
Privacy Preserving Verifiable Key Directories

Melissa Chase
Microsoft Research

melissac@microsoft.com

Apoorvaa Deshpande
Brown University

acdeshpa@cs.brown.edu

Esha Ghosh
Microsoft Research

esha.ghosh@microsoft.com

Abstract

In recent years, some of the most popular online chat services such as iMessage and What-
sApp have deployed end-to-end encryption to mitigate some of the privacy risks to the trans-
mitted messages. But facilitating end-to-end encryption requires a Public Key Infrastructure
(PKI), so these services still require the service provider to maintain a centralized directory
of public keys. A downside of this design is placing a lot of trust in the service provider; a
malicious or compromised service provider can still intercept and read users’ communication
just by replacing the user’s public key with one for which they know the corresponding secret.
A recent work by Melara et al. builds a system called CONIKS where the service provider
is required to prove that it is returning a consistent for each user. This allows each user
to monitor his own key and reduces some of the risks of placing a lot of trust in the service
provider. New systems [EthIKS,Catena] are already being built on CONIKS. While these sys-
tems are extremely relevant in practice, the security and privacy guarantees of these systems
are still based on some ad-hoc analysis rather than on a rigorous foundation. In addition,
without modular treatment, improving on the efficiency of these systems is challenging. In
this work, we formalize the security and privacy requirements of a verifiable key service for
end-to-end communication in terms of the primitive called Verifiable Key Directories (VKD).
Our abstraction captures the functionality of all three existing systems: CONIKS, EthIKS
and Catena. We quantify the leakage from these systems giving us a better understanding
of their privacy in concrete terms. Finally, we give a VKD construction (with concrete ef-
ficiency analysis) which improves significantly on the existing ones in terms of privacy and
efficiency. Our design modularly builds from another primitive that we define as append-only
zero knowledge sets (aZKS) and from append-only Strong Accumulators. By providing mod-
ular constructions, we allow for the independent study of each of these building blocks: an
improvement in any of them would directly result in an improved VKD construction. Our
definition of aZKS generalizes the definition of the zero knowledge set for updates, which is a
secondary contribution of this work, and can be of independent interest.

1 Introduction

In recent years, the use of online chat services for communication has seen an exponential rise.
However, concerns have also arisen about the security of messages sent over these chat services. A
number of popular services such as Apple iMessage, WhatsApp and Signal have recently deployed
end-to-end encryption [FB14, Sch15] which mitigates some of the previous security threats. But
end-to-end encryption most often relies on a Public Key Infrastructure (PKI) and these services still
require the service provider to maintain a centralized directory of the public keys of its registered

1

users. To be accessible to average users, these systems need the user to store her secret key on
her personal device, and cannot assume she has any other way to store long term secrets. When a
user loses her device (and thus her secret key), she will need to generate a new (secret key, public
key) pair and replace her old public key stored with the PKI, with the newly generated public key.
We only assume that the service provider can somehow verify that the update request comes from
her.∗

Such a system places a lot of trust in the service provider: a malicious service provider (or
one who is compelled to act maliciously, possibly because of a compromise) can arbitrarily set
and reset users’ public keys. It might, for example replace an honest user’s public key with one
whose secret key it knows, and thus implement a man in the middle attack. Without some way
of verifying that the service provider is indeed returning the correct keys, end-to-end encryption
does not provide any protection against malicious (or coerced) service providers. This problem is
made even more challenging by the fact that we must assume that a user can lose her device and
along with it all of her secrets.

Recently, the work by Melara et al. has built a system called CONIKS [MBB+15] which reduces
the trust on the service provider. CONIKS requires the service provider to return cryptographic
proofs to prove to a user Alice that it is returning the correct value for her public key to her and
other users (without leaking information about other public keys in the directory). The work of
CONIKS [MBB+15] has already inspired a Ethereum based implementation EthIKS [Bon16] and
a Bitcoin based implementation Catena [TD17].

Privacy may not be very important in traditional PKI, where all the players are usually public
entities like businesses. But in the context of private messaging, privacy is important for various
reasons. Hiding users’ identities may help with preventing spam messaging. Also, users change
their keys primarily when they change devices, or detect that their devices/keys have been compro-
mised, either of which may be sensitive information. The ability to track a users change in public
key (which we refer to as tracing attack) can have serious security implications. If a user rarely
changes her key, then compromising her secret key gives the attacker the ability to decrypt large
volumes of messages at once, making her a more vulnerable and attractive target. Or if a device is
compromised but the user does not update her key, then the attacker knows the compromise has
gone undetected.

While services such as CONIKS are extremely relevant in practice, the security and privacy
guarantees of these systems are still based on some ad-hoc analysis rather than on a rigorous
foundation. Without a formal treatment, it is hard to precisely understand the security and
privacy guarantees of the system. In addition, without modular treatment, improving on the
efficiency of these systems becomes extremely challenging.

1.1 Our Contributions and Techniques

We initiate the study of the primitive of Verifiable Key Directories (VKD), analyze its building
blocks and give more efficient constructions for the building blocks and in turn, for VKD. More
concretely, we summarize our contributions as follows:

Formalizing VKD We formalize the security and privacy of a key verification service in terms
of the primitive Verifiable Key Directories (VKD) (Section 2). A VKD consists of three types of
entities: an identity provider or server, users, and external auditors. The server stores a directory

∗This could be achieved through some out-of-band, non-cryptographic check, like verifying security questions,
sending a text to an appropriate phone number, and/or requiring voice or in person communication.

2

Dir with the names of the users and their corresponding keys. The VKD provides different query
interfaces to the users to interact with the server: 1. Alice can add her (username, key) to Dir
and update it at any point. 2. Bob can query for Alice’s key and verify its consistency 3. Alice
can obtain the history of her key updates. This last query allows Alice to verify that the only key
updates that occurred were those that she requested. Finally, the auditors are untrusted entities
that will help verify that updates have been correctly performed; as long as at least one honest
auditor verifies each update, we will be able to guarantee that a misbehaving server will get caught.

Security and Privacy Definition: At a very high level, we define the soundness of a VKD to ensure
that the server’s responses to users’ queries for Alice’s key must be consistent with its responses
to her key history queries. We give a simulation based definition for the privacy of a VKD system
where the simulator is parameterized with a well specified leakage function L(.) on the state of the
key directory. Informally, we require that the proofs should not leak information about Dir beyond
the query answer and the updates should leak no information except L(Dir). Our framework is
also general enough to capture the current implementations [MBB+15, Bon16, TD17]. We briefly
describe this in Section 6.1.

The precise leakage function leads to a better understanding of the privacy guarantee of the VKD
system. As a concrete example, we were able to identify a tracing attack in current implemen-
tations [MBB+15, Bon16, TD17] through which it might be possible to trace update times of a
particular user. We explain this attack and the corresponding leakage in Section 6.1.

Building Blocks We take a modular approach in designing our VKD (Section 4). We show how
a VKD can be built using (our newly defined primitive) Append-Only Zero Knowledge Sets (aZKS)
and Append-Only Strong Accumulators (SA) in a blackbox manner.

aZKS generalizes the definition of a traditional zero-knowledge set [MRK03, CHL+05] by account-
ing for updates and parameterizing the zero-knowledge simulator with a well specified leakage
function. The definition of aZKS (Section 3) and its efficient modular instantiation is a secondary
contribution of our work that can be of independent interest. By providing modular constructions,
we simplify the presentation and analysis and allow for independent study of each of these building
blocks: an improvement in any of them would directly result in an improved VKD construction.

Our VKD Construction The high level idea in our construction (Section 4) is to use aZKS
along with an append-only SA that efficiently maintains server commitments over time.

A zero knowledge set allows a server to commit to a set of (label, value) pairs, respond to lookup
queries for different labels, and prove that those responses are correct without revealing any addi-
tional information. Append-only ZKS also allows for additional pairs to be added to the database.
In a näıve construction for VKD, the server could commit to (username, public key) pairs. Since
the aZKS is append only and each label can only appear once, we append each username with a
version number showing how many times that key has been updated so far.

Note that this näıve solution would allow the server to store many different (username | version,
public key) pairs for the same username, and then return one version to Alice and a different
version when Bob queries for Alice’s key. We address this as follows: We use two aZKS; one which
consists of all the (username | version, key) pairs corresponding to all the updates Alice has made
so far. The other aZKS has (username | version, key) pairs with all the versions except the latest,
i.e. the versions that are now old. The purpose of maintaining two aZKS is that, now when a
user Alice updates her key, instead of deleting the old entry, server will add it to the “old” aZKS,
and when Bob queries Alice’s key the server will additionally prove that the entry it returns is

3

not “old”. Auditors in the system will verify the server’s proofs that updates have been correctly
performed, thus guaranteeing that the datastructures are indeed append-only. We have a more
complex approach for preventing the server from showing Bob a higher version number, which
involves storing a “marker” every 2ith update; we defer details to the body.

Finally, the server will maintain a SA storing the two aZKS commitments at every epoch, so that
as long as users and auditors eventually see the same SA value†, we can be guaranteed that any
misbehavior will be caught.

Privacy and Efficiency Improvement Our VKD construction improves upon the existing VKD
constructions [MBB+15, Bon16] on the efficiency and privacy aspects. We give concrete efficiency
and count the cryptographic operations for our VKD construction in Section 6. In our construction
we rely only on hashes and a couple of exponentiations. Our proof sizes are logarithmic in the
total number of users. Also we only leak the number of users who update their keys each epoch;
beyond that all parties just learn the responses to their queries. Finally, the work that Alice must
do to verify that the server has correctly returned all of the times her key was updated is now
proportional only to the number of updates she has made, rather than the total number of epochs
elapsed.

1.2 Related Work

Our work is inspired by the recent line of work of started by CONIKS [MBB+15], a directory
service that lets users of an end-to-end encrypted communication system verify that their keys
are being correctly reported to all other users. The system is built on ideas similar to that
of transparency logs [LLK13] which are public authenticated datastructures for valid SSL/TLS
certificates. Recently, Eskandarian et al. [EMBB17] address some of the privacy challenges in
transparency logs.

The directory structure in CONIKS has already seen an Ethereum and Bitcoin based implemen-
tation [Bon16, TD17]. These implementations use a global transaction ledger to allow all clients
to agree on the same history of the directory. The original CONIKS proposal was to use a different
mechanism (gossip) to achieve the same functionality. Apart from that, the core functionality and
implementation of CONIKS remains unchanged in [Bon16, TD17]. These works do not formalize
or analyze the security of their constructions. Our formalization of VKD model is generic enough
to capture these implementions [MBB+15, Bon16, TD17] and also quantify their leakage in terms
of privacy.

In our VKD construction we use append-only strong accumulators (SA) in a way which is
somewhat similar to the constructions in [BCD+17]. Baldmitsi et al. [BCD+17] maintain two
accumulators and have an index associated with each element through which they keep track of
non membership which is a similar idea to ours. However, they assume that the accumulator
manager is trusted, which does not hold for us, since our goal is to detect misbehavior by the
server. Considering this stronger setting of an untrusted accumulator adds additional challenges.
We added several new ideas to prevent a malicious server from showing arbitrary values on query
while still maintaining efficiency.

We also define a new primitive of append-only zero-knowledge sets which generalizes zero-
knowledge sets [MRK03, CHL+05] by allowing updates and parameterizing the privacy property

†As in CONIKS, we can achieve this either with a gossip protocol or by posting the SA on a public blockchain.

4

with a leakage function. While there have been some attempts to generalize the notion of zero-
knowledge sets (e.g., [KZG10, Lis05a]), this is the first attempt that combines both updates and
leakage.

A related line of work is persistent storage at an untrusted server [CW09] in which servers store
documents in their memory with timestamps. Oprea et. al. [OB09] formalize the security of a time-
stamping scheme for archiving documents which has efficient proofs for existence or non-existence
of documents at specific times. Crosby et. al. [CW09] also construct a system of timestamping
documents that is secure against an untrusted logger, i.e., server. But these systems do not support
a full-fledged key directory service. Moreover, they do not have any privacy guarantees against
the verifiers or the auditors in the system.

1.3 Organization of the paper

In Section 2, we define the primitive of Verifiable Key Directories (VKD) along with the security
properties. In Section 3, we define append-only Zero Knowledge Sets (aZKS) which is a building
block for VKD construction. In Section 4, we describe our construction of VKD starting with an
overview of the same. In Section 5, we give concrete instantiations of aZKS along with description
of other primitives used in the construction. Finally in Section 6 we describe how existing imple-
mentations [MBB+15, Bon16] can be expressed as instantiations of VKD, we analyze the concrete
costs of them against our construction.

2 Verifiable Key Directory (VKD)

In this section, we will define the primitive Verifiable Key Directories (VKD) and formalize its
properties. The goal of a VKD is to capture the functionality and security of a privacy-preserving
verifiable key service such as CONIKS or EthIKS [MBB+15, Bon16].

A VKD consists of three parties, an identity provider or server, clients or users and external
auditors. The server stores a directory Dir with the names of the users (which we call labels) and
their corresponding public keys (the values corresponding to the labels). The VKD provides the
following query interface to the users. For the ease of exposition, let Alice and Bob be two users:

1. Alice can add her (username, key), i.e., (label=username, val=key) to Dir.
2. She can also update her key and request that Dir be updated with the new key value.
3. She can query the server periodically to obtain history of her updates over time (VKD.KeyHist).
4. Bob can also query for the key corresponding to username Alice (VKD.Query) at the current

time.

