
SEEMless: Secure End-to-End Encrypted Messaging with less
Trust

Melissa Chase

Microsoft Research

melissac@microsoft.com

Apoorvaa Deshpande

Brown University

apoorvaa_deshpande@brown.edu

Esha Ghosh

Microsoft Research

esha.ghosh@microsoft.com

Harjasleen Malvai

Cornell University

hm553@cornell.edu

ABSTRACT
End-to-end encrypted messaging (E2E) is only secure if partici-

pants have a way to retrieve the correct public key for the desired

recipient. However, to make these systems usable, users must be

able to replace their keys (e.g. when they lose or reset their devices,

or reinstall their app), and we cannot assume any cryptographic

means of authenticating the new keys. In the current E2E systems,

the service provider manages the directory of public keys of its reg-

istered users; this allows a compromised or coerced service provider

to introduce their own keys and execute a man in the middle attack.

Building on the approach of CONIKS (Melara et al, USENIX Secu-

rity ‘15), we formalize the notion of a Privacy-Preserving Verifiable
Key Directory (VKD): a system which allows users to monitor the

keys that the service is distributing on their behalf. We then propose

a new VKD scheme which we call SEEMless, which improves on

prior work in terms of privacy and scalability. In particular, our new

approach allows key changes to take effect almost immediately; we

show experimentally that our scheme easily supports delays less

than a minute, in contrast to previous work which proposes a delay

of one hour.

KEYWORDS
Privacy-preserving verifiable directory service, Zero knowledge

sets, Accumulators, Persistent Patricia Trie, History Tree, PKI,

Transparency, Security definitions

1 INTRODUCTION
A number of popular messaging apps such as iMessage, WhatsApp

and Signal have recently deployed end-to-end encryption (E2EE)

in an attempt to mitigate some of the serious privacy concerns

that arise in these services. E2EE is a system of communication

where only encrypted messages leave the sender’s device. These

messages are then downloaded and decrypted on the recipient’s

device, ensuring that only the communicating users can read the

messages. But E2EE relies on a Public Key Infrastructure (PKI); this

in practice requires the provider of the messaging service (such as

Apple, Facebook, Microsoft etc.) to maintain a centralized directory

of the public keys of its registered users. To be accessible to average

users, these systems assume the user will store her secret key on

her personal device, and do not assume she has any other way to

store long term secrets. When a user loses her device (and thus her

secret key), she will need to generate a new (secret key, public key)

pair and replace her old public key stored in the PKI with the newly

generated public key.

Such a system naturally places a lot of trust in the service

provider – a malicious service provider (or one who is compelled to

act maliciously, possibly because of a compromise) can arbitrarily

set and reset users’ public keys. It might, for example replace an hon-

est user’s public key with one whose secret key it knows, and thus

implement a man-in-the-middle attack without the communicating

users ever noticing. Ironically, this defeats the purpose of E2EE.

Without some way of verifying that the service provider is indeed

returning the correct keys, E2E encryption does not provide any

protection against malicious (or coerced) service providers. This

problem has been well recognized as an important and challenging

open problem [15, 21, 26].

Some service providers provide a security setting option to no-

tify a sender when a recipient’s public key changes. In WhatsApp,

the sender can scan a QR code on the recipient’s device to verify

the authenticity of the new public key. Skype encrypted messaging

provides a similar interface for checking fingerprints. This option,

however, is turned off by default to provide a seamless user expe-

rience. Moreover, the communicating users will be able to verify

each other’s QR codes only if their devices are physically close to

each other, which is most often not the case. And these features are

something few users use, as is evidently uncovered in this attack [1].

To enable E2EE with real security, we need to keep the inher-

ent constraints of the system in mind. To begin with, the primary

objective of any E2EE messaging system is to provide a secure and
seamless communication service between remote users. This prob-

lem is made even more challenging by the fact that we must assume

that a user can lose her device and along with it all of her secrets.

Moreover, in our attempt to reduce trust on the service provider,

we must not introduce any new attack surface. For example, if we

introduce a mechanism that will enable a user to verify that she is

receiving the correct key of the intended recipient, this mechanism

should not leak any additional information about the other users

and the public keys they have registered with the service provider.

Privacymay not be very important in a traditional PKI, where all the

players are usually public entities like businesses, but in the context

of private messaging, privacy is very important. Hiding usernames

may help prevent spam messaging. And the user’s update pattern

may itself be sensitive information. Users change their keys primar-

ily when they change devices, or detect that their devices/keys have

been compromised, either of which may be sensitive. Moreover, if

a user rarely changes her key, then compromising her secret key

1

gives the attacker the ability to decrypt large volumes of messages

at once, making her a more vulnerable and attractive target. Or if a

device is compromised but the user does not update her key, then

the attacker knows the compromise has gone undetected.

Recently, Keybase has rolled out an auditable key directory ser-

vice that aims to reduce trust on the centralized service provider

managing the public key distribution [16, 17]. While we are aiming

to solve a similar problem, the solution proposed by Keybase is

significantly different from ours in the assumptions they make. Key-

base assumes that the users have multiple truted devices the and

they have access to long-term cryptographic signature keys with

which they sign all their encryption key updates. This multiple-

device assumption already rules out a good chunk of the end-user

population. Moreover, for an end user, it is incredibly difficult to

manage cryptographic keys, so we believe this assumption is not

very realistic. Our system can also support these power users who
can sign all their updates, but this is not a requirement. Another

significant difference between our goals is the privacy requirement.

All the key changes by the end-users in Keybase are publicly avail-

able, so their system does not provide any privacy for the end-users.

Finally, contrary to our design, the Keybase solution assumes that

Alice posts her latest signature verification key on some social me-

dia platform [16], which Bob will have to lookup to get assurance

that he is seeing the latest encryption key for Alice. This introduces

significant overhead for both Alice and Bob.

We design and provide a prototype implementation of SEEMless –

a privacy-preserving directory service for end-user key verification.

We also initiate the study of the privacy and security guarantees of

such a key directory service formally. Our major contributions are

the following.

Formalizing Key Directory Services. We formalize the secu-

rity and privacy requirements of a verifiable key directory service,

(such as SEEMless, CONIKS [21], EthIKS [4]), in terms of a new

primitive that we call Verifiable Key Directories (VKD) (Section 2).

A VKD consists of three types of entities: an identity provider or

server, users, and external auditors. The server stores a directory

Dir with the names of the users and their corresponding keys. VKD

provides different query interfaces to the users to interact with the

server: 1. Alice can register her (username, key) to Dir and update it
at any point

∗
2. Bob can query for Alice’s key 3. Alice can obtain the

history of her key updates. This last query allows Alice to verify that

the only key updates that occurred were those that she requested

(we assume that Alice roughly remembers when she changed her

device or reinstalled her software forcing a key update). Note that

we do not assume Alice can remember any cryptographic secret as

she can lose her device any time. We discuss the assumptions we

make for a VKD system in Section 4.

A key criterion of such a system is that Alice must be able to

verify that any user Bob who queried for her key received a value

consistent with what the server tells her when she checks her key

history. To enable consistency checking, a VKD server periodically

signs and publishes a privacy-preserving digest of its latest Dir.
We assume an additional set of parties which we call auditors who

∗
We assume that the identity provider can verify that the update request comes

from Alice through some out-of-band, non-cryptographic check, like verifying security

questions, sending a text to an appropriate phone number, and/or requiring voice or

in person communication.

help verify that the server is showing the same view of Dir to all

its users by periodically auditing these digests. These auditors are

not trusted for privacy, so any interested party (privacy conscious

users, or privacy advocacy organizations) can serve as an auditior.

If a VKD server ever tries to equivocate by issuing multiple keys

for a single username, this would require publishing invalid digests

or conflicting digests which would provide irrefutable proof of the

server’s equivocation.

Soundness of a VKD requires that Bob sees Alice’s latest key as long

as Alice has checked her key history and there is at least one honest

auditor that audited each of the published server digests. Privacy is

parameterized by a well specified leakage function L; informally,

we require that the published digests and the proofs should not leak

any information about Dir beyond the query answer and L(Dir).
For example, for every query performed by the users or auditors,

our construction leaks the total number of key registrations and

updates performed so far. In addition, when Bob queries for Alice’s

key, he learns when Alice’s key was last updated and how many

times she has changed her key so far, but nothing else about her

past or future updates, or about any other user.

Specifying a precise leakage function leads to a better understand-

ing of the privacy guarantee of any VKD system. As a concrete

example, we were able to identify a tracing attack in current imple-

mentations [4, 21] through which it might be possible to trace the

entire update history of a particular user. This means once Alice

queried for Bob’s key, she might be able to completely trace when

Bob’s key changed without ever querying for his key again. Even

if Bob has deleted Alice from his contact list (and the server does

not give out Alice’s key to Bob after he has removed Alice from

his contact list), Alice will still be able to trace when Bob’s key

changed just my looking at the proof of her own key. We explain

the technical details of this attack in Appendix D.

Building Blocks. We take a modular approach in designing our

VKD system, SEEMless (Section 4). We first define a new primitive,

Append-Only Zero Knowledge Set (aZKS), that generalizes the defini-
tion of a traditional static zero-knowledge set [6, 22] by accounting

for updates. We construct SEEMless using aZKS in a blackbox way.

Then we construct aZKS modularly from a strong accumulator [5]
and a verifiable random function [7]. By providing modular con-

structions, we simplify the presentation and analysis and allow for

independent study of each of these building blocks: an improve-

ment in any of them would directly translate to improvement in

SEEMless.

The high level idea in our VKD construction (Section 4) is to use

aZKS to commit to the current directory and an append-onlyMerkle

Hash Tree to efficiently maintain server commitments over time.

A zero knowledge set allows a server to commit to a set of (label,

value) pairs, respond to lookup queries for different labels, and prove

that those responses are correct without revealing any additional

information. Append-only ZKS allow for additional pairs to be

added to the database; that is the only legal update. Since the aZKS
is append only and each label can only appear once, we append

each username with a version number showing how many times

that key has been updated so far.

We use two aZKS; one which consists of all the (username | version,

key) pairs corresponding to all the updates made so far. The other

aZKS has (username | version, key) pairs with all the versions

except the latest, i.e. the versions that are now old. The purpose of

maintaining two aZKS is to prevent the server from serving stale

keys; now when Alice updates her key, instead of deleting the old

entry, the server will add it to the “old” aZKS, and when Bob queries
for Alice’s key the server will additionally prove that the entry it

returns is not “old”. We have a more sophisticated approach for

preventing the server from showing Bob a higher version number

for Alice’s key, which involves storing a “marker” every 2
i
th update;

we defer details to Section 4.

Auditors in the system will verify that (1) the server’s published

commitments are linearly ordered and (2) the underlying aZKS are

indeed append-only. The first goal can be achieved using a hash

chain (or for improved efficiency an append-only Merkle Hash Tree

as described above). SEEMless does not take a position on how to

ensure that users and auditors eventually see the same commit-

ments. This can be achieved either with a gossip protocol [21] or

by posting the commitments on a public blockchain like [4, 27].

Persistent Patricia Trie. Recall that SEEMless provides a

KeyHistory API which allows Alice to audit all her key changes.

Adding this functionality requires the server to maintain the

history of the two aZKS starting with the very first epoch; the same

is true for CONIKs in order to support users who are not always

online. This is obviously very space consuming and wasteful

since there might be a significant overlap between the aZKS of

consecutive epochs. Motivated by this constraint, we develop a

Persistent Patricia Trie (PPTr) data structure and use it to build a

persistent version of our strong accumulator, i.e. one in which

we can also answer queries relative to older versions of the data

structure. This directly translates to space-efficient persistent

aZKS. PPTr is a space-efficient history-preserving data structure

(like history tree [24]) which lets the server generate historical

proofs (KeyHistory in our case) efficiently. The details of PPTr are

in Section 6. Our PPTr construction presents a way of maintaining

any temporal, append-only, authenticated log of data. We believe

PPTr will find applications in several contexts, e.g. tamper-evident

logging, distributed identity providers and distributed certificate

authorities and may be of independent interest.

Epoch length. One key parameter in a VKD is the length of the

epochs between server updates. Note that, when Alice updates her

key, the change is not reflected in the server’s digest until the next

update. This presents two options: either the server can continue to

respond with the old key until the end of the epoch, or the server

can respond with a key which is not consistent with the digest.

CONIKS proposes this latter approach; it is unclear how the user

can verify that this new key is in fact correct. In our solution, we

propose making the epochs short enough that we can take the

first approach without significantly affecting security or usability

of the system. This requires significant efficiency and scalability

improvements over previous work.

Privacy and Efficiency Improvement. SEEMless improves

upon the existing VKD constructions [4, 21] on privacy and

scalability aspects. Our construction is more space efficient for

the server, thanks to our PPTr construction. In particular, the

space required depends not on the number of epochs, but only

on the number of key updates performed, despite the fact that

we must be able to answer questions about historical key values.

We also significantly improve on the monitoring cost of [4, 21].

CONIKS [21] required that Alice query the server for every epoch

to ensure that her key was correct at that time; this meant both

that epochs couldn’t be too short without substantial burden on

the system, and that a user who was offline for a period would

have to perform all the checks for that time on coming back online.

ETHIKS [4] improved this, by moving most of the work to the

blockchain, but the epoch length is still limited by the blockchain

block frequency.
†
In our system, using the KeyHistory API, Alice

can monitor her key revisions with cost that depends on the

number of times her key has been updated rather than the number

of epochs that have passed. Similarly she can be offline for several

server epochs and can run KeyHistory when she comes online.

This together with the storage improvements mean that we can

support much shorter epochs, which in turn leads to a more secure

system as discussed above, in that Alice’s key updates can be

very quickly reflected in the directory. Finally, our construction

provides stronger privacy guarantees compared to [4, 21].

