, |sk|).

– Note that the protocol satisfies standard witness indistinguishability against
malicious verifiers. In particular, parallel repetition of the constant sound-
ness error protocol also retains witness indistinguishability against malicious
verifiers while reducing the soundness error. That is, witness indistinguisha-
bility composes under parallel repetition.

B MPC with Threshold Mixed Adversaries: Definition

In this section, we formally define the notion of secure multiparty computation
against a threshold mixed adversary as defined in the works of Fitzi et al. [36,37].
Recall that a (tMal, tSh, tFc)-threshold mixed adversary A = (AMal,ASh,AFc)
is one that corrupts a set of parties AMal maliciously, a set of parties ASh

in a semi-honest manner and a set of parties AFc in a fail-corrupt manner.
It is required to satisfy the threshold constraints: |AMal| ≤ tMal, |ASh| ≤ tSh,
|AFc| ≤ tFc. While the former two notions are quite standard, we recall that in a
fail-corrupt corruption, the adversary can instruct the corrupted party to stop its
protocol execution at any point. Note that in the case of fail-corrupt corruption,
the adversary does not get to learn the internal state of the corrupted parties at
any point. For simplicity, we will omit the threshold constraints on the adversary
for the rest of this section and assume they are implicit.

8 Note that such an amplification would not be possible against malicious verifiers as
the zero knowledge property doesn’t compose in that case.

9 Recall that given the commitment a and the trapdoor sk, the decommitment can
be efficiently generated.
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We now present the formal definition of an MPC protocol secure against
a (tMal, tSh, tFc)-threshold mixed adversary A = (AMal,ASh,AFc) with static
corruption.

Syntax. A multi-party protocol is cast by specifying a random process that maps
pairs of inputs to pairs of outputs (one for each party). We refer to such a pro-
cess as a functionality. The security of a protocol is defined with respect to a
functionality f . In particular, let N denote the number of parties. A non-reactive
N -party functionality f is a (possibly randomized) mapping of N inputs to N
outputs. A multiparty protocol with security parameter λ for computing a non-
reactive functionality f is a protocol running in time poly(λ) and satisfying the
following correctness requirement: if parties P1, . . . , PN with inputs (x1, . . . , xN )
respectively, all run an honest execution of the protocol, then the joint distribu-
tion of the outputs y1, . . . , yN of the parties is statistically close to f(x1, . . . , xN ).
The above can also be extended to the setting of reactive functionalities.

B.1 Defining Security.

Informally, the security requirement is similar to that in standard multi-party
computation where we consider only a single adversary type - either malicious
or semi-honest. The difference here is that the adversary is additionally allowed
to specify different sets (AMal,ASh,AFc) of parties apriori that will respectively
correspond to malicious/semi-honest/ fail-corrupt corruptions. Furthermore, for
each party in the fail-corrupt set, the adversary can adaptively decide when that
party would abort the computation. For simplicity, we will consider only static
corruptions which is the focus of this work.

Formally, the security of a multi-party computation protocol against a thresh-
old mixed adversary with respect to a functionality f is defined by compar-
ing the real-world execution of the protocol with an ideal-world evaluation of
f by a trusted party. More concretely, it is required that for every adversary
Adv = (AMal,ASh,AFc), which attacks the real execution of the protocol, there
exists an ideal world adversary Sim, which can achieve the same effect in the
ideal-world. Let’s denote x = (x1, . . . , xn).

The real execution. In the real world execution of the n-party protocol Π for
computing f , Π is executed in the presence of an adversary Adv. The honest
parties follow the instructions of Π . Initially, the Adv is given as input the
security parameter λ and some auxiliary information z. Then, Adv outputs a
tuple of sets AMal,ASh,AFc ⊆ [N ] of parties to corrupt and gets as input the
inputs of all the parties in the sets AMal and ASh. Adv sends all messages in
place of corrupted parties in the sets AMal and ASh. For each party in the set
AMal, it may follow an arbitrary polynomial-time strategy. For each party in
the set ASh, the adversary is required to execute the protocol honestly. For each
party in the set AFc, the adversary can choose to instruct that party to abort
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the execution at any point in the protocol. Once again, note that the adversary
does not learn the internal state of any fail-corrupt party.

The interaction of Adv in the protocolΠ defines a random variable REALΠ,Adv(z)(
λ,x), where x = (x1, . . . , xN ), whose value is determined by the coin tosses of
the adversary and the honest parties. This random variable contains the out-
put of the adversary (which may be an arbitrary function of its view subject
to the restriction on the semi-honest parties’ behaviour) as well as the outputs
of the honest parties. We let REALΠ,Adv(z) denote the distribution ensemble
{REALΠ,Adv(z)(λ,x)}λ∈N,x∈({0,1}λ)N ,z∈{0,1}∗ .

The ideal execution. In the ideal execution of the n-party protocol Π for com-
puting function f , an ideal world adversary Sim interacts with a trusted party.
The ideal execution proceeds as follows.

– Adversary picks corrupted sets: Sim is given the security parameter λ
and an auxiliary input z and outputs a tuple of sets AMal,ASh,AFc ⊆ [N ]
of parties to corrupt.

– Parties send inputs to the trusted party: The parties send their inputs
to the trusted party, and we let x′i denote the value sent by Pi. Note that for
each party Pi in ASh, the adversary is required to send its actual input xi.
For each party Pk in AFc, the adversary can decide whether Pk should send
its input or not but the adversary can’t change the input. For each party in
AMal, the adversary is free to interact as it wishes.

– Trusted party sends output to the adversary: For every party Pi whose
input it did not receive, the trusted party sets yi to 0λ. For other parties
that did send their inputs, the trusted party sets yi = x′i. The trusted party
outputs f(y1, . . . , yN ) to Sim.

– Adversary chooses to deliver output to other parties: For each honest
party Pi, Sim instructs the trusted party whether or not to deliver output
to Pi.

– Outputs: Sim outputs an arbitrary function of its view, and the honest
parties output the value obtained from the trusted party (or ⊥ if no value
is given).

The interaction of Sim with the trusted party defines a random variable
IDEALf,Sim(z)(λ,x), which we use to denote the distribution ensemble
{IDEALf,Sim(z)(λ,x)}λ∈N,x∈({0,1}λ)N ,z∈{0,1}∗ .

Having defined the real and the ideal worlds, we now proceed to define our
notion of security.

Definition 18. Let λ be the security parameter. Let f be an N -party function-
ality and Π be an N -party protocol for N ∈ N for computing f .

– We say that Π securely computes f in the presence of threshold mixed ad-
versaries if for every PPT threshold mixed adversary Adv , there exists a
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PPT simulator Sim such that for every PPT distinguisher D, the following
quantity is negligible in λ if S 6∈ A:

|Pr[D(REALΠ,Adv(z)(λ,x)) = 1]− Pr[D(IDEALf,Sim(z)(λ,x)) = 1]|

where x = {xi}i∈[N ] ∈ ({0, 1}λ)N and z ∈ {0, 1}∗.

B.2 Security against Semi-Malicious Mixed Adversaries

Semi-Malicious Adversary. We take the definition of a semi-malicious adversary
almost verbatim from [4]. A semi-malicious adversary is modeled as an inter-
active Turing machine (ITM) which, in addition to the standard tapes, has a
special witness tape. In each round of the protocol, whenever the adversary pro-
duces a new protocol message m on behalf of some party Pi, it must also write
to its special witness tape some pair (x, r) of input x and randomness r that
explains its behavior. More specifically, all of the protocol messages sent by the
adversary on behalf of Pi up to that point, including the new message m, must
exactly match the honest protocol specification for Pi when executed with input
x and randomness r. Note that the witnesses given in different rounds need not
be consistent. Also, we assume that the attacker is rushing and hence may choose
the message m and the witness (x, r) in each round adaptively, after seeing the
protocol messages of the honest parties in that round (and all prior rounds).
Lastly, the adversary may also choose to abort the execution on behalf of Pi in
any step of the interaction.

Semi-Malicious Mixed Adversaries. We now consider a weaker adversarial set-
ting when compared to the mixed adversary called a semi-malicious mixed ad-
versary. Here, the adversarial structure is similar to a mixed adversary except
that it can not pick a set of parties to be malicious but instead, those parties
can only be semi-malicious. That is, for any semi-malicious mixed adversary
A = (ASm,ASh,AFc), ASm denotes the set of parties that are semi-maliciously
corrupted, ASh denotes the set of parties that are corrupted in a semi-honest
manner and AFc denotes the set of fail-corrupt corruptions.

