
Trends in design of ransomware viruses

Vlad Constantin Craciun1, Andrei Mogage2, and Emil Simion3

1Department of Computer Science, UAIC IASI: vcraciun@info.uaic.ro,
mogage.andrei.catalin@info.uaic.ro

2Bitdefender: vcraciun@bitdefender.com, amogage@bitdefender.com
3University Politehnica of Bucharest, emil.simion@upb.ro

Keywords: cyber threat · ransomware · cryptography · cyber security

1 Abstract

The ransomware nightmare is taking over the internet impacting common users,
small businesses and large ones. The interest and investment which are pushed
into this market each month, tells us a few things about the evolution of both
technical and social engineering and what to expect in the short-coming future
from them. In this paper we analyze how ransomware programs developed in the
last few years and how they were released in certain market segments throughout
the deep web via RaaS, exploits or SPAM, while learning from their own mistakes
to bring profit to the next level. We will also try to highlight some mistakes
that were made, which allowed recovering the encrypted data, along with the
ransomware authors preference for specific encryption types, how they got to
distribute, the silent agreement between ransomwares, coin-miners and bot-nets
and some edge cases of encryption, which may prove to be exploitable in the
short-coming future.

2 Introduction

The ransomware phenomenon has seen an alarmingly increase in the last cou-
ple of years, along with its methods of distribution and infection. However, no
matter how exotic such an application might look, they all reduce to some com-
mon features: spreading, encryption, key sharing and key building. Based on
the large number of ransomware samples collected and analyzed in the past few
years at Bitdefender Labs, we can bring to surface some of these features and
where possible, additional environmental specs. They change as they evolve in a
continuously updating chain, to maximize the creators profit and minimize the
effort pushed into this business. We can actually see how these threats get more
and more complex, through a silent agreement with malicious services provides
on black market (Ex: packers, bot-net delivery, spam delivery, etc.). Starting
with the fall of 2016 we assist to some visible changes and agreements which
take place:

• Troldesh / Crysis and another few ransomwares are now only distributed
manually by hackers after they brute-force accounts of company users

2 Vlad Constantin Craciun1, Andrei Mogage2, and Emil Simion3

• A trend in automating the monetizing system is to have a Ransomware As a
Service for your ransomware, so common people will enroll to make money
with a given ransomware

• More ransomwares make use of a well known bot-net (Emotet) packer to
better protect their payload. This packer is known for its polymorphic cloud
infrastructure

• Recent bot-nets just became a service providers for other threat creators
and some of them like CoreBot is able to tell ransomware owners if the
systems they were deployed on, belongs to companies or not in order to
deploy the ransomware where their authors are guaranteed a high percent
for the ransom payment

• By the fall of 2017 we have seen a mix between crypto currency miners
and ransomwares and UIWIX is such a ransomware which at that time was
deployed in certain conditions by Adylkuzz coinminer which among others
like it, used the EternalBlue SMB exploit to spread in local area networks

3 Ransomware choice for spreading

Various means of distribution of infection have been seen throughout the en-
tire ransomware phenomenon. One of the easiest and most common way is via
spam. This includes emails, which contain malicious scripts, or documents, which
download and run the malicious samples. Another way is to create fake websites
(usually which include other phishing techniques) which will trick the user into
downloading and running the file. Both of these can be combined with the fileless
malware attack, where a malware sample would be loaded directly into memory,
leaving no physical trace (i.e. on the disk).

Another frequent method is to exploit various security flaws found at soft-
ware, operating system or hardware levels. A famous example is WannaCry ran-
somware, which would be distributed via EternalBlue exploit. This was based
on a vulnerability at the Samba protocol, which allowed an attacker to inject
malicious code remotely. Another example is the second version of SynAck ran-
somware, which uses Process Doppelgänging technique.This involves replacing
the memory of a legitimate process through exploiting some Windows built-in
functions (NTFS transactions – in this case) and how the Windows loader works.
Both of them are based on fileless malware attacks.

A method of distribution which occurred especially among the Troldesh ran-
somware family (which includes Troldesh, XTBL, Dharma, Crysis) is brute-
forcing the credentials through Remote Desktop Protocol. Once the attacker
obtained access, it would manually disable any security product and then man-
ually run the malicious samples. This also occurs in various cases of botnets
and/or coin-miners. What is interesting is that only on various occasions any of
these techniques are part of an Advanced Persistent Threat, meaning that the
attackers are interested in making as many victims as possible, without restrict-
ing their attack to a specific zone or victim. A few exception have been seen on
some ransomwares which will not infect victims based on geographic location
(i.e. GandCrab excepts Russia IPs).

