
CHQS: Publicly Verifiable Homomorphic
Signatures Beyond the Linear Case

Lucas Schabhüser, Denis Butin, and Johannes Buchmann

Technische Universität Darmstadt, Darmstadt, Germany
{lschabhueser,dbutin,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Sensitive data is often outsourced to cloud servers, with the server performing
computation on the data. Computational correctness must be efficiently verifiable by a
third party while the input data remains confidential. This paper introduces CHQS, a
homomorphic signature scheme from bilinear groups fulfilling these requirements. CHQS
is the first such scheme to be both context hiding and publicly verifiable for arithmetic
circuits of degree two. It also achieves amortized efficiency: after a precomputation,
verification can be faster than the evaluation of the circuit itself.

1 Introduction

Today, it is common practice to outsource time-consuming computations to the cloud.
In such a situation, it is desirable to be able to verify the outsourced computation.
The verification must be efficient, by which we mean that the verification procedure
is significantly faster than verified computation itself. Otherwise, the verifier could as
well carry out the computation by himself, negating the advantage of outsourcing.

In addition, there are scenarios in which the verification is required to be context
hiding, which refers to the verification not revealing anything about the input to the
computation. For instance, consider a cloud service which collects signed health data
of individuals and computes statistics on them. These statistical evaluations are then
given to a third party: an insurance company, which does not trust the cloud service to
provide correct statistics. As a consequence, the third party must be able to verify the
statistical outcome. However, for privacy reasons, the third party must not be able to
learn the individual health data. So the challenge arises to design efficient and context
hiding verification procedures for outsourced computing.

Using a homomorphic signature scheme, the verification procedure for outsourced
computations can be implemented as follows. The data owner uploads signed data to
the cloud. The cloud server generates a signature on the computed function output
from these signatures. The verifier uses this signature to check for correctness of the
computation.

There are efficient and context hiding homomorphic signature schemes for linear
functions (e.g. [8, 23]). However, linear functions are insufficient for many applications.
For instance, statistics often require computing variance and covariance, which use

2 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

quadratic functions. Still, beyond the linear case, no efficient and context hiding
homomorphic signature schemes are known. For quadratic functions, efficient verification
is possible as shown in [3]. However, this scheme is not context hiding. For a more
detailed overview of related work, we refer to Sec. 6.

Contribution In this paper, we solve the problem of providing efficient and context
hiding verification for multivariate quadratic functions. The core component of our
solution and our main contribution is the new homomorphic signature scheme CHQS
(Context Hiding Quadratic Signatures). CHQS allows to generate a signature on the
function value of a multivariate quadratic polynomial from signatures on the input
values without knowledge of the signing key. CHQS is perfectly context hiding, i.e. the
signature of the output value does not leak any information about the input values.
Furthermore, verification time is linear (in an amortized sense). A trade-off of our
approach is a signature size that grows during homomorphic evaluation, so our scheme is
not succinct. Still, freshly generated signatures are of constant size. Like most solutions
in this area, the CHQS construction is based on bilinear groups. However, CHQS
showcases for the first time how to use such groups to simultaneously achieve both
public verification and multiplicative depth.

Outline We recall relevant definitions for homomorphic signature schemes in Sec. 2.
In Sec. 3, we present CHQS, our homomorphic signature scheme for multivariate
polynomials of degree 2. We address its properties, notably correctness and context
hiding in Sec. 4 and give a security reduction in Sec. 5. Next, in Sec. 6, we compare
our contribution to existing work. Finally, in Sec. 7, we summarize our results and give
an outlook to future work and open problems.

2 Homomorphic Signatures

In this section, we formally define homomorphic signature schemes and their relevant
properties. Intuitively, homomorphic signatures allow to generate new signatures from
existing signatures without the knowledge of the secret signing key. It is necessary that
the homomorphic property cannot be abused to create forgeries. In order to specify
homomorphic signatures with strong security properties, the notions of labeled and
multi-labeled programs (see e.g. [3]) are introduced. They enable security guarantees by
restricting the signatures that may be homomorphically combined to new signatures.

A labeled program P consists of a tuple (f, τ1, . . . , τn), where f : Mn → M is a
function with n inputs and τi ∈ T is a label for the i-th input of f from some set T.
Given a set of labeled programs P1, . . . ,Pk and a function g : Mk → M, they can
be composed by evaluating g over the labeled programs, i.e. P∗ = g(P1, . . . ,Pk). The
identity program with label τ is given by Iτ = (fid, τ), where fid : M → M is the

CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case 3

identity function. The program P = (f, τ1, . . . , τn) can be expressed as the composition
of n identity programs P = f(Iτ1 , . . . , Iτn).

A multi-labeled program P∆ is a pair (P, ∆) of the labeled program P and a dataset
identifier ∆. Given a set of k multi-labeled programs with the same dataset identifier
∆, i.e. (P1, ∆), . . . , (Pk, ∆), and a function g : Mk →M, a composed multi-labeled
program P∗∆ can be computed, consisting of the pair (P∗, ∆), where P∗ = g(P1, . . . ,Pk).
Analogously to the identity program for labeled programs, we refer to a multi-labeled
identity program by I(∆,τ) = ((fid, τ), ∆).

Definition 1 (Homomorphic Signature Scheme). A homomorphic signature
scheme is a tuple of the following probabilistic polynomial time (PPT) algorithms:

HKeyGen(1λ, n) : On input a security parameter λ and an integer n, the algorithm
returns a key pair (sk, pk), where sk is the secret key kept private and pk is the
public key which determines the message spaceM, the signature space Y, and the
set F of admissible labeled programs P :Mn →M.

HSign(sk, ∆, τ,m) : On input a secret key sk, a dataset identifier ∆, an input identifier
τ , and a message m ∈ M, the algorithm returns a signature σ ∈ Y which is the
signature for the message labeled by τ in the dataset identified by ∆.

HEval(pk,P∆,σ) : On input a public key pk, a multi-labeled program P∆, and a set of
signatures σ ∈ Yk, the algorithm returns a signature σ′ ∈ Y for the multi-labeled
program P over the (tuple of) signatures σ identified by ∆.

HVerify(pk,P∆,m, σ) : On input a public key pk, a multi-labeled program P∆, a message
m ∈ M, and a signature σ ∈ Y, the algorithm either accepts the signature σ for
the multi-labeled program P over the dataset identified by ∆, i.e. it returns 1, or
rejects the signature, i.e. it returns 0.

An obvious requirement of such a scheme is to be correct, i.e. fresh signatures
created using the secret key should be authenticated, and homomorphically derived
signatures should be verified under the correct function.

Definition 2 (Correctness). A homomorphic signature scheme (HKeyGen, HSign,
HEval, HVerify) is called correct if, for any security parameter λ, any integer n, and
any key pair (sk, pk)← HKeyGen(1λ, n) the following two conditions are satisfied:

1. For any dataset identifier ∆, input identifier τ , and message m ∈M,

HVerify(pk, I(∆,τ),m,HSign(sk, ∆, τ,m)) = 1.

2. For any dataset identifier ∆, multi-labeled program P∆ = (f, τ1, . . . , τn, ∆) contain-
ing a valid function f , and set of messages m ∈Mn with m = (m1, . . . ,mn),

HVerify(pk,P∆, f(m1, . . . ,mn),HEval(pk,P∆,σ)) = 1

where σ = (στ1 , ..., στn) ∈ Yn with στi ← HSign(sk, ∆, τ,mτi) for all i ∈ [n].