Definition 19. Let λ be the security parameter. Let f be an N -party function-
ality and Π be an N -party protocol for N ∈ N for computing f .

– We say that Π securely computes f in the presence of semi-malicious mixed
adversaries if for every PPT semi-malicious mixed adversary Adv , there
exists a PPT simulator Sim such that for every PPT distinguisher D, the
following quantity is negligible in λ if S 6∈ A:

|Pr[D(REALΠ,Adv(z)(λ,x)) = 1]− Pr[D(IDEALf,Sim(z)(λ,x)) = 1]|

where x = {xi}i∈[N ] ∈ ({0, 1}λ)N and z ∈ {0, 1}∗.
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C TMFHE Construction: Security Proof (Theorem 4)

For notational simplicity, we will prove security in the game where the adversary
only submits a single circuit C. The proof naturally extends to the full definition
where the adversary is allowed to submit polynomially many circuits, due to the
adaptive nature of the result in Proposition 1. We make a note in the proof
showing this extension. We will prove security via a series of hybrid games. We
use red text to denote the difference between the current hybrid and the previous
one. One thing to note is that in the security game, each party generates their
parameters paramsi with respect to the number of parties N . However, some
parties may abort and not output any parameters, which leads to encryption
being done with respect to a set of parties of size N ′ ≤ N . Therefore, it is
necessary for parameters generated with respect to N parties to be able to be
used for encryptions with respect to N ′ parties. This is not an issue in our
construction because we observe that the paramsi of each party in the MFHE
construction in [18] and, therefore, also in our TMFHE construction, are simply
random matrices Ai of a size dependent on N . Therefore, truncating the matrix
to the appropriate size for a scheme with N ′ parties is equivalent to having run
the distributed setup algorithm for N ′ parties.

Hyb0 : This is the same as the “real” experiment. Namely,

Hyb0(1
λ, 1d, 1n) = ExptA,Real(1

λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal
number of parties 1n, the adversary A outputs a number of parties N ≤
n, a set S ⊆ [N ] and an access structure A ∈ S over N parties such that
S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given
{paramsi}i6∈S . Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The
adversary is given {pki}i6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness

rKeyGeni used to generate (pki, ski) or ⊥.
4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and

let S1 = S ∩Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈
{0, 1}λ and a set L ⊆ Sparams\S1 of indices with |L| = ℓ for some ℓ ≤
|Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams.

For i ∈ S1, run KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK =
{pki}i∈Sparams

. Let A′ be the restriction of A to the parties in Sparams. The
adversary is given cti ← Enc(params,PK,A′,mi) for i ∈ L.

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for

a message mi and randomness used for encryption rEncrypti or ⊥. For

the i ∈ S1 for which (mi, r
Encrypt
i ) is defined, set cti = Enc(params,PK,

A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices for which cti is

defined.
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7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a
subset S′ct ⊆ Sct with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′

ct

and let the evaluated ciphertext be ĉt← Eval(C, CT ).
8. The adversary outputs a set S′ ⊆ Sparams\S1. For all i ∈ S′, the adversary

is given pi ← PartDec(i, ski, ĉt).
9. A outputs out. The output of the experiment is out.

Hyb1 : This is the same as Hyb0 except we expand the TMFHE encryption and
partial decryption procedures according to our construction.

Hyb1(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal
number of parties 1n, the adversary A outputs a number of parties N ≤
n, a set S ⊆ [N ] and an access structure A ∈ S over N parties such that
S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given
{paramsi}i6∈S . Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The
adversary is given {pki}i6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness

rKeyGeni used to generate (pki, ski) or ⊥.
4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and

let S1 = S ∩Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈
{0, 1}λ and a set L ⊆ Sparams\S1 of indices with |L| = ℓ for some ℓ ≤
|Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams.

For i ∈ S1, run KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK =
{pki}i∈Sparams

. Let A′ be the restriction of A to the parties in Sparams.
For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret
sharing scheme associated with A′ to fski to arrive at {fski,j,k}j∈Sparams,k∈[w]

for some w = poly(n). Set ct′i ← MFHE.Enc(fpki,mi) and for j ∈ Sparams,
set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]). The adversary is given

cti = (ct′i, {cti,j}j∈Sparams
).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for

a message mi and randomness used for encryption rEncrypti or ⊥. For

the i ∈ S1 for which (mi, r
Encrypt
i ) is defined, set cti = Enc(params,PK,

A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices for which cti is

defined.
7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a

subset S′ct ⊆ Sct with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′
ct

and let the evaluated ciphertext be ĉt← Eval(C, CT ).
8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′
ct×Sparams). Define Sshares as the set of all the

indices of the secret shares corresponding to the parties in S1 under

54



the secret sharing scheme associated with A′. Notationally, these are
{(j, k)}j∈S1,k∈[w]. Define S′shares in an analogous manner for the set S′. For
(i, j) ∈ S′ct\L×S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′

ct\L,j∈S1,k∈[w].
For (j, k) ∈ S′shares, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· v,

where v is the low-norm vector used for decryption in [18] and the Ii’s
are the ordered sequence of indices in S′ct. Then, for (j, k) ∈ S′shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb2 : This is the same as Hyb1 except that for all i ∈ L, j 6∈ S1, we set the
encrypted fski,j,k’s to 0. Note that these are the secret shares that the adversary
is not able to recover.

Hyb2(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal
number of parties 1n, the adversary A outputs a number of parties N ≤
n, a set S ⊆ [N ] and an access structure A ∈ S over N parties such that
S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given
{paramsi}i6∈S . Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The
adversary is given {pki}i6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness

rKeyGeni used to generate (pki, ski) or ⊥.
4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and

let S1 = S ∩Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈
{0, 1}λ and a set L ⊆ Sparams\S1 of indices with |L| = ℓ for some ℓ ≤
|Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams.

For i ∈ S1, run KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK =
{pki}i∈Sparams

. Let A′ be the restriction of A to the parties in Sparams.
For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret
sharing scheme associated with A′ to fski to arrive at {fski,j,k}j∈Sparams,k∈[w]

for some w = poly(n). Set ct′i ← MFHE.Enc(fpki,mi) and for j ∈
Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if j ∈ S1 and cti,j =
PKE.Enc(pkj ,0) if j 6∈ S1, where 0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams
).
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6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for

a message mi and randomness used for encryption rEncrypti or ⊥. For

the i ∈ S1 for which (mi, r
Encrypt
i ) is defined, set cti = Enc(params,PK,

A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices for which cti is

defined.
7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a

subset S′ct ⊆ Sct with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′
ct

and let the evaluated ciphertext be ĉt← Eval(C, CT ).
8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′
ct×Sparams). Define Sshares as the set of all the

indices of the secret shares corresponding to the parties in S1 under
the secret sharing scheme associated with A′. Notationally, these are
{(j, k)}j∈S1,k∈[w]. Define S′shares in an analogous manner for the set S′. For
(i, j) ∈ S′ct\L×S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′

ct\L,j∈S1,k∈[w].
For (j, k) ∈ S′shares, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· v,

where v is the low-norm vector used for decryption in [18] and the Ii’s
are the ordered sequence of indices in S′ct. Then, for (j, k) ∈ S′shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb3 : This is the same as Hyb2 except that for all j ∈ S′, the partial decryptions
given to the adversary are simulated.

Hyb3(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal
number of parties 1n, the adversary A outputs a number of parties N ≤
n, a set S ⊆ [N ] and an access structure A ∈ S over N parties such that
S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given
{paramsi}i6∈S . Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The
adversary is given {pki}i6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness

rKeyGeni used to generate (pki, ski) or ⊥.
4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and

let S1 = S ∩Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈
{0, 1}λ and a set L ⊆ Sparams\S1 of indices with |L| = ℓ for some ℓ ≤
|Sparams\S1|.
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5. params is set to the concatenation of the paramsi’s for i ∈ Sparams.

