Consolidating Security Notions in
Hardware Masking

Lauren De Meyer!, Begiil Bilgin’? and Oscar Reparaz'=

1 KU Leuven, imec - COSIC, Leuven, Belgium
firstname.lastname@esat.kuleuven.be
2 Rambus, Cryptography Research, Rotterdam, the Netherlands
3 Square Inc., San Francisco, USA

Abstract. In this paper, we revisit the security conditions of masked hardware
implementations. We describe a new, succinct, information-theoretic condition called
d-glitch immunity which solely ensures security in the presence of glitches. We show
that this single condition includes, but is not limited to, previous security notions such
as those used in higher-order threshold implementations and in abstractions using
ideal gates. On the other hand, it excludes unnecessary notions such as uniformity.
We also treat the notion of (strong) non-interference from an information-theoretic
point-of-view in order to unify the different security concepts and pave the way to
the verification of composability in the presence of glitches. We conclude the paper
by demonstrating how the condition can be used as an efficient and highly generic
flaw detection mechanism for a variety of functions and schemes based on different
operations and working in different fields.

Keywords: Glitches - DPA - SCA - Verification - TI - SNI - Non-Completeness -
Mutual Information - Information-theory - d-probing - Immunity

1 Introduction

Cryptographic algorithms are designed such that they are mathematically secure. An
adversary with access to, for instance, the ciphertext and plaintext, should not be able to
derive the secret key with reasonable computing power. However, this black boxr model
often does not suffice in practice, as the existence of side-channels can significantly aide the
adversary in his quest for secret information. Since the seminal work of Kocher [Koc96],
we have learned of many cheap and scalable side-channel attacks (SCA) that successfully
exploit information such as instantaneous power consumption or electromagnetic radiation
to recover secret keys, effectively turning the adversary’s black bozx into a grey bozx.

In the realm of SCA, the most well known technique is Differential Power Analysis
(DPA) [KJJ99|, a simple and efficient attack that exploits the fact that the power consump-
tion of an embedded device depends on the intermediate values that the device computes
on. In response, many countermeasures have been proposed, among which masking is one
of the most established.

1.1 Motivation

Accuracy of leakage functions. Constructing masked circuits is non-trivial. First of all,
describing the leakage of the device with high accuracy as a function of its behavior and
performed operation is a tedious work. The typical methodology in developing a masking
scheme is to represent the circuit and its leakage in an abstract way as accurate as possible;
then prove their security in this abstraction. However, as is shown repeatedly, the proposed

firstname.lastname@esat.kuleuven.be

2 Consolidating Security Notions in Hardware Masking

countermeasures would show significant vulnerabilities if the abstraction of the leakage
function is not accurate. A good example is the traditional d-probing adversary, where
the adversary gets the noiseless information (leakage) abouts d intermediates that have
been probed. Schemes such as ISW [ISW03| are secure in this instantaneous model where
the adversary does not see any transition or change in the intermediate. He sees only the
stabilized value. Such a naive power model does not take into account physical defaults
such as memory transitions or glitches that impact hardware implementations.

Glitches are unintentional and undesirable hardware artifacts causing unnecessary power
consumption and hardware designers go to great lengths to minimize them for reasons
beyond security. However, reducing glitches requires a careful process of path equalization
which is a great challenge given factors such as the product and architecture variation,
working environment and device age. Moreover, glitches can momentarily unmask values,
invalidating the security guarantees theoretically provided by masking and making it a
security hazard [MPGO5].

Necessary but not sufficient conditions. Threshold implementations (TI) [NRROG]
were the first provably secure masking scheme in the presence of glitches. The authors
identified two key properties: non-completeness and uniformity, which together ensure
the provable security of TI against first-order DPA in the presence of glitches. Together,
non-completeness and (global) uniformity are sufficient to provide first-order security on
any hardware as long as the independent leakage assumption of masking holds.

The concept was extended to higher-order security by Bilgin et al. [BGNT14], but it was
later shown by Reparaz et al. [RBNT15] that non-completeness and uniformity no longer
suffice to achieve higher-order security due to the possibility of multivariate attacks. The
authors also refined the definition of non-completeness to the level of individual variables
and hence opened up the possibility for securely using only d + 1 shares in the presence of
glitches.

The property of non-completeness is a necessary requirement for the security of masked
hardware implementations and therefore lies at the basis of every design process. However
up to today, it remains unclear how to define a necessary and sufficient condition. This
means that a lot of masked implementations have actually been designed without a clear
understanding of the underlying security notions and how particular decisions impact the
resistance against SCA.

Verification tools. As a result, many proposed countermeasures of the last years (whether
they be Boolean masking or multiplicative or additive) have been shown to be vulnerable
relatively quickly after being published. This has been a common trend both in software
and hardware masking |[AGO01}, PGAO06, [SP06, RP10, [BFGV12, [BGNT14, [HT16]. This
history of trial and error has given rise to a new wave of works on the verification of
masking schemes, ranging from formal to statistical [Rep16, ANR17, [BGI™18|.

Sufficient but not necessary conditions. Growth of the circuit and the resulting com-
putational complexity pose a limit on our ability to verify implementations. In response, a
lot of effort has been put into making schemes provably secure using the concept of (strong)
non-interference which implies composability. More specifically, d-SNI gadgets can be
composed to provide d-probing security which allows for a more efficient verification of large
circuits. These notions were originally devised for ideal circuits [Bell5, [BBDT 16, |Cor18§],
but have been extended with glitches among others by [FGMDP™ 18, BBFG18|. The main
disadvantage of this approach is that it is over-conservative (not a necessary condition)
and typically results in more randomness usage than strictly required.

