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Abstract. The prevalence and availability of cloud infrastructures has made them the de facto solution for storing
and archiving data, both for organizations and individual users. Nonetheless, the cloud’s wide spread adoption is
still hindered by data privacy and security concerns, particularly in applications with large data collections where
efficient search and retrieval services are also major requirements. This leads to increased tension between security,
efficiency, and search expressiveness, which current state of art solutions try to balance through complex crypto-
graphic protocols that sacrifice efficiency and expressiveness for near optimal security.
In this paper we tackle this tension by proposing BISEN, a new provably-secure boolean searchable symmetric
encryption scheme that improves these three complementary dimensions by exploring the design space of isolation
guarantees offered by novel commodity hardware such as Intel SGX, abstracted as Isolated Execution Environments
(IEEs). BISEN is the first scheme to enable highly expressive and arbitrarily complex boolean queries, with minimal
leakage of information regarding performed queries and accessed data. Furthermore, by exploiting trusted hardware
and the IEE abstraction, BISEN reduces communication costs between the client and the cloud, boosting query
execution performance. Experimental validation and comparison with the state of art shows that BISEN provides
better performance with enriched search semantics and security.

1 Introduction

Cloud computing has had a profound impact on the way that we design and operate systems and applications. In
particular, data storage and archiving is now commonly delegated to cloud infrastructures, both by companies and
individual users. Companies typically want to archive large volumes of data, such as e-mails or historical documents,
overcoming limitations or lowering costs of their on-premise infrastructures [2], while individual users aim at making
their documents easily accessible from multiple devices, or simply avoid consuming storage capacity of their mobile
devices [20]. However, data being outsourced to the cloud is often sensitive and should be protected both in terms
of privacy and integrity. Private information incidents are constant reminders of the growing importance of these
issues: governmental agencies impose increasing pressure on cloud companies to disclose users’ data and deploy
backdoors [21, 30]; cloud providers are responsible, maliciously or accidentally, for critical data disclosures [19, 26];
and even external hackers have gained remote access to users data for a limited time window [37]. Cloud outsourcing
services are thus highly incentivized to address these security requirements. In particular, when storing and updating
large volumes of data in the cloud it is essential to offer efficient and precise mechanisms to search and retrieve
relevant data objects from the archive. This highlights the need for cloud-based systems to balance security, efficiency,
and query expressiveness.

To address this tension, Searchable Symmetric Encryption (SSE) [10] has emerged as an important research topic
in recent years, allowing one to efficiently search and update an encrypted database within an untrusted cloud server
with security guarantees. Efficiency in SSE is achieved by building an encrypted index of the database and also storing
it in the cloud [23]. At search time, a cryptographic token specific to the query is used to access the index, and the
retrieved index entries are decrypted and processed. As a much necessary communication complexity optimization,
most SSE schemes delegate these cryptographic computations to the cloud, as multiple index entries would otherwise
have to be downloaded to the client side. However, performing sensitive operations in the cloud also leads to significant
information leakage, including the leakage of document identifiers matching a query, the repetition of queries, and
the compromise of forward and backward privacy [48] (respectively, if new update operations match contents with
previously issued queries, and if queries return previously deleted documents). These are common, yet severe, flavors
of information leakage that pave the way for strong attacks on SSE, including devastating file-injection attacks [50].
Another relevant limitation in SSE schemes is query expressiveness, as most solutions only provide single keyword
match [16] or limited boolean queries (e.g. forcing queries to be in Conjunctive Normal Form and not supporting
negations) [31]. This hinders system usability and may force users to perform multiple queries in order to retrieve
relevant results, which leads to extra communication steps and increased information leakage.



In this paper we address these limitations by presenting BISEN (Boolean Isolated Searchable symmetric EN-
cryption), a new provably-secure boolean SSE scheme that improves query expressiveness by supporting arbitrarily
complex boolean queries with combinations of conjunctions, disjunctions, and negations. This is a significant im-
provement over the current state of art, since supporting boolean queries is fundamentally more challenging than
single-keyword queries and addressing negations is a non trivial task. Furthermore, BISEN also boosts performance
by minimizing the number of communication steps and data transference between clients and cloud servers. A central
insight in the design of BISEN is the fact that we can securely delegate critical computations to the cloud by leveraging
on a hybrid solution that combines standard symmetric-key cryptographic primitives (e.g. Pseudo-Random Functions
and Block-Ciphers [35]) with remote attestation capabilities offered by modern trusted hardware, formally captured
by an abstraction called Isolated Execution Environments (IEEs) [6].

An IEE is an environment that allows applications to execute in isolation from all external interference (including
co-located software and even a potentially malicious Hypervisor/OS) and that provides a mechanism for the remote
attestation of computed outputs. Until recently, such an abstraction could only be built through hardware that was
infeasible to deploy in commodity cloud infrastructures [34], however recent advances in trusted computing have
made IEEs available in commodity hardware. Prominent examples include Intel SGX [22] and ARM TrustZone [1],
which are being deployed in current desktop and mobile processors and will soon become available as part of many
cloud infrastructures [44].

A main advantage of designing our system to leverage the IEE abstraction lies in its portability, as our solution can
be easily instantiated using different existing or future IEE-enabling technologies as they become available in cloud
platforms, while preserving security guarantees. This is also relevant when considering recent attacks on trusted hard-
ware [39] and subsequent patches [14]. To further increase this portability, we extend the IEE formalization to support
very lightweight hardware technologies (such as Intel SGX, with its limit of 128MB EPC size), complemented with
cryptographically protected accesses to more abundant untrusted resources in the machine hosting the IEE or in other
external cloud storage services. This extension allows us to minimize assumptions regarding the underlying technol-
ogy employed in practice, while simultaneously being able to efficiently and securely support very large databases.
This approach empowers BISEN (to the best of our knowledge) to be the first forward and backward private boolean
SSE scheme with minimal leakage, in the sense that updates reveal no information and queries only reveal which
encrypted index entries are accessed, and verifiability against fully malicious adversaries, with reduced computation,
storage, and communication overheads.

The paper is organized as follows: in §2 we discuss the relevant state of art; §3 presents a technical overview of
BISEN’s architecture, system and its security guarantees; §4 discusses some fundamental concepts regarding IEEs and
SSE, as well as our extensions to the IEE abstraction; §5 details BISEN, discusses design trade-offs, and formalises its
security analysis; §6 describes our open-source prototype implementation based on Intel SGX; in §7 we experimentally
evaluate BISEN’s performance and compare it with the state of art in boolean SSE; and §8 concludes the paper.

2 Related Work

Searchable Encryption was first studied by Song et al. [47]. Their work was based on symmetric-key cryptography and
allowed single-keyword queries over text documents with linear performance in regard to the dataset size. Curtmola
et al. [23] presented the first SSE scheme with sub-linear search performance. Their work was based on an inverted
index, mapping keywords to documents containing them, and served as basis to most future SSE schemes. The authors
also introduced the first formal notions of security and leakage for SSE, including the leakage of search patterns
(i.e. if a query is being repeated, leaked by its deterministic identifier) and access patterns (i.e. which documents are
returned by a query, leaked by their deterministic identifiers). Chase and Kamara [18] presented Structured Encryption,
a generalization of SSE for different data structures.

Kamara et al. [33] introduced the first dynamic SSE scheme, allowing documents to be updated with addition and
deletion of keywords. Besides search and access patterns, their approach also leaked update patterns, i.e. deterministic
identifiers of the updated keywords. Kamara and Papamanthou [32] avoided disclosing update patterns at the sacrifice
of performance. Cash et al. [16] improved on performance results with one of the currently most efficient dynamic
SSE schemes. Naveed et al. [41] built the first dynamic SSE scheme using only storage servers. Their approach has
similarities with ours, as both require no meaningful computations in the server. However, their work was focused
on exact-match single keyword queries, required additional server storage, and leaked update patterns. Furthermore,
extending more recent SSE schemes (either single-keyword or Boolean) to also reduce computations in the server is
not trivial without significantly impacting storage and/or communication performance.



Stefanov et al. [48] considered backward and forward privacy for the first time, presenting a dynamic SSE scheme
addressing the latter. Raphael Bost [11] further studied the problem of forward privacy and proposed a more efficient
solution with sub-linear search performance. However, the approach was based on public-key cryptographic prim-
itives, which increase computational and storage overheads in comparison with symmetric-key primitives. Bost et
al. [12] studied backward privacy in depth for the first time, proposing the use of Range-Constrained Pseudo-Random
Functions [9] and Puncturable Encryption [29] to solve backward (and forward) privacy. Consequently, employing
these new primitives further increases the computational, storage, and communicational overheads of SSE schemes.

Boolean SSE was first studied by Golle et al. [28]. Their work focused on conjunctive queries, displayed linear
search performance, and could only be used with structured data. Ballard et al. [5] and Byun et al. [15] proposed a
follow up work, but were still limited to conjunctive queries, linear performance, and structured data. Cash et al. [17]
supported conjunctive queries with sub-linear performance for the first time, as well as disjunctive queries with linear
performance. BlindSeer [43] supported both conjunctions and disjunctions, however it required multiple rounds of
communication and additional bandwidth consumption. Kamara and Moataz [31] proposed the most recent Boolean
SSE scheme to date. The scheme supports dynamic updates with forward privacy and boolean queries with sub-linear
search performance. On the other hand, the proposed scheme does not support negations and their boolean queries
must be in Conjunctive Normal Form (CNF), possibly forcing users to rewrite their queries in order to meet this model.
Furthermore, their scheme leaks more than the search and access patterns of the boolean query (it leaks the patterns
of some individual keywords and of the resulting conjunctions/disjunctions), it requires quadratic server storage in the
number of unique keywords in the database, and despite its sub-linear search performance in the database size, it still
requires quadratic performance in the query size.