For i ∈ S1, run KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK =
{pki}i∈Sparams

. Let A′ be the restriction of A to the parties in Sparams.
For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret
sharing scheme associated with A′ to fski to arrive at {fski,j,k}j∈Sparams,k∈[w]

for some w = poly(n). Set ct′i ← MFHE.Enc(fpki,mi) and for j ∈
Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if j ∈ S1 and cti,j =
PKE.Enc(pkj ,0) if j 6∈ S1, where 0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams
).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for

a message mi and randomness used for encryption rEncrypti or ⊥. For

the i ∈ S1 for which (mi, r
Encrypt
i ) is defined, set cti = Enc(params,PK,

A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices for which cti is

defined.
7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a

subset S′ct ⊆ Sct with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′
ct

and let the evaluated ciphertext be ĉt← Eval(C, CT ).
8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′
ct×Sparams). Define Sshares as the set of all the

indices of the secret shares corresponding to the parties in S1 under
the secret sharing scheme associated with A′. Notationally, these are
{(j, k)}j∈S1,k∈[w]. Define S′shares in an analogous manner for the set S′.
If S1 ∪ S′ 6∈ A′, set Smax = Sshares ∪ S′shares. Else, set Smax to be a
maximally unqualified set of shares with Sshares ⊆ Smax ⊆ Sshares∪S′shares.
If S1 ∪ S′ ∈ A′, set µ = C({mi}i∈S′

ct
). Else, set µ = ⊥.

For (i, j) ∈ S′ct\L×S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′
ct\L,j∈S1,k∈[w].

For (j, k) ∈ Smax, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· v,

where v is the low-norm vector used for decryption in [18] and the Ii’s
are the ordered sequence of the indices in S′ct. Then, for every (j, k) ∈
S′shares\Smax, let Tj,k ⊆ Smax ∪ {(j, k)} be a minimal valid share set
containing (j, k). Then, set

p̃j,k = µ ⌈q/2⌉ −
∑

(α,β) 6=(j,k)∈Tj,k

p̃α,β.

Then, for (j, k) ∈ S′shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.
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Hyb4 : This is the same as Hyb3 except that for all i ∈ L, the secret key shares
are generated with respect to 0 rather than fski.

Hyb4(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal
number of parties 1n, the adversary A outputs a number of parties N ≤
n, a set S ⊆ [N ] and an access structure A ∈ S over N parties such that
S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given
{paramsi}i6∈S . Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The
adversary is given {pki}i6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness

rKeyGeni used to generate (pki, ski) or ⊥.
4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and

let S1 = S ∩Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈
{0, 1}λ and a set L ⊆ Sparams\S1 of indices with |L| = ℓ for some ℓ ≤
|Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams.

For i ∈ S1, run KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK =
{pki}i∈Sparams

. Let A′ be the restriction of A to the parties in Sparams.
For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret
sharing scheme associated with A′ to 0 to arrive at {fski,j,k}j∈Sparams,k∈[w]

for some w = poly(n). Set ct′i ← MFHE.Enc(fpki,mi) and for j ∈
Sparams, set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if j ∈ S1 and cti,j =
PKE.Enc(pkj ,0) if j 6∈ S1, where 0 is an all 0 encryption of the same
length as w secret key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams
).

6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for

a message mi and randomness used for encryption rEncrypti or ⊥. For

the i ∈ S1 for which (mi, r
Encrypt
i ) is defined, set cti = Enc(params,PK,

A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices for which cti is

defined.
7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a

subset S′ct ⊆ Sct with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′
ct

and let the evaluated ciphertext be ĉt← Eval(C, CT ).
8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′
ct×Sparams). Define Sshares as the set of all the

indices of the secret shares corresponding to the parties in S1 under
the secret sharing scheme associated with A′. Notationally, these are
{(j, k)}j∈S1,k∈[w]. Define S′shares in an analogous manner for the set S′.
If S1 ∪ S′ 6∈ A′, set Smax = Sshares ∪ S′shares. Else, set Smax to be a
maximally unqualified set of shares with Sshares ⊆ Smax ⊆ Sshares∪S′shares.
If S1 ∪ S′ ∈ A′, set µ = C({mi}i∈S′

ct
). Else, set µ = ⊥.

For (i, j) ∈ S′ct\L×S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′
ct\L,j∈S1,k∈[w].
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For (j, k) ∈ Smax, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· v,

where v is the low-norm vector used for decryption in [18] and the Ii’s
are the ordered sequence of the indices in S′ct. Then, for every (j, k) ∈
S′shares\Smax, let Tj,k ⊆ Smax ∪ {(j, k)} be a minimal valid share set
containing (j, k). Then, set

p̃j,k = µ ⌈q/2⌉ −
∑

(α,β) 6=(j,k)∈Tj,k

p̃α,β.

Then, for (j, k) ∈ S′shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Hyb5 : This is the same as Hyb4 except that for all i ∈ L, the ciphertexts given
to the adversary contain MFHE encryptions of 0 rather than mi.

Hyb5(1
λ, 1d, 1n):

1. On input the security parameter 1λ, a circuit depth 1d, and the maximal
number of parties 1n, the adversary A outputs a number of parties N ≤
n, a set S ⊆ [N ] and an access structure A ∈ S over N parties such that
S 6∈ A.

2. For i 6∈ S, run DistSetup(1λ, 1d, 1N , i)→ paramsi. The adversary is given
{paramsi}i6∈S . Sample key pairs KeyGen(1λ) → (pki, ski) for i 6∈ S. The
adversary is given {pki}i6∈S.

3. For each i ∈ S, the adversary either outputs paramsi and randomness

rKeyGeni used to generate (pki, ski) or ⊥.
4. Let Sparams ⊆ [N ] be the set of parties Pi for which paramsi is defined and

let S1 = S ∩Sparams. The adversary then outputs messages m1, . . . ,mℓ ∈
{0, 1}λ and a set L ⊆ Sparams\S1 of indices with |L| = ℓ for some ℓ ≤
|Sparams\S1|.

5. params is set to the concatenation of the paramsi’s for i ∈ Sparams.

For i ∈ S1, run KeyGen(1λ; rKeyGeni ) to obtain (pki, ski)i∈S1 . Let PK =
{pki}i∈Sparams

. Let A′ be the restriction of A to the parties in Sparams.
For i ∈ L, run MFHE.KeyGen(params) → (fpki, fski). Apply the secret
sharing scheme associated with A′ to 0 to arrive at {fski,j,k}j∈Sparams,k∈[w]

for some w = poly(n). Set ct′i ← MFHE.Enc(fpki, 0
λ) and for j ∈ Sparams,

set cti,j = PKE.Enc(pkj , {fski,j,k}k∈[w]) if j ∈ S1 and cti,j = PKE.Enc(pkj ,0)
if j 6∈ S1, where 0 is an all 0 encryption of the same length as w secret
key shares. The adversary is given

cti = (ct′i, {cti,j}j∈Sparams
).
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6. For all i ∈ S1, the adversary either outputs a pair (mi, r
Encrypt
i ) for

a message mi and randomness used for encryption rEncrypti or ⊥. For

the i ∈ S1 for which (mi, r
Encrypt
i ) is defined, set cti = Enc(params,PK,

A′,mi; r
Encrypt
i ). Let Sct ⊆ Sparams be the set of indices for which cti is

defined.
7. The adversary outputs a circuit C : ({0, 1}λ)s → {0, 1} along with a

subset S′ct ⊆ Sct with C ∈ C and s = |S′ct| ≤ |Sct|. Let CT = {cti}i∈S′
ct

and let the evaluated ciphertext be ĉt← Eval(C, CT ).
8. The adversary outputs a set S′ ⊆ Sparams\S1.

Parse ĉt as (ĉt′, {cti,j}(i,j)∈S′
ct×Sparams). Define Sshares as the set of all the

indices of the secret shares corresponding to the parties in S1 under
the secret sharing scheme associated with A′. Notationally, these are
{(j, k)}j∈S1,k∈[w]. Define S′shares in an analogous manner for the set S′.
If S1 ∪ S′ 6∈ A′, set Smax = Sshares ∪ S′shares. Else, set Smax to be a
maximally unqualified set of shares with Sshares ⊆ Smax ⊆ Sshares∪S′shares.
If S1 ∪ S′ ∈ A′, set µ = C({mi}i∈S′

ct
). Else, set µ = ⊥.

For (i, j) ∈ S′ct\L×S1, decrypt cti,j using skj to recover {fski,j,k}i∈S′
ct\L,j∈S1,k∈[w].

For (j, k) ∈ Smax, compute

p̃j,k = (fskI1,j,k||fskI2,j,k|| . . . ||fskIs,j,k) · ĉt
′
· v,

where v is the low-norm vector used for decryption in [18] and the Ii’s
are the ordered sequence of the indices in S′ct. Then, for every (j, k) ∈
S′shares\Smax, let Tj,k ⊆ Smax ∪ {(j, k)} be a minimal valid share set
containing (j, k). Then, set

p̃j,k = µ ⌈q/2⌉ −
∑

(α,β) 6=(j,k)∈Tj,k

p̃α,β.