Lauren De Meyer, Begiil Bilgin and Oscar Reparaz 3

1.2 Our Contribution

In this work, we introduce an information-theoretic metric, which is conceptually extremely
simple as well as easy to verify. Above all, it is the first necessary and sufficient condition
for d-probing security in the presence of glitches. We revisit the definition of probing
security as introduced in [GM10| Def. 4], i.e. a circuit is d-probing secure if the mutual
information of any set of d probes with the secret is zero. We redefine this notion for
hardware implementations using the adversary model of [RBNT15], where each probed
wire gives the adversary information about all the inputs to that wire up to the last
synchronization point. By replacing each probe with its glitch-extended version (i.e. the
set of inputs up to the last synchronization point), we obtain an information-theoretic
condition for probing security in the presence of glitches.

We compare this metric with existing notions such as non-completeness and (strong) non-
interference and we unify these security concepts by introducing new information-theoretic
definitions. This allows us to move towards the efficient verification of composability for
hardware implementations. In addition, we demonstrate that uniformity is not a necessary
condition for secure masked hardware implementations.

Finally, we detail how the new condition for glitch security can be used to detect flaws
and verify schemes. It can be used both for exact proofs and statistical validation of
practical security. The simplicity of the security condition also makes it compatible with
any type of masking (Boolean, multiplicative, polynomial, ...). Our application directly
uses HDL and does not require prior knowledge on the particular implementation. It can
thus easily be used both by designers themselves and by independent analysts to validate
the scheme. We demonstrate its ability to find vulnerabilities by applying it to known
flawed designs and even detect a new problem.

2 SCA Security in the Presence of Glitches

2.1 Preliminaries

Notation. We use lowercase letters, e.g. x to denote random variables and capital letters,
e.g. F for functions. Bold font is used for a sharing of these, i.e. * = (zg,z1,...) is a
sharing of z and F = (Fy, F1,...) is a masked F. We denote specific realizations of = by
superscript 2*. Further, we let x; = (29, 1,...,%;—1,Tit1,...) be the vector obtained by
removing z; from x.

The probability distribution on z is denoted by p(z) and H(x) is the Shannon entropy
of x: H(xz) = = . p(z*)logy(p(x*)). For any z,y, we use p(z|y) to represent the
conditional probability of z on y and I(z;y) the mutual information between z and y.
The two notions are connected by the relation I(x;y) = H(xz) — H(z|y). Note that mutual
information is symmetric, i.e. I(z;y) = I(y;x).

Finally, we denote a set of multiple random variables, e.g. (z,y) by caligraphy letters
X. The union of two sets X U)Y is the set consisting of all variables that belong to either
X or Y or both:

XUY={z:xeXorze)}

Statistical independence. Recall that there are a multitude of equivalent ways to express
the statistical independence of two discrete random variables x and y. For instance, x
and y are statistically independent when their mutual information is zero (I(z;y) = 0).
It then follows directly from the relation between mutual information and entropy that
H(z) = H(zx|y), i.e. the entropy of z does not decrease when conditioned on y (and
vice versa). Alternatively, the statistical independence of z and y is also evidenced by
p(z,y) = p(x)p(y), which is in turn equivalent to p(z) = p(x|y). In this work, we investigate

4 Consolidating Security Notions in Hardware Masking

the statistical independence by verifying that the probability distribution of x, conditioned
on a specific instantiation of y*, is independent of that y*. In other words, we verify that

Vy* i p(zly®) =p* (1)

with p* some constant probability distribution independent of y*. It is easy to show that
statistical independence follows from this:

p(x) =Y plalyply") = p(zly) Y p(y*) = plaly”) 2)

Information-theoretic view. In |[GM10, Def. 4], Gammel and Mangard provided an
information-theoretic definition for d-probing security. We repeat their definition below for
completeness as throughout this paper, we also use information-theoretic notions. Gammel
and Mangard trace back the origin of this metric to Siegenthaler’s correlation immunity of
a Boolean function [Sie84].

d-probing security. A circuit is d-probing secure, if and only if for any observation set
of d wires Q@ = (q1,q2,...,q4) the following condition holds:

I((q1,q2;-- -+ qa);) =0 (3)

with x the secret.
This condition is sufficient and necessary for d-probing security. However, it does not
account for glitches. In the rest of this section, we fill in this gap.

2.2 Glitchy Circuits

Before providing the condition, we first discuss our circuit and leakage model.

n
D\ Awy+1 . Tw+1
2
4 qW1+2 . A
Al Twi+2 . .

Figure 1: Masked circuit model

Circuit model. Assume we deal with a masked circuit as shown in Figure[ll The circuit
handles a sensitive value = which depends on the key. Every combinational block C;
computes a single output wire ¢; from a set of input wires R; = {r;,,74,,...}. For
example, in Figure (I} wire ¢,,+1 is computed by combinational block Cy,, +1 from inputs
Ruw,+1 = {r1,r2}. Note that the wires (r;, ¢;) can be constants, shares of multiple sensitive
variables, or public values. Their specific roles do not matter here. The output wires of
combinational blocks (g;) are input wires to synchronization points and carry unstabilized
values. For brevity, we assume that these synchronization points are simultaneously clocked
registers. Data from one register stage (r;) forms the input to a block of combinational

Lauren De Meyer, Begiil Bilgin and Oscar Reparaz)

logic that computes the input to the next register stage. These inputs to combinational
blocks are considered stable. Since glitch-extended probes of intermediate wires inside a
block C; are obviously included in the glitch-extended probe of wire ¢;, we only consider
probes on ¢; from now on.

