
Randomness analysis for multiple-recursive matrix generator

Subhrajyoti Deb1, Bubu Bhuyan1, and Sartaj Ul Hasan2

1 Department of Information Technology, North-Eastern Hill University, Shillong, Meghalaya 793 022, India
{b.bhuyan, subhrajyotideb1}@gmail.com

2 Department of Mathematics, Indian Institute of Technology Jammu, Jagti, Jammu 181 221, India
sartaj.hasan@iitjammu.ac.in

Abstract. Randomness testing of binary sequences generated by any keystream generator is of
paramount importance to both designer and attacker. Here we consider a word-oriented keystream
generator known as multiple-recursive matrix generator, which was introduced by Niederreiter
(1993). Using NIST statistical test suite as well as DieHarder statistical package, we analyze ran-
domness properties of binary sequences generated by multiple-recursive matrix generator and show
that these sequences are not really adequate for any cryptographic applications. We also propose
nonlinearly filtered multiple-recursive matrix generator based a special nonlinear function and es-
tablish that sequences generated by such a nonlinearly filtered multiple-recursive matrix generator
provide good randomness results. Moreover, we compare our randomness test results with some of
the recent lightweight stream ciphers like Lizard, Fruit, and Plantlet.

Keywords: Linear feedback shift register; stream cipher; randomness; word-oriented feedback shift
register; MRMG; NIST STS; DieHarder.

1 Introduction

Linear feedback shift register (LFSR) based stream cipher is an effective security solution for various
lightweight applications. Most of classical LFSR-based stream ciphers are bit-oriented and can be easily
implemented in hardware. However, several emerging applications are demanding for high speed link
encryption or an efficient software encryption for a large volume of data handling. In that case, bit-
oriented ciphers do not provide satisfactory performance. Moreover, when we consider large amount of
data, security is certainly one of the major concerns. This issue may be addressed if one uses a word-
oriented feedback shift register (FSR). In fact, this idea was initially mooted by B. Preneel in [10] and he
asked for designing a word-oriented FSR that uses word operations available in modern processors and the
techniques parallelism. To one’s surprise, even before the Preneel posed this problem, a word-oriented FSR
was already there in the literature in the form of Niederreiter’s Multiple-Recursive Matrix Method [9] for
generating pseudo-random sequences, which we shall refer to as “Multiple-Recursive Matrix Generator”
here after. In order to improve efficiency problem in MRMG, Zeng, Han and He proposed the notion
of σ-LFSR [14]. In σ-LFSR design, they have restricted themselves to a special set of matrices that are
compatible with word-operations. It may be noted that the notion of σ-LFSR is essentially equivalent to
MRMG. Few years after the Niederreiter’s MRMG, Tsaban and Vishne [12] have also proposed the idea
of Transformation Shift Register (TSR) for producing pseudo-random vectors that presents yet another
answer to Preneel’s problem. Indeed, TSR turns out to be a special case of MRMG. However, due to the
inherent linearity structure available in both MRMG and TSR, Hasan, Panario and Wang argued in [7]
that instead of using them directly for any crypto application, their nonlinear counter parts should be
used.

In this paper, we focus on three special kind of σ-LFSRs, namely σ-LFSR I, σ-LFSR II, and σ-LFSR III
(see HHZ-1 and HHZ-2 in [14]) proposed by Zeng et al. Following the nomenclature coined by Niederreiter,
it is natural to call σ-LFSR as Multiple-Recursive Matrix Generator (MRMG). Henceforth, throughout
the this paper, σ-LFSR I, σ-LFSR II, and σ-LFSR III shall be referred to as MRMG I, MRMG II, and
MRMG III, respectively. The sequences generated by MRMGs are tested by using NIST statistical test
suite as well as DieHarder statistical package. We have observed that some of the randomness properties
are not satisfied by binary sequences generated by MRMGs. In order to improve randomness results on

S. Deb, B. Bhuyan, S. U. Hasan

MRMG, it is important to employ some reasonable nonlinear function on the contents of MRMG as
advocated in [7].

We introduce a new kind of framework called nonlinearly filtered MRMG, which we shall denote by
NMRMG, based on a special nonlinear function. This special function is a 8-variable nonlinear function
and is employed on the contents of the three kinds of MRMG (I, II, III). To the best of our knowledge,
this particular type of nonlinear framework has not been yet considered in the crypto literature. The
detailed randomness test analysis shows that our proposed framework provide cryptographically secure
bitstream as compared to existing MRMG. In this paper, we present output data analysis, Berlekamp
Massey approach, and autocorrelation of the output bitstream which establishes the effectiveness of the
proposed framework. Moreover we also compare randomness test result with some of recent lightweight
ciphers keystream like Lizard, Fruit, and Plantlet.

Before proceeding further, let us describe the organization of this paper. Section 2, presents basic
definition of word oriented MRMG. Section 3, provides all the experimental details of the proposed
framework. Section 4, provides Statistical randomness test. Section 5 provides in-depth security analysis
and randomness comparison. Finally, we draw our conclusions in section 6.

2 Preliminaries

We recall some definitions and results described in [7] concerning MRMGs. As we know, in the majority
of practical applications, one generally uses finite fields with characteristic 2. Henceforth, we shall restrict
ourselves to fields with characteristic 2 and their extensions. We shall denote, as usual, by F2 the finite
field with 2 elements, by F2m the extension field of F2 of degree m and by F2[X] the ring of polynomials
in one variable X with coefficients in F2.

Given any ringR and any positive integer d, letMd(R) denote the set of all d×dmatrices with entries in
R. Throughout this paper, we fix positive integersm and n, and a vector space basis {α0, . . . , αm−1} of F2m

over F2. Given any s ∈ F2m , there are unique s0, . . . , sm−1 ∈ F2 such that s = s0α0+ · · ·+sm−1αm−1, and
we shall denote the corresponding co-ordinate vector (s0, . . . , sm−1) of s by s. Evidently, the association
s 7−→ s gives a vector space isomorphism of F2m onto Fm

2 . Elements of Fm
2 may be thought of as row

vectors and so sC is a well-defined element of Fm
2 for any s ∈ Fm

2 and C ∈Mm(F2).

