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Abstract

Witness pseudorandom functions (witness PRFs), introduced by Zhandry [Zha16], was
defined for an NP language L and generate a pseudorandom value for any instance x. The
same pseudorandom value can be obtained efficiently using a valid witness w for x ∈ L.
Zhandry built a subset-sum encoding scheme from multilinear maps and then converted a
relation circuit corresponding to an NP language L to a subset-sum instance to achieve a
witness PRF for L. The main goal in developing witness PRF in [Zha16] is to avoid ob-
fuscation from various constructions of cryptographic primitives. Reliance on cryptographic
tools built from multilinear maps may be perilous as existing multilinear maps are still heavy
tools to use and suffering from many non-trivial attacks.
In this work, we give constructions of the following cryptographic primitives without using
multilinear maps and instantiating obfuscation from randomized encoding:

– We construct witness PRFs using a puncturable pseudorandom function and sub-
exponentially secure randomized encoding scheme in common reference string (CRS)
model. A sub-exponentially secure randomized encoding scheme in CRS model can be
achieved from a sub-exponentially secure public key functional encryption scheme and
learning with error assumptions with sub-exponential hardness.

– We turn our witness PRF into a multi-relation witness PRF where one can use the
scheme with a class of relations related to an NP language.

– Furthermore, we construct an offline witness encryption scheme using any extractable
witness PRF. The offline witness encryption scheme of Abusalah et al. [AFP16] was
built from a plain public-key encryption, a statistical simulation-sound non-interactive
zero knowledge (SSS-NIZK) proof system and obfuscation. In their scheme, a(n) SSS-
NIZK proof is needed for the encryption whose efficiency depends on the underlying
public key encryption. We replace SSS-NIZK by extractable witness PRF and con-
struct an offline witness encryption scheme. More precisely, our scheme is based on
a public-key encryption, a witness PRF and employs a sub-exponentially secure ran-
domized encoding scheme in CRS model instantiating obfuscation. Our offline witness
encryption can be turned into an offline functional witness encryption scheme where
decryption releases a function of a message and witness as output.

Keywords: Witness PRF, Offline witness encryption, Randomized encoding.

1 Introduction

Witness PRF. Witness pseudorandom function (witness PRF) is a relatively new crypto-
graphic primitive introduced by Zhandry [Zha16] to avoid obfuscation in various cryptographic
applications like multiparty non-interactive key exchange without trusted setup, poly-many
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hardcore bits, re-usable witness encryption, Rudich secret sharing for monotone NP language
and fully distributed broadcast encryption that do not need to hide a programme P completely.
For instance, the Boneh-Zhandry [BZ17] protocol of multiparty non-interactive key exchange
without a trusted setup needs a program P to be obfuscated where P computes a pseudorandom
function using a secret key on its inputs. Zhandry has shown how obfuscation can be avoided
by introducing witness PRF.

A witness PRF for an NP language L enables one to compute a pseudorandom function
f on a statement x without a secret key if (s)he has a valid witness for x ∈ L where f(x)
is indistinguishable from a random element if x 6∈ L. More specifically, witness PRF first
generates a pair of keys (fk, ek) based on a relation circuit R corresponding to an NP language
L where fk is the function secret key and ek is the function public key. A user with fk computes
a pseudorandom value F(fk, x) for any input x while a witness holder can obtain the same
pseudorandom value using Eval(ek, x, w) if w is a valid witness for x ∈ L.

Witness PRF is closely related to constrained PRFs and smooth projective hash functions
(SPHFs). In constrained PRF, we can generate multiple keys for different circuits. In witness
PRF, we generate only one key ek for a given relation circuit R in the setup phase. Existing
constructions of SPHFs cannot handle arbitrary NP languages while witness PRFs support
any NP language. There is another variant of witness PRF which is extractable in nature.
In extractable witness PRF, existence of an adversary capable of distinguishing F(fk, x) from
a random value implies existence of a polynomial time extractor which produces a witness for
the instance x if x ∈ L. There is another notion related to witness PRF which is flexible for a
class of relations with a specified size bound and is called multi-relation witness PRF. Here we
generate different keys for each relation and the security is based on the indistinguishability of
F(fk, x) from a random element if x has no valid witness relative to any of the queried relations.

Applications of witness PRF. There are many efficient tools that can be built from
witness PRFs and extractable witness PRFs. We mention the schemes where Zhandry uses
witness PRFs fending off obfuscation [Zha16]:

• Boneh and Zhandry [BZ17] designed the first multi-party key exchange (MIKE) protocol
(for n-users with n > 3) using obfuscation that does not require a trusted party or setup.
Obfuscation can be replaced with witness PRFs to obtain such an MIKE.

• Bellare et al. [BST14] constructed a hardcore function of arbitrary output size for any
one-way function using differing inputs obfuscation (or extractable obfuscation). Witness
PRFs suffices here.

• It has been seen that obfuscation implies witness encryption [GGSW13]. Zhandry in-
troduced and constructed re-usable witness encryption from witness PRFs. Re-usable
witness encryption has a special feature of producing very short ciphertexts with size
proportional to the security parameter and independent of the size of the relation. This
re-usable witness encryption can be used in the transformation of [GGSW13] to get an
attribute-based encryption with similar short ciphertexts.

• Witness PRFs also replace obfuscation in secret sharing [KNY17] and fully distributed
broadcast encryption scheme [Zha16].

Constructing witness PRF of [Zha16]. The only existing construction of witness PRF
[Zha16] is based on subset-sum encoding scheme. A subset-sum encoding scheme corresponding
to a (multi-)set of integers S is capable of encoding any integer secretly such that a public
evaluation function on input a subset T of S can compute an encoding of the integer t =
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∑
i∈T i. In [Zha16], a new notion of subset-sum encoding is introduced from multilinear maps

[GGH13, CLT13] and the security is based on the fact that if there does not exist a subset
of S for which the target sum t is achieved then the encoding t̂ is indistinguishable from a
random element. The hardness of this problem gives rise to a new complexity assumption
(based on multilinear maps) which was named as the multilinear subset-sum Diffie-Hellman
assumption. Witness PRF is instantiated from the subset-sum encoding. Consequently, it
is based on multilinear maps and the security depends upon multilinear subset-sum Diffie-
Hellman assumption. We emphasize that the pseudorandom value of the witness PRF cannot
be immediately computed for any instance x, rather a reduction procedure is followed where
an instance x of an NP language L is converted into a subset-sum instance. The reduced
subset-sum instance depends on L and the size of instance x.

All currently known constructions of multilinear maps [GGH13, CLT13] are only approxi-
mations to the ideal multilinear maps and the noise increases with the number of multiplications
and pairing operations. The multilinearity level of witness PRF increases with the number of
gates used in the relation circuit corresponding to the NP language. Existing witness PRF
[Zha16] is approximate in the sense that the underlying subset-sum encoding is based on mul-
tilinear maps and thereby approximate and noisy. Furthermore, complications arise when the
size of the relation circuit grows.

Zhandry showed the hardness of the multilinear subset-sum Diffie-Hellman assumption in
the generic multilinear map model [Zha16]. The recent line of attacks on multilinear maps
[CLT14a, CHL+14, BWZ14b, GHMS14b] breaks many useful assumptions and hence threats
to the cryptosystems where security is based on complexity assumptions related to multilinear
maps. Therefore, one may not want to rely on cryptographic tools that are instantiated from
multilinear maps.

Witness encryption. Witness encryption (WE) was introduced by Garg et al. [GGSW13].
There are many applications of WE in secret sharing, identity based encryption, attribute-based
encryption, asymmetric password based encryption, differing inputs obfuscation ([GGSW13,
GKP+13b, BH15, BCP14]). In a plain public-key encryption (PKE) scheme, we encrypt data
using a public key and decryption is possible if the corresponding secret key is known. WE
enables us to encrypt a message with respect to an instance x of an NP language L. Only a
witness holder can recover the original message from the ciphertext if he has a valid witness
w for x ∈ L. Functional witness encryption was introduced by Boyle et al. [BCP14] where a
decrypter can only learn a function of the message if a valid witness for the instance is known.
The equivalence of functional WE and differing inputs obfuscation was also observed in [BCP14].

WE with an additional setup phase is called offline witness encryption (OWE) [AFP16]. In
OWE, the heavy-duty part is done by a trusted third party in an offline phase making encryp-
tion more efficient than the existing WE constructions. The only OWE construction [AFP16]
uses a standard public key encryption and a statistically simulation-sound non-interactive zero
knowledge (SSS-NIZK) proof system to produce a ciphertext and an obfuscated circuit created
in the setup phase is used for decryption.

Mostly, WE have been constructed using either multilinear maps or using obfuscation di-
rectly. Impracticality or computationally expensive nature of multilinear maps and obfuscation
have made all these WE schemes unusable in practical devices.

Our contribution and technical overview. In this work, we construct a witness PRF
without using multilinear maps and an offline witness encryption without SSS-NIZK. Our con-
struction of witness PRFs is inspired by the puncturable programming technique introduced by
Sahai and Waters [SW14]. They used indistinguishability obfuscation (iO) with puncturable
pseudorandom function to built many interesting cryptographic tools. The job of iO is to make
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a class of circuits {Cλ}λ∈N unintelligible in such a way that for any circuit C ∈ Cλ for some
λ ∈ N, we have iO(1λ, C)(x) = C(x). The security demands that given two equivalent circuits
(or Turing machines) C0, C1 ∈ Cλ, one cannot distinguish between iO(1λ, C0) and iO(1λ, C1).
Instead of using iO directly, we look into recent developments on iO from functional encryp-
tion [AJ15, BV15, AJ15, BNPW16, KNT17, LPST16b] which is a relatively weaker primitive.
In our constructions of witness PRFs and offline witness encryption, we integrate the tech-
nique of getting iO from randomized encoding scheme in common reference string (CRS) model
[LPST16b].

We built our witness PRFs by coupling a puncturable pseudorandom function (pPRF) and a
sub-exponentially secure sub-linearly compact randomized encoding (RE) scheme in CRS model.
The functional secret key fk is a pPRF key K and the functional evaluation key ek consists of
−→crs = {crsi}ni=0 and a randomized encoding of an input less Turing machine Π[

−→
pk1, E, ε, α]

(defined in Remark 2, section 2) where the hardcoded elements are
−→
pk1 = {pkj}nj=1, a circuit

E, the null string ε and a randomly chosen bit-string α. The n + 1 pairs of common reference
string-encoding key (crsi, pki) for i = 0, 1, 2, . . . , n are generated in the setup phase of RE. Here
n denotes the total size of the instance-witness pair. The circuit E on taking input an instance-
witness (x,w) pair, verifies that w is a valid witness for the instance x and then outputs the
evaluation of pPRF with input x using the key K.

Our witness PRF computes the pseudorandom value corresponding to some x as the pPRF
evaluation of x using the functional secret key fk. A valid witness holder can recover the same

pseudorandom value using the fucntional evaluation key ek by computing G[Π̃[
−→
pk1, E, ε, α],−→crs](x,

w) where G is the special circuit (defined in Figure 6, section 2) that recursively computes the
evaluation phase of RE to achieve E(x,w).

A pPRF can be constructed from one-way functions [GGM86, BW13, BGI14] and a sub-
exponentially secure sub-linear compact RE scheme in CRS model can be instantiated from a
sub-exponentially secure weakly sub-linear compact public key functional encryption (PKFE)
scheme and assuming sub-exponential hardness of learning with error (LWE) assumption
[BNPW16, LPST16b]. We achieve the following result.

Theorem 1. (Informal) Assuming LWE with sub-exponential hardness and the existence of
sub-exponentially secure one-way functions, if there exists a weakly sub-linear compact public
key functional encryption (PKFE) scheme with sub-exponential security, then there exists a
secure witness PRF scheme.

We note the following advantages of our scheme over the witness PRF scheme of Zhandry
[Zha16]:

• Zhandry used subset-sum encoding to build witness PRF and subset-sum encoding is
constructed from multilinear maps. Our scheme is established from a puncturable pseu-
dorandom function and a randomized encoding scheme in CRS model which does not use
multilinear maps. Therefore our scheme is more reliable in light of the recent attacks
on multilinear maps. Security of our witness PRF is based on sub-exponentially secure
one-way functions, sub-exponential hardness of LWE assumption and sub-exponentially
secure PKFE. Note that PKFE are well studied and secure tools compared to existing
multilinear maps which are noisy, approximation to ideal multilinear maps and vulnerable
to many attacks.

• The security proof of the witness PRF of [Zha16] relies on a newly suggested multilinear
subset-sum Diffie-Hellman assumption which is instance dependent non-standard assump-
tion with hardness proved in the generic multilinear maps model. In contrast, we achieve
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security by showing indistinguishability between hybrid sequences. Our proof is instance
independent and does not rely on any such non-standard assumptions.

• The multilinearity level increases at least linearly with the number of gates used in the
relation circuit of the underlying NP language in the construction of [Zha16] and the
efficiency of their scheme also decreases with the size of the relation circuit. On the other
hand, our scheme uses a randomized encoding scheme that essentially executes decryption
procedure of a PKFE scheme for (n+1) times [LPST16b] where n denotes the total size of
the instance and witness. Our construction provides more efficient witness PRF evaluation
than the scheme of Zhandry.