Trusted computing was first studied by Santos et al. [45] in the context of outsourced computations and cloud ser-
vices. Barbosa et al. [6] provided the first formal notions and analysis of trusted computing from commodity hardware
(namely Intel SGX [22] and ARM TrustZone [1]), defining the abstraction of Isolated Execution Environments. IEEs
have been used in different application scenarios, achieving increased efficiency in comparison to solutions resorting
only to cryptography. Examples include general secure outsourced computation [6], secure multiparty computation [3],
privacy-preserving data analytics [46], blockchain systems [40], and oblivious machine learning [42]. Fisch et al. re-
cently used Intel SGX to develop a practical Functional Encryption (FE) scheme [25]. SSE, as most schemes for
privacy-preserving computations, can be seen as specialization of FE, meaning that the approach proposed by the
authors could also be employed to solve the problems we address in this work. However, our approach is specifi-
cally tailored for solving the issues of searching encrypted data, optimizing performance and efficiency as no general
purpose approach traditionally can. The closest problem addressed through their FE scheme was Order-Revealing
Encryption. Recently, Fuhry et al. [27] used SGX for efficiently supporting range queries in SSE. Their approach has
similarities with ours, but its focus is on a fundamentally different problem.

3 Technical Overview

We now present a high level view of BISEN. A detailed description is provided later in Section 5. Figure 1 provides
an overview of our approach, and the communication patterns between the central components of BISEN. In BISEN,
there are four main components: the client, the trusted hardware (IEE), the cloud server, and a cloud storage service.
The main idea in BISEN is to leverage IEEs as remote trust anchors, responsible for performing secure computations
over sensitive cloud-stored data, which would otherwise require complex cryptographic mechanisms for performing
server-side computations. To achieve this goal, the cloud server will operate the IEE and manage its communications
with both the client and the cloud storage service, while the storage service will act as an extended storage for the IEE
(as the IEE can potentially be lightweight, possessing small trusted storage capacity) and store BISEN’s main index.
In this model, we consider both the server and storage service to be fully malicious, i.e. they may attempt to break data
privacy, integrity, or computation correctness. Denial of service attacks are considered out of scope for this work.

The system model of BISEN is comprised of two main stages: bootstrapping and operational. In the bootstrapping
phase, the client establishes a secure communication channel with the IEE (IEE-Client Crypto Secured Channel in
Figure 1). This will consist in executing a key exchange protocol, with the server acting as intermediary, where the
IEE uses hardware-specific cryptographic proofs that the code being run exactly matches that of BISEN. After this
stage, the client and IEE will use this secure channel for communication, and the operational phase begins.

In the operational phase, the client can add/remove keywords to documents (i.e. update the database), as well
as search for documents matching a boolean expression with multiple keywords. These functionalities are fulfilled
by having the client interact with the IEE, sending encrypted messages with the desired inputs. In response, the IEE



Fig. 1: Overview of the proposed approach.

processes the clients’ requests and interacts with the storage service to store/retrieve index entries (SSE Crypto Secured
Channel in Figure 1), returning results to the client. BISEN’s high efficiency lies in exploring the interplay between
a lightweight client-side structure, isolation of cryptographic keys and secure processing within server-side IEE, and
verifiable storage to a cloud storage service.
Application Scenario. An interesting application scenario for BISEN is encrypted archival of email in the cloud. In
such a scenario, users would be able to securely outsource the storage and management of their emails to a third-
party cloud provider, while still being able to have rich search features that are commonly found in todays unsecured
email cloud archival services. As studied by Zheng et al. [50], cloud email is an example scenario that can be easily
targeted by file-injection attacks, hence this application enforces the need to improve the security of SSE schemes to
withstand fully malicious adversaries. Furthermore, forward privacy is known to help mitigate such attacks [50], and
backward privacy may have important implications in future attacks as well [12]. Overall, minimizing information
leakage should be a top priority when deploying SSE schemes in practical scenarios.

4 Definitions and Tools

In this paper we denote by λ the security parameter and µ(λ) a negligible function in it. We will use the standard
security notions of variable-input-length Pseudo-Random Functions (PRF, instantiated as an HMAC in our imple-
mentation) [7] and authenticated encryption schemes ensuring indistinguishability under chosen-ciphertext attacks
(IND-CCA) [35]. We assume the keys of these primitives to be uniformly sampled from {0, 1}λ by the key generation
algorithm. We consider adversaries to be probabilistic, running in time polynomial on security parameter λ.

4.1 Isolated Execution Environments

We follow the notation and formalization of Barbosa et al. [6] to define IEEs. From a high level, an IEE can be seen
as an idealized random access machine, running a fixed program, and whose behaviour can only be influenced by
a well-specified interface that allows input/output interactions with the program. Isolation guarantees in IEEs follow
from the requirements that: the I/O behaviour of programs running within them can only depend on themselves, on the
semantics of their language, and on inputs received; and that the only information revealed about these programs must
be contained in their I/O behaviour. This abstraction allows for the formal treatment of remote attestation mechanisms
offered by technologies such as SGX and TrustZone, which were shown in [6] to be sufficient for the deployment of a
provably secure Outsourced Computation protocol.

Building on these definitions, Bahmani et al. [3] demonstrated how to refine the attestation mechanism to enable
for the deployment of general multiparty computation. Their design is a natural approach to secure computation using



trusted hardware, considering two main stages. First, attested computation mechanisms are employed in order for the
IEE to establish a secure channel with every protocol participant. Afterwards, the participants can use these channels
to interact with a reactive functionality on the IEE with confidentiality and integrity guarantees.

In our work, the approach in [3] is adapted to securely execute a boolean SSE functionality for a single partic-
ipant – the client. The original protocol is composed by two stages: a bootstrapping stage, where clients perform a
key exchange agreement to establish a secure channel with the IEE; and an online stage, where clients exchange en-
crypted inputs and outputs with the IEE using said channel. For clarity in presentation, we abstract this behavior as
IEE = (Setup,Send,Receive). Setup corresponds to the full bootstrapping stage, while Send and Receive will refer to
transmissions using the secure channel. These operations are detailed as follows:

• Setup(1λ) = (SetupC(1λ), SetupS(1λ)) produces state stIEE with the exchanged key and communication trace t
for both the client and the server.
• Send(stIEE,m) uses the channel to encrypt m with the key in stIEE. This outputs c and updates state stIEE.
• Receive(stIEE, c) uses the channel to retrieve encrypted message c using the key in stIEE. This outputs m and

updates state stIEE.

The proposed protocol is also accompanied by a full proof demonstrating how it enables a secure channel against
active adversaries to be simulated by a probabilistic polynomial time (ppt) algorithm with no knowledge of the secret
key. Differently from [3], however, we consider a functionality that relies not only on trusted state (inside the IEE),
which is assumed to be incorruptible by the underlying system, but also on untrusted state (outside the IEE), which has
to be explicitly protected1 (e.g. through cryptographic algorithms). This untrusted state mechanism is used to expand
IEE resources beyond specific practical limitations, providing a formalization of IEEs with minimalistic assumptions.

To establish interactions with this untrusted state, and following a dictionary-like notation, we define in our IEE
abstraction three system calls that should be available for programs: uInit (untrusted init), uGet (untrusted get) and
uPut (untrusted put). More specifically, our idealized machine provides the following API for IEE programs to interact
with untrusted resources:

• uInit() initializes an empty data-structure D in untrusted resources outside the IEE. It outputs D, making it
available for future uPut and uGet operations;
• uPut(D, {li, vi}∗i=0) accesses untrusted resources outside the IEE and stores a group of entries {li, vi}∗i=0 in

data-structure D. It outputs updated structure D.
• uGet(D, {li}∗i=0) accesses untrusted resources outside the IEE and outputs a group of values {vi}∗i=0, stored in

positions {li}∗i=0 of data-structure D.

Formally, we consider uInit and uPut to additionally produce an execution trace, containing the operation, its
input, and the output. In the security experiment this trace is given directly to the adversary, capturing the notion that
all data stored through this mechanism should be considered leaked, and cryptographic mechanisms must be employed
to handle this accordingly. Since we are considering a fully malicious adversary, all values returned by uGet can be
set by the adversary.

4.2 Searchable Symmetric Encryption

In SSE, a database DB is composed by a collection of d documents, each with a unique identifier id and containing
a set of keywords W. For a keyword w, DB(w) is the set of documents where it occurs. The total number of doc-
ument/keyword pairs is denoted by n. All n document/keyword pairs are stored in an index I, which is a dictionary
structure mapping each unique keyword w to a list of matching documents (id0, .., id|DB(w)|−1) and allowing queries
to be performed in time sub-linear in n.

φ(w̄) is a boolean query composed of a set of keywords w̄ and satisfying a boolean formula φ. DB(φ(w̄)) represents
the set of documents satisfying φ(w̄). Given this set, the client can then fetch and decrypt the corresponding encrypted
documents (or any subset of them). This allows decoupling the storage of data from the storage of metadata (which is
the focus of this work and most SSE schemes [11, 17]), meaning that they can be stored on different storage systems.

A dynamic boolean searchable symmetric encryption scheme
∏

= (Setup,Search,Update) consists of three pro-
tocols between a client and a server:

1 Note that this does not require an extension to the original API for IEEs, being compatible with the assumed abstraction for trusted
machines. Indeed, this mechanism can also be achieved by having the IEE return unencrypted requests, and halt execution until
the corresponding unencrypted values have been provided.