The server applies the updates from its users (of type 1 and 2 described above) in batches, and
publishes the latest commitment com and proof ΠUpd that a valid update has been performed
(VKD.Publish). The batch updates should happen at sufficiently frequent intervals of time, so that
the user’s keys are not out-of-date for long. The exact interval between these time intervals, or
epochs has to be chosen as a system parameter. We use time and epoch interchangeably in our
descriptions. It also publishes a public datastructure which maintains information about all the
commitments so far.

The auditors in the system keep checking the update proofs and the public datastructure in
order to ensure global consistency (VKD.Audit) of Dir. Our definition captures a general notion
of audit where independent auditors can audit arbitrary intervals [t1, tn]. The audit need not be

5

monotonic and can consist of many independent audit steps. As long as some honest auditor
executes each audit step, security will be guaranteed.

The server also produces proofs for VKD.Query and VKD.KeyHist. At a very high level, the
users verify the proofs (VKD.QueryVer,VKD.HistVer) to ensure that the server is not returning an
incorrect key corresponding to a username or an inconsistent key history for the keys corresponding
to a username. VKD also requires the proofs to be privacy-preserving, i.e., the proofs should not
leak information about any other key (that has not been queried) in Dir. The auditors may not be
trusted and hence, the proofs that the server produces as part of VKD.Publish need to be privacy-
preserving. Since the auditors do not have to be trusted with any private information, anyone can
become an auditor.

Notation: A function ν : Z+ 7→ R+ is a negligible function if for all c ∈ Z+, there exists k0 such

that for all k ≥ k0, ν(k) < k−c. We denote by r
$← S the operation that r is uniformly at random

drawn from the set S. An algorithm A is said to have oracle access to machine O if A can write
an input for O on a special tape, and tell the oracle to execute on that input and then write its
output to the tape. We denote this oracle access by AO. For the rest of the sections, we will use
(label, val) and (username,public key) interchangeably.

Definition 1. A Verifiable Key Directory comprises of the algorithms (VKD.Setup,VKD.Gen,VKD.
Publish,VKD.Query,VKD.QueryVer,VKD.KeyHist,VKD.HistVer,VKD.Audit) described as follows:

System Setup:

. p̂p← VKD.Setup(1λ) : This algorithm takes the security parameter as input and outputs public
parameters pp for the scheme and must be run by a trusted party‡.

. (PKGen, st0,Dir0)← VKD.Gen(pp) : This algorithm takes the public parameters and outputs a
public key, an initial state which is private to the server and an initial directory Dir0. For simplifying
notation we let pp = (p̂p,PKGen)

Periodic Publish:

. (comt, acct,Π
Upd
t , stt,Dirt)←VKD.Publish(pp,Dirt−1, stt−1, St): This algorithm takes in the public

parameters, the previous state of the server and the key directory at previous epoch t− 1 and also
a set St of elements to be updated. Whenever a client submits a request to add a new label or
update an existing label from epochs t − 1 to t, the corresponding (label, val) pair is added to St
to be added in the VKD at epoch t. The algorithm produces a commitment to the current state
of the directory comt, an updated datastructure acct and a proof of valid update ΠUpd all of which
it broadcasts at epoch t. It also outputs the updated directory Dirt and an updated internal state
stt. For simplifying notation, we let pubt = (comt, acct,Π

Upd
t).

Querying for a Label:

. (val, π, α)← VKD.Query(pp, stt,Dirt, label) : This algorithm takes the public parameters, the
current state of the server for epoch t, the directory Dirt at that epoch and a query label label
and returns the corresponding value if it is present in the current directory, ⊥ if it is not present,
a proof of membership or non-membership respectively and version number α of the value. By
version number we mean the number of times label has been updated.

‡In the Random Oracle model, this algorithm might be as simple as choosing some hash functions

6

. 1/0← VKD.QueryVer(pp, com, label, (val, π, α)) : This algorithm takes the public parameters,
the commitment with respect to some epoch, a label, value pair and the corresponding proof and
version for the label. It verifies the proof and the correctness of the label, value pair with respect
to com and returns a boolean value indicating success or failure.

Checking Consistency of Versions:

. ({(vali, ti)}ni=1,Π
Ver)← VKD.KeyHist(pp, stt,Dirt, label) : This algorithm takes in the public pa-

rameters, its internal state, the directory at current time t and the label. It outputs {(vali, ti)}ni=1

which are all the times at which the value corresponding to label was updated so far and the
resulting val’s, along with a proof ΠVer.

. 1/0 ← VKD.HistVer(pp, comt, acct, label,Π
Ver, {(vali, ti)}ni=1): This algorithm takes the public

parameters, the commitment and chain information output by server for current time t, a label,
{(vali, ti)}ni=1 which are the values and times corresponding to all the updates of the label and its
versions proof. It returns a boolean value indicating success or failure.

Auditing the VKD:

. 1/0← VKD.Audit(pp, t1, tn, {pubt}tnt=t1): This algorithm takes the public parameters, the epochs
t1 and tn between which audit is being done, the server’s publish pub for all the epochs from times
t1 to tn. It outputs a boolean indicating whether the audit is successful.
Note that for auditing we assume that all auditors see consistent versions of published commitments
and the users see the same commitments as the auditors. That is, everyone sees the same broadcast
values comt at any epoch t. This can be enforced in different ways. For a discussion on the different
implementation mechanisms, please see Remark 2.

We require the following properties from a Verifiable Key Directory:

− Completeness: We want to say that if a VKD is set up properly and if the server behaves
honestly at all epochs, then all the following things should happen for any label updated
at t1, . . . , tn with val1, . . . , valn: their version proof with {(vali, ti)}ni=1 and ΠVer should verify
at tn, the query proof for the label at any tj ≤ t∗ < tj+1 should verify with respect to the
value consistent with the versions proof at tj which is valj and the audit from epochs t1 to
tn should verify.

Hence for all possible labels, for all update sets S1, . . . , ST such that (label, vali) ∈ {Sti}ni=1

and ∀t∗,

Pr[p̂p← VKD.Setup(1λ) ; (PKGen, st0,Dir0)← VKD.Gen(pp) ; {(pubt, stt,Dirt)←
VKD.Publish(pp,Dirt−1, stt−1, St)}tnt=t1 ; ({(vali, ti)}ni=1,Π

Ver)← VKD.KeyHist(pp, sttn ,Dirtn ,

label) ; (π, val, α)← VKD.Query(pp, stt∗ ,Dirt∗ , label) : VKD.HistVer(pp, comt, acct, label,

{(vali, ti)}ni=1,Π
Ver) = 1 for t = tn ∧ VKD.QueryVer(pp, comt∗ , label, val, π, α) = 1 ∧

tj ≤ t∗ < tj+1 ∧ (val = valj) ∧ (α = j) ∧ VKD.Audit(pp, t1, tn, {pubt}tnt=t1) = 1] = 1

Note that for KeyHist and HistVer, we consider epochs t1, t2, . . . , tn when the updates have
happened for a label. These will be epochs distributed in the range [t1, tn]. However for
Audit, we consider all possible pairwise epochs between t1 and tn. For example, for t1 = 3
to tn = 10, there might be updates at 3, 5, 8, 10 but for audit we need to consider all of the
epochs 3, 4, 5, 6, 7, 8, 9, 10.

7

− Soundness: VKD soundness guarantees that if Alice has verified the update history of
her key till time tn and if there exists at least one honest auditor whose audits have been
successful from the beginning of time till time tn then, whenever Bob queried before tn,
he would have received Alice’s key value that is consistent with the key value that Alice
verified. Thus soundness is derived from all of VKD.Publish, VKD.QueryVer, VKD.HistVer
and VKD.Audit.

More formally, we want to capture that for any label label if versions proofs verifies with
respect to {(vali, ti)}ni=1 and if the audit verifies from t1 to tn then at any time t∗ between an
interval [tj, tj+1] for some j ∈ [n], a malicious server cannot give out a proof for label with a
value which is inconsistent with the corresponding versions proof at tj that is, val 6= valj for
tj. Checking this is enough because if the server has given an incorrect key at time t∗, he will
have to introduce an additional update sometime later to potentially fix it and will hence
be caught with high probability. Hence a malicious server S∗ should not be able to come
up with a label, {(vali, ti)}ni=1 with versions proof ΠVer, commitments, chain information and
update proofs ΠUpd for all times between t1 to tn and query proof (π, val, α) for some t∗ for
val 6= valj.

Hence, for all PPT S∗, there exists a negligible function ν() such that for all λ ∈ N:

Pr[p̂p← VKD.Setup(1λ) ; (label, ({(vali, ti)}ni=1,Π
Ver), (PKGen, {pubt}tnt=t1 , t

∗, j,

(π, val, α))← S∗(pp) : VKD.QueryVer(pp, comt∗ , label, val, π, α) = 1

VKD.Audit(pp, t1, tn, {pubt}tnt=t1) = 1 ∧ VKD.HistVer(pp, comt, acct, label, {(vali, ti)}ni=1,

ΠVer) = 1 for t = tn ∧ (val 6= valj) ∧ (tj ≤ t∗ < tj+1)] ≤ ν(λ)

Remark 1. The onus is on the user, Alice, to make sure that the server is giving out the
most recent and correct value for her key. Soundness guarantees that under the circumstances
described above, Bob will always see a key consistent with what Alice has audited. But, Alice
needs to verify her key history that the server maintains to make sure it is consistent with
the the actual key that she stored.

− L-Privacy: The privacy guarantee of a VKD system is that the outputs of Query, HistVer or
Audit should not reveal anything beyond the answer and a well defined leakage on the state
of the directory. The leakage is characterized by a leakage function L(.). Also, the proofs for
each of these queries should be simulatable given the output of L(.) and the query answer.

We will say that a VKD is private if there exists a simulator S = (S1,S2,S3,S4) and a leakage
function L(.) such that for any PPT client C∗, the outputs of the following two experiments
are computationally indistinguishable:

Real:

pp← VKD.Setup(1λ) ; (PKGen, st0,Dir0)← VKD.Gen(pp) : C∗OP ,Oπ ,OΠVer (stt,−)(pp,PKGen) = 1

Simulated:

(pp,PKGen, st1)← S1(1λ) : C∗S2(st′t,L(St),−),S3,S4(st′t,−)(stC , pp,PKGen) = 1

8

OP is the publish oracle which on input update set St, outputs (comt, acct,Π
Upd
t) as com-

puted by VKD.Publish(). Oπ is the proofs oracle which on query a label labeli, will output
(πi, vali, αi) ← VKD.Query(pp,PKGen, stt,Dir, label, t). OΠVer is the key versions oracle, which
on query, label, ({(vali, ti)}ni=1,Π

Ver)← VKD.KeyHist(pp,PKGen, stt,Dirt, label).

For the simulated game, S2 emulates the publish oracle OP and it gets some leakage on the
update set St given by L(St). S3 emulates the proofs oracle Oπ. It gets the (vali, labeli, αi) for
the labeli queried and answers the membership queries by producing the proof. S4 emulates
the key versions oracle OV and outputs proof given (label, {(vali, ti)}ni=1).

3 Building Blocks for VKD

In this section we introduce the primitive of Append-Only Zero Knowledge Set (aZKS) and Append-
Only Strong Accumulator (SA) which will be used as building blocks for the construction of a
Verifiable Key Directory (VKD). By append-only we mean that the only updates we allow are
adding new elements.

3.1 Append-Only Zero Knowledge Sets

An aZKS generalizes the privacy properties of a traditional zero-knowledge set [MRK03] by ac-
counting for append-only updates and characterizing the set with a leakage function. In our
definition, we have a setup leakage function L1() and a leakage function on the updates L2(). Here
it is worth pointing out that the notion of soundness one would expect from updates in a ZKS
is not obvious. For example, if the expectation is updates leak absolutely no information about
the underlying sets or type of updates (inserts/deletes), then there is no reasonable definition of
soundness of updates. In [MRK03], Liskov did not define any soundness notion for updates. In our
context, we want to be able to define an append-only ZKS, which makes the expectation of update
soundness clear: it should ensure for any label, its value never gets modified and in particular, it
never gets deleted.

Definition 2. Append-Only Zero Knowledge Set comprises of the algorithms (ZKS.Setup,ZKS.Gen,
ZKS.CommitDS,ZKS.Query,ZKS.Verify,ZKS.UpdateDS,ZKS.VerifyUpd) described as follows:

. p̂p← ZKS.Setup(1λ) : This algorithm takes the security parameter and outputs public param-
eters pp.

. (PKGen, stGen)← ZKS.Gen(p̂p) : This algorithm takes the public parameters and outputs a public
key and a state that the prover can pass on to subsequent algorithms. Here prover generates a
public key primitive and passes on the trapdoor information as stGen. The previous definitions of
zero knowledge sets [MRK03, CHL+05] can accommodate Gen inside of CommitDS, but separating
the two allows for a stronger adversary who can pick the datastore after seeing the public key. For
simplifying notation, let pp = (p̂p,PKGen).