The glitch function. 1t is inefficient or even infeasible to predict the effect of glitches
and enumerate all the possible temporary values that can occur on a wire in C; before
the signal stabilizes at its intended function value. We provide an abstraction for this
glitch-based leakage with a glitch function. The glitch function is any function leaked by a
combinational block before it stabilizes on the intended function value. This can be an
unexpected partial result because of propagation delays in some inputs. Alternatively,
upon arrival of a late intermediate, one partial result transitions to another and the glitch
function computes the distance between both.

It is difficult to model the glitch function, since it depends on many variables, such as
the logic library and synthesis process; hence, in this paper we consider it to be unknown.
However, we can state some of its properties. An obvious, yet important property of the
glitch function is that, under the independent leakage assumption, it depends exclusively
on the inputs of the intended function. That is, when a wire in a combinational block C;
glitches, it momentarily computes a glitch function that depends on R; exclusively.

Leakage model. A model that takes into account glitches considers additional leakage
compared to the traditional ISW d-probing model [ISWO03]. We use the leakage model
introduced in [RBNT15] which covers all possible glitch functions as an abstraction: We
assume that, whenever the adversary probes any single value within a combinational func-
tion, he also automatically obtains all inputs to the function (up to the last synchronization
point), for free. That is, an adversary probing ¢; obtains the knowledge of the set R;. We
provide the adversary with all inputs, so that he himself can compute the worst possible
glitch function. This model may be somewhat over-conservative, since this information
might not actually be leaked by the circuit. This is the price we pay to work at a high
level, where no information about the synthesis process or technology is required.

We note that this adversary model, here-on called d-glitch-extended probing adversary,
can be extended [FGMDP™18| to cover other physical defaults, such as cross-talk. In this
work, we continue with the above described independent leakage model, including glitches
but no coupling effects or register transitions. This corresponds to the (1,0,0)-robust
d-probing model of [FGMDP™18§|. Moreover, we assume that the clock period is large
enough so that the critical path constraint is satisfied in order to avoid attacks such
as [MM13].

2.3 A Sufficient Condition to Achieve d-Glitch-Extended Probing Se-
curity

In what follows, we introduce a new condition for security against side-channel attacks in
the presence of glitches. This security notion is elegant and conceptually simple, as well as
easy to verify for circuits in practice.

Property 1 (d-glitch immunity). A circuit such as that in Figure 1| is d-glitch immune
if and only if for any observation set of d wires (qi,, iy, - - -,¢i,) With respective glitch-
extended probes (R;,, Ri,, - .-, Ri,), the condition

I(RiIURiQU...URid;LL'):O (4)
holds, with z the sensitive data.

Lemma 1. A d-glitch immune circuit is d-glitch-extended probing secure.

6 Consolidating Security Notions in Hardware Masking

The reasoning is quite elementary: when the mutual information between R = R;, U
Ri,U...UR;, and the secret is zero, no combination of input wires r; € R can provide any
information on the secret. Hence, no glitch function on Cj,, .., C;, or their combination,
no matter the exact shape, can reveal any secret information. In particular, DPA would
not be able to exploit leakage from it.

Multi-variate security. Note that d-glitch immunity puts no limitation on the register
stage of probed wires ;. Therefore, verification of higher-order security, let it be uni-variate
or multi-variate, is conceptually as simple as verification of first-order security. To test
security against d probes, we have to consider the input wires of d blocks jointly which
can be done as mere concatenation. Hence, d-glitch immunity easily covers multi-variate
security.

Sufficient and necessary. Note that we only take into account the inputs to the combi-
national blocks C; and not the specific functions computed. On the one hand, this makes
d-glitch immunity conceptually simple and quite easy to verify. On the other hand, it is a
worst-case indication of leaks. A non-zero mutual information

I(Ri) 0 (5)

points to the existence of some function on the inputs R that leaks sensitive information,
but there is no guarantee that this function can occur as a glitch function on the circuit
that implements C;. Even if it does, the presence of such a leak does not imply that it can
be exploited. Glitch immunity might therefore be over-conservative when one considers
the implementation details (including the floorplan, temperature, etc.) and realistic noisy
attack scenarios, but in our adversary model, it is both necessary and sufficient.

3 Threshold Implementations
Traditionally, the provable security of threshold implementations (TI) [NRRO6] against
first-order attacks relies on three conditions:

T1 Correctness. The masked function should compute a masked representation of the
correct unmasked output.

T2 Non-completeness. Any share of the masked function must be independent of at
least one input share. This property is central to security in the presence of glitches.

T3 Uniformity. The masked function uses a uniform sharing of the input and transforms
this input into a uniform sharing of the output. This property is especially important
when composing blocks.

Recall the definition of a uniform sharing where Sh(x) is the set of all valid sharings of

Z:

Uniform sharing [Bill5]. A sharing x is uniform if and only if there exists a constant p
such that for all x we have:

0 else

p(]z) = {p if € € Sh(x) (6)

and

D @) =pl) (7)

xzeSh(x)

Lauren De Meyer, Begiil Bilgin and Oscar Reparaz 7

In the rest of this section, we first discuss the relation between d-glitch immunity and
the TI conditions. In particular, we elaborate on the necessity and satisfactoriness of these
conditions for first order and higher orders. From these relations, we can interpret d-glitch
immunity as being a generalization of the T1I properties.

3.1 Non-Completeness and Uniformity Imply 1-Glitch Immunity

It is a well-known result that T2 and T3 imply first-order security in the presence of
glitches. Hence, T2 and T3 are sufficient conditions for 1-glitch-extended probing security.
In what follows, we show that a circuit satisfying T2 and T3 also fulfills 1-glitch immunity.

Lemma 2. A circuit satisfies 1-glitch immunity if it satisfies non-completeness (T2) and
uniformity (T3).