As an application of witness PRF, we present an offline witness encryption (OWE) scheme
encouraged by the construction of Abusalah et al.[AFP16]. They used a standard public key
encryption (PKE) scheme to encrypt a message m together with an instance x of an NP lan-
guage L twice with two different randomness to produce two different ciphertexts c1 and c2.
Besides, they generate a(n) SSS-NIZK proof π of the statement that c1, c2 encrypt the same
message-instance pair. The resulting ciphertext of their OWE is (x, c1, c2, π). They have in-
stantiated the encryption of their OWE using an ElGamal encryption scheme for the PKE
and established a(n) SSS-NIZK proof π of the statement that “two ElGamal ciphertexts c1, c2

encrypt the same message” via Gorth-Sahai proofs (GS-proofs) [GS08]. Here we note that GS-
proofs are efficient non-interactive witness-indistinguishable proofs for some specific languages
involving pairing product equations, multi-scaler multiplication equations or quadratic equa-
tions over some groups. The ElGamal ciphertexts can be represented in a way to get a set
of pairing product equations that supports the above statement and a(n) SSS-NIZK proof can
be ensured using the GS-proofs for those equations. Therefore, for practical use of the OWE
scheme of [AFP16], we need to carefully choose the PKE scheme so that a(n) SSS-NIZK proof
can be achieved through the GS-proofs. If some other PKE scheme is used for more efficiency
or security then one may face problem in generating such a proof for the abovementioned state-
ment as there exists no efficient SSS-NIZK proof system for any general relation (according to
our knowledge).

We try to fix this limitation of the OWE scheme of [AFP16] by replacing SSS-NIZK with
any extractable witness PRF which can efficiently handle any relation. Our OWE is built with
a plain PKE scheme and a secure witness PRF for encryption. In the setup phase, we generate
two pairs of secret-public keys (SK1,PK1), (SK2,PK2) from the key generation algorithm of
the PKE and a pair of functional secret key, evaluation key (fk, ek) for the witness PRF which
corresponds to the NP statement that two given ciphertexts obtained from the PKE scheme
encrypt the same message. The public parameters for encryption consist of PK1,PK2 and ek.
Our OWE encryption first computes two ciphertexts c1, c2 encrypting the same instance-message
pair (x,m) under the two public keys PK1,PK2, then utilizing the evaluation key ek executes
the evaluation process of witness PRF to produce a pseudorandom string y for the statement
that c1, c2 encrypt the same message. The OWE ciphertext components for an NP language L
are c1, c2, x and y.

For decryption, we need to compute a circuit C in the setup phase of OWE. The circuit C
on input (c1, c2, x, y) and a witness w for x ∈ L works as follows:

– Use the functional secret key fk for the statement that c1, c2 encrypt the same message to
get a value y′ and check if y′ = y.

– Check whether w is a valid witness for the statement x.

– If both the checks pass, then decrypt c1 using SK1 and obtain (x′,m′).
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– Output m′ if x = x′.

As in the case of evaluation procedure of our witness PRF scheme, here also we pick the RE
scheme in CRS model of [LPST16b] to get a randomized encoding of an input less Turing

machine Π[
−→
pk1, C, ε, α] and use the special circuit G[Π̃[

−→
pk1, C, ε, α],−→crs] that corresponds to the

circuit C as the public parameter for decryption. The decryption algorithm of our OWE scheme
computes the circuit G on an input (c, w) to recover the original message m if w is a valid witness
for x ∈ L, where c = (c1, c2, x, y). In the OWE scheme of [AFP16], they managed decryption
with an obfuscated circuit and claimed that the decryption phase is less efficient than that of the
reusable WE scheme of [Zha16]. We employ the randomized encoding technique of [LPST16b]
to achieve an efficient decryption for our OWE scheme where the decryption time is polynomial
in the size of the circuit C and the total size of ciphertext and witness.

To prove our OWE scheme is secure, we need to consider the extractable security of the
underlying witness PRF scheme. Unfortunately, we do not know how to construct a polynomial
time extractor which can extract a witness using a challenge statement x∗, a witness PRF
value F(fk, x∗) and some auxiliary information. Extractable security requires that an adversary
cannot distinguish F(fk, x∗) from a random value unless a valid witness to the statement x∗

is known to him. In this application of witness PRF for OWE, we note that an adversary
does not have a witness for the statement “c1, c2 encrypt the same message” as the randomness
used at the time of encryption which is a part of the witness is computationally hidden in the
ciphertexts of the PKE. In this context, we note that the witness PRF of [Zha16] was assumed
to be extractable under the extracting subset-sum Diffie-Hellman assumption, rather fabricating
an extractor for the witness PRF. Assuming our witness PRF is extractable we arrive at the
following result.

Theorem 2. (Informal) Assuming existence of sub-exponentially secure one-way functions, a
secure public-key encryption (PKE), an extractable witness PRF and a sub-exponential simula-
tion secure randomized encoding (RE) scheme in CRS model for Turing machines, there exists
a secure offline witness encryption (OWE) scheme.

We can also transform our OWE into an offline functional witness encryption (OFWE)
[AFP16] where a decryption outputs a function of message and witness instead of only message.
The encryption algorithm of our OFWE takes a function f as an additional input and encrypts
the pair (x,m′) using the PKE scheme to produce two ciphertexts c1, c2 under two public keys
PK1,PK2 where m′ = (f,m). For decryption, we use the same circuit C except that we get
(x′,m′) by decrypting c1 using SK1 and then output f(m,w) if x = x′ and w is a valid witness for
x ∈ L. The security demands that an adversary should not distinguish between the encryptions
of (x, (f0,m0)) and (x, (f1,m1)) if f0(m0, w) = f1(m1, w) for all valid witness w for x ∈ L. Our
OFWE is secure under the same assumptions described in Theorem 2.

We further convert our single relation witness PRF scheme into a multi-relation witness
PRF. In multi-relation witness PRF (mwPRF), a size bound of the relation circuits supported
by the scheme is pre-specified depending on which we generate a secret functional key fk that
is used for every relation. We use a randomly chosen pPRF secret key for fk as in our single
relation scheme. The generation of evaluation key ekR corresponding to a relation R is similar
to that in our single relation witness PRF except the fact that the circuit E is hardcoded with
the relation R in the key generation phase. We achieve the following result.

Theorem 3. (Informal) Assuming LWE with sub-exponential hardness and the existence of
sub-exponentially secure one-way functions, if there exists a weakly sub-linear compact public
key functional encryption (PKFE) scheme with sub-exponential security, then there exists a
secure multi-relation witness PRF scheme.
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Our mwPRF inherits the same advantages as of our single relation witness PRF over the
scheme of [Zha16]. Additionally, the generation of evaluation key of [Zha16] needs to compute
a multilinear map with the multilinearity level equal to the size of the description of the cor-
responding relation R which makes evaluation key ekR computationally more expensive than
ours.

Related works. The concept of witness encryption was introduced by Garg et al. [GGSW13].
They gave two candidate constructions of witness encryption for NP-complete exact-cover prob-
lem. One is based on a multilinear group family and other uses a graded encoding system. The
security of their schemes depends on the decision multilinear no-exact-cover assumption and
the decision graded encoding no-exact-cover assumption.

In [GKP+13b], Goldwasser et al. have shown how to obtain extractable witness encryption
scheme using the construction of [GGSW13]. They developed attribute-based encryption (ABE)
schemes for any polynomial time Turing machines and Random Access Machines (RAM) em-
ploying an extractable witness encryption, a succinct argument of knowledge and an existentially
unforgeable signature as the ingredients. Additionally, they have constructed a (single-key and
succinct) functional encryption scheme coupling their ABE-scheme for Turing machines with a
fully homomorphic encryption scheme.

Boyel, Chung and Pass [BCP14] initiated the study of extractability obfuscation. They
constructed an extractability obfuscator for all non-uniform polynomial-time Turing machines.
A new notion of functional witness encryption was introduced where decryption gives a function
of a message when a valid witness for the instance is known to the recipient of the ciphertext. In
this work, it is shown that functional witness encryption is, in fact, equivalent to extractability
obfuscation.

Witness encryption with soundness security was introduced by Garg et al. [GGSW13].
Bellare and Hoang [BH15] found that the soundness security of witness encryption scheme does
not suffice for the security of the applications in [GGSW13]. The gap can be filled by the
new security notion called adaptive soundness security. In this security model, given a security
parameter λ, an adversary produces an instance x, a challenge pair of messages (m0,m1) and
a state St. After receiving a ciphertext of message mb from the challenger where b is chosen
randomly from {0, 1}, the adversary has to guess for b provided the given instance does not
belong to the corresponding language. In this work [BH15], Bellare and Hoang established a
way to achieve the adaptive soundness security of witness encryption from indistinguishability
obfuscator.

In [GGHW17], Garg et al. came up with implausibility results on extractable witness encryp-
tion with auxiliary input and general-purpose diO (differing-inputs obfuscation) by assuming
the existence of a special-purpose obfuscation. In particular, a specific circuit C∗ with special
auxiliary input aux∗ cannot be obfuscated in a way that hides some specific information. How-
ever, the existence of such a special-purpose obfuscation is a falsifiable assumption which they
did not able to show how to break for candidate obfuscation schemes.

Aritra and Hnada [AH14] constructed a witness encryption scheme based on multilinear
maps. They took the problem of existence of Hamilton cycle in a huge graph. The security
proof is based on a generic colored matrix model as defined in the work of candidate indistin-
guishability obfuscation [GGH+16].

One of the main limitations of [GGSW13] is that the candidate had no proof of security
(other than essentially assuming the scheme is secure). In [GLW14], Gentry, Lewko and Wa-
ters introduced positional witness encryption which provides a proof reduction of a witness
encryption scheme via a sequence of 2n hybrid experiments where n is witness length of the
NP-statement.
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Liu, Kakvi and Warinschi [LKW15] constructed a witness encryption scheme based on mul-
tilinear maps where they achieved extractable security without obfuscation. In particular, they
presented the scheme for a special subset-sum problem. To encrypt any instance of an NP lan-
guage, they needed to reduce it from conjunctive normal form-satisfiability problem (CNF-SAT)
to the special subset-sum problem.

Derler and Slamanig [DS] uses SPHFs to build a practical witness encryption scheme for
algebraic languages defined over bilinear groups. Their witness encryption scheme is compatible
with the statements used in Groth-Sahai proofs.

Organization. The rest of the paper is arranged as follows. In section 2, we provide defi-
nitions of some cryptographic tools that are related to our work. Next section 3 contains our
construction of witness PRFs and the security requirements. We present our offline witness
encryption scheme in section 4. In section 5, we show that a multi-relation witness PRF can be
instantiated from the witness PRF developed in section 3. Finally, we conclude in section 6.

2 Preliminaries

We use the notations in Table 1 throughout this paper.

a← A a is an output of the procedure A.

a
$←− X a is chosen uniformly at random from set X.

negligible function µ : N → R is a negligible function if µ(n) ≤ 1
p(n)

holds for every polynomial

p(·) and all sufficiently large n ∈ N.

(λ0, S(·))- Two ensembles {Xλ} and {Yλ} are (λ0, S(·))-indistinguishable means

indistinguishability |Pr[x
$←− Xλ : D(x) = 1] − Pr[y

$←− Yλ : D(y) = 1]| ≤ 1
S(λ)

for any security

parameter λ > λ0 and every S(λ)-size distinguisher D, S : N→ N.
δ-sub-exponential Two ensembles {Xλ} and {Yλ} are δ-sub-exponential indistinguishable

indistinguishability means |Pr[x
$←− Xλ : D(x) = 1] − Pr[y

$←− Yλ : D(y) = 1]| < δ(λ)Ω(1), for
any security parameter λ and every poly-size distinguisher D, where δ(λ) <
2λ
ε

, 0 < ε < 1.

Expt(1λ, 0) ≈δ Expt(1λ, 1) For any polynomial size distinguisher D, the advantage

∆ = |Pr[D(Expt(1λ, 0)) = 1]− Pr[D(Expt(1λ, 1)) = 1]| is bounded by δ.

Table 1: Notations

2.1 Pseudorandom Function

A finite set of functions {Fs : X → Y}s with a seed or key s is said to form a pseudorandom
function family [GGM86] if Fs can be efficiently computed for given s and is computationally
indistinguishable from a random function R : X → Y given oracle access to R.

Definition 1. (Pseudorandom function). A pseudorandom function(PRF) is a function F :
{0, 1}λ ×X → Y with polynomial runtime satisfying

|Pr[AF(K, ·)(1λ) = 1 : K
$←− {0, 1}λ]− Pr[AR(·)(1λ) = 1 : R

$←− U ]| ≤ µ(λ)

for every probabilistic polynomial time (PPT) adversary A, where U is the set of all functions
from X to Y and µ is a negligible function in λ. The pseudorandom function F is said to be
δ-secure for some specific negligible function δ(·) if the indistinguishability gap µ(λ) is less than
δ(λ)Ω(1).

8



2.2 Puncturable Pseudorandom Function

Sahai and Waters [SW14] introduced a key-puncturing technique for pseudorandom functions
that can be used to build many cryptographic primitives with the help of obfuscation. The
punctured key of a puncturable pseudorandom function allows to evaluate PRF at all points
except for the points in a (predefined) polynomial-size set.