. (com, stcom)← ZKS.CommitDS(pp, stGen,D) : This algorithm takes the public parameters, pri-
vate state and the datastore to commit to, and produces a commitment to the data store and an
internal state to pass on to the Query algorithm. Datastore D will be a collection of (label, val)
pairs.

9

. (π, val)← ZKS.Query(pp, stcom,D, label) : This algorithm takes the public parameters, public
key, state output by ZKS.CommitDS, the datastore and a query label and returns its value (⊥ if
not present) and a proof of membership/non-membership.

. 1/0← ZKS.Verify(pp, com, label, val, π) : This algorithm takes the public key, its proof, a (label,
value) pair and a commitment by ZKS.CommitDS and verifies the proof and the consistency of the
(label, value) pair with the commitment using the proof; returns a boolean indicating success or
failure.

. (com′, st′com,D
′, πS) ← ZKS.UpdateDS(pp, stcom,D, S): This algorithm takes in the public pa-

rameters, server public key, the current server state stcom, the current state of the datastore and
a set S = {(label1, val1), . . . , (labelk, valk)} of new (label, value) pairs for update. It outputs an
updated commitment to the datastore, an updated internal state and an updated version of the
datastore and proof πS that the update has been done correctly.

. 0/1← ZKS.VerifyUpd(pp, com, com′, πS) : This algorithm takes in the public parameters, the
server public key, two commitments to the datastore before and after an update and a proof πS
proving correctness of the update. It outputs a boolean to indicate the success or failure of the
verification.

We require the following security properties from an append-only ZKS:

Completeness: For all security parameters λ, for all D0 whose size is polynomial in λ, for all n
and for all update sets (S1, . . . , Sn) and for every label,

Pr[p̂p← ZKS.Setup(1λ); (PKGen, stGen)← ZKS.Gen(p̂p)

; (com0, st
0)← ZKS.CommitDS(pp, stGen,D0); {(comi, st

i,

Di, com
i
S, π

i
S)← ZKS.UpdateDS(pp, sti−1,Di−1, Si)}ni=1

; {(πi, vali)← ZKS.Query(pp, sticom,Di, label)}ni=1

: {ZKS.VerifyUpd(pp, comi−1, comi, com
i
S, π

i
S) = 1}ni=1

∧ {ZKS.Verify(pp, comi, label, val, πi) = 1}ni=0] = 1

Soundness: For soundness we want to capture two things: First, a malicious server A∗ algorithm
should not be able to produce two verifying proofs for two different values for the same label with
respect to a com. Second, since the aZKS is append-only, a malicious server should not be able to
change or delete an existing label. We allow A∗ to win the soundness game if it is able to do either
of the following: Output com, label, val1, val2, π1, π2 such that both proofs verify for val1 6= val2. Or
output com1, com2, label, val1, val2, π1, π2, S, πS such that π1 verifies for com1, val1 for val1 6= ⊥ and
π2 verifies for com2, val2 for val2 6= val2 and the update verifies for com1, com2, S, πS.
In general, we want that for all PPT A∗ algorithm there exists a negligible function ν() such that
for all n, λ:

Pr[p̂p← ZKS.Setup(1λ) ; ({PKGen,D0, com0, (comi,Di, com
i
S, π

i
S)}ni=1, j

∗, label,

val1, val2, π1, π2)← A∗(1λ, pp) : {ZKS.VerifyUpd(pp′, comi−1, comi, com
i
S, π

i
S) = 1}ni=1

∧ j∗ ∈ [n] ∧ val1 6= ⊥ ∧ val1 6= val2 ∧ ZKS.Verify(pp′, comj∗ , label, val1, π1) = 1 ∧(
ZKS.Verify(pp′, comj∗ , label, val2, π2) = 1 ∨ ZKS.Verify(pp′, comj∗+1, label, val2, π2) = 1

)
] ≤ ν(λ)

10

where pp = (p̂p,PKGen) for notational convenience.

Zero-Knowledge with Leakage: We will say that a set is zero knowledge with respect to updates
if there exists a simulator Sim = (Sim1, Sim2, Sim3, Sim4) and a leakage function L = (L1, L2) such
that for any PPT malicious client algorithms C∗, the outputs of the following two experiments are
computationally indistinguishable:
Real:

pp← ZKS.Setup(1λ) ; (PKGen, stGen)← ZKS.Gen(pp); (D, stC)← C∗(1λ, pp,PKGen) ;

(com, stP)← ZKS.CommitDS(1λ, pp,PKGen, stGen,D) : C∗OQ(pp,PKGen,stP ,−),OU (pp,PKGen,stcom,D,−)(stC) = 1

Simulated:

(pp,PKGen, st1)← Sim1(1λ) ; (D, stC)← C∗(1λ, pp,PKGen) ;

(com, st2)← Sim2(1λ, L1(D), st1) : C∗Sim3(st2,−),Sim4(st2,−)(stC) = 1

We have oracle OQ, the query oracle which on query labeli, will output (πi, vali)← ZKS.Query(pp,
PKGen, stcom,D, labeli) andOU is the update oracle which on getting a set of updates S = {(labeli, vali)}
as input will first check that S is an allowed update set and output (com′, st′com, πS)← ZKS.UpdateDS
(pp,PKGen, stGen,D, S).

For the simulated game, Sim3 answers to membership queries and outputs (πi, vali)← Sim3(pp,
PKGen, labeli, vali, st2) and Sim4 emulates the update oracle OU . Sim4 gets a leakage on the set to
be updated if it is an allowed update set and outputs (com′, st′S, πS)← Sim4(pp,PKGen, st2, L2(S))

3.2 Append-Only Strong Accumulator:

We can think of append-only SA as an append-only aZKS with completeness and soundness and
without privacy requirement.

Definition 3. An Append-Only Strong Accumulator [CHKO08] § comprises of the algorithms
(SA.Setup, SA.CommitDS, SA.Query, SA.Verify, SA.UpdateDS, SA.VerifyUpd) described as follows:

pp ← SA.Setup(1λ): This algorithm takes the security parameter as input and outputs public
parameters pp for the scheme.

com← SA.CommitDS(pp,D): This algorithm takes in the public parameters and a datastore and
produces a commitment to the datastore. We will generally think of the datastore D to be
a set of (label, val) pairs.

(π, val)← SA.Query(pp,D, label): This algorithm takes the public parameters, the datastore and
a query label and returns the corresponding value, if it is present in the directory and a proof
of membership/non-membership.

1/0← SA.Verify(pp, com, label, val, π): This algorithm takes the public parameters, a (label, value)
pair, its proof and verifies the proof and the consistency of the (label, value) pair with the
commitment using the proof. This algorithm returns a boolean value indicating success or
failure.

§[CHKO08] define a static version of strong accumulator. We add algorithms to account for updates and to
verify the correctness of updates

11

(com′,D′, S, πS) ← SA.UpdateDS(pp,D, S): This algorithm takes in the public parameters, the
current datastore and a set S = {(label1, val1), . . . , (labelk, valk)} describing the updates. It
outputs an updated commitment to the datastore, an updated version of the datastore and
proof πS about the update.

0/1 ← SA.VerifyUpd(pp, com, com′, S, πS): This algorithm takes in the public parameters, two
commitments to the datastore before and after an update, the update proof πS and outputs
a boolean to indicate the success or failure of the verification.

We require the following security properties from a Strong Accumulator:

− Completeness: For all security parameters λ, for all D0 whose size is polynomial in λ, for
all n and for all update sets (S1, . . . , Sn) and for every label,

Pr[pp← SA.Setup(1λ); com0 ← SA.CommitDS(pp,D0)

; {(comi,Di, Si, π
i
S)← SA.UpdateDS(pp,Di−1, Si)}ni=1

; {(πi, vali)← SA.Query(pp,Di, label)}ni=1

; {SA.VerifyUpd(pp, comi−1, comi, Si, π
i
S) = 1}ni=1

∧ {SA.Verify(pp, comi, label, val, πi) = 1}ni=0] = 1

− Soundness: For soundness we want to capture two things: First, a malicious server S∗

algorithm should not be able to produce two verifying proofs for two different values for the
same label with respect to a com. Second, since the SA is append-only, a malicious server
should not be able to change or delete an existing label. We allow S∗ to win the soundness
game if it is able to do either of the following: Output com, label, val1, val2, π1, π2 such that
both proofs verify for val1 6= val2. Or output com1, com2, label, val1, val2, π1, π2, S, πS such that
π1 verifies for com1, val1 for val1 6= ⊥ and π2 verifies for com2, val2 for val2 6= val2 and the
update verifies for com1, com2, S, πS.

More generally, we want that for all PPT S∗ algorithm there exists a negligible function ν()
such that for all n, λ:

Pr[pp← SA.Setup(1λ) ; (D0, com0, {(comi,Di, Si, π
i
S)}ni=1, j

∗, label,

val1, val2, π1, π2)← S∗(1λ, pp) : {SA.VerifyUpd(pp, comi−1, comi, Si, π
i
S) = 1}ni=1 ∧

j∗ ∈ [n] ∧ val1 6= ⊥ ∧ val1 6= val2 ∧ SA.Verify(pp, comj∗ , label, val1, π1) = 1 ∧
SA.Verify(pp, comj∗ , label, val2, π2) = 1 ∨ SA.Verify(pp, comj∗+1, label, val2, π2) = 1)] ≤ ν(λ)

4 VKD Construction

In this section, we will describe a construction of VKD from append-only zero-knowledge sets
(aZKS) (as in Definition 3.1) and an append-only Strong Accumulator. We first give an informal
overview of the construction and then describe the construction more formally.
System Setup: The high level idea is to have two aZKS that are updated every epoch: one is
what we call the “all” aZKS which consists of the entries for all the updates of a label so far. Here

12

VKD

Append-
Only
ZKS

Append-Only
SA

Pseudonym Map &
Commitment Map

Append-Only
SA

Figure 1: High-level Description of VKD with Building Blocks

(1,com
old,1

)

lzks
old,1

(1,com
all,1

)

lzks
all,,1

Username Timestamps
of updates

Alice 1,4,9,...

Bob 2,7,...

(2,com
old,2

)

lzks
old,2

(2,com
all,,2

)

lzks
all,2

Epoch 1 Epoch 2

...

(1,com
old,1

)(2,com
old,2

)

old

Table T

Entire lifetime of the Directory

... ...
(1,com

all,1
) (2,com

all,2
)

all

Figure 2: Internal state of the Server over Lifetime of the Directory

label is the username and the value is the user’s public key. The other aZKS that we will refer to
as “old” aZKS has entries with all the versions of the label except the latest, versions that are now
old. The purpose of maintaining two aZKS is that when a user Alice updates her key, instead of
deleting the old entry, it will be added to the “old” aZKS. In both of these aZKS, the server stores
each (label, value) pair along with its version number, so when an item is initially added, we add
(label| 1, val) indicating that this label is on version 1. The “all” aZKS will also include marker
entries i for version 2i of each label. Intuitively, the markers will help limit the checks that Alice
needs to make when verifying her key history. It will help her make sure that the server is not
responding to queries with version numbers much higher than the correct version. The server also
stores an internal table T with all the times of update of each label.

The server also maintains and updates two public append-only SA: “all” SA on the “all” aZKS
com’s and “old” SA on the “old” aZKS com’s. We denote the commitments corresponding to the
append-only SA as acc = (accall, accold). In the setup phase, the parameters of the aZKS, SA. and
T are initialized. In Figure 2 we give a diagrammatic representation the server’s internal storage.

Periodic Publish: At every epoch, the server gets a set St of (label, value) pairs that have to be
added to the VKD. The server first checks if the label already exists for some version α, else sets

13

α = 0. It adds a new entry (label | α + 1, val) to the “all” aZKS and also adds (label | α, valold) to
the “old” aZKS for the label’s previous value valold if it exists i.e. for α > 0. If the new version
α + 1 = 2i for some i, then the server adds a marker entry (label | mark | i,“marker”) to the “all”
aZKS. The server publishes commitments to both the aZKS, also updates both “all” and “old” SA
with (t, comall,t) and (t, comold,t) to get updated (accall, accold) respectively. It also publishes a proof
ΠUpd which contains the update proofs with respect to comall,t−1, comall,t and comold,t−1, comold,t

Querying for a Label Value: When a client Bob queries for Alice’s label, he should get the val
corresponding to the latest version α for Alice’s label and a proof of correctness. Bob gets three
proofs in total: First is the membership proof of (label | α, val) in the “all” aZKS. Second is the
membership proof of the most recent marker entry (label |mark |a) for α ≥ 2a. And third is non
membership proof of label | α in the “old” aZKS. Proof 2 ensures that Bob is not getting a value
higher than Alice’s current version and proof 3 ensures that Bob is not getting an old version for
Alice’s label.

Checking Consistency of Versions: Now we are explicitly maintaining versions in the construc-
tion and hence one label will have multiple entries associated with it depending on the number of
times it was updated. Perhaps a malicious server can give out an older version of the label or it
could create an entry corresponding to a later version on its own and give that whenever someone
queries. In order to prevent these behaviors and to make sure that the server only gives the latest
version, we incorporate several proofs and checks in the construction. In particular, we have a way
for clients to verify that the server is not giving out an incorrect version of its key.