Proof. The assumptions for each stage of TI are that the input sharing @ is uniform and
that each wire ¢; at the end of that stage must be independent of at least one input share.
Without loss of generality (wlog) we assume that ¢; is independent of z; and thus

Lemma 5 of [Bill5] states that «; and the secret x are independent for any choice of 7 if
the masking @ is uniform. Hence,

I(zj;2) =0 (9)

and together with @ forms :
I(Ri;xz)=0 (10)
O

3.2 Glitch Immunity Implies Non-Completeness

The concept of non-completeness was extended to higher orders by Bilgin et al. [BGNT14].

d™-order non-completeness [Bill5]. Any combination of up to d component functions
F; of a shared function F must be independent of at least one input share.

Clearly the non-completeness definition aligns with the glitching adversary of this
work as the component functions F; correspond to the combinational block functions C;
calculated from register to register.

Lemma 3. d-glitch immunity implies d-order non-completeness.

Proof. We use a simple proof by contraposition. Suppose that non-completeness is not
fulfilled, i.e. there exists a set of d blocks (C;,,C,,, ..., C;,) that depends on all input
shares @. Since © = @, x;, we clearly have then that I(R;, UR;, U...UR;,;z) # 0 and
hence glitch immunity is not satisfied. O

3.3 A Sufficient Condition for Higher-Order Security

We have demonstrated the well-known fact that T2 and T3 together form a sufficient
condition for first-order security from an information-theoretic point-of-view. Moreover,
we have shown that non-completeness is a necessary condition for higher-order security as
expected. These relations are summarized in Figure 2l However, as presented by Reparaz

8 Consolidating Security Notions in Hardware Masking

et al. [RBNT 15|, d*"-order non-completeness even together with uniformity is not sufficient
for circuits consisting of multiple register stages. This is mainly due to the fact that TI
conditions focus on the circuit behavior of a single stage and when higher-order security
is considered, this becomes a disadvantage. On the other hand, d-glitch immunity does
not have such a limitation as it considers multiple stages. This observation immediately
brings up the idea to extend the TT uniformity condition to cover not only a single stage
but multiple stages, for example by requiring the combination of any d non-linear function
inputs to be jointly uniform. We do not investigate this idea further in this paper. Instead,
we show that uniformity is not a necessary condition to achieve security.

d-glitch immunity <—— > d-glitch-extended probing security

~
. . - ~
uniformity - ~ d** order non-completeness

Figure 2: Illustration of the relations between different security notions for hardware
security. The arrows indicate an implication relation. When the line is dotted, it is only
valid for security order d = 1. The full lines are for any order d.

3.4 (Un)Necessity of Uniformity

Glitch immunity does not imply non-completeness and uniformity (simultanenously). In
fact, uniformity is not a necessary condition. The only requirement for input sharings
is included in Eqn. ; that is, the entropy of d input shares does not decrease when
conditioned on the secret. In other words, the mutual information of a set of any d input
shares with the shared secret x must be zero:

I((%iy, Tigy -y X4y);x) =0 (11)

In case of a d + 1-sharing, we thus only require that I(x;;x) =0, Vi.
It is therefore possible to have non-uniform mappings that satisfy Property [I} We show
this below with a toy example.

Toy Example: First-order security of non-uniform AND gates

We focus on the composition of two AND gates as shown in Figure |3l We will use two
types of refreshing after the first gate to illustrate that uniformity is not necessary to
achieve theoretical security. Note that these AND gates are designed to demonstrate our
cause and therefore are neither optimal nor considered for use in another setting.

y —

refresh b

Figure 3: Circuit of two AND gates

Lauren De Meyer, Begiil Bilgin and Oscar Reparaz 9

We consider z,y and z as our sensitive variables. The first AND gate receives 3-share
input values x and y and outputs 6-share value a as follows.

ap = ToYo a3 = oY1 D T1Yo
ap = x1Y1 a4 = 21Y2 © T2y1 (12)
ag = TaY2 as = 22Yo D Toy2

The second AND gate uses the 6-share output a with 3-share z as follows.

by = apgzo @ apz1 ® a120 © asz1 D aszp O aszy
b1 = apz2 D ar1z1 Darze @ asz1 D aszy D azzo (13)
by = axzo D axzo D azzo © aszo © aszo D aszo

The distribution of output shares a; which is shown in Table [1] is biased as expected.

Table 1: Scaled probability distributions in the first AND gate with 3 input and 6 output
shares for specific inputs (y*, z*)

i<3li>2 p(ao, a1, ...,as)
(y",z¥)|[0 1[0 1 00..0 to 11..1
(0,0) [12 4|10 6]7001011002202000
(0,1) |12 4|10 6|4000000001100000001010001000010001001000100000101001000000000000
(1,0) [12 4|10 6|4000000001100000001010001000010001001000100000101001000000000000
(1,1) |12 4|10 6{0110100120000000200000000020000020000000020000000000200000000000

Clearly, if there is no remasking after the first AND gate, the second AND gate leaks
sensitive information. On the other hand, if we refresh every output share a;, then the
second AND gate receives a uniform sharing and is secure. We look at an intermediate
approach where the output of the first gate is re-masked such that it is not completely
uniform but the second AND gate does not leak sensitive information.

The Good. Let’s consider the following remasking using 2 bits of randomness:

ap < ag az <—az3Pry Dry
ay <— a1 Dr Ayg < a4 DTy (14)
ag <— a2 as < as

When applying the second AND gate to the refreshed a, we need to keep track of
the input sets of each output share b;. Since the sharing of z is uniform and used
in a non-complete way, we can ignore its effect for now for brevity. Note that there is
synchronization after the randomization, by for example a register stage. The output shares
(bo, b1, b2) thus depend respectively on the sets Ry = (ag, a1, a4,a5), R1 = (aog, a1, az,as)
and Rq = (ag,as, as, as).