Definition 2. (Puncturable pseudorandom function). A puncturable pseudorandom function
(pPRF) consists of a tuple of algorithms pPRF = (Gen, Eval, Punc) over the domain X and
range Y and is defined as follows:

• K ←pPRF.Gen(1λ): It is a randomized algorithm run by a trusted authority which takes
as input a security parameter λ and outputs a secret key K ∈ {0, 1}λ.

• y ←pPRF.Eval(K ′, x): It is a deterministic algorithm which on input a key K ′ and an
element x ∈ X , outputs the PRF value y ∈ Y.

• K{S} ←pPRF.Punc(K,S): It is a deterministic algorithm that takes a secret key K and
a polynomial-size set S ⊂ X as input and outputs a punctured key K{S}. If S contains
a single element, say x, then we simply write K{S} as K{x}.

Correctness: (Functionality preserving under puncturing) For all polynomial-size subset S of
X , and for all x ∈ X \ S we have that

Pr[pPRF.Eval(K,x)= pPRF.Eval(K{S}, x)]=1.

Definition 3. (Pseudorandomness at punctured points). We say that a puncturable pseudo-
random function pPRF = (Gen, Eval, Punc) preserves pseudorandomness at punctured points
if

|Pr[A(K{S}, {pPRF.Eval(K,x)}x∈S) = 1] − Pr[A(K{S}, U |S|) = 1]| ≤ µ(λ)

for every PPT adversary A and any polynomial-size subset S of X , where K ← pPRF.Gen(1λ),
K{S} ← pPRF.Punc(K,S), U denotes the uniform distribution over Y and µ is a negligible
function in λ. The pPRF is said to be δ-secure for some specific negligible function δ(·) if the
above indistinguishability gap µ(λ) is less than δ(λ)Ω(1).

It has been observed by [BW13, BGI14] that puncturable PRFs can be constructed from
one-way functions using the GGM tree-based construction of PRFs [GGM86] where the size of
the punctured key grows polynomially with the number of elements in the set S. The GGM
construction [GGM86] of pseudorandom functions uses a cryptographically strong bit (CSB)
generator or pseudorandom generator (PRG) which can be obtained from one-way functions.
Moreover, if the one-way functions are assumed to be sub-exponentially hard then the PRG is
also sub-exponentially secure. We describe these facts in the following theorems:

Theorem 4. [GGM86, Lev87] Assuming the existence of sub-exponentially secure one-way func-
tions, there exists an efficiently computable sub-exponentially secure pseudorandom generator for
any desired poly-size input length.

Theorem 5. [GGM86, BW13, BGI14] Assuming the existence of one-way functions, there
exists an efficiently computable puncturable pseudorandom function for any desired poly-size
input length.

9



1. The challenger runs PKE.Gen(1λ) →(SK, PK) and makes PK public.

2. The adversary A selects m0,m1 ∈ M such that |m0| = |m1| and sends (m0,m1, st) to the challenger where st
contains some auxiliary information.

3. Next, the challenger chooses a random bit b ∈ {0, 1}, a randomness r and sends cb ←PKE.Enc(PK, mb; r) to A.

4. The adversary A observes cb and st and outputs a guess b′ for b.

Figure 1: ExptPKE
A (1λ, b): The security game of a CPA-secure public-key encryption

2.3 Public-Key Encryption

Definition 4. (Public-key encryption). A public-key encryption scheme for a message space
M is a tuple of PPT algorithms PKE = (Gen, Enc, Dec) with the following properties:

• (SK, PK) ← PKE.Gen(1λ): This is a randomized key generation algorithm which is run
by a trusted third party with a security parameter λ as input. It outputs a public key
PK and a secret key SK. A user who obtains a key pair (PK, SK) from a trusted party,
keeps the secret key SK and publishes the public key PK.

• c ← PKE.Enc(PK, m; r): The encrypter uses the public key PK to encrypt a message
m ∈ M using a randomness r and produces a ciphertext c which is broadcasted over a
public domain.

• PKE.Dec(SK, c) ∈ M ∪ {⊥}: The recipient of a ciphertext c runs this algorithm using
the secret key SK and gets either a message m ∈ M or ⊥ where ⊥ indicates a failure of
the algorithm.

Correctness: For every λ ∈ N, m ∈M, we have

Pr[PKE.Dec(SK, c) = m : (SK, PK)← PKE.Gen(1λ), c← PKE.Enc(PK, m; r)] = 1

Definition 5. (Indistinguishability under chosen-plaintext attacks). We say that a public-key
encryption scheme PKE = (Gen, Enc, Dec) is indistinguishable under chosen plaintext attacks
(CPA) if

|Pr[ExptPKE
A (1λ, 0) = 1]− Pr[ExptPKE

A (1λ, 1) = 1]| ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptPKE
A (1λ, b) defined in Figure

1 where b ∈ {0, 1} and µ is a negligible function of λ. The PKE is said to be δ-selectively secure
for some specific negligible function δ(·) if the above indistinguishability gap µ(λ) is less than
δ(λ)Ω(1).

2.4 Witness PRF

Informally, a witness PRF scheme [Zha16] produces a somewhat random value from a set with
respect to an instance x ∈ L for an NP language L and a user can recompute the value provided
he has a witness w for x ∈ L.

Definition 6. (Witness PRF). A witness PRF (wPRF) for an NP language L with the witness
relation R : χ×W → {0, 1} consists of three algorithms wPRF = (Gen, F, Eval) and works as
follows:
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1. The adversary A chooses a single challenge query on an instance x∗ ∈ X \ L to the challenger.

2. The challenger generates (fk, ek)← wPRF.Gen(1λ, R) and gives ek to the adversary A.

3. The challenger computes y0 ← wPRF.F(fk, x∗), selects y1
$←− Y and sends yb to A for a randomly chosen b ∈ {0, 1}.

4. The adversary A makes polynomially many queries on instance xi ∈ X , i = 1, 2, . . . , u, to which the challenger
responses with wPRF.F(fk, xi) if xi 6= x∗; otherwise terminates the game.

5. Then A outputs a guess b′ for b.

Figure 2: ExptwPRF
A (1λ, b): The security game of a selectively-secure witness PRF

• (fk, ek)← wPRF.Gen(1λ, R): A trusted authority 1 takes as input the security parameter
λ and a relation circuit R : χ × W → {0, 1} and randomly generates a secret function
key fk and a public evaluation key ek. A user receiving (fk, ek) through a secure channel,
keeps fk as a secret key and publishes ek. We note that R(x,w) = 1 if and only if w is a
valid witness for x ∈ L.

• y ←wPRF.F(fk, x): Using a function key fk and an input x ∈ χ, the user runs this
algorithm which deterministically outputs some y ∈ Y.

• wPRF.Eval(ek, x, w) ∈ Y ∪ {⊥} : An witness holder runs this algorithm using an evalu-
ation key ek, an input x ∈ χ and a witness w ∈ W and deterministically recovers either
y ∈ Y or ⊥.

Correctness: For all x ∈ X , w ∈ W, we have that

wPRF.Eval(ek, x, w) =

{
wPRF.F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

(1)

Definition 7. (Selectively secure witness PRF). We say that a witness PRF scheme wPRF =
(Gen, F, Eval) for an NP language L, a relation R : χ × W → {0, 1}, a set Y, is selectively
secure if ∣∣Pr

[
ExptwPRF

A (1λ, 0) = 1
]
− Pr

[
ExptwPRF

A (1λ, 1) = 1
]∣∣ ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptwPRF
A (1λ, b) defined in Figure

2 where b ∈ {0, 1} and µ is a negligible function of λ. The wPRF is said to be δ-selectively
secure for some specific negligible function δ(·) if the above indistinguishability gap µ(λ) is
smaller than δ(λ)Ω(1).

Definition 8. (Extractable witness PRFs). A witness PRF scheme wPRF = (Gen, F, Eval) for
an NP language L with relation R is said to be a secure extractable witness PRF with respect
to an R-instance sampler D if there exists a polynomial p(·) such that∣∣∣∣∣Pr

[
AwPRF.F(fk,·)(ek, x∗,Aux, y∗) = 1 : (fk, ek)← wPRF.Gen(λ,R),

(x∗,Aux)
$←− DwPRF.F(fk,·)(ek), y∗ ← wPRF.F(fk, x∗)

]
−

1We note that a user may itself run this algorithm to get the secret function key fk and the evaluation key ek
which is made public.

11



Pr

[
AwPRF.F(fk,·)(ek, x∗,Aux, y∗) = 1 : (fk, ek)← wPRF.Gen(λ,R),

(x∗,Aux)
$←− DwPRF.F(fk,·)(ek), y∗

$←− Y

] ∣∣∣∣∣ ≥ 1

2
+

1

p(λ)
(2)

for every PPT adversary A and infinitely many λ, then there exists a PPT extractor E and a
polynomial q(·) such that

Pr

[
w∗

$←− E(ek, x∗,Aux, y∗, {xi}, r) : R(x∗, w∗) = 1, {xi} are the wPRF.F quires
of A and r is the random coin of A

]
≥ 1

q(λ)
(3)

for infinitely many λ.

2.5 Multi-Relation Witness PRF

The notion of multi-relation witness PRFs was introduced by Zhandry [Zha16] to work with
multiple relations but with the same secret function key.

Definition 9. (Multi-Relation Witness PRFs). A multi-relation witness PRF scheme for
for a set of relations R = {R : |R| ≤ s,R : χ × W → {0, 1}} consists of three algorithms
mwPRF=(Gen, F, Eval) and works as follows:

• fk← mwPRF.Gen(λ, s): It is a randomized algorithm run by a user2 which takes as input
a security parameter λ and a bound s on the size of supported relations and produces a
secret function key fk.

• y ← mwPRF.F(fk, x): It is a deterministic algorithm that takes as input a secret function
key fk and an instance x ∈ X , and outputs an element y ∈ Y for some set Y.

• ekR ← mwPRF.KeyGen(fk, R): It is possibly a randomized algorithm run by a user having
fk, which needs as input a secret function key fk and a relation circuit R, and produces a
public evaluation key ekR corresponding to the relation R.

• mwPRF.Eval(ekR, x, w) ∈ Y∪{⊥}: It is a deterministic algorithm run by a witness holder
that on input an evaluation key ekR, an instance x and a witness w, outputs an element
y ∈ Y or ⊥.

Correctness: For all x ∈ X , w ∈ W, we have that

mwPRF.Eval(ekR, x, w) =

{
mwPRF.F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

Definition 10. (Selectively secure multi-relation witness PRF). We say that a multi-relation
witness PRF scheme mwPRF=(Gen, F, Eval) for a set of relations R = {R : |R| ≤ s,R :
χ×W → {0, 1}}, a set Y, is selectively secure if∣∣Pr

[
ExptmwPRF

A (1λ, 0) = 1
]
− Pr

[
ExptmwPRF

A (1λ, 1) = 1
]∣∣ ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptmwPRF
A (1λ, b) defined in

Figure 3 where b ∈ {0, 1} and µ is a negligible function of λ. The mwPRF is said to be δ-
selectively secure for some specific negligible function δ(·) if the above indistinguishability gap
µ(λ) is smaller than δ(λ)Ω(1).

We can similarly define extractable multi-relation witness PRFs as described in Definition
8 for single relation witness PRFs.

2We note that this algorithm can be processed by a trusted third party to generate the secret function key fk
and in that case the key is sent to a user through a secure channel.
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1. The adversary A chooses a single challenge query on an instance x∗ ∈ X to the challenger.

2. The challenger generates fk
$←−mwPRF.Gen(1λ, s), and delivers s to the adversary A.

3. The challenger computes y0 ← mwPRF.F(fk, x∗) and y1
$←− Y and sends yb to A for a randomly chosen b ∈ {0, 1}.

4. The adversary A makes polynomially many evaluation key quires Ri ∈ R for i = 1, 2, · · · l, to which the challenger
responses with ekRi ← mwPRF.KeyGen(fk, Ri) if x∗ has no witness corresponding to the relation Ri; otherwise
stops the game.

5. Next, A makes polynomially many queries on instance {xij }
u(i)
j=1 ∈ X , for i = 1, 2, · · · , l, u(i) is a polynomial in λ.

The challenger responses with mwPRF.F(fk, xij ) if xij 6= x∗ and xij is an instance of interest corresponding to
the relation Ri; otherwise the challenger terminates the game.

6. Finally, A outputs a guess b′ for b.

Figure 3: ExptmwPRF
A (1λ, b): The security game of a selectively-secure multi-relation witness PRF scheme

2.6 Witness Encryption

Witness encryption was introduced by Garg et al. [GGSW13] to encrypt a message with an NP
statement and decryption is successful with a valid witness to the statement.

Definition 11. (Witness encryption). A witness encryption (WE) scheme for an NP language
L with the witness relation R : χ ×W → {0, 1} consists of two algorithms WE = (Enc, Dec)
satisfying the following:

• c ←WE.Enc(1λ, x,m): An encrypter takes as input a security parameter λ, an instance
x ∈ χ and a message m ∈M and outputs a ciphertext c.

• WE.Dec(c, w) ∈M∪{⊥}: A witness holder takes a ciphertext c and a witness w ∈ W as
input and outputs a message m ∈M or ⊥.