4 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

To formalise the security of a homomorphic signature scheme, we first provide a
definition for well defined programs, which we need to define forgeries on these programs.
Then, we introduce an experiment the attacker can run in order to make a successful
forgery and present a definition for unforgeability based on this experiment. Due to
their homomorphic properties, these schemes allow anyone to create signatures for
messages not signed by the owner of the secret key. However, not only messages but
also input- and dataset identifiers are used during signing. A verifier can thus always
see whether a message has been signed by the owner of the secret key (by giving the
identity function to HVerify), or whether a signature has been homomorphically derived.
Based on this, there exists a meaningful definition of unforgeability for homomorphic
signatures. In order to present this, we first define well defined programs.

Definition 3 (Well Defined Program). A labeled program P = (f, τ1, . . . , τn) is
well defined with respect to a list Q ⊂ [n]×M if one of the two following cases holds:
First, there are messages m1, . . . ,mn such that (τi,mi) ∈ Q ∀i ∈ [n]. Second, there is
an i ∈ {1, . . . , n} such that (τi, ·) /∈ Q and f({mj}(τj ,mj)∈Q ∪ {m′l}(τl,·)/∈Q) is constant
over all possible choices of m′l ∈M.

Freeman pointed out [16] that it may generally not be possible to decide whether
a multi-labeled program is well defined with regard to a list Q. For this, we use this
lemma:

Lemma 1 ([7]). Let λ, n, d ∈ N and let F be the class of arithmetic circuits f : Fn → F
over a finite field F of order p, such that the degree of f is at most d, for d

p ≤
1
2 . Then,

there exists a PPT algorithm that for any given f ∈ F , decides if there exists y ∈ F,
such that f(u) = y for all u ∈ F (i.e. if f is constant) and is correct with probability at
least 1− 2−λ.

For the notion of unforgeability of a homomorphic signature scheme H = (HKeyGen,
HSign,HEval,HVerify) we use the following experiment between an adversary A and
a challenger C defined in [7]. During the experiment, the adversary A can adaptively
query the challenger C for signatures on messages of his choice under identifiers of his
choice.

Definition 4 (HomUF− CMAA,H(λ) [7]).

Key Generation C calls (sk, pk) $← HKeyGen(1λ, k) and gives pk to A.
Queries A adaptively submits queries for (∆, τ,m) where ∆ is a dataset, τ is an input
identifier, and m is a message. C proceeds as follows: if (∆, τ,m) is the first query
with dataset identifier ∆, it initializes an empty list Q = ∅ for ∆. If Q does not
contain a tuple (τ, ·), i.e. A never queried (∆, τ, ·), C calls σ ← HSign(sk, ∆, τ,m),
updates the list Q = Q ∪ (τ,m), and gives σ to A. If (τ,m) ∈ Q, then C returns

CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case 5

the same signature σ as before. If Q already contains a tuple (τ,m′) for m 6= m′, C
returns ⊥.

Forgery A outputs a tuple (P∆,m, σ). The experiment outputs 1 if (P∆,m, σ) is a
forgery in the following sense:
A forgery is a tuple (P∗∆∗ ,m∗, σ∗) such that HVerify(pk,P∗∆∗ ,m∗, σ∗) = 1 holds
and exactly one of the following conditions is met:
Type 1: The list Q was not initialized during the security experiment, i.e. no

message was ever committed under the dataset identifier ∆.
Type 2: P∗∆∗ is well defined with respect to list Q and m∗ is not the correct output

of the computation, i.e. m∗ 6= f({mj}(τj ,mj)∈Q)
Type 3: P∗∆∗ is not well defined with respect to Q (see Definition 3).

Definition 5 (Unforgeability). A homomorphic signature scheme H is unforgeable
if for any PPT adversary A, Pr[HomUF− CMAA,H(λ) = 1] = negl(λ),
where negl(λ) denotes any function negligible in the security parameter λ.

Additionally, we require the following statement to deal with Type-3 forgeries:

Lemma 2 ([7, Proposition 2]). Let λ ∈ N, and let F be the class of arith-
metic circuits f : Fnp → F such that the degree of f is at most d for d

p < 1
2 . Let

H = (HKeyGen,HSign,HEval, HVerify) be a homomorphic signature scheme with mes-
sage space Fp. Let Eb be the event that the adversary returns a Type-b forgery (for
b = 1, 2, 3) in experiment HomUF− CMAA,H(λ). If for any adversary A we have
Pr[HomUF− CMAA,H(λ) = 1 ∧ E2] ≤ ε, then for any adversary A′ producing a
Type-3 forgery it holds that Pr[HomUF− CMAA′,H(λ) = 1 ∧ E3] ≤ ε+ 2−λ.

In order to use homomorphic signatures to improve bandwidth and computational
effort further properties are desired, namely succinctness and efficient verification.

Definition 6 (Succinctness). A homomorphic signature scheme (HKeyGen, HSign,
HEval, HVerify) is called succinct if, for a fixed security parameter λ, the size of the
signatures depends at most logarithmically on the dataset size n.

Definition 7 (Efficient Verification [8]). A homomorphic signature scheme for
multi-labeled programs allows for efficient verification if there exist two additional
algorithms (HVerPrep,HEffVer) such that:

HVerPrep(pk,P) : Given a public key pk and a labeled program P = (f, τ1, . . . , τn),
generate a concise public key pkP . This does not depend on a dataset identifier ∆.

HEffVer(pkP ,m, σ,∆): Given a concise public key pkP , a message m, a signature σ
and a dataset ∆, output 1 or 0.

The above algorithms are required to satisfy the following two properties:

6 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

Correctness: Let (sk, pk)← HKeyGen(1λ, n) be honestly generated keys and (P,m, σ)
be a tuple such that, for P∆ = (P, ∆), HVerify(pk,P∆,m, σ) = 1.
Then, for every pkP

$← HVerPrep(pk,P), HEffVer(pkP ,m, σ,∆) = 1 holds except
with negligible probability.

Amortized Efficiency: Let P be a program, let m1, . . . ,mn be valid input values
and let t(n) be the time required to compute P(m1, . . . ,mn) with output m. Then,
for pkP

$← HVerPrep(pk,P), the time required to compute HEffVer(pkP ,m, σ,∆) is
t′ = o(t(n)).

Here, efficiency is used in an amortized sense. There is a function-dependent
pre-processing, so that the cost of verification amortizes over multiple datasets.

Finally, to derive additional privacy with regard to the verifier from using homo-
morphic signatures, we require a signature to the outcome of a computation not to
leak information about the input values. Our definition is inspired by Gorbunov et al.’s
definition [19]. However, in our case, the simulator is explicitly given the circuit for
which the signature is supposed to verify. With respect to this difference, our definition
is more general. We stress that the circuit is not hidden in either of the two context
hiding notions.

Definition 8 (Context Hiding). A homomorphic signature scheme for multi-labeled
programs is called context hiding if there exist additional PPT procedures σ̃ ←
HHide(pk,m, σ) and HHideVer(pk,P∆,m, σ̃) such that:
Correctness: For any (sk, pk)← HKeyGen(1λ, n) and any tuple (P∆,m, σ) such that

HVerify(pk,P∆,m, σ) = 1 and σ̃ ← HHide(pk,m, σ), HHideVer(pk,P∆,m, σ̃) = 1.
Unforgeability: The homomorphic signature scheme is unforgeable (see Definition

5) when replacing the algorithm HVerify with HHideVer in the security experiment.
Context hiding security: There is a simulator Sim such that, for any fixed (worst-

case) choice of (sk, pk)← HKeyGen(1λ, n), any multi-labeled program P∆ = (f, τ1,
. . . , τn, ∆), messages m1, . . . ,mn, and distinguisher D there exists a function ε(λ)
such that:

|Pr[D(I,HHide(pk,m, σ)) = 1]− Pr[D(I, Sim(sk,P∆,m)) = 1]| = ε(λ)

where I = (sk, pk,P∆, {mi}ni=1,m, σ) for σi ← HSign(sk, ∆, τi,mi), m← f(m1, . . . ,
mn), σ ← HEval(pk,P∆, σ1, . . . , σn),and the probabilities are taken over the random-
ness of HSign,HHide and Sim. If ε(λ) = negl(λ), we call the homomorphic signature
scheme statistically context hiding, if ε(λ) = 0, we call it perfectly context hiding.