Definition 1. Let C0, C1, . . . , Cn−1 ∈ Mm(F2). Given any n-tuple (s0, . . . , sn−1) of elements of F2m ,
let (si)

∞
i=0 denote the infinite sequence of elements of F2m determined by the following linear recurrence

relation:

si+n = C0si + C1si+1 + · · ·+ Cn−1si+n−1 i = 0, 1, (1)

The system (1) is called a multiple-recursive matrix generator (MRMG) of order n over F2m , while the
sequence (si)

∞
i=0 is referred to as the sequence generated by the MRMG (1). The n-tuple (s0, s1, . . . , sn−1)

is the initial state of the MRMG (1) and the polynomial ImX
n−Cn−1X

n−1−· · ·−C1X−C0 with matrix
coefficients is the matrix polynomial of the MRMG (1). The sequence (si)

∞
i=0 is ultimately periodic if

there are integers r, n0 with r ≥ 1 and n0 ≥ 0 such that sj+r = sj for all j ≥ n0. The least positive
integer r with this property is the period of (si)

∞
i=0 and the corresponding least nonnegative integer n0 is

the preperiod of (si)
∞
i=0. The sequence (si)

∞
i=0 is periodic if its preperiod is 0.

The following result gives some basic facts about MRMG.

Proposition 1. [7] For the sequence (si)
∞
i=0 generated by the MRMG (1) of order n over F2m , we have

(i) (si)
∞
i=0 is ultimately periodic, and its period is no more than 2mn − 1;

(ii) if C0 is nonsingular, then (si)
∞
i=0 is periodic; conversely, if (si)

∞
i=0 is periodic whenever the initial

state is of the form (b, 0, . . . , 0), where b ∈ F2m with b 6= 0, then C0 is nonsingular.

An MRMG of order n over F2m is primitive if for any choice of nonzero initial state, the sequence
generated by that MRMG is periodic of period 2mn − 1.

In view of Proposition 1 if ImX
n−Cn−1X

n−1−· · ·−C1X−C0 ∈Mm (F2) [X] is the matrix polynomial
of primitive MRMG, then the matrix C0 is necessarily nonsingular.

Randomness analysis for multiple-recursive matrix generator

Corresponding to a matrix polynomial ImX
n − Cn−1X

n−1 − · · · − C1X − C0 ∈ Mm(F2)[X], we can
associate a (m,n)-block companion matrix Cmrmg ∈Mmn(F2) of the following form

Cmrmg =

0 0 0 . . 0 0 C0

Im 0 0 . . 0 0 C1

.

.
0 0 0 . . Im 0 Cn−2
0 0 0 . . 0 Im Cn−1

 , (2)

where Im denotes the m × m identity matrix over F2, while 0 indicates the zero matrix in Mm(F2).
Using a Laplace expansion or a suitable sequence of elementary column operations, it is easy to see that
detCmrmg = ±det(C0). Consequently,

Cmrmg ∈ GLmn(F2) if and only if C0 ∈ GLm(F2), (3)

where GLm(F2) is the general linear group of m×m nonsingular matrices over F2.
It may be noted that the block companion matrix (2) is the state transition matrix for the MRMG

(1). Indeed, the k-th state Sk := (sk, sk+1, . . . , sk+n−1) ∈ Fn
2m of the MRMG (1) is obtained from the

initial state S0 := (s0, s1, . . . , sn−1) ∈ Fn
2m by Sk = S0C

k
mrmg, for any k ≥ 0. We can identify MRMG (1)

with the block companion matrix (2).

3 Experiment and result analysis

3.1 Methodology

For randomness test, we have implemented MRMG to generate 106 output bit using GNU Compiler
Collection (GCC). In this work, we have used NIST statistical test suite (STS) and DieHarder statistical
package for randomness test analysis. These packages have gained extensive popularity for large data
randomness test analysis. Initially, we tested 100 independent keystream files for existing MRMGs using
different keys, where each file contains 106 binary sequence. In the NIST and DieHarder test suites, all
the test case randomness parameters or functions take the finite length of input bits and generate a real
number between 0 and 1 known as the P -value. In our randomness test analysis, we have chosen the
significance level of α = 0.01, which is the default value for both DieHarder and NIST. The randomness
test analysis of the existing MRMG output has exhibited a few randomness loopholes. To eliminate the
randomness loopholes, we shall use an appropriate nonlinear function on MRMG scheme. The nonlinear
function is described in Verilog VHDL and synthesized by Xilinx XST tool for finding its hardware
implementation metrics.

Apart from that, randomness tests results of NMRMG primitives are compared with three current
lightweight stream ciphers namely Plantlet, Fruit, and Lizard. We have coded these stream ciphers in
GCC. For encryption/decryption, Plantlet and Fruit uses 80-bit key length and Lizard uses 120-bit key
length.

Further, we have analyzed output keystream of NMRMG using different statistical parameters. We
also present the cryptanalytic results of NMRMG like linear complexity analysis, autocorrelation etc. In
our experiment, all the simulation was performed on Mathematica 10, SageMath Version 7.0 and GCC-
4.8. The configuration of the system used for the experiment was as follows: Version: Intel(R) Xeon(R)
CPU E31230 3.20 GHz, slot: XU1 PROCESSOR, size: 1794 MHz, capacity: 3800 MHz, width: 64 bits,
and clock: 100 MHz. On the basis of the methodology described above, MRMG with a special nonlinear
function scheme described in detail in the next subsection 3.2.

3.2 Software Implementation

In general, LFSRs are the most common primitive for communications security due to their desirable
statistical properties. The most important and novel feature of MRMG is that it can generate 8-Hex

S. Deb, B. Bhuyan, S. U. Hasan

output per clock. Accordingly, we run the MRMG 31,250 times to get the 106 binary sequence3. In order
to compute randomness on these binary files, we used NIST STS and DieHarder package. After running
the MRMG, we were able to obtain a few weak randomness test results. Note that output keystream of
MRMGs weak randomness results are found out by performing several rounds of statistical tests. All the
weak randomness test results are tabulated in Appendix (see Table 7). To improve randomness result the
natural attention was drawn towards nonlinear function based cryptographic primitives. We recall the
definition of nonlinear vectorial Boolean function for the sake of completeness.

Definition 2. Let m and n be positive integers. An n-variable vectorial Boolean function f is a map
f : Fn

2 → Fm
2 defined as f(X) := (f1(X), · · · , fm(X)), where for each i = 1, · · · ,m, fi : Fn

2 → F2 is a
usual Boolean function.