Correctness: For any λ ∈ N, m ∈ M, (x,w) ∈ χ×W such that x ∈ L, R(x,w) = 1, we have
that

Pr
[
WE.Dec(c, w) = m : c←WE.Enc(1λ, x,m)

]
= 1.

Definition 12. (Soundness security of witness encryption). A tuple of algorithms WE =
(Enc, Dec) is soundness secure witness encryption scheme for an NP language L and a relation
R : χ×W → {0, 1}, if

|Pr[ A(WE.Enc(1λ, x,m0))=1] − Pr[ A(WE.Enc(1λ, x,m1))=1]| ≤ µ(λ)

for any x 6∈ L, for any PPT adversary A and messages m0,m1 ∈ M with |m0| = |m1| where µ
is a negligible function of λ. The WE scheme is said to be δ-soundness secure for some specific
negligible function δ(·) if the above indistinguishability gap µ(λ) is less than δ(λ)Ω(1).

2.7 Offline Witness Encryption

Witness encryption scheme with an offline phase [AFP16] reduces time of encryption by shifting
the heavy-computing part into a setup algorithm. We note that setup is independent of the
statement and message to be encrypted.
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1. The adversary A chooses x ∈ X \L, m0,m1 ∈M such that |m0| = |m1| and sends (x,m0,m1, st) to the challenger
where st is a state containing some auxiliary information.

2. The challenger generates (ppe, ppd)← OWE.Setup(1λ, R) and sends this to A.

3. The challenger selects b ∈ {0, 1} and sends cb ← OWE.Enc(1λ, x,mb, ppe) to A.

4. The adversary A outputs a bit b′ for b by observing (st, cb, ppe, ppd).

Figure 4: ExptOWE
A (1λ, b): The security game of a selectively-secure offline witness encryption

Definition 13. (Offline witness encryption). An offline witness encryption (OWE) scheme for
an NP language L with witness relation R : χ ×W → {0, 1} is a tuple of algorithms OWE =
(Setup, Enc, Dec) with the following requirements:

• (ppe, ppd)←OWE.Setup(1λ, R): This algorithm is run by a trusted third party which takes
as input a security parameter λ and publishes a public parameter ppe for encryption and
a public parameter ppd for decryption.

• c←OWE.Enc(1λ, x,m, ppe): The encryption algorithm takes as input the security param-
eter λ, an instance x ∈ χ, a message m ∈M and encryption parameter ppe. It computes
a ciphertext c and broadcasts it over a public channel.

• OWE.Dec(c, w, ppd) ∈ M ∪ {⊥}: A witness holder on receiving a ciphertext c runs this
algorithm using a witness w and decryption parameter ppd to recover either m ∈ M or
⊥.

Correctness: For any λ ∈ N, m ∈ M, (x,w) ∈ χ×W such that x ∈ L, R(x,w) = 1, we have
that

Pr

[
OWE.Dec(c, w, ppd) = m : (ppe, ppd)← OWE.Setup(1λ, R),

c← OWE.Enc(1λ, x,m, ppe)

]
= 1. (4)

Definition 14. (Selectively secure offline witness encryption). We say that an offline witness
encryption OWE = (Setup, Enc, Dec) for an NP language L and a relation R : χ×W → {0, 1},
is selectively secure if∣∣Pr

[
ExptOWE

A (1λ, 0) = 1
]
− Pr

[
ExptOWE

A (1λ, 1) = 1
]∣∣ ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptOWE
A (1λ, b) defined in Figure

4 where b ∈ {0, 1} and µ is a negligible function of λ. The OWE is said to be δ-selectively
secure for some specific negligible function δ(·) if the above indistinguishability gap µ(λ) is less
than δ(λ)Ω(1).

2.8 Offline Functional Witness Encryption

The notion of functional witness encryption scheme was given by Boyel et al. [BGI14] who
established the equivalence between extractable obfuscation and functional witness encryption
with extractable security. Abusalah et al. [AFP16] introduced functional witness encryption
with a setup algorithm and named it as offline functional witness encryption.

Definition 15. (Offline functional witness encryption). An offline functional witness encryp-
tion (OFWE) scheme for an NP language L with witness relation R : χ×W → {0, 1} and a class
of functions {fλ}λ∈N is a tuple of algorithms OFWE = (Setup, Enc, Dec) with the following
requirement:
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1. The adversary A chooses x ∈ X , (f0,m0), (f1,m1) ∈ fλ ×M such that f0(m0, w) = f1(m1, w) for all w satisfying
R(x,w) = 1 and |(f0,m0)| = |(f1,m1)| and sends (x,m0,m1, st) to the challenger where st is a state containing
some auxiliary information.

2. The challenger generates (ppe, ppd)← OFWE.Setup(1λ, R) and sends this to A.

3. The challenger selects b ∈ {0, 1} and sends cb ← OFWE.Enc(1λ, x, (fb,mb), ppe) to A.

4. The adversary A guesses a bit b′ for b by observing (st, cb, ppe, ppd).

Figure 5: ExptOFWE
A (1λ, b): The security game of a selectively-secure offline functional witness encryption

• (ppe, ppd)←OFWE.Setup(1λ, R): A trusted third party runs this algorithm taking input
a security parameter λ and publishes a public parameter ppe for encryption and a public
parameter ppd for decryption.

• c ←OFWE.Enc(1λ, x, (f,m), ppe): The encryption algorithm takes as input a security
parameter λ, an instance x ∈ χ, a function f ∈ fλ, a message m ∈ M and encryption
parameter ppe. It outputs a ciphertext c over a public channel. The domain of the function
class is M×W.

• OFWE.Dec(c, w, ppd) ∈M∪ {⊥}: A witness holder on receiving a ciphertext c runs this
algorithm using a witness w and decryption parameter ppd and recovers either f(m,w) or
⊥.

Correctness: For any λ ∈ N, f ∈ fλ, m ∈ M, (x,w) ∈ χ ×W such that x ∈ L, R(x,w) = 1,
we have that

Pr

[
OFWE.Dec(c, w, ppd) = f(m,w) : (ppe, ppd)← OFWE.Setup(1λ, R),

c← OFWE.Enc(1λ, x, (f,m), ppe)

]
= 1.

Definition 16. (Selectively secure offline functional witness encryption). We say that an offline
functional witness encryption OFWE = (Setup, Enc, Dec) for an NP language L with relation
R : χ×W → {0, 1} and a function class {fλ}λ∈N, is selectively secure if∣∣Pr

[
ExptOFWE

A (1λ, 0) = 1
]
− Pr

[
ExptOFWE

A (1λ, 1) = 1
]∣∣ ≤ µ(λ)

for any λ ∈ N and every PPT adversary A in the experiments ExptOFWE
A (1λ, b) defined in Figure

5 where b ∈ {0, 1} and µ is a negligible function of λ. The OFWE is said to be δ-selectively
secure for some specific negligible function δ(·) if the above indistinguishability gap µ(λ) is less
than δ(λ)Ω(1).

2.9 Randomized Encoding Scheme in CRS Model

Randomized encoding was introduced by Ishai and Kushilevitz [IK00] to encode a complex
deterministic function Π along with an input x through an encoding algorithm whose output
distribution Π̂(x) can efficiently compute Π(x) and reveals no information beyond Π(x). Re-
cently, Lin et al. [LPST16b] studied randomized encoding scheme in both plain model and
common reference string (CRS) model with compactness and sub-linear compactness of the size
of encodings.

Definition 17. (Randomized encoding schemes in CRS model). A randomized encoding scheme
RE = (Setup, Enc, Eval) in CRS model for a class of Turing machines {Mλ} where Setup and
Enc are randomized algorithms and Eval is a deterministic algorithm, performs as follows:
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• (crs, pk)← RE.Setup(1λ, 1m, 1n, 1T , 1l): A trusted third party takes as input a security
parameter λ, a machine size bound m, input length bound n, time bound T and output
length l. It outputs a common reference string crs and a public key pk.

• Π̂x ←RE.Enc(pk,Π, x): The encoding algorithm uses a public key pk, a Turing machine
Π ∈Mλ together with an input x and outputs an encoding Π̂x.

• y ←RE.Eval(Π̂x, crs): An evaluator makes use of an encoding Π̂x and a common reference
string crs and outputs some y.

Correctness: For any λ ∈ N, m(λ), n(λ), T (λ), l(λ) ∈ N, Turing machine Π ∈ Mλ and input
x with |Π| ≤ m, |x| ≤ n and |ΠT (x)| ≤ l, we have that

Pr

[
RE.Eval(Π̂x, crs) = ΠT (x) : (crs, pk)← RE.Setup(1λ, 1m, 1n, 1T , 1l)

Π̂x ← RE.Enc(pk,Π, x)

]
= 1

Here ΠT (x) denotes the output of the Turing machine Π on input x when run in at most T
steps.

Definition 18. ((λ0, S(·))-simulation security of randomized encoding in CRS model). We
say that a randomized encoding scheme RE for a class of Turing machines {Mλ} in CRS model
is (λ0, S(·))-simulation secure if there exists a PPT algorithm Sim and a constant c such that
for every {Π, x,m, n, l, T} where Π ∈Mλ and |Π|, |x|,m, n, l, T ≤ B(λ) for some polynomial B,
the ensembles{

(crs, pk, Π̂x) : (crs, pk)← RE.Setup(1λ, 1m, 1n, 1T , 1l), Π̂x ← RE.Enc(pk,Π, x)
}

and{
(crs, pk, Π̂x) : (crs, pk, Π̂x)← Sim(1λ,ΠT (x), 1|Π|, 1|x|, 1m, 1n, 1T , 1l)

}
are (λ0, S

′(λ))-indistinguishable (see Table 1), with S′(λ) = S(λ)−B(λ)c for all λ ∈ N. The RE
is said to be δ-simulation secure for some specific negligible function δ(·) if S′(λ) is greater than
δ(λ)Ω(1). Also, we say that RE is δ-sub-exponential simulation secure if δ(λ) < 2λ

ε
, 0 < ε < 1.

Definition 19. (Compactness randomized encoding for Turing machines). A (λ0, S(·))-simulation
secure randomized encoding scheme is said to be compact if

TimeRE.Enc(1
λ,Π, x, T ) = poly(λ, |Π|, |x|, log T ) and

TimeRE.Eval(Π̂x, crs) = poly(λ, |Π|, |x|, T )

for every security parameter λ, Turing machine Π, input x, time-bound T and every encoding
Π̂x ← RE.Enc(pk,Π, x) where (crs, pk) ← RE.Setup(1λ, ·). Here TimeX(·) denotes the time-
bound of the algorithm X with a specified class of inputs.

Definition 20. (Succinct randomized encoding for Turing machines). A (λ0, S(·))-simulation
secure randomized encoding scheme is said to be succinct for a class of Turing machines {Mλ}
if the efficiency requirement for RE.Enc is defined as

TimeRE.Enc(1
λ,Π, x, T ) = l · poly(λ, |Π|, |x|, log T ).

The notations are the same as in Definition 19

Definition 21. (Sub-linear compactness of randomized encoding for Turing machines). A
(λ0, S(·))-simulation secure randomized encoding scheme is said to be sub-linearly compact for
a class of Turing machines {Mλ} if the efficiency requirement for RE.Enc is defined as
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TimeRE.Enc(1
λ,Π, x, T ) ≤ poly(λ, |Π|, |x|) · T 1−ε

for some ε ∈ (0, 1). The notations are the same as in Definition 19

Randomized encoding schemes in CRS model can be constructed from a public key func-
tional encryption (PKFE) scheme and a pseudorandom generator [LPST16b]. The compactness
(respectively, sub-linear compactness) of RE in CRS model depends on the compactness (re-
spectively, sub-linear compactness) of the underlying PKFE. In [BNPW16], a weakly sub-linear
compact PKFE for P/poly (i.e. for polynomial size circuits) is constructed using plain pub-
lic key encryption and strong exponentially-efficient indistinguishability obfuscation (SXIO).
They also instantiated SXIO from sub-exponentially secure secret key functional encryption
(SKFE) schemes. The existence of a sub-linearly compact randomized encoding scheme for
Turing machines follows from the two theorems stated below.

Theorem 6. [BNPW16] Assuming a plain public-key encryption (PKE) and strong exponentially-
efficient indistinguishability obfuscation (SXIO) with a small enough constant compressing fac-
tor, there exists a weakly sub-linear compact public key functional encryption (PKFE) scheme
(for functions with long output).

Theorem 7. [LPST16b] Assuming hardness of Learning With Error (respectively, sub-exponential
hardness), if there exists a selectively secure weakly sub-linear compact public key functional en-
cryption (PKFE) scheme for P/poly (respectively, with sub-exponential hardness), then there
exists a sub-linearly compact randomized encoding (RE) scheme for Turing machines in CRS
model with (respectively, sub-exponential) simulation security.

Remark 1. The existence of sub-linearly compact RE scheme for Turing machines is almost
directly followed from a succinct RE scheme and a weakly sub-linear compact RE scheme for
Turing machines [LPST16b]. The succinctness of a RE scheme for Turing machines depends on
the succinctness of PKFE for P/poly. Using only the sub-exponential hardness of LWE, there
exists a succinct PKFE with sub-exponential security for NC1 [GKP+13a]. Also, there exist
transformations [GKP+13a, ABSV14] from symmetric key encryption with decryption circuit
in NC1 together with succinct PKFE for NC1 to a succinct PKFE for P/poly. We note that
if the symmetric key encryption and the succinct PKFE for NC1 are both sub-exponentially
secure then the resulting succinct PKFE for P/poly is also sub-exponentially secure.