We investigate the mutual information between each of the sets R; with the secret, by
looking at their probability distributions for different secret inputs. Table [2 shows clearly
that these distributions are not uniform. However, they are identical for each of the secret
inputs («*,y*). The result stays the same for the secret (z*,y*, 2*) which is omitted here
for readability.

The Bad. Suppose now that instead of the randomization in Eqn. (14), we do the
following remasking.

apg = Qg a3 =as3 Dry Dre

ap =a;d®r a4, = a4 (15)

G = ag a5 = a5 O ro

10 Consolidating Security Notions in Hardware Masking

Table 2: Scaled probability distributions of R; for any fixed secret (z*,y*)

00...0to11...1
PRolz"y) |8 2 8 2 8 2 8 2 4 2 4 2 4 2 4 2
p(Ralz*,y*) |9 3 9 3 3 1 3 1 9 3 9 3 3 1 3 1
p(Rofz*,y") |8 2 8 2 8 2 8 2 4 2 4 2 4 2 4 2

We see clearly in Table [3] that the joint probability distribution of the input set Rg
depends on the secret inputs even though there is no correlation of the secret with output
share by itself. This indicates that the remasking is sufficient in the case of a classic probe
on by, but not in the presence of glitches. The joint probability distributions are shown in
Table Bl

Table 3: Scaled probability distributions of Ry and by for various secrets (y*, z*)

p(Rolz*,y") p(bolz*, y")
Wz 00...0to1l...1 0 1
(0,0) |8 2 8 2 4 2 4 2 8 28 2 42 4 2160 96
(0,1) |8 2 8 2 4 2 4 28 28 2 4 2 4 2|160 96
(1,0) |8 2 8 2 4 2 4 2 8 2 8 2 4 2 4 2160 96
(1,1) |6 4 6 4 6 06 06 46 46 06 0[160 96

The Ugly. With the good remasking as in Eqn. ([14), we can even do certain compositions
under the ISW setting with ideal gates. That is, even if the third input z = x, the output
is still secure as shown in Table [

Table 4: Scaled probability distributions in the second AND gate with z = x

p(b;) p(bo, b1, b2)

(y*,m*) 0 1 {000 011 101 110 001 010 100 111
00 40 24] 28 0 0 12 0 12 12 0
(0,1) 40 24| 28 0 0 12 0 12 12 0
(1,0) 40 24| 28 0 0 12 0 12 12 0
(1,1) |40 24| 0 20 20 0 20 0 0 4

However, in a glitchy environment, we do not necessarily get composability. Neither
Ro = (ag, a1, a4, as, g, 1) nor Ry = (ag, a1, as, as, 1, r2) are independent from the secret.

Conclusion. In order to avoid leakage of sensitive data, what we need is independence
of the secret from the sensitive data. In this case study, we have demonstrated that this
does not necessarily require uniform distributions. Using d-glitch immunity as a verifying
mechanism, we can create custom gates with minimal randomness consumption.

4 Non-Interference

When circuits get large, it is infeasible to verify probing security by exhaustive probing.
For this reason, the concept of strong non-interference has been introduced for masked
software implementations. In this section, we unify the treatment of this security notion
with glitch immunity (Property |1 in order to achieve a formal definition for composability
in the presence of glitches. The probes in the following definitions are instantaneous.

d-non-interference (NI) [BBPT16]. A gadget is d-non-interferent (or d-NI) if and
only if every set of at most d probes can be simulated with at most d shares of each input.

Lauren De Meyer, Begiil Bilgin and Oscar Reparaz 11

d-strong non-interference (SNI) [BBPT16]. A gadget is d-SNI if and only if for every
set T of t1 probes on intermediate variables (i.e., no output wires or shares) and every
set O of ta probes on output shares such that t1 4+ ts < d, the set ZU O of probes can be
simulated using at most t1 shares of each input.

When a gadget is d-NI, it is also d-probing secure. However, probing security (and
d-NI) is not composable and verifying a circuit by simulating probes on every single wire
is not scalable. The authors of [BBD"16] therefore propose to build each circuit from
composable gadgets. A gadget is considered composable if it is d-SNI. This essentially
means the following two things:

o If a gadget is d-SNI, it is d-NI and thus d-probing secure.
e Any circuit built from d-SNI gadgets, is d-NI and thus d-probing secure.

The use of composable (SNI) gadgets allows a divide-and-conquer approach for the
security verification of large circuits. The ease of verification comes at the cost of higher
implementation and randomness cost since the demands for strong non-interference are
quite high. It has been shown that depending on the function graph, it is sufficient for some
gadgets to be NI, rather than SNI [BBPT16]. Nevertheless, NI and SNT are both sufficient
but not necessary conditions for probing security of masked software implementations.
This is illustrated by first-order threshold implementations [NRRO6|, which are 1-probing
secure but neither 1-NI, nor 1-SNI. In addition, SNI is a sufficient but not necessary
condition for the composability of gadgets.

The concepts of NI and SNI were defined without regard for hardware defaults such
as glitches and the published tools for its verification are only suitable for software
implementations [BBD*15| [Cor18|[] In [FGMDP718], the authors provide a robust
d-(S)NI definition as follows in order to extend the definition for glitchy circuits.