• Setup (1λ; 1λ) = (SetupC(1λ), SetupS(1λ)) is a protocol between the client and the server, both with input
security parameter 1λ. At the end of the protocol, the client has secret parameter K and the server has the (initially
empty) encrypted database EDB.2

• Search (K, φ(w̄);EDB) = (SearchC(K, φ(w̄)), SearchS(EDB)) is a protocol between the client with input secret
parameter K and boolean query φ(w̄), and the server with input EDB. At the end of the protocol the server has no
output and the client outputs a set of document identifiers. If for any possible inputs this output is DB(φ(w̄)), we say
the SSE scheme is correct.
• Update (K, op, inp;EDB) = (UpdateC(K, op, inp), UpdateS(EDB)) is a protocol between the client with input

K, operation op taken from the set {add, del} (i.e. an addition or deletion of keywords to a document, respectively),
and input inp = {id,W} where id is the identifier of a document and W is a set of keywords. The server takes EDB as
input. At the end of the protocol the server outputs updated EDB, while the client has no output.

4.3 SSE Security

Semantic security of an SSE scheme is defined with respect to a leakage function L = (LSetup,LSearch,LUpdate)
[23, 33]. This definition of security follows the simulation-based real/ideal paradigm that is standard for security
definitions in cryptography [35]. Leakage function L describes precisely what information each protocol in the scheme
is allowed to reveal.

Definition 1. Let
∏

= (Setup,Search,Update) be a dynamic boolean SSE scheme andL = (LSetup,LSearch,LUpdate)
a leakage function. For algorithms A (the adversary) and S (a simulator), we define security games RealΠ,A(1λ)
and IdealL,S,A(1λ) as follows:

RealΠ,A(1λ): run (EDB,K)←$ Setup(1λ) and give EDB to A. A then adaptively requests executions of Search
and Update, selecting client inputs inp. The game responds by executing the requested protocols with input (K, inp),
allowingA to select the server input EDB and arbitrarily respond to uGet requests. The execution transcripts are then
provided to A. Eventually, A returns a bit, which is the output of the game.

IdealL,S,A(1λ): run (EDB, st)←$ S(LSetup(1λ)) and give EDB to A. A then repeatedly requests protocols
Search and Update, selecting client inputs inp, server input EDB and arbitrarily respond to uGet requests. The game
responds by performing S(st,LSearch(inp)) and S(st,LUpdate(inp)), respectively, and returning the simulated tran-
script back to A. Eventually, A returns a bit, which is the output of the game.∏

is L-secure against adaptive attacks if, for any active adversary A, there exists a simulator S such that:

|Pr[RealΠ,A(1λ) = 1]− Pr[IdealL,S,A(1λ) = 1]| ≤ µ(λ)

4.4 SSE Common Leakage

When a search is performed, most SSE schemes leak both the repetition of queried keyword tokens and the identi-
fiers of the documents returned [23, 50]. These are usually referred as search and access patterns, respectively. More
specifically, for search patterns the leakage function maintains a list with all issued queries so far, accompanied by
their respective timestamps; while for access patterns the leakage function keeps a set Hist(w) for each unique key-
word w, storing all document ids where w was ever added or removed. Historically, boolean SSE schemes not only
reveal the aggregate search and access patterns of a boolean query, but also of individual keywords or some subsets
in-between [17, 31].

In BISEN, our goal regarding information leakage is for Search operations to only reveal which encrypted EDB
entries are accessed. This is similar to an access pattern, nonetheless it is a stronger security notion, since document
identifiers are protected at all times. More precisely, we aim for BISEN to only reveal a set of labels accessed during
a search, where a label can be seen as a number attributed to an EDB entry upon its creation. Formally, leakage
function LSearch produces EDB(w̄) = ∪|w̄|i=1EDB(wi), where EDB(w) = {ld : d ∈ DB(w)} is a set of labels uniquely
identifying the specific entries in EDB accessed during an execution of Search. This captures a more refined notion
of leakage, where executing Search for two distinct queries can leak the same label set (i.e. φ(w̄1) 6= φ(w̄2) and

2 This process assumes an a priori secure initialisation of the IEE-enabling machine. This is common for trusted hardware ap-
proaches, and is implicit throughout the paper for clarity of presentation.



Setup(1λ)

Client:
1: stIEE←$ IEE.Setup(1λ)
2: kF ←$ F.Gen(1λ)
3: W← Init()

Server:
4: IEE.Setup(1λ)

IEE:
5: stIEE←$ IEE.Setup(1λ)
6: nDocs← 0
7: kE←$ Θ.Gen(1λ)
8: I← IEE.uInit()

Update(op, w, id)

Client:
1: kw ← F.Run(kF , w)
2: c← Get(W, w)
3: if c = ⊥ then
4: c← 0
5: else
6: c← c+ 1

7: m∗←$ IEE.Send(stIEE, {op, id, c, kw})
8: Send m∗ to Server.
9: W← Put(W, w, c)

Server:
10: Send m∗ to IEE.

IEE:
11: {op, id, c, kw} ← IEE.Receive(stIEE,m

∗)
12: l← F.Run(kw, c)
13: id∗←$ Θ.Enc(kE , (l, op, id))
14: I← IEE.uPut(I, l, id∗)
15: if id > nDocs then
16: nDocs++

Search(q)

Client:
1: {w̄, φ} ← ProcessBooleanQuery(q)
2: C ← [ ]
3: for all w ∈ w̄ do
4: kw ← F.Run(kF , w); c← Get(W, w)
5: C ← {kw, c} : C

6: c∗←$ IEE.Send(stIEE, {C, φ})
7: Send c∗ to Server.

Server:
8: Send c∗ to IEE.

IEE:
9: {C, φ} ← IEE.Receive(stIEE, c

∗)
10: Q← Init()
11: for all {kw, c} ∈ C do
12: L← [ ]
13: for all ci ← 0 . . . c do
14: l← F.Run(kw, ci); L← l : L

15: Q← Put(Q, kw, L)

16: L′ ← Flatten(Q);
17: Π←$ RandomPermutation(1λ); L′ ← Π(L′)
18: D′ ← IEE.uGet(I, L′); D ← [ ]
19: for all id∗ ∈ D′; l′ ∈ L′ do
20: (l, op, id)← Θ.Dec(kE , id

∗); Verify(l, l′)
21: D ← {op, id} : D

22: D ← Π−1(D); Q′ ← Join(Q,D)
23: R← Resolve(φ,Q′, nDocs)
24: r∗←$ IEE.Send(stIEE, R)
25: Send r∗ to Server.

Server:
26: Send r∗ to Client.

Client:
27: R← IEE.Receive(stIEE, r

∗)

Fig. 2: Our BISEN scheme based on IEE = (Setup,Send,Receive, uInit, uPut, uGet), PRF F = (Gen,Run), and
authenticated encryption scheme Θ = (Gen,Enc,Dec).

EDB(w̄1) = EDB(w̄2)). For instance, boolean formulas φ1 = w1 ∨ w2 and φ2 = w1 ∧ w2, although representing
different queries, access the same label set.

Forward and backward privacy are also important security definitions in SSE. Intuitively, forward privacy enforces
that update operations should not reveal anything regarding the updated keywords, even if combined with previously
issued query tokens [11], and backward privacy enforces that search operations should only reflect the current state of
the database, and should reveal nothing regarding deleted keywords [12]. More formally, an SSE scheme is forward-
private if its update leakage is only function of the security parameter λ [31], and it is backward-private if its search
leakage only reveals the documents currently matching the query (or, in our case, their labels).

5 BISEN - The Scheme

In this Section we present BISEN’s full details. Figure 2 presents the algorithms that define our scheme. As explained
in Section 3, BISEN can be in one of two phases: bootstrapping and operational. The first phase is completed with
BISEN’s Setup algorithm, while the last phase comprises all calls to Update and Search algorithms.

In the Setup algorithm, the client and IEE initiate their cryptographically secured channel. This is achieved through
execution of the IEE.Setup protocol (as defined in Section 4.1). From this execution results the channel’s cryptographic
key, which will be stored and accessible through state stIEE. Additionally, they initiate their states: the client creates
kF (to be used with PRF F) and a dictionary of counters W, mapping each unique keyword w in the database to an
integer counter c initialized at zero (each increment in c represents a new document containing w); and the IEE creates
a counter nDocs (which counts the number of unique database documents and will be used in the Search protocol to



help resolve Boolean queries with negations) and generates key kE (to be used with encryption scheme Θ). Finally,
the IEE also asks the storage service to initiate the scheme’s index I, through the IEE.uInit call.

The Update protocol can be used both for adding or deleting keywords to/from documents, depending only on
the value of input op. Moreover, the protocol follows the same specification for both, and for the server they are
indistinguishable. When performing an update, the client starts by sending (op, id, c, kw) to the IEE through their
secure IEE-Client channel (namely through IEE.{Send,Receive} calls), where kw is a PRF transformation of keyword
w and c is the keyword’s counter. We could also have the client send w directly to the IEE, however this would leak
the length of keywords. Instead, building and sending kw acts as an efficient padding system, normalizing the length of
messages sent to the IEE and making updates for different keywords indistinguishable. Upon receiving this message,
the IEE builds l, the label for this update, by applying F on kw and c. l determines the position in index I where the
update will be stored. As index value, the IEE encrypts (l, op, id) with Θ, an authenticated encryption scheme. Θ
ensures the preservation of both privacy and integrity of encrypted index values. Furthermore, by including l in the
encrypted index value, the IEE can validate during Search operations that the server is returning correct responses
when it requests index values from untrusted storage. Finally, the IEE sends this new index entry to the server for
storage, through the IEE.uPut call, and increments nDocs if this is a new document.