Experiments. We give a prototype implementation of our VKD

system, SEEMless and experimentally evaluate the cost incurred

for the users, the server and the auditors. We also run CONIKS

to fairly compare our performance costs. Note that our prototype

only implements a privacy-preserving verifiable key directory which

can be integrated with an E2E Encrypted messaging system. In our

experiments, the cost of lookup query in SEEMless is slightly more

expensive than in CONIKS (at most 3×) due to our stronger privacy

guarantees, but it is still about 10ms from request to complete

verification, which is reasonably fast. However, SEEMless performs

and scales well with frequent server updates, as opposed to CONIKS.

For the same update frequency and experimental setup, CONIKS

cannot handle more than 4.5M users, owing to the inefficiency of

their underlying data structure (our system could handle 10M users

seamlessly) and hangs with more frequent epochs due to garbage

collection overhead. Moreover, users of SEEMless need not monitor

their keys as frequently as the server publishes its digest; they

can verify their entire key history by downloading around 2MB

(even if they are updating their keys often) when they come back

online; in contrast, a CONIKS, user will need to download about

577MB in a similar scenario, which makes the monitoring cost

quickly infeasible. The details of our experiments and performance

comparison with CONIKS is in Section 7.

Organization of the paper In Section 2, we define the primitive of

Verifiable Key Directories (VKD) along with the security properties.

In Section 3, we define append-only Zero Knowledge Sets (aZKS)
which is a building block for VKD construction. In Section 4, we

describe our SEEMless construction starting with an overview of

the same. In Section 5, we give concrete instantiations of aZKS. In
Section 6 we describe our space efficient Persistent Patricia Trie

construction. We present our prototype implementation and per-

formance results in Section 7. Finally, in Appendix A we discuss

some design considerations, including assumptions we are making

†
It also required Alice to remember her last version number which we feel is less

natural to remember.

about the users, the underlying infrastructure, and the way that

this system would be integrated with a messaging app.

2 VERIFIABLE KEY DIRECTORY (VKD)
In this section, we will define the primitive of a Verifiable Key
Directory (VKD) and formalize its properties. The goal of a VKD is

to capture the functionality and security of a privacy-preserving

verifiable key directory system such as CONIKS or EthIKS [4, 21].

A VKD consists of three types of parties: an identity provider

or server, clients or users and external auditors. The server stores

a directory Dir with the names of the users (which we call labels)

and their corresponding public keys (the values corresponding to

the labels). For the ease of exposition, let Alice and Bob be two

users. VKD provides the following query interface to the users. 1)

Alice can add her (username, key), i.e., (label=username, val=key),
to Dir. 2) Alice can update her key and request that Dir be updated
with the new key value. 3) She can query the server periodically to

obtain history of her key updates over time (VKD.KeyHistory). 4)
Bob can also query for the key corresponding to username Alice

(VKD.Query) at the current time.

The functionality VKD.KeyHistory warrants further discussion

since this is not a functionality that one usually expects from a key

directory service. In a privacy-preserving verifiable key directory

service, intuitively, we expect the server to be able to prove to Bob

that he is seeing Alice’s latest key without leaking any additional

information about the directory. This is trivial to achieve if we

assume that Alice can always sign her new public key with her

old secret key. But this is a completely unreasonable assumption

from an average user who may lose her device or re-install the

software, thereby losing her previous secret key; the user will only

have access to her latest secret key which is stored on her latest

device. It is crucial to not assume that Alice or Bob can remember

any cryptographic secret. Under this constraint, we need Alice to

monitor her key sufficiently often to make sure her latest key is

in the server directory. Only then, we can talk about Bob getting

Alice’s latest key in a meaningful way. Alice could of course check

every epoch to make sure that her key is being correctly reported,

but this becomes costly, particularly when epochs are short. Instead,

we allow Alice to query periodically and retrieve a list of all the

times her key has changed and the resulting values. This is precisely

the VKD.KeyHistory interface which Alice users to monitor her

own key.

The server applies updates from its users (of type 1 and 2 de-

scribed above) in batches, and publishes a commitment to the cur-

rent state of the database com and proof ΠUpd
that a valid update

has been performed (VKD.Publish). The batch updates should hap-

pen at sufficiently frequent intervals of time, so that the user’s keys

are not out-of-date for long. The exact interval between these time

intervals, or epochs has to be chosen as a system parameter. We

use time and epoch interchangeably in our descriptions. The server

also publishes a public datastructure which maintains information

about all the commitments so far.

The auditors in the system keep checking the update proofs

and the public datastructure in order to ensure global consistency

(VKD.Audit) of Dir. Our definition captures a general notion of

audit where independent auditors can audit arbitrary intervals

[t1, tn]. The audit need not be monolithic and can consist of many

independent audit steps. As long as some honest auditor executes

each audit step, soundness will be guaranteed.

The server also produces proofs for VKD.Query and

VKD.KeyHistory. At a very high level, the users verify the

proofs (VKD.QueryVer,VKD.HistoryVer) to ensure that the server

is not returning an incorrect key corresponding to a username

or an inconsistent key history for the keys corresponding to a

username. VKD also requires the proofs to be privacy-preserving,

i.e., the proofs should not leak information about any other key

(that has not been queried) in Dir. The auditors may not be

trusted and hence, the proofs that the server produces as part of

VKD.Publish need to be privacy-preserving. Since the auditors do

not have to be trusted with any private information, anyone can

become an auditor.

Definition 1. A Verifiable Key Directory is com-

prised of the algorithms (VKD.Publish,VKD.Query,
VKD.QueryVer,VKD.KeyHistory,VKD.HistoryVer,VKD.Audit)
and all the algorithms have access to the system parameters. We

do not make the system parameters explicit. The algorithms are

described below.

Periodic Publish:
◃(comt ,Π

Upd
t , stt ,Dirt)←VKD.Publish(Dirt−1, stt−1, St):

This algorithm takes the previous state of the server and the key

directory at previous epoch t − 1 and also a set St of elements to be

updated. Whenever a client submits a request to add a new label or
update an existing label from epochs t − 1 to t , the corresponding
(label, val) pair is added to St to be added in the VKD at epoch t .
The algorithm produces a commitment to the current state of the

directory comt and a proof of valid update ΠUpd
all of which it

broadcasts at epoch t . It also outputs the updated directory Dirt
and an updated internal state stt . If this is the first epoch, i.e., no
previous epoch exists, then the server initializes an empty directory

and its internal state first, then updates them as described above.

We will denote (comt ,Π
Upd
t) as pubt .

Querying for a Label:
◃ (val,π) ← VKD.Query(stt ,Dirt , label) : This algorithm takes the

current state of the server for epoch t , the directory Dirt at that
epoch and a query label label and returns the corresponding value

if it is present in the current directory, ⊥ if it is not present, a proof

of membership or non-membership respectively.

◃ 1/0← VKD.QueryVer(com, label, (val,π)) :

This algorithm takes a commitment with respect to some epoch, a

label, value pair and verifies the above proof.

Checking Consistency of Key Updates:
◃ ({(vali , ti)}ni=1,Π

Ver) ← VKD.KeyHistory(stt ,Dirt , label): This

algorithm takes in the server state, the directory at current time

t and a label. It outputs {(vali , ti)}ni=1 which are all the times at

which the value corresponding to label was updated so far, the

resulting val’s, along with a proof ΠVer
.

◃ 1/0 ← VKD.HistoryVer(comt , label, {(vali , ti)}ni=1,Π
Ver): This

algorithm takes the commitment published by the server for the

current time t , a label, and {(vali , ti)}ni=1, and verifies the above

proof.

Auditing the VKD:

◃ 1/0 ← VKD.Audit(t1, tn , {pubt }
tn
t=t1): This algorithm takes the

epochs t1 and tn between which audit is being done, the server’s

published pub for all the epochs from times t1 to tn . It outputs a
boolean indicating whether the audit is successful.

Note that for auditing we assume that all auditors see consistent

versions of published commitments and the users see the same com-

mitments as the auditors. That is, everyone sees the same broad-

cast values comt at any epoch t . This can be enforced in different

ways. For a discussion on the different implementation mechanisms,

please see the assumptions on the system in Section A.

Now we discuss the security properties we require from a VKD.

We give the informal descriptions here and defer the formal defini-

tions to Appendix C. The security properties are the following.

• Completeness: We want to say that if a VKD is set up prop-

erly and if the server behaves honestly at all epochs, then all the

following things should happen for any label updated at t1, . . . , tn
with val1, . . . , valn : 1) their history proof with {(vali , ti)}ni=1 and
ΠVer

should verify at tn 2) the query proof for the label at any

tj ≤ t∗ < tj+1 should verify with respect to the value consistent

with the versions proof at tj which is valj and 3) the audit from

epochs t1 to tn should verify.

Note that for KeyHistory and HistoryVer, we consider epochs

t1, t2, . . . , tn when the updates have happened for a label. These
will be epochs distributed in the range [t1, tn]. However for Audit,
we consider all possible pairwise epochs between t1 and tn . For ex-
ample, for t1 = 3 to tn = 10, there might be updates at 3, 5, 8, 10 but

for audit we need to consider all of the epochs 3, 4, 5, 6, 7, 8, 9, 10.

• Soundness: VKD soundness guarantees that if Alice has verified

the update history of her key till time tn and if there exists at least

one honest auditor whose audits have been successful from the

beginning of time till time tn then, whenever Bob queried before

tn , he would have received Alice’s key value that is consistent with

the key value reported in Alice’s history query. Thus soundness is

derived from all of VKD.Publish, VKD.QueryVer, VKD.HistoryVer
and VKD.Audit.
Note that the onus is on the user, Alice, to make sure that the server

is giving out the most recent and correct value for her key. Sound-
ness guarantees that under the circumstances described above, Bob

will always see a key consistent with what Alice has audited. But

Alice needs to verify that her key as reported in the history query

is consistent with the actual key that she chose.

• Privacy: The privacy guarantee of a VKD system is that the

outputs of Query, HistoryVer or Audit should not reveal anything

beyond the answer and a well defined leakage function on the state

of the directory. In other words, the proofs for each of these queries

should be simulatable given the output of the leakage function and

the query answer.

3 APPEND-ONLY ZERO KNOWLEDGE SET
(AZKS)

In this section we introduce a new primitive, Append-Only Zero
Knowledge Set (aZKS) which we will use to build SEEMless. Zero

Knowledge Set [6, 22] (ZKS) is a primitive that lets a (potentially

malicious) prover commit to a static collection of (label,value) pairs

(where the labels form a set) such that: 1) the commitment is suc-

cinct and does not leak any information about the committed col-

lection 2) the prover can prove statements about membership/non-

membership of labels (from the domain of the labels) in the commit-

ted collection with respect to the succinct commitment 3) the proofs

are efficient and do not leak any information about the rest of the

committed collection. Our primitive, Append-Only Zero Knowledge
Set (aZKS) generalizes the traditional zero-knowledge set primi-

tive by accounting for append-only updates and characterizing the

collection with a leakage function.

Here it is worth pointing out that the notion of soundness one

would expect from updates in a ZKS is not obvious. For example,

if the expectation is that updates leak absolutely no information

about the underlying sets or type of updates (inserts/deletes), then

there is no reasonable definition of soundness of updates: any set

the prover chooses will be the result of some valid set of updates.

In [20], Liskov did not define any soundness notion for updates.

In our context, we want to be able to define an append-only ZKS,

which makes the expectation of update soundness clear: it should

ensure for any label, its value never gets modified and in particular,

it never gets deleted.

Here we describe the primitive and informally define its security

properties. The formal security definition is in Appendix G.

Definition 2. Append-Only Zero Knowledge Set is com-

prised of the algorithms (ZKS.CommitDS, ZKS.Query, ZKS.Verify,
ZKS.UpdateDS, ZKS.VerifyUpd)‡ described as follows:

◃ (com, stcom) ← ZKS.CommitDS(1λ ,D) : This algorithm takes

the security parameter and the datastore to commit to as input,

and produces a commitment to the data store and an internal state

to pass on to the Query algorithm. Datastore D will be a collection

of (label, val) pairs.

◃ (π , val) ← ZKS.Query(stcom,D, label) : This algorithm takes the

state output byZKS.CommitDS, the datastore and a query label and
returns its value (⊥ if not present) and a proof of membership/non-

membership.

◃ 1/0← ZKS.Verify(com, label, val,π) : This algorithm takes a (la-

bel, value) pair, its proof and a commitment by ZKS.CommitDS
and verifies the above proof.

◃ (com′, st′com,D
′,πS) ← ZKS.UpdateDS(stcom,D, S): This algo-

rithm takes in the current server state stcom, the current state of the
datastore and a set S = {(label1, val1), . . . , (labelk , valk)} of new
(label, value) pairs for update. It outputs an updated commitment to

the datastore, an updated internal state and an updated version of

the datastore and proof πS that the update has been done correctly.

◃ 0/1← ZKS.VerifyUpd(com, com′,πS) : This algorithm takes in

two commitments to the datastore before and after an update and

verifies the above proof.

We require the following security properties of an append-only ZKS:
Soundness: For soundness we want to capture two things: First,

a malicious prover A∗ algorithm should not be able to produce

‡
The original ZKS definition also included a setup algorithm run by a trusted

party to generate public parameters used in all the algorithms. Our construction does

not need such a set up (we show security in the random oracle model), so we omit it

here.

two verifying proofs for two different values for the same label
with respect to a com. Second, since the aZKS is append-only, a

malicious server should not be able to change or delete an existing

label.

Zero-Knowledge with Leakage: We generalize the definition

ZKS [6, 22] by introducing leakage functions in the classical defini-

tion. The goal of our privacy definition is to capture the following:

we want the query proofs and update proofs to leak no information

beyond the query answer (which is a val/⊥ in case of query and

a bit indicating validity of the update operation). But often, it is

reasonable to tolerate a small leakage to gain more efficiency. To

capture this sort of leakage formally, we parameterize our definition

with a leakage function. If the leakage function is set to null, then

our definition reduces to the classical ZKS definition.