A sub-exponentially secure weakly sub-linear compact PKFE is achieved in [BNPW16] using
SXIO and a public-key encryption scheme with sub-exponential security. Indistinguishability
obfuscation (iO) is a technique to make a class of circuits {Cλ} unintelligible in the sense that for
any circuit C ∈ Cλ, C and iO(1λ, C) have the same output on all possible inputs and iO(1λ, C0)
is indistinguishable from iO(1λ, C1) for any two circuits C0, C1 ∈ Cλ such that C0(x) = C1(x),
where λ is the security parameter. We want the size of iO(1λ, C) bounded by poly(λ, |C|). An
SXIO has the same functionality as an indistinguishability obfuscator with nontrivial efficiency.
The running time of SXIO on input (1λ, C) is at most 2nγ · poly(λ, |C|) where the circuit C ∈ Cλ
takes an input of length n and γ (< 1) is the compressing factor. To get such an SXIO with an
arbitrary compressing factor, it is required to have a multi-input SKFE [BKS15] which supports
an unbounded polynomial number of functional keys. Also, 1-input single-key SKFE suffices
to get an SXIO but with a restriction on compressing factor γ satisfying 1

2 ≤ γ ≤ 1 and such
an SXIO can be used to build a sub-exponentially secure weakly sub-linear compact PKFE
[BNPW16].

Remark 2. In [LPST16b], an iO is instantiated from a sub-exponentially secure and sub-
linearly compact RE scheme in CRS model and a sub-exponentially secure pseudorandom gen-
erator (PRG). They followed the technique of GGM construction [GGM86] of building a PRF
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from a PRG using a tree. To get an iO, the PRG in the GGM construction is replaced with
a sub-exponentially secure sub-linear compact RE in CRS model. Let {Cλ}λ∈N be a circuit
class with maximum size S, input size n, output size l and the running time bound T . The
obfuscation procedure for a circuit C ∈ Cλ works as follows:

• We generate (crsi, pki)← RE.Setup(1λ, 1S , 1n, 1T , 1l), for i ∈ {0, 1, . . . , n}, where crsi is a

common reference string and pki is an encoding key. Let −→crs = {crsi}ni=0,
−→
pki = {pkj}nj=i.

• We construct an input less Turing machine Π[
−→
pki+1, C, z, α

i
zi ] where hardcoded entities

are
−→
pki+1, C, z = z1z2 . . . zi ∈ {0, 1}i and a string αizi ∈ {0, 1}

2p(λ,i) (p being a polynomial
depending on λ, i)3 for all i ∈ {0, 1, . . . , n− 1}. When i = 0, z is the null string ε and αizi

is a random string α
$←− {0, 1}2p(λ,0). The Turing machine Π[

−→
pk1, C, ε, α] computes ran-

domized encodings of Π[
−→
pk2, C, 0, α

1
0] and Π[

−→
pk2, C, 1, α

1
1] where (α1

0, α
1
1)← PRG(α) with

|α1
0| = |α1

1| = 2p(λ, 1), PRG being a sub-exponentially secure pseudorandom generator. To

be more specific, the Turing machine Π[
−→
pk1, C, ε, α] first generates (α1

0, α
1
1)← PRG(α) and

uses the randomness α1
0 to compute encoding Π̃[

−→
pk2, C, 0, α

1
0] ←RE.Enc(pk1,Π[

−→
pk2, C, 0,

α1
0], ε) and the randomness α1

1 to compute the encoding Π̃[
−→
pk2, C, 1, α

1
1] ←RE.Enc(pk1,

Π[
−→
pk2, C, 1, α

1
1], ε). More generally, the Turing machine Π[

−→
pki+1, C, z, α

i
zi ] computes ran-

domized encodings Π̃[
−→
pki+2, C, z0, α

i+1
0 ] ← RE.Enc(pki+1,Π[

−→
pki+2, C, z0, α

i+1
0 ], ε) and

Π̃[
−→
pki+2, C, z1, α

i+1
1 ] ← RE.Enc(pki+1,Π[

−→
pki+2, C, z1, α

i+1
1 ], ε), where (αi+1

0 , αi+1
1 ) ←

PRG(αizi) for i ∈ {1, 2, . . . , n − 1}. When i = n, the machine Π[
−→
pki+1, C, z, α

i
zi ] out-

puts C(z). We denote the class of all such Turing machines associated with the class of
circuits {Cλ} as {Mλ}.

• We compute an encoding Π̃[
−→
pk1, C, ε, α] ← RE.Enc(pk0,Π[

−→
pk1, C, ε, α], ε). Next, we con-

struct the special circuit G[Π̃[
−→
pk1, C, ε, α],−→crs] as described in Figure 6 which takes input

an n bit string z = z1z2 · · · zn. For each i ∈ {0, 1, . . . , n− 1}, the circuit recursively com-

putes RE.Eval(Π̃[
−→
pki+1, C, z1z2 · · · zi, αizi ], crsi) which by correctness of RE, is equal to the

output of the Turing machine Π[
−→
pki+1, C, z1z2 · · · zi, αizi ] i.e. two randomized encodings

Π̃[
−→
pki+2, C, z1z2 · · · zi0, αi+1

0 ] and Π̃[
−→
pki+2, C, z1z2 · · · zi1, αi+1

1 ] (as in line 3 of Figure 6).

Finally, the circuit returns RE.Eval(Π̃[
−→
pkn+1, C, z, α

n
zn ], crsn) which actually is equal to

C(z). The obfuscation of the circuit C is iO(1λ, C) = G[Π̃[
−→
pk1, C, ε, α],−→crs].

• To evaluate the circuit C for an input z, we compute G[Π̃[
−→
pk1, C, ε, α],−→crs](z).

Lin et al. [LPST16b] proved that for any pair of functionally equivalent circuits C0, C1 ∈ Cλ, the

joint distribution (Π̃[
−→
pk1, C0, ε, α],−→crs) is indistinguishable from (Π̃[

−→
pk1, C1, ε, α],−→crs). In particu-

lar, they have shown using the method of induction that for any label i ∈ {0, 1, . . . , n}, z ∈ {0, 1}i

the joint distributions (Π̃[
−→
pki+1, C0, z, α

i
zi ],
−→crsi,
−→
pki) and (Π̃[

−→
pki+1, C1, z, α

i
zi ],
−→crsi,
−→
pki) are indis-

tinguishable. The indistinguishability was achieved by the simulation security of the RE scheme.

Theorem 8. [LPST16b] Assuming the existence of sub-exponentially secure one-way functions,
if there exists a sublinearly compact randomized encoding scheme in the CRS model with sub-
exponential simulation security, then there exists an bounded-input indistinguishability obfusca-
tor for Turning machines.

3For every λ ∈ N, i ≤ 2λ, p(λ, i) = p(λ, i − 1) + (2dλ)1/ε and p(λ,−1) = λ where ε is a constant associated with the
sub-exponential security of PRG, d > 0 is any constant strictly greater than c and the constant c represents the security
loss associated with the indistinguishability security of RE (section 4, [LPST16b]).
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Hardwired: Π̃[
−→
pk1, C, ε, α], −→crs

Input: an input z = (z1z2 . . . zn)

1. Π̃← Π̃[
−→
pk1, C, ε, α], i← 0

2. while i < n do

3. (Π̃[
−→
pki+2, C, z1z2 · · · zi0, αi+1

0 ], Π̃[
−→
pki+2, C, z1z2 · · · zi1, αi+1

1 ]) ← RE.Eval(Π̃, crsi)

4. Π̃← Π̃[
−→
pki+2, C, z1z2 · · · zizi+1, α

i+1
zi+1

]

5. end do

6. return RE.Eval(Π̃, crsi)

Figure 6: The Special Circuit G[Π̃[
−→
pk1, C, ε, α],−→crs]

Hardwired: a pPRF key K.
Input: an instance x ∈ X = {0, 1}k and a witness w ∈ W = {0, 1}n−k.
Padding: the circuit is padded to size pad = pad(s, n, λ), determined in the analysis.

1. if R(x,w) = 1 then

2. y ← pPRF.Eval(K,x).

3. else y ← ⊥

4. end if

5. return y

Figure 7: Evaluation Circuit E = EC[K]

We stress that RE.Enc(pk0,Π[
−→
pk1, C, ε, α], ε) is actually a ciphertext obtained from the en-

cryption algorithm of underlying PKFE that uses (Π[
−→
pk1, C, ε, α], ε, 0λ+1) as the plaintext. The

size of the special circuit G is bounded by poly(λ, |C|, T ) and runtime of G on input z is bounded

by poly(λ, |z|, |C|, T ). We will use the notation G[Π̃[
−→
pk1, C, ε, α],−→crs] for obfuscating a circuit C

using a randomized encoding scheme in CRS model.

3 Our Witness PRF

Construction 1. We describe our construction of witness PRF (wPRF) that uses a puncturable
pseudorandom function pPRF = (Gen, Eval, Punc) with domain X = {0, 1}k and range Y and
a randomized encoding scheme RE = (Setup, Enc, Eval) which is a bounded input sub-linearly
compact randomized encoding scheme in CRS model. Our scheme wPRF = (Gen, F, Eval) for
an NP language L with relation circuit R : X ×W → {0, 1}, X = {0, 1}k, W = {0, 1}n−k and
|R| ≤ s, is given by the following algorithms.

• (fk, ek)← wPRF.Gen(1λ, R): A trusted third party generates a secret function key fk and
a public evaluation key ek for a relation R by executing the following steps where λ is a
security parameter.

– Choose a pPRF key K ← pPRF.Gen(1λ) where K ∈ {0, 1}λ.

– Construct the circuit E = EC[K] ∈ {Eλ} as defined in Figure 7. Let the circuit E be
of size S with input size n, output size l and T is the runtime bound of the circuit.

– Generate (crsi, pki)←RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where crsi is a
common reference string and pki is an encoding key. We define −→crs = {crs}ni=0 and
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−→
pki = {pkj}nj=i.

– Compute the randomized encoding Π̃[
−→
pk1, E, ε, α] ← RE.Enc(pk0,Π[

−→
pk1, E, ε, α], ε)

where ε is a null string, α is a random binary string and Π[
−→
pk1, E, ε, α] is a Turing

machine defined in Remark 2.

– Build the special circuit G[Π̃[
−→
pk1, E, ε, α],−→crs] as described in Figure 6.

– Set fk = K, ek = G [Π̃[
−→
pk1, E, ε, α],−→crs] and output (fk, ek). The secret function key

fk is sent to a user over a secure channel and the evaluation key ek is made public.

• y ← wPRF.F(fk, x): This algorithm is run by the user who has a secret function key fk
and outputs a wPRF value y ← pPRF.Eval(K,x) ∈ Y for an instance x ∈ X using the
secret function key fk as a pPRF key K.

• wPRF.Eval(ek, x, w): An evaluator takes a witness w ∈ W for x ∈ L and uses the public

evaluation key ek = G[Π̃[
−→
pk1, E, ε, α],−→crs] to get back the wPRF value as G[Π̃[

−→
pk1, E, ε, α],

−→crs](z) where z = (x,w) ∈ {0, 1}n.

Correctness. The output of wPRF.F for an instance x is a pPRF evaluation y ← pPRF.Eval(K,
x) ∈ Y on x using the secret key K ∈ {0, 1}λ. On the other hand, for wPRF.Eval an witness-

holder computes G[Π̃[
−→
pk1, E, ε, α],−→crs] (z) where z = (x,w). By the correctness of randomized

encoding scheme as discussed in Remark 2, we have G[Π̃[
−→
pk1, E, ε, α],−→crs](z) = E(x,w). The

circuit E (Figure 7) on input x,w, first checks whether R(x,w) = 1 holds. If this condition is
satisfied, then it outputs y ← pPRF.Eval(K,x) ∈ Y using the hardcoded key K. Therefore a
valid witness-holder of x ∈ L can recompute the wPRF value y ∈ Y associated with x using the

witness w and the evaluation key ek = G[Π̃[
−→
pk1, E, ε, α],−→crs]. Note that, if w is not valid witness

for x ∈ L then the output of G[Π̃[
−→
pk1, E, ε, α],−→crs](z) = E(x,w) is the distinguished symbol ⊥.

Therefore, our witness PRF follows the correctness property stated in Equation 1, Definition 6.

Padding Parameter. The proof of security relies on the indistinguishability of randomized

encodings of the machines Π[
−→
pk1, E, ε, α] and Π[

−→
pk1, E

∗, ε, α](where E and E∗ are defined in
Figure 7 and 8). For this we set pad = max(|E|, |E∗|). The circuits E and E∗ compute the
relation circuit R on an input (x,w) of size n and evaluate a puncturable PRF over the domain
X = {0, 1}k of size 2k using a hardwired element which is a simple pPRF key for E or a punc-
tured pPRF key for E∗. Thus pad ≤ poly(λ, s, k) where s is the size of the relation circuit R.