Trends in design of ransomware viruses 3

4 Ransomware choice for encryption

As concluded from our research, most of the ransomwares are using standard
algorithms both for encryption (Ex: AES, RSA, Blowfish, RC4) and hashing (
SHA256, MD5). What is interesting is that there is a high percent (above 80%)
of those who prefer standard libraries, such as OS API or OpenSSL and only a
few choosing to have proprietary implementations like Salsa, ChaCha, or slightly
changed common algorithms like AES512.

We identify about 4 different key management types among all ransomware
families:

• Downloading a secret key/key-stream, to globally encrypt all user files

• Creating a random key to encrypt all user files and uploading it to a server

• Using a constant shipped key easy to recover by reverse-engineering the
binary sample, or easy to break encryption algorithms

• Using a shipped RSA public key to encrypt random generated AES keys
used for file-encryption

• Using ECDH method (only a few cases)

There is a small number of ransomwares which prefers to upload or download
their leys, because it is difficult for the author to ensure that the server will be
online at the time of encryption. The bad guys will not risk to get discovered
by the authorities by leaving public-available servers which could be sized for
investigations. They also cannot risk to encrypt user files without making sure
that they can correlate a key with an affected user. However, we have a few such
cases described in Table-1 and one of them will be further described in Corner
cases section.

Ransomware name Key exchange Encryption
ACCDFISA Upload Password Protected Rar SFX archives
HiddenTear Upload AES256
LockCrypt Download Custom block-cypher

Table-1 : [Threat-Owner] Key sharing mechanism

There is a higher preference for local key generation instead of using a key
obtained by other means, which we will discuss soon, due to its increased secu-
rity and transparency for ransomware creators. Many of the ransomwares who
locally generate the encryption key are either using some secure key generator
algorithms available in OS API or OpenSSL, deriving a SECP elliptic curve
master key, or using an insecure key generator, which can lead to a breakable
key as seen in Table-2.

4 Vlad Constantin Craciun1, Andrei Mogage2, and Emil Simion3

Ransomware name Encryption Key
OpenToYou RC4 Hardcoded Plain-text key
Annabelle AES Hardcoded Plain-text key
Nemucod Cyclic XOR Hardcoded Plain-text key
Amnesia AES128, CBC Time (C rand() function)
Globe V3 AES256, ECB Time (C rand() function)
Nemesis AES256/512, ECB,CBC Time (C rand() function)
Xorist TEA / XOR Time (C rand() function)
Xmas CUSTOM Time (C rand() function)
LeChiffre BlowFish Hardcoded and User-Info
Petya Salsa20 secp192k1
Table-2 : Ransomwares using weak key generator or weak encryption

The ransomware families using proprietary encryption algorithms usually
prefer easy to revert light XOR operations or RC4 encryption with low-security
key generators or even worse, with plain-text keys. Table-2, Fig. 1 and Fig. 2
reveals something about the encryption mechanisms available in Nemucod and
OpenToYou ransomwares. The recovery of files affected by these ransomwares
is possible not because of the weak-keys involved, but because the encryption
algorithms are breakable. For OpenToYou ransomware, it is sufficient to have a
pair of encrypted and not encrypted files to recover all the affected files, because
we know that RC4 function actually applies a xor operation between a key-
stream and the actual data allowing the recovery of the key-stream from a pair
of {encrypted, original} pieces of data.

We already know that for RC4 encryption, the following affirmations will
lead us to decrypt any file starting from a pair of encrypted and not encrypted
files, because the Key Stream can be computed using two different methods:

RC4 = {P,KS,KSA, I,O}
P − password

KS−Key Stream
KSA−Key Stream Generator Algorithm

I−Input data
O−Output data

Given the above description and knowing that KS = KSA(P), we can encrypt
I with KS, obtaining O = KS ⊕ I. However having I and O can lead us to a
valid KS, without knowing P , because KS = O ⊕ I

The most of the ransomware families nowadays will choose for RSA / ECDH
key exchange mechanisms because they are more secure. They also ease the entire
key-management, leaving the hacker with a map of user IDs and RSA keys used
for encryption. The ransomware authors only require for the affected users ID,
to get their correct decryption keys. There are a lot of sub-cases of using this
type of keys, but all of them fall back to the same mechanism of having RSA
to encrypt some symmetric encryption keys and not the actual user data. Most
of the RSA keys range from 1024 to 4096 bits and there are a few mistakes of

Trends in design of ransomware viruses 5

Fig. 1 - Nemucod rolling key

Fig. 2 - Block of zero encrypted bytes with RC4 (OpenToYou)

keys less than 1024 bit which have been broken. As far we have seen about three
slightly different RSA layering, considered by ransomwares:

1. shipped RSA public key to encrypt a global AES key. AES key is used to
encrypt the user data

2. shipped RSA public key to encrypt random AES keys, AES key is generated
for each file to be encrypted

3. shipped RSA public key A to encrypt another random generated RSA private
key B. The RSA public key B is used to encrypt random AES keys for each
file. The encrypted RSA private key B is stored on user system ready to
upload and decrypt on ransomware-owner servers

The third RSA layering is actually used by the WannaCry ransomware and
some of its successors. The ransomware owners secure that way their private
keys and do not expose them to users which pay the ransom. Obtaining the A
private key is not possible. This is a multi layer RSA introduced to deal with
cases where an affected user paying the ransom could share the received private
keys with other users affected by the same binary. Troldesh/Crysis ransomware
creators, for instance will provide a binary file containing a RSA private key
after paying the ransom, which will actually decrypt about 15 different sub-
versions. Those who run these businesses are aware of the fact that multiple
users can get affected by the same ransomware binary, so they need a way to
keep secret their keys when users pay the ransom and the same tine to minimize
the hacker-user interaction or their servers availability. Table-3 reveals a couple
of ransomwares using the RSA key encryption with their preference for one of
the above 3 mentioned RSA layering.

6 Vlad Constantin Craciun1, Andrei Mogage2, and Emil Simion3

Ransomware name RSA Key count
Troldesh / Crysis 1
GlobeImposter 2
WannaCry 3
Rapid 3

Table-3 : RSA key count / threat

There are a few ransomware families which use ECDH for key exchange.
We tend to consider any ransomware using RSA or ECDH to be unbreakable,
however about 2 years ago in May 2016, a researcher found that TeslaCrypt
ransomware (first two versions) which used ECDH, was breakable because of
the key encoding mechanism. We believe that authors wanted to store 1024 bit
public keys inside the encrypted files, but they actually stored the 1024 bit key
as ASCII hex, reducing the keys to 512 bit. Some of these keys are breakable in
about seconds using factoring tools like Yafu and Msieve. The authors updated
this weakness in their 3rd and 4th ransomware version. While Fig. 3 reveals an
actual 512 bit hex-ASCII key stored in an encrypted file, Fig. 4 is a snapshot
taken from an actual factorization of that key.

Fig. 3 - 512 bit public ECDH session key - TeslaCrypt

Fig. 4 - Factoring the above key with Yafu on a i7 CPU, 8 threads

Trends in design of ransomware viruses 7

5 The environmental advantage

To ensure that file recovery is not possible and the ransomware will execute in
most operating system environments, ransomware owners must be aware of the
environment where encryption will take place, how it looks like and how can
be tuned to help them with the encryption. On Windows operating systems, a
ransomware will not start the encryption process until the vssadmin service is
not disabled as a preceding step. This service is used for shadow volume copies
such that lost data can be recovered if the disk has enough free space. Other
ransomwares like GobeImposter which are more recently spread through RDP
brute-forced accounts are created to auto-cleanup the author intervention and
removes some event-logs and RDP logs after the execution ends. The environ-
ment is most of the time vulnerable to certain behaviors, be it an application
vulnerability (MS Office Word memory corruption CVE-2018-0802), an admin-
istrative weakness (unauthorized installation of WMI scripts/services, unautho-
rized uninstall of security products) or an operating system kernel vulnerability
like MS17-010 first exploited by WannaCry back in 2017. Below there are a few
special cases of ransomwares taking advantage of the environment and/or other
open-source tools.

• AVCrypt make use of WMI commands to uninstall Emsisoft security prod-
uct:
cmd.exe /C wmic product where (Vendor like ”%Emsisoft%”)
call uninstall /nointeractive & shutdown /a

• SamSam/Samas ransomware uses Active Directory on Windows servers to
query users and then uses them to spread over the Local Area Network. The
ransomware is also able to exploit a vulnerability in Boss JMX-Console to
bypass authentication.

• NotPetya / Petwrap / BadRabbit make use of Mimikats tools to grab user
credentials from operating system internal tables and use them to spread the
threat over the network.

6 On ransomware-creators skill-set

One major observation found among the entire ransomware phenomenon is that
the authors or attackers rarely have good or even decent cryptography knowl-
edge. Various indicators were found to support this claim:

• Ransomwares such as Xmas, Xorist, Bart, Globe generate an encryption
key for AES using the random() function from C. This leads to an easy
recoverable key, by having a generation space of 232 bits, which can be
brute-forced in a reasonable time.