Append-Only Strong Accumulator: Finally, we remark that the

primitive strong accumulator (SA) [5] can be extended to a new

primitive of append-only strong accumulator (aSA) trivially from the

definition of aZKS. An aSA is essentially a aZKSwith completeness

and soundness and without the privacy requirement. In Section 5,

we will first construct an efficient aSA and then construct aZKS
using aSA in a blackbox way.

4 SEEMLESS CONSTRUCTION
In this section, we will describe SEEMless: our construction of

VKD from append-only zero-knowledge sets (aZKS). We first give

an informal overview of the construction and then describe the

construction more formally.

System Setup: The high level idea is to have two aZKS that are

updated every epoch: one is what we call the “all” aZKS which

consists of the entries for all the updates of a label so far. Here label

is the username and the value is the user’s public key. The other

aZKS that we will refer to as “old” aZKS has entries with all the

versions of the label except the latest, versions that are now old.

The purpose of maintaining two aZKS is that when a user Alice

updates her key, instead of deleting the old entry, it will be added

to the “old” aZKS. This means we can use an append operation to

capture key updates, while relying on the append-only property

to guarantee that the server maintains an accurate record of past

updates. In both of these aZKS, the server stores each (label, value)

pair along with its version number, so when an item is initially

added, we add (label| 1, val) indicating that this label is on version

1. The “all” aZKS will also include marker entries i for version 2
i
of

each label. Intuitively, the markers will help limit the checks that

Alice needs to make when verifying her key history. It will help

her make sure that the server is not responding to queries with

version numbers much higher than the correct version. The server

also stores an internal table T with a list for each label of all of the

epochs when it has been updated. The server also maintains a hash

chain with each pair of “old” and “all” aZKS commitments. We refer

to the head of this hashchain at time t as comt .

Remark 1. We describe our construction with a hash chain to
avoid confusion with the Merkle tree used in our aSA construction
in Section 5.1. However, we note that this could instead be replaced
with a Merkle tree built over the list of all commitments to date. This
would result in slightly higher update and audit costs (adding a new
entry to the end of this list would require up to a logarithmic number

of hashes), but would significantly reduce the cost of history queries
(from linear in the number of epochs to logarithmic). We discuss this
in Section 7 (Update, Gethistory and Audit experiments).

Periodic Publish: At every epoch, the server gets a set St of (label,
value) pairs that have to be added to the VKD. The server first checks

if the label already exists for some version α − 1, else sets α = 1.

It adds a new entry (label | α , val) to the “all” aZKS and also adds

(label | α −1, valold) to the “old” aZKS for the label’s previous value
valold if it exists i.e. for α > 1. If the new version α = 2

i
for some i ,

then the server adds a marker entry (label |mark | i,“marker”) to the

“all” aZKS. The server computes commitments to both the aZKS, and
adds them to the hash chain to obtain a new head comt . It also pro-

duces a proof ΠUpd
consisting of the previous and new pair of aZKS

commitments comall,t−1, comall,t and comold,t−1, comold,t and the

corresponding aZKS update proofs. However, the auditors can get

the update proofs from the server by explicitly querying it, i.e.,

the server need not broadcast them along with the new hashchain

head comt . We don’t require any non-tamperability or privacy

guarantees of the distribution mechanism of the update proofs.

Querying for a Label Value:When a client Bob queries for Alice’s

label, he should get the val corresponding to the latest version α
for Alice’s label and a proof of correctness. Bob gets three proofs

in total: First is the membership proof of (label | α , val) in the “all”

aZKS. Second is the membership proof of the most recent marker

entry (label |mark |a) for α ≥ 2
a
. And third is non membership

proof of label | α in the “old” aZKS. Proof 2 ensures that Bob is

not getting a value higher than Alice’s current version and proof 3

ensures that Bob is not getting an old version for Alice’s label.

Querying for the History of Key Updates: Now we are explic-

itly maintaining versions in the construction and hence one label

will have multiple entries associated with it depending on the num-

ber of times it was updated. Perhaps a malicious server can give out

an older version of the label or it could create an entry correspond-

ing to a later version on its own and give that whenever someone

queries. In order to prevent these behaviors we incorporate the

some checks in the key history queries. The purpose of each of

these checks are described in the algorithm description.

Auditing:Auditors will audit the commitments and proofs to make

sure that no entries ever get deleted in either aZKS. They do so by

verifying the update proofs ΠUpd
output by the server. They also

check that at each epoch both aZKS commitments are added to the

hash chain. Note that, while the Audit interface gives a monolithic

audit algorithm, our audit is just checking the updates between

each adjacent pair of aZKS commitments, so it can be performed

by many auditors in parallel. For security, it is sufficient to have at

least one honest auditor perform audits over each adjacent pair.

Privacy: The main insight for the gain in privacy is that in our

construction we always add new entries since we are using aZKS,
we never delete or update existing entries. This hides which entries

are being updated and hides the lifespan of each key. However,

our construction does leak some benign information that we make

explicit in each algorithm description (Query, History and Audit).

VKD CONSTRUCTION: In the construction we assume that the

server’s identity and public key is known to each user and auditor

Notation Description

T A table containing usernames (labels) and all epochs at

which their values were updated until the current epochs.

Dall,t A datastore containing all the label-value pairs until

epoch t .

Dold,t A datastore containing all the stale label-value pairs until
epoch t .

Dirt The ordered pair (Dall,t ,Dold,t).

stall,t The internal state of the aZKS built on Dall,t .

stold,t The internal state of the aZKS built on Dold,t .

stt The internal state of the VKD at epoch t .

St The set of elements (updates to existing usernames and

new registrations) added between epochs t − 1 and t .

αi The version number of the value corresponding to labeli .
Sometimes written as αlabeli

Table 1: Notation for our VKD construction.
T Dall,t−1 Dold,t−1
(bob,
{10, 100})

(bob |1, PKb,1) (bob |mark |0, . . .)

(bob |2, PKb,2) (bob |mark |1, . . .)
(bob |1, null)

Entries at epoch t − 1
St
(requested up-

dates)

Mt S ′t
(for Dall,t)

Soldt
(updates

to existing

labels)

Sold
′

t
(for

Dold,t)

(bob, PKb,3)

(alice,PKa,1)

alice |mark |0 (bob |3, PKb,3)

(alice |1, PKa,1)

(bob,PKb,3) (bob |2,
null)

Sets for new entries to be added at epoch t
T Dall,t Dold,t
(bob,
{10, 100, t })
(alice, {t })

(bob |1, PKb,1) (bob |mark |0,. . .)
(bob |2, PKb,2) (bob |mark |1,. . .)
(bob |3, PKb,3)

(alice |1, PKa,1) (alice |mark |0, . . .)

(bob |1, null)
(bob |2, null)

Entries at epoch t

Table 2: An examplewith two users, with views of data struc-
tures at epochs t − 1 and t .

and all the messages from the server are signed under the server’s

key, so that the server cannot be impersonated.

Along with the steps of our construction, we will provide a

running example for expositional clarity.

Consider a VKD with 2 chat client users, in which the labels

are usernames and the values are the corresponding public

keys. Suppose at some point in time between server epochs

t − 1 and t , alice requested registration with her first ever

public key PKa,1 and an existing user bob requested to update
his public key for the 2nd time to PKb,3. These values will

reflect in the VKD at epoch t . Previously, bob registered his

first key PKbob, 1 at server epoch 10 and updated it to PKbob, 2
at server epoch 100.

◃ VKD.Publish(Dirt−1, stt−1, St) :

t = 0: This is when we are setting up the directory for

the first time and let Dir0 = (Dall,0,Dold,0) as in Ta-

ble 1 with the Dall,0,Dold,0 are initialized to empty. Com-

pute (comall,0, stall,0) ← ZKS.CommitDS(stall,Dall,0) and

(comold,0, stold,0) ← ZKS.CommitDS(stold,Dold,0). Set the hash

chain head to com0 = H (H (comall,0, comold,0), 0). Also, initializeT
as in Table 1.

Output com0 , st0 = (stall,0, stold,0,T ,Dir0).
t > 0: Let St = {(label1,v1), . . . , (labelk ,vk)} be the (label, value)
pairs to be added to the VKD at epoch t . These could be new addi-

tions or updates to existing labels.

• For each labeli ∈ St , such that labeli is present in T , append t
to the list of epochs corresponding to labeli . For a new labeli ,
add (labeli , {t}) to T . Let βi be the number of entries in T for

labeli (not including the newest entry, t). βi = 0 if labeli has
no previous entries associated with it. αi = βi +1 is the version
number of the new key. In our example, since the label alice
is being added to the VKD for the first time, αalice would be 1.
For bob a third value is being added, so αbob would be 3. Based
on the version number, we will create the (label, value) pairs

to be added in the “all” aZKS.
• If for any labeli , αi = 2

y
for some y ≥ 0 add

the following (label, value) pair to the marker set Mt :

(labeli | mark | y, “marker entry 2
y
for labeli ”).

• Compute new update set to update Dall,t−1 to Dall,t : S
′
t =

{(label′i , vali) | (labeli , vali) ∈ St ∧ label′i = label| αi }. See
Table 2 for concrete examples. Compute the update on the

“all” aZKS for the set S ′t ∪Mt : (comall,t , stall,t ,Dall,t ,πSt) ←
ZKS.UpdateDS(stall,t−1,Dall,t−1, S

′
t ∪Mt).

• Form a new set of (label, value) pairs to be added to the

“old” aZKS. Let Soldt be the list of entries in St that are up-

dates to existing labels. For each labeli ∈ Soldt , concatenate it

with its version αi − 1 before the update. Hence, let Sold
′

t =

{(label′i , null)|(labeli , vali) ∈ Soldt ∧ label′i = labeli | αi − 1}.

For the “old” tree, compute (comold,t , stold,t ,Dold,t ,πSold
t
) ←

ZKS.UpdateDS(stold,t−1,Dold,t−1, S
old′
t). See examples of

these sets in Table 2.

• Update the hash chain: comt =

H (H (comall,t , comold,t), comt−1).

Output comt , stt = (stall,t , stold,t ,T ,Dirt) and Π
Upd
t =

(πSt ,πSold
t
, comall,t , comold,t , comall,t−1, comold,t−1, comt−2).

◃ VKD.Query(stt ,Dirt , label) : Retrieve latest version number α
for queried label from table T (by counting the number of epoch

entries for label). Let β be the largest power of 2 less than α such

that β = 2
b
. Compute the following proofs:

• (π1, val1) ← ZKS.Query(stall,t ,Dall,t , label| α): This gives a
proof of membership of the latest version of label in the “all”

aZKS and its corresponding value.

• (π2, val2) ← ZKS.Query(stall,t ,Dall,t , label| mark | b): This
gives a proof of membership of the marker entry right before

the current version α .
• (π3, val3) ← ZKS.Query(stold,t ,Dold,t , label| α): This gives a

proof of nonmembership of the latest version in the “old” aZKS
making sure that the claimed “latest” version is not outdated.

Output Π = (π1,π2,π3, comall,t , comold,t , comt−1)) and val =
(val1, val2,⊥) and α .

In our example, if alice requested to see bob’s public key at

epoch t , the server would count the length of the list corre-

sponding to bob in T . Then, alice would receive proofs for

bob|3 ∈ Dirall,t with value PKb,3 and bob|mark|1 ∈ Dirall,t
and lastly, bob|3 < Dirold,t . Additionally, alice will receive

comall,t , comold,t , comt−1.

◃ VKD.QueryVer(comt , label, valt ,πt ,α) : The client checks each

membership or non-membership proof, and the hash chain. Also

check that version α as part of proof is less than current epoch t .

◃ VKD.KeyHistory(stt ,Dirt , label): The server first retrieves all
the update epochs t1, . . . , tα for label versions 1, . . . ,α from T ,
the corresponding comall,t1−1, comall,t1 , . . . , comall,tα−1, comall,tα
and comold,t1 , . . . , comold,tα and the hashes necessary to ver-

ify the hash chain:H (comall,0, comold,0), . . . ,H (comall,t , comold,t).

For versions i = 1 to n, the server retrieves the vali for ti and ver-

sion i of label from Dirti . Let 2
a ≤ α < 2

a+1
for some a where α tis

the current version of the label. The server generates the following
proofs (together called as Π):
(1) Correctness of comti and comti−1: For each i , output comti

comti−1. Also output the values necessary to verify the hash

chain: H (comall,0, comold,0), . . . ,H (comall,t , comold,t).

(2) Correct version i is set at epoch ti : For each i: Membership

proof for (label| i)with value vali in the “all” aZKSwith respect
to comti .

(3) Server couldn’t have shown version i − 1 at or after ti :
For each i: Membership proof in “old” aZKS with respect to

comti for (label| i − 1).
(4) Server couldn’t have shown version i before epoch ti : For

each i: Non membership proof for (label| i) in “all” aZKS with

respect to comti−1
(5) Server can’t show any version from α + 1 to 2

a+1 at
epoch t or any earlier epoch: Non membership proofs in

the “all” aZKSwith respect to comt for (label| i + 1), (label| i +
2), . . . , (label| 2a+1 − 1).

(6) Server can’t show any version higher than 2
a+1 at epoch

t or any earlier epoch:Nonmembership proofs in “all” aZKS
with respect to comt for marker nodes (label| mark| a + 1) up
to (label| mark| log t).

◃ VKD.HistoryVer(comt , label, {(vali , ti)}ni=1,Π
Ver): Verify each

of the above proofs.

In our example, if bob queried for his key history at epoch t ,
he would check the following,

(1) com10, com9, com100, com99, comt and comt−1 and

the hashes necessary to verify the the hashchain

H (comall,0, comold,0), . . . ,H (comall,t , comold,t).

(2) bob|1 exists and has value PKb,1 in Dirall,10, bob|2 exists
and has value PKb,2 in Dirall,100 and bob|3 exists and has
value PKb,3 in Dirall,t .