(g, t, c)-robust d-probing secure (or d-NI/SNI) circuits are secure in the d-probing
model (or d-NI/SNI) with an adversary whose probes are (specifically or generically)
extended with glitches if g =1 (if g = 0 combinatorial recombinations are assumed avoided
at the implementation level), with transitions if t = 1 (if t = 0 memory recombinations are
assumed avoided at the implementation level) and with couplings if ¢ > 1 (if ¢ = 0 routing
recombinations are assumed avoided at the implementation level).

In this paper we only consider glitches, i.e. (1,0,0)-robust d-probing. Despite these
new definitions, it remains unclear how to automate the verification of composability of
hardware gadgets.

In this section, we first redefine NI and SNI for masked software implementation from
an information-theoretic point of view. This eventually allows to extend the definitions
for masked hardware implementations. For simplicity, we assume from now on that the
masked implementation uses d + 1 shares even though similar treatment is possible for
more shares.

4.1 Redefining Non-Interference

We consider Q any set of at most d probes in a gadget with input sharing @. According to
the NI definition, the view of an adversary that probes Q should be perfectly simulatable
by a simulator that has access to only d of the d+ 1 input shares. The view of the adversary
is created using knowledge of all input shares x, i.e. we write it as p(Q|x). Without loss
of generalization (wlog), we assume that the simulator uses all input shares except z;. The
view of the simulator can hence be written as p(Q|x;).

We therefore consider the following property:

IThe work of [BBFG18| has been done independently and simultaneously

12 Consolidating Security Notions in Hardware Masking

Property 2. A gadget with d + 1 input shares x satisfies Property [2]if and only if for
any observation set of at most d probes Q, the following condition holds:

Fi: 1(Q;zi|x;) =0 (16)

In other words, each probe set Q and at least one share x; must be conditionally
independent given the other shares x;.

It is well known that d-non-interference is stronger than d-probing security, i.e. d-NI
implies Eqn. for any set Q. The same can be said for Property

Lemma 4. Property|3 implies d-probing security, i.e.
1(Q;zi|lx;) =0=I1(Q;z) =0
Proof. We use two properties:

1 I(x;,x) = 0; This is obviously a necessary requirement for any d + 1-sharing of the
input. In particular, it has been shown to be automatically true when the input
sharing is uniform in [Bill5, Lemma 5]

2 p(Q|x,z) = p(Qlx) = p(Q|x;, x); The equality follows from the redundant informa-
tion in (x, x).

It follows that:

p(Q,I) = ZP(QMT%‘?I)

Now we use Property [2|and the two properties above:

= p(Qlx;)p(a;)p(x)
=> " p(Q.2%)p(x)

= p(Q)p(z)
O

Moreover, we can carry this one step further and show that d-non-interference and
Property [2| are equivalent.

Lemma 5. A gadget with d+1 input shares x is d-NI if and only if it satisfies Property[3,
i.e. d-non-interference and Property[3 are equivalent.

Proof. Clearly, Eqn. is equivalent to the matching of the adversary’s view to the
simulator’s view, i.e.

Fi: I(Q;zi|x;) = 0 < Fi: p(Qlx) = p(Qlx;)

= We prove by contraposition that d-NI implies Property [2} if there exists a set Q for
which Eqn. is not true, then we cannot simulate Q using only d shares.

< In the other direction, Property [2] implies the existence of a simulator for the original
NI definition.

O

Lauren De Meyer, Begiil Bilgin and Oscar Reparaz 13

For uniform input sharings. We can simplify the information-theoretic NI condition
when the input sharing is uniform. In that case, we can state that disjunct sets of shares
(e.g. x; and ;) are independent.

Property 3. A gadget with a uniform d + 1 input sharing x satisfies Property [3|if and
only if for any observation set of at most d probes Q, the following condition holds:

F:1(Q;2;) =0 (17)
In other words, each probe Q must be marginally independent of at least one input
share x;.

Lemma 6. A gadget with a uniform d+1 input sharing is d-NI if and only if it satisfies
Property[3

Proof. We use Lemma |5 and the independence of x; of x;, i.e. p(z;|x;) = p(x;).
p(Qlzi) = ZP(Qamﬂxi)
z*

= ZP(Q|$f7$i)p(mf|ﬂfi)
=> p(Qlx:)p(x?)
= ZP(Q’:D;)

*
i

=p(Q)

4.2 Redefining Strong Non-Interference

The NI and SNI definitions are very similar apart from the number of input shares that
can be used in the simulation. We can thus redefine strong non-interference in a similar
way.

Property 4. Consider a gadget with d + 1 input shares . Let Q be any observation set
of at most d probes of which t;(Q) are intermediates and t(Q) are output probes such
that ¢1(Q) + t2(Q) < d. The gadget satisfies Property [if and only if for any such Q the
following condition holds:

T c {0,...,d} with |T| = t,(Q) such that I[(Q;xs|xr) =0 (18)
Lemma 7. A gadget with d+1 input shares x is d-SNI if and only if it satisfies Property[{}
i.e. d-strong non-interference and Property[] are equivalent.

The proof is very similar to that of Lemma[5] We leave it to the reader.
When no outputs are probed and thus t5(Q) = 0, then Eqn. aligns with Eqn. .
For example, when d = 2, the tuples of probes can be divided into three groups.

e for each tuple of probes Q for which t2(Q) = 0, verify that 3 : I(Q;xz;|x;) = 0.

e for each tuple of probes Q for which #5(Q) = 1, verify that 3i # j : [(Q; (z;, z;)|x;;) =
0 or equivalently i : I(Q;x;|z;) = 0.

e for each tuple of probes Q for which ¢2(Q) = 2, verify that I(Q;x) =0

When the input sharing is uniform, we can assume that for any set of indices T' C

{0,...,d}, @7 is independent from @z, i.e. two disjunct sets of shares are independent of
each other. Then, the conditional independence can be replaced by marginal independence.