Then, for (j, k) ∈ S′shares, set

p′j,k = p̃j,k + esmj,k ,

where esmj,k ← χsm. For all j ∈ S′, give the adversary

pj = (j, {p′j,k}k∈[w]).

9. A outputs out. The output of the experiment is out.

Simulator: Note that the simulator is implicit in Hyb5. Namely, Sim1 is the
algorithm in Step 5 to generate the ciphertexts and Sim2 is the algorithm in
Step 8 used to generate the partial decryptions. The state passed from Sim1 to
Sim2 is

state = {fski,j,k}i∈L,j∈Sparams,k∈[w],

the shares generated by Sim1 for these indices when secret sharing 0.
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Remark 1. Note that although Sim2 is given {ski}i∈S1 , it only uses these secret

keys to recover {fski,j,k}i∈S′
ct\L,j∈S1,k∈[w]. If Sim2 was instead given {(mi, r

Encrypt
i )}i∈S′

ct\L
,

it could simulate in the same manner by using (mi, r
Encrypt
i )’s to run the adver-

sary’s encryption computation and recover the secret key shares {fski,j,k}i∈S′
ct\L,j∈S1,k∈[w].

This observation will be useful later when showing our MPC protocol in the plain
model is secure against threshold mixed adversaries.

Lemma 4. Hyb0 and Hyb1 are computationally indistinguishable.

Proof. These two hybrids are identical; we merely expanded the TMFHE en-
cryption and partial decryption procedures for an easier comparison with future
hybrids.

Lemma 5. Hyb1 and Hyb2 are computationally indistinguishable.

Proof. This follows from the semantic security of the underlying public-key en-
cryption scheme. Suppose there was an adversaryA that can distinguish between
these two hybrids. Then, if we make a sequence of intermediate hybrids, where
we switch a single fski,j,k encryption to 0 in successive hybrids, A can distinguish
between two neighboring intermediate hybrids in this sequence. A′ can break the
semantic security of PKE by interacting with A according to these intermediate
hybrids. When it needs to either give an encryption of fski,j,k or 0, A′ submits
these two messages to its challenger and receives an encryption of one of them,
which it feeds to A. If A can distinguish between the intermediate hybrids, then
A′ also can distinguish between an encryption of fski,j,k and an encryption of 0,
contradicting the security of PKE.

Lemma 6. Assuming E/Esm < negl(λ), then Hyb2 and Hyb3 are statistically
indistinguishable.

Proof. The only difference in the adversary’s view between Hyb2 and Hyb3 is
that in Hyb2, all the partial decryptions for (j, k) ∈ S′shares are generated using
the real secret key shares, whereas in Hyb3, the partial decryptions for (j, k) ∈
Smax ∩ S′shares are generated using the real secret key shares, but the partial
decryptions for (j, k) ∈ S′shares\(Smax ∩ S′shares) are simulated using µ. Therefore,
the distributions of p̃j,k and p′j,k for (j, k) ∈ Smax ∩ S′shares in Hyb2 and Hyb3
are identical. For the remaining (j, k) ∈ S′shares, note that by the properties of
a {0, 1}-LSSSD scheme and the linearity of computing the p̃j,k’s, there exists a
minimal valid share set Tj,k ⊆ Smax ∪ {(j, k)} such that

∑

(α,β)∈Tj,k

p̃α,β = µ ⌈q/2⌉+ e

for some E-bounded noise e. Therefore, it follows that

p̃j,k = µ ⌈q/2⌉+ e−
∑

(α,β)∈Tj,k\{(j,k)}

p̃α,β .
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This is the value of the p̃j,k computed in Hyb2, whereas in Hyb3, the value is

p̃j,k = µ ⌈q/2⌉ −
∑

(α,β)∈Tj,k\{(j,k)}

p̃α,β.

Setting p̃j,k to be the value computed in Hyb3, it follows that in Hyb3, the
adversary receives the value

p̃j,k + esmj,k

and in Hyb2, the adversary receives the value

p̃j,k + e+ esmj,k

for esmj,k ← χsm uniformly at random for each (j, k) ∈ S′shares. Since

(p̃j,k + e)− p̃j,k = e ∈ [−E,E],

it follows from Proposition 1 and Lemma 1 that the statistical distance be-
tween Hyb2 and Hyb3 is ≤ nwE/Esm ≤ poly(n)E/Esm = negl(λ). Note that
the adaptive nature of the adversary in Proposition 1 allows indistinguishability
to extend to the case of multiple circuits, where the adversary may choose the
circuit queries adaptively.

Lemma 7. Hyb3 and Hyb4 are computationally indistinguishable.

Proof. This follows from the fact that the secret sharing scheme associated with
A is information-theoretically secure. In both Hyb3 and Hyb4, only shares associ-
ated with unqualified sets are used. Since unqualified sets reveal no information
about the secret, these two games must be indistinguishable.

Lemma 8. Hyb4 and Hyb5 are computationally indistinguishable.

Proof. This follows from the semantic security of the underlying MFHE scheme.
Suppose there is an adversary A that can distinguish between these two hybrids.
Then, consider a sequence of ℓ intermediate hybrids where in neighboring hy-
brids, we switch one of the encryptions of mi to an encryption of 0λ. There must
exist two neighboring intermediate hybrids that A can distinguish between. A′

can break the semantic security of the MFHE scheme by interacting with A
according to these hybrids. When A′ would need to generate an encryption of
either mi or 0 depending on which intermediate hybrid it is running, A′ submits
mi and 0 as two messages to its challenger and receives an encryption of one of
them, which it uses to continue interacting with A. If A can distinguish between
these two hybrid, then A′ will be able to distinguish between MFHE encryptions
of mi and 0, contradicting the semantic security of MFHE.

D Round-Optimal MPC Secure Against Semi-Malicious
Mixed Adversaries: Security Proof (Protocol of
Section 6.1)

We will first give a description of the simulator and then argue indistinguisha-
bility between the real and ideal worlds.
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Simulator: The simulator Sim is given the security parameter λ and an auxiliary
input z. Let f be representable by a circuit C of depth ≤ d. Let (tSm, tSh, tFc)
be the corruption thresholds of the adversary, where 2tSm + tSh + tFc < N . Let
A be the (N − tSm − tFc)-out-of-N access structure. Sim proceeds as follows:

– Before Protocol Execution: From the semi-malicious mixed adversary
Adv, Sim receives a tuple of sets (ASm,ASh,AFc) of corrupted parties, with
|ASm| ≤ tSm, |ASh| ≤ tSh, and |AFc| ≤ tFc.

– Input Commitment Phase (Round 1): For every fail-corrupt party that
Adv wishes to abort in this round, Sim instructs the corresponding party. For
each honest and each fail-corrupt party not yet instructed to abort, Pi, Sim
does the following:
1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to compute paramsi.
2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).
3. Give (paramsi, pki) as Pi’s round 1 message to Adv.
Sim then receives round 1 messages from Adv on behalf of every party in the
sets ASm and ASh.

– Input Commitment Phase (Round 2): For every fail-corrupt party that
Adv wishes to abort in this round, Sim instructs the corresponding party.
Then, Sim parses the message (if one was sent) from party Pj as (paramsj , pkj).
Let S1 ⊆ [N ] be the set of parties that sent a message in round 1. It trun-
cates each paramsj to the appropriate size for |S1| parties and sets params as
the concatenation of the truncated paramsj ’s for all j ∈ S1. Let PK denote
{pkj}j∈S1 . Let A′ be the access structure induced by restricting A to the
parties in S1. Let S

2
hon be the set of honest and fail-corrupt parties that send

a message in round 2. Let S1
corr be the set of corrupted (semi-malicious and

semi-honest) parties that sent a message in round 1. Sim does the following:
1. Run Sim1(params,PK,A′, S1

corr, S
2
hon) to compute ({cti}i∈S2

hon
, state), where

Sim1 is the first algorithm of the TMFHE simulator.
2. Give cti as Pi’s round 2 message to Adv for i ∈ S2

hon.
Let S2 ⊆ [N ] be the set of parties that sent a round 2 message. For semi-
maliciously and semi-honestly corrupted parties Pi in S2, Sim receives the
input xi used by Adv and sends it to the trusted party. For the fail-corrupt
parties that already aborted, Sim sends 0λ to the trusted party.

– Query to Ideal Functionality: Sim receives the output b from the trusted
party.