(3) bob|1 ∈ Dirold,100 and bob|2 ∈ Dirold,t .
(4) bob|1 < Dirall,9, bob|2 < Dirall,99 and bob|3 < Dirall,t−1.
(5) Since bob’s version is 3 < 2

2 = 4, nothing to check here.

(6) bob|mark|2 . . . , bob|mark| log t < Dirall,t

Remark 2. The client software runs VKD.HistoryVer to monitor the
history of the user keys. This software either downloads the entire
proof from the server each epoch it runs VKD.HistoryVer (when the
software is re-installed or the user installs it on a new device) or cache
parts of the proof to from the first run of VKD.HistoryVer to use in the
subsequent verifications. We experimentally evaluate the performance
for VKD.HistoryVer with and without caching in Section 7.

◃VKD.Audit(t1, tn , {pubt }
tn
t=t1): Recall pubt =

(comt ,Π
Upd
t) and parse each Π

Upd
t =

(πSt ,πSold
t
, comall,t , comold,t , comall,t−1, comold,t−1, comt−2).

For each t , verify that comt = H (H (comall,t , comold,t), comt−1).

Do the checks ZKS.VerifyUpd(comall,t , comall,t−1,Π
Upd
all,t) and

ZKS.VerifyUpd(comold,t , comold,t−1,Π
Upd
old,t) for all consecutive

epochs from t1 to tn .

Remark 3. In our implementation, the marker entry doubles up
as the normal key entry for that version, where the version number is
log(k),k being the count of number of updates for a specific user. We
use a special symbol mark for the marker entries. For example, the
3rd key for bob will be saved as bob|3 and the 1st key for alice will
be saved as alice|mark|0, (since 20 = 1), hence only two new entries
are made for any user update request.

Leakage. A party who only acts as an auditor learns only the num-

bers of keys added and keys updated each epoch. If that party

additionallly acts as a user (Alice) performing KeyHistory queries,

the combined leakage may reveal when her keys are updated (even

if she does not perform more KeyHistory queries), but that is ex-

pected to be something Alice knows since she is the one requesting

the updates. If Alice additionally queries for Bob’s key, the leakage

reveals the version number of Bob’s current key and the epoch

when it was last updated, and may reveal when that key is no

longer valid (because Bob performed an update), but will not reveal

anything about subsequent or previous updates. For a more detailed

specification, see Appendix C.

Discussion We discuss some of the design considerations and as-

sumptions that SEEMlessmakes about the users and the deployment

infrastructure in Appendix A. We also discuss how we envision

our system to be integrated on top of current E2E apps to provide

a seamless user experience. Here we give a brief summary of the

discussion.

Having a smooth user-experience while interacting with the

functionality of SEEMless is crucial for successful adoption of this

system. We envision a user interface where the client software

would periodically run KeyHistory in the background and only

notify a user if the verification fails.

In designing SEEMless, we make the following assumptions: 1)

a user device can store a cryptographic key and the server has a

non-cryptographic means of authenticating its users 2) the par-

ticipating parties have approximately synchronized clocks 3) the

infrastructure provides a mechanism that ensures all parties have

consistent views of the root commitments published by the server.

Finally, even though we present SEEMless as a single logical
server, it can be implemented using a distributed network of servers.

Our system also supports multiple devices per user with keys for

each device being stored on the server.

5 aZKS INSTANTIATIONS
In this section we will give a concrete instantiation for the aZKS
used for SEEMless.We refer the reader to Appendix B for definitions

of the standard cryptographic primitives used in the construction

of the aZKS.

5.1 Append-Only Strong Accumulator (aSA)
Construction

Here, we give a construction of an append-only strong accumulator

over a data collection of (label,value) pairs. The high level idea is

to build a Patricia Trie (PTr) [18] over the labels. PTr is a succinct

representation of the labels such that each child has a unique suffix

string associatedwith it and the leaf nodes constitute the actual label

values. See Fig 1 for an illustrative example.Our aSA construction

is built on a PTr. We use a collision-resistant hash function H :

{0, 1}∗ 7→ {0, 1}m in our construction.

◃ SA.CommitDS(1λ ,D) : Datastore D = {(l1,v1), . . . , (ln ,vn)}, a

collection of label-value pairs. Choose a constant kD
$

← {0, 1}λ .

Let {y1, . . . ,yn } be a lexicographic ordering corresponding to

{l1, . . . , ln }. Build a Patricia trie on {yi } and output com =

(hroot,kD). For the nodes in the tree, hashes are computed as fol-

lows.

Leaf nodes: For a node yi , compute: hyi = H (kD |yi |vi). For exam-

ple, in the tree in Figure 1, h2 = H (kD |0100|v2).
Interior nodes: For an interior node x , let x .s0 and x .s1 be the

labels of its children. Compute: hx = H (kD |x |hx .s0 |hx .s1 |s0 |s1). For
example in Figure 1, h6 = H (kD |0|h1 |h7 |010|1)

◃ SA.Query(D, l) : If l ∈ D, output value v associated to it.

Let hl be the hash value of the node. Give the sibling path

for hl in the Patricia trie along with the common prefix x at

each sibling node and the suffixes s0, s1 which form the nodes

x .s0 and x .s1. For example, proof for 0100 will be its value and

[h2, (h3, 01, 00, 11), (h1, 0, 010, 1), (h8, ϵ, 0, 1)]
If l < D, let z be the longest prefix of l such that z is a node in the Pa-

tricia tree. Let zu0, zu1 be its children. Output z,hz ,u0,u1,hzu0 ,hzu1
along with sibling path of z. For example, proof for 1010 will be ⊥

and [1, 1000, 1100,h8,h4,h5, (h6, ϵ, 0, 1)].

◃ SA.Verify(com, l ,v,π) : Parse π as the hash values and the aux-

iliary prefix information at each node. Compute hl according to

leaf node calculation and verify the given value. Compute the hash

values upto the root with help of the proof Let this hash value be h.
Verify that h = hroot. In case of a non-membership proof, additional

verification is required. Let zl and zr be the labels of the left and

ϵ

0

0010 01

0100 0111

1

1000 1100

hε

h6 h8

h7h1

h2 h3

h4 h5

Figure 1: For the universe of be all 4 bit binary strings, a Pa-
tricia trie built on subset P = {0010, 0100, 0111, 1000, 1100}

right child (respectively) of the returned node z. Verify that 1) z is
the longest common prefix of zl and zr 2) zl and zr are distinct.

◃ SA.UpdateDS(D, S): First we check that S is a valid set of updates
which means that for all (labeli , vali) ∈ S , labeli < D. Initialize sets
Znew,Zold,Zconst to empty. For all labelj ∈ S , compute: hlabelj =

H (kD |lj |valj) and add hlabelj to the appropriate position in the trie

and change the appropriate hash values. Add the old hash values

to Zold and the updated to Znew and those that remain unchanged

after all updates to Zconst. Output the final updated root hash h′root
as com′, output the final st′ andD′ = D∪{(labelj , valj)} and output
πS = (Zold,Znew,Zconst) and set S .

◃ SA.VerifyUpd(com, com′, S,πS): Parse πS = (Zold,Znew,Zconst).
Compute the root hash from all the values in Zold and Zconst and
check that it equals com. Similarly, compute the root hash from all

the values in Znew and Zconst and check that it equals com′. Let ZS
be the set of roots of the subtrees formed by labels in S. Check that

Zold,Znew are exactly the hash values of all nodes in ZS . Output 1
if all checks go through.

Security This aSA construction is secure if H is a collision-resistant

hash function. The security of this primitive is proven in [24].

5.2 aZKS Instantiations
Our construction builds upon append-only strong accumulators

which directly give us completeness and soundness. To get zero-

knowledge we will use a simulatable Verifiable Random Function
(hitherto denoted as an sVRF) and a simulatable Commitment
Scheme (hitherto denoted as an sCS). For definitions of these prim-

itives, see Appendix B. At a high level, the sVRF helps map an

element in the datastructure to a random position and the commit-

ment helps in hiding the exact value that is being accumulated.

Let (sVRF.KeyGen, sVRF.Eval, sVRF.Prove, sVRF.Verify) be a

simulatable VRF and let (CS.Commit, CS.Open,CS.VerifyOpen)
be a simulatable commitment scheme as described before. Given

D = {(label1, val1), . . . , (labeln , valn)}, ZKS.Commit will first gen-
erate an sVRF key pair SK,PK ← sVRF.KeyGen(1λ), build a new

D′ = {(l1,v1), . . . , (ln ,vn)} where li = sVRF.Eval(SK, labeli),
vi = CS.Commit((labeli , vali) ; ri) for random ri . It will then
build an append-only SA on D′ and output that together with

PK. ZKS.Query will return the appropriate li along with the sVRF

proof, the opening to the commitment, and the strong accumula-

tor membership/non-membership proof for (li ,vi). ZKS.UpdateDS
will compute the li ,vi pairs for the new datastore entries and then

run SA.UpdateDS. The formal proof of security is in Appendix G.

Leakage In our aZKS construction, ZKS.Query leaks the size of

the datastore, and when the queried element was added (assuming

it is a member). ZKS.UpdateDS leaks the size of the datastore be-
fore and after an update. For each element that was added, it also

leaks whether and when the adversary previously queried for that

element.

6 PERSISTENT PATRICIA TRIE
In our construction, SEEMless, the server maintains two aZKS at
every epoch. In Section 4, we described how to construct a aZKS
using a aSA, which in turn, we implemented using Patricia Trie.

Recall that, in SEEMless, the server needs to store the entire his-

tory of the key directory and the two corresponding aSA (used in

the aZKS construction) to be able to answer key history queries.

Naively, the server can maintain all the aSA from the beginning of

time, but this will blow up the server’s storage significantly and

hinder scalability of the system. This is particularly wasteful, when

in fact, there might be a significant overlap between the aSA of

consecutive epochs. To address this problem, we build a persistent

data structure that retains information about every epoch, while

being space efficient. We call this persistent data structure Persistent
Patricia Trie (PPTr). We believe that PPTrs will find a wide number

of applications (such as the tamper-evident logging in [24]).

Challenges: The idea is similar to that of history tree (HT) [24],

built on Sparse Merkle Tree. However, we can not naively use the

same technique to build a Persistent Patricia Trie (PPTr). Recall that

Patricia Trie (PTr) is compressed for efficiency — there is no empty

node in the tree. Compression introduces several subtle challenges

in building its persistent version, i.e., PPTr. For example, unlike

in HT [24], nodes in a Patricia Trie do not have a fixed position.

A node with a certain label may be at lower depth at an earlier

epoch (root being at depth 0) and fall to a higher depth at a later

epoch. A node with a given label may change depth several times

from its birth epoch until the latest epoch. Please see Fig 2 for an

illustrative example. Therefore, a parent to child pointer does not

remain fixed throughout the life time of a PTr. In the example, the

node 00 pointed to 0000 as its left child at time t2, and to node 000

at time t4. The HT construction in [24] crucially relies on parent

to children pointers being fixed throughout the lifetime of the tree.

We will build our final construction of PPTr gradually.

Attempt 1: First, let us observe some invariants in a append-only

PTr (aPTr): (1) The depth of a PTr is defined with respect to the

root node of the tree, therefore the root node is always at depth 0

(2) Any node in a append-only PTr can only fall to higher depths

over epochs, it never goes to lower depths. (3) Any node with k bit

label can be at depth at most k in a PTr.

Now let us attempt to build a PPTr. Every node in a PTr is

identified by its label with a binary string. For every node u, we
store some information corresponding to every epoch when the

hash value at node u changed. Let us denote this information as

nodestate. These epochs and the corresponding nodestates are

stored in a hashtable. Corresponding to every epoch t when the

hash value at node u changed, nodestatet stores the following.
(1) ht : hash value of node u at epoch t
(2) leftskip: a binary string indicating how many levels have

to be skipped to get the left child of u at epoch t . Let the
left child label at epoch t is l

(3) leftepoch: the key to lookup l ’s hashtable and get the cor-

responding nodestate

(4) rightskip: a binary string indicating how many levels have

to be skipped to get the left child of u at epoch t . Let the
right child label at epoch t is r

(5) rightepoch: the key to lookup r ’s hashtable and get the

corresponding nodestate

Since we are constructing a aPTr, we need to support only two

operations efficiently on the data structure:

ϵ

0

00 0100

000

0000 0001

001

0010 0011

{t1 : left=t1, right=null}
{t2 : left=t2, right=null}
{t3 : left=t3, right=null}
{t4 : left=t4, right=null}

{t3 :left=t2, right=t3}
{t4 :left=t4, right=t3}
dir = left

{t2 :left=t1, right=t2}
{t4 :left=t4, right=t2}
dir = left

{t3 : f (PK0100)}

{t4 :left=t1, right=t4}
dir = left

{t1 : f (PK0000)} {t4 : f (PK0001)}

{t2 :left=t2, right=t2}
dir=null

{t2 : f (PK0010)} {t2 : f (PK0011)}

Figure 2: Append only Patricia Trie: final view at epoch t4

Generate proof for a historical query: Recall (non-) member-

ship proof for certain nodeu at epoch t consists of the siblings of the
nodes on the path from the leaf (or an internal node with both chil-

dren’s labels non-prefixes of label u) to the root. For any previous

epoch t , this information can be easily extracted traversing the tree

from the root and following at each node u the (leftskip, leftepoch)
and (rightskip, rightepoch) pointers from hashtable entry of epoch

t . Thus, the cost of generating membership and non-membership

proofs for any epoch in the past is proportional to the tree height,

and is independent of the number of epochs.

Insert new node in aPTr: When a new node gets inserted to a

aPT, all nodes on its path from the root gets updated. But note

that, each node on this path has a hash table (of (epoch, nodestate))
associated with it. For each of these entries, the skip entries might

need to get updated while updating the path. Hence, the cost of

updating each node on the path is not constant, it is proportional

to the size of the hashtable at that node. Consequently, the cost of

inserting a new node is not proportional to the tree height.