Efficiency. In this analysis, we discuss the size of wPRF.F and wPRF.Eval. The size of X
is 2k and wPRF.F includes a PRF evaluation over the domain X . Therefore, size of wPRF.F

is bounded by poly(λ, k). We note that, wPRF.Eval only runs the circuit G[Π̃[
−→
pk1, E, ε, α],−→crs]

over an input of size n. The running time of G[Π̃[
−→
pk1, E, ε, α],−→crs] is poly(λ, n, |E|, T ) =

poly(λ, n, k, s, T ) and the size of G[Π̃[
−→
pk1, E, ε, α],−→crs] is poly(λ, |E|, T ) = poly(λ, k, s, T ). In

particular, the running time and size of wPRF.Eval are respectively poly(λ, n, k, s, T ) and
poly(λ, k, s, T ). Here we note that the runtime T of the circuit E is bounded by the runtime of
the relation R and the runtime of a pPRF evaluation. So, T ≤ TR+ poly(λ, k) where TR is the
runtime of the relation circuit R on input (x,w) of size n. Hence, the runtime of wPRF.Eval is
bounded by poly(λ, n, k, s, TR) and size of wPRF.Eval is bounded by poly(λ, k, s, TR).

Theorem 9. Assuming LWE with sub-exponential hardness and the existence of δ-sub-exponentially
secure one-way functions, if there exists a weakly sub-linear compact public key functional en-
cryption scheme for P/poly with δ-sub-exponential security, then there exists a δ-secure witness
PRF scheme.
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Hardwired: a punctured key K{x∗}.
Input: an instance x ∈ X and a witness w ∈ W

1. if R(x,w) = 1 then

2. if x = x∗ then

3. return y∗

4. else return pPRF.Eval(K{x∗}, x)

5. end if

6. return ⊥

Figure 8: Evaluation Circuit E∗ = EC[K{x∗}]

Proof. The existence of sub-exponentially hard LWE and δ-sub-exponentially secure weakly sub-
linear compact public key functional encryption scheme for P/poly imply a δ-sub-exponential
simulation secure (Definition 18) randomized encoding scheme for Turing machines in CRS
model (Theorem 7). We get a δ-secure puncturable PRF (Definition 3) from δ-secure one-way
functions (Theorem 5). We need sub-exponentially secure one-way functions for getting a sub-
exponentially secure pseudorandom generator (Theorem 4) which is required for constructing
the special circuit G in Figure 6. The theorem follows directly from the following claim.

Claim 1. Assume existence of δ-sub-exponentially secure one-way functions. Our construction
1 of wPRF = (Gen, F, Eval) is δ-selectively secure witness PRF if the pPRF integrated in our
scheme is δ-secure puncturable PRF and the RE scheme employed in our scheme is a bounded
input sub-linearly compact randomized encoding scheme in CRS model with δ-sub-exponential
simulation security for the class of Turing machines {Mλ} associated with the circuit class
{Eλ}.

Proof. We prove this by showing that for any non-uniform PPT adversary A, the distinguishing
advantage between the two experiments ExptwPRF

A (1λ, 0) and ExptwPRF
A (1λ, 1) given in Figure

2 is negligible. We consider the following hybrid games.

Hybd0 This is the standard security experiment ExptwPRF
A (1λ, 0) described in Figure 9.

Hybd1 In this hybrid game we change K ← pPRF.Gen(1λ) into a punctured key K{x∗} ←
pPRF.Punc(K,x∗) and ek = G[Π̃[

−→
pk1, E

∗, ε, α],−→crs] instead of G[Π̃[
−→
pk1, E, ε, α],−→crs] where

E∗ = EC[K{x∗}] is the circuit as defined in Figure 8 and y∗ ← pPRF.Eval(K,x∗) ∈
Y. We note that the functionality and running time of both the circuits E and E∗ are

the same. Also, the size of the two machines Π[
−→
pk1, E, ε, α] and Π[

−→
pk1, E

∗, ε, α] is the

same due to padding. Therefore, the joint distribution (Π̃[
−→
pki+1, E, z, α

i
zi ],
−→crsi,
−→
pki) is

indistinguishable from (Π̃[
−→
pki+1, E

∗, z, αizi ],
−→crsi,
−→
pki) for every label i ∈ {0, 1, . . . , n} and

z ∈ {0, 1}i (as discussed in Remark 2). Hence by simulation security of the RE scheme,
we have Hybd0 ≈δ Hybd1 (notation explained in Table 1), i.e., these two hybrid games
are computationally indistinguishable.

Hybd2 This hybrid game is the same as previous one except that here we take y∗ as a uni-
formly random element from Y instead of setting y∗ ← pPRF.Eval(K,x∗) ∈ Y. From the
pseudorandomness at punctured points (Definition 3) of the pPRF we have,

µ(λ) ≥ |Pr[A(K{x∗}, pPRF.Eval(K,x∗)) = 1] − Pr[A(K{x∗}, U) = 1]|
≥ |Pr[Hybd1(λ) = 1]− Pr[Hybd2(λ) = 1]|
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1. The adversary A submits a challenge statement x∗ ∈ X \ L.

2. The challenger generates (fk, ek)← wPRF.Gen(1λ, R) as follows and sends ek to A:

2.1 Chose K ← pPRF.Gen(1λ) and set fk = K

2.2 Construct the circuit E = EC[K] as defined in Figure 7

2.3 Generate (crsi, pki) ←RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where S, n, T, l are the same as in

Construction 1 and set −→crs = {crs}ni=0 and
−→
pki = {pkj}nj=i

2.4 Build the special circuit G[Π̃[
−→
pk1, E, ε, α],−→crs] as described in Figure 6 where Π̃[

−→
pk1, E, ε, α] ← RE.Enc

(pk0,Π[
−→
pk1, E, ε, α], ε) and Π[

−→
pk1, E, ε, α] is a Turing machine defined in Remark 2.

2.5 Set ek = G[Π̃[
−→
pk1, E, ε, α],−→crs]

3. The challenger computes y∗ ← wPRF.F(fk, x∗) ∈ Y and sends it to A.

4. The adversary A can make polynomial number of quires for wPRF.F on some x ∈ X \ {x∗} to the challenger and
receives wPRF.F(fk, x).

5. The adversary A outputs a bit b′.

Figure 9: Hybd0 associated with our wPRF

for infinitely many λ and a negligible function µ where U denotes uniform distribution
over the domain Y of pPRF.Eval. Since the pPRF is δ-secure, we have µ(λ) ≤ δ(λ)ω(1).
Thus it holds that Hybd1 ≈δ Hybd2.

Hybd3 In this hybrid game, again we consider ek = G[Π̃[
−→
pk1, E, ε, α],−→crs] corresponding to the

circuit E = EC[K] as in the original experiment Hybd0. Everything else is the same as in
Hybd2. Following the similar argument as in Hybd1, we have Hybd2 ≈δ Hybd3.

Note that Hybd3 is actually the regular experiment ExptwPRF
A (1λ, 1). Hence, by the above

sequence of hybrid arguments, ExptwPRF
A (1λ, 0) is indistinguishable from ExptwPRF

A (1λ, 1) and
we write ExptwPRF

A (1λ, 0) ≈δ ExptwPRF
A (1λ, 1).

This completes the proof of Theorem 9.

4 Our Offline Witness Encryption

Construction 2. We now construct an offline witness encryption scheme OWE = (Setup, Enc,
Dec) for any NP language L with relation circuit R : X ×W → {0, 1} based on an extractable
witness PRF (wPRF) and a randomized encoding (RE) scheme in CRS model. The main
ingredients and notations used in this proposed construction are the following:

(i) A public-key encryption PKE = (Gen, Enc, Dec) with CPA-security.

(ii) An extractable witness PRF wPRF = (Gen, F, Eval) for the NP language L′ = {(c1, c2,
PK1,PK2) : ∃ (x,m, r1, r2) such that ci = PKE.Enc(PKi, (x,m); ri) for i = 1, 2} with the
relation R′ : χ′ ×W ′ → {0, 1}. Therefore, R′((c1, c2,PK1, PK2), (x,m, r1, r2)) = 1 if c1

and c2 are both encryptions of the same message (x,m) using public keys PK1, PK2 and
randomness r1, r2 respectively; otherwise 0. Here we assume that message, ciphertext of
the PKE and the wPRF value can be represented as bit-strings.

(iii) A sub-linearly compact bounded input randomized encoding scheme RE = (Setup, Enc,
Eval) in CRS model with δ-sub-exponential simulation security for Turing machines.
We describe below our offline witness encryption scheme OWE = (Setup, Enc, Dec) for
an NP language L with relation circuit R : X ×W → {0, 1}.
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• (ppe, ppd) ← OWE.Setup(1λ, R): This is run by a trusted authority to generate public
parameters for both encryption and decryption where R is a relation circuit and λ is a
security parameter. It works as follows:

– Obtain two pairs of PKE keys (SK1,PK1) ← PKE.Gen(1λ) and (SK2,PK2) ←
PKE.Gen(1λ).

– Generate (fk, ek)← wPRF.Gen(1λ, R′) for the relation circuit R′ defined in (ii).

– Construct the circuit C1 = MOC[SK1, fk] ∈ {Cλ} as defined in Figure 10. Let S be
the size of the circuit C1 with input size n, output size l and T is the runtime bound
of the circuit on an input of size n.

– Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where crsi
is a common reference string and pki is an encoding key. Set −→crs = {crs}ni=0 and
−→
pki = {pkj}nj=i.

– Compute the randomized encoding Π̃[
−→
pk1, C1, ε, α]← RE.Enc(pk0,Π[

−→
pk1, C1, ε, α], ε)

where ε is a null string, α is a random binary string and Π[
−→
pk1, C1, ε, α] is a Turing

machine defined in Remark 2.

– Construct the special circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs] as described in Figure 6.

– Set ppe = (PK1,PK2, ek), ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs].

– Output (ppe, ppd).

• c ← OWE.Enc(1λ, x,m, ppe): An encrypter encrypts a message m ∈ M with respect to
an NP statement x ∈ X using the public parameters for encryption ppe and produces a
ciphertext as follows:

– Choose two random strings r1, r2
$←− {0, 1}lPKE(λ) where lPKE is a polynomial in λ.

– Compute two ciphertexts ci = PKE.Enc(PKi, (x,m); ri) for i = 1, 2.

– Generate a wPRF evaluation of the statement (c1, c2,PK1,PK2) with witness (x,m,
r1, r2) as y ← wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m, r1, r2)).

– Output c = (c1, c2, x, y) as ciphertext.

• OWE.Dec(c, w, ppd): On receiving a ciphertext c, a receiver who has a witness w for x ∈ L,

runs this algorithm using public parameter ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs] for decryption to

learn the message by outputting G[Π̃[
−→
pk1, C1, ε, α],−→crs](z) where z = (c, w).

Correctness. The ciphertext c has four components where first two components c1, c2 are the
encryptions of the same message (x,m), the third one is a statement x ∈ L and the last com-
ponent y is a wPRF evaluation of the statement (c1, c2,PK1,PK2) with witness (x,m, r1, r2).
Therefore, we pass the check at line 2 of the circuit C1 (Figure 10) as the correctness of wPRF
scheme (Equation 1, Definition 6) implies wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m, r1, r2)) =
wPRF.F(fk, (c1, c2,PK1,PK2)). We recover (x,m) ←PKE.Dec(SK1, c1) in line 3 of the circuit
C1 assuming the exactness of the PKE scheme. If w ∈ W is a valid witness for the statement
x ∈ L, then R(x,w) = 1 and the circuit C1 returns the message m ∈ M. Finally, by the cor-

rectness of RE as described in Remark 2, we have G[Π̃[
−→
pk1, C1, ε, α],−→crs](z) = C1(z) = m where

z = (c, w). Hence Equation 4 of Definition 13 holds for this construction which establishes the
correctness of our OWE scheme.

Efficiency. The encryption algorithm OWE.Enc computes two public-key encryption on a mes-
sage of size (|x|+ |m|) and one wPRF evaluation of an input of the form (c1, c2,PK1,PK2) with
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Hardwired: a PKE secret key SKj , a wPRF function key fk.
Input: a ciphertext c and a witness w ∈ W

1. Parse c = (c1, c2, x, y)

2. if (wPRF.F(fk, (c1, c2,PK1,PK2)) = y) then

3. (x̂, m̂) ← PKE.Dec(SKj , cj)

4. if ((x̂ = x)
∧

(R(x̂, w) = 1)) then

5. return m̂

6. end if

7. end if

8. return ⊥

Figure 10: Message Output Circuit Cj = MOC[SKj , fk], j = 1, 2

size-bound poly(λ, |x|+ |m|) using a witness of the form (x,m, r1, r2) with size-bound (|x|+ |m|
+ 2.poly(λ)). Therefore, time of encryption is bounded by the time of PKE.Enc and evaluation
time of wPRF and we have that TimeOWE.Enc ≤ 2. poly(λ, |x|+|m|) + poly(λ,poly(λ, |x|+|m|)+
(|x|+ |m|+ 2.poly(λ)), sR′ , TR′) where sR′ and TR′ are the size and time-bound for the relation
R′ defined as R′((c1, c2,PK1, PK2), (x,m, r1, r2)) = 1 if and only if PKE.Enc(PKi, (x,m); ri) =
ci for i = 1, 2. Thus R′ verifies that two given ciphertexts c1, c2 are encryptions of the same mes-
sage (x,m) with randomness r1, r2 respectively under respective public keys PK1,PK2. Hence,
sR′ , TR′ both can be bounded by poly(λ, |x| + |m|). Therefore, OWE.Enc has the time-bound
TimeOWE.Enc ≤ poly(λ, |x|+ |m|).