3 Construction of CHQS

In this section, we present our novel homomorphic signature scheme CHQS. We first
recall the hardness assumptions on which its security is based. Our construction is

CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case 7

then described in detail. We also give an intuition of how CHQS works by providing an
example in a simple case.

We now recall computational hardness assumptions on which CHQS is based.

Definition 9. Let G be a generator of cyclic groups of order p and let G $← G(1λ). We
say the Discrete Logarithm assumption (DL) holds in G if there exists no PPT adversary
A that, given (g, ga) for a random generator g ∈ G and random a ∈ Zp, can output a
with more than negligible probability, i.e. if Pr[a← A(g, ga)|g $← G, a $← Zp] = negl(λ).

Definition 10 (Asymmetric bilinear groups). An asymmetric bilinear
group is a tuple bgp = (p,G1,G2,GT , g1, g2, e), such that:

– G1,G2, and GT are cyclic groups of prime order p,
– g1 ∈ G1 and g2 ∈ G2 are generators for their respective groups,
– the DL assumption holds in G1,G2, and GT ,
– e : G1 ×G2 → GT is bilinear, i.e. e(g1

a, g2
b) = e(g1, g2)ab holds for all a, b ∈ Z,

– e is non-degenerate, i.e. e(g1, g2) 6= 1GT , and
– e is efficiently computable.

We write gt = e(g1, g2).

Definition 11 ([8]). Let G be a generator of asymmetric bilinear groups and let
bgp = (p,G1,G2,GT , g1, g2, e)

$← G(1λ). We say the Flexible Diffie–Hellman Inversion
(FDHI) assumption holds in bgp if for every PPT adversary A,

Pr[W ∈ G1\{1G1} ∧W ′ = W
1
z : (W,W ′)← A(g1, g2, g

z
2 , g

v
2 , g

z
v
1 , g

r
1, g

r
v
1)|

z, r, v
$← Zp] = negl(λ).

We now present the algorithms making up CHQS. It is homomorphic with respect
to arithmetic circuits f : Znp → Zp of degree 2, where p ≥ 5 (see Lemma 1). CHQS
is graded, i.e. there exist level-1 and level-2 signatures. Level-1 signatures are created
by signing messages, whereas level-2 signatures occur during homomorphic evaluation
over multiplication gates. Graded structures like this occur naturally in homomorphic
schemes like the ones by Catalano and others [6,10]. We use dedicated elements (which
we will denote by Tτ) in our level-1 signatures to handle multiplication gates. Those
elements no longer occur in the level-2 signatures.

HKeyGen(1λ, n): On input a security parameter λ and an integer n, the algorithm
runs G(1λ) to obtain a bilinear group bgp = (p,G1,G2,GT , g1, g2, e). It chooses
x, y ← Zp uniformly at random. It sets ht = gxt . It then samples tτi , kτi uniformly
at random for all i ∈ [n] and sets Fτi = g

tτi
2 , as well as fτi = g

ytτi
t , fτi,τj = g

tτikτj
t ,

for all i, j ∈ [n].

8 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

Additionally it makes use of a regular signature scheme Sig′ = (KeyGen′,Sign′,
Verify∗) and a a pseudorandom function PRF : K × {0, 1}∗ → Zp. For these it
generates keys (sk′, pk′)← KeyGen′(1λ) and K $← K. It returns the key pair (sk, pk)
with sk = (sk′,K, x, y, {tτi}ni=1) and pk = (pk′, bgp, ht, {Fτi , fτi}ni=1, {fτi,τj}ni,j=1).

HSign(sk, ∆, τ,m): On input a secret key sk, a dataset identifier ∆, an input identifier
τ ∈ T , and a message m ∈ Zp, the algorithm generates the parameters for the
dataset identified by ∆, by running z ← PRFK(∆) and computing Z = g

1
z
2 . Z is

bound to the dataset identifier ∆ by using the regular signature scheme, i.e. it sets
σ∆ ← Sign′(sk′, Z|∆).
It chooses r, s ∈ Zp uniformly at random. Then it computes Λ← g

z(xm+(y+s)tτ+r)
1 ,

R ← gr1, Sτ ← gs1, as well as Tτ ← gym−kτ1 . It sets T = {(τ, Sτ , Tτ)} and then
returns the signature σ = (m,σ∆, Z, Λ,R, T). Following the convention of Backes
et al. [3], our signature contains the message m.

HEval(pk,P∆,σ): Inputs are a public key pk, a multi-labeled program P∆ containing
an arithmetic circuit f of degree at most 2, and signatures σ = (σ1, . . . , σn), where
σi = (mi, σ∆,i, Zi, Λi, Ri, Ti). The algorithm checks if the signatures share the same
public values, i.e. if σ∆,1 = σ∆,i and Z1 = Zi for all i = 2, . . . , n, and the signature
for each set of public values is correct and matches the dataset identifier ∆, i.e.
Verify′(pk′, Zi|∆,σ∆,i) = 1 for any i ∈ [n]. If this is not the case, the algorithm
rejects the signature. Otherwise, it proceeds as follows. We describe this algorithm
in terms of six different procedures (Add1,Mult,Add2, cMult1, cMult2,Shift) allowing
to evaluate the circuit gate by gate.

Add1: On input two level-1 signatures σi = (mi, σ∆, Z, Λi, Ri, Ti) for i = 1, 2 it
computes as follows: m = m1 +m2, Λ = Λ1 · Λ2, R = R1 ·R2, and T = T1 ∪ T2.
It outputs a level-1 signature σ = (m,σ∆, Z, Λ,R, T).

Mult: On input two level-1 signatures σi = (mi, σ∆, Z, Λi, Ri, Ti) for i = 1, 2 and
the public key pk, it computes as follows: m = m1m2, Λ = Λm2

1 , R = Rm2
1 ,

Sτ = Sm2
τ1 · Tτ2 , for all τ ∈ T1, and L = {(τ, Sτ)} for all τ ∈ T1. It outputs a

level-2 signature σ = (m,σ∆, Z, Λ,R,L).
Add2: On input two level-2 signatures σi = (mi, σ∆, Z, Λi, Ri,Li) for i = 1, 2, it

computes as follows:m = m1+m2, Λ = Λ1 ·Λ2, R = R1 ·R2, Sτ = Sτ,1 ·Sτ,2 for all
(τ, ·) ∈ L1 ∩ L2, Sτ = Sτ,i for all τ such that (τ, ·) ∈ L1∆L2, and L = {(τ, Sτ)}
for all (τ, ·) ∈ L1 ∪ L2. It outputs a level-2 signature σ = (m,σ∆, Z, Λ,R,L).

cMult1: On input a level-1 signature σ′ = (m′, σ∆, Z, Λ′, R′, T ′) and a constant
c ∈ Zp, it computes as follows: m = cm′, Λ = Λ′c, R = R′c, Sτ = S′τ

c,
Tτ = T ′τ

c for all τ ∈ T ′, and T = {(τ, Sτ , Tτ)}τ∈T . It outputs a level-1 signature
σ = (m,σ∆, Z, Λ,R, T).

cMult2: On input a level-2 signature σ = (m′, σ∆, Z, Λ′, R′,L′) and a constant
c ∈ Zp, it computes as follows: m = cm′, Λ = Λ′c, R = R′c, Sτ = S′cτ for all

CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case 9

(τ, S′τ) ∈ L′, and L = {(τ, Sτ)} for all (τ, S′τ) ∈ L′. It outputs a level-2 signature
σ = (m,σ∆, Z, Λ,R,L).