– Computation Phase (Round 3): For every fail-corrupt party that Adv

wishes to abort in this round, Sim instructs the corresponding party. Let
CT = {ctj}j∈S2 . Let C

′ be the circuit induced by hardcoding the inputs to
C corresponding to aborted fail-corrupt parties as 0λ. Let S3

hon be the set of
honest and fail-corrupt parties that have not yet been told to abort in round
3 by Adv. For corrupted (semi-honest and semi-malicious) parties Pi in S1

corr,
Sim extracts the secret keys ski that they generated. Sim does the following
1. Run Sim2(state, b, ĉt, S

1
corr, S

2
hon, {ski}i∈S1

corr
) to compute {pj}j∈S2

hon
, where

Sim2 is the second algorithm of the TMFHE simulator and ĉt is the
ciphertext obtain by evaluating C′ on the ciphertexts in CT .
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2. For j ∈ S3
hon, give pj as Pj ’s round 3 message to Adv.

– Output to Honest Parties: Sim tells the trusted party to send b to all
honest parties.

Lemma 9. For any tuple of thresholds (tSm, tSh, tFc) with 2tSm+ tSh+ tFc < N ,
for any (tSm, tSh, tFc)-semi-malicious mixed adversary Adv = (ASm,ASh,AFc),
for the above simulator Sim,

|Pr[D(REALΠ,Adv(z)(λ,x)) = 1]− Pr[D(IDEALf,Sim(z)(λ,x)) = 1]| ≤ negl(λ)

for any PPT distinguisher D.

Proof. Suppose there was some (tSm, tSh, tFc)-semi-malicious mixed adversary
Adv = (ASm,ASh,AFc) for which there existed a distinguisher D that could
distinguish between the real and ideal world experiments. Then, there exists an
adversary Adv′ that could break the security of the underlying TMFHE scheme.
Recall that A is the N − tSm − tFc-out-of-N access structure. Adv′ proceeds as
follows.

1. Adv′ runs Adv, which outputs a tuple of sets (ASm,ASh,AFc) of corrupted
parties.

2. Adv outputs a set of fail-corrupt parties S1
inp ⊆ AFc that will abort in round

1 (they will never send a message). Let Sparties = [N ]\S1
inp and let N ′ =

|Sparties|. Adv
′ outputs N ′ ≤ N as its number of parties, the corrupted set

S = (ASm∪ASh) ⊆ Sparties, and the access structure A′ induced by restricting
A to the parties in Sparties.

3. For i ∈ Sparties\S, Adv
′ receives (paramsi, pki) and gives this to Adv as Pi’s

round 1 message.
4. For each j ∈ S, Adv will output (paramsj , pkj). By running Adv, Adv′ is

able to determine the randomness rKeyGenj used by Adv to generate pkj and

outputs (paramsj , r
KeyGen
j ).

5. Let S2
hon be the set of honest and fail-corrupt parties that will send a round 2

message. Adv′ outputs this set along with the inputs xi ∈ {0, 1}
λ for i ∈ S2

hon.
Adv′ is given cti for i ∈ S2

hon and gives this to Adv as Pi’s round 2 message.

6. By running Adv, Adv′ is able to extract the input xi and randomness rEncrypti

used by Adv for each i ∈ S. Adv′ outputs (xi, r
Encrypt
i ) for all i ∈ S.

7. Let S2 = (S2
hon∪ASm∪ASh) be the set of parties that sent a round 2 message.

Let C′ be the circuit induced by C by setting the input of all parties that
did not send a round 2 message to 0λ. Adv′ outputs C′ along with S2.

8. Let S3
hon be the set of honest and fail-corrupt parties that send a round 3

message. Adv′ outputs S3
hon and receives partial decryptions pi for i ∈ S3

hon.
Adv′ gives these to Adv as Pi’s round 3 message. Adv outputs some function
of its view and Adv′ outputs the same value along with {xi}i6∈S .

Since A is the N−tSm−tFc-out-of-N access structure and 2tSm+tSh+tFc <
N , it follows that |ASm ∪ ASh| ≤ tSm + tSh < N − tSm − tFc, and therefore,
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ASm ∪ ASh 6∈ A′ (the N − tSm − tFc-out-of-N
′ access structure), so Adv′ is a

valid adversary for the TMFHE security game. If Adv′ is interacting with the real
TMFHE security game, it simulates the real world experiment for Π exactly for
some fixed inputs. Similarly, if Adv′ is interacting with the simulated TMFHE
security game, it simulates the ideal world experiment for Π exactly. Therefore,
the existence of Adv would result in an adversary that could break the security
of the TMFHE scheme, a contradiction.

E Round-Optimal MPC Secure Against Mixed
Adversaries: Security Proof (Theorem 6)

We provide a description of the simulator.

Simulator: The simulator Sim is given the security parameter λ and an auxiliary
input z. Let f be representable by a circuit C of depth ≤ d. Let (tMal, tSh, tFc) be
the corruption thresholds of the adversary, where 2tMal+tSh+tFc < N . Let A be
the (N − tMal− tFc)-out-of-N access structure. Let ExtGen,Ext, SimProve be the
extraction and simulation algorithms associated with the simulation-extractable
multi-string NIZK. Sim proceeds as follows:

– Before Protocol Execution: Sim receives a tuple of sets (AMal,ASh,AFc)
of corrupted parties, with |AMal| ≤ tMal, |ASh| ≤ tSh, and |AFc| ≤ tFc.

– Round 1: For every fail-corrupt party that Adv wishes to abort in this
round, Sim instructs the corresponding party. For each honest and each fail-
corrupt party not yet instructed to abort, Pi, Sim does the following:
1. Run TMFHE.DistSetup(1λ, 1d, 1N , i) to compute paramsi.
2. Run TMFHE.KeyGen(1λ) to compute (pki, ski).
3. Run ExtGen(1λ) to compute (crsi, τi, ξi).
4. Give (paramsi, pki, crsi) as Pi’s round 1 message to Adv.
For each semi-honest corrupt party Pi ∈ ASh, Sim does the following:
1. Sample randomness rDistSetup

i and rKeyGeni to be used by the TMFHE.DistSetup
and TMFHE.KeyGen algorithms, respectively.

2. Run ExtGen(1λ) to compute (crsi, τi, ξi).

3. Give (rDistSetup
i , rKeyGeni , crsi) as Pi’s round 1 randomness (note that this

forces Pi to output crsi as its CRS, as the CRS is uniform).
Sim then receives round 1 messages from Adv on behalf of every party in the
sets AMal and ASh. Let Scrs denote the set of honest parties, semi-honest
parties, and fail-corrupt parties that sent a message in round 1.

– Round 2: For every fail-corrupt party that Adv wishes to abort in this
round, Sim instructs the corresponding party. Then, Sim parses the message
(if one was sent) from party Pj as (paramsj , pkj , crsj). Let S1 ⊆ [N ] be the
set of parties that sent a message in round 1. It truncates each paramsj to
the appropriate size for |S1| parties and sets params as the concatenation of
the truncated paramsj ’s for all j ∈ S1. Let PK denote {pkj}j∈S1 . Let CRS
denote {crsj}j∈S1 . Let A′ be the access structure induced by restricting A
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to the parties in S1. Let S2
hon be the set of honest and fail-corrupt parties

that send a message in round 2. Let T = {τj}j∈Scrs
. Let E = {ξj}j∈Scrs

. Let
S1
corr be the set of corrupted (malicious or semi-honest) parties that sent a

message in round 1. Sim does the following:
1. Run Sim1(params,PK,A′, S1

corr, S
2
hon) to obtain ({cti}i∈S2

hon
, state), where

Sim1 is the first algorithm of the TMFHE simulator.
2. For each honest and fail-corrupt party not yet instructed to abort, Pi,

run SimProve(CRS, T, yi) to compute πi where yi is the statement that
there exists some input x and randomness r such that
TMFHE.Encrypt(params,PK,A′, x; r) = cti.

3. Give (cti, πi) as Pi’s round 2 message to Adv for i ∈ S2
hon.

Sim then receives round 2 messages from Adv on behalf of every party in the
sets AMal and ASh.

– Query to Ideal Functionality:
1. Parse the round 2 message (if one was sent) from Pj as (ctj , πj) and

check that
NIZK.Verify(CRS, yj , πj) = 1. Let S2 ⊆ S1 be the set of parties that sent
a round 2 message that passed verification. For semi-honest parties Pj

in S2, Sim receives the input xj used by Adv and sends it to the trusted
party. For the fail-corrupt and malicious parties that already aborted,
Sim sends 0λ to the trusted party. For malicious parties Pj in S2, Sim
runs Ext(CRS, E, yj , πj) to extract a witness (xj , rj) used by Adv and
sends xj to the trusted party as Pj ’s input.