In this section, we propose the NMRMG based on a nonlinear vectorial Boolean function as described
in Table 1, which provides more secure bitstream and resist common attacks. The schematic view of our
proposed framework is displayed in Fig. 1. In order to achieve specified goals from the MRMG, a simple

MRMG Hex bit
Output

Fig. 1. Framework of NMRMG Model

strategy has been adopted. Let us consider the MRMG generate (s0, s1, · · · , sn) sequence per clock cycle.
The sequence of the subsequent states will be partitioned into parts of 4-bits each and each 4-bit parts
are assigned to input variables of the function x0, x1, · · · , xl as shown in Fig 1 and the corresponding
output is obtained. At each iteration process framework generate 4-bit per clock. It is worth noting that,
our generalized framework can be customized by modifying the number of input lines and input output
word size. Assume that MRMG generate 32-bits, say (s0, s1, · · · , s31), per clock. Now, 32-output bits are
separated into eight parts where each part is assigned to x0, x1, · · · , x7 variables and further it passes
through the nonlinear function directly. A general overview of separation of output bits is shown as below.

x0︷ ︸︸ ︷
s0 . . . s3,

x1︷ ︸︸ ︷
s4 . . . s7, . . . ,

x7︷ ︸︸ ︷
s28 . . . s31︸ ︷︷ ︸

per clock state bit

f−→ output

To explain the above mentioned concepts precisely, let us review one concrete example.

Example 1. In this example we consider a word oriented LFSR generate 16-bit (4-Hex) output per clock.
Let the output sequence is 8c49. Now, we consider x0 = 1000(8), x1 = 1100(c), x2 = 0100(4), x3 =
1001(9). Now we consider one four variable nonlinear function like f(x0, x1, x2, x3) = x0∗x1⊕x2∗x3⊕x3.
Result of the function is f = (1000&1100)⊕ (0100&1001)⊕ 1001 = 0001. Here, we receive four bit 0001
(1 Hex) output in first clock pulse.

f -function analysis

Designing a strong nonlinear function for existing MRMG with high periodicity and good cryptographic
properties is a challenging task. We have studied several aspects of vectorial Boolean function which

3 Initially we received 250000-Hex value and later it convert to 1000000(106) binary output for randomness test.

Randomness analysis for multiple-recursive matrix generator

possess good cryptographic properties that make the structure more secure. We would like to point
out here that designing a cryptographically secure Boolean function for introducing nonlinearity on the
contents of FSR is a matter of research because it involves adjusting various contradicting parameters
such as Balancedness, Algebraic immunity, Walsh transform, Low autocorrelation etc.

Not only the vectorial Boolean function should be cryptographically secure, but also it should be
able to eliminate the randomness loopholes of the basic MRMG structure. This makes the selection of
appropriate vectorial Boolean function even more difficult. After exhaustive experimentation, we could
arrive at a strong vectorial Boolean function as described in Table 1 that maintains high nonlinearity
and above mentioned parameters. In fact, during our experiments, we used various vectorial Boolean
functions having different number of variables on the contents of MRMG. Finally, as discussed above,
we zeroed in on a 8-variable strong vectorial Boolean function which maintains maximum cryptographic
properties [3]. Nonlinear Boolean functions can be represented in different ways, the most commonly used
are the Algebraic Normal Form (ANF) or the Truth Table. The expression of the 8-variable function(f)
characterized in Table 1 (see ANF). Here, we compute several cryptographic properties of this function
and it has been summarized in Table 1. This nonlinear function has been implemented in Very High

Table 1. 8-variable function(f) with its cryptographic properties

Spectral Properties Results of the function
Number of variables 8
Balanced True
Nonlinearity 116
Algebraic immunity 3
Absolute indicator 16
Sum of square indicator() 89728
Absolute autocorrelation items (sorted) {(0, 72), (8, 118), (16, 65), (256, 1)}
Absolute Walsh spectrum (sorted) {(0, 4), (4, 16), (8, 28), (12, 48), (16, 76), (20, 64), (24, 20)}
Correlation immunity 0
Dimension of linear structures 0
Resiliency order 0
Set().ring() True
Bent False
Symmetric False
Truth Table(format = Hex) 7eb4719b4da742a8bbe124ce18fa17fd7e6b716c4d58c2572b3e3431180d1702
Algebraic Normal Form (ANF) x0x1x2x3x4x5x6 ⊕ x0x1x2x3x4x5x7 ⊕ x0x1x2x3x4x5 ⊕ x0x1x2x3x4x6 ⊕

x0x1x2x3x4x7 ⊕ x0x1x2x3x5x6x7 ⊕ x0x1x2x3x5x6 ⊕ x0x1x2x3x5x7 ⊕
x0x1x2x3x5 ⊕ x0x1x2x3x6x7 ⊕ x0x1x2x3x6 ⊕ x0x1x2x3 ⊕ x0x1x2x4x5x6 ⊕
x0x1x2x4x6x7 ⊕ x0x1x2x4x7 ⊕ x0x1x2x5x6x7 ⊕ x0x1x2x5x6 ⊕ x0x1x2 ⊕
x0x1x3x4x5x6⊕x0x1x3x4x5x7⊕x0x1x3x4x6x7⊕x0x1x3x4x7⊕x0x1x3x5x6x7⊕
x0x1x3x5x6 ⊕ x0x1x4x5x6 ⊕ x0x1x4x5x7 ⊕ x0x1x4x6x7 ⊕ x0x1x4x7 ⊕
x0x1x5x6x7⊕x0x1x5x6⊕x0x1⊕x0x2x3x4x5x6⊕x0x2x3x4x5x7⊕x0x2x3x4x5⊕
x0x2x3x5x6x7 ⊕ x0x2x3x5x6 ⊕ x0x2x3x5x7 ⊕ x0x2x3x5 ⊕ x0x2x4x5x7 ⊕
x0x2 ⊕ x0x3 ⊕ x0x6 ⊕ x0 ⊕ x1x2x3x4x5x6 ⊕ x1x2x3x4x5 ⊕ x1x2x3x5x6x7 ⊕
x1x2x3x5x6 ⊕ x1x2x3x5x7 ⊕ x1x2x3x5 ⊕ x1x2x3 ⊕ x1x5 ⊕ x2x3x4x5x6 ⊕
x2x3x4x5 ⊕ x2x3x5x6x7 ⊕ x2x3x5x6 ⊕ x2x3x5x7 ⊕ x2x3x5 ⊕ x2x4 ⊕ x3x7 ⊕
x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7

Speed Integrated Circuit Hardware Description Language (VHDL) with structural description logic. More
specifically, VHDL code synthesized using Xilinx (Virtex) FPGA, family Automotive Spartan3, device
xa3s50-4-vqg100. The synthesis results and execution analysis are shown in Table 6. The schematic view
of nonlinear function is displayed in Fig. 4.