Shift: On input a level-1 signature σ′ = (m′, σ∆, Z, Λ′, R′, T ′), it computes as follows:
m = m′, Λ = Λ′, R = R′, and L = {(τ, Sτ)}τ∈T ′ . It outputs a level-2 signature
σ = (m,σ∆, Z, Λ,R,L). Shift simply describes how to derive a level-2 signature
from a level-1 signature.

HVerify(pk,P∆,M, σ): On input a public key pk, a messageM , a (level-1 or -2) signature
σ, a multi-labeled program P∆ containing an arithmetic circuit f of degree at most
2, the algorithm parses (without loss of generality) σ = (m,σ∆, Z, Λ,R,L).
It then checks whether the following three equations hold:
1. M = m
2. Verify′(pk′, Z|∆,σ∆) = 1
3.

e (Λ,Z) = e (R, g2) · hmt ·
n∏
i=1

f cii ·
∏

(τ,·,·)∈L
e (Sτ , Fτ)

for level-1 signatures and

e (Λ,Z) = e (R, g2) · hmt ·
n∏

i,j=1
f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

∏
(τ,·)∈L

e (Sτ , Fτ)

for level-2 signatures, respectively, where ci,j and cj are the coefficients in P∆.
If all 3 equations hold respectively, it returns 1. Otherwise, it returns 0.

We now give a brief example of how the HSign and HEval algorithms work.

Example 1. Let us consider the three messages m1 = 5,m2 = 11,m3 = 23 and the
function f(m1,m2,m3) = m1m2 +m1m3. We have

HSign(sk, ∆, τ, 5): Compute Λ1 = g
z(5x+yt1+s1t1+r1)
1 , R1 = gr1

1 , S1 = gs1
1 , T1 = g5y−k1

1 .
HSign(sk, ∆, τ, 11): Λ2 = g

z(11x+yt2+s2t2+r2)
1 , R2 = gr2

1 , S2 = gs2
1 , T2 = g11y−k2

1 .
HSign(sk, ∆, τ, 23): Λ3 = g

z(23x+yt3+s3t3+r3)
1 , R3 = gr3

1 , S3 = gs3
1 , T3 = g23y−k3

1 .

We consider the multi-labeled program P∆ = (f, τ1, τ2, τ3, ∆). We perform HEval(pk,
P∆, (σ1, σ2, σ3)) by twice performing Mult and then performing Add2.

Mult(σ1, σ2): Set m = 5 · 11 = 55, Λ = Λ11
1 = g

z(55x+11yt1+11s1t
+
1 11r1)

1 , R = R11
1 = g11r1

1 ,
S1 = g11s1

1 · g11y−k2
1 = g11s1+11y−k2

1 , and L = {(τ1, S1)}.
Mult(σ1, σ3): Set m′ = 5 · 23 = 115, Λ′ = Λ23

1 = g
z(115x+23yt1+23s1t1+23r1)
1 , R′ = R23

1 =
g23r1

1 , S′1 = g23s1
1 · g23y−k3

1 = g23s1+23y−k3
1 , and L′ = {(τ1, S

′
1)}.

Add2(σ, σ′) : Set

10 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

– m∗ = 55 + 115 = 170
– Λ∗ = Λ · Λ′ = g

z(55x+11r1+115x+23(y+s1)t1+11(y+s1)t1+23r1)
1

= g
z(170x+34(y+s1)t1+34r1)
1

– R∗ = R ·R′ = g11r1+23r1
1 = g34r1

1 ,
– S∗1 = S1 · S′1 = g11s1+11y−k2+23s1+23y−k3

1 = g34s1+34y−k2−k3
1

– L∗ = {(τ1, S
∗
1)}.

We run HVerify(pk,P∆, 170, σ∗). The first two checks obviously pass. The third one is

e

(
g
z(170x+34yt1+34s1t1+34r1)
1 , g

1
z
2

)
= g170x+34yt1+34s1t1+34r1

t =

g34r1
t · h170

t · gt1k2+t1k3
t · g−(t1k2+t1k3)+34s1t1+34yt1

t = e (R∗, g2)h170
t · f1,2 · f1,3 · e (S∗1 , F1) .

4 Correctness, Efficiency, and Context Hiding Property of CHQS

We now prove the essential properties of CHQS, in particular correctness, amortized
efficiency, and context hiding.

Theorem 1. CHQS is correct in the sense of Definition 2.

Proof. We first show the correctness for freshly generated signatures. We then show
the correctness of the six procedures (Add1,Mult,Add2, cMult1, cMult2, Shift).

Sign: Let σ = (m,σ∆, Z, Λ,R, T) ← HSign(sk, ∆, τ,m). By construction, Verify′(pk′,
Z|∆, σ∆) = 1. Also, e (Λ,Z) = e

(
g
z(xm+(y+s)tτ+r)
1 , g

1
z
2

)
= e

(
g
xm+(y+s)tτ+r
1 , g2

)
=

g
xm+(y+s)tτ+r
t = hmt ·fτ ·e (R, g2) ·e (S, Fτ) and consequently σ is a correct signature.

Add1: We have two valid signatures σ1 and σ2. Thus Z1 = Z2 and Verify′(pk′, Z1|∆,
σ∆) = 1. Furthermore, e (Λi, Zi) = e (Ri, g2) · hmit · fi · e (Si, Fi), by construction.
After performing Add1, e (Λ,Z) = e (Λ1 · Λ2, Z1) = e (Λ1, Z1) · e (Λ2, Z2)

= e (R1, g2) · hm1
t · f1 · e (S1, F1) · e (R2, g2) · hm2

t · f2 · e (S2, F2)
= e (R1 ·R2, g2) · hm1+m2

t · f1 · f2 · e (S1, F1) · e (S2, F2)
= e (R, g2) · hmt · f1 · f2 · e (S1, F1) · e (S2, F2)

hence σ is a correct signature. We also have T = T1 · T2 = g
y(m1+m2)−(k1+k2)
1 .

Mult: We have two valid signatures σ1 and σ2. Thus Z1 = Z2 and Verify′(pk′, Z1|∆,
σ∆) = 1. Furthermore, e (Λi, Zi) = e (Ri, g2) · hmit · fi · e (Si, Fi), by construction.

CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case 11

After performing Mult, e (Λ,Z) = e (Λm2
1 , Z) = e(Rm2

1 , g2) · hm1m2
t · fm2

1 · e (S1, F1)

= e(Rm2
1 , g2) · hm1m2

t · fm2
1 · e (Sm2

1 , F1) · g−ym2t1−k2t1
t · gym2t1+k2t1

t

= e(Rm2
1 , g2) · hm1m2

t · fm2
1 · e

(
gs1m2

1 , gt12

)
· g−ym2t1
t · gk2t1

t · e
(
gym2t1−k2t1

1 , g2
)

= e(Rm2
1 , g2) · hm1m2

t · fm2
1 · f−m2

1 · f1,2 · e
(
gym2−k2+s1m2

1 , gt12

)
= e(R, g2) · hm1m2

t · f1,2 · e (Sm2
1 · T1, F1) so σ is a correct signature.