Each time a label is updated a new entry is created for the new version and possibly new
marker entry in the “all” aZKS. Server also keeps adding older versions to the “old” aZKS. All
these three types of entries make it possible to check that the server has been giving the correct
version value all along. If at an epoch t, Alice’s label is on version α for some val, she needs to
check that the previous version α − 1 is in the “old” aZKS. Let 2a ≤ α < 2a+1 for some a. Alice
needs to check that no marker entries from a+ 1 until log t are present, so that the server cannot
give a later version after 2a+1. Alice should also check non membership of all versions from α + 1
upto 2a+1 − 1 in the “all” aZKS. Recall that Bob checks that marker entry (label |mark |a) for
α ≥ 2a has been added to the ‘all” aZKS before accepting version α. If Alice verifies her key
history every time she updates, then it is sufficient for her to remember the last time she updated
her key (which is natural and easy to remember). But even if she doesn’t, Alice will still be able
to lazily check that the server has always been giving consistent values for her key for all times
until now as long as she remembers the timestamps at which she updated her key.

Auditing: Auditors will audit the commitments and proofs broadcasted by the server to make
sure that no entries ever get deleted in either aZKS. They do so by verifying all the update proofs
ΠUpd output by the server. They also check that at each timestamp the appropriate (t, comt) is
added to both “all” and “old” SA. Note that, while the Audit interface gives a monotonic audit
algorithm, our audit is just checking the updates between each adjacent pair of (acc, comt), so it
can be performed by many auditors in parallel. For the security of the system, it is sufficient to
have at least one honest auditor perform audits over all the adjacent pairs until the current epoch.

Remark 2 (Implementing Audits). The mechanism that checks that all the auditors see consis-
tent versions of published acc and the users see the same acc as the auditors at epoch t can be
implemented through gossip between the auditors as in CONIKS [MBB+15] or through using a dis-
tributed global append-only log such as Ethereum blockchain [Bon16] or Bitcoin blockchain [TD17].
We do not enforce either of the mechanisms and leave it on the implementation.

14

Security and Privacy Guarantees: At any epoch, as long as Alice has checked up to her latest
key versions and as long as at least one honest auditor has audited each the updates published
by the server, Bob will get the latest version of Alice’s key. Moreover, the query proofs and
the key history proofs do not leak any information beyond the answer to the queries because of
the guarantees of the aZKS. The digests published by the server do not leak anything beyond
L(S) = (n, u) where n is the number of new labels to be added in the VKD plus the number of
existing labels that are being updated and u is the the number of existing labels that have reached
a version 2i for some i. The main insight for the gain in privacy is that in our construction we
always add new entries since we are using aZKS, we never delete or update existing entries. This
hides the old pseudonyms is being updated, avoids timing links between new and old pseudonyms,
and hides the lifespan of each key.

VKD CONSTRUCTION:

. VKD.Setup(1λ) : Let ppZKS. ← ZKS.Setup(1λ) and ppSA. ← SA.Setup(1λ). We will denote pp =
(ppZKS. ∪ ppSA.) and be using the appropriate pp.

. VKD.Gen(pp) : Run ZKS.Gen(pp) twice to get the public and private parameters for two aZKS.
Hence we have (PKall, stall) ← ZKS.Gen(pp) and (PKold, stold) ← ZKS.Gen(pp). Output
PKGen = (PKall,PKold) and st0 = stall ∪ stold. Also initialize and output a pair of empty
directories Dir0 = (Dall,0, Dold,0). Output (PKGen, st0,Dir0)

. VKD.Publish(pp,PKGen,Dirt−1, stt−1, St) :
Parse Dirt−1 = (Dall,t−1, Dold,t−1). The directory Dirt−1 includes (label| i, val) pairs and marker
entries that are already part of it before time t and St is the set of updates to be added to
the directory at epoch t.

t = 0: This is when we are setting up the directory for the first time and let Dir0 = (Dall,0, Dold,0)
as initialized before. Compute (comall,0, stall,0)← ZKS.CommitDS(pp,PKall, stall, Dall,0) for the
“all” aZKS. Similarly, compute (comold,0, stold,0) ← ZKS.CommitDS(pp,PKold, stold, Dold,0).
The server will maintain two append-only strong accumulators “all” and “old” SA built over
the commitments of both aZKS. More concretely, at t = 0, accall,0 ← SA.CommitDS(pp, Call =
(t0, comall,0)) and accold,0 ← SA.CommitDS(pp, Cold = (t0, comold,0)) respectively.

Initialize an update set and a marker set for next epoch S0 = φ and M0 = φ. Also, initialize
a table T which will later store the usernames (labels) and their times of updates for all
epochs until the current.

Output (com0 = (comall,0, comold,0), acc0 = (accall,0, accold,0),ΠUpd
0 = ⊥, st0 = (stall,0, stold,0, T, S0,

M0) and Dir0 = (Dall,0, Dold,0)

t > 0: Let St = {(label1, v1), . . . , (labelk, vk)} be the (label, value) pairs to be added to the
VKD at epoch t. These could be new additions or updates to existing labels.

− For each (labeli, vi), retrieve the times of update for labeli from table T if it exists. For
each labeli ∈ St, append t to the list of times (if it exists) or add (labeli, t) for new labels
in the table T .

Let Sot = {(labeli, voi) | labeli ∈ St, voi is the value for labeli at epoch t-1}. If labeli is a new
addition, v0

i will not exist. Let αi be the version corresponding to each labeli which is the

15

number of entries in T for labeli, 0 if no entry exists. Based on the version number, we
will create the (label, value) pairs to be added in the “all” aZKS.

− If for any labeli, αi + 1 = 2y for some y ≥ 0 then add the following (label, value) pair to
the marker set Mt: (labeli| mark | y, “marker entry 2y for labeli”)

− Compute new update set to do ZKS.UpdateDS: S ′t = {(label′i, vali) | (labeli, vali) ∈ St ∧
label′i = label| αi + 1} Compute the update on the “all” aZKS for the set S ′t ∪ Mt:
(comall,t, stall,t, Dall,t, πSt)← ZKS.UpdateDS(pp,PKall, stall,t−1, Dall,t−1, S

′
t ∪Mt).

− Form a new set of (label, value) pairs to be added to the “old” aZKS. For each label ∈ St
that is not a new addition, concatenate it with its version before the update. Hence, let
So
′
t = {(label′i, vali) | (labeli, vali) ∈ Sot ∧ label′i = label| αi}. For the “old” tree, compute

(comold,t, stold,t, Dold,t, πSot)← ZKS.UpdateDS(pp,PKold, stold,t−1, Dold,t−1, S
o′
t)

− Update both the chains to accall,t and accold,t in the following way: (accall,t, Call∪(t, comall,t),
πacc,all) ← SA.UpdateDS(pp, Call, (t, comall,t)) and (accold,t, Cold ∪ (t, comold,t), πacc,old) ←
SA.UpdateDS(pp, Cold, (t, comold,t))

Output comt = (comall,t, comold,t), acct = (accall,t, πacc,all, accold,t, πacc,old), ΠUpd
t = (πSt , πSot)

and stt = (stall,t, stold,t, T, St+1,Mt+1,Dirt−1) and Dirt = (Dall,t, Dold,t). Figure 2 shows the
internal storage of the server over time.

. VKD.Query(pp,PKGen, stt,Dirt, label) :
Retrieve latest version number α for queried label from table T (by counting the number of
time entries for label). Let β be the largest power of 2 less than α such that β = 2b. Compute
the following proofs:

− (π1, val1) ← ZKS.Query(pp,PKall, stall,t, Dall,t, label| α): This gives a proof of membership
of the latest version of label in the “all” aZKS and its corresponding value.

− (π2, val2)← ZKS.Query(pp,PKall, stall,t, Dall,t, label|
mark | b): This gives a proof of membership of the marker entry right before the current
version α.

− (π3, val3)← ZKS.Query(pp,PKold, stold,t, Dold,t, label| α): This gives a proof of non member-
ship of the latest version in the “old” aZKS making sure that the claimed “latest” version
is not outdated.

Output Π = (π1, π2, π3) and val = (val1, val2,⊥) and α

. VKD.QueryVer(pp,PKGen, comt, label, valt, πt, α) : The client checks each membership or non-
membership proof. Also check that version α as part of proof is less than current epoch t.
More specifically, parse Π = (π1, π2, π3). Compute ZKS.Verify(pp,PKall, comall,t, label| α, val1, π1)
and ZKS.Verify(pp,PKall, comall,t, label|mark| b, val2, π2) and ZKS.Verify(pp,PKold, comold,t, label|
α,⊥, π3). Output 1 if all the proofs verify and α < t.

. VKD.KeyHist(pp,PKGen, stt,Dirt, label): The server first retrieves all the update times t1, . . . , tn
for label versions 1, . . . , n from T . It also retrieves corresponding comt1 , . . . , comtn for “all”
and “old” aZKS and also the roots acct,all, acct,old. For versions i = 1 to n, the server does
the following:

16

Retrieve the vali for ti and version i of label from Dirti . Let 2a ≤ i < 2a+1 for some a where
i is the current version of the label. The server will generate five kinds of proofs (together
called as Πi) as follows:

1. Correctness of comti : Output comti and membership proof of comti with respect to acct
for both of the “all” and “old”.

2. Current Version in “all”: Membership proof for (label| i) in the “all” aZKS with respect
to comti corresponding to vali which is (πi, vali)← ZKS.Query(pp,PKall, stall,ti , Dall,ti , label| i)

3. Older Version in “old”: Membership proof in “old” aZKS with respect to comti for
(label| i− 1). (πo, valo)← ZKS.Query(pp,PKold, stold,t, label|i− 1).

4. No Higher Versions in “all”: Non membership proofs in the “all” aZKS with respect
to comti for (label| i+1) for i = 1 to n−1. For i = n, give proofs for (label| i+1), (label| i+
2), . . . , (label| 2a+1 − 1).

5. No Higher Marker Entries: A non membership proof in “all” aZKS with respect to
comti for marker nodes (label| mark| a+ 1) upto (label| mark| log t). If any of the marker
proofs were already part of version i− 1, do not include those.

Let Πi contain all the five types of proofs described above for i = 1 to n. The proof types
3,4,5 for i = n are shown in Figure 3. Finally output ({(vali, ti)}ni=1,Π

Ver = (Π1, . . . ,Πn−1)).

2a
•

n− 1 n
NNNN�

2a+1

�

2a+2

�

2log t

� Non-membership proofs for markers 2a+1, . . . , 2log t in “all” lZKS.

N Non-membership proofs for markers n + 1, . . . , 2a+1 − 1 in “all” lZKS.

• Membership proof for n− 1 in “old” lZKS.

Figure 3: Versions Proofs in Πn with respect to comtn

. VKD.HistVer(pp, comt, acct, label, {(vali, ti)}ni=1,Π
Ver): Parse ΠVer = (Π1, . . . ,Πn−1). For each i,

first verify that comti is correct with respect to acct. Then using the correct comti , verify all
of the proofs in each Πi with respect to the appropriate comt and output 1 if all the proofs
verify.

. VKD.Audit(pp, t1, tn, {pubt}tnt=t1) : Recall pubt = (comt, acct,Π
Upd
t). Do the checks ZKS.VerifyUpd

(pp,PKall, comall,t, comall,t−1,Π
Upd
all,t) and ZKS.VerifyUpd(pp,PKold, comold,t, comold,t−1,Π

Upd
old,t) for

all consecutive epochs from t1 to tn. Also check that both “all” and “old” SA are appropri-
ately updated with (ti, comall,ti) and (ti, comold,ti) respectively for 1 ≤ i ≤ n. Output 1 iff.
all the checks verify.

Theorem 1. Let (ZKS.Setup,ZKS.Gen,ZKS.CommitDS,ZKS.Query,ZKS.Verify,ZKS.UpdateDS,
ZKS.VerifyUpd) be an aZKS as in Definition 3.1 and let H be a collision resistant hash function.
Then the construction described above is a VKD. It is L-private with respect to the following
leakage function: L(S) = nupd, (nnew + nmark) where nnew is the number of new labels to be added

17

in the VKD, nupd is the number of existing labels that are being updated and nmark is the number
of existing labels that have reached a version 2i for some i.¶

Proof: We defer the formal proof to Appendix C.

5 aZKS Instantiations

In this section we will give concrete instantiation of aZKS used for our VKD and also of the
primitives used in the construction of the aZKS.

5.1 Cryptographic Primitives

Here we briefly describe the cryptographic primitives that we will use:

Collision Resistant Hash Function (CRHF): A hash function H is collision resistant if it
is hard to find two inputs that hash to the same output; that is, two inputs x and y such that
H(x) = H(y), and x 6= y.

Definition 4 (Collision-resistant Hash Function [KL08]). We say that a family of functions {H}λ
which consists of functions of the form H : {0, 1}n 7→ {0, 1}m for m < n is a family of collision-
resistant hash functions parametrized by the security parameter λ ∈ N, if for any PPT A, there
exists a negligible function µ() such that,

Pr[H ← {H}λ ; (x1, x2)← A(1λ, H) : H(x1) = H(x2)] ≤ µ(λ)

Simulatable Commitment Scheme (sCS) [CHL+05]: A simulatable commitment [CHL+05]
scheme ‖ consists of four algorithms (CS.Setup,CS.Commit,CS.Open,CS.VerifyOpen) with descrip-
tion as follows:

σ ← CS.Setup(1λ): The setup outputs global parameters σ for commitment scheme.

comσ ← CS.Commit(σ,m; r): Using σ, the commit algorithm produces commitment comσ to
message m using randomness r.