When searching with a boolean query, the client also sends kw and c to the IEE, for each keyword w in the query.
Additionally the client sends φ, the boolean formula of the query that the IEE needs for computing the relevant results.
Given this message, the IEE recalculates all labels for the inputed keywords, requesting the respective index positions
from the server through IEE.uGet. To hide any possible patterns in the query structure, the IEE randomly shifts label
order and requests all at once (or alternatively in single, but successive requests). The IEE proceeds to decrypt the
retrieved index entries with Θ, verifies if the server returned the correct index value for each label (aborting the
protocol otherwise), and resolves the boolean query by applying φ to the obtained results.

In this setting, the process of resolving a boolean query can be described in light of set operations. Searching
for a keyword results in a set of document identifiers. When two or more keywords are queried, their sets can be
unionized or intersected, depending if φ specifies disjunctions or conjunctions between them, respectively. For queries
of three or more keywords, parentheses can also be used to specify precedence between boolean operands. Performing
negations is somewhat more complicated however, since inverting sets implies having knowledge of the range of all
possible values (in this case, all document ids). To circumvent this issue we define that documents are identified by
the incremental values of counter nDocs, starting at zero. Additionally, correctness of document identifiers is assured
by enforcing that the ids inputed on Update belong to the range [0..nDocs + 1]. Using this approach, the system can
easily filter results for all existing documents, and thus efficiently support negations by searching for a keyword and
inverting its document set3.

5.1 Optimizations and Extensions

An important goal in BISEN is being able to support lightweight IEE technologies, such as Intel SGX with its restricted
EPC size of 128MB. The proposal to extend IEE storage with cryptographically secured accesses to untrusted storage
partially supports this goal. However, when performing a search in very large databases, intermediary data that the
IEE needs to process may still be too large for such hardware restrictions. In these scenarios, incremental computing
principles can be applied to ensure scalability: the IEE can dynamically calculate how many index entries will fit in
its limited trusted storage, request that many entries through the IEE.uGet call, process and discard them, preserving
only partial search results and merging them with the results of previous iterations of this algorithm.

Where to store dictionary of counters W is another design choice that needs to consider hardware limitations and
the database size. In Figure 2, we store W in the client for increased scalability. However counter computations are only
performed inside the IEE, meaning that in scenarios with small databases, W can eventually be stored and managed
by the IEE.

Due to the simplicity of our scheme, it is also very easy to extend its query expressiveness and support even richer
queries. Ranked queries [4], for instance, which provide search results sorted by relevance to the query, can be easily
supported by adding the frequency of a keyword in a document to its encrypted entry in index I. Then, at search
time, the isolation properties of the IEE can be leveraged to remotely compute and sort search results based on those
frequencies and other database-wise metrics already stored within the IEE.

3 We assume that ids are never effectively removed, i.e. even if a document has all of its keywords deleted, its id will still exist and
will represent an empty document. This approach has other benefits as well, including the possibility of recycling document ids.



5.2 Security Analysis

The leakage of BISEN is parametrized by three leakage functions with shared state (LSetup,LUpdate,LSearch). Only
LSearch produces leakage, detailed as follows:

LSearch(q) = ((|φ|+N), |Resolve(φ,D, nDocs)|, L)

where |φ| is the length of the boolean formula of the query, N is the number of distinct words on a query. The expres-
sion |Resolve(φ,D, nDocs)| is the length of the query response, and L is the set of labels relevant for the resolution
of the query. L is stateful in the sense that it keeps track of nDocs, how many distinct words are in the database (to
compute N ), and the index of words and document identifiers (to compute Resolve and L).

By relying on fixed-sized word identifiers and performing cryptographic operations on a trusted environment, the
Update protocol provides the server with authenticated encryptions of messages of the same length, regardless of the
associated document. This allows for the semantic security of the underlying symmetric encryption scheme to be used
to ensure forward privacy. Our approach for backward privacy closely follows the approach of Bost [12] (specifically,
backward privacy with update pattern, as described in Section 4.3 of [12]), where insertions and deletions are stored
in an indistinguishable fashion, and are then used on the client side to filter search results. Indeed, the usage of IEEs
as trust anchor within the server allows for an efficient implementation of a protocol that would otherwise require two
roundtrips.

Theorem 1. If encryption scheme Θ ensures IND-CCA security, F is a pseudorandom function and IEE provides a
secure channel with IND-CCA security, then the BISEN scheme presented in Figure 2 is (LSetup,LUpdate,LSearch)-
secure according to Definition 1.

The full proof can be found in Appendix C. We now provide a sketch.

PROOF SKETCH. We describe a PPT simulator S for which the advantage of any PPT adversary A to distinguish
between the output of RealSSEΠ,A and IdealSSEL,S,A is negligible. Our simulator responds to requests as follows:
• Upon Setup: The simulator runs the IEE channel simulator for setup to produce a trace and an internal state.

It then generates a random function g, the encryption key via Θ.Gen, a counter (used to keep track of simulated
document labels), and requests for an external structure initialization uInit to get I, which will be used to store dummy
encryptions. It maintains state and returns the setup trace and the external structure I.
• Upon Update: The simulator prepares dummy data with the fixed update size and runs the IEE channel sim-

ulator to produce a dummy encrypted communication message. It then runs g(c) to produce a label, and encrypts a
corresponding pair composed of the label and a dummy identifier of appropriate length using Θ.Enc. The counter is
updated, and the simulator returns the IEE-encrypted message and the external put request.
• Upon Search: The simulator receives the size of the input message, the size of output message, and a set of

counters. The simulator prepares get requests for all received counters (which it converts to labels by using g) and
gives them to A. A gets to select arbitrary responses to these requests. The simulator then verifies if all responses
from A have the (l, id∗) structure and if the l corresponds to the requested label, and runs the IEE channel simulator
to produce encrypted dummy communication messages. It then returns the two fake messages, and the list of external
get requests.

Uniqueness in pair identifier/counter (id, c) of RealA and counter c of IdealA,S follows from the construction
of Setup and Update, which given prf-security ensures indistinguishability from outputs from a random function g
applied to a unique counter. Unforgeability of Θ and uniqueness of words and counters ensures thatA cannot produce
a ciphertext that does not exactly match the stored data for said word/counter pair on the corresponding update request.
The security of the secure channel and the sequence numbers used preventA from emulating a fake BISEN execution,
forging client requests, altering the order of messages exchanged by BISEN, or distinguishing legitimate requests from
randomly generated values. Finally, correctness of BISEN ensures that query resolution in RealΠ,A and IdealL,S,A
produce equivalent results.

6 Implementation

We implemented a prototype of BISEN in C/C++, with around 6200 lines of code. Our prototype is based on Intel
SGX [22], using its remote-attestation and enclave management primitives to provide the IEE functionalities in BISEN.
Our implementation is open-source and available at https://github.com/sgtpepperpt/BISEN.



IEE-Client Communications. A central component in BISEN is the IEE-Client secure channel, which is boot-
strapped following the attestation-based key-exchange protocol of Bahmani et al. [3]. To implement this channel we
extended an SGX-based open-source implementation provided by the authors, adapting it to BISEN.

Until the termination of the protocol, all outputs produced by the IEE are attested and verified by the client. The
employed mechanism for attestation follows the design originally proposed in [6], where each program running on
an IEE must produce a signature of its code and I/O trace thus far. For Intel SGX, this relies on the Quoting enclave,
which uses the EPID group signature scheme [13] to produce a signature (quote) binding the enclave execution trace
with the code that produced such trace. Verification of the quotes can then be performed by the client through the Intel
Attestation Service.

In the implementation of the key-exchange protocol, the client begins by generating a fresh key pair (pkC , skC),
hard-coding public key pkC on the code to be run within the IEE before deployment. This will uniquely bind the code
being run within the IEE to that specific client. The bootstrapping of the secure channel between client and IEE is as
follows:

1. The client sends the BISEN code to be run within the IEE, hard-coded with pkC .
2. The IEE generates a fresh key pair (pkI , skI) and sends pkI to the client, accompanied by a cryptographic proof

of attestation.
3. The client verifies the attestation of pkI and generates a symmetric communication key k, which is sent encrypted

to the IEE using pkI and signed with skC .
4. The IEE can then decrypt the received ciphertext and verify its signature to obtain k. If no errors have occurred, the

IEE produces an attestation of a confirmation message. From here onwards, the IEE is ready for BISEN operations.
5. The client verifies the confirmation message with respect to the trace of exchanged messages, aborting in case of

failure. From here onwards, the client is ready for BISEN operations.

Observe that mechanisms for attestation, public-key encryption and digital signatures are used to ensure asymmet-
ric two-way authentication. The attestations produced in (2) and (4) will ensure the client that it is communicating with
its legitimate BISEN IEE. The public-key encryption of (3) under pkI will ensure that no eavesdropping adversary can
read the communication key k that is being transmitted from client to IEE. The client’s signature using skC will ensure
the IEE that no adversary can produce a forgery of the message sent to the IEE in (3).

Extending the functionality. The previous key-exchange stage enables for the client and the IEE to have a securely
shared symmetric key. This can be used to efficiently protect the confidentiality and integrity of messages to and from
the IEE. This suffices for the client to iteratively provide inputs and receive outputs, which are securely computed
within SGX enclaves. However, BISEN also requires additional storage resources to be accessed from within the IEE.
We thus extend the process on the IEE to have access to the {uInit, uPut, uGet} calls.

One of the main advantages of this approach lies in its modularity. In our current implementation, this interface
uses SGX ocalls to provide an interface for storing BISEN’s index I. Specifically, this is used so that the server running
the IEE is not storing the files, but is instead relying on an external cloud storage service. Such a deployment model
enables for variations of BISEN as well, where the client synchronizes several IEEs to access the same external storage
service, thus increasing the availability of the system.