Add2: We have two valid signatures σ1 and σ2. Thus Z1 = Z2 and Verify′(pk′, Z1|∆,
σ∆) = 1. Furthermore, e (Λi, Zi) = e (Ri, g2) · hmit · fi ·

∏
(τ,·)∈L1 e (Sτ,i, Fτ), by

construction. After performing Add2, e (Λ,Z) = e (Λ1 · Λ2, Z1)

= (R1, g2) · hm1
t · f1

∏
(τ,·)∈L1

e (Sτ,1, Fτ) · e (R2, g2) · hm2
t · f2

∏
(τ,·)∈L2

e (Sτ,2, Fτ)

= e (R1 ·R2, g2) · hm1+m2
t · f1 · f2

∏
(τ,·)∈L

e (Sτ , Fτ)

= e (R, g2) · hmt · f1 · f2
∏

(τ,·)∈L
e (Sτ , Fτ) thus σ is a correct signature.

The correctness of cMult1 and cMult2 follows immediately from the correctness of Add1
and Add2 respectively. The correctness of Shift is trivial.

Theorem 2. CHQS provides verification in time O(n) in an amortized sense.

Proof. We describe the two algorithms (HVerPrep,HEffVer).

HVerPrep(pk,P) : This algorithm parses P = (f, τ1, . . . τn) with f(m1, . . .mn) =∑n
i=1 cimi +

∑n
i,j=1 ci,jmimj and takes the fi, fi,j for i, j ∈ [n] contained in the

public key. It computes FP ←
∏n
i,j=1 f

ci,j
i,j ·

∏n
i=1 f

ci
i and outputs pkP = (pk′, bgp, ht,

{Fi}ni=1, FP) where pk′, bgp, ht, {Fi}ni=1 are taken from pk.
HEffVer(pkP ,m, σ,∆): This algorithm is analogous to HVerify, except that the value∏n

i,j=1 f
ci,j
i,j ·

∏n
i=1 f

ci
i has been precomputed as FP .

Obviously this satisfies correctness. During HEffVer the verifier now computes

e (Λ,Z) = e (R, g2) · hmt · FP ·
n∏
i=1

e (Si, Fi)

The running time of HEffVer is thus O(n).

Thus, CHQS achieves amortized efficiency in the sense of Definition 7 for every
arithmetic circuit f of multiplicative depth 2, that has superlinear runtime complexity.
We continue Example 1 to showcase these two algorithms.

12 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

Example 2. We again consider the labeled program P = (f, τ1, τ2, τ3), as well as
the multi-labeled program P∆ = (f, τ1, τ2, τ3, ∆), with the function f(m1,m2,m3) =
m1m2 +m1m3, and the messages m1 = 5,m2 = 11,m3 = 23. We have

HVerPrep(pk,P) : We compute FP = f1,2 · f1,3 = g
tτ1k2+tτ1k3
t .

HEffVer(pkP ,m, σ,∆): As in Example 1, m∗ = 170, Λ∗ = g
z(170x+34yt1+34s1t1+34r1)
1 ,

R∗ = g34r1
1 , S∗1 = g34y−k2−k3

1 and σ∗ = (m∗, σ∆, Z, Λ∗, R∗, {(τ1, S
∗
1)}).

HVerify(pk,P∆, 170, σ∗): Again, the first two checks obviously pass. The third one
is like in Example 1 e

(
g
z(170x+34yt1+34s1t1+34r1)
1 , g

1
z
2

)
= e (R∗, g2)h170

t · f1,2 · f1,3 ·

e (S∗1 , F1) = e (R∗, g2)h170
t · F∆ · e (S∗1 , F1).

Bandwidth: CHQS is not succinct. However, the output of HSign is of constant size
and thus independent of n. Hence no extensive bandwidth is needed during the upload
of the data.

Theorem 3. CHQS is perfectly context hiding according to Definition 8 if Sig′ is a
deterministic signature scheme.

Proof. We show that our scheme is perfectly context hiding in the sense of Definition 8,
by comparing the distributions of homomorphically derived signatures to that of simu-
lated signatures. In our case, HHide is just the identity function, i.e. σ ← HHide(pk,m, σ)
for all pk,m, σ and HHideVer = HVerify. We show how to construct a simulator Sim that
outputs signatures perfectly indistinguishable from the ones obtained by running HEval.
Parse the simulator’s input as sk = (sk′,K), P∆ = (f, τ1, . . . , τn, ∆). For each τ appear-
ing in P∆, it chooses sτ ∈ Zp uniformly at random as well as r ∈ Zp uniformly at random.
With this information, the simulator computes m′ = m, Z ′ = gz2 where z ← PRFK(∆),

σ′∆
$← Sign′(sk′, Z|∆), Λ′ = g

z(xm′+y(
∑n

i,j=1 cijtikj+
∑n

i=1 citi)+
∑n

i=1 sτi ti+r)
1 , R′ = gr1,

S′τ = gsτ1 for all τ appearing in P∆, and T ′ = {(τ, Sτ)}τ∈P∆ . The simulator outputs
the signature σ′ = (m′, σ′∆, Z ′, Λ′, R′, T ′).

We now show that this simulator allows for perfectly context hiding security. We fix
an arbitrary key pair (sk, pk), a multi-labeled program (f, τ1, . . . , τn, ∆), and messages
m1, . . . ,mn ∈ Zp. Let σ ← HEval(pk,P∆,σ) and parse it as σ = (σ∆, Z, Λ). We inspect
each component of the signature. Z = PRFK(∆) by definition and thus also Z = Z ′.
In particular, z = z′ where Z = gz2 and Z ′ = gz

′
2 . We have σ∆ = Sign′(sk′, Z|∆) by

definition, and since Z = Z ′, also σ∆ = σ′∆ since Sign′ is deterministic. We consider Λ
as an exponentiation of gz1 . Since Λ =

∏n
i,j=1 Λ

cijmj
i by construction, for the exponent

CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case 13

we have:

xm+
n∑

i,j=1
cijmj(yti + siti + ri)

= xm′ + y(
n∑

i,j=1
cijtikj +

n∑
i=1

citi)− y(
n∑

i,j=1
cijtikj +

n∑
i=1

citi)

+
n∑

i,j=1
cijmj(yti + siti + ri)

= xm′ + y(
n∑

i,j=1
cijtikj +

n∑
i=1

citi) +
n∑
i=1

(
n∑
j=1
−ycijkj − yci + cijmjy + cijsimj)ti

+
n∑

i,j=1
cijmjri

= xm′ + y(
n∑

i,j=1
cijtikj +

n∑
i=1

citi) +
n∑
i=1

s̃iti + r̃

Thus the exponent corresponds to a different choice of r, si ∈ Zp. Analogously,
Sτ = g

s̃τi
1 and R = gr̃1, where r̃, s̃τi are distributed uniformly at random as linear

combinations of uniformly random field elements.
All elements are either identical, or have the exact same distribution. Thus even

a computationally unbounded distinguisher has no advantage distinguishing the two
cases.

5 Unforgeability of CHQS

This section deals with the security reduction of CHQS to the FDHI assumption (see
Definition 11). We first present the hybrid games used in the proof, and then argue
their indistinguishability for a PPT adversary A in the form of several lemmata.

Theorem 4. If Sig′ is an unforgeable signature scheme, PRF is a pseudorandom
function, and the FDHI assumption (see Definition 11) holds in bgp, then CHQS is an
unforgeable homomorphic signature scheme in the sense of Definition 5.

Proof. To prove Theorem 4, we define a series of games with the adversary A and we
show that the adversary A wins, i.e. the game outputs 1 only with negligible probability.
Following the notation of [8], we write Gi(A) to denote that a run of game i with
adversary A returns 1. We use flag values badi, initially set to false. If at the end of
the game any of these flags is set to true, the game simply outputs 0. Let Badi denote
the event that badi is set to true during game i. As shown in [10, Proposition 2], any

14 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

adversary who outputs a Type 3 forgery (see Definition 4) can be converted into one
that outputs a Type 2 forgery. Hence we only have to deal with Type 1 and Type 2
forgeries.