We consider an MRMG that generates 32-bit (8-Hex) output per clock. If we separate out these 32-bit
into 8-variables (x0, x1, . . . x7), like in Example 1, where each variable initialized with 4-bit(1 Hex) and
pass them through the vectorial Boolean function whose ANF is given in Table 1. As a consequence,
this framework produces 4-bit per clock. In this way, a long sequence can be easily obtained. Thus, our
strategy increases the level of complexity, which will eventually help in resisting the different kind of
attacks.

S. Deb, B. Bhuyan, S. U. Hasan

4 Randomness Test analysis

Producing high quality random numbers from the deterministic system is a live research problem. In gen-
eral, the output sequences of the Pseudorandom Generator (PRG) act like independent random variables
from the uniform distribution over (0,1) [6]. A PRG can be mathematically defined as

Definition 3. A ‘pseudorandom generator (PRG)’ model generates deterministic pseudorandom bit-
stream using a seed of lesser number of bits. A PRG is defined as the class of function GGen : {0, 1}m →
{0, 1}n where (n > m). Here, short random sequence convert into a large sequence that looks random and
m represent as seed value or ‘secret key’.

We know, randomness of the bitstream produced by any deterministic machine is a good indicator of
its security strength. Using NIST STS and DieHarder statistical package we examine randomness tests
of NMRMG various output sample.

4.1 NIST Statistical Test Suite

NIST STS consists of 15 different statistical tests 4. NIST STS is used to detect the nonrandom features
of the binary sequences. Specifically, this test suite is used to decide the randomness behaviour and its
essential security level. All the tests are usually grouped into test batteries which allows more complex
randomness analysis. P -values are uniformly distributed and it express how the data deviate from a
established statistical model. All the randomness tests are conducted to verify the correctness of our
work. We compile all the fifteen tests on NMRMG pseudorandom data and achieved good randomness
results. Three types of NMRMG randomness test results are elaborated in Table 4.

4.2 DieHarder statistical Test Suite

DieHarder is the modern and extensive statistical tools popularly used for randomness checking. DieHarder
package has been proposed by Robert G. Brown [2]. This test suit consists of 31 fully independent sta-
tistical tests. Since, most of the generator performances are established on clever heuristics. In general,
P -value of a randomness test encountered by the properties of statistical interpretation. Note that each
test of the package is formulated by the number of samples, number of tuples, tsamples and psamples
[2]. In our work, each test tuple value increases or decreases with respect to the interpreting P -value
after the certain interval. A few tests of DieHarder, numerous interpreting P -values are available. For
the evaluation of randomness, we plotted the P -value along the x-axis and the tuple values along the
y-axis [4]. We consider several P -values that are generated for sts serial, rgb lagged sum test, rgb bitdist,
rgb minimum distance, and rgb permutation tests. The DieHarder test results are plotted graphically
as follows: sts serial results of three NMRMGs are elaborates in Fig. 2(a). Fig. 2(b) illustrates P -values
of rgb lagged sum test. A triple vertical bar graph Fig 2(c), compares three series of tests namely rgb
bitdist, rgb minimum distance, and rgb permutations P -values. Here, the error bar of bar graphs often
represent the deviated (SEM ±) values. The remaining tests whose evaluation (assessment) resulted in
one P -value are plotted in the Fig. 2(d) of each NMRMG.

Here, we introduced the notion of pseudorandomness in the context of NMRMGs. These are efficient
deterministic programs that expand short, randomly selected seeds (i.e., Secret Keys) into much longer
pseudorandom bit sequences that are computationally indistinguishable from truly random sequences by
efficient algorithms. Hence the notion of computational indistinguishability (i.e., indistinguishability by
efficient procedures) also plays a pivotal role in our discussion. Following [1], let us briefly discuss the
theory of PRG for NMRMG.

Theorem 1. A PRG must be unpredictable, we can say that G :M→ {0, 1}n and it is assumed to be predictable
if: ∃ an ‘efficient’ algorithm Anmrmg and ∃ 0 < i ≤ (n− 1) such that

Pr
m

Rand←−−−M

[
Anmrmg

(
GGen(m)

)∣∣∣
1,...,i

= GGen(m)
∣∣∣
i+1

]
≥ 1

2
+ ε

for some non-negligible ε value. ∀i considerably no efficient adversaries can predict (i + 1) bit for some non-
negligible ε value.

4 https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf

Randomness analysis for multiple-recursive matrix generator

0 5 1 0 1 5

0 . 0 0 2 4 8

0 . 0 0 6 7 4

0 . 0 1 8 3 2

0 . 0 4 9 7 9

0 . 1 3 5 3 4

0 . 3 6 7 8 8

1

0 5 1 0 1 5

0 . 0 0 2 4 8

0 . 0 0 6 7 4

0 . 0 1 8 3 2

0 . 0 4 9 7 9

0 . 1 3 5 3 4

0 . 3 6 7 8 8

1

0 5 1 0 1 5

0 . 0 0 2 4 8

0 . 0 0 6 7 4

0 . 0 1 8 3 2

0 . 0 4 9 7 9

0 . 1 3 5 3 4

0 . 3 6 7 8 8

1

0 5 1 0 1 5 2 0 2 5 3 0

0 . 0 0 2 4 8

0 . 0 0 6 7 4

0 . 0 1 8 3 2

0 . 0 4 9 7 9

0 . 1 3 5 3 4

0 . 3 6 7 8 8

1

0 5 1 0 1 5 2 0 2 5 3 0

0 . 0 0 2 4 8

0 . 0 0 6 7 4

0 . 0 1 8 3 2

0 . 0 4 9 7 9

0 . 1 3 5 3 4

0 . 3 6 7 8 8

1

0 1 2 3
0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

0 1 2 3 4
0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

0 1 2 3 4
0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

p-v
alu

e s t s _ s e r i a l

T u p l e

p-v
alu

e s t s _ s e r i a l

(d)