Cryptographic Libraries. The original implementation of the protocol from [3] employed the NaCl cryptographic
library [8] for elliptic curve algorithms and other cryptographic primitives. Our adapted implementation relies on
LibSodium [38] instead, which is a more complete and up-to-date constant-time aware cryptographic library. We
use LibSodium’s SHA256-HMAC implementation to instantiate BISEN’s PRF F, and its authenticated encryption
algorithm, XSalsa20 stream cipher with Poly1305 MACs, to instantiate Θ. Since LibSodium is not ready for SGX
deployment, we prepared an SGX-compatible version by (among other steps) removing all unsupported functions in
SGX and replacing randomness functions with their equivalents from Intel’s RNG library.

7 Experimental Evaluation

We now experimentally evaluate BISEN, using the prototype implementation described in the previous section.
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Fig. 3: Performance of the Update protocol.

Experimental Test-Bench. We present performance results for BISEN and its Search and Update protocols. As
server/IEE machine we used an Intel NUC i3-7100U with built-in SGX support, 2.4GHz of CPU frequency, 8GB of
RAM, 256GB of SSD storage, running Ubuntu Server 16.04.4. For simplification, we execute the client as a separate
process in the same machine, using the file system as a communication medium. As storage service we used a server
with an AMD Opteron 6272 CPU with 64GB of RAM and 128GB of SSD storage. Both machines were deployed on
the same network.

As dataset, we used a subset of the english wikipedia dump of May 2018 [49] with 21GB of uncompressed text
data. After parsing, this resulted in around two million articles and 200 million keyword/document pairs. Unless stated
differently, all measurements are based on an average of 50 independent executions.

Experimental Evaluation Roadmap. The goal of our experimental work is to answer the following questions: i.)
what is the performance cost (i.e. total time consumed) to process and store a dataset through the Update protocol,
and how does this performance evolve as we scale the size of the database; ii.) what is the performance cost of
executing different types of Search queries, including queries with multiple conjunctions, disjunctions, and negations,
considering different database sizes, the selectivity of queried keywords (i.e. the size of returned results), and the
query size; and iii.) how does BISEN’s performance compare with the state of art in Boolean SSE, namely the recent
IEX-2LEV scheme [31].

7.1 Update Performance

Figure 3 reports the performance results for the Update protocol of BISEN. The y-axis represents time elapsed (in
seconds), while the x-axis represents the database size in terms of existing keyword-document pairs (i.e. the size of
index I). Results were measured at different database sizes (up to 200 million pairs) and are reported for the three
main protocol executors in separate, namely the client, IEE, and storage service. Server performance is omitted for
simplicity, as the server only forwards messages and its execution is highly efficient. Moreover, total results are also
reported for convenience of the reader.

Analysing the obtained results, one can conclude that BISEN’s performance scales linearly with the increase in
database size (Total line in Figure 3). On one hand, this is a positive consequence of having BISEN rely on standard
symmetric-key cryptographic primitives, which are more efficient and exhibit smaller ciphertext expansion than more
complex cryptographic protocols required by the state of art [11, 12, 31]. On the other hand, these results also reflect
the good performance properties of modern trusted hardware technologies, namely Intel SGX.

Analysing the performance of each protocol participant in separate further enforces the previous conclusions. From
the three participants, the IEE is the most efficient one and that scales better with the increase in database size, requiring
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Fig. 4: Performance of each participant in the Search protocol, for an example conjunctive query of five keywords.

only 13 seconds to process a database with 200 million pairs. In contrast, the client has to read and parse the whole
database from disk, causing it to exhibit the worst performance of the three. Nonetheless, the reader should note that
client processing can be minimized by pre-processing the database. Finally, the storage service exhibits intermediary
performance results, which we believe can be explained by the data-structure used to implement index I (the C++
stdlib map), meaning that an optimized implementation could improve BISEN’s overall performance even further.

7.2 Search Performance

To analyse the performance of the Search protocol, we conducted experiments with different types of queries, mea-
suring in all cases how performance scaled with the increase in database size. For transparency in evaluation, in the
following experiments we use the most popular keywords in the english language, i.e. the keywords that appear in
more documents (also known as having high selectivity). From first to tenth, these are: time, person, year, way, day,
thing, man, world, life, and hand.

Performance of each Participant. We start by analysing the performance of each protocol participant in separate
when executing the Search protocol. For this analysis we used an example conjunctive query with the five most
popular keywords in the database, measuring performance at increasing database sizes. Figure 4 presents the results.
From the Figure we can observe that, in contrast with the previous results for Update, client processing in Search
is very efficient. This performance cost is mostly dependent on the query size, nonetheless even for a query of five
keywords it is almost close to zero (an average of 80µs).

The remaining performance cost is divided between the storage service and the IEE, with the IEE being the least
efficient of the three components. This is due to most computations in Search being performed by the IEE. This aspect
can potentially be improved by exploring parallelism in our prototype implementation based on SGX.

Boolean Formulas and Query Size. We now assess how the query size and its boolean formula impact Search perfor-
mance. To this end, we performed queries of increasing size in both Conjunctive and Disjunctive Normal Forms (CNF
and DNF, respectively). Figure 5 presents the results, where one/three conjunctions represent queries in CNF (with
four and eight keywords, respectively) and one/three disjunctions represent queries in DNF. Analysing the results, we
can conclude that BISEN supports queries in any boolean formula with equal performance. For this experiment, the
determining factors in performance were the database and query sizes. Increasing the database size leads to a linear
increase in the time required for resolving queries, as was already noted in the previous experiment. Moreover, dupli-
cating the query size (from one to three conjunctions/disjunctions) also increases query latency, but smaller impact.
This means performance costs tend to amortize when increasing the query size.
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Fig. 5: Impact of the boolean formula and query size on the performance of the Search protocol.

Database Size Update Search CNF Search DNF
(Nr of pairs w/id) BISEN IEX-2LEV BISEN IEX-2LEV BISEN IEX-2LEV

9 793 0.151 5143 0.004 12 0.004 15
27 446 0.423 15568 0.021 173 0.012 249
56 238 0.862 29274 0.061 216 0.034 427

Table 1: Performance comparison between BISEN and IEX-2LEV [31]. All times are in seconds. Queries composed
of eight keywords.

Query Selectivity. Next we study the impact of query selectivity (i.e. the size of search results) on Search perfor-
mance. In these experiments, we performed single-keyword queries with different selectivity levels, by choosing query
keywords based on their database popularity. Figure 6 shows the results for queries returning from 0.2% to 30% of the
database. As expected, query selectivity has a high impact on Search performance. Just by searching a different, more
popular keyword, Search performance can go from 0.1 to 10 seconds. This is not surprising, as more popular keywords
appear in more documents, and hence the IEE will have to request, decrypt, and verify additional index entries. These
results are also consistent with the performance measurements of Figure 5, whose keyword searches have very high
selectivity.

Negations. The final experiment we conducted to study the Search protocol aimed at analysing the performance
of boolean queries with negations. Table 2 shows the results for increasing database size and increasing number of
negations in the same query (a conjunctive query with ten keywords; negating disjunctions exhibited similar results
so we omit these for clarity), ranging from one to ten negations. In the last column of Table 2 we also report results
for negating the whole query (and its conjunctions) with a single negation. Analysing the results we can conclude that
negations have a negligible impact on Search performance. Increasing the number of negations at different database
sizes always exhibits similar performance. Furthermore, comparing these results with the ones from the previous
experiments, shows that performance is mostly insensitive to the use of negations.

7.3 Comparison with IEX-2LEV

We now compare the performance of BISEN with the state of art in Boolean SSE, in particular the recent IEX-2LEV
scheme [31]. To this end, we used the authors’ open-source implementation [24] (with a filtering parameter of 0.2,
as reported in their evaluation [31]), and conducted experiments with the Enron database [36], an email archive with
2.6GB of text data used by the authors.
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DB Size 1 Neg. 5 Negs. 10 Negs. Full Neg. Query

53 444 941 10.537 9.807 9.802 9.869
107 479 195 20.124 19.526 19.678 19.449
163 217 947 31.481 30.403 31.064 30.403
217 892 563 48.788 47.427 48.119 47.975

Table 2: Performance of negations in the Search protocol.

Since IEX-2LEV requires large volatile storage and was originally evaluated on a machine with 60 GB of RAM
and a 60-core CPU, we followed a similar experimental test-bench and deployed IEX-2LEV in our AMD Opteron
6272 CPU with 64 cores and 64GB of RAM. For experimental comparison we deployed BISEN on the same machine,
executing IEE computations in SGX simulated mode. Table 1 presents the results obtained for BISEN and IEX-2LEV,
considering increasing database sizes (up to 56 238 keyword-document pairs, as we were unable to execute IEX-
2LEV with higher database sizes), and different operations: Update (performed as Setup in IEX-2LEV), and Search
with queries in both CNF and DNF. Both queries used contain eight keywords selected at random from the Enron
database.

Analysing the results we can conclude that BISEN is much more efficient than the state of art in Boolean SSE.
This phenomenon can be observed both for the Update operation, where IEX-2LEV requires eight hours to index a
database with 56 238 pairs while BISEN only requires 0.151 seconds; and the Search operation, where IEX-2LEV is
more efficient but still requires 216 seconds to search the largest database with a CNF boolean query while BISEN
performs the same query in 0.061 seconds. Furthermore, the improvement in storage performance is also evident from
these results, since BISEN could process and index large databases with 10 million pairs in a machine with only
8 GB of RAM and IEX-2LEV could only support little more than 56 thousand pairs in a machine with 64 GB. An
interesting observation, nonetheless, is that IEX-2LEV scales better with CNF queries compared to DNF, while BISEN
is fundamentally agnostic to the format of queries. Finally comparing BISEN’s results in this Section with those in
Sections 7.1 and 7.2, we can observe that they are similar and hence conclude that SGX’s simulation mode is faithful
to its real execution performance.