τ ← CS.Open(σ,m, r, comσ): This outputs a decommitment value corresponding to commitment
comσ for message m and randomness r.

1/0 ← CS.VerifyOpen(σ, comσ,m, τ): This accepts or rejects the decommitment of comσ to mes-
sage m in terms of the decommitment value τ .

A sCS satisfies the standard requirements of commitment schemes with respect to hiding and
binding. In addition, there is an efficient proof to show that a given string com is a legitimate
commitment on a given value m, and this proof is efficiently simulatable given any proper pair
(com,m). We defer the readers to Appendix A for detailed description of security properties of
sCS.

¶We can hide even this by adding a fixed number of entries each update by augmenting with dummy entries
‖In [CHL+05], Chase et. al. define the primitive of Mercurial Commitments which also has additional algorithms

to be able to do soft commitments. This definition is an adaptation of their definition with just the usual commitment
functionality.

18

Simulatable Verifiable Random Function (sVRF) [CL07]: A Verifiable Random Function
(VRF) is similar to pseudorandom functions, with the additional property of verifiability: corre-
sponding to each secret key SK, there is a public key PK, such that, for any y = VRF.Gen(SK, x),
it is possible to verify that y is indeed the value of the VRF evaluated on input x seeded by
SK. A simulatable VRF (sVRF) is a VRF for which this proof can be simulated, so a simula-
tor can pretend that the value of VRF.Gen(SK, x) is any y. A sVRF comprises of the algorithms
(sVRF.Setup, sVRF.KeyGen, sVRF.Eval, sVRF.Prove, sVRF.Verify) with descriptions as follows:

params← sVRF.Setup(1λ): The setup takes in the security parameter and outputs params

(PK, SK) ← sVRF.KeyGen(params): The key generation takes in the global params and outputs
the public key PK and secret key SK.

y ← sVRF.Eval(params, SK, x): The evaluation takes in params, the secret key SK and x and
outputs the sVRF evaluation of x as y

π ← sVRF.Prove(params, SK, x): The prove takes in params, the secret key SK and x and outputs
a proof for the sVRF evaluation of x

1/0← sVRF.Verify(params,PK, x, y, π): The verification takes in params, the public key PK, input
x, evaluation y and proof of evaluation π and it outputs a bit whether the verification passed.

We defer the readers to Appendix A for the security properties of an sVRF. Chase-Lysyanskaya
[CL07] give a construction of sVRF using bilinear maps and prove its security based on composite
order subgroup decision assumption and an extension of the Q-BDHI assumption, but it is not
efficient. We describe an efficient constructions of sVRFs in Appendix B based on DDH assumption
as proposed in [MBB+15].

5.2 Strong Accumulator Construction

In this subsection, we give a new construction of an append-only strong accumulator. For our SA,
the expected depth of the tree and the proofs is logarithmic in the size of the set [OB09, Knu98].
Our construction achieves efficiency improvement over the previous constructions [MBB+15, CHKO08],
where the depth is order of the set size. The high level idea is to build a Patricia tree [Knu98]
over the labels. Patricia tree is a succinct representation of the labels such that each child has
a unique suffix string associated with it and the leaf nodes constitute the actual label values.

ε

0

0010 01

0100 0111

1

1000 1100

hε

h6 h8

h7h1

h2 h3

h4 h5

Figure 4: Patricia Tree on subset P

It has a wide range of applications due to the effi-
cient insertion and deletion operations. Here we illus-
trate with an example. For the universe of be all 4
bit binary strings, a Patricia tree built on subset P =
{0010, 0100, 0111, 1000, 1100} is represented in Figure 4.
We now describe our SA construction:

. SA.Setup(1λ) : Choose a collision-resistant hash func-
tion H : {0, 1}∗ 7→ {0, 1}m. Output pp = [H]

. SA.CommitDS(1λ, pp,D) : Datastore D = {(l1, v1), . . . ,
(ln, vn)}, a collection of label-value pairs. Choose

a constant kD
$← {0, 1}λ. Let {y1, . . . , yn} be a

19

lexicographic ordering corresponding to {l1, . . . , ln}.
Build a Patricia tree on {yi}. For different types of nodes, we will associate the following
hash values:

− Leaf nodes: For a node yi at depth di, compute: hyi = H(kD|yi|di|vi). For example,
in the tree in Figure 4, h2 = H(kD|0100|3|v2).

− Interior nodes: For an interior node x at depth dx, let x.s0 and x.s1 be the labels
of its children. Compute: hx = H(kD|x|dx|hx.s0|hx.s1|s0|s1). For example in Figure 4,
h6 = H(kD|0|1|h1|h7|010|1)

SA.CommitDS(1λ, pp,D) outputs com = (hroot, kD).

. SA.Query(pp,D, l) : If l ∈ D, output value v associated to it. Let hl be the hash value of the
node. Give the sibling path for hl in the Patricia tree along with the common prefix x at
each sibling node and the suffixes s0, s1 which form the nodes x.s0 and x.s1. For example,
proof for 0100 will be its value and [h2, (h3, 01, 00, 11), (h1, 0, 010, 1), (h8, ε, 0, 1)]

If l /∈ D, let z be the longest prefix of l such that z is a node in the Patricia tree. Let zu0, zu1

be its children. Output z, hz, u0, u1, hzu0 , hzu1 along with sibling path of z. For example,
proof for 1010 will be ⊥ and [1, 1000, 1100, h8, h4, h5, (h6, ε, 0, 1)]

. SA.Verify(pp, com, l, v, π) : Parse π as the hash values and the auxiliary prefix information at each
node. Compute hl according to leaf node calculation and verify the given value. Compute
the hash values upto the root with help of the proof and output 1 iff. you get hroot.

. SA.UpdateDS(pp,D, S): First we check that S is a valid set of updates which means that for
all (labeli, vali) ∈ S, labeli /∈ D. Initialize sets Znew, Zold, Zconst to empty. For all labelj ∈ S,
compute: hlabelj = H(kD|lj|dj|valj) and add hlabelj to the appropriate position in the tree and
change the appropriate hash values. Add the old hash values to Zold and the updated to Znew

and those that remain unchanged after all updates to Zconst.

Output the final updated root hash h′root as com′, output the final st′ and D′ = D ∪
{(labelj, valj)} and output πS = (Zold, Znew, Zconst) and set S.

. SA.VerifyUpd(pp, com, com′, S, πS): Parse πS = (Zold, Znew, Zconst). Compute the root hash from
all the values in Zold and Zconst and check that it equals com. Similarly, compute the root
hash from all the values in Znew and Zconst and check that it equals com′. Let ZS be the set of
roots of the subtrees formed by labels in S. Check that Zold, Znew are exactly the hash values
of all nodes in ZS. Output 1 if all checks go through.

Theorem 2. Assuming H is collision-resistant hash function, the construction as described above
is an append-only SA with completeness and soundness.

Proof: At a very high level, if an adversary is able to forge a proof (i.e., prove contradictory
statements about the presence of some element in the set), then, the forgery can be leveraged to
break the collision resistance of H (at some node in the Patricia tree). We present the details of
the proof in Appendix D.

20

5.3 aZKS Instantiations

In this section, we give concrete instantiations for aZKS. The trivial way of implementing a fully
private aZKS is to compute a fresh commitment to the set each time an update happens [Lis05b].
This does not leak anything except that an update happened. Such a construction can be instan-
tiated from a static zero-knowledge set in a black-box way but is very inefficient.

Here we focus on a more efficient instantiation with a reasonably small leakage. Our construc-
tion is a combination of a append-only strong accumulator and a pseudonym map and commitment
scheme. Strong accumulators directly give us completeness and soundness. To get zero-knowledge
for a D = {(label1, val1), . . . , (labeln, valn)}, we will use a pseudonym map P (·) and a commitment
map C(·, ·) with some specific properties.

We need the pseudonym map to be pseudorandom and verifiable so that the position li is pseu-
dorandom in the SA, but given the corresponding labeli, it is verifiable. We need the commitment
map to be binding and hiding. Moreover, for satisfying the privacy property for aZKS, we need
these primitives to be simulatable. Therefore, we implement the pseudonym map with a sVRF
and the commitment scheme with a sCS.

Let (sVRF.Setup, sVRF.KeyGen, sVRF.Eval, sVRF.Prove, sVRF.Verify) be a simulatable VRF and
let (CS.Setup,CS.Commit,CS.Open) be a simulatable commitment scheme as described before. Let
PsVRF.(label) = sVRF.Eval(params, SK, label) for params← sVRF.Setup(1λ) and let CCommit(labeli, vali)
= CS.Commit(σ, (labelji , valji); ri) for σ ← CS.Setup(1λ) and some randomness ri. Given D =
{(label1, val1), . . . , (labeln, valn)}, build a new D′ = {(l1, v1), . . . , (ln, vn)} where li = P (labeli) and
vi = CCommit(labeli, vali ; ri) for P () and C() as described above. Build an append-only SA on D′

and that gives us an aZKS.
More concretely, we now describe the construction of aZKS from an SA, sVRF and sCS. Let

(SA.Setup, SA.Gen, SA.CommitDS, SA.Query, SA.Verify,
SA.UpdateDS, SA.VerifyUpd) be an append-only SA and let P (·) and C(·, ·) be the PsVRF.(·) and
CCommit(·, ·) maps respectively, as described above.

CONSTRUCTION:

. ZKS.Setup(1λ) : Output pp← SA.Setup(1λ).

. ZKS.Gen(1λ, pp) : Run params← sVRF.Setup(1λ) and key generation to get (PK, SK)←
sVRF.KeyGen(params). Also do σ ← CS.Setup(1λ). Output PKGen = [PK, σ, params] and stGen = SK.

. ZKS.CommitDS(pp,PKGen, stGen,D) : Let D = {(label1, val1), . . . , (labeln, valn)}. Build a new
D′ = {(l1, v1), . . . , (ln, vn)} where li = P (labeli) and vi = CCommit(labeli, vali ; ri) for P () and C()
as described above. Let com ← SA.CommitDS(pp,D′) and stcom = (SK,D,D′, r1, . . . , rn). Output
(com, stcom)

. ZKS.Query(pp,PKGen, stcom,D, label) : Compute (πSA., val)← SA.Query(pp,D, P (label)). We also
need a proof that P () was correctly computed. Compute πlabel = sVRF.Prove(params, SK, label).
Retrieve the com, r corresponding to label in stcom and compute τ ← CS.Open(σ, (label, val), r, com).
Output Π = ((P (label), πlabel, com, τ, πSA.), val).

. ZKS.Verify(pp,PKGen, com, label, val,Π) : Parse proof as Π = ((y = P (label), πlabel, com, τ, πSA.), val).
First check that sVRF.Verify(params,PKGen, label, y, πlabel) = 1. Also verify the commitment by
checking that CS.VerifyOpen(σ, com, (label, val), τ) = 1. Finally output SA.Verify(pp,PKGen, com,
P (label), C(label, val), π).

21

. ZKS.UpdateDS(pp, stcom,D, S) : Compute S ′ = {(lj, vj) | li = P (labelj)∧vj = C(labelj, valj; rj)∧
(labelj, valj) ∈ S}. Let (com′′,D′′, π′S, S

′)← SA.UpdateDS(pp,PKGen,D
′, S ′). Output (com′′, stcom,D

′′,
π′S = (πS, S

′))

. ZKS.VerifyUpd(pp,PKGen, com, com
′, π′S) : Output SA.VerifyUpd(pp,PKGen, com, com

′, π′S = (πS, S
′))

Theorem 3. Assuming (sVRF.Setup, sVRF.KeyGen, sVRF.Eval, sVRF.Prove, sVRF.Verify) is a simu-
latable VRF and (CS.Setup,CS.Commit,CS.Open) is a simulatable commitment scheme and (SA.Setup,
SA.Gen, SA.CommitDS, SA.Query, SA.Verify, SA.UpdateDS, SA.VerifyUpd) is an append-only strong
accumulator, the construction as described above is an append-only zero-knowledge set for leakage
functions L1(D) = |D| = N and L2(S) = |S|.

Proof: At a high level, the soundness follows from 1) the verifiability of sVRF 2) the binding
property of sCS and 3) the soundness of SA. The zero-knowledge property with the specified leakage
profile follows from the simulatability of sVRF and sCS. The detailed proof is in Appendix E.

6 Efficiency Analysis and Comparison with other VKDs

In this section we will discuss how our VKD construction compares to the other VKDs [MBB+15,
Bon16, TD17] in terms of efficiency as well as privacy.

6.1 Current Implementations as VKD

First we describe how CONIKS/EthIKS/Catena can be expressed as an instantiation of VKD.
Corresponding VKD algorithm descriptions will be as follows:

VKD.Setup(1λ): Choose a collision-resistant hash function H : {0, 1}∗ 7→ {0, 1}m. Choose con-

stants kl, ke
$← {0, 1}λ. Output pp = [H, kl, ke]

VKD.Gen(pp): Output (PK, st)← sVRF.KeyGen(pp).