Attempt 2: Our next attempt is to retain the cost for generating

historical proofs while bringing down the cost of insertion. Notice

that The skip entry at the parent of node u gets updated if and only

if a new node with labelv is inserted to the tree wherev is a proper

prefix of u. v becomes the new parent of u. We keep a direction

flag with every node v that indicates whether u became the left

or the right child of the newly inserted node v . Let us denote this
flag as dir. Along with this, at every node we store the following

additional information: birthepoch: the epoch at which the label u
was inserted.

Now we do not need to keep the skip fields any more, because

dir will help us get to the correct node. More specifically, for a

historical query (u, t), we will go down from the root following

as long as birthepoch ≥ t guided by the dir bit. For example, in

Figure 2, at t1, 0000 was the leftchild of the root but at time t2 00
replaced 0000 and 0000 became the left child of 00. So the dir flag at
t2 is set to left. The birthepoch of 00 is t2 which equals the queried

epoch t2. Now, if we query (0000, t2), we will get to node 00 whose

node state entry t2 will have leftepoch = t1 and dir is set to Left. So
we go down the leftchild of 00 and find the entry 0000 at epoch t2.

Now insertion cost is proportional to the height of the tree since

cost of insertion on every node on the path is constant. But we have

introduced yet another problem that arises at the time of historical

query. The proof needs the sibling path and we may need to go

down several levels from a parent node (following dir) to get the

correct sibling for the queried epoch.

Final construction: To overcome this problem, we keep at the

nodestate of every node, the label and the hashes of its current

children. This way, we get the required sibling directly from the

parent node. Nodestate now contains the following.

(1) ht : hash value of node u at epoch t
(2) leftlabel: the label of the left child of node u at time t . Let l

denote the label

(3) lefthash: the hash value of node l at epoch t
(4) leftepoch: the key to lookup l ’s hashtable and get the cor-

responding nodestate

(5) rightlabel: the label of the right child of node u at time t .
Let r denote the label

(6) righthash: the hash value of node r at epoch t
(7) rightepoch: the key to lookup r ’s hashtable and get the

corresponding nodestate

With this new nodestate, combined with the additional infor-

mation of dir, birthepoch, we have a persistent Patricia Trie data
structure where both historical query and insertion works in time

proportional to the height of the Trie.

7 EXPERIMENTS
7.1 Experimental Setup
Our experiments were conducted on a Linux VM running on a

2.30GHz Intel Xeon E5-2673 CPU with 125GB of memory and a

64GB heap allocated to the JVM for the server-side experiments for

both SEEMless and CONIKS. All client experiments are done on a

2.8 GHz Intel Core i7 laptop. We used Google’s protocol buffers [28]

to implement communication between the client and the server, due

to their efficiency and compression. All sizes below are computed

using the getSerializedSize() API call for protocol buffer mes-

sages, which returns the number of bytes used to encode a message.

We implemented the VRF using the Secp384r1 curve using the

Bouncy Castle library, Icart’s function [12] for hashing to the curve

and SHA384.We use the technique of [11] of hashing the input twice

(using SHA384(0| |input) and SHA384(1| |input)) and applying Icart

on both these hashes, since applying Icart once does not provide a

distribution indistinguishable from random.

7.2 Performance Evaluation
Server updates: The graph in Fig. 3 shows the time taken for

server update in the following experiment: we increased the total

users by 100k at each epoch and made 1k new user registrations

and 1k key updates by existing users. For a server with 10M regis-

tered users, it takes 0.28s on average to update the authentication

structure (the two PPTrs) and its directory. As expected, the update

time is proportional to the log of total number of registrations and

updates in the system. The server adds the aZKS commitments in a

Merkle Tree (instead of a hashchain) as discussed in Section 4. We

estimate this cost using the sparse Merkle Tree data structure used

in CONIKS (which is an over-estimate). The time to insert a aZKS
commitment in the Mekle Tree of aZKS commitments is 61µs after
10M server epochs have passed.

Both CONIKS and SEEMless are implemented such that the VRF

for an update or registration are computed between epochs, when

a client message arrives. This means, the online update phase only

needs to update the authentication data structure and does not

incur the VRF cost. For SEEMless, registering a new user requires a

single VRF computation (for inserting into the “all” aZKS) and an

update requires 2 VRF computations – one for the new key entering

the “all” aZKS and the other for the old key entering the “old” aZKS.
Therefore the offline VRF computation cost at the server (per client

request) is at least 1.3ms and at most 2.5ms , which is relatively

low computation between epochs. For CONIKS, the cost is a single

VRF computation (for registration, no VRF is computed for update),

hence the cost is at most 1.3ms .§

Scalability comparison We tried to run the same update experiment

with CONIKS, on the same machine and saw that the heap filled

up by the time we had around 4.5M users. Hence, we decided to

run a limited experiment with CONIKS which only measured the

time for 1k new users and 1k updates at selected epochs. This illus-

trates the ability of SEEMless to scale in contrast to the limitation

of a CONIKS server to less frequent epochs. CONIKS performs

even worse (and hangs) with more frequent epochs due to garbage

collection overhead.

Query: To evaluate the cost ofQuery, we measure the computation

and verification times at the server and the client respectively, and

the size of a proof. We vary the number of users registered with

the server up to 10M. We report the costs averaged over a 100 users

with 10 trials for each user.

Time The time spent in computing and verifying a Query proof

has two components: The VRF proof and the authentication path in

the authentication structure (which is Patrica Trie in SEEMless and

sparse Merkle Tree in CONIKS). The numbers in Table 3 show the

amount of time taken to compute and verifyQuery proofs including
the VRF cost, which is the most expensive operation and dominates

theQuery cost.We computed the VRF costs as follows. The compute,

prove and verify functions for our VRF implemenation, each on

average takes 1.3, 1.9 and 3.4ms respectively over 5k trials. Since

the time for each of these computations is independent of the input,

we used them as constants to simulate the VRF costs for the Query
experiments (recall that each Query response has 1 VRF proof in
CONIKS and 3 in SEEMless).

In our experiments, we saw the cost of authentication path gen-

eration and verification is negligible compared to the VRF – it

varied between 0.2 − 0.3ms for SEEMless and 0.05 − 0.06ms for
CONIKS

¶
.Since SEEMless requires 3 VRF proofs, its VRF cost is

triple that of CONIKS. However, performance of both systems re-

mains comparable and on the order of 10 milliseconds, which is not

§
In the current implementation, CONIKS does not cache the VRF, so it has to be

re-computed for every update and Query. Keeping a hash map for the VRFs would

be a simple optimization. Note that CONIKS did not implement the VRF for their

evaluation.

¶
Note that the CONIKS Java implementation did not store the commitments to

the public keys, instead they stored it in plaintext (which obviously is a crucial privacy

omission). This slightly reduces their cost

Prove Query VerifyQuery
SEEMless 6.03ms 10.51ms
CONIKS 2.01ms 3.47ms

Table 3: Simulated time taken forQuery proof generation at
the server and verification at the client in the above experi-
ments at 10M users.

a noticeable delay for a user. Also, note that the various authentica-

tion paths and VRF computations in SEEMless proof generation and

verification in our current implementation are done sequentially.

We can gain further speedup by parallelizing these operations.

Size of Proofs In our implementation, the proof contains the user-

name and public key (which are sent in addition to the proofs as

part of the Querys) along with a commitment to the public key, its

opening, the VRF proof and the authentication path in the Patri-

cia Trie. The average size of the proof is about 8600B when the

number of users is 10M. For scale, the length of a Twitter post is

famously 140 characters (1,120B)[8], so, the bandwidth consumed

by the proof is less that of reading 8 Twitter posts in plaintext.

The proof size is proportional to the logarithm of the total num-

ber of users registered, as expected (Fig 7 in Appendix E). We also

measure the size of the CONIKS proofs. Since we have 3 authenti-

cation paths per Query proof in our system, whereas CONIKS has

one, the size is at most 3× the proof of CONIKS, as expected.

KeyHistory: Here we measure the computation and verification

times of KeyHistory query and the size of the proofs. We note that

our implementation of KeyHistory functionality currently imple-

ments some redundant checks (for verification without caching)

which we optimized in the protocol description in Section 4.

The cost of KeyHistory is determined by 3 parameters: 1) the

number of server side epochs , 2) the latest key version or number

of key updates made by the user in question and 3) the total number

of updates on the server side (i.e. total number of entries in the

history trees). We have already seen how the Query proofs grow
with respect to parameter 3, so it is not very instructive to explore

this again. We conducted two sets of experiments to measure how

the first two parameters affect the cost of the history proofs.

Both our experiments include a set S of 10 ‘special’ users, each

of whom not only register, but also update their keys as per the

experiments. The set of other users, let us call it the set R of ‘regular’

users, serves as a control: these users register and then update their

keys only once. In both experiments, we try to simulate special users
updating their keys at regular intervals. This means that if there are

200k epochs and the special users update their keys 10 times: they

register initially and then update every 20k epochs. As a control,

the users in R register at a fixed rate. For instance, if |R | = 1M, with

a total of 200k epochs, 5 users in R register and 5 update their keys

at every epoch. We first consider the experiments sans VRF. We

do not include the cost of verifying the aZKS commitments in the

Merkle Hash Tree (as described in Section 4) in these experiments.

We simulate the cost of the Merkle Tree by using the sparse Merkle

Tree of CONIKS (which is an over-estimate). The verification time

for one leaf is about 49µs even for 10M server epochs in this sparse

Merkle Tree, which would be close to running the server for several

years with half minute epochs. Hence, if a user updated her key

on 10 occasions, she would have less than an additional 0.5ms of
verification time.

Figure 3: Mean times to update SEEMless and CONIKS for a
new epoch with 1k new users and 1k updates. The x-axis is
logarithmic in base 10 and each data point is the mean of 10
trials.
Dependence on epochs To measure dependence of KeyHistory re-

sponse sizes and verification times on epochs, we fixed the size of

R at 1M, the number of updates by the users in S at 10 and varied

the number of epochs (adding an equal number of elements in R at

each epoch). Note that the number of minutes in a year is 525, 600,

so 1M is close to the number of epochs which would pass if the

length of 1 epoch were half a minute.

In our experiments, the average bandwidth consumed by a user

who updates 10 times and checks her history after every update,

with a server which has 1M epochs is ≈ 1.09MB and not signifi-

cantly more than at 100k epochs which is ≈ 1.03MB (Fig 4). The

slight growth in size is due to the increasing number of marker

entries to be checked as the number of epochs increases. The verifi-

cation of the history proofs took the client a total computation time

of 0.02s for 1M epochs excluding the cost for the VRF. In contrast,

CONIKS requires a user to check her key at each epoch, making

the total cost of monitoring her key grow rapidly, as shown in Fig 4.

From these experiments, we conclude that of SEEMless is scalable

with very short epochs as opposed to CONIKS.

Dependence on key updates The graph in Fig 8 (in Appendix E)

shows the total bandwidth consumed by the proofs for various

numbers of updates by users (running verification with caching) in

S , where the epochs are fixed at 200k and |R | = 1M. In the case of

our system, even a user who updates her keys almost every week for

about five months (20 updates), has to download only an average of

2.01MB to verify her entire key history and the downloaded proof

can be verified in an average of less than 0.05s excluding the VRF
cost. This includes sending the keys and usernames themselves (at

least 1000 bytes per key update), since the user may want to verify

the used values. If a user changes her key somewhat less frequently,

say every two weeks, then she can monitor the entire history of

her keys by downloading about 1.05MB. This does not change

significantly as the number of epochs grows, as demonstrated by

the previous experiment. On the other hand, a CONIKS user would

still need to download a proof every epoch to monitor her key

binding. This amounts to almost 576.8MB over the course of as

many epochs, hence severely constraining the frequency of epochs.

VRF verification with caching From the experiments above, we see

that the size of the authentication paths in the history proofs are

small in our case and so is the time to verify these paths. The domi-

nating cost is the cost of VRF verification, but once a VRF has been

verified, it can be cached at the client (without the need to verify the

VRF proofs again). More specifically, a user may cache the values

Figure 4: Mean bandwidth consumed in downloading the
history proofs over 10 users (running verification with
caching) in S with 10 updates each and 1M users in R as
the number of total epochs varies. Note that the growth for
SEEMless bandwidth is slow: it is ≈ 1.03MB with 10

5 epochs
and ≈ 1.09MB with 10

7 epochs.

Figure 5: Mean computation time to verify SEEMless history
proofs over 10users in S and 1Musers inR and 10keyupdates
as the number of epochs varies including the time VRF ver-
ifications. Note that in CONIKS, the total computation time
for a non-caching user depends on the number of epochs
and equals over 349s, even at 105 epochs.

Figure 6: Mean computation time to verify SEEMless history
proofs over 10users in S and 1Musers inR and 200k epochs as
the number of key updates by users in S varies including the
time for VRF verifications. In CONIKS, the time would only
depend on the number of epochs and equal over 699s for a
non-caching user and over 14s with caching at 200k epochs.
taken by the SHA256 hashes of the VRF values at various versions

as she verifies them. Figures 5 and 6 show the total computation

times for verifying the history proofs including simulated costs for

the VRF verifications with or without caching as well as amortized

costs. We defer detailed discussion to Appendix E.

Auditing: The auditors of SEEMless verify 1) the aZKS commit-

ments are correctly added to the hash-chain or Merkle Tree 2) the

aZKS are growing in an append-only manner. The cost for checking

1) is 49µs and requires downloading about 3KB for a tree on 10M

epochs (as already discussed in KeyHistory experiments). To moni-

tor 2), i.e., that a Patricia trie is growing in a append-only manner,

its auditors receive parts of the tree which are unchanged and the

changed leaves, from which they reconstruct the new version of

the tree. We simulate this cost by considering the number of new

hashes our aZKS trees have to perform for an update (which we

experimentally evaluate). We simulate cost for the following: at the

start of the epoch, the SEEMless server has 10M registered users

and a total of 100k keys that have been updated by those users.