8 Conclusions

In this paper, we have identified and addressed one of the fundamental security issues in Searchable Symmetric En-
cryption (SSE) schemes, which is the outsourcing of critical cryptographic computations to the untrusted server. This
was achieved by proposing a new hybrid approach to SSE that combines standard symmetric-key cryptographic prim-



itives with modern attestation-based trusted hardware. In our approach we minimize assumptions and requirements
on the employed hardware technology, in particular regarding its trusted storage capacity. Instead, trusted hardware is
used as a limited-capacity Isolated Execution Environment abstraction, extending its resources through standard cryp-
tographic primitives over more abundant (local, or even remote) untrusted resources. Based on this hybrid approach,
we proposed BISEN, a new dynamic boolean SSE scheme with both forward and backward privacy, minimal leak-
age, and optimal computation, storage, and communication overheads. BISEN is shown to be provably secure against
active adversaries under the standard security model. Experimental results obtained trough real-world datasets and an
open-source implementation of BISEN demonstrate its optimal performance and efficiency properties.
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A Building BISEN without IEEs

Figure 7 of this Appendix Section details a variant of BISEN that can be used in scenarios where trusted hardware and
IEEs are unavailable. In a nutshell, computations previously performed by the IEE are now performed by the client
instead. This approach achieves the same security guarantees as the original BISEN scheme, however it imposes a
higher communication overhead.

B Security model

Our security model is presented in Definition 1 as a game-based approach in Figure 8. In RealΠ,A, we first initialize
the IEE-enabling machine (IEE.Init), and then allow A to interact with the BISEN protocol, detailed in a similar



Setup(1λ)

Client:
1: kE←$ Θ.Gen(1λ)
2: kF ←$ F.Gen(1λ)
3: W← Init()
4: nDocs← 0

Server:
5: I← Init()

Update(op, w, id)

Client:
1: if id > nDocs then
2: nDocs++
3: c← Get(W, w)
4: if c = ⊥ then
5: c← 0
6: else
7: c← c+ 1

8: kw ← F.Run(kF , w)
9: l← F.Run(kw, c)

10: id∗←$ Θ.Enc(kE , {l, op, id})
11: Send l, id∗ to Server.
12: W← Put(W, w, c)

Server:
13: I← Put(I, l, id∗)

Search(q)

Client:
1: {w̄, φ} ← ProcessBooleanQuery(q)
2: Q← Init()
3: for all w ∈ w̄ do
4: kw ← F.Run(kF , w); c← Get(W, w)
5: L← [ ]
6: for all ci ← 0 . . . c do
7: l← F.Run(kw, ci); L← l : L

8: Q← Put(Q,w,L)

9: L′ ← Flatten(Q); Π←$ RandomPermutation(1λ)
10: L′ ← Π(L′)
11: Send L′ to Server.

Server:
12: D′ ← [ ]
13: for all l ∈ L′ do
14: id∗ ← Get(I, l); D′ ← id∗ : D′

15: Send D′ to Client.
Client:

16: D′ ← Π−1(D′); D ← [ ]
17: for all id∗ ∈ D′; l′ ∈ L′ do
18: {l, op, id} ← Θ.Dec(kE , id

∗); Verify(l, l′)
19: D ← {op, id} : D

20: Q′ ← Join(Q,D)
21: R← Resolve(φ,Q′, nDocs)

Fig. 7: A variant of BISEN without IEEs, based solely on PRF F = (Gen,Run) and authenticated encryption scheme
Θ = (Gen,Enc,Dec).

fashion in Figure 9. Since A is an active adversary, we allow him full control over the untrusted storage component.
A is given feedback whenever a uInit and uPut is executed, and is allowed to freely specify the output of any uGet
request (thus the split of Search1,Search2). In IdealA,S , simulator S first initializes the public parameters, and then
A is allowed to interact with S, as described in Figure 11, receiving the leakage associated with each operation via
L = (LSetup,LUpdate,LSearch), detailed in Figure 10.

For clarity of presentation, our security model prevents the adversary from creating arbitrary IEEs, from attempting
to forge requests from the IEE to the client and vice-versa, and from changing the order of requests. Indeed, our proof
can be extended to an active adversary in the IEE model of [3] with all these capabilities. However, since this cannot be
done in a black-box manner, the technical details orthogonal to our contribution (e.g. bookkeeping of arbitrary inputs
to arbitrary IEEs) would make the model and proof significantly more convoluted. We thus prefer to present a model
that highlights the necessary mechanisms for BISEN to be secure against active adversaries, assuming the security of
the underlying mechanisms. Briefly, the intuition as to why these behaviours are not an issue is threefold. The security
of attested key exchange ensures that no more than a single instance of an IEE loaded with the exact code of BISEN
successfully performs the setup (key exchange) with the client, so no advantage is gained from launching additional
IEEs; the secure channel prevents an external adversary from producing any valid inputs to either the client or the IEE;
and the usage of sequence numbers allows for the rejection of any request that is presented in an incorrect order.

C Proof of Theorem 1

Let Θ = (Gen,Enc,Dec) be an IND-CCA encryption scheme following the security definitions of [35]. Let F =
(Gen,Run) be a pseudo-random function of domain D and output range R ensuring prf-security for Func(D,R)
following the definitions of [7]. Let Γ = (New,Put,Get) and Γ = (uInit, uPut, uGet) be structures for safe/unsafe
storage (respectively) described in Section 4.1. Let IEE = (Setup,Send,Receive) be the secure channel protocol for
IEEs described in Section 4.1. Let PBQ refer to ProcessBooleanQuery detailed in Section 5. For clarity in presentation,
we simplify the process of lines 15− 23 where entries are inserted using a Γ structure to use lists, and thus we denote
Sort as the probabilistic algorithm that sorts a list and produces the employed permutation, which can afterwards be
recovered using Reorder. Let ids be the fixed length of document identifiers, ops be the fixed length of operations, cs



be the fixed length of counters, fs be the fixed length of F output, and let Usize denote the fixed size of updates, such
that

Usize = ops + ids + cs + fs

Proof. Our proof is a sequence of eight games, presented in Figures 12 to 19.

Game RealΠ,A(1λ):

prms←$ IEE.Init(1λ)

(st, t)←$ Π.Setup(1λ, prms)
stA ← t

ReturnAUpdate,Search
1 (1λ, t)

Oracle Update(op,w, id):
(st, t)←$ Π.Update(st, op,w, id)
stA←$ A2(stA, t)
Return stA

Oracle Search(q):
(st, t1)←$ Π.Search1(st, q)
(stA,m)←$ A3(stA, t1)
(st, r, t2)←$ Π.Search2(st,m)
(stA)←$ A4(stA, t2)
Return (r, stA)

Game IdealL,A,S(1λ):

(stL, l)←$ LSetup(1
λ)

(stS , t)←$ S1(1λ, l)
stA ← t

ReturnAUpdate,Search
1 (1λ, t)

Oracle Update(op,w, id):
(stL, l)← LUpdate(stL, op,w, id)
(stS , t)←$ S2(stS , l)
stA←$ A2(stA, t)
Return stA

Oracle Search(q):
(stL, l)← LSearch(stL, q)
(stS , t1)← S3(stS , l)
(stA,m)←$ A3(stA, t1)
(stS , r, t2)←$ S4(st,m)
(stA)←$ A4(stA, t2)
Return (r, stA)

Fig. 8: Security experiment

Algorithm Setup(1λ, prms):

kf ←$ F.Gen(1λ)
W← Γ.New()

(kc, t)←$ IEE.Setup(1λ, prms)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
Return ((kc, ke, kf , 0,W), (t, I))

Algorithm Search2((st, ∆, L′p, n),m):

D← [ ]
For i ∈ [0..n]:

(l, (op, id))← Θ.Dec(ke,m[i])
If L′p[i] 6= l: abort
D← (op, id) : D

D′ ← Reorder(∆,D)
r ← Resolve(φ,D′, nDocs)
r∗←$ IEE.Send(kc, r)
Return (st, r, r∗)

Algorithm Update(st, op, id,w):
(kc, ke, kf , nDocs,W)← st
kw ← F.Run(kf ,w)
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
c∗←$ IEE.Send(kc, (op, id, c, kw))
If id > nDocs:

nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
Return ((kc, ke, kf , nDocs,W), (c∗, It))

Algorithm Search1(st, q):
(kc, ke, kf , nDocs,W)← st
L← [ ]; L′ ← [ ]; n← 0
(Wq, φ)← PBQ(q)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
L← (kw, c) : L

q∗←$ IEE.Send(kc, (L, φ))
For (kw, c) ∈ L:

For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L′ ← l : L′; n← n+ 1

(∆, L′p),←$ Sort(L′)
Return ((st, ∆, L′p, n), (L′p, q

∗))

Fig. 9: Boolean SSE protocol

Game GA0 is the real world of Figure 8, extended with the protocol of Figure 9. In game GA1 , a uPut is always
accompanied by an idealised storage Put, and Search instead uses the ideal storage to process the query. We upper
bound the distance between these two games, by constructing an adversary B against the existential unforgeability of
Θ, such that

|Pr[GA0 (1λ)⇒ T]− Pr[GA1 (1λ)⇒ T]| ≤
AdvufΘ,B(λ)

s ∗ i

Adversary B simulates the environment of GA1 as follows. At the beginning of the game, B has to try and guess which
uGet to Search will be distinguishable. As such, it samples uniformly from [1..s] a request s, and from a maximum
size of searched labels [1..i] a document i. Whenever Update is required to perform an encryption, B requests the
ciphertext to the corresponding oracle in IND-CCAΘ,B. Upon the s-th call to Search, and upon the i-th decrypted