(c)

(b)

(a)
T u p l e

p-v
alu

e s t s _ s e r i a l

T u p l e

 r g b _ l a g g e d _ s u m

p-v
alu

e

T u p l e T u p l e

 r g b _ l a g g e d _ s u m

p-v
alu

e

0 5 1 0 1 5 2 0 2 5 3 0

0 . 0 0 2 4 8

0 . 0 0 6 7 4

0 . 0 1 8 3 2

0 . 0 4 9 7 9

0 . 1 3 5 3 4

0 . 3 6 7 8 8

1

T u p l e

p-v
alu

e r g b _ l a g g e d _ s u m

2 3 4 5
0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

T u p l e

p-v
alu

e

 r g b _ b i t d i s t
 r g b _ m i n i m u m _ d i s t a n c e
 r g b _ p a r m u t a t i o n

2 3 4 5
0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

T u p l e

 r g b _ b i t d i s t
 r g b _ m i n i m u m _ d i s t a n c e
 r g b _ p a r m u t a t i o n

p-v
alu

e

2 3 4 5
0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

 r g b _ b i t d i s t
 r g b _ m i n i m u m _ d i s t a n c e
 r g b _ p a r m u t a t i o n

p-v
alu

e

T u p l e

p-v
alu

e

T u p l e T u p l e

p-v
alu

e

p-v
alu

e

T u p l e

Fig. 2. DieHarder Pass Randomness results for three types of NMRMG

5 Security evaluation of NMRMG

In the previous section, we described NMRMG based framework which provides good quality random
output bitstream. Here, we will explain some statistical and cryptographic properties of the keystream
generated by NMRMG. Following subsection deals with various data analysis, autocorrelation and how
NMRMG is potentially effective against Berlekamp Massey algorithm. These analysis will provide a good
estimate of the security level provided by the proposed NMRMG.

5.1 Data Analysis

This subsection covers detailed analysis of the output data set of NMRMG. It is very important to know
the probability distributions of output data set for discrete random variables. From the large (250000
Hex) output sequence, we compute a finite number of possible outcomes from (0, 1, . . . , 9, a, . . . f). This
analysis has been carried out in terms of Frequency Distribution, Coincidence Index, Entropy, Standard
Deviation, Variance, and Standard Error of the Mean (SEM ±). Table 2 illustrate numerical data for the
mentioned properties.

5.2 Berlekamp Massey Approach

Linear complexity (LC) is one of the most important security indicator of LFSR based stream ciphers.
In cryptographic point of view, a secure stream cipher can achieve good security level when it produces
a sequence with large linear complexity. In that regard, Berlekamp-Massey algorithm is used to deter-
mine the length of the LFSR. More precisely, it finds the original polynomial equation from the LFSR

S. Deb, B. Bhuyan, S. U. Hasan

Table 2. Statistical data analysis of the NMRMG framework

Properties NMRMG I NMRMG II NMRMG III

Frequency Distribution

(0, 0.0781250000000000),
(1, 0.0312500000000000),
(2, 0.0625000000000000),
(3, 0.0468750000000000),
(4, 0.0312500000000000),
(5, 0.140625000000000),
(6, 0.0625000000000000),
(7, 0.0468750000000000),
(8, 0.0781250000000000),
(9, 0.0312500000000000),
(a, 0.0937500000000000),
(b, 0.0312500000000000),
(c, 0.0468750000000000),
(d, 0.0625000000000000),
(e, 0.0937500000000000),
(f, 0.0625000000000000)

(0, 0.0156250000000000),
(1, 0.0781250000000000),
(2, 0.0156250000000000),
(3, 0.0468750000000000),
(4, 0.0156250000000000),
(5, 0.0625000000000000),
(6, 0.0781250000000000),
(7, 0.0468750000000000),
(8, 0.125000000000000),
(9, 0.0468750000000000),
(a, 0.125000000000000),
(b, 0.0625000000000000),
(c, 0.0625000000000000),
(d, 0.0625000000000000),
(e, 0.0468750000000000),
(f, 0.109375000000000)

(0, 0.0781250000000000),
(1, 0.0468750000000000),
(2, 0.0312500000000000),
(3, 0.0625000000000000),
(4, 0.0625000000000000),
(5, 0.0625000000000000),
(6, 0.0781250000000000),
(7, 0.0781250000000000),
(8, 0.078125000000000),
(9, 0.0625000000000000),
(a, 0.0625000000000000),
(b, 0.0625000000000000),
(c, 0.109375000000000),
(d, 0.0156250000000000),
(e, 0.0625000000000000),
(f, 0.0468750000000000)

Coincidence Index 0.0610119047619048 0.0659722222222222 0.0610119047619048
Entropy 2.006034264775 2.130803302135 2.080419673776
St. Deviation 0.0296463530640786 0.0347048567686618 0.0213478140957492
Variance 0.000878906250000000 0.00120442708333333 0.000455729166666667
Variance(bias = True) 0.000823974609375000 0.00112915039062500 0.000427246093750000
St. Error of the Mean (SEM ±) 0.0074115882660196 0.0086762141921655 0.0053369535239373

output sequence. According to Massey algorithm, only 2n consecutive output sequences are required
for determining the linear complexity of the feedback polynomial of a LFSR. Let, binary sequences are
s = (s0, s1, . . . , sn−1) and linear complexity is l. Therefore, connection polynomial of s can be represented
as

C(x) = c0 + c1x+ c2x2 + . . .+ clxl. (5)

Using Berlekamp-Massey algorithm it would be easy to identify the value of l and C(x).

Example 2. For instance, an LFSR assign with seed value
[
1, 1, 0, 1

]
with tap value

[
1, 0, 0, 1

]
. We

know, 2n bits are enough to find connection polynomial. Initially, first 20 output bits are given by[
1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0

]
. In that case, above mentioned algorithm gives the original

polynomial Dˆ4 + Dˆ3 + 1.