2. Sim receives the output b from the trusted party.
– Round 3: For every fail-corrupt party that Adv wishes to abort in this

round, Sim instructs the corresponding party. Let CT = {ctj}j∈S2 . Let C′

be the circuit induced by hardcoding the inputs to C corresponding to parties
not in S2 as 0λ. Let S2

corr be the set of corrupted parties that sent a round
2 message that passed verification. Let S3

hon be the set of honest and fail-
corrupt parties that have not yet been told to abort in round 3 by Adv. Sim
does the following
1. Run Sim2(state, b, ĉt, S

1
corr, S

2
hon, {(xi, ri)}i∈S2

corr
) to obtain {pj}j∈S2

hon
, where

Sim2 is the second algorithm of the modified TMFHE simulator that uses
the (xi, ri)’s of the corrupted parties round 2 messages to simulate and ĉt
is the evaluated ciphertext obtained by evaluating C′ on the ciphertexts
in CT .

2. For j ∈ S3
hon, run SimProve(CRS, T, zj) to compute π′j where zj is the

statement that there exists some randomness r, r′ such that
TMFHE.KeyGen(1λ; r) = (pkj , sk) and TMFHE.PartDec(j, sk, ĉt; r′) =
pj .

3. For j ∈ S3
hon, give (pj , π

′
j) as Pj ’s round 3 message to Adv.

– Output to Honest Parties: Sim tells the trusted party to send b to all
honest parties.

Security with respect to this simulator follows from the properties of the
simulation-extractable multi-string NIZK and the security of the underlying
TMFHE scheme with respect to Sim1, Sim2.
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F Proofs of Soundness and Witness Indistinguishability
for Multi-String NIWI (Section 7.2)

Soundness. Consider an adversaryA and a challenger Ch. We now prove compu-
tational soundness of the protocol above. We do so via a pair of computationally
indistinguishable hybrids where the first hybrid corresponds to the real sound-
ness experiment and in the last hybrid, we show that the adversary’s advantage
is negligible thus completing the proof.

– Hyb0 : This hybrid corresponds to the honest soundness experiment.
• First, the adversary A declares a set S ⊂ [n] of size (⌊n/2⌋+ 1).
• For each i ∈ S, Ch generates a string crsi as follows.
∗ Compute (pki, ski)← PKE.Setup(1λ).
∗ Compute Ki ← H.Setup(1λ, 0ℓ).
∗ Set crsi = (Ki, pki).

• On input {crsi}i∈S , adversary computes crsj for each j /∈ S.
• Finally, A outputs the remaining part of the CRS {crsj}j /∈S together
with the statement x∗ and proof ({a∗i , e

∗
i , z
∗
i }i∈[n]).

• The adversary wins if x∗ /∈ L and the proof verifies.
– Hyb1 : This hybrid is the same as the previous hybrid except that for each

i ∈ S, Ki is generated as follows. Ki ← H.Setup(1λ, R∗i ) where the relation
R∗i consists of tuples of the form ((x∗, a∗i ), y

∗
i ) where y

∗
i is as follows: Consider

function fbad,λ,m,{ski}i∈S
that takes as input (x∗, a∗i ) and computes the string

ebad,i such that there exists zbad,i and (a∗i , ebad,i, zbad,i) verifies according to
the Sigma protocol. y∗i = (ebad,i). Recall that if x

∗ /∈ L, then there exists at
most one such string ebad,i for any a∗i .

We now complete the proof of soundness with the following claims.

Lemma 10. Assuming the statistical indistinguishability of hash keys property
of the correlation intractable hash function, Hyb0 is computationally indistin-
guishable from Hyb1.

Proof. The only difference between the two hybrids is that for each i ∈ S,
Ki is generated differently. It is generated as H.Setup(1λ, 0ℓ) in Hyb0, whereas
it is generated as H.Setup(1λ, fbad,λ,m,{ski}i∈S

) in Hyb1. From the statistical
indistinguishability of hash keys property of the correlation intractable hash
function, the two hybrids are statistically indistinguishable and this proves the
claim.

Lemma 11. Assuming the computational correlation intractable property of the
hash function, for any polynomial time adversary A, Pr[A wins in Hyb1] ≤
negl(λ).

Proof. This claim is true due to the computational correlation intractable prop-
erty of the hash function H. If the adversary breaks soundness then with non-
negligible probability, by the soundness property of the underlying Sigma proto-
col, it must hold that fbad,λ,m,{ski}i∈S

(x∗, ai) = e∗i for each i ∈ S where e∗i is the
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message output by A as the second round message of the Σ protocol. Therefore,
we can build a reduction that uses the adversary A to compute y∗i = e∗i for each
i ∈ S such that ((x∗, a∗i ), y

∗
i ) ∈ R∗i , thus breaking the correlation intractable

property of the hash function H, which is a contradiction.

This completes the proof.

Witness Indistinguishability. Let A denote the adversary and Ch denote the
challenger. Let x be the challenge instance of length λ and w0 and w1 be the
corresponding witness. We prove witness indistinguishability via a sequence of
computationally indistinguishable hybrids where the first hybrid corresponds to
the witness w0 being used and the last hybrid correspond to witness w1 being
used.

– Hyb0 : This hybrid is described as follows:
1. A declares a set S of size ⌊n/2⌋+ 1.
2. Ch generates crsi for i ∈ S as follows.
• Generate (pki, ski)← PKE.Setup(1λ).
• Generate Ki ← H.Setup(1λ, 0ℓ).
• Set crsi = (Ki, pki).

3. On input crsi for i ∈ S, A computes crsi for i ∈ [n] \ S. Set CRS =
(crs1, ..., crsn)

4. Then, the challenger Ch uses wb to generate proof honestly (x, a1, ..., an,
, e1, ...., en, z1, ..., zn).

– Hybj for each (j ∈ [n]) : This hybrid is the same as Hybj−1 except that now,
for index i = j, the tuple (ai, ei, zi) in the proof is generated using witness
w1. Note that Hybn corresponds to the experiment where the challenger runs
the honest prover algorithm using witness w1.

We now complete the proof by arguing that every pair of hybrids are com-
putationally indistinguishable.

Lemma 12. For all j ∈ [n], Hybj is computationally indistinguishable from
Hybj−1 assuming the witness indistinguishability property of Blum’s Sigma pro-
tocol.

Proof. The only difference between the two hybrids is in how the tuple (aj , ej, zj)
is generated in the proof. In Hybj−1, it is generated using witness w0 whereas in
Hybj , it is generated using witness w1. Before proceeding to the proof, we first set
up some notation. Recall from the description of the Sigma protocol that we in
fact have m parallel repetitions of Blum’s protocol. Therefore, let’s denote aj =
(aj,1, . . . , aj,m), ej = (ej,1, . . . , ej,m), zj = (zj,1, . . . , zj,m). We now prove this
lemma via a sequence of computationally indistinguishable sub-hybrids below
where Sub.Hyb0 corresponds to Hybj−1 and Sub.Hybm corresponds to Hybj .

– Sub.Hyb0 corresponds to Hybj−1.
– Sub.Hybk for k ∈ [m]: Is identical to the previous sub-hybrid Sub.Hybk−1

except that the tuple (aj,k, ej,k, zj,k) is now computed using witness w1.

68



From the witness indistinguishability property of the underlying Blum’s Sigma
protocol, it is easy to observe that Sub.Hybk is indistinguishable from Sub.Hybk−1
for all k ∈ [m]. Thus, this completes the proof.

G Proofs of Soundness, Zero-Knowledge, and
Simulation-Extractability for Multi-String NIZK
(Section 7.3)

Soundness. Consider an adversary A that breaks the soundness property - that
is,A outputs a statement x /∈ L and a proof (π, ct) such that Verify(CRS, x, (π, ct)) =
1 with non-negligible probability. First, observe that from the soundness of the
underlying multi-string NIWI argument system, since the proof verifies success-
fully, the statement y = (x, ct, r1, . . . , rn) ∈ L1. Hence, one of the two statements
in the relation R1 must be true. However, since at least (n2 +1) of the strings ri
were chosen uniformly at random by the Challenger, the probability that any of
them would be the output of the pseudorandom generator is negligible. Thus, the
probability that the second statement in relation R1 is true is negligible. There-
fore, the first statement in R1 must be true which implies that x ∈ L which is a
contradiction. This proves that the multi-string NIZK system is sound.