VKD.Publish(pp,PKGen,Dirt−1, stt−1, St): Our directory is a set of (label, val) pairs corresponding
to usernames and their keys.

t = 1: This is when we are setting up the directory for the first time and let Dir0 be the initial
set of (label, val) pairs. Build Dir′0 = {(l1, v1), . . . , (ln, vn)} where li = sVRF.Eval(PKGen, labeli)

and vi = Commit(labeli, vali ; ri). Choose a constant kD
$← {0, 1}λ. Let {y1, . . . , yn} be a

lexicographic ordering of {l1, . . . , ln} and build a Merkle hash tree over {yi}. For different
nodes, do the following:

− Leaf nodes: Compute: hyi = H(kl|kD|yi|m|vi)
− Empty nodes: For a string s which corresponds to an empty node as described above,

compute: hs = H(ke|kD|s|x = |s|)
− Interior nodes: For an interior node int, compute: hint = H(hch,0|hch,1)

Initialize a linear acc structure in form of a hash chain: hash1 = H(1 | com1). Output (pub1 =
(hroot, kD), hash1, st1 = {ri}) where {ri} is randomness for commitments and Dir1 = S1

22

For any t > 1, let St = {(label1, val1), .., (labelk, valk)} be the updates to be done at epoch t
which include new (St,new) as well as existing labels to be updated St,update. For new labels
in St,new, compute li = sVRF.Eval(PKGen, labeli), vi = Commit(labeli, vali ; ri) and compute
the leaf node as described above updating hash values upto the root. If li already exists in
St,update, update the vi as commitment to new vali and again update hash values along the

path to root. Update the hash chain by computing: hasht = H(t−1 | t | comt | ΠUpd
t | hasht−1).

Output corresponding pubt, updated Dirt, stt

VKD.Query(pp,PKGen, stt,Dir, label, t): Compute l = sVRF.Eval(PKGen, label) and output the hash
values for the path of l, commitment v and also the opening for the commitment

VKD.QueryVer(pp,PKGen, comt, label, val, π, t): Verify the sVRF value, the commitment opening
and check that the hash values are consistent with comt

VKD.Audit(pp,PKGen, t1, tn, {pubt}tnt=t1): Check that hash chain has grown appropriately. Output
1 iff. both the checks output 1. In CONIKS, this is achieved via gossip protocols between
the auditors and in EthIKS, Catena auditors can directly audit the public blockchain.

These constructions map each label to a fixed location and an update involves updating the value
at the fixed location. So at any point of time, only one version of a value is present per label.
Hence these implementations do not support VKD.KeyHist() or VKD.HistVer().

Theorem 4. The construction described above is a VKD with leakage function as follows: L(S =
Snew ∪ Supdate) = (|Snew|, {P (labeli) | labeli ∈ Supdate}) where Snew is the set of new (label, value)
pairs to be added and Supdate is the existing set of labels whose value has to be updated.

Proof: We give a proof overview in Appendix F.

Tracing Attack: The leakage in Theorem 4 causes a “tracing attack” as follows: When you query
for the same label several times, you get values in the proof which depend on the pseudonym of the
label. These values can be pseudonyms of other labels and give information about a label that you
did not query. Hence if you get the proofs for the same label over time, you can infer about other
pseudonyms, whether they were updated or deleted. For example, consider a system with 4 users:
Alice, Bob, Charlie, Mary with P(Alice) = 010, P(Bob) = 011 P(Charlie) = 101, P(Mary) = 110.
The proof for Alice’s key will contain 011 being its sibling which is P(Bob). Since the pseudonym
is fixed for the entire lifetime of the directory, now Alice can trace when Bob’s key changes just
by querying for her own key and observing when sibling node changes. While the username is not
directly leaked, once Alice queried for Bob’s key (i.e., which username the pseudonym belonged
to), she will be able to completely trace when the key changed.

6.2 Improvements in our VKD

The major improvements of our VKD implementation over that of CONIKS, EthIKS, Catena [MBB+15,
Bon16, TD17] are the following:

Privacy: The only natural way to extend current VKDs to achieve the same level of privacy
as ours, would be to compute fresh pseudonyms (requiring expensive public key operations) for
all usernames and rebuild the directory every epoch. We instead, add version number of each
key and treat each deletion as a new insertion under a different pseudonym (which is cheap to

23

CONIKS [MBB+15] EthIKS [Bon16] This paper
CONIKS on Catena log [TD17]

Publish (per epoch cost) nZKS.UpdateDS nZKS.UpdateDS 3nZKS.UpdateDS
+ logNhash

Query ZKS.Query ZKS.Query 3ZKS.Query
QueryVer ZKS.Verify ZKS.Verify 3ZKS.Verify
KeyHist (m+ log t)ZKS.Query

+m logNhash
HistVer (m+ log t)ZKS.Verify

+m logNhash
Audit (per epoch cost) hash hash nZKS.VerifyUpd

+ logNhash
Update frequency Provider-chosen Ethereum block frequency Provider-chosen

Bitcoin block frequency
Monitoring frequency every epoch latest epoch latest epoch

(Alice remembers last (Alice remembers last
version number of her key) time she updated her key)

Privacy Vulnerable to Pseudonym map nupd, (nnew + nmark)
tracing attack of updated keys

Table 1: Let N = |Dirt| be the size of the current directory, n be the total number of updates at
epoch t, t be the current time and m be the number of versions of a key for which KeyHist,HistVer
are run. Let nnew= #(new labels added at t), nupd = #(labels updated at t) and nmark = #(labels
whose update version is 2i for i > 0). Hence n = (nupd + nnew + nmark)

compute). This hides which old pseudonym is being updated, avoids timing links between new
and old pseudonyms, and hides the lifespan of that key.

Auditing updates: The work of verifying that the server is behaving correctly is now reduced
to verifying that nothing is ever deleted or updated; this can be done by an untrusted auditor as
it involves no secret/private information.

Monitoring frequency: Using the KeyHist interface, Alice can monitor her key revisions after
every update (she only has to remember the last time she did an update) which is a significant
improvement over [MBB+15] which required Alice to monitor her key at every epoch. [Bon16,
TD17] improved the monitoring frequency to be any epoch for a Ethereum/Bitcoin-aware client,
but it required Alice to remember her last version number which is less natural to remember.

We summarize the differences along with concrete cost in terms of number of calls to the zero
knowledge set primitive and hash function in Table 1. Then we count the number of cryptographic
operations in out aZKS instantiation in Section 6.3. Here we compare with respect to the same
underlying aZKS for all implementations. The actual aZKS instantiations may not be directly
comparable. We describe our aZKS instantiation and the count the number of cryptographic
operations in Section 6.3.

6.3 aZKS costs

The size of the membership or non-membership proofs in aZKS in all the constructions comes
from underlying datastructures. In CONIKS, it is proportional to the security parameter λ since
underlying structure is a Merkle tree on O(2λ) nodes. In practice this is something like 256 bits.
Our underlying datastructure is a Patricia Tree (Section 5.2) in which the size of query proofs

24

is proportional to the log of (number of users * the number of times they updated their key) in
the system. This cost is typically around 30 bits for a single update for a huge user base such as
WhatsApp. We count the exact number of operations required for each algorithm of aZKS built
using our SA (Section 5.2), the sVRF implementation from [MBB+15] and a sCS implemented as
hash of message with randomness i.e. comσ = H(m, r). (Full construction in Appendix B) For
completeness we give efficient sVRF construction based on DDH assumption in Appendix B.

aZKS costs: Let N = the size of the set, hash = the cost of computing one cryptographic hash,
exp = the cost of one group exponentiation.

ZKS.Setup: 4Nhash +Nexp
ZKS.Query: hash + 2exp
ZKS.Verify: (3 + 2 logN)hash + 4exp
ZKS.UpdateDS (updating 1 label): (2 + logN)hash
ZKS.VerifyUpd (verifying 1 update): (2 + logN)hash

7 Acknowledgements

The work by Esha Ghosh was supported in part by NSF grant CNS-1228485. The work by
Apoorvaa Deshpande was supported in part by NSF grant CNS-1422361.

References

[BCD+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid
Reyzin, Kai Samelin, and Sophia Yakoubov. Accumulators with applications to
anonymity-preserving revocation. IACR Cryptology ePrint Archive, 2017:43, 2017.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Cryptographic Tech-
niques, Warsaw, Poland, May 4-8, 2003, Proceedings, pages 416–432, 2003.

[Bon16] Joseph Bonneau. Ethiks: Using ethereum to audit a coniks key transparency log. In
International Conference on Financial Cryptography and Data Security, pages 95–105.
Springer, 2016.

[CHKO08] Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo. Strong accu-
mulators from collision-resistant hashing. In International Conference on Information
Security, pages 471–486. Springer, 2008.

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin.
Mercurial commitments with applications to zero-knowledge sets. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages
422–439. Springer, 2005.

[CL07] Melissa Chase and Anna Lysyanskaya. Simulatable vrfs with applications to multi-
theorem nizk. In Annual International Cryptology Conference, pages 303–322. Springer,
2007.

25

[CW09] Scott A Crosby and Dan S Wallach. Efficient data structures for tamper-evident log-
ging. In USENIX Security Symposium, pages 317–334, 2009.

[EMBB17] Saba Eskandarian, Eran Messeri, Joe Bonneau, and Dan Boneh. Certificate trans-
parency with privacy. arXiv preprint arXiv:1703.02209, 2017.

[FB14] T Fox-Brewster. Whatsapp adds end-to-end encryption using textsecure. The
Guardian, Nov, 2014.

[KL08] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography, 2008.

[Knu98] Donald Ervin Knuth. The art of computer programming: sorting and searching, vol-
ume 3. Pearson Education, 1998.

[KZG10] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments
to polynomials and their applications. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 177–194. Springer, 2010.

[Lis05a] Moses Liskov. Updatable zero-knowledge databases. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 174–198.
Springer, 2005.

[Lis05b] Moses Liskov. Updatable zero-knowledge databases. In Bimal K. Roy, editor, Advances
in Cryptology - ASIACRYPT 2005, 11th International Conference on the Theory and
Application of Cryptology and Information Security, Chennai, India, December 4-8,
2005, Proceedings, volume 3788 of Lecture Notes in Computer Science, pages 174–198.
Springer, 2005.

[LLK13] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate transparency. Technical
report, 2013.

[MBB+15] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and
Michael J Freedman. Coniks: Bringing key transparency to end users. In Usenix
Security, pages 383–398, 2015.

[MRK03] Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In Foundations
of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium, pages 80–91.
IEEE, 2003.

[OB09] Alina Oprea and Kevin D Bowers. Authentic time-stamps for archival storage. In Eu-
ropean Symposium on Research in Computer Security, pages 136–151. Springer, 2009.

[Sch15] B Schneier. Apples imessage encryption seems to be pretty good, 2015.

[TD17] Alin Tomescu and Srinivas Devadas. Catena: Efficient non-equivocation via bitcoin.
In IEEE Symp. on Security and Privacy, 2017.

26

A Definitions of Some Cryptographic Primitives

Definition 5 (Simulatable Commitments [CHL+05]). A simulatable commitment [CHL+05] scheme
consists of four algorithms (CS.Setup,CS.Commit,CS.Open,CS.VerifyOpen) with the following de-
scriptions and properties:

σ ← CS.Setup(1λ): The setup algorithm outputs global parameters σ for the commitment scheme.

comσ ← CS.Commit(σ,m; r): Using the global parameters σ, the commit algorithm produces
commitment comσ to message m using randomness r.

τ ← CS.Open(σ,m, r, comσ): This algorithm outputs a decommitment value corresponding to
commitment comσ for message m and randomness r.

1/0← CS.VerifyOpen(σ, comσ,m, τ): This algorithm accepts or rejects the decommitment of comσ

to message m in terms of the decommitment value τ .

Correctness: For all security parameters λ ∈ N and for all m ∈ Domain,

Pr[σ ← CS.Setup(1λ) ; r
$← {0, 1}λ ; comσ ←

CS.Commit(σ,m; r) ; τ ← CS.Open(σ,m, r, comσ) :

CS.VerifyOpen(σ, comσ,m, τ) = 1] = 1

Binding: For all security parameters λ ∈ N and for all m1,m2, for all PPT adversaries A,
there exists a negligible function ν() such that,

Pr[σ ← CS.Setup(1λ); (comσ,m1,m2, π1, π2)← A(σ) :

m1 6= m2 ∈ D(σ) ∧ CS.VerifyOpen(σ, comσ,m1, τ1) = 1∧
CS.VerifyOpen(σ, comσ,m2, τ2) = 1] ≤ ν(λ)

Hiding (Simulatability): Before we describe this security property, let us define the following
two oracles:

− Oσ : This is initialized with input σ ← CS.Setup(1λ) and a list of commitments L is initialized
to empty. On input m, Oσ chooses a random string r and creates comσ ← CS.Commit(σ,m; r)
and stores the pair (comσ,m) in L. It outputs comσ.

On input (comσ,m), Oσ first checks if it exists in L. If yes, it outputs τ = CS.Open(σ,m, r, comσ).
Else it outputs ⊥.