In our work, we have first considered 256 output bits of the NMRMG and it is loaded into Berlekamp-
Massey algorithm for the original polynomial equation. This algorithm fails to recover original feedback
polynomial and the recovered polynomials are tabulated in Table 3. The tabulated results clearly show

Table 3. NMRMG Polynomial characteristics using BerlekampMassey algorithm

Length NMRMG I NMRMG II NMRMG III
First 256-bit
output sequence

Dˆ128 + Dˆ127 + Dˆ126 + Dˆ125 +
Dˆ123 + Dˆ121 + Dˆ118 + Dˆ116 +
Dˆ115 + Dˆ114 + Dˆ113 + Dˆ111 +
Dˆ109 + Dˆ108 + Dˆ107 + Dˆ105 +
Dˆ102 + Dˆ100 + Dˆ99 + Dˆ97 +
Dˆ96 + Dˆ95 + Dˆ90 + Dˆ89 + Dˆ87
+ Dˆ86 + Dˆ85 + Dˆ84 + Dˆ83 +
Dˆ81 + Dˆ80 + Dˆ79 + Dˆ76 + Dˆ74
+ Dˆ72 + Dˆ70 + Dˆ69 + Dˆ67 +
Dˆ66 + Dˆ64 + Dˆ63 + Dˆ62 + Dˆ60
+ Dˆ59 + Dˆ55 + Dˆ54 + Dˆ53 +
Dˆ52 + Dˆ51 + Dˆ50 + Dˆ49 + Dˆ44
+ Dˆ43+ Dˆ35 + Dˆ34 + Dˆ31 +
Dˆ29 + Dˆ27 + Dˆ25 + Dˆ19 + Dˆ18
+ Dˆ12 + Dˆ11 + Dˆ9 + Dˆ8 + Dˆ7
+ Dˆ5 + Dˆ4 + Dˆ3 + 1

Dˆ125 + Dˆ117 + Dˆ112 + Dˆ108 +
Dˆ107 + Dˆ106 + Dˆ103 + Dˆ101 +
Dˆ100 + Dˆ99 + Dˆ95 + Dˆ93 + Dˆ91
+ Dˆ90 + Dˆ88 + Dˆ82 + Dˆ77 +
Dˆ76 + Dˆ75 + Dˆ74 + Dˆ72 + Dˆ71
+ Dˆ69 + Dˆ68 + Dˆ64 + Dˆ63 +
Dˆ60 + Dˆ58 + Dˆ57 + Dˆ54 + Dˆ53
+ Dˆ52 + Dˆ51 + Dˆ46 + Dˆ45 +
Dˆ43 + Dˆ39 + Dˆ36 + Dˆ35 + Dˆ31
+ Dˆ29 + Dˆ28 + Dˆ25 + Dˆ24 +
Dˆ23 + Dˆ21 + Dˆ20 + Dˆ16 + Dˆ15
+ Dˆ14 + Dˆ13 + Dˆ10 + Dˆ8 + Dˆ7
+ Dˆ5 + Dˆ3 + D + 1

Dˆ129 + Dˆ128 + Dˆ127 + Dˆ124 +
Dˆ123 + Dˆ120 + Dˆ119 + Dˆ116 +
Dˆ114 + Dˆ113 + Dˆ112 + Dˆ109 +
Dˆ106 + Dˆ105 + Dˆ104 + Dˆ99 +
Dˆ97 + Dˆ96 + Dˆ95 + Dˆ92 + Dˆ90
+ Dˆ89 + Dˆ88 + Dˆ87 + Dˆ86 +
Dˆ84 + Dˆ83 + Dˆ80 + Dˆ78 + Dˆ77
+ Dˆ76 + Dˆ75 + Dˆ74 + Dˆ73 +
Dˆ70 + Dˆ67 + Dˆ66 + Dˆ63 + Dˆ62
+ Dˆ61 + Dˆ60 + Dˆ58 + Dˆ53 +
Dˆ51 + Dˆ50 + Dˆ46 + Dˆ45 + Dˆ43
+ Dˆ41 + Dˆ39 + Dˆ38 + Dˆ36 +
Dˆ35 + Dˆ33 + Dˆ32 + Dˆ31 + Dˆ30
+ Dˆ29 + Dˆ28 + Dˆ27 + Dˆ26 +
Dˆ25 + Dˆ24 + Dˆ22 + Dˆ21 + Dˆ16
+ Dˆ15 + Dˆ12 + Dˆ7 + Dˆ6 + Dˆ5
+ Dˆ2 + D + 1

First 64-Hexbit
output sequence

Dˆ32 + Dˆ30 + Dˆ26 + Dˆ23 + Dˆ21
+ Dˆ19 + Dˆ18 + Dˆ17 + Dˆ15 +
Dˆ14 + Dˆ13 + Dˆ11 + Dˆ10 + Dˆ9
+ Dˆ8 + Dˆ6 + Dˆ5 + Dˆ4 + 1

Dˆ33 + Dˆ32 + Dˆ26 + Dˆ24 + Dˆ22
+ Dˆ21 + Dˆ20 + Dˆ18 + Dˆ17 +
Dˆ11 + Dˆ10 + Dˆ9 + Dˆ4 + Dˆ3 +
Dˆ2 + D + 1

Dˆ30 + Dˆ27 + Dˆ24 + Dˆ23 + Dˆ22
+ Dˆ21 + Dˆ20 + Dˆ17 + Dˆ16 +
Dˆ15 + Dˆ14 + Dˆ13 + Dˆ12 + Dˆ11
+ Dˆ10 + Dˆ9 + Dˆ8 + Dˆ7 + Dˆ5
+ Dˆ3 + Dˆ2 + 1

Randomness analysis for multiple-recursive matrix generator

that the proposed framework defends the original feedback polynomial. Note that the adversary cannot
generate the original feedback polynomial from the above mentioned algorithm in reasonable time.

5.3 Autocorrelation analysis

Binary strings with proper autocorrelation features play an essential role in secure applications. In this
paradigm, the attacker attempts to establish some probabilistic relation between the Key bits and the
output. Autocorrelation analysis is most relevant for LFSR based stream ciphers [11]. Let â be a periodic
binary sequence of NMRMG with period p. Autocorrelation function is defined as follows

ACâ(τ) =

p−1∑
ı=1

(−1)(aı+aı+τ) , 0 ≤ τ ≤ p− 1 (6)

From the cryptographic overview, autocorrelation assures that the attacker can not determine correlations
among shifted versions of the identical bitstream.