Theorem 10. Assuming the existence of sub-exponentially secure one-way functions, our con-
struction 2 of OWE = (Setup, Enc, Dec) is δ-selectively secure offline witness encryption if the
underlying PKE utilized in our OWE is a δ-selectively secure public-key encryption (Definition
4), the wPRF integrated in our OWE is an extractable witness PRF (Definition 8) and the RE
employed in our OWE is a bounded input δ-sub-exponential simulation secure (Definition 18)
sub-linear compact randomized encoding scheme (Definition 21) in CRS model for the class of
Turing machines {Mλ} associated with the class of circuits {Cλ}.

Proof. We show that the distinguishing advantage between two experiments ExptOWE
A (1λ, 0) and

ExptOWE
A (1λ, 1) (see Figure 4) for any non-uniform PPT adversary A is negligible by defining

the following sequence of hybrid games and thereby, prove the indistinguishability between
them. Let the challenge messages be m0 and m1.

Hybd0 The first game is the standard selective security experiment ExptOWE
A (1λ, 0) where the

adversary A is given the ciphertext corresponding to the message m0. We describe it in
Figure 11.

Hybd1 In this hybrid game, we pick y uniformly at random from Y instead of setting y ←
wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m0, r1, r2)). All other contents of the ciphertext c
remain the same as in the previous game. Since the random values r1 and r2 which are
the part of witnesses corresponding to the ciphertexts c1 and c2 respectively are not known
to the adversary, by the extractable nature of wPRF (Definition 8) and the CPA-security
of the underlying PKE scheme (Definition 5) these two hybrid games are computationally
indistinguishable. We prove this in the following claim.

Claim 2. Assuming the PKE is a δ-selectively secure public-key encryption and the wPRF

24



1. The adversary chooses (x,m0,m1, st) ← A(1λ) and sends it to the challenger. Here x 6∈ L, |m0| = |m1| and st
contains some auxiliary information.

2. The challenger generates public parameters (ppe, ppd) ← OWE.Setup(1λ, R) as follows and sends it to A:

2.1 Generate (SKi,PKi) ← PKE.Gen(1λ) for i = 1, 2 and (fk, ek)← wPRF.Gen(1λ, R′) where relation R′ is the
same as in Construction 2

2.2 Set ppe = (PK1,PK2, ek)

2.3 Construct the message output circuit C1 = MOC[SK1, fk] (see Figure 10)

2.4 Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where S, n, T, l are the same as in

Construction 2 and set −→crs = {crs}ni=0 and
−→
pki = {pkj}nj=i

2.5 Construct the special circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs] as described in Figure 6, where Π̃[

−→
pk1, C1, ε, α] ←

RE.Enc(pk0,Π[
−→
pk1, C1, ε, α], ε) and Π[

−→
pk1, C1, ε, α] is a Turing machine defined in Remark 2.

2.6 Set ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs]

3. The challenger produces the ciphertext c← OWE.Enc(1λ, x,m0, ppe) as follows and submits it to A:

3.1 Chose r1, r2
$←− {0, 1}lPKE(λ)

3.2 Compute c1 ←PKE.Enc(PK1, (x,m0); r1), c2 ←PKE.Enc(PK2, (x,m0); r2)

3.3 Evaluate y ← wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m0, r1, r2))

3.4 Set c← (c1, c2, x, y)

4. The adversary observing (st, c, ppe, ppd), outputs a bit b′ ← A(st, c, ppe, ppd).

Figure 11: Hybd0(λ) associated with our OWE

is extractable, Hybd0 and Hybd1 are δ-indistinguishable.

Proof. Let us prove this by contradiction. Suppose, the OWE-adversary A can distinguish
between Hybd0 and Hybd1. Hence, there exist a polynomial p(·) such that for infinitely
many λ,

|Pr[Hybd0(λ) = 1]− Pr[Hybd1(λ) = 1]| ≥ 1
2 + 1

p(λ) .

We note that in Hybd0, y is computed as wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m0, r1, r2))
which is in fact equal to wPRF.F(fk, (c1, c2,PK1,PK2)) ∈ Y (by the correctness of wPRF)
and in Hybd1, y is chosen uniformly from Y. Therefore the distinguishing advantage of
A is the same advantage as in Equation 2 (Definition 8) and hence (from Equation 3) the
extractable security of wPRF implies that there exists a PPT extractor E and a polynomial
q(·) such that

|Pr[w′ ← E(ek, (c1, c2,PK1,PK2),Aux, y, {xi}, r) : R′((c1, c2,PK1,PK2), w′) = 1]| ≥ 1
q(λ)

where {xi} are the same wPRF queries made by A and r is the random coin used by A.
We can construct a PKE-adversary B against the CPA security (Definition 5) of PKE
scheme for the key PK2 as described in Figure 12.

If c′b ← PKE.Enc(PK2, (x,m0); r2), then y = wPRF.Eval(ek, (c1, c2,PK1,PK2), (x, m0, r1,
r2)) = wPRF.F(fk, (c1, c2,PK1,PK2)) and hence the PKE-adversary B simulates Hybd0.
If c′b ← PKE.Enc(PK2, (x,m1); r2), then wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m0, r1, r2))
66= wPRF.F(fk, (c1, c2,PK1,PK2)) with high probability and y = wPRF.F(fk, (c1, c2, PK1,
PK2)) acts like a random y from Y which implies that B simulates Hybd1.

By hypothesis, the adversary A can distinguish between the hybrids Hybd0 and Hybd1,
and hence there exists an extractor E that, on input ek, (c1, c2,PK1,PK2),Aux, y, {xi}, r,
is able to find a witness w′ = (x,mb, r1, r2), where Aux contains stA, the wPRF queries
{xi} and r indicates the random coin used by A. Therefore, the OWE-adversary A can
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1. The PKE-challenger runs PKE.Gen(1λ) → (SK2,PK2) and makes Pk2 public.

2. The PKE-adversary B submits the challenge messages m′0,m
′
1 to the PKE-challenger as follows with some auxiliary

information st and |m′0| = |m′1|:
2.1 Invoke OWE-adversary A to obtain (x,m0,m1, stA)← A(1λ) where x 6∈ L and |m0| = |m1|
2.2 Genereate (SK1,PK1)← PKE.Gen(1λ)

2.3 Compute (fk, ek)← wPRF.Gen(1λ, R′) for the relation R′ defined in Construction 2

2.4 Choose r1
$←− {0, 1}lPKE(λ)

2.5 Compute c1 = PKE.Enc(PK1, (x,m0); r1)

2.6 Set m′0 = (x,m0), m′1 = (x,m1) and st = (SK1,PK1, fk, ek, c1, r1, x,m0,m1, stA)

3. The PKE-challenger chooses a random bit b ∈ {0, 1} and sends the ciphertext c′b ←PKE.Enc(PK2,m′b = (x, mb); r2)

to B, where r2
$←− {0, 1}lPKE(λ).

4. The PKE-adversary B simulates A to output a guess for b by observing (st, c′b) as foloows:

4.1 Set c2 = c′b
4.2 Compute y = wPRF.F(fk, (c1, c2,PK1,PK2))

4.3 Construct the message output circuit C1 = MOC[SK1, fk] (see Figure 10)

4.4 Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where S, n, T, l are the same as in

Construction 2 and set −→crs = {crs}ni=0 and
−→
pki = {pkj}nj=i

4.5 Construct the special circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs] as described in Figure 6, where Π̃[

−→
pk1, C1, ε, α] ←

RE.Enc(pk0,Π[
−→
pk1, C1, ε, α], ε) and Π[

−→
pk1, C1, ε, α] is a Turing machine defined in Remark 2.

4.6 Set c = (c1, c2, x, y), ppe = (PK1,PK2, ek), ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs] and send (stA, c, ppe, ppd) to the

OWE-adversary A
4.7 Output a guess b′ ← A(stA, c, ppe, ppd) for b

Figure 12: The PKE-adversary B simulating Hybd1

learn the bit b chosen by the PKE-challenger while executing the CPA security game and
sends it to the PKE-adversary B which helps in breaking the CPA security of the PKE
scheme for the key PK2. Consequently, we have for infinitely many λ,

1
q(λ) ≤ |Pr[w′ ← E(ek, (c1, c2,PK1,PK2),Aux, y, {xi}, r) : R′((c1, c2,PK1,PK2), w′) = 1]|

= |Pr[ExptPKE
B (1λ, 0) = 1]− Pr[ExptPKE

B (1λ, 1) = 1]|

But the CPA security of the underlying PKE scheme implies that this can happen only
with a negligible probability. Hence we reach a contradiction to the fact that the success
probability of the extractor must be non-negligible. Therefore, we have Hybd0 ≈δ Hybd1.
This completes the proof of Claim 2.

Hybd2 This hybrid game is exactly same as Hybd1 except that we set c2 ← PKE.Enc
(PK2, (x,m1); r2) instead of c2 ← PKE.Enc(PK2, (x,m0); r2). These two hybrids are
computationally indistinguishable by the CPA security of the underlying PKE scheme for
the key PK2 as shown in Claim 3.

Claim 3. Assuming the PKE is a δ-selectively secure public-key encryption, Hybd1 and
Hybd2 are δ-indistinguishable.

Proof. We prove this by contradiction. Let us assume that there exists a polynomial p(·)
such that for infinitely many λ

|Pr[Hybd1(λ) = 1]− Pr[Hybd2(λ) = 1]| ≥ 1
2 + 1

p(λ) .

We construct a PPT adversary B against the CPA security (Definition 5) of the PKE
scheme for the key PK2 as described in Figure 12 with only change in line 4.2 where we
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choose a uniformly random y from Y instead of computing y = wPRF.F(fk, (c1, c2,PK1,
PK2)).

Note that, in both Hybd1 and Hybd2 the value of wPRF.Eval(ek, (c1, c2,PK1.PK2), ·) is set
as a randomly chosen y from Y. Consequently, B simulates Hybd1 if c′b ← PKE.Enc(PK2,
(x,m0); r2), and Hybd2 if c′b ← PKE.Enc(PK2, (x,m1); r2). Therefore, the distinguishing
advantage of the OWE-adversary A between Hybd1 and Hybd2 is the same as the advan-
tage of the PKE-adversary B in the CPA security game for the key PK2. More formally,
there exists a polynomial q(·) such that for infinitely many λ, we have

1
q(λ) ≤ |Pr[Hybd1(λ) = 1]− Pr[Hybd2(λ) = 1]|

= |Pr[ExptPKE
B (1λ, 0) = 1]− Pr[ExptPKE

B (1λ, 1) = 1]|

This shows that we arrive at a contradiction to the CPA security of the PKE scheme.
Hence it holds that Hybd1 ≈δ Hybd2. This completes the proof of Claim 3.

Hybd3 This hybrid game is the same as the previous game except that we take ppd as the circuit

G[Π̃[
−→
pk1, C2, ε, α],−→crs] instead of setting ppd ← G[Π̃[

−→
pk1, C1, ε, α],−→crs]. We show that the

adversary A’s distinguishing advantage between Hybd2 and Hybd3 is negligible in the
following claim.

Claim 4. Assuming the RE is a δ-sub-exponential simulation secure sub-linear compact
randomized encoding scheme in CRS model for the class of Turing machines {Mλ} asso-
ciated with the class of circuits {Cλ}, Hybd2 and Hybd3 are δ-indistinguishable.

Proof. We need to show that the joint distributions (Π̃[
−→
pki+1, C1, z, α

i
zi ],
−→crsi,
−→
pki) and

(Π̃[
−→
pki+1, C2, z, α

i
zi ],
−→crsi,
−→
pki) for every label i ∈ {0, 1, . . . , n} and z ∈ {0, 1}i, are indis-

tinguishable. It will imply that the two hybrids Hybd2, Hybd3 are indistinguishable. If
the functionality, runtime and size of two circuits C1 and C2 are the same then the above
indistinguishability follows from the underlying simulation security of RE scheme in CRS
model according to the discussion in Remark 2.

We define an RE-adversary B against the indistinguishability secure RE scheme in Fig-
ure 13. We note RE is δ-indistinguishability secure implies that, if the two ensembles

{Π1(x1), |Π1|, |x1|, T1 : (Π1, x1, T1)
$←− X1,λ} and {Π2(x2), |Π2|, |x2|, T2 : (Π2, x2, T2)

$←−
X2,λ} are δ-indistinguishable then the two distributions {RE.Enc(pk,Π1, x1): (Π1, x1, T1)
$←− X1,λ} and {RE.Enc(pk,Π2, x2): (Π2, x2, T2)

$←− X2,λ} are also δ-indistinguishable,
where Πj ∈Mλ and Tj denotes the runtime of Πj on input xj for j = 1, 2.