Algorithm LSetup(1
λ):

Return (([ ], Γ.New, 0, 0),⊥)

Algorithm LUpdate(st, op, id,w):
(W,A, c, nDocs)← st
If w 6∈ W: W← w : W
A← Γ.Put(A, c, (op,w, id, c))
If id > nDocs: nDocs← nDocs + 1
st← (W,A, c+ 1, nDocs)
Return (st,⊥)

Algorithm LSearch(st, q):
(W,A, n, nDocs)← st
C← [ ]; D← [ ];N ← 0
(Wq, φ)← PBQ(q)
For w ∈ Wq : If w ∈ W:N ← N + 1
qisize ← |φ|+N ∗ (cs + fs)
For (op,w, id, c) ∈ st ∧ w ∈ Wq :

C← (c : C); D← (id : D)
(·,C′)←$ Sort(C)
r ← Resolve(φ,D, nDocs)
qosize ← |r|
Return (st, r, (qisize, qosize,C

′))

Fig. 10: Leakage functions

Algorithm S1(1λ, l):
g←$ Func(D,R)

(stS , t)←$ SIEE(1λ)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
Return ((stS , ke, g, 0), (t, I))

Algorithm S4((st, L′, n, qosize),m):
(stS , ke, g, c)← st
qout ← {0}qosize
q∗out←$ SIEE(stS , qout)
For i ∈ [0..n]:

(l, ?)← Θ.Dec(ke,m[i])
If L′[i] 6= l: abort

Return ((stS , ke, g, c), q
∗
out)

Algorithm S2(st,⊥):
(stS , ke, g, c)← st
c∗←$ SIEE(stS , ({0}Us ))
l← g(c)

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
Return ((stS , ke, g, c+ 1), (c∗, It))

Algorithm S3(st, qisize, qosize,C)):
(stS , ke, g, c)← st
L′ ← [ ]; n← 0

qin ← {0}qisize
q∗in←$ SIEE(stS , qin)
For k ∈ C:
l← g(k)
L′ ← l : L′; n← n+ 1

Return ((st, L′, n, qosize), (L
′, qin))

Fig. 11: Simulator behavior

Game GA0 (1λ):

prms←$ IEE.Init(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

(kc, t)←$ IEE.Setup(1λ, prms)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
st← (kc, ke, kf , 0,W)
stA ← (t, I)

ReturnAUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs,W)← st
kw ← F.Run(kf ,w)
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
c∗←$ IEE.Send(kc, (op, id, c, kw))
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs,W)← st
L← [ ]; L′ ← [ ]; n← 0; D← [ ]
(Wq, φ)← PBQ(q)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
L← (kw, c) : L

q∗←$ IEE.Send(kc, (L, φ))
For (kw, c) ∈ L:

For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L′ ← l : L′; n← n+ 1

(∆, L′p),←$ Sort(L′)
(stA,m)←$ A3(stA, (L

′
p, q
∗))

For i ∈ [0..n]:
(l, (op, id))← Θ.Dec(ke,m[i])
If L′p[i] 6= l: abort
D← (op, id) : D

D′ ← Reorder(∆,D)
r ← Resolve(φ,D′, nDocs)
r∗←$ IEE.Send(kc, r)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 12: Extended real world.



document, B presents to the IND-CCAΘ,B experiment the ciphertext m[i]. Observe that, if

(op, id)← Γ.Get(I′, L′p[i])

(l, (op′, id′))← Θ.Dec(ke,m[i])

(op, id) = (op′, id′)

then Pr[GA0 (1λ) ⇒ T] = Pr[GA1 (1λ) ⇒ T]. It remains to show that, whenever (op, id) 6= (op′, id′), m[i] is a valid
forgery.

To see this, observe that this is a valid ciphertext, as the decryption of m[i] is performed previously, and the result
was not ⊥. It suffices to establish that m[i] could not have been constructed by the encryption oracle of IND-CCAΘ,B.
From the construction of Update and the behaviour of B, one can infer that the encryption oracle in IND-CCAΘ,B is
only called once for every l, as each w has a unique counter that is incremented on Update. That exact call (op, id) is
stored in I′. Since we know that l = L′p[i], and since we have the precondition of (op, id) 6= (op′, id′) for label l, then
m[i] could not have been produced by the encryption oracle in IND-CCAΘ,B, and is thus a forgery.

Game GA1 (1λ):

prms←$ IEE.Init(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

(kc, t)←$ IEE.Setup(1λ, prms)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0,W, I

′)
stA ← (t, I)

ReturnAUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs,W, I′)← st
kw ← F.Run(kf ,w)
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
c∗←$ IEE.Send(kc, (op, id, c, kw))
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
I′ ← Γ.Put(I′, l, (op, id))
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs,W, I′)← st
L← [ ]; L′ ← [ ]; n← 0; D← [ ]
(Wq, φ)← PBQ(q)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
L← (kw, c) : L

q∗←$ IEE.Send(kc, (L, φ))
For (kw, c) ∈ L:

For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L′ ← l : L′; n← n+ 1

(∆, L′p),←$ Sort(L′)
(stA,m)←$ A3(stA, (L

′
p, q
∗))

For i ∈ [0..n]:
(op, id)← Γ.Get(I′, L′p[i])
D← (op, id) : D
(l, ?)← Θ.Dec(ke,m[i])
If L′p[i] 6= l: abort

D′ ← Reorder(∆,D)
r ← Resolve(φ,D′, nDocs)
r∗←$ IEE.Send(kc, r)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 13: Game 1.

In game GA2 , the secure channel with the IEE is now handled by a simulator executing SIEE. Intuitively, any
adversary that is able to distinguish these two games can actively break the secrecy of the secure channel with the IEE.
We are directly using the key exchange scheme proposed in [3], we can apply the same Utility theorem. Since we are
only establishing a secure channel with a single party, this can be applied only once, and thus

|Pr[GA1 (1λ)⇒ T]− Pr[GA2 (1λ)⇒ T]| ≤ AdvUTAttKE,A(λ)

In game GA3 , the resolution of the query is no longer performed by the originally described Search. Instead, all
requests for Update are stored in the ideal structure I′. Search becomes a full table scan for all entries of I′ for which
the identifiers are relevant, and Resolve executes upon that structure. This hop is derived from the correctness property
of BISEN.

Search(K, φ(w̄),DB) = DB(φ(w̄))

which ensures that the output of Search according to the original BISEN description (left side), is exactly the same
as that of simply executing the query on the clean database (right side). Since a plaintext database I′ is managed on
Update, and the set of φ(D) is selected from I′ according to (Wq, φ)← PBQ(q), such that ∀w ∈ Wq ∩ I′ : w ∈ D it
follows that

Pr[GA2 (1λ)⇒ T] = Pr[GA3 (1λ)⇒ T]



Game GA2 (1λ):

(kc, t)←$ SIEE(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0,W, I

′)
stA ← (t, I)

ReturnAUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs,W, I′)← st
kw ← F.Run(kf ,w)
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
c∗←$ SIEE(kc, {0}Us )
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
I′ ← Γ.Put(I′, l, (op, id))
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs,W, I′)← st
L← [ ]; L′ ← [ ]; n← 0; D← [ ]
(Wq, φ)← PBQ(q)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
L← (kw, c) : L

q∗←$ SIEE(kc, {0}|φ|+|L|)
For (kw, c) ∈ L:

For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L′ ← l : L′; n← n+ 1

(∆, L′p),←$ Sort(L′)
(stA,m)←$ A3(stA, (L

′
p, q
∗))

For i ∈ [0..n]:
(op, id)← Γ.Get(I′, L′p[i])
D← (op, id) : D
(l, ?)← Θ.Dec(ke,m[i])
If L′p[i] 6= l: abort

D′ ← Reorder(∆,D)
r ← Resolve(φ,D′, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 14: Game 2.

Game GA3 (1λ):

(kc, t)←$ SIEE(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0, 0,W, I

′)
stA ← (t, I)

ReturnAUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs, c′,W, I′)← st
kw ← F.Run(kf ,w)
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
c∗←$ SIEE(kc, {0}Us )
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)
id∗←$ Θ.Enc(ke, (l, (op, id)))
(I, It)← Γ.uPut(I, l, id∗)
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
c′ ← c′ + 1
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs, c′,W, I′)← st
L← [ ]; L′ ← [ ]; n← 0; D← [ ]
(Wq, φ)← PBQ(q)
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

D← (id : D)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
L← (kw, c) : L

q∗←$ SIEE(kc, {0}|φ|+|L|)
For (kw, c) ∈ L:

For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L′ ← l : L′; n← n+ 1

(∆, L′p),←$ Sort(L′)
(stA,m)←$ A3(stA, (L

′
p, q
∗))

For i ∈ [0..n]:
(l, ?)← Θ.Dec(ke,m[i])
If L′p[i] 6= l: abort

r ← Resolve(φ,D, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 15: Game 3.