Example 3. Here, we consider our previous example 2. We know, seed =
[
1, 1, 0, 1

]
, tap =

[
1, 0, 0, 1

]
,

n = 20, output =
[
1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0

]
. Now, AC(output, 15, 7) = 4

15 .

In this work, we present autocorrelation analysis for NMRMG. Here we estimate the accurate ap-
proximation of the correlation values. According to our study, we did not find any linear correlation in
NMRMG output. Figure 3 has been drawn on the basis of pairs of autocorrelation indices. However, pairs
of autocorrelation data is difficult to describe for large data-set, so graphically we present first 256 bit
(64 Hex) random output sequence for NMRMG.

- 5 0 5 1 0 1 5 2 0 2 5 3 0 3 5
- 1 0

0

1 0

2 0

3 0

- 5 0 5 1 0 1 5 2 0 2 5 3 0 3 5
- 1 0

0

1 0

2 0

3 0

- 5 0 5 1 0 1 5 2 0 2 5 3 0 3 5
- 1 0

0

1 0

2 0

3 0

(c)(b)(a)

Ind
ex

A u t o c o r r e l a t i o n

 N M R M G I

Ind
ex

A u t o c o r r e l a t i o n

 N M R M G I I
Ind

ex

A u t o c o r r e l a t i o n

 N M R M G I I I

Fig. 3. Autocorrelation result analysis of (a) NMRMG I, (b) NMRMG II, (c) NMRMG III

5.4 Randomness Comparison

Very recently, Lizard [5], Fruit [13], and Plantlet [8] stream ciphers were introduced and these claimed
to resist common attacks. Modern lightweight stream ciphers security rely on keystream randomness.
We provide a comprehensive randomness evaluation of three current lightweight stream ciphers namely
Lizard, Fruit, and Plantlet with NMRMG framework. It may be noted, designers of the Fruit have
modified the original specification of their cipher and here we consider first version of the Fruit cipher.
The important aspect of the randomness test analysis, we have achieved better randomness results (see
Table 4) compared to three stream ciphers.

6 Conclusion

On one hand, we have shown that the binary sequences generated by MRMG do not satisfy the random-
ness properties. However on the other hand, we have introduced a nonlinearly filtered MRMG based on

S. Deb, B. Bhuyan, S. U. Hasan

Table 4. NIST STS randomness test results of NMRMG

Name of the test NMRMG I NMRMG II NMRMG III
P-value Evaluation P-value Evaluation P-value Evaluation

Frequency 0.304126 Pass 0.595549 Pass 0.094664 Pass
Block frequency 0.739918 Pass 0.011791 Pass 0.534146 Pass
Cumulative sums 0.739918 Pass 0.616305 Pass 0.671779 Pass
Runs 0.834308 Pass 0.419021 Pass 0.100508 Pass
Longest run 0.739918 Pass 0.574903 Pass 0.804337 Pass
Rank 0.010988 Pass 0.010255 Pass 0.010735 Pass
FFT 0.171867 Pass 0.262249 Pass 0.072663 Pass
Non Overlapping template (mean value) 0.637119 Pass 0.474986 Pass 0.407091 Pass
Overlapping template 0.108791 Pass 0.437274 Pass 0.098526 Pass
Universal 0.129620 Pass 0.137282 Pass 0.113526 Pass
Approximate entropy 0.262249 Pass 0.102526 Pass 0.127148 Pass
Serial1 0.171867 Pass 0.897763 Pass 0.949602 Pass
Serial2 0.759756 Pass 0.171867 Pass 0.050845 Pass
Linear complexity 0.045675 Pass 0.085587 Pass 0.132758 Pass
Random excursions (mean value from x = 4 . . . + 4) 0.401199 Pass 0.401199 Pass 0.534146 Pass
Random excursions variant (mean value from x = 9 . . . + 9) 0.383827 Pass 0.474986 Pass 0.449672 Pass

Table 5. NIST STS randomness test results of Lizard, Fruit, Plantlet

Name of the test Lizard Fruit Plantlet
P-value Evaluation P-value Evaluation P-value Evaluation

Frequency 0.350485 Pass 0.122325 Pass 0.924076 Pass
Block frequency 0.008879 Pass 0.350485 Pass 0.637119 Pass
Cumulative sums 0.350485 Pass 0.739918 Pass 0.514124 Pass
Runs 0.534146 Pass 0.911413 Pass 0.181557 Pass
Longest run 0.350485 Pass 0.911413 Pass 0.739918 Pass
Rank 0.534146 Pass 0.213309 Pass 0.000070 Weak
FFT 0.991468 Pass 0.739918 Pass 0.004301 Pass
Non Overlapping template (mean value) 0.550133 Pass 0.474986 Pass 0.657933 Pass
Overlapping template 0.350485 Pass 0.350485 Pass 0.851383 Pass
Universal 0.000000 Weak 0.000513 Weak 0.000000 Weak
Approximate entropy 0.350485 Pass 0.739918 Pass 0.191687 Pass
Serial1 0.911413 Pass 0.000911 Weak 0.574903 Pass
Serial2 0.137154 Pass 0.002089 Weak 0.262249 Pass
Linear complexity 0.035174 Pass 0.031254 Pass 0.383827 Pass
Random excursions (mean value from x = 4 . . . + 4) 0.410236 Pass 0.273561 Pass 0.534146 Pass
Random excursions variant (mean value from x = 9 . . . + 9) 0.216984 Pass 0.489719 Pass 0.616305 Pass

a special nonlinear vectorial Boolean function and established that randomness properties of sequences
generated by such a nonlinearly filtered MRMG are significantly better than their usual linear counter
parts. We have also compared our test results with some of recent lightweight stream ciphers. In future,
we plan to study the componentwise linear complexity of sequences generated by nonlinearly filtered
MRMG.