− Oσ,td : This oracle works with the assistance of a simulator Sim = (SimSetup, SimCommit, SimOpen)
that we describe below.

– (σ, td) ← SimSetup(1λ): The SimSetup algorithm takes in the security parameter and
outputs global parameters σ and also a trapdoor td with it.

– comσ ← SimCommit(σ, td, r): The SimCommit algorithm takes in the global parameters
σ and the trapdoor td generated by SimSetup() and also randomness r and outputs a
commitment string comσ. Note that SimCommit does not take a message to commit to.

27

– τ ← SimOpen(σ, td,m, comσ): The SimOpen algorithm takes in the global parameters
σ and the trapdoor td generated by SimSetup(), commitment string comσ output by
SimCommit() and also a message m that it wants to decommit to and outputs an
opening τ .

The oracle Oσ,td is initialized with input (σ, td) ← SimSetup(1λ) and a list of commitments
L which is initialized to empty. On input m, Oσ,td chooses a random string r and calls
comσ ← SimCommit(σ, td, r) and stores the pair (comσ,m) in L. It outputs comσ. Note that
SimCommit does not get to see the message that it is committing to.

On input (comσ,m), Oσ,td first checks if it exists in L. If yes, it outputs τ = SimOpen(σ, td,m, comσ).
Else it outputs ⊥. Hence, given message m, SimOpen should be able to decommit comσ to
m even though comσ was formed without knowing m.

A commitment scheme is said to be simulatable if there exists simulator Sim = (SimSetup, SimCommit,
SimOpen) such that for all adversaries A, there exists a negligible function ν() such that,

Pr[σ0 ← Setup(1λ) ; (σ1, td)← SimSetup(1λ) ;

O0 = Oσ0 ; O1 = Oσ1,td ; b
$← {0, 1} ;

b′ ← AOb(σb) : b′ = b] = 1/2 + ν(λ)

Definition 6 (Simulatable VRF [CL07]). A simulatable verifiable random function (sVRF) is like
a regular VRF with the additional requirement that the VRF proofs can be simulated. sVRF com-
prises of the algorithms (sVRF.Setup, sVRF.KeyGen, sVRF.Eval, sVRF.Prove, sVRF.Verify) described
as follows:

params ← sVRF.Setup(1λ): The setup algorithm takes in the security parameter and outputs a
set of global parameters params

(PK, SK)← sVRF.KeyGen(params): The key generation algorithm takes in the global params and
outputs the public key PK and secret key SK for the sVRF.

y ← sVRF.Eval(params, SK, x): The evaluation algorithm takes in params, the secret key SK and
x and outputs the sVRF evaluation of x as y

π ← sVRF.Prove(params, SK, x): The prove algorithm again takes in params, the secret key SK
and x and outputs a proof for the sVRF evaluation of x

1/0← sVRF.Verify(params,PK, x, y, π): The verification algorithm takes in params, the public key
PK, input x, evaluation y and proof of evaluation π and it outputs a bit to indicate whether
the verification passed.

A simulatable VRF for input domain D(.) and output range R(.), has the following properties:
Correctness: For all security parameters λ ∈ N, for all params← sVRF.Setup(1λ) and for all

inputs x ∈ D(params),

28

Pr[(PK, SK)← sVRF.KeyGen(params); y ← sVRF.

Eval(params, SK, x);π ← sVRF.Prove(params, SK, x) :

sVRF.Verify(params,PK, x, y, π) = 1] = 1

Pseudorandomness: Informally, this property captures the following: given (params,PK)
and oracle access to sVRF.Eval(params, SK,−) and to sVRF.Prove(params, SK,−) for x ∈ D(λ), the
outputs of the sVRF should be indistinguishable from a distribution of truly random strings of the
same length. More formally, For all parameters λ ∈ N, for all x ∈ D(λ) and for all PPT A, there
exists a negligible function ν() such that,

Pr[params← sVRF.Setup(1λ); (PK, SK)← sVRF.KeyGen

(params); (Qe, Qp, x, stA)← AsVRF.Eval,sVRF.Prove(params,SK,−)

(params,PK); y0 = sVRF.Eval(params, SK, x) ;

y1 ← R(params) ; b
$← {0, 1} ;

(Q′e, Q
′
p, b
′)← AsVRF.Eval,sVRF.Prove(params,SK,−)(stA, yb) :

b′ = b ∧ x /∈ (Qe ∪Qp ∪Q′e ∪Q′p)] ≤ 1/2 + ν(λ)

where Qe and Qp denote the contents of the query tape that records A’s queries to sVRF.Eval
and sVRF.Prove oracles respectively in the first query phase and Q′e and Q′p denote the contents of
the query tape in second query phase.

Verifiability: For all security parameters λ ∈ N, for all params← sVRF.Setup(1λ) and for all
PPT A there exists a negligible function ν() such that,

Pr[(PK, x, y1, π1, y2, π2)← A(params) :

y1 6= y2 ∧ sVRF.Verify(params,PK, x, y1, π1) = 1 ∧
sVRF.Verify(params,PK, x, y2, π2) = 1] ≤ ν(λ)

Simulatability: (sVRF.Setup, sVRF.KeyGen, sVRF.Eval, sVRF.Prove, sVRF.Verify) is a simulat-
able VRF if there exist algorithms (SimSetup, SimKeyGen, SimProve) described as follows:
− (params, td) ← SimSetup(1λ): The SimSetup algorithm takes in the security parameter and

outputs global parameters params and also a trapdoor td with it.
− (PK, SK) ← SimKeyGen(params, td): The SimKeyGen algorithm takes in the global param-

eters params and the trapdoor td generated by SimSetup() and outputs a public key-secret
key pair.

− π ← SimProve(params, SK, x, y, td): The SimProve algorithm takes in params, SK, td, a point
x and its sVRF evaluation y for which you want to generate the proof and it outputs the
sVRF proof π.

These algorithms should be such that the distribution Setup(1λ) is computationally indistin-
guishable from the distribution SimSetup(1λ) and for all PPT A, views of A in the following two
games are indistinguishable:

29

Real: (params) ← sVRF.Setup(1λ) ; (PK, SK) ← sVRF.KeyGen(params); A(params,PK) gets
access to the following oracle O: On query x, O returns y = sVRF.Eval(params, SK, x) and
π = sVRF.Prove(params, SK, x)

Simulated: (params, td) ← SimSetup(1λ) ; (PK, SK) ← SimKeyGen(params, td). A(params,PK)
gets access to the following oracle Õ: On query x, Õ does the following: checks if x has previously
been queried. If yes, then returns the stored answer.Otherwise, obtains y ← R(params) and
π ← SimProve(params, SK, x, y, td), and returns and stores (y, π).

B Simulatable VRF and Commitment Constructions

In this section we give two efficient instantiations of Simulatable VRF (sVRF) in the Random
oracle model and a construction of simulatable commitments also in Random oracle model. The
sVRF constructions are not new but they were not proven to be sVRFs. We give the proof (sketch)
here.

B.1 sVRF based on DDH

We describe the construction of the VRF from [MBB+15] and prove that it is simulatable. The
proof for pseudorandomness follows from DDH as observed in [MBB+15] and . The construction
is as follows:
sVRF.Setup(1λ): Choose a DDH group G of order q and let g be a generator. Choose hash

functions H1 : {0, 1}∗ 7→ G and H2 : {0, 1}∗ 7→ Z∗q and output params = (G, g,H1(), H2())

sVRF.KeyGen(params): Choose k
$← Z∗q and output SK = k and PK = gk

sVRF.Eval(params, SK, x): Output y = (H1(x))SK

sVRF.Prove(params, SK, x): The proof is the Fiat-Shamir transformation of Schnorr protocol for
proving common exponent; proving that prover knows SK = k such that PK = gk and y = hk

for h = H1(x). Prover chooses r
$← Z∗q and outputs proof as π = (s, t) for s = H2(x, gr, hr)

and t = r − sk.
sVRF.Verify(params,PK, x, y, π): Parse π as (s, t). Check that s = H2(x, gt(PK)s, htys) for h =

H1(x)

Proof of Simulatability: We describe the simulator:

− SimSetup(1λ) is same as sVRF.Setup(1λ) with H1(), H2() modeled as random oracles. It
outputs the same params

− SimKeyGen(params) is same as sVRF.KeyGen(params) and outputs (SK,PK) similarly.

− SimProve(params,PK, SK, x, y): No given y which is the sVRF evaluation of x, the simulator

has to output the corresponding proof. Simulator sets H1(x) = y(1/k) and chooses r
$← Z∗q

and outputs proof as π = (s, t) for s = H2(x, gr, hr) and t = r − sk for h = H1(x) = y1/k

In the random oracle model, it is easy to see that the proofs output by the simulator have
exactly the same distribution as in the real world.

30

B.2 sVRF based on co-GDH

We also prove that the signature scheme in [BGLS03] is a sVRF. For completeness, we recall the
scheme here.
sVRF.Setup(1λ): Output (G,G1, e : G×G→ G1), H1 : {0, 1}∗ 7→ G where,

− G,G1 are multiplicative cyclic groups of prime order q where (G,G) are co-GDH.
− g is a generator of G
− e is computable bilinear nondegenerate map e : G×G→ G1
− H1 : {0, 1}∗ 7→ G is a full domain hash function viewed as a random oracle that can be

instantiated with a cryptographic hash function.

sVRF.KeyGen(params): Choose k
$← Z∗q and output SK = k and PK = gk

sVRF.Eval(params, SK, x): Output y = (H1(x))SK

sVRF.Prove(params, SK, x): The proof is empty.
sVRF.Verify(params,PK, x, y, π): Given the user’s public key PK, a input x and its VRF value y,

accept if e(y, g) = e(H1(x),PK) holds.

Proof of Simulatability: Similar to the simulatability proof of th previous sVRF.

B.3 Simulatable Commitments

CS.Setup(1λ): Pick domain message space D, randomness space R and a CRHF H and output
σ = (D,R,H)

CS.Commit(σ,m; r): Output comσ = H(m, r)
CS.Open(σ,m, r, comσ): Output decommitment value corresponding to commitment comσ for

message m and randomness r.
CS.VerifyOpen(σ, comσ,m, τ): Check if H(m, r) = comσ.

Proof Sketch: The hiding and binding follows from collision-resistance of H. The simulatability
follows from H being modeled as a random oracle.

C Proof of Theorem 1

The completeness of the VKD is straightforward. Let us now prove soundness: Suppose there exists
S∗ which outputs (label, ({(vali, ti)}ni=1,Π

Ver), {(comt, acct,Π
Upd
t)}tnt=t1 , t∗, j, (π, val, α)) such that all

the versions proofs verify, the query proof for label verifies at t∗ for tj ≤ t∗ < tj+1 and the audit
from t1 to tn also verifies. We also verified that all the comt given by the server in ΠVer with respect
to comacc are correct which is guaranteed by SA soundness.
First we will prove that α 6= j. If it was, it means that the aZKS verification for “all” went through
for (label| α, val) i.e. VKD.QueryVer(pp,PKGen, comt∗ , label| α, val, π, α) which is part of the query
proof for label. Also verification for “all” went through for (label| j, valj) i.e. ZKS.QueryVer(pp,PKGen,
comtj , label| j, valj, πv) where πv, valj and comtj is part of the versions proof for label, in particular
part of Πi ∈ ΠVer. If α = j, this directly contradicts the soundness of the “all” aZKS between
times tj and t∗.

Now we will prove that α cannot even be greater than j. If VKD.HistVer(pp,PKGen, comtn , acctn ,
label, ({(vali, ti)}ni=1,Π

Ver) = 1, in particular it means that none of the nodes (label| γ) are present
in the “all”aZKS for any γ > α since the corresponding non-membership proofs have verified.
Hence α < j.

31

Hence α ∈ [1, j− 1] such that version 1 was added at time t1. But the proofs in Πi ∈ ΠVer have
verified for all i ∈ {1, . . . , j} which means that the membership of all (label| β) in the “old”-aZKS
for 1 ≤ β ≤ j−1 with comβ has been verified. Hence the proof (π, val, α) which has to contain non
membership proof for label| α in the “old”-aZKS for t∗ will again contradict the update soundness
of the “old”-aZKS from tj to t∗.

Finally all the soundness contradictions hold if none of nodes in either of the aZKS are deleted.
This is ensured by the fact that the audit from t1 to tn has been successful. Hence if the server is
able to break the soundness of the VKD, it will contradict the soundness of one of the underlying
aZKS. Hence proved.

Proof of Privacy: Our simulator (S1,S2,S3,S4) will work as follows:

− S1 calls the Sim1 of an append-only aZKS to twice output (pp′,PKall, stall) ← Sim1(1λ) and
(pp′′,PKold, stold)← Sim1(1λ) and output pp = (pp′, pp′′), PKGen = (PKall,PKold), st1 = stall ∪
stold

− In order to simulate the publish oracle OP , S2 calls Sim2 with empty datastores to get
(comall, st2)← Sim2(1λ, D0, st1) and also sets up the ”old” aZKS with (comold, st

′
2)← Sim2(1λ, D′0, st1).