14 Consolidating Security Notions in Hardware Masking

4.3 Towards Composability in the Presence of Glitches

These information-theoretic definitions are easily extended to include security in the
presence of glitches. Following the adversary model of this work, we should only replace
each probed wire ¢; with its glitch extended probe R;.

Property 5. Consider a gadget with d 4+ 1 input shares . Let Q = (¢;,, ¢y, - - -, ¢,) be
any observation set of ¢ < d wires and let R = R;, UR,, U...UTR,;, be the corresponding
glitch extended probe. Let ¢; be the number of intermediate wires in @ and ¢o the number
of output wires in Q such that ¢; +t2 =t < d. The gadget satisfies Property [5]if and only
if for any such Q the following condition holds:

3T c {0, ...,d} with |T| = ¢ such that I(R;xp|ler) =0 (19)

Lemma 8. A gadget with d + 1 input shares x is d-SNI in the presence of glitches if it
satisfies Property[3

From now on, we refer to Property [5| as d-Glitch Strong Non-Interference (d-GSNI). It
also corresponds to (1,0,0)-robust d-SNT as defined in [FGMDP™18].

How to use d-GSNI? We illustrate Lemma [8] by adopting one of the examples of Faust
et al. [FGMDPT18|. Consider the following well-known second-order secure multiplier of
three shares (zo, z1,x2) and (yo, y1,y2): In the first stage, nine products z;y; are computed,
of which only the cross-terms are remasked:

to,0 = ToYo

to,1 = Toy1 B 11

to,2 = Toy2 D T2

t10 =21y D1

ti,1 =11 (20)
t12 =T1Y2 D13

to,0 = T2yo B T2

ta1 = x2y1 D13

ta,2 = TaY2

These intermediate nine shares ¢; ; are stored in a register. In the next stage, they are
compressed into three output shares.

[t0,0]reg S [tO,l]reg S [tO,Z]reg

zZ0 =
21 = [t1,0]reg @ [t1,1]reg ® [t1,2]req (21)
zZ2 = [t2,0]reg 3] [t2,1]reg S3) [t2,2]reg

Next, as argued in [FGMDP 18| §5.2], it is necessary to store also these three shares into a
register in order to achieve composability. Indeed, if we consider Eqn. directly as output
wires, then the multiplication is not d-GSNI. We verify this by enumerating every single
input sharing (*,y*). For each input sharing, we compute the probability distribution of
the glitch extended probes of an observation set of two outputs (to = 2). For example,
for observation set {zp, z1 }, we investigate the distribution of {¢¢0,%0,1,%0,2,t1,0,%1,1,t1,2}-
For Eqn. to be satisfied, this distribution must be identical for each input sharing.
This is not the case. On the other hand, the distribution of {zp, 21} itself is identical
for each input sharing (z*,y*), i.e. I({20,21};(x,y)) = 0. Hence, a register is indeed
needed before the output. In that case {to,0,%0,1,%0,2,%1,0,¢1,1,%1,2} is the extended probe
of an observation set that corresponds to two intermediate wires, i.e. to = 0. We

Lauren De Meyer, Begiil Bilgin and Oscar Reparaz 15

Table 5: Scaled probability distributions of the glitch extended probe of observation set
{[20]7'65]7 tO,l}

p(ZOa Zo, yl|w*7 y*)
yxy) (xf,2%,y5,v5) [000 001 010 011 100 101 110 111
* 4 4 0 0 0 0 0 0

~— — — —
EOE S

0 0 4 4 0 0 0 0
0 0 0 0 4 4 0 0
0 0 0 0 0 0 4 4

enumerate all possible (z§, 27, yg, y7). For each, we check that the probability distribution
of {t0,0,%0,1,%0,2,%1,0,t1,1,%1,2} is identical for each (x3,y3). This is the case, hence the
conditional mutual information of the glitch extended probe with input shares (z2,y2) is
Zero:

I({to,0,%0,1,t0,2, 1,0, 11,1, t1,2}; (T2, y2)|[(z0, 71,90, y1)) = 0

As a final example, consider the observation set {[2¢]reg, 0,1} consisting of one output
wire and one intermediate wire (to = 1). Its glitch extended probe is {zo,xo,yl}ﬂ For
each fixed (z,y7), we find that the probability distribution of {zg,zo,y1} is constant for
each (7,23, v5,y5). The distributions are shown in Table |5| Hence

[({20750073/1}; (I1,9327y0,y2)|(9307y1)) =0

Moreover, since we are working with uniform shares, there is no need to fix (o, y1). The
probability distribution p(zo, zo, 1|25, 25, y5, v5) is (4,4,4,4, 4,4,4, 4) for any (z3, 25, y5, v3),
hence I({zo, zo,v1}; (21, %2,%0,y2)) = 0.

This example does not tell us more than the proof already given in [FGMDPT18]
but serves to illustrate that Property [5| could be used to create similar proofs in a more
automated way.

5 Using Glitch Immunity to Detect Flawed Masking Schemes

In this section we describe how we can use d-glitch immunity to validate a masked hardware
circuit. One has to check whether the distributions of sets of input wires corresponding to
different secrets are identical or not (cf. Eqn (I)).

5.1 Description

We develop an application which uses the property of glitch immunity to detect flaws in
masked hardware implementations. The application takes the HDL description of a circuit
directly as input and needs no other user-provided information apart from the required
security order d. We describe two parts: a preprocessing step prepares the input for the
flaw detection step.