Game 1 is the security experiment HomUF− CMAA,HSign between an adversary A
and a challenger C, where A only outputs Type 1 or Type 2 forgeries.

Game 2 is defined as Game 1, except for the following change. Whenever A
returns a forgery (P∗∆∗ , σ∗) with σ∗ = (m∗, T ∗, σ∗∆∗ , Z∗, Λ∗, R∗, S∗) or σ∗ =
(m∗, σ∗∆∗ , Z∗, Λ∗, R∗, L∗) and Z∗ has not been generated by the challenger dur-
ing the queries, then Game 2 sets bad2 = true. After this change, the game never
outputs 1 if A returns a Type 1 forgery.

Game 3 is defined as Game 2, except that the pseudorandom function F is replaced
by a random function R : {0, 1}∗ → Zp.

Game 4 is defined as Game 3, except for the following change. At the beginning C
chooses µ ∈ [Q] uniformly at random, where Q = poly(λ) is the number of queries
made by A during the game. Let ∆1, . . . ,∆Q be all the datasets queried by A. Then
if in the forgery ∆∗ 6= ∆µ set bad4 = true.

Game 5 is defined as Game 4, except for the following change. At the very beginning
C chooses zµ ∈ Zp at random and computes Zµ = g

zµ
2 . It will use Zµ whenever

queried for dataset ∆µ. It chooses ai, bi ∈ Zp uniformly at random for i ∈ [n] and
sets fτi = g

y(ai+zµbi)
t , Fτi = g

ai+zµbi
2 as well as fτi,τj = g

kjy(ai+zµbi)
t .

Game 6 is defined as Game 5, except for the following change. The challenger
runs an additional check. If HVerify(pk,P∗∆,m∗, σ∗) = 1, the challenger computes
σ̂ ← HEval(pk,P∗∆,σ) over the signatures σi generated in dataset ∆∗. We have σ̂ =
(m̂, T̂ , σ∆, Z, Λ̂, R̂, Ŝ) in case of a level-1 signature and σ̂ = σ = (m̂, σ∆, Z, Λ̂, R̂, L̂)
in case of a level-2 signature. If Λ∗ ·

∏n
i=1 Ŝ

bi
i = Λ̂ ·

∏n
i=1 S

∗
i
bi then C sets bad6 = true.

Any noticeable difference between Games 1 and 2 can be reduced to producing a
forgery for the signature scheme. If Bad2 occurs, then A produced a valid signature
σ∗∆∗ for (∆∗|Z∗) despite never having queried a signature on any (∆∗|·). This is
obviously a forgery on the signature scheme.
Under the assumption that F is pseudorandom, Games 2 and 3 are computationally
indistinguishable.
We have, by definition, Pr[G3(A)] = Q ·Pr[G4(A)]. It is obvious that Pr[G4(A)] =
Pr[G5(A)], since the public keys are perfectly indistinguishable. It is easy to see that
|Pr[G5(A)]− Pr[G6(A)]| ≤ Pr[Bad6]. This occurs only with negligible probability
if the FDHI assumption holds. For a proof of this statement, see Lemma 3 in
Appendix A.
After these modifications, Game 6 can only output 1 if A produces a forgery
(P∗∆∗ ,m∗, σ∗) such that HVerify(pk,P∗∆,m∗, σ∗) = 1 and m∗ 6= m̂, Λ∗ 6= Λ̂. This
only occurs with negligible probability if the FDHI assumption holds. For a corre-
sponding proof, we refer to Lemma 4 in Appendix A.

CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case 15

6 Related Work

Linearly homomorphic signature schemes were introduced by Desmedt [14] and later
refined by Johnson et al [20]. Freeman proposed stronger security definitions [16]. A
first instantiation, based on the 2-out-of-3 Computational Diffie–Hellmann assumption,
was proposed by Boneh et al [5]. It was followed by multiple schemes [1,2,4,8,9,18,23],
based on various hardness assumptions. None of these schemes support quadratic
functions, unlike CHQS.

Some constructions for homomorphic authenticators go beyond the linear case.
Backes et al. presented a homomorphic MAC for arithmetic circuits of degree 2
constructed from bilinear maps [3]. However, this approach is not context hiding and
only offers private verifiability, while we offer verifiability for arbitrary third parties
and perfect context hiding. Catalano et al. showed how to construct homomorphic
signatures for arithmetic circuits of fixed depth from graded encoding schemes, a special
type of multilinear maps [10]. Existing graded encoding schemes [12, 17] have, however,
suffered strong cryptanalytic attacks in recent years [11, 21, 22]. In contrast, CHQS
can be instantiated with elliptic curve-based bilinear groups, which have been reliable
building block in cryptography for years.

Some lattice-based homomorphic signatures schemes [15,19] support boolean circuits
of fixed degree. However, these schemes suffer the performance drawback of signing every
single input bit, while our solution can sign entire finite field elements. Additionally [15]
is also not shown to be context hiding.

More generally verifiable computing can be used to achieve verifiability of delegated
computations. Many different schemes have been proposed. For a detailed comparison
we refer to [13]. A general feature of homomorphic-signature-based schemes is that
they allow for incremental updates of data sets, i.e. additional data can be added after
the first delegation of data. Other verifiable computing schemes require all data to be
used during the computation to be known before outsourcing.

7 Conclusion

Our new homomorphic signature scheme CHQS can be instantiated from ordinary
bilinear groups, but still allows public verifiability for polynomials of degree greater
than 1. Previous proposals either were limited to private verifiability, or relied on
advanced primitives like graded encoding schemes. Such alternatives have recently been
threatened by substantial cryptanalytic progress. Bilinear groups, however, are well
understood and have been a reliable cryptographic building block for years.

We have demonstrated a novel approach using pairings to obtain both public verifi-
ability and the ability to homomorphically evaluate a multiplication at the same time.
CHQS achieves several desirable properties, including context hiding and amortized

16 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

efficiency. Furthermore, we reduced its security to the FDHI assumption in the stan-
dard model. This enables homomorphic signature schemes as a means of achieving
verifiability for delegated computations over authenticated data, for example in the
case of second-order statistics over health data in the cloud.

Future Work While CHQS is both context hiding and achieves efficient verification, the
construction of a scheme also achieving succinctness and constant time verification is
an open problem. Another question remains: can primitives supporting degrees higher
than two still be constructed from bilinear maps?