Over the course of the epoch, 1k new registrations and 1k updates

are made and the server publishes a new digest and proof. For an

auditor, the time to verify the append only property of the updated

authentication structure is 0.22s, requires computing under 64k

SHA256 hashes and the downloaded proof size is upper bounded

by 4.24MB. Our simulated proof size estimates a generous upper-

bound; in practice, this cost will be much lower. The details of our

simulation is in Appendix E.

REFERENCES
[1] 2017. WhatsApp Security Vulnerability. https://www.schneier.com/blog/

archives/2017/01/whatsapp_securi.html. (2017). Accessed: 2019-01-25.

[2] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J. Freedman. 2016. Block-

stack: A Global Naming and Storage System Secured by Blockchains. In 2016
USENIX Annual Technical Conference (USENIX ATC 16). USENIXAssociation, Den-

ver, CO, 181–194. https://www.usenix.org/conference/atc16/technical-sessions/

presentation/ali

[3] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya,

Leonid Reyzin, Kai Samelin, and Sophia Yakoubov. 2017. Accumulators with Ap-

plications to Anonymity-Preserving Revocation. IACR Cryptology ePrint Archive
2017 (2017), 43.

[4] Joseph Bonneau. 2016. EthIKS: Using Ethereum to audit a CONIKS key trans-

parency log. In International Conference on Financial Cryptography and Data
Security. Springer, 95–105.

[5] Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo. 2008.

Strong accumulators from collision-resistant hashing. In International Conference
on Information Security. Springer, 471–486.

[6] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid

Reyzin. 2005. Mercurial commitments with applications to zero-knowledge sets.

In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 422–439.

[7] Melissa Chase and Anna Lysyanskaya. 2007. Simulatable VRFs with applications

to multi-theorem NIZK. In Annual International Cryptology Conference. Springer,
303–322.

[8] developer.twitter.com. 2010. Counting Characters. https://developer.twitter.com/

en/docs/basics/counting-characters.html. (2010). Accessed: 2018-12-25.

[9] Saba Eskandarian, Eran Messeri, Joe Bonneau, and Dan Boneh. 2017. Certificate

Transparency with Privacy. arXiv preprint arXiv:1703.02209 (2017).
[10] Mohammad Etemad and Alptekin Kupcu. 2015. Efficient Key Authentication

Service for Secure End-to-end Communications. Cryptology ePrint Archive,

Report 2015/833. (2015). https://eprint.iacr.org/2015/833.

[11] Reza R Farashahi, Pierre-Alain Fouque, Igor Shparlinski, Mehdi Tibouchi, and J

Voloch. 2013. Indifferentiable deterministic hashing to elliptic and hyperelliptic

curves. Math. Comp. 82, 281 (2013), 491–512.
[12] Thomas Icart. 2009. How to hash into elliptic curves. In Advances in Cryptology-

CRYPTO 2009. Springer, 303–316.
[13] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. In International Conference
on the Theory and Application of Cryptology and Information Security. Springer,
177–194.

[14] Keybase.io. 2014. Keybase is now writing to the Bitcoin blockchain. https:

//keybase.io/docs/server_security/merkle_root_in_bitcoin_blockchain. (2014).

Accessed: 2018-10-05.

[15] Keybase.io. 2019. Keybase is not softer than TOFU. https://keybase.io/blog/

chat-apps-softer-than-tofu. (2019). Accessed: 2019-05-05.

[16] Keybase.io. 2019. Managing Teams and Keys with Keybase. https:

//keybase.io/docs-assets/blog/NCC_Group_Keybase_KB2018_Public_Report_

2019-02-27_v1.3.pdf. (2019). Accessed: 2019-05-05.

[17] Keybase.io. 2019. Protocol Security Review. https://rwc.iacr.org/2019/slides/

keybase-rwc2019.pdf. (2019). Accessed: 2019-05-05.

[18] Donald Ervin Knuth. 1998. The art of computer programming: sorting and search-
ing. Vol. 3. Pearson Education.

[19] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate transparency.
Technical Report.

[20] Moses Liskov. 2005. Updatable zero-knowledge databases. In International Con-
ference on the Theory and Application of Cryptology and Information Security.

https://www.schneier.com/blog/archives/2017/01/whatsapp_securi.html
https://www.schneier.com/blog/archives/2017/01/whatsapp_securi.html
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://developer.twitter.com/en/docs/basics/counting-characters.html
https://developer.twitter.com/en/docs/basics/counting-characters.html
https://eprint.iacr.org/2015/833
https://keybase.io/docs/server_security/merkle_root_in_bitcoin_blockchain
https://keybase.io/docs/server_security/merkle_root_in_bitcoin_blockchain
https://keybase.io/blog/chat-apps-softer-than-tofu
https://keybase.io/blog/chat-apps-softer-than-tofu
https://keybase.io/docs-assets/blog/NCC_Group_Keybase_KB2018_Public_Report_2019-02-27_v1.3.pdf
https://keybase.io/docs-assets/blog/NCC_Group_Keybase_KB2018_Public_Report_2019-02-27_v1.3.pdf
https://keybase.io/docs-assets/blog/NCC_Group_Keybase_KB2018_Public_Report_2019-02-27_v1.3.pdf
https://rwc.iacr.org/2019/slides/keybase-rwc2019.pdf
https://rwc.iacr.org/2019/slides/keybase-rwc2019.pdf

Springer, 174–198.

[21] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and

Michael J Freedman. 2015. CONIKS: Bringing Key Transparency to End Users..

In Usenix Security. 383–398.
[22] Silvio Micali, Michael Rabin, and Joe Kilian. 2003. Zero-knowledge sets. In

Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium.

IEEE, 80–91.

[23] Namecoin. 2014. https://namecoin.org. (2014). Accessed: 2018-10-05.

[24] Alina Oprea and Kevin D Bowers. 2009. Authentic time-stamps for archival

storage. In European Symposium on Research in Computer Security. Springer,
136–151.

[25] LEAP Encryption Access Project. 2012. Nicknym. https://leap.se/en/docs/design/

nicknym. (2012). Accessed: 2018-10-05.

[26] signal.org. 2016. Identity binding. https://www.signal.org/docs/specifications/

x3dh. (2016). Accessed: 2019-05-05.

[27] Alin Tomescu and Srinivas Devadas. 2017. Catena: Efficient non-equivocation

via Bitcoin. In IEEE Symp. on Security and Privacy.
[28] Kenton Varda. 2008. Protocol buffers: Google’s data interchange format. Google

Open Source Blog, Available at least as early as Jul 72 (2008).

A DISCUSSION
User Experience Having an end-user seamlessly interact with the

functionality of SEEMless (or any VKD system) is crucial for success-

ful deployment of this system. Designing a smooth user interface

that exposes the VKD functionality to end users without drastically

changing their experience of using existing messaging software

requires usability studies, which we leave for future work. However,

here we discuss a blueprint of what we envision the user interface

of SEEMless to be.

The high level goal is to have an end-user’s software run the

queries and verification the background in a timely manner and

alert an end-user only when some verification fails. When Alice first

registers for the service, the client software installed on her device

generates keys in the background, and makes a KeyHistory query

to the server to verify that this is the first key that was issued for her,

and aQuery to verify that the key is stored correctly. This happens

in the background and is invisible to Alice unless verification of

one of these fails, in which case she will be alerted of possible

misbehavior. Similarly, when Alice requests Bob’s key, the client

software will run verification of the proof received from the server

in the background and will only notify Alice if the verification fails.

In addition to that, we want Alice’s client to check her key history

sufficiently often. This entails running KeyHistory query in the

background periodically and notifying Alice if it is not consistent

with the updates she hasmade.
∥ keyver must also be runwhenAlice

changes her device or reinstalls the client software (thereby forcing

a key update) in which case cases the software would display to

Alice a list of the times when her key was updated.

Multiple devices We have described the system as storing only a

single key per user, but in reality Alice might use her account on

multiple devices, and the system would be used to store a list of

public keys, one for each of her devices. Bob would then encrypt

under all of these keys, and the service would determine which to

deliver. This works without any modification of the VKD system.

The only change in user experience is that when Alice’s device runs

periodic updates, it might find updates made by other devices: the

times for these updates should be displayed to Alice for verification.

∥
Determining how often the client software needs to run KeyHistory depends

depends how quickly users want to be notified of misbehavior and requires user studies

which we defer for future work.

What we assume from users In this work our goal is to make the sys-

tem usable by average users who cannot be assumed to remember

or correctly store long term cryptographic secrets. We do assume

that the user’s device can store a secret (the user’s current key),

although that device might be lost/re-imaged, etc in which case the

secret would be lost. We assume that the user has some way of au-

thenticating to the service provider (this could be through a second

factor text message, or a phone call to answer security questions,

etc); this is already a requirement in existing end-to-end encryption

systems or other messaging services so we are not increasing the

attack surface. Finally, we assume that the user can recognize the

approximate times when she updated her key (enough to be able

to identify if extra updates have been included in the list). To help

with this we could also have the server store a note from the user

about each update, e.g. “bought new iphone” or “re-installed app".

Power users Our system could of course support options for power

users to make KeyHistory queries whenever they want, to explicitly
compare public keys with their friends (as in WhatsApp), or to sign

their key updates.

Assumptions on system We do assume that Alice, Bob, and the

server have clocks that are approximately in sync. We also assume

some way of ensuring that all parties have consistent views of the

current root commitment or at least that they periodically compare

these values to make sure that their views have not forked. A sim-

ple way of doing this would be for the server to publish the head

periodically to a blockchain (as in Catena-CONIKs [27]), but we

could also implement it with a gossip protocol as in CONIKS [21].

If we implement this by having the server post the commitment

on the blockchain, then this means we assume the client software

periodically interact with the blockchain. (Because of the hash

chain, even if clients do not check the root on the blockchain every

epoch, if two different client’s views of the root diverge, they will

eventually detect that when they do contact the blockchain.) Simi-

larly, our epoch length need not be limited by the blockchain block

time – it is enough if the server periodically posts the current com-

mitment on the blockchain; a misbehaving server will be caught

as soon as the next blockchain post happens. This vulnerability

window is a tunable parameter. The bandwidth requirements (for

interacting with the blockchain) of log auditors of the system and

of thin clients (like mobile phones) can be significantly reduced by

using an efficiently-verifiable blockchain witnessing service, like

Catena [27].

Distributing the service We have described the service in terms of

a single server, but in practice, the “server” can be implemented

using a distributed network of servers, for reliability and redun-

dancy. Our model captures the server as a single logical entity, so it

can accommodate a distributed implementation fairly easily. Con-

structing proofs just requires reading the shared data structures

for previous time epochs, so that can easily be done by many pro-

cesses in parallel. Once all of the updates for a given epoch have

been collected, then the authentication data structure needs to be

updated, but even that can be parallelized fairly easily because of

the tree structure. We can support queries even during the data

structure update by keeping a snapshot of the last authentication

data structure until the update epoch completes. Once the epoch

https://namecoin.org
https://leap.se/en/docs/design/nicknym
https://leap.se/en/docs/design/nicknym
https://www.signal.org/docs/specifications/x3dh
https://www.signal.org/docs/specifications/x3dh

completes, the snapshot can be discarded (so this does not blow up

memory).

B CRYPTOGRAPHIC PRIMITIVES FOR AZKS
Collision Resistant Hash Function (CRHF):A hash functionH
is collision resistant if it is hard to find two inputs that hash to the

same output; that is, two inputs x and y such thatH (x) = H (y), and
x , y. We will in some of our building blocks require a stronger

hash function, which we will treat as a random oracle. The random

oracle heuristic proves security when the hash function is replaced

with a random function. This roughly provides security against

attackers who use the hash function as a black box.

Instantiation. For our experiments we use SHA384 in our VRF

construction and SHA256 everywhere else.

Simulatable Commitment Scheme (sCS) : A sim-

ulatable commitment scheme consists of algorithms

(CS.Commit,CS.Open,CS.VerifyOpen): (1) comσ ←

CS.Commit(1λ ,m; r): takes security parameter λ and pro-

duces commitment comσ to message m using randomness

r . (2) τ ← CS.Open(σ ,m, r , comσ): outputs a decommitment

value corresponding to commitment comσ for message m and

randomness r . (3) 1/0 ← CS.VerifyOpen(σ , comσ ,m,τ): accepts
or rejects the decommitment of comσ to messagem in terms of

the decommitment value τ .
An sCS satisfies the standard requirements of commitment schemes

with respect to hiding and binding: commitments hide the commit-

ted message, and it is hard to open a commitment to two different

messages. In addition, sCS requires that there exist a hypothetical

“simulator” with special powers (either a trapdoor or in our case

control of the random oracle) who could form commitments that

can later be opened to any valuem. This then shows that the com-

mitment and opening give the adversary no additional information.

Instantiation. We can construct this commitment scheme from a

hash function which wemodel as a random oracle:Commit(σ ,m; r)
samples random string r ← {0, 1}λ and outputs H (m, r).
Simulatable Verifiable Random Function (sVRF) [7]: A Veri-

fiable Random Function (VRF) is similar to a pseudorandom func-

tion, with the additional property of verifiability: corresponding

to each secret key SK, there is a public key PK, such that, for any

y = VRF.Eval(SK,x), it is possible to verify that y is indeed the

value of the VRF seeded by SK evaluated on input x . A simulatable

VRF (sVRF) is a VRF for which this proof can be simulated, so a

hypothetical simulator with special powers (e.g. controlling the

random oracle) can fake a proof that the value of VRF.Gen(SK,x) is
anyy. This guarantees that the proof does not compromise the pseu-

dorandomness of this or any other output. An sVRF is comprised of

the following algorithms: 1) (PK, SK) ← sVRF.KeyGen(1λ): takes
security parameter λ and outputs the public key PK and secret key

SK. 2)y ← sVRF.Eval(SK,x): takes the secret key SK and x and out-

puts the sVRF evaluation of x as y 3) π ← sVRF.Prove(SK,x): takes
the secret key SK and x and outputs a proof for the sVRF evaluation

of x 4) 1/0← sVRF.Verify(PK,x ,y,π): verifies the proof.
Instantiation. We describe an efficient constructions of sVRFs

based on the DDH assumption as proposed in [21]. The proof

for pseudorandomness follows from DDH as observed in [21].