Zero Knowledge We now prove the zero knowledge property for our construction.
The description of the simulator Sim is given below.

1. Setup(1λ, 1n) : For each honest party, the simulator does the following:
– Compute crs′ ← MSNIWI.Setup(1λ, 1n).
– Pick a string s of length λ uniformly at random and compute r = G(s).
– Compute (pk, sk)← PKE.Setup(1λ).
– Output crs = (crs′, r, pk).

2. Prove(CRS, x) : The simulator’s prove algorithm takes as input CRS =
(crs1, ..., crsn) where each crsi = (crs′i, ri) and does the following:
– Denote set S = {si} of size at least (n2 + 1) where for each i ∈ S,

G(si) = ri. These are the PRG seeds chosen by the simulator in the
setup phase on behalf of the honest parties.

– Compute ct = (ct1, . . . , ctn) where for each i ∈ S, cti = PKE.Enc(pki, 0; rwi)
and for each i 6∈ S, cti = PKE.Enc(pki, wi; rwi) where wi is picked uni-
formly at at random.

– Compute π ← MSNIWI.Prove(CRS′ = (crs′1, . . . , crs
′
n), y = (x, ct, r1, . . . , rn), w

′)
for the statement y ∈ L1 using witness w′ = (⊥, {si}i∈S) for the trap-
door statement.

– Output (x, π, ct).

We now prove that the real and ideal worlds are computationally indistin-
guishable via a sequence of hybrids. Consider a simulator SimHyb. The first
hybrid Hyb0 corresponds to the real world where SimHyb behaves as an honest
prover who has both (x,w) in its interaction with the adversary and the last
hybrid corresponds to the ideal world where SimHyb behaves as the simulator
Sim who has access only to the statement x in its interaction with the adversary.
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– Hyb0 : This hybrid corresponds to the real world where the adversary inter-
acts with an honest prover.

– Hyb1: In this hybrid, in the setup phase, on behalf of each honest party, the
simulator SimHyb picks r as done in the ideal world as follows: pick a string
s of length λ uniformly at random and compute r = G(s).

– Hyb2: In this hybrid, the simulator SimHyb computes the proof using the
trapdoor statement of the multi-string NIWI by relying on the knowledge of
the pre-images to the pseudorandom generator {si}i∈S where S denotes the
set of honest parties. This is identical to how the proof is computed in the
ideal world.

– Hyb3: In this hybrid, SimHyb computes ct = (ct1, . . . , ctn) where for each
i ∈ S, cti = PKE.Enc(pki, 0; rwi).

– Hyb4: In this hybrid, SimHyb computes ct = (ct1, . . . , ctn) where for each
i ∈ [n]/S, cti = PKE.Enc(pki, wi; rwi) where wi is picked uniformly at at
random and not as secret shares of the witness w. This hybrid is identical
to the ideal world.

We now prove that every pair of consecutive hybrids is computationally in-
distinguishable and this completes the proof of zero knowledge.

Lemma 13. Assuming the security of the pseudorandom generator G, Hyb0 is
computationally indistinguishable from Hyb1.

Proof. The only difference between the two hybrids is that in Hyb0, the values r
in the CRS are generated uniformly at random while in Hyb1, they are generated
as output of the pseudorandom generator G. Thus, if there exists an adversary A
that can distinguish these two hybrids with non-negligible probability, we can use
A to break the security of the pseudorandom generator which is a contradiction.

Lemma 14. Assuming the witness indistinguishability property of the multi-
string NIWI argument system, Hyb1 is computationally indistinguishable from
Hyb2.

Proof. The only difference between the two hybrids is that in Hyb1, the proof π
is generated using the first statement in the multi-string NIWI while in Hyb2,
π is generated using the trapdoor statement that requires knowledge of the
pseudorandom generator pre-images. Thus, if there exists an adversary A that
can distinguish these two hybrids with non-negligible probability, we can use
A to break the witness indistinguishability property of the multi-string NIWI
which is a contradiction.

Lemma 15. Assuming the semantic security of the public key encryption scheme,
Hyb2 is computationally indistinguishable from Hyb3.

Proof. The only difference between the two hybrids is that for each i ∈ S, in
Hyb2, the values cti are computed as encryptions of the shares of the witness
w while in Hyb3, they are computed as encryption of 0. Observe that only the

70



public key is given to the adversary. Thus, if there exists an adversary A that
can distinguish these two hybrids with non-negligible probability, we can use A
to break the semantic security of the encryption scheme which is a contradiction.

Lemma 16. Assuming the security of the secret sharing scheme, Hyb3 is com-
putationally indistinguishable from Hyb4.

Proof. The only difference between the two hybrids is that for each i /∈ S,
cti = PKE.Enc(pki, wi; rwi) where in Hyb3, wi is a secret share of the witness w
while in Hyb4, wi is picked uniformly at random. Since the size of the set S is at
least (n2 +1), the number of these wi values are lesser than the threshold for the
secret sharing scheme. Thus, if there exists an adversary A that can distinguish
these two hybrids with non-negligible probability, we can use A to break the
security of the secret sharing scheme which is a contradiction.

Simulation Extractability We now prove that the above scheme is simulation
extractable - that is, there exists an extractor Ext that, on input a successful proof
produced by the adversary A for any statement x can extract a corresponding
witness w for x ∈ L, even when A has access to an oracle that produces simulated
proofs (as shown in the zero knowledge proof). We first describe the extractor
Ext below before proving the above property.

1. ExtGen(1λ, 1n) : For each honest party, the extractor’s setup algorithm gen-
erates the CRS and the associated trapdoors as done by the simulator in the
ideal world. That is, it does the following:

– Compute crs′ ← MSNIWI.Setup(1λ, 1n).
– Pick a string s of length λ uniformly at random and compute r = G(s).
– Compute (pk, sk)← PKE.Setup(1λ).
– Output crs = (crs′, r, pk).

2. Ext(x, (π, ct)): On input a statement x and a proof (π, ct) from the adversary
A, the extractor does the following:

– Denote set S = {si} of size at least (n2 + 1) where for each i ∈ S, Ext
knows ski generated as part of the setup phase.

– For each i ∈ S, compute wi = PKE.Dec(cti, ski).
– Compute and output w = Recon({wi}i∈S).

We now prove the simulation-extraction property by a series of hybrid ar-
guments. For ease of notation, lets denote the output of the hybrid to be 1 if
in that hybrid, with non-negligible probability, the extractor algorithm Ext fails
to output a valid witness w but the adversary’s proof verifies successfully. Very
briefly, the proof follows the same structure as in the case of the zero knowledge
argument - we first go from the simulated world to the real world where the ora-
cle provides honestly generated proofs. We argue that the adversary’s advantage
doesn’t change in this transition. Finally, we argue that in the real world, the
adversary’s advantage is negligible by the same argument as in the soundness of
the protocol.
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– Hyb0: This corresponds to the ideal world experiment where the adversary
has access to an oracle that produces simulated proofs.

– Hyb1: In this hybrid, the simulator computes ct = (ct1, . . . , ctn) where for
each i ∈ [n]/S, cti = PKE.Enc(pki, wi; rwi) where wi are secret shares of the
witness w.

– Hyb2: In this hybrid, the simulator computes ct = (ct1, . . . , ctn) where for
each i ∈ S, cti = PKE.Enc(pki, wi; rwi).

– Hyb3: In this hybrid, the simulator SimHyb computes the NIWI using the
witness w as done by the honest prover algorithm.

– Hyb4: In this hybrid, in the setup phase, on behalf of each honest party,
algorithm ExtGen picks r uniformly at random as done in the real world.

Lemma 17. Assuming the security of the secret sharing scheme, |Pr[Hyb0 =
1]− Pr[Hyb1 = 1]| ≤ negl(λ).

Proof. This proof is identical to the proof of Lemma 16 in the zero knowledge
proof. In particular, if the adversary’s advantage changes between the two hy-
brids, we can use that to break the security of the secret sharing scheme.

Lemma 18. Assuming the CCA security of the encryption scheme, |Pr[Hyb1 =
1]− Pr[Hyb2 = 1]| ≤ negl(λ).

Proof. This proof is somewhat similar to the proof of Lemma 15 in the zero
knowledge proof. In particular, if the adversary’s advantage changes between
the two hybrids, we can use that to break the CCA security of the public key
encryption scheme. The only difference from that proof here is that in the reduc-
tion to the CCA secure encryption scheme, we now need access to the decryption
oracle to run the extractor algorithm Ext which was not needed in the proof of
Lemma 15.