Preprocessing. The preprocessing step parses the HDL code and builds a software
implementation (in c), which can simulate the entire circuit at bit level. This means that
by using this ¢ code during verification, we even consider glitches occurring at the bit level
in larger field operations (e.g. GF(2%)). Apart from the circuit itself, the preprocessing
step also extracts from the netlist a list of all register inputs ¢; and the corresponding
glitch-extended probes R;, i.e. the set of inputs to the combinational block C; that
determines wire g;. The ¢ implementation is generated such that for a given circuit, it

2The random input has no influence on the probability distributions.

16 Consolidating Security Notions in Hardware Masking

can compute the exact values of all registers r; and use these to construct samples for
probability distributions. Per simulation (k), one sample sample¥ is created for each unique
d-tuple of intermediate register wires and circuit outputs Q; = {¢;,, Gin, - - -, ¢, } and its
corresponding set of glitch extended probes Ry = R;, UR,, ... UR,;,. Concatenating the
values on the wires in Ry results in a sample of width |R;|. Different probe combinations
thus result in samples of different widths, but the width of each probe combination is
the same for each simulation. The probe R; can be a combination of random inputs,
public values and shares of various sensitive variables. The specific role of each wire is
unimportant and does not need to be tracked.

frequency samplel
1
value
} probe
frequency
value
ﬁ;ll
} H—+ f | probe
9
=?

Figure 4: How to use glitch immunity to detect flaws.

Flaw Detection. The flaw detection step uses the prepared software implementation to
simulate the circuit for different inputs and to collect the samples of glitch extended probes.
The application keeps two histograms for each possible d-probe Q;. The histograms
corresponding to different probes have a different support because of the variable length
of the probes |R;|. In simulation k of the circuit, the application receives one sample
per probe (sample’}). The sample is added to one of the two histograms, depending on
the value of the unshared (secret) input . This is illustrated in Figure A circuit
with K input wires requires 2% simulations. When all simulations are complete, the two
histograms are compared for each probe. If a probe is found for which the histograms do
not match, the circuit is not d-glitch immune. The circuit is d-glitch-extended probing
secure if for each d-probe, the histograms are identical for each secret. Note that the
functionality of this part is independent of the security order d. It builds and compares
histograms based on variable-width samples it receives from the software implementation.
Whether these samples were built from one, two or three probes in the preprocessing step,
is of no consequence.

Optimizations. It is possible that different wires in the circuit have the same set of inputs
(R; = R, for i # j). Also by concatenating different glitch extended probes for higher
order security, it is possible to obtain duplicates (R; UR; = Ry UR, for i # j # k #1).
We avoid redundant samples by removing all but one copy of each Ry from the final list of
probes.

Lauren De Meyer, Begiil Bilgin and Oscar Reparaz 17

The ¢ implementation simulates the circuit at bit level, i.e. each multiple-bit variable
has been split into single-bit variables and only bitwise operators (AND,OR,NOT,XOR)
are used. This allows us to bitslice the simulation: using for example 32-bit integers, we
can simulate the circuit for 32 different inputs in parallel on a single core.

Flaw detection vs. validation. We point out the stark contrast between two use cases
of glitch immunity. On the one hand, the condition is very effective in detecting flaws
or equivalently in “proving” that a circuit is insecure. When a flaw is present, it does
not take a lot of effort or time to find it since for large circuits, many optimizations are
possible to speed up the process. For example, one can first compare distributions only on
a certain subset of the support. Only if the distributions are the same on such a subset
of the support, we proceed with a different subset, and so on. This divide-and-conquer
method can be distributed among several cores/workers.

On the other hand, glitch immunity is also able to prove the security of a circuit. In
this case, there are no shortcuts to be made and one must exhaust all inputs and compare
eract and complete histograms. This can be a very slow process for complex circuits.

In what follows, we demonstrate both use cases for small and larger gadgets.

5.2 Small Gadgets: Provable Security

For small gadgets and small security order d, it is feasible to verify d-glitch immunity
exhaustively for every d-tuple of register input wires (g;,,...,q;,). By “exhaustive”, we
mean we can simulate the circuit for every possible shared input (including fresh random
inputs) and build the ezact joint probability distributions for the glitch-extended probes
Rr=Riy UR;, U...UR,;,. We then compare these probability distributions for different
secrets and if they are not identical, we corroborate that there is a dependency on the
secret which could result in leakage of sensitive information through some glitch function
on those inputs. On the other hand, when the probability distributions of all input sets R
are identical for each secret, one can conclude with certainty that the gadget is provably
secure.

Examples. We are able to exhaustively validate small gates such as the Domain-Oriented-
Masking (DOM) AND-gate [GMK16] (with 2 or 3 shares) and the first-order secure Keccak
S-box from |GSM17] within 0.02 seconds. A 4-share DOM AND gate is verified within 0.3
seconds. It is much more interesting to look at a flawed example such as the higher-order
threshold implementation described in [BGN™14].

Application to Higher-Order Threshold Implementations. This higher-order secure
KATAN construction has been discussed in depth in other works [SM15, RBNT 15, Rep16|
and it is well known that it exhibits a multi-variate flaw. In particular, the authors
of [RBNT15] claim that the secret is leaked when the construction is iterated and one
combines probes from cycle 1 and cycle 7. Using the above described method, we now
find that multiple iterations are not needed and that multi-variate leakage of the secret
occurs even within one iteration of the round function, i.e. by combining probes from cycle
1 and cycle 2. We recall the mini-cipher described in [RBNT15, Eq. (5)], which targets
second-order security. The round function receives three inputs a, b, ¢, each in five shares.
The circuit computes a five-share representation of d = ab @ ¢. This is done in two stages.
In the first step, d is computed in ten shares:

do = c1 @ a1by @ agby @ a1by dy = ca @ azby @ apba @ azby
dy = c3 @ aszbz @