Let G be a DDH group of order q and let д be a generator. Let

H1 : {0, 1}∗ 7→ G and H2 : {0, 1}∗ 7→ Z∗q be two hash functions.

The sVRF construction is the following. (1) sVRF.KeyGen: Choose

k
$

← Z∗q and output SK = k and PK = дk (2) sVRF.Eval: Output
y = (H1(x))

SK
(4) sVRF.Prove: The proof is the Fiat-Shamir transfor-

mation of Schnorr protocol for proving common exponent; proving

that prover knows SK = k such that PK = дk and y = hk for

h = H1(x). Prover chooses r
$

← Z∗q and outputs proof as π = (s, t)

for s = H2(x ,д
r ,hr) and t = r −sk . (5) sVRF.Verify: Parse π as (s, t).

Check that s = H2(x ,д
t (PK)s ,htys) for h = H1(x)

C VERIFIABLE KEY DIRECTORY
Notation: A function ν : Z+ 7→ R+ is a negligible function if for

all c ∈ Z+, there exists k0 such that for all k ≥ k0, ν (k) < k−c .
An algorithm A is said to have oracle access to machine O if A

can write an input for O on a special tape, and tell the oracle to

execute on that input and then write its output to the tape. We

denote this oracle access by AO . For the rest of the sections, we

will use (label, val) and (username,public key) interchangeably.

Security Properties: Here we give the formal definitions that

we informally described in Section 2. Note that in the security

definitions, t1 denotes the first server epoch at which the label in
the definitions gets registered for the first time with the directory

Dir.

• Correctness: Let Dir0 = {}, st0 = ⊥.
For all possible labels, for all tcurrent, n, for all sets

{vali }ni=1 for all update sets S1, . . . , Stcurrent such that

(label, vali) ∈ {Sti }
n
i=1 is the set of all occurrences of label

in S1, . . . , Stcurrent , and ∀t∗ < tcurrent:

Pr[({(pubt , stt ,Dirt) ← VKD.Publish(Dirt−1, stt−1, St)}
tcurrent
t=1 ∧

{(comt ,Π
Upd
t) = pubt }

tcurrent
t=1 ∧

({(val′i , t
′
i)}

n′
i=1,Π

Ver) ← VKD.KeyHistory(sttcurrent ,Dirtcurrent , label)∧

n = n′ ∧ ∀i ∈ [1,n](t ′i = ti ∧ val′i = vali)∧

VKD.HistoryVer(comtcurrent , label, {(vali , ti)}
n
i=1,Π

Ver)∧

VKD.Audit(t1, tcurrent, {comk ,Π
Upd
k }

tcurrent
k=t1

)∧

(π , val) ← VKD.Query(stt ∗ ,Dirt ∗ , label)∧

VKD.QueryVer(comt ∗ , label, val,π)∧

∃j ∈ [1,n]s .t .(tj ≤ t∗ < tj+1 ∧ (val = valj))] = 1

• Soundness: Formally, we want to capture that for any

label label if versions proofs verifies with respect to

{(vali , ti)}ni=1 and if the audit verifies from t1 to tn then at

any time t∗ between an interval [tj , tj+1] for some j ∈ [n],
a malicious server cannot give out a proof for label with
a value which is inconsistent with the corresponding ver-

sions proof at tj that is, val , valj for tj . Checking this is
enough because if the server has given an incorrect key

at time t∗, he will have to introduce an additional update

sometime later to potentially fix it and will hence be caught

with high probability. Hence a malicious server S∗ should
not be able to come up with a label, {(vali , ti)}ni=1 with ver-

sions proof ΠVer
, commitments and update proofs ΠUpd

for all times between t1 to tn and query proof (π , val) for
some t∗ for val , valj .

For all PPT S∗, there exists a negligible function ν ()
such that for all λ ∈ N:

Pr[(label, {(vali , ti)}ni=1,Π
Ver, {comk ,Π

Upd
k }

tcurrent
k=t1

,

t∗, j, (π , val)) ← S∗(1λ) :

VKD.QueryVer(comt ∗ , label, val,π)

∧ VKD.Audit(t1, tcurrent, {comk ,Π
Upd
k }

tcurrent
k=t1

)

∧ VKD.HistoryVer(comtcurrent , label, {(vali , ti)}
n
i=1,Π

Ver)

∧ (val , valj) ∧ (tj ≤ t∗ < tj+1)

∧ j ∈ [1,n] ∧ t1 ≤ . . . ≤ tn ≤ tcurrent] ≤ ν (λ)

TheoremC.1. The construction in Section 4 satisfies VKD
soundness as defined above.

Proof. First, we claim that every pair of proofs

Π
Upd
k ,Π

Upd
k+1 must contain consistent values for

comall,k , comold,k . If not, we could directly build a

reduction breaking collision resistance of H .

Now, we observe that we have a chain of aZKS com-

mitments and associated aZKS update proofs, all of which

verify.

Similarly, we claim that the aZKS commitments

comall,t ∗ , comold,t ∗ and comall,ti , comold,ti contained in π

and ΠVer
must also be consistent with those given in the

ΠUpd
proofs. If not, again we can break collision resistance

of H .

Next, say that π and ΠVer
are aZKS-inconsistent if they

contain a pair of proofs w.r.t. either the “old” or “all” aZKS
such that one is a membership proof at time x and the

other is a nonmembership proof for the same label at some

time y ≥ x , or a pair of proofs with contradictory vals for
the same label (even at different times). Note that an adver-

sary who with non-negligible probability wins the above

soundness game with π ,ΠVer
that are aZKS-inconsistent

can be directly used to build an adversary attacking the

aZKS soundness property. Thus, we have only to show that

any adversary who successfully breaks VKD soundness

must produce aZKS-inconsistent proofs. We argue that as

follows. Let α be the version number contained in proof π
produced by the adversary. Now we consider the following

cases:

α < j: In this case ΠVer
(step (3) of KeyHistory) contains a

membership proof for (label|α) w.r.t. comold,tα+1 and

π contains a non-membership proof for (label|α)w.r.t.
comold,t ∗ , where t

∗ > tj ≥ tα+1. (The first inequal-
ity follows from the definition, the second inequality

follows from α < j.)
α = j: In this case ΠVer

(step (2) of KeyHistory) contains
a membership proof for (label|α) with value valj in
comall,tj , while π contains a membership proof for

(label|α) with value val , valj in comall,t ∗ .

j < α ≤ n: In this case ΠVer
(step (4) of KeyHistory)

contains a nonmembership proof for (label|α) w.r.t.

comall,tα−1, while π contains a membership proof for

(label|α) w.r.t. comall,t ∗ . Note that tα − 1 ≥ tj+1 − 1 ≥
t∗, where the first inequalility follow from j < α and

the second follows from the definition.

n < α < 2
a+1 where a is the largest integer s.t. 2

a ≤

n < 2
a+1

: In this case ΠVer
(step (5) of KeyHistory)

contains a nonmembership proof for (label|α) w.r.t.
comall,tcurrent , while π contains a membership proof

for (label|α) w.r.t. comall,t ∗ . Note that tcurrent ≥ t∗,
from the definition.

α ≥ 2
a+1 where a is the largest integer s.t. 2

a ≤ n <

2
a+1

: Letb be the largest integer s.t. 2b ≤ α In this case

ΠVer
(step (6) of KeyHistory) contains a nonmember-

ship proof for (label|mark|b)w.r.t. comall,tcurrent , while

π contains a membership proof for (label|mark|b)
w.r.t. comall,t ∗ . Note that tcurrent ≥ t∗, from the defi-

nition.

�

• L-Privacy:
We will say that a VKD is private for leakage function

L = (LPublish,LQuery,LKeyHistory) if there exists a simula-

tor S = (SPublish,SQuery,SKeyHistory) such that for any

PPT client C∗, the outputs of the following two experi-

ments are computationally indistinguishable:

In the real game, C∗ is given access to OP ,Oπ ,OΠVer ,

three stateful oracles that share state. Oπ is the proofs

oracle which on query a label label, will output π
generated by (π , val) ← VKD.Query(stt ,Dirt , label).
OΠVer is the key history oracle, which on query, label
outputs ΠVer

generated by ({(vali , ti)}ni=1,Π
Ver) ←

VKD.KeyHistory(stt ,Dirt , label). OP is the publish oracle

which on input update set S , updates directory Dirt and

outputs (comt ,Π
Upd
t) as computed by VKD.Publish().

In the simulated game C∗ is given access to an ora-

cle which maintain Dirt , but calls the simulators to pro-

duce commitments and proofs. On a Publish query, the or-

acle SPublish is given leakage on the update set S given by

LPublish(S), and emulates the publish oracleOP . On aQuery
query, the oracle looks up val for label in the current direc-

tory Dirt , and calls SQuery(LQuery(label, val), label, val)∗∗

to emulate the proof oracle Oπ . On a KeyHistory query,

the oracle looks up the history for vali in its directo-

ries Dir1, . . . ,Dirt , and calls SKeyHistory(LKeyHistory(label,
{(vali , ti)}ni=1), label, {(vali , ti)}

n
i=1)

††
to emulate the key

history oracle OΠVer .

Leakage The leakage for our construction is as described below

For discussion see section 4.

Leakage for Publish For each label that was updated, if this is the
first update since the adversary queried for it via Query
then add it to setQQuery, and if it was previously queried to

KeyHistory then add it to setQKeyHistory. The leakage from

this query is the number of new registrations and of key up-

dates in the latest epoch, and the sets QQuery,QKeyHistory.

∗∗
Recall that the leakage functions share state, so this also implicitly gets access to

the leakage from all previous Publish, Query, or KeyHistory queries.

††
see ∗∗

Leakage for Query The leakage from this query is the version

number of the queried key and the epoch at which it was

last updated.

Leakage for KeyHistory There is no additional leakage from this

query.

Theorem C.2. The construction in Section 4 when implemented
with an aZKSwith the leakage profile described in appendix G satisfies
VKD privacy as defined above, with the above leakage functions.

Proof. We first describe the necessary simulators. Recall that

the simulators share state. In this case that state will include three ta-

bles:Tcurrent, which stores the most recent version for labels which

are inQKeyHistory,TQuery, which stores the version for labels which

are inQQuery at the time of their latestQuery query, andTKeyHistory,
which stores the version and epoch for the latest KeyHistory query.
Our simulators will run two instances of the aZKS simulator, which

we will denote aZKS.Simall
and aZKS.Simold

.

SimPublish is given as input the number of new registration and

number of key updates, and the sets QQuery,QKeyHistory.

On the first query, SimPublish calls aZKS.Simall
CommitDS and

aZKS.Simold
CommitDS on an empty directory D0 to gener-

ate comall,0, comold,0. On subsequent queries it behaves as

follows:

First, note that the number of additions to ZKS.all will
be the total number of new registrations and updates, while

the number of additions to ZKS.old will be the number of

updates. Next the VKD simulator must construct the sets

of labels Qall and Qold in the current ZKS update sets for

which there has been a previous non-membership query.

We do this as follows: for each label ∈ QQuery, look up

the version number α in TQuery and add label|α to Qold
(unless α = 2

a
in which case we add label|mark|a). For

each query label ∈ QKeyHistory, lookup the current version

αcurrent in Tcurrent and the version αKeyHistory and query

epoch tKeyHistory from the most recent key history query in

TKeyHistory. Let αcurrent = αcurrent+1, and update the value
in Tcurrent. Let a be the maximum value such that 2

a ≤

αKeyHistory. If αcurrent < 2
a+1

add (label|αcurrent) toQall. If

αcurrent = 2
b
for b ≥ a + 1 and αcurrent ≤ tKeyHistory, add

(label|mark|b) to Qall. Finally, it calls aZKS.Simall
CommitDS

and aZKS.Simold
CommitDS with these leakage values to obtain

updated commitments and proofs.

SimQuery is given as input the (label, val), and the leakage LQuery,

which is the version number α of label in the current di-

rectory, and the epoch tprev at which it was last updated.

• It will call the simulator

aZKS.Simall
Query(tcurrent, (label|α), val, tprev) where

tcurrent is the current epoch to generate the member-

ship proof in ZKS.all (or if α = 2
a
, it will query with

aZKS.Simall
Query(tcurrent, (label|mark|a), val, tprev).

• It will call the simulator

aZKS.Simold
Query(tcurrent, (label|α),⊥,⊥) to gener-

ate the non-membership proof in ZKS.old.
Finally, it updates the entry for label in TQuery to store

version α (or adds it if it does not exist).

SimKeyHistory is given label, {(vali , ti)}
αcurrent
i=1 and generates the

simulated proof as follows:

(1) For each i it outputs the commitments comti , comti−1
produced by SimPublish, and similarly for the hash

values.

(2) For each i it will call the simulator

aZKS.Simall
Query(ti , (label|i), vali , ti) to generate the

membership proof in ZKS.all (or if i = 2
a
, it will query

with aZKS.Simall
Query(ti , (label|mark|a), vali , ti).