Acknowledgments

References

1. Attrapadung, N., Libert, B., Peters, T.: Computing on Authenticated Data: New Privacy Definitions
and Constructions. In: ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer (2012)

2. Attrapadung, N., Libert, B., Peters, T.: Efficient Completely Context-Hiding Quotable and Linearly
Homomorphic Signatures. In: PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer (2013)

3. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data.
In: ACM CCS 2013. pp. 863–874. ACM (2013)

4. Boneh, D., Freeman, D.M.: Linearly Homomorphic Signatures over Binary Fields and New Tools
for Lattice-Based Signatures. In: PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer (2011)

5. Boneh, D., Freeman, D.M., Katz, J., Waters, B.: Signing a Linear Subspace: Signature Schemes
for Network Coding. In: PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer (2009)

6. Catalano, D., Fiore, D.: Using Linearly-Homomorphic Encryption to Evaluate Degree-2 Functions
on Encrypted Data. In: ACM CCS 2015. pp. 1518–1529. ACM (2015)

7. Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing Homomorphic MACs for Arithmetic
Circuits. In: PKC 2014. LNCS, vol. 8383, pp. 538–555. Springer (2014)

8. Catalano, D., Fiore, D., Nizzardo, L.: Programmable Hash Functions Go Private: Constructions
and Applications to (Homomorphic) Signatures with Shorter Public Keys. In: CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 254–274. Springer (2015)

9. Catalano, D., Fiore, D., Warinschi, B.: Efficient Network Coding Signatures in the Standard Model.
In: PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer (2012)

10. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic Signatures with Efficient Verification for
Polynomial Functions. In: CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer (2014)

11. Coron, J., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 Multilinear Maps. In:
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 607–628. Springer (2016)

12. Coron, J., Lepoint, T., Tibouchi, M.: Practical Multilinear Maps over the Integers. In: CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer (2013)

13. Demirel, D., Schabhüser, L., Buchmann, J.A.: Privately and Publicly Verifiable Computing
Techniques — A Survey. Springer Briefs in Computer Science, Springer (2017)

14. Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW. pp. 160–166. ACM
(1993)

15. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key Homomorphic Authenticators. In:
ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 499–530 (2016)

16. Freeman, D.M.: Improved Security for Linearly Homomorphic Signatures: A Generic Framework.
In: PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer (2012)

CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case 17

17. Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In: EUROCRYPT
2013. LNCS, vol. 7881, pp. 1–17. Springer (2013)

18. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure Network Coding over the Integers. In:
PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer (2010)

19. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled Fully Homomorphic Signatures from
Standard Lattices. In: STOC 2015. pp. 469–477. ACM (2015)

20. Johnson, R., Molnar, D., Song, D.X., Wagner, D.A.: Homomorphic Signature Schemes. In: CT-RSA
2002. LNCS, vol. 2271, pp. 244–262. Springer (2002)

21. Lee, H.T., Seo, J.H.: Security Analysis of Multilinear Maps over the Integers. In: CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 224–240. Springer (2014)

22. Miles, E., Sahai, A., Zhandry, M.: Annihilation Attacks for Multilinear Maps: Cryptanalysis of
Indistinguishability Obfuscation over GGH13. In: CRYPTO 2016, Part II. LNCS, vol. 9815, pp.
629–658. Springer (2016)

23. Schabhüser, L., Buchmann, J.A., Struck, P.: A Linearly Homomorphic Signature Scheme from
Weaker Assumptions. In: IMACC 2017. LNCS, vol. 10655, pp. 261–279. Springer (2017)

A Lemmata for Theorem 4

Lemma 3. If there exists a PPT adversary A for whom Bad6 occurs with non-negligible
probability during Game 6 as described in Theorem 4, there exists a PPT simulator S
who can solve the FDHI problem (see Definition 11) with non-negligible probability.

Proof. Assume we have a PPT adversary A that can produce the result Bad6 during
Game 6. We show how a simulator S can use this to break the FDHI assumption.

Given (g1, g2, g
z
2 , g

v
2 , g

z
v
1 , g

r
1, g

r
v
1) simulator S simulates Game 6.

Setup Simulator S chooses an index µ ∈ [Q] uniformly at random. During the
key generation it chooses ai, bi, ki, y ∈ Zp uniformly at random for all i ∈ [n]. It
sets fτi = gyait · e (g1, g

z
2)ybi , Fτi = gai2 · (gz2)bi , for all i ∈ [n], as well as fτi,τj =

g
kjyai
t · e (g1, g

z
2)kjybi , for all i, j ∈ [n]. It sets ht = e(g1, g

z
2).

Additionally, it generates a key pair (sk′, pk′)← KeyGen′(1λ) of a regular signature
scheme. It gives A the public key pk = (pk′, bgp, ht, {Fτi , fτi}ni=1, {fτi,τj}ni,j=1).

Queries Let l be a counter for the number of datasets queried by A (initially, it sets
l = 1). For every new queried dataset ∆, simulator S creates a list Q∆ of tuples
(τ,m), which collects all the label/message pairs queried by the adversary on ∆.
Moreover, whenever the l-th new dataset ∆l is queried, S does the following: If
l = µ, it samples a random ζµ ∈ Zp, sets Zµ = (gz2)

1
ζµ and stores ζµ.

If l 6= µ, it samples a random ζl ∈ Zp and sets Zl = (gv2)
1
ζl and stores ζl. Since all Zl

are randomly distributed in G2, they have the same distribution as in Game 6. Given
a query (∆, τ,m) with ∆ = ∆m, simulator S first computes σ∆l ← Sign′(sk′, Zl|∆l).
If l 6= µ, it samples sτ , ρτ ∈ Zp uniformly at random and computes

18 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

Λτ =
(

(g
z
v
1)(y+sτ)bτ · (g

r
v
1)ρτ · (g

z
v
1)m

)ζl
, Rτ = g

−(y+sτ)aτ
1 · (gr1)ρτ , Sτ = gsτ1 , Tτ =

gmy−kτ1 , T = {(τ, Sτ , Tτ)} and gives σ = (m,σ∆l , Zl, Λτ , Rτ , T) to A. We have

e(Λτ , Zl) = e

(
(g

z
v
1)(y+sτ)bτ · (g

r
v
1)ρτ · (g

z
v
1)m, g

v
ζl
2

)ζl
= e

(
(g

z
v
1)(y+sτ)bτ · (g

r
v
1)ρτ · (g

z
v
1)m, gv2

)
= g

z(y+sτ)bτ+rρτ+zm
t

= g
z(y+sτ)bτ+rρτ+zm+aτ (y+sτ)−aτ (y+sτ)
t = gzmt · gy(aτ+zbτ)

t · g−yaτ+rρτ
t · gsτ (aτ+bτ z)

t

= hmt · fτ · e (Rτ , g2) · e (Sτ , Fτ)

hence this output is indistinguishable from the challenger’s output during Game 6.
If l = µ, simulator S computes Λτ =

(
g

(y+sτ)bτ+m
1

)ζµ
, Rτ = g

−(y+sτ)aτ
1 , Sτ = gsτ1 ,

Tτ = gmy−kτ1 , T = {(τ, Sτ , Tτ)} and gives σ = (m,σ∆µ , Zµ, Λτ , Rτ , T) to A.
We have

e(Λτ , Zµ) = e

(
g

(y+sτ)bτ+m
1 , g

z
ζµ

2

)ζµ
= e

(
g

(y+sτ)bτ+m
1 , gz2

)
= g

z(y+sτ)bτ+zm
t

= g
z(y+sτ)bτ+zm+(y+sτ)aτ−(y+sτ)aτ
t = gzmt · gy(aτ+zbτ)

t · g−yaτt · gsτ (aτ+bτ z)
t

= hmt · fτ · e (Rτ , g2) · e (Sτ , Fτ)

hence this output is indistinguishable from the challenger’s output during Game 6.
Forgery Let (P∗∆∗ , σ∗) be a forgery with σ∗ = (m∗, σ∗∆∗ , Z∗, Λ∗, R∗,L∗) and L∗ =
{(τ, S∗τ)}τ∈I , where I is a subset of the label space, be the forgery returned by A.
The case of σ∗ as a level-1 signature is just a simplification of the level-2 case and
is omitted.
S computes σ̂ ← HEval(pk,P∗∆,σ) over the signatures σi generated in dataset ∆∗.
S parses σ̂ = (m̂, σ∗∆∗ , Z∗, Λ̂, R̂, L̂) with L̂ = {(τ, Ŝτ)}τ∈Î where Î is a subset of
the label space. Without loss of generality, we assume I = Î = {τi}i∈[n], i.e. I is
the whole label space. We can always append L with (τi, 1G1) and write Sτi = Si.
If Game 6 outputs 1, we have Z∗ = Zµ, Λ∗ ·

∏n
i=1 Ŝ

bi
i = Λ̂ ·

∏n
i=1 S

∗
i
bi , and the

following hold:

e (Λ∗, Zµ) = e (R∗, g2) · hm∗t ·
n∏

i,j=1
f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

n∏
i=1

e
(
S∗τi , Fτi

)

e
(
Λ̂, Zµ

)
= e

(
R̂, g2

)
· hm̂t ·

n∏
i,j=1

f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

n∏
i=1

e
(
Ŝτi , Fτi

)

CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case 19

Dividing those equations yields

(
g

(m̂−m∗)z
1

) ζµ
z =

(
R∗

R̂
·
n∏
i=1

S∗i
Ŝi

ai
) ζµ

z

Thus, S can compute W = gm̂−m
∗

1 , W ′ = R∗

R̂
·
∏n
i=1

S∗i
Ŝi

ai , and return W,W ′ as a
solution to the FDHI problem. Since we have m∗ 6= m̂, we have (W,W ′) 6= (1, 1).
Our simulation has the same distribution as a real execution of Game 6.