Therefor, if ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs] then B simulates Hybd2 and if ppd = G[Π̃[

−→
pk1, C2,

ε, α],−→crs] then B simulates Hybd3. Now we show the functional equivalence of the cir-
cuits C1 and C2. Let (c, w) be any arbitrary input to the circuits Cj , j = 1, 2 where
c = (c1, c2, x, y).

Case 1. (x = x̄, c1 = c̄1 and c2 = c̄2): Since x̄ 6∈ L, we have R(x,w) = 0 in line 4 of Cj
(Figure 10), thus C1 and C2 both output ⊥.

Case 2. (x 6= x̄, c1 = c̄1 and c2 = c̄2): Correctness of PKE scheme implies PKE.Dec(SKj ,
cj) = (x̄, m̄j) in line 3 of Cj (Figure 10) and both the circuits returns ⊥ as x 6= x̄ in line
4.
Case 3. (c1 6= c̄1 or c2 6= c̄2): If c1 and c2 are encryptions of the same message then
we have PKE.Dec(SK1, c1) = PKE.Dec(SK2, c2). Therefore, the behavior of both circuits
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1. The OWE-adversary chooses (x̄, m̄0, m̄1, st)← A(1λ) and sends it to the RE-adversary B, where x̄ 6∈ L, |m̄0| = |m̄1|
and st contains some auxiliary information.

2. The RE-adversary B generates public parameters (ppe, ppd) as follows and sends it to A:

2.1 Generate (SKi,PKi) ← PKE.Gen(1λ) for i = 1, 2 and (fk, ek)← wPRF.Gen(1λ, R′) where relation R′ is the
same as in Construction 2

2.2 Set ppe = (PK1,PK2, ek)

2.3 Construct the message output circuits Cj = MOC[SKj , fk] for j = 1, 2 (see Figure 10)

2.4 Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where S, n, T, l are the same as in

Construction 2 and set −→crs = {crs}ni=0 and
−→
pki = {pki}nj=i

2.5 Submit the circuits Cj to the RE-challenger for j = 1, 2

2.6 The RE-challenger pick a random j
$←− {1, 2} and sends Π̃[

−→
pk1, Cj , ε, α]← RE.Enc(pk0,Π[

−→
pk1, Cj , ε, α], ε) to B

where Π[
−→
pk1, Cj , ε, α] is a Turing machine defined in Remark 2.

2.7 Construct the special circuit G[Π̃[
−→
pk1, Cj , ε, α],−→crs] as described in Figure 6.

2.8 Set ppd = G[Π̃[
−→
pk1, C1, ε, α],−→crs]

3. The RE-adversary B produces a OWE-ciphertext c̄ as follows and submits it to the OWE-adversary A:

3.1 Chose r1, r2
$←− {0, 1}lPKE(λ)

3.2 Compute c̄1 ←PKE.Enc(PK1, (x̄, m̄0); r1), c̄2 ←PKE.Enc(PK2, (x̄, m̄1); r2)

3.3 Choose ȳ
$←− Y

3.4 Set c̄ = (c̄1, c̄2, x̄, ȳ)and send it to the OWE-adversary A
4. Output b′ ← A(st, c̄, ppe, ppd).

Figure 13: The RE-adversary B simulating Hybd3

C1 and C2 are the same as they differ only in line 3. If the decryptions of c1 and c2 are
not equal then (c1, c2,PK1,PK2) 6∈ L′ and by the correctness of wPRF scheme we have y
6= wPRF.F(fk, (c1, c2,PK1,PK2)). Hence, the circuits C1 and C2 return ⊥ due to line 2
(Figure 10).

This shows that C1 and C2 are functionally equivalent. Also, we note that size and

time bound for both the circuits are the same. Hence, we have Hybd2 ≈δ Hybd3. This
completes the proof of Claim 4.

Hybd4 The only difference of this hybrid from Hybd3 is that we compute c1 ←PKE.Enc(PK1,
(x,m1); r1) instead of c1 ←PKE.Enc(PK1, (x,m0); r1). Therefore, these two hybrids
Hybd3 and Hybd4 are computationally indistinguishable by the CPA security of the un-
derlying PKE scheme for the key PK1 as stated in the following claim.

Claim 5. Assuming the PKE is a δ-selectively secure public-key encryption, Hybd3 and
Hybd4 are δ-indistinguishable.

The proof is analogous to that of Claim 3.

Hybd5 In this hybrid game we take ppd as the circuit G[Π̃[
−→
pk1, C1, ε, α],−→crs] instead of G[Π̃[

−→
pk1,

C2, ε, α],−→crs] as in the standard scheme. Therefore, by the underlying simulation secure
RE scheme we have Hybd4andHybd5 are computationally indistinguishable as stated in
the following claim.

Claim 6. Assuming the RE is a δ-sub-exponential simulation secure sub-linear compact
randomized encoding scheme in CRS model for the class of Turing machines {Mλ} asso-
ciated with the class of circuits {Cλ}, Hybd4 and Hybd5 are δ-indistinguishable.

The proof is similar to that of Claim 4.
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Hardwired: a PKE secret key SKj , a wPRF function key fk.
Input: a ciphertext c and a witness w ∈ W

1. Parse c = (c1, c2, x, y)

2. if (wPRF.F(fk, (c1, c2,PK1,PK2)) = y) then

3. (x̂, (f̂ , m̂)) ← PKE.Dec(SKj , cj)

4. if ((x̂ = x)
∧

(R(x̂, w) = 1)) then

5. return f̂(m̂, w)

6. end if

7. end if

8. return ⊥

Figure 14: Modified Message Output Circuit Fj = MMOC[SKj , fk], j = 1, 2

Hybd6 Here we again reset y ← wPRF.Eval(ek, (c1, c2,PK1,PK2), (x,m1, r1, r2)) instead of
randomly chosen y ∈ Y. Again, by a similar argument as in the Hybd1, we have that the
distinguishing advantage of the adversary A between the hybrid games Hybd5 and Hybd6

is negligible. We state this in the following claim.

Claim 7. Assuming the PKE is a δ-selectively secure public-key encryption and the wPRF
is extractable, Hybd5 and Hybd6 are δ-indistinguishable.

The proof is analogous to that of Claim 2.

Observe that Hybd6 is the experiment ExptOWE
A (1λ, 1). The indistinguishability between the

above hybrid games implies that ExptOWE
A (1λ, 0) ≈δ ExptOWE

A (1λ, 1) and the distinguishing
advantage for the adversary A is strictly less than µ(λ), µ is a negligible function of λ. This
completes the proof.

Remark 3. We convert our OWE scheme into an offline functional witness encryption (OFWE)
scheme for a class of functions {fλ}λ∈N. The encryption algorithm of OFWE is the same as our
OWE except that it takes an additional input a function f ∈ fλ and then encrypts the pair of
the function f and a message m with the statement x using the PKE encryption to produce
ciphertexts ci ← PKE.Enc(PKi, (x, (f,m)); ri) for i = 1, 2. In line 3 of the circuit Cj (Figure

10), we will have PKE.Dec(SKj , cj) = (x̂, (f̂ , m̂)) and in line 5 it will return f̂(m̂, w) instead of
m̂ (see circuit Fj in Figure 14). Rest of the algorithms of OFWE.Setup and OFWE.Dec will
be the same as that of our OWE scheme. The time of encryption of the OWEF is bounded by
poly(λ, |x|+ |m|+ |f |) where |x|, |m|, |f | are the size of x,m, f respectively. The correctness and
the security of the OFWE depend on the same assumptions as in the case of our OWE.

5 Our Multi-Relation witness PRF

Construction 3. Let pPRF = (Gen, Eval, Punc) be a puncturable pseudorandom func-
tion with domain {0, 1}k, range Y and RE = (Setup, Enc, Eval) be a bounded input δ-sub-
exponential simulation secure sub-linear compact randomized encoding scheme in CRS model
for Turing machines. Our mwPRF = (Gen, F, KeyGen, Eval) for an NP language L with a set
of relations R = {R : |R| ≤ s, R : χ ×W → {0, 1},X = {0, 1}k and W = {0, 1}n−k}, is given
by the following algorithms.
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Hardwired: a pPRF key K and a relation R.
Input: an instance x ∈ X = {0, 1}k and a witness w ∈ W = {0, 1}n−k.
Padding: the circuit is padded to size pad = padER (s, d, n, λ), determined in the analysis.

1. if (R(x,w) = 1) then

2. y ← pPRF.Eval(K,x)

3. else y ← ⊥

4. end if

5. return y

Figure 15: Evaluation Circuit ER = EC[K,R]

• fk← mwPRF.Gen(1λ, s): This is run by a user with input a security parameter λ and a
bound s on the size of the relations in R.

– Choose a pPRF key K ← pPRF.Gen(1λ), K ∈ {0, 1}λ.

– Set and output fk = K as the secret function key. The user keeps fk as secret.

• y ← mwPRF.F(fk, x): This algorithm generates a PRF value y ← pPRF.Eval(K,x) by
taking input a secret function key fk = K and an instance x ∈ X . The value y ∈ Y is
treated as the mwPRF value corresponding to the statement x ∈ X .

• ekR ← mwPRF.KeyGen(fk, R): This algorithm is used to compute a evaluation key for
any given relation R ∈ R. It works as follows on input a secret function key fk and a
relation R:

– Construct the circuit ER ∈ {Eλ} as described in Figure 154. Let the circuit ER be
of size S with input size n, output size l and runtime bound T .

– Generate (crsi, pki) ← RE.Setup(1λ, 1S , 1n, 1T , 1l) for i ∈ {0, 1, . . . , n} where crsi
is a common reference string and pki is an encoding key. Set −→crs = {crs}ni=0 and
−→
pki = {pkj}nj=i.

– Compute the randomized encoding Π̃[
−→
pk1, ER, ε, α]← RE.Enc(pk0,Π[

−→
pk1, ER, ε, α], ε)

where ε is a null string, α is a random binary string and Π[
−→
pk1, ER, ε, α] is a Turing

machine defined in Remark 2.

– Build the special circuit G[Π̃[
−→
pk1, ER, ε, α],−→crs] as described in Figure 6 and output

ekR = G[Π̃[
−→
pk1, ER, ε, α],−→crs].

• mwPRF.Eval(ekR, x, w): An entity having a witness w ∈ W corresponding to an instance

x ∈ X , runs this algorithm using an evaluation key ekR = G[Π̃[
−→
pk1, ER, ε, α],−→crs] and

outputs G[Π̃[
−→
pk1, ER, ε, α],−→crs](z) where z = (x,w).

Correctness. We note that our mwPRF.F(fk, x) is a pPRF evaluation on x ∈ X and one can
only use mwPRF.Eval with an evaluation key ekR if he has a valid witness w for x such that
R(x,w) = 1 as the circuit ER is hardcoded with the relation circuit R. The correctness of this
scheme follows from a similar argument discussed in the correctness of Construction 1.

Padding Parameter. We take padER(s, d, n, λ) ≤ poly(λ, k, s) due to a similar argument as
in the case of our single relation witness PRF in Construction 1.

4The only difference from the circuit E (Figure 7) is that, ER is now hardcoded with a relation R that can vary with
evaluation key ekR.
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Efficiency. The efficiency of our multi-relation witness PRF is the same as that of our single
relation witness PRF in Construction 1.

Theorem 11. Assuming LWE with sub-exponential hardness and the existence of δ-sub-exponentially
secure one-way functions, if there exists a weakly sub-linear compact public key functional en-
cryption scheme for P/poly with δ-sub-exponential security, then there exists a δ-secure multi-
relation witness PRF scheme.

We skip the proof of this theorem as it is similar to the proof of Theorem 9.

6 Conclusion

We constructed a witness PRF from a pPRF and a sub-exponentially secure sub-linear com-
pact RE scheme in CRS model. More precisely, a sub-exponentially secure sub-linear compact
RE scheme can be obtained assuming sub-exponential hardness of LWE and existence of sub-
exponentially secure one-way functions, sub-exponentially secure weakly sub-linear compact
PKFE [LPST16b]. The existing construction of witness PRF [Zha16] is based on multi-linear
maps and the security is proved in (unreliable) generic multi-linear group model. We also
showed that our single relation witness PRF can be immediately converted into a multi-relation
witness PRF where the security depends upon the same assumptions as in the case of our single
relation witness PRF.

We use any extractable witness PRF to build an offline witness encryption (OWE) from a
public-key encryption and a sub-exponentially secure sub-linear compact RE scheme in CRS
model. Our OWE is inspired by the existing construction of OWE [AFP16]. We converted our
OWE into a offline functional witness encryption with the same modification shown in [AFP16].
However, we unable to produce a polynomial time extractor for our witness PRF. It will be
interesting to build such extractor so that extractable witness PRFs can be integrated in various
cryptographic constructions.

Our witness PRF and OWE are both works with a statement-witness pair whose lengths
are assumed to be bounded. As discussed in Remark 2, we have used the circuit G[·] as an
obfuscator for bounded input circuits (or Turing machines). Lin et al. [LPST16b] showed that
compact RE for certain “special purpose” distributions can be used to obfuscate unbounded
input Turing machines. Therefore we can use such compact RE for certain “special purpose”
distributions to get witness PRF or OWE for unbounded length statement-witness pair. We
note that compact RE for general distributions does not exist in the plain model [LPST16b].
It would be desirable to construct witness PRFs or OWEs that support unbounded length
statement-witness pair.
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