• Encryption using CBC mode having the Initialization Vector equal to 0.
While this does not always support the key recovery, it makes the encryption
process less secure and, in combination with the previous point, makes the
recovery process even faster.

8 Vlad Constantin Craciun1, Andrei Mogage2, and Emil Simion3

• Flawed implementation: some authors try manually to implement an encryp-
tion scheme and do not take all security measures, resulting in a possible
exploitable scheme. Such a case can be seen in some versions of Nemesis
ransomware, where the author tried to implement a version of AES based
on 512 bits length of both encrypted block and key. A similar case is the
first version of Petya (Red Petya) which implemented a custom Salsa20, ex-
plained in [2] which use 32 bit words in the proposed design, but only 16
bit words in Red Petya implementation, because the boot-loader, encrypting
disk sectors, worked in 16 bit mode. The authors patched this issue in Green
Petya and more recent versions like BadRabbit which use 32 bit boot-loader
code.

• Using a static key and a basic encryption scheme with no or little crypto-
graphic properties. Such an example can be found in PCLock, Nemucod,
OpenToYou, where a static key was used in a basic XOR scheme.

• Using simple, exploitable verifications: Cryp0l0cker, for instance, used to
make a request on blockchain.info using a hardcoded BTC address in order
to check whether the victim has paid. Once it received the confirmation,
it started to decrypt the files. Therefore, manually modifying the address
to one which already has the minimum of request bitcoins, will trick the
ransomware into decrypting the files.

• Exploitable services: once the ransom payment has been completed, some
ransomwares would query a service where they would send the user key and
download the decryption. Therefore, anyone who knew a victim’s key could
make the request and obtain the decryption key.

• Damaging the files: cases have been seen where the ransomware would faulty
encrypt or write the encrypted data and, therefore, make the data irrecover-
able. GandCrab, for instance, would use the SetFilePointer in order to move
the file pointer to overwrite the clear data with the encrypted one. However,
the lpDistanceToMoveHigh parameter, which specifies “A pointer to the
high order 32-bits of the signed 64-bit distance to move” wasn’t
used, which leads to the function to fail if the purpose is to move the pointer
more than 2 GB. Therefore, the file pointer would not be properly moved
and data would be lost.

• Memory persistence : Some ransomwares generate a local key which will
be used to encrypt the entire system and will be kept in memory for the
entire process. However, some of them will not exit once all system’s files
are encrypted (so the key will be deleted) and will continue to scan for new
files. Therefore, anyone with system access can dump the entire memory of
the process and obtain the key from there.

7 Corner cases

We believe that the ransomware encryption touches a few corner-cases which
can be exploited both by the up-coming technologies and math development the
same time. We will refer to 2 special cases of encryption, based on RSA1024

Trends in design of ransomware viruses 9

keys which might be breakable in the near future and some custom encryption
mechanisms which could be braked using tools like Z3 Theorem Prover / Solver.

1. RSA1024
RSA1024 keys can already be broken using special hardware like SHARK
explained in [1]. The problem is that the implementation requires a lot in-
vestment (20-30 M$) and the time is not too short with all this.
We also presume that quantum computing along with mathematical ad-
vancements will make these keys easy to break in the near future.

2. Custom encryption using Theorem Prover / Solver
A couple of threats (LockCrypt ransomware , ShadowPad botnet) are using
block-chain encryption based on 64 bit keys or pairs of 32 bit keys. Our
research using Z3 Solver from Microsoft, proves that knowing the first 16-32
bytes of the output can lead to a corresponding equation system which might
give us the decryption key without actually attempting a full brute-force.

The below piece of code is an example of encrypting a chunk of data using 2
x 32bit keys, in a block-chain meaner:

1 f o r (i = 0 ; i < 0xFB44 ; i++)
2 {
3 unpacked [i] = key ˆ s h e l l c o d e e n c r y p t e d [i + 4] ;
4 key = 0xC9BED351 ∗ ROL(key , 1 6) − 0x57A25E37 ;
5 }
6

Unfolding the first few steps of this encryption process, based on a few bytes
that we know to be encrypted will result in:

1 i t e r s [0] = 0x340D611E ;
2 i t e r s [1] = key2 + key1 ∗ ROL(0 x340D611E , 16) ;
3 i t e r s [2] = key2 + key1 ∗ ROL(key2 + key1 ∗ ROL(0 x340D611E ,

16) , 16) ;
4 i t e r s [3] = key2 + key1 ∗ ROL(key2 + key1 ∗ ROL(key2 + key1 ∗

ROL(0 x340D611E , 16) , 16) , 16) ;
5

And the coresponding Z3 bit-vector assertions will be:

1 (dec la re−const key1 (BitVec 32))
2 (dec la re−const key2 (BitVec 32))
3 (a s s e r t (= (bvand #x340D611E #x000000FF) #x0000001E))
4 (a s s e r t (= (bvand (bvadd key2 (bvmul key1 (bvadd (bvshl #

x340D611E #x00000010) (bv l shr #x340D611E #x00000010)))) #
x000000FF) #x000000E6))

5

8 Quantum cryptography

As quantum computing becomes more and more closer to reality, the problem
of quantum cryptography arises. Despite the fact that a theoretical theorem has

10 Vlad Constantin Craciun1, Andrei Mogage2, and Emil Simion3

proven that a quantum computer cannot perform general arbitrary computation,
it can be used to access specific quantum states and perform operations that are
similar. As theoretically proven, a quantum computer can perform calculations
much more quickly than a classical one and, thus, can attack most of current
encryption schemes.

To prevent this, researchers are working on post-quantum or quantum-resistant
cryptography, which provides encryption schemes, most of them based on public-
key algorithms, secure against quantum attacks. A way of sharing an encryption
key through a quantum network is via quantum key distribution, which allows
sharing a key between two parties without having to rely on a third one. Current
popular schemes are not resistant to quantum attacks mainly because they rely
on difficult mathematical problems, such as discrete logarithm, integer factor-
ization, elliptic-curve discrete logarithm, quadratic residuosity problems.

However, once quantum cryptography will be practically implementable, ev-
erything we currently know as security will be shifted. Obviously, the malicious
software will be changed as well. Therefore, this bring the possibility of quan-
tum malware or, more closer to the subject, quantum ransomware. One can only
assume what such a concept implies at this point in time. Despite the security
measures that will be taken, it is highly possible that the quantum computer will
be somehow exploitable. Therefore, an attacker might build a quantum malware
that performs similarly to a ransomware, but based on quantum cryptography.
What is more, other scenarios imply altering the quantum states, altering a
system through ”illegally” entaglements, perform quantum distributed attacks
(similar to DDoS), etc.

9 BadRabbit ransomware – case study

BadRabbit, like its predecessor NotPetya/PetWrap make use of disk encryption
and tools like mimikatz to break user credentials and move forward on all possible
computers inside a network. It also make use of RDP exploit, but a slightly
different version of EternalBlue - EternalRomance. Table-4 reveals a serie of
network shares, users and credentials preloaded with the binary:

Network Shares User names Passwords
wkssvc user god
svcctl guest secret
scerpc work password
srvsvc root test123
samr Admin 777
spoolss Adminstrator qwerty
ntsvcs Test 123456
netlogon rdp 123321
lsarpc support uiop
eventlog manager administrator123
browser alex test
atsvc ftpuser adminTest

Trends in design of ransomware viruses 11

Table-4 : BadRabbit brute-forced network and user names

To simplify the bootloader code for Salsa encryption, this new version switches
to Protected Mode 32 bit using 32 bit aligned data, excluding this way special
computations to deal with 32 bit from 16 bit mode. The interesting facts about
BadRabbit are its true promise that files can be recovered, because we know
that its predecessor NotPetya was a wiper, the preference for EternalRomance
and the authors preference for characters of Game of Thrones:

1 s ch ta sk s / Delete /F /TN rhaega l
2 s ch ta sk s / Create /SC once /TN drogon /RU SYSTEM /TR
3

10 Conclusions

These being said, what it started as a Proof of Concept, ransomware became
one of the biggest sources of revenue. What is more, ransomware authors seem
to try to keep up the pase with the ongoing security products. The more the
security systems improve, the more ”smart” ransomware spreading and infecting
techniques become. And, as previously mentioned, once quantum computers can
be used, more or less, in practical issues, the entire industry might change.

11 References

References

1. Kleinjung Thorsten, Aoki Kazumaro, Franke Jens, Lenstra Arjen K., Thomé Em-
manuel, Bos Joppe W., Gaudry Pierrick, Kruppa Alexander, Montgomery Peter
L., Osvik Dag Arne, te Riele Herman, Timofeev Andrey, Zimmermann Paul: ”Fac-
torization of a 768-Bit RSA Modulus” Advances in Cryptology – CRYPTO 2010,
Springer Berlin Heidelberg, P. 333–350, 978-3-642-14623-7

2. Bernstein Daniel J., Robshaw Matthew, Billet Olivier: ”The Salsa20 Family of
Stream Ciphers” New Stream Cipher Designs: The eSTREAM Finalists, Springer
Berlin Heidelberg, P. 84-97, 978-3-540-68351-3