Lemma 19. Assuming the witness indistinguishability property of the multi-
string NIWI system, |Pr[Hyb2 = 1]− Pr[Hyb3 = 1]| ≤ negl(λ).

Proof. This proof is identical to the proof of Lemma 14 in the zero knowledge
proof. In particular, if the adversary’s advantage changes between the two hy-
brids, we can use that to break the witness indistinguishability property of the
multi-string NIWI argument system.

Lemma 20. Assuming the security of the pseudorandom generator, |Pr[Hyb3 =
1]− Pr[Hyb4 = 1]| ≤ negl(λ).

Proof. This proof is identical to the proof of Lemma 13 in the zero knowledge
proof. In particular, if the adversary’s advantage changes between the two hy-
brids, we can use that to break the security of the pseudorandom generator.

Finally, we will argue that the probability that Hyb4 outputs 1 is negligible
and this completes the proof.
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Lemma 21. Assuming the soundness of the multi-string NIWI argument, cor-
rectness of the CCA secure encryption scheme and correctness of the secret shar-
ing scheme, Pr[Hyb4 = 1] ≤ negl(λ).

Proof. As in the proof of soundness, we can observe from the soundness of the
multi-string NIWI argument system that if the adversary produces a statement
x and a proof (π, ct) that verifies successfully, then it must be the case that
x ∈ L. Further, (x,w) ∈ R where R is the NP relation for language L and
ct = (ct1, . . . , ctn) where for each i ∈ [n], cti = PKE.Enc(wi, pki) and {wi}i∈[n]
is a secret sharing of the witness w. Therefore, by the correctness of the recon-
struction algorithm of the secret sharing scheme and the decryption algorithm of
the encryption scheme, the extractor outputs this witness w with overwhelming
probability. Thus, the probability that the adversary A outputs a statement x
and a proof (π, ct) that successfully verifies but the extractor doesn’t output a
corresponding witness w for the statement x ∈ L is negligible and this completes
the proof.

H Multi-Key FHE Construction in [18]

Since we frequently refer to the multi-key FHE construction in [18], we give the
construction here. This section is taken verbatim from [18].

A “Dual” LWE-Based Multi-Key FHE with Distributed Setup. For our protocol,
we use an adaption of the “dual” of the multi-key FHE scheme from [28,64].
Just like the “primal” version, our scheme uses the GSW FHE scheme [42], and
its security is based on the hardness of LWE.

Recall that the LWE problem is parametrized by integers n,m, q (with m >
n log q) and a distribution χ over Z that produces whp integers much smaller
than q. The LWE assumption says that given a random matrix A ∈ Zn×m

q , the
distribution sA + e with random s ∈ Zn

q and e ← χm is indistinguishable from
uniform in Zm

q .
For the “dual” GSW scheme below, we use parameters n < m < w < q with

m > n log q and w > m log q, and two error distributions χ, χ′ with χ′ producing
much larger errors than χ (but still much smaller than q). Specifically, consider
the distribution

χ′′ = {a← {0, 1}m, b← χm, c← χ′, output c− 〈a, b〉}.

We need the condition that the statistical distance between χ′ and χ′′ is negli-
gible (in the security parameter n). This condition holds, for example, if χ, χ′ are
discrete Gaussian distributions around zero with parameters p, p′, respectively,
such that p′/p is super-polynomial (in n).

Distributed Setup paramsi ← MFHE.DistSetup(1κ, 1N , i): Set the parameters
q = poly(N)nω(1) (as needed for FHE correctness), m > (Nn+1) log q+2κ,

and w = m log q.10 Sample and output a random matrix Ai ∈ Z
(m−1)×n
q .

10 Parameters q, n, w are global and fixed once at the onset of the protocol.
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Key Generation (pki, ski)← MFHE.KeyGen(params, i): Recall that params =
{paramsi}i∈[N ] = {Ai}i∈[N ]. The public key of party i is a sequence of vectors
pki = {bi,j}j∈[N ] to be formally defined below. The corresponding secret key
is a low-norm vector ti ∈ Zm

q .

We will define bi,j , ti such that for Bi,j =

(
Aj

−bi,j

)
, it holds that tiBi,j =

bi,i − bi,j (modq) for all j.
In more detail, sample a random binary vector si ← {0, 1}

m−1, we set bi,j =
siAj mod q. Denoting ti = (si, 1), we indeed have tiBi,j = bi,i−bi,j ( mod q).

Encryption C ← MFHE.Encrypt(pki, µ): To encrypt a bit µ under the public-
key pki, choose a random matrix R ∈ Zn×w

q and a low-norm error matrix
E ∈ Zm×w

q , and set

C := Bi,iR+ E + µG mod q,

whereG is a fixedm-by-w “gadget matrix” (whose structure is not important
for us here). Furthermore, as in [28,64], encrypt all bits of R in a similar
manner. For our protocol, we use more error for the last row of the error
matrix E than for the top m − 1 rows. Namely, we choose Ê ← χ(m−1)×w

and e′ ← χ′w and set E =

(
Ê
e′

)
.

Decryption µ := MFHE.Dec((sk1, . . . , skN ), C): The invariant satisfied by ci-
phertexts in the scheme, similarly to GSW, is that an encryption of a bit µ
relative to secret key t is a matrix C that satisfies

tC = µ · tG+ e (modq)

for a low-norm error vector e, where G is the same “gadget matrix”. The
vector t is the concatenation of all ski = ti for all parties i participating in
the evaluation.
This invariant holds for freshly encrypted ciphertexts since tiBi,i = 0 (mod
q), and so ti(Bi,iR + E + µG) = µ · tiG + tiE (modq), where e = tiE has
low norm (as both ti and E have low norm).
To decrypt, the secret-key holders compute u = t ·C mod q, outputting 1 if
the result is closer to tG or 0 if the result is closer to 0.

Evaluation C := MFHE.Eval(params, C, (c1, . . . , cℓ)): Since ciphertexts satisfy
the same invariant as in the original GSW scheme, then the homomorphic
operations in GSW work just as well for this “dual” variant. Similarly the
ciphertext-extension technique from [28,64] works also for this variant ex-
actly as it does for the “primal” scheme (see below). Hence we get a multi-key
FHE scheme.

The ciphertext-expansion procedure. The “gadget matrix” G used for these
schemes has the property that there exists a low-norm vector u such that Gu =
(0, 0, . . . , 0, 1). Therefore, for every secret key t = (s|1), we have tGu = 1 (mod
q). It follows that if C is an encryption of µ wrt secret key t = (s|1), then the
vector v = Cu satisfies

〈t, v〉 = tCu = (µtG+ e)u = µtGu + 〈e, u〉 = µ+ ǫ (modq)
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where ǫ is a small integer. In other words, given an encryption of µ wrt t we
can construct a vector v such that 〈t, v〉 ≈ µ (modq). Let A1, A2 be public
parameters for two users with secret keys t1 = (s1|1), t2 = (s2|1), and recall that

we denote bi,j = siAj and Bi,i =

(
Ai

−siAi

)
=

(
Ai

−bi,i

)
.

Let C = B1,1R + E + µG be fresh encryption of µ w.r.t. B1,1, and suppose
that we also have an encryption under t1 of the matrix R. We note that given
any vector δ, we can apply homomorphic operations to the encryption of R
to get an encryption of the entries of the vector ρ = ρ(δ) = δR. Then, using
the technique above, we can compute for every entry ρi a vector xi such that
〈t1, xi〉 ≈ ρi ( mod q). Concatenating all these vectors, we get a matrixX = X(δ)
such that t1X ≈ ρ = δR (modq).

We consider the matrix C′ =

(
C X
0 C

)
, where X = X(δ) for a δ to be deter-

mined later. We claim that for an appropriate δ this is an encryption of the same
plaintext µ under the concatenated secret key t′ = (t1|t2). To see this, notice
that

t2C = (s1|1)

((
A1

−s1A1

)
R+ E + µG

)
≈ (b2,1 − b1,1)R + µt2G (modq),

and therefore setting δ = b1,1 − b2,1, which is value that can be computed from
pk1, pk2 we get

t′C′ = (t1C|t1X + t2C) ≈ (µt1G|(b1,1 − b2,1)R+ (b2,1 − b1,1)R+ µt2G)

= µ(t1G|t2G) = µ(t1|t2)

(
G

G

)
,

as needed. As in the schemes from [28,64], this technique can be generalized to
extend the ciphertext C into an encryption of the same plaintext µ under the
concatenation of any number of keys.
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