In game GA4 , we replace the encryption of document identifiers by dummy messages of the same length. Observe
that, since query resolution is being performed over I′, these identifiers are no longer necessary for Search. Let u be
the number of calls to Oracle Update. SinceA does not have access to ke, we upper bound the distance between these
two games, by constructing an adversary C against the IND-CCA security of Θ such that

|Pr[GA3 (1λ)⇒ T]− Pr[GA4 (1λ)⇒ T]| ≤
AdvIND-CCA

Θ,C (λ)

u

Adversary C simulates the environment of GA4 as follows. At the beginning of the game, C as to try and guess which
call to Update will be distinguishable. As such, it samples uniformly from [1..u] a request u. Upon the u-th call
to Update, C presents to the IND-CCAΘ,C experiment the message pair ((op, id), {0}Us) and proceeds GA4 with the
received ciphertext. C presents the result of GA4 as the guessing bit of IND-CPAΘ,B. Given that the difference between
the two games is exactly that of presenting either the encryption of (op, id) or {0}Us , the advantage ofA distinguishing
between GA4 and GA3 is exactly that of breaking the IND-CCA security of Θ for the u-th instance of Update.

Game GA4 (1λ):

(kc, t)←$ SIEE(1λ)

kf ←$ F.Gen(1λ)
W← Γ.New()

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0, 0,W, I

′)
stA ← (t, I)

ReturnAUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs, c′,W, I′)← st
kw ← F.Run(kf ,w)
If (c← Γ.Get(W,w)):
c = c+ 1

Else: c← 0
W← Γ.Put(W,w, c)
c∗←$ SIEE(kc, {0}Us )
If id > nDocs: nDocs← nDocs + 1
l← F.Run(kw, c)

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
c′ ← c′ + 1
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs, c′,W, I′)← st
L← [ ]; L′ ← [ ]; n← 0; D← [ ]
(Wq, φ)← PBQ(q)
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

D← (id : D)
For w ∈ Wq :

kw ← F.Run(kf ,w)
c← Γ.Get(W, w)
L← (kw, c) : L

q∗←$ SIEE(kc, {0}|φ|+|L|)
For (kw, c) ∈ L:

For k ∈ [0 . . . c]:
l← F.Run(kw, k)
L′ ← l : L′; n← n+ 1

(∆, L′p),←$ Sort(L′)
(stA,m)←$ A3(stA, (L

′
p, q
∗))

For i ∈ [0..n]:
(l, ?)← Θ.Dec(ke,m[i])
If L′p[i] 6= l: abort

r ← Resolve(φ,D, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 16: Game 4.

In game GA5 , instead of maintaining a counter c for each unique word, we maintain a global counter c′, as well as
a structure for counting unique keywords W. This means that, for label generation, instead of running F over w, and
then F over that specific c, we run F over a unique c′. We want to show that

Pr[GA4 (1λ)⇒ T] = Pr[GA5 (1λ)⇒ T]

This has two major implications. It changes how labels are computed in Update, and changes how they are recovered
in Search. We argue that this is indistinguishable for anA without access to kf by analysing each process individually.

– Update: Each label is now generated by running F on the unique insertion counter. Observe that this is only
distinguishable from the alternative if it is possible to run F on duplicate (id, c) pairs. From the construction of
Update on GA4 , this is not the case. The structure W is also correctly updated whenever a new w is inserted.

– Search: We no longer execute the F for each unique word to determine |L|, but this can be computed by multiplying
the fixed size of the output of F and size of counter c by the number of unique words in structure W:N ∗ (cs+fs).
Furthermore, where GA4 computed the labels for all (w, c) in W for which w ∈ Wq , the same can be achieved by
computing all c′ in A for which w ∈Wq . This ensures consistency in the document identifiers retrieved in Search.

In game GA6 , we replace all calls to F by calls to a randomly generated function g. SinceA does not have access to
kf , we upper bound the distance between these two games, by constructing an adversary D against the prf-security of
F such that

|Pr[GA5 (1λ)⇒ T]− Pr[GA6 (1λ)⇒ T]| = AdvprfF,D(λ)



Game GA5 (1λ):

(kc, t)←$ SIEE(1λ)

kf ←$ F.Gen(1λ)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, kf , 0, 0, I

′, [ ])
stA ← (t, I)

ReturnAUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, kf , nDocs, c′, I′,W)← st
If w 6∈ W: W← w : W
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
c′ ← c′ + 1
l← F.Run(kf , c

′)

c∗←$ SIEE(kc, {0}Us )
If id > nDocs: nDocs← nDocs + 1

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, kf , nDocs, c′, I′,W)← st
L′ ← [ ]; n← 0; D← [ ]
N ← 0
(Wq, φ)← PBQ(q)
For w ∈ Wq : If w ∈ W:N ← N + 1
qisize ← |φ|+N ∗ (cs + fs)
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

D← (id : D)
l← F.Run(kf , c

′)
L′ ← (l : L′)
n← n+ 1

q∗←$ SIEE(kc, {0}qisize )
(∆, L′p),←$ Sort(L′)
(stA,m)←$ A3(stA, (L

′
p, q
∗))

For i ∈ [0..n]:
(l, ?)← Θ.Dec(ke,m[i])
If L′p[i] 6= l: abort

r ← Resolve(φ,D, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 17: Game 5.

Adversary D simulates the environment of GA6 as follows. Whenever a label has to be produced, the result is retrieved
by calling the Oracle of prfF,D. D presents the result of GA6 as the guessing bit of prfF,D. Given that the difference
between the two games is exactly that of presenting either the result of F(c) or g(c), the advantage ofA distinguishing
between GA6 and GA5 is exactly that of breaking the prf security of F.

Game GA6 (1λ):

(kc, t)←$ SIEE(1λ)
g←$ Func(D,R)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
I′ ← Γ.New()
st← (kc, ke, g, 0, 0, I

′, [ ])
stA ← (t, I)

ReturnAUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(kc, ke, g, nDocs, c′, I′,W)← st
If w 6∈ W: W← w : W
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
c′ ← c′ + 1
l← g(c′)

c∗←$ SIEE(kc, {0}Us )
If id > nDocs: nDocs← nDocs + 1

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
st← (kc, ke, kf , nDocs,W)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(kc, ke, g, nDocs, c′, I′,W)← st
L′ ← [ ]; n← 0; D← [ ]
N ← 0
(Wq, φ)← PBQ(q)
For w ∈ Wq : If w ∈ W:N ← N + 1
qisize ← |φ|+N ∗ (cs + fs)
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

D← (id : D)
l← g(c′)
L′ ← (l : L′)
n← n+ 1

q∗←$ SIEE(kc, {0}qisize )
(∆, L′p),←$ Sort(L′)
(stA,m)←$ A3(stA, (L

′
p, q
∗))

For i ∈ [0..n]:
(l, ?)← Θ.Dec(ke,m[i])
If L′p[i] 6= l: abort

r ← Resolve(φ,D, nDocs)

r∗←$ SIEE(kc, {0}|r|)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 18: Game 6.

Finally, GA7 matches the ideal world of Figure 8, extended with the behaviour of the leakage function of Figure 10
and the simulator detailed in Figure 11. This final game is achieved by reorganizing the code of GA6 , and thus

Pr[GA6 (1λ)⇒ T] = Pr[GA7 (1λ)⇒ T]

Let

AdvAtt
Π,S,A(λ) = |Pr[RealΠ,A(1λ)⇒ T]−

Pr[IdealS,A(1λ)⇒ T]|



Game GA7 (1λ):
stL ← ([ ], Γ.New(), 0, 0)
g←$ Func(D,R)

(kc, t)←$ SIEE(1λ)

ke←$ Θ.Gen(1λ)
I← Γ.uInit()
stS ← (kc, ke, g, 0)
stA ← (t, I)

ReturnAUpdate,Search
1 (1λ, stA)

Oracle Update(st, id,w):
(W, I′, c′, nDocs)← stL
If w 6∈ W: W← w : W
I′ ← Γ.Put(I′, c′, (op,w, id, c′))
If id > nDocs: nDocs← nDocs + 1
stL ← (W, I′, c′ + 1, nDocs)
(kc, ke, g, c)← stS
c∗←$ SIEE(kc, {0}Us )
l← g(c)

id∗←$ Θ.Enc(ke, (l, {0}ids+ops ))
(I, It)← Γ.uPut(I, l, id∗)
stS ← (kc, ke, g, c+ 1)
stA←$ A2(stA, (c

∗, It))
Return stA

Oracle Search(st, q):
(W, I′, c′, nDocs)← stL
C← [ ]; D← [ ]; n← 0
(Wq, φ)← PBQ(q)
For w ∈ Wq : If w ∈ W:N ← N + 1
qisize ← |φ|+N ∗ (cs + fs)
For (op,w, id, c′) ∈ A ∧ w ∈ Wq :

C← (c′ : C); D← (id : D)
(·,Cp),←$ Sort(C)
r ← Resolve(φ,D, nDocs)
qosize ← |r|
stL ← (W, I′, c′, nDocs)
(kc, ke, g, c)← stS
L← [ ]; n′ ← 0

qi← {0}qisize
q∗←$ SIEE(kc, qi)
For k ∈ Cp:
l← g(k)
L← l : L; n′ ← n′ + 1

(stA,m)←$ A3(stA, (L, q
∗))

qo← {0}qosize
r∗←$ SIEE(kc, qo)
For i ∈ [0..n′]:

(l, ?)← Θ.Dec(ke,m[i])
If L′p[i] 6= l: abort

stS ← (kc, ke, g, c)
(stA)←$ A4(stA, r

∗)
Return (r, stA)

Fig. 19: Extended ideal world.

To conclude, we have that

AdvAtt
Π,S,A =

7∑
i=0

|Pr[GAi (1λ)⇒ T]− Pr[GAi+1(1λ)⇒ T]|

≤
AdvufΘ,B(λ)

s ∗ i
+ AdvUTAttKE,A(λ)+

AdvIND-CCA
Θ,C (λ)

u
+ AdvprfF,D(λ)

≤ µ(λ)

and Theorem 1 follows.