It also builds SA on both comall,1, comold,1. It outputs (com1 = (comall,1, comold,1), acc1 =
(accall,1, accold,1), stS = (st2 ∪ st′2)

− For t > 0, S2 gets L(St) = (n = nnew, u = nupd +nmark). It calls Sim4 of both the append-only
aZKS with (comall,t, st3, πS) ← Sim4(pp,PKall, st2, Lall(S) = n + u) and (comold,t, st

′
3, π

o
S) ←

Sim4(pp,PKold,
st′2, Lold(S) = n). Each of the Sim4 gets the number of new nodes to be added to that aZKS.
Output stt = (st3 ∪ st′3)

S2 also updates both the SA with the updated commitment values. Output comt = (comall,t,

comold,t), acct = (accall,t, accold,t and ΠUpd
t = πSt , πSot).

− S3 simulates the proofs oracle Oπ by using the Sim3 of aZKS. Once it gets the correspond-
ing (label, α, val), it computes (π1, val1) ← Sim3(pp,PKall, label | α, val, stS) and (π2, val2) ←
Sim3(pp,PKall, label| mark| a, ”marker node”, stS) where 2a is the largest power of 2 less
than α. Finally it computes (π3, val3) ← Sim3(pp,PKold, label | α,⊥, stS). Output Π =
(π1, π2, π3, α) and val = (val1, val2,⊥).

− Similarly for S4 simulating the versions oracle, once there is a query, S4 gets all the {(vali, ti)}
pairs to be output, it can call Sim3 multiple times to simulate all the proofs for α = n where
n is the number of timestamps and values in {(vali, ti)}.

We will prove privacy through the following hybrids:

Hybrid 0: This is the real privacy game defined in the VKD construction. 2.

Hybrid 1: This is the same as the previous hybrid except now uses simulated proofs for “all”
aZKS

Hybrid 2: This is same as the previous hybrid except now simulated values for the “old” aZKS
as well. Note that this hybrid is completely simulated according to the simulator described
before.

32

We will now prove the indistinguishability of these hybrids:

Claim 1. Hybrid 0 ≈ Hybrid 1

Suppose there exists A who can distinguish between hybrids 0 and 1, then we can use him to
break the zero-knowledge of the “all” aZKS. Let B be an adversary of the aZKS game. It will
forward the public parameters that it receives to A and also setup the “old” aZKS honestly and
the acc SA to give all the public parameters to A. It will maintain a table T for labels and their
update times. Whenever A queries to the publish oracle with a set S, B checks the corresponding
version and computes a set S ′ with the marker nodes to query its update oracle on. It also honestly
computes set Sold for the older versions to do the update on “old” aZKS. Whenever B queries for
a proof, it queries the corresponding ”all” aZKS proofs and computes the ”old” proofs on its own
to give to B.

Hence if A has a non-negligible advantage of distinguishing between hybrids 1 and 2 then
B has a non-negligible advantage in winning the aZKS zero-knowledge game, which gives us a
contradiction.

Claim 2. Hybrid 1 ≈ Hybrid 2

It is similar to the previous proof such that now B is trying to use his game for the “old” aZKS
and not the “all”. The way of simulating the proofs is similar. Again, B maintains a table T of
versions to monitor the exact sets to be given to its oracle.

D Proof of Theorem 2

The completeness of the strong accumulator is straightforward. We will now prove soundness:
There are two ways for S∗ to win the soundness game; either by producing two verifying proofs
for two different values for some label wrt. the same comj∗ (Case 1) or by producing two verifying
proofs for two different values for some label wrt. an update which violates the append-only
property (Case 2). Suppose there was such a S∗ then we can use it to break either the collision
resistance of the underlying hash function.
Case 1: Let π1 = (h1

l , sib
1
1, . . . , sib

1
m−1) for sibi = (xi, hsi , ti,0, ti,1) for membership of (y1, val1) and

let π2 = (h2
l , sib

2
1, . . . , sib

2
m−1) for membership of (y2, val2) so that both are membership proofs for

label. Let us assume towards contradiction and suppose there exists some A that can produce two
verifying proofs with non negligible probability. We can use this A to break the collision resistance
of hash function H.

Let B be the adversary in the collision resistance game of H. B will give the hash function H
that he receives to A and all other parameters generated honestly. Now suppose A comes up with
π1, π2 with sibling paths as described above. A also has to come up with comj∗ such that both the
sibling paths hash to this value. We have that val1 6= val2 and of hy1 = hy2 then there is already
a collision for that value. Otherwise, there is collision at least one position till the root. B can
use this collision to win the collision resistance game with non negligible probability which gives
a contradiction. We can argue about the case of one membership proof and one non membership
proof similarly.
Case 2: We want to prove that a malicious S∗ cannot come up with an update Sj∗ and proof

πj
∗

S such that an element present before in the database has its value modified after the update.
If such an S∗ exists then we can use it to break the collision resistance of H. Since the update
proof verified it means that Zold, Znew in πj

∗

S exactly represent the labels in update set Sj∗ , Sj∗ does

33

not contain label and hence the hash value for label is part of Zconst. However both π1, π2 verified
with respect to comj∗ , val1 and comj∗+1, val2 respectively for val1 6= val2 and hence the hash values
from the path of label upto the root have to differ somewhere. But since comj∗ , comj∗+1 both are
consistent with the same Zconst, there has to be a collision somewhere on the path of label upto
the root contradicting collision resistance of H.

E Proof of Theorem 3

The completeness and soundness follows from the completeness and soundness of the strong ac-
cumulator and that of the underlying commitment scheme and sVRF. We will now prove zero-
knowledge. Let (SA.Setup, SA.Gen, SA.CommitDS, SA.Query, SA.Verify, SA.UpdateDS, SA.VerifyUpd)
be a compete and sound SA. Our simulator Sim = (Sim1, Sim2, Sim3, Sim4) will work as follows:

Sim1 works as follows: Run (params, tdS) ← sVRF.SimSetup(1λ) and then run (PK, SK) ←
sVRF.SimKeyGen(params, tdS). Also run (σ, tdC)← CS.SimSetup(1λ). Do ppSA. ← SA.Setup(1λ)
Output pp = ppSA., PKGen = [PK, params, σ] and st1 = (tdS, tdC , SK)

Sim2 works as follows: Given the size of datastore n, the simulator choose n values at random

r1, r2, . . . , rn
$← {0, 1}λ which will be a substitute for the n sVRF evaluations of the labels

in the datastore. For 1 ≤ i ≤ n, compute vi = CS.SimCommit(σ, tdC). Now Sim2 has
D′ = {(r1, v1), . . . , (rn, vn)} which it will commit to.

Compute (comSA.)← SA.CommitDS(pp,D)

Output com = comSA. and st2 = (R = {r1, . . . , rN}, v1, . . . , vn,D
′)

Sim3 works as follows: Initialize a list L of queries as empty. On query for element label, learn
the corresponding val from oracle access to the datastore.

Check if label exists in L and if yes output sVRF evaluation y as the corresponding ri

value stored with label. Else, choose ri
$← R and store (label, ri) in L. Also generate

πri = sVRF.SimProve(params, SK, label, r, tdS). Retrieve the vi associated to ri and run
SimOpen(σ, vi, tdC , (label, val)) to get a decommitment value τ to (label, val). Now compute
(πSA., vi)← SA.Query(ppSA.,D

′, ri).

Output Π = [(ri, πri , τ, vi, πSA.), val]

Sim4 works as follows: Suppose that there is an update request for set S such that |S| = k. It
initializes a set SSA. to empty. Create k dummy (l, v) pairs, by choosing k random values
and computing corresponding simulated commitments v = CS.SimCommit(σ, tdC). Add all
of them to SSA.. Do (com′,D′′, πS)← SA.UpdateDS(pp,D′, SSA.). Update the simulator state
to include the new (r, v) values.

We will now prove that for any malicious verification algorithm A, the interaction with the real
algorithms in indistinguishable from the interaction with the simulator described above. The proof
will go through following hybrids:

Hybrid 0: This is the zero knowledge game defined for the actual aZKS definition. 3.1.

Hybrid 1: This is the same as the previous hybrid except now use the simulator of the sVRF for
(params, tdS)← SimSetup(1λ). Use (PK, SK)← SimKeyGen(params, tdS) and output these as
PKGen, stGen.

34

Instead of computing zi = sVRF.Eval(params, SK, label), choose N random values correspond-
ing to each label and use πri ← SimProve(params, SK, label, ri, tdS) to create the corresponding
proof. Use the datastore as {(ri,CS.Commit(σ, (labeli, vali); si))} pairs.

On query for some label, if val 6= ⊥, there exists ri value corresponding to it and the simulated
proof πri . If val = ⊥, choose a random r such that r 6= ri for all 1 ≤ i ≤ N . Correspondingly
generate πr ← SimProve(params, SK, label, ri, tdS). Use these (ri, πri) values in the proofs.

Hybrid 2: This is same as the previous hybrid except now (σ, tdC) ← CS.SimSetup(1λ) and use
that as part of pp. While committing to (label, val) pairs, initially as well as in updates,
choose randomness si and create commitments comi ← CS.SimCommit(σ, tdC ; si).

On query labeli, which exists in the database, compute decommitments using τ = CS.SimOpen
(σ, tdC , (label, val), comi). This hybrid is in fact completely simulated.

We will now prove the indistinguishability of these hybrids:

Claim 3. Hybrid 0 ≈ Hybrid 1

Let us assume towards contradiction and suppose that A can distinguish between the two
hybrids with non negligible probability. We can use this A to break the simulatability of the
sVRF.

Let B be an adversary in the simulatability game of the sVRF (sVRF.Setup, sVRF.KeyGen,
sVRF.Eval, sVRF.Prove, sVRF.Verify). B gets real or simulated params from the simulatability game
which it provides to A. B also runs the setup to get σ ← CS.Setup(1λ) for a computationally
hiding perfectly binding commitment scheme (CS.Setup,CS.Commit,CS.Open) and the SA setup
to give all the parameters to A. On receiving the database from A, it uses SA.CommitDS() on the
modified datastore with the pairs {(ri,CS.Commit(σ, (labeli, vali); si))} and sends that commitment
to A. Whenever A queries for proofs for updates it will give query its oracle with respect to that
(labeli, ri) to get a real or simulated proof. It computes the remaining proof according to SA.Query()
and gives it to A.

Hence if A has a non-negligible advantage of distinguishing between hybrids 0 and 1 then B
has a non-negligible advantage in winning the simulatability game of the underlying sVRF since
it will be able to distinguish between real and simulated proofs, which gives us a contradiction.

Claim 4. Hybrid 1 ≈ Hybrid 2

Let us assume towards contradiction and suppose A can distinguish between the two hybrids
with non negligible probability. We can use this A to break the simulatability of the commitment
scheme.

Let B be the adversary in the simulatability game of the commitment scheme. It gets σ which
is either the an output of the CS.Setup(1λ) or CS.SimSetup(1λ) and it forwards that to A along
with the sVRF simulated parameters. It then gives the the (label, pairs from A′s database to its
commitment oracle and gets commitments v1, . . . , vn. B now uses SA.Setup() on the (ri, vi) pairs
and gives the commitment to A. When A queries for proofs, it will use its commitment oracle to
get either CS.Open value or CS.SimOpen value and give the corresponding τi as part of the proof.
Whenever there is an update, B asks for that many new commitment values to its oracle.

Hence if A has a non-negligible advantage of distinguishing between hybrids 1 and 2 then B has
a non-negligible advantage in winning the simulatability game of the commitment scheme since it
will be able to distinguish between real and simulated commitments and openings, which gives us
a contradiction.

35

Hence proved that there exists a Sim that can produce an indistinguishable distribution from that
of a real interaction for any adversary A.

F Proof Overview of Theorem 4

Completeness is straightforward. For soundness we want to make sure that if a label is updated at
times t1, . . . , tn with values v1, . . . , vn, if audit is successful between [t1, tn] then for some t∗ such
that tj ≤ t∗ < tj+1, a malicious server cannot give a verifying proof π∗ for some v∗ 6= vj. Since a
client monitors her key at every epoch, it means that the client verified proof πj for (label, vj) at
epoch tj. Hence at t∗ there will be two verifying proofs for label with two different values vj and
v∗. This means if the root is the same value hroot, there has to be a collision somewhere along the
path from label to the root for both the proofs to verify. This contradicts the collision resistance
of H.

Now we give an overview of L-privacy: Simulator first sets up simulated parameters of sVRF
and simulatable commitment scheme. For t = 1, simulator gets the size of the set |S1| = n. It
chooses n random values Y = {y1, . . . , yn} and builds a hash tree the same way as an honest
server. Instead of real commitments, it uses simulated commitments for values vi. It outputs
corresponding hroot and maintains the hash chain honestly. On receiving a query for some label, it
gets the corresponding value. If the label is queried for the first time, simulator chooses a random
position y ∈ Y for the label and simulates the sVRF proof and commitment opening accordingly.
At later points of time, simulator also gets P (labeli) for the labels that are already present and
being updated. It will simulate new commitments for those labels and update the hash values upto
the root accordingly. So if some labeli is queried, updated and queried again, the simulator can
give consistent proofs for the same just as the server does in reality. Hence the leakage in terms
pseudonyms of updated labels is inevitable for this construction causing a tracing attack.

36