References

1. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Version 0.1, fr om http://cryptobook. net
(2008)

2. Brown, R.G.: Dieharder: A random number test suite (version 3.31), (2013)
3. Burnett, L., Millan, W., Dawson, E., Clark, A.: Simpler methods for generating better boolean functions with

good cryptographic properties. Australasian Journal of Combinatorics 29, 231–248 (2004)
4. Deb, S., Bhuyan, B.: Performance evaluation of grain family and espresso ciphers for applications on resource

constrained devices. ICT Express 4(1), 19–23 (2018)
5. Hamann, M., Krause, M., Meier, W.: Lizard–a lightweight stream cipher for power-constrained devices. IACR

Transactions on Symmetric Cryptology 2017(1), 45–79 (2017)
6. Haramoto, H.: Automation of statistical tests on randomness to obtain clearer conclusion. In: Monte Carlo

and Quasi-Monte Carlo Methods 2008, pp. 411–421 (2009)
7. Hasan, S.U., Panario, D., Wang, Q.: Nonlinear vectorial primitive recursive sequences. Cryptogr. Commun.

(2017). https://doi.org/10.1007/s12095-017-0265-2.
8. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the non-volatile key. IACR

Transactions on Symmetric Cryptology 2016(2), 52–79 (2017)

https://doi.org/10.1007/s12095-017-0265-2

Randomness analysis for multiple-recursive matrix generator

9. Niederreiter, H.: Factorization of polynomials and some linear-algebra problems over finite fields. Linear
Algebra and its Applications 192, 301–328 (1993)

10. Preneel, B.: Introduction to the proceedings of the second workshop on fast software encryption, vol. 1008 of
lecture notes in comput. sci., 1–5 (1995)

11. Tarannikov, Y., Korolev, P., Botev, A.: Autocorrelation coefficients and correlation immunity of boolean
functions. In: Boyd, C. (ed.) Advances in Cryptology — ASIACRYPT 2001. pp. 460–479. Springer Berlin
Heidelberg, Berlin, Heidelberg (2001)

12. Tsaban, B., Vishne, U.: Efficient linear feedback shift registers with maximal period. Finite Fields and Their
Applications 8(2), 256–267 (2002)

13. Vahid Amin Ghafari, H.H., Chen, Y.: Fruit-v2: Ultra-lightweight stream cipher with shorter internal state.
Cryptology ePrint Archive, Report 2016/355 (2016), available at: http://eprint.iacr.org/2016/355

14. Zeng, G., Han, W., He, K.: High efficiency feedback shift register: σ−lfsr. Cryptology ePrint Archive, Report
2007/114 (2007), https://eprint.iacr.org/2007/114

Appendix

IBU
F

IBU
F

IBU
F

IBU
F

IBU
F

IBU
F

IBU
F

IBU
F

I3I2I1I0

O

L
U

T
4_

96
3

C

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

L
U

T
4_

2
D

D
2

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_6

9
96

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

LU
T

4
_8

0
00

I3I2I1I0

O

L
U

T
4_

80
0

0

I3I2I1I0

O

L
U

T
4_

80
0

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 I2 LU
T

3
_8

0

I3I2I1I0

O

L
U

T
4_

80
0

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

I3I2I1I0

O

L
U

T
4_

80
0

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

I3I2I1I0

O

L
U

T
4_

80
0

0O

I0 I1 LU
T

2
_8

I3I2I1I0

O

L
U

T
4_

80
0

0O

I0 I1 LU
T

2
_8

O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

I3I2I1I0

O

L
U

T
4_

80
0

0O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

I3I2I1I0

O

L
U

T
4_

80
0

0O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

O

I0 I1 I2 LU
T

3
_8

0O

I0 I1 LU
T

2
_8

O

I0 I1 LU
T

2
_8

I3I2I1I0

O

L
U

T
4_

69
9

6

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

O
BU

F

abdegfhc

r1r2r3r4r5r6r7r8r9r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30

r31

r32

r33

r34

r35

r36

r37

r38

r39

r40

r41

r42

r43

r44

r45

r46

r47

r48

r49

r50

r51

r52

r53

r54

r56

r55

r57

r58

r59

r60

r61

r62

r63

z

Fig. 4. Synthesized hardware structure (Schematic technology) of the function

Table 6. synthesis results of the function using xa3s50-4-vqg100

Synthesis report on xa3s50-4-vqg100

Resources Use Available Utililization
No. of Slices 55 768 7%
No. of 4 I/O LUTs 95 1536 6%
No. of bonded IOBs 72 63 114%
Cell in out fanout Gate Delay (ns) Net Delay (ns)
IBUF:I->O 35 0.821 2.209
LUT4:I0->O 2 0.551 1.072
LUT2:I1->O 2 0.551 1.216
LUT4:I0->O 1 0.551 1.140
LUT4:I0->O 1 0.551 0.996
LUT4:I1->O 1 0.551 0.801
OBUF:I->O - 5.644 -
Total- 16.654 ns (9.220 ns logic, 7.434 ns route), where 55.4% logic and 44.6% route

http://eprint.iacr.org/2016/355
https://eprint.iacr.org/2007/114

S. Deb, B. Bhuyan, S. U. Hasan

Table 7. DieHarder and NIST STS weak randomness results of MRMG

Dieharder version 3.31.1, Copyright-Robert G. Brown
Types of MRMG Test name P-value Assessment
MRMG I diehard birthdays 0.99569301 Weak

sts serial 0.99589102 Weak
diehard dna 0.00025383 Weak
sts monobit 0.99743159 Weak

MRMG II sts serial 0.99883080 Weak
diehard birthdays 0.99873041 Weak
sts monobit 0.99479301 Weak

MRMG III rgb lagged sum 0.99970352 Weak
diehard runs 0.99671643 Weak
sts monobit 0.99193765 Weak

NIST STS randomness test
MRMG I Cumulative Sums 0.000071 Weak

Rank 0.153763 Weak
Universal 0.000029 Weak
Linear Complexity 0.000174 Weak

MRMG II FFT 0.000371 Weak
Rank 0.000000 Weak
Linear Complexity 0.000089 Weak

MRMG III Runs 0.994076 Weak
Rank 0.000079 Weak
LinearComplexity 0.055361 Weak

	Randomness analysis for multiple-recursive matrix generator
	Introduction
	Preliminaries
	Experiment and result analysis
	Methodology
	Software Implementation
	f-function analysis

	Randomness Test analysis
	NIST Statistical Test Suite
	DieHarder statistical Test Suite

	Security evaluation of NMRMG
	Data Analysis
	Berlekamp Massey Approach
	Autocorrelation analysis
	Randomness Comparison

	Conclusion