Lemma 4. If there exists a PPT adversary A who wins Game 6 with non-negligible
probability, then there exists a PPT simulator S who can solve the FDHI problem (see
Definition 11) with non-negligible probability.

Proof. Assume a PPT adversary A wins Game 6. We show how a simulator S can use
this to break the FDHI assumption. Given (g1, g2, g

z
2 , g

v
2 , g

z
v
1 , g

r
1, g

r
v
1), S simulates Game

6.

Setup Simulator S chooses an index µ ∈ [Q] uniformly at random. During the
key generation, it chooses ai, bi, ki, y ∈ Zp uniformly at random for all i ∈ [n].
It sets fτi = gyait · e (g1, g

z
2)ybi , Fτi = gai2 · (gz2)bi , for all i ∈ [n], as well as

fτi,τj = g
kjyai
t · e (g1, g

z
2)kjybi , for all i, j ∈ [n]. It then chooses x ∈ Zp uni-

formly at random. It sets ht = e (g1, g2)x. Additionally it generates a key pair
(sk′, pk′) ← KeyGen′(1λ) of a regular signature scheme. It gives the public key
pk = (pk′, bgp, ht, {Fτi , fτi}ni=1, {fτi,τj}ni,j=1) to A.

Queries Let l be a counter for the number of datasets queried by A (initially, it sets
l = 1). For every new queried dataset ∆, simulator S creates a list Q∆ of tuples
(τ,m), which collects all the label/message pairs queried by the adversary on ∆.
Moreover, whenever the l-th new dataset ∆l is queried, S does the following: If
l = µ, it samples a random ζµ ∈ Zp, sets Zµ = (gz2)

1
ζµ and stores ζµ. If l 6= µ,

it samples a random ζl ∈ Zp and sets Zl = (gv2)
1
ζl and stores ζl. Since all Zl are

randomly distributed in G2, they have the same distribution as in Game 6. Given a
query (∆, τ,m) with ∆ = ∆m, simulator S first computes σ∆l ← Sign′(sk′, Zl|∆l).
If l 6= µ, it samples ρτ , sτ ∈ Zp uniformly at random and computes

Λτ =
(

(g
z
v
1)(y+sτ)bτ · (g

r
v
1)ρτ

)ζl
, Rτ = g−mx1 · g−(y+sτ)aτ

1 · (gr1)ρτ , Sτ = gsτ1 , Tτ =

gmxy−kτ1 , T = {(τ, Sτ , Tτ)} and gives σ = (m,σ∆l , Zl, Λτ , Rτ , T) to A. We have

e(Λτ , Zl) = e

(
(g

z
v
1)(y+sτ)bτ · (g

r
v
1)ρτ , g

v
ζl
2

)ζl
= e

(
(g

z
v
1)(y+sτ)bτ · (g

r
v
1)ρτ , gv2

)
= g

z(y+sτ)bτ+rρτ
t = g

z(y+sτ)bτ+rρτ+ym−ym+aτ (y+sτ)−aτ (y+sτ)
t

= gymt · gy(aτ+zbτ)
t · g−ym−yaτ+rρτ

t · gsτ (aτ+zbτ)
t = hmt · fτ · e (Rτ , g2) · e (Sτ , Fτ)

20 Lucas Schabhüser, Denis Butin, and Johannes Buchmann

thus this output is indistinguishable from the challenger’s output during Game 6.
If l = µ, simulator S computes
Λτ =

(
g

(y+sτ)bτ
1

)ζµ
, Rτ = g

−mx−(y+sτ)aτ
1 , Sτ = gsτ1 , Tτ = gmxy−kτ1 , T = {(τ, Sτ ,

Tτ)} and gives σ = (m,σ∆l , Zl, Λτ , Rτ , T) to A. We have

e(Λτ , Zµ) = e

(
g

(y+sτ)bτ
1 , g

z
ζµ

2

)ζµ
= e

(
g

(y+sτ)bτ
1 , gz2

)
= g

z(y+sτ)bτ
t

= g
z(y+sτ)bτ+xm−xm+(y+sτ)aτ−(y+sτ)aτ
t = gmxt · gy(aτ+zbτ)

t · g−mx−yaτt · gsτ (aτ+zbτ)
t

= hmt · fτ · e (Rτ , g2) · e (Sτ , Fτ)

hence this output is indistinguishable from the challenge’s output during Game 6.
Forgery Let (P∗∆∗ , σ∗) be a forgery with σ∗ = (m∗, σ∗∆∗ , Z∗, Λ∗, R∗,L∗) and L∗ =
{(τ, S∗τ)}τ∈I where I is a subset of the label space, be the forgery returned by A.
The case of σ∗ as a level-1 signature is just a simplification of the level-2 case and
is omitted.
S computes σ̂ ← HEval(pk,P∗∆,σ) over the signatures σi generated in dataset ∆∗.
S parses σ̂ = (m̂, σ∗∆∗ , Z∗, Λ̂, R̂, L̂) with L̂ = {(τ, Ŝτ)}τ∈Î where Î is a subset of the
label space. Without loss of generality, we assume I = Î = {τi}i∈[n], i.e. I is the
whole label space. We can always append L with (τi, 1G1), and write Sτi = Si.
If Game 6 outputs 1, we have Z∗ = Zµ, Λ∗ = Λ̂, as well as

e (Λ∗, Zµ) = e (R∗, g2) · hmt ·
n∏

i,j=1
f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

n∏
i=1

e
(
S∗τi , Fτi

)
and

e
(
Λ̂, Zµ

)
= e

(
R̂, g2

)
· hmt ·

n∏
i,j=1

f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

n∏
i=1

e
(
Ŝτi , Fτi

)
.

Dividing those equations yields

Λ∗

Λ̂
=
(
R∗

R̂
· gx(m∗−m̂)

1 ·
n∏
i=1

S∗i
Ŝi

ai+biz
) ζµ

z

=
(
R∗

R̂
· gx(m∗−m̂)

1 ·
n∏
i=1

S∗i
Ŝi

ai
) ζµ

z

·
n∏
i=1

S∗i
Ŝi

biζµ

Thus S can compute W =
(
R∗

R̂
· gx(m∗−m̂)

1 ·
∏n
i=1

S∗i
Ŝi

ai
)ζµ

, W ′ = Λ∗

Λ̂
·
∏n
i=1

S∗i
Ŝi

−biζµ ,
and return W,W ′ as a solution to the FDHI problem. Since we have bad6 = false,
we have W ′ 6= 1. Our simulation has the same distribution as a real execution of
Game 6.

	CHQS: Publicly Verifiable Homomorphic Signatures Beyond the Linear Case