(3) For each i it will call the simulator

aZKS.Simold
Query(ti , (label|i − 1), null,⊥) to gen-

erate the membership proof in ZKS.old.
(4) For each i it will call the simulator aZKS.Simall

Query(ti−

1, (label|i), null,⊥) to generate the nonmembership

proof in ZKS.all.
(5) For each j from αcurrent + 1 to 2

a+1 − 1 it will run

aZKS.Simall
Query(tcurrent, (label|j), null,⊥) to generate

the nonmembership proof in ZKS.all.
(6) For each j from 2

a+1
to log(tcurrent) it will run

aZKS.Simall
Query(tcurrent, (label|j), null,⊥) to generate

the nonmembership proof in ZKS.all.
Finally, it updates the entry for label in TKeyHistory to

store (αcurrent, tcurrent) (or adds it if it does not exist). If
there is no entry in Tcurrent for label, it adds it.

Now that we have defined our simulator in terms of the aZKS
simulators, the proof is very straightforward. We introduce one

hybrid game which proceeds as in the simulated game except that

the aZKS simulator for old is replaced by the real aZKS algorithms.

Then we can argue that the real game is indistinguishable from the

hybrid game by the aZKS privacy property, and similarly that the

hybrid game is indistinguishable from the simulated game by the

aZKS privacy property. �

D TRACING VULNERABILITY IN CONIKS
In [21], we discovered a privacy leakage that can be damaging for

targeted user attacks. We call this leakage tracing vulnerability.
The leakage is the following: In CONIKS, when a user queries for

the same label several times, she gets values in the proof which

depend on the position of her label in the authentication tree. These

values can be positions of other labels and give information about

a label that was not queried. Hence if Alice gets the proofs for the

same label over time, she can infer about other labels, whether

they were updated or deleted. For example, consider a system with

4 users: Alice, Bob, Charlie, Mary with P(Alice) = 010, P(Bob) =

011 P(Charlie) = 101, P(Mary) = 110, P() denotes the position of

the label in the tree. The proof for Alice’s key will contain 011,

being its sibling, which is P(Bob). Since the position is fixed for the

entire lifetime of the directory, now Alice can trace when Bob’s

key changes just by querying for her own key and observing when

sibling node changes. While the username is not directly leaked,

once Alice queried for Bob’s key, she will be able to completely

trace when the key changed without ever querying for his key

again. This means, even if Bob has deleted Alice from his contact

list, Alice will still be able to trace when Bob’s key changed just my

looking at the proof of her own key.

E EXPERIMENTS
Here we discuss the details of caching VRF proofs/labels both at a

client and at the server.

Caching VRF labels at the client Recall, that to verify and key ver-

sion, i , such that 2
a ≤ i < 2

a+1
for some non-negative integer a,

her verifications include:

• i − 1: She just needs to check for any version that the

previous entry is in the “old” aZKS. One additional version
is moved to the “old” aZKS for each new update.

• i + 1, ..., 2a+1 − 1: This means that unless she updates to

a new version i such that i = 2
k
for some k ∈ Z, the VRF

values for versions in the set i + 1, ..., 2a+1 − 1 have already
been verified and are cached and do not need to be verified,

just checked for equality. If indeed i = 2
k
for some k ∈ Z,

she will have to download the VRF values i + 1, ..., 2k+1

which are 2
k
in number. This amortizes her cost to 1 VRF

verification per update.

• 2
a+1, ..., 2 ⌊log t ⌋ : This means that only when verifying af-

ter some new 2
k
th epoch will a user need to verify an

additional VRF . For 10 updates at regular intervals, once
1M epochs pass, she will have to verify a total of 20 VRFs,

getting an additional amortized cost of 2 VRF verifications,

per update.

Once verified, she can just save the 32B Patricia trie labels for the

“all” aZKS and the “old” aZKS which, on the client side, results in

the following formula

client cache ≈ [2i + 2 ⌊log i ⌋+1 + log t − (⌊log i⌋ + 1)] × 32B

where i is the number of updates by the user and t is the number of

server epochs which have passed. In practice, this means that even a

user who has 20 updates over 1M epochs only needs to cache 2.8KB.

Note that this is much smaller than even a low resolution image

take on a flip phone. Figures 5 and 6 show the total computation

times for verifying the history proofs including simulated costs for

the VRF verifications with or without caching as well as amortized

costs. Compare the numbers in figure 5 with a total of over 349s

in CONIKS for a user needing to verifying her key every epoch

regardless of number of updates when she does not save the VRF

locally at just 100k epochs. Alternatively, if she were to store the

tree label corresponding to her name, it would require constant

monitoring and take a total of over 7s to ensure the server never

shows an incorrect key for her. The numbers for CONIKS would

increase significantly when the number of epochs is higher to 3495s

when 1M epochs pass if she doesn’t save the VRF, and 71s when

she does. In the experiment in Figure 6 in Appendix E, the epochs

are fixed at 200k so even as the number of updates in CONIKS

increases, its computation time would remain fixed at over 699s

for verifier without caching and more than 14s for a verifier with

caching.

Caching VRF proofs at the server If the server were to cache the

VRF proofs for each user, where it had 10M users and each user

had 20 updates, it would correspondingly have to store 28GB of

data. However, updates and KeyHistorys are relatively infrequent,

(such as when a user reinstalls or updates her app), it is reasonable

to assume that even about a second of startup time for an app to

verify key history is not a barrier to usability. To respond to Query

without the need to compute a VRF will require caching the VRF

value and proof for the current key of each user. This amounts to

3 × 48B (the VRF value is 48B) for each registered user, which is

1.44GB over 10M users. Further optimizations can be made, such as

saving values for inactive users to disk. We leave such optimizations

as future work.

Figure 7: Mean size ofQuery proofs for 100 nodes as the num-
ber of users in the VKD varies. The x-axis is logarithmic in
base 10 and each data point is the mean of 10 trials.

Figure 8: Mean bandwidth to verify the history proofs over
10 users (running verification with caching) in S and 1M
users in R and 200k epochs as the number of key updates by
users in S varies and each user checks her key history after
each update.

Auditor Cost To monitor that the Patricia tries are growing in a

append-only manner, its auditors receive parts of the tree which are

unchanged and the changed leaves, from which they reconstruct

the new version of the tree. We simulate this cost by considering

the number of new hashes our aZKS trees have to perform, since

our implementation only computes the hashes that changed. For

the “all” aZKS, less than 47k new hashes had to be computed and

this took 0.17s, and the “old” aZKS computed less than 17k new

hashes and it took 0.05s. So the total cost of hashing is 0.22s.

The auditors need to download the respective new leaves and

the nodes whose subtrees did not change. For downloading the new

leaves, the auditors need to download 1k leaves for the “old” aZKS,
2k leaves for the “all” aZKS, which are 2 × 256 bits each (leaf label

and commitment), totaling 192KB for the two aZKS. To estimate

an upper-bound on the number of roots of the unchanged aZKS
subtrees, consider the following. Any node which is the root of an

unchanged subtree must have a sibling which has changed. If not,

then the node as well as its sibling are unchanged, the parent of

this node must be unchanged and thus, the parent or some other

ancestor must be the root of the unchanged subtree. Therefore,

contenders for roots of unchanged subtrees in an aZKS tree are

only siblings of nodes along the path from the root to new leaves.

Recall that the average depth of a node in a compressed Patricia

Trie is logn (we experimentally confirmed this) where n is the

total number of leaves. Hence, the number of unchanged roots of

unchanged subtrees is at most k × log n where k is the number

of new leaves. Corresponding to our experiment in Section 7, this

amounts to about 1000 log 100k unchanged nodes for the “old" aZKS
and 2000 log 10.1M for the “all” aZKS, totaling an upper bound of

1.06MB+2.98MB= 4.04MB (including hash values and labels). Thus,

the total proof size that the auditors need to download is less than

4.24MB. Note that, sizes of the labels becomes smaller at each

level, but this estimate counts them as 256 bits at every level. This

estimate also ignores the double counting of nodes which lie at the

intersection of paths to multiple new leaves. So, in practice, this

proof size will be much lower.

F RELATEDWORK
Our work broadly falls in the category of building provably secure

and efficient privacy-preserving key directory service, particularly

relevant in the context of end-to-end secure messaging services. In

the recent past, this problem has received significant attention both

in the academic community and industry [2, 4, 10, 14, 21, 23, 25, 27].

This line of work is related to transparency logs [9, 19], but here

we focus on the works that are most relevant to us.

CONIKS [21], a directory service that lets users of an end-to-end

encrypted communication system verify that their keys are being

correctly reported to all other users. The system is built on ideas

similar to transparency logs [19] which are public authenticated

datastructures for valid SSL/TLS certificates. EthIKS [4] implements

CONIKS using the Ethereum for auditing. Catena [27] provides a

more generalized infrastructure for managing application specific

logs of append only statements using the OP_RETURN function of the

Bitcoin blockchain and implements CONIKS using Catena. Both

EthIKS [4] and Catena-CONIKS [27] use a global transaction ledger

to allow all clients to agree on the same history of the directory.

The original CONIKS proposal was to use a different mechanism

(gossip) to achieve the same functionality. Apart from that, the core

functionality and implementation of CONIKS remains unchanged

in [4, 27]. But all these works provide weaker privacy than our

construction and they lack any rigorous security model. In our

SEEMless construction we use append-only strong accumulators

(SA) in a way which is somewhat similar to the constructions in [3].

Baldmitsi et al. [3] maintain two accumulators and have an index

associated with each element through which they keep track of

non membership which is a similar idea to ours. However, they

assume that the accumulator manager is trusted, which does not

hold for us, since our goal is to detect misbehavior by the server.

Considering this stronger setting of an untrusted accumulator adds

additional challenges. We added several new ideas to prevent a

malicious server from showing arbitrary values on query while

still maintaining efficiency. We define and implement a new prim-

itive of append-only zero-knowledge sets which generalizes zero-

knowledge sets [6, 22] by allowing updates and parameterizing

the privacy property with a leakage function. While there have

been some attempts to generalize the notion of zero-knowledge sets

(e.g., [13, 20]), this is the first attempt that combines both updates

and leakage. Our implementation of append-only zero-knowledge

sets uses a persistent Patricia Tree data structure which is reminis-

cent of history trees built on Merkle Trees [24]. The construction

of [24] does not provide any privacy and it is still less efficient than

our construction.

G AZKS DEFINITIONS
Soundness. We allow A∗ to win the soundness game if it is able

to do either of the following: Output com, label, val1, val2,π1,π2
such that both proofs verify for val1 , val2. Or output

com1, ...comn , label, val1, val2,π1,π2, S,πS such that π1 verifies for
com1, val1 for val1 , ⊥ and π2 verifies for comn , val2 for val2 ,
val1 and the update verifies for com1, , comn ,.

In general, we want that for all PPT A∗ algorithm there exists a

negligible function ν () such that for all n, λ:

Pr[(com1, {(comi ,π
i)}ni=2, label, val1, val2,π1,π2)

← A∗(1λ , pp) :

{ZKS.VerifyUpd(comi−1, comi ,π
i) = 1}ni=2

∧ (val1 , ⊥) ∧ (val1 , val2)

∧ ZKS.Verify(com1, label, val1,π1) = 1

∧ ZKS.Verify(comn , label, val2,π2) = 1] ≤ ν (λ)

Theorem G.1. The construction in Section 5.2 satisfies aZKS
soundness as defined above.

Proof. Here we consider three cases

• The sVRF values presented for label in π1 and π2 are differ-
ent. In this case we can directly reduce to the verifiability

property of the sVRF.

• val2 , ⊥ and the leaf commitments presented for label in
π1,π2 are the same. In this case we can directly reduce to

the bindind property of the commitment scheme.

• The sVRF values are the same, and either the commitments

are different, or π2 is a non-membership proof. In this

case we can directly reduce to soundness of the strong

accumulator.

�

Privacy. In our definition, we have an initial commitment leakage

function LCommitDS, a query leakage function LQuery, and a leakage

function on the updates LUpdateDS. LCommitDS captures what we

leak about the collection/datastore when initializing the system,

LQuery captures what is leaked by the proofs for each query, and

LUpdateDS captures what we leak during an update. Note that all

of these are stateful functions that share state, so e.g. LQuery may

depend on previous CommitDS and UpdateDS queries.

We will say that an updatable ZKS is zero knowledge for leak-

age function L = (LCommitDS,LQuery,LUpdateDS) if there exists a
simulator Sim = (SimCommitDS, SimQuery, SimUpdateDS) such that

for any PPT malicious client algorithms C∗, the outputs of the

following two experiments are computationally indistinguishable:

In the real game, the adversary C∗ produces an ini-

tial directory D0, and receives the output (com, stcom) ←
ZKS.CommitDS(1λ ,D0). It then gets oracle access to two oracles,

OQ , and OU . OU is the update oracle which on input a set of

updates S = {(labeli , vali)} will output (com′, stcom,t+1,πS) ←
ZKS.UpdateDS(stcom,t ,Dt , S). The game keeps track of the state

of the datastore Dt after every update. The second oracle isOQ , the

query oracle which on query datastore version t and labeli , will
output (πi , vali) ← ZKS.Query(stcom,t ,Dt , labeli).

In the simulated game, the C∗ produces an initial datastore D0,

and receives the output com← SimCommitDS(1
λ ,LCommitDS(D0)).

C∗ then gets access to simulated versions of the two oracles. On

UpdateDS queries, SimUpdateDS emulates the update oracle OU :

it gets a leakage on the set to be updated outputs (com′,πS) ←
SimUpdateDS(ŁUpdateDS(S)). On Query queries, the oracle outputs
vali and πi ← SimQuery(t , labeli , vali ,LQuery(t , labeli , vali)).

Leakage. The concrete leakage for our ZKS construction is as fol-

lows:

LCommitDS reveals the size of the datastore.

LQuery reveals when each queried item was added to the datastore.

LUpdateDS reveals the number of items added. It also reveals the

set Q of labels of items in this update for which there had

been a previous non-membership query.

Theorem G.2. The construction in Section 5.2 satisfies aZKS pri-
vacy as defined above with the specified leakage functions.

Proof. We first define the simulator:

SimCommitDS takes as input the size N of the data store. It uses the

sVRF simulator to generate an sVRF public key. It chooses

N random strings as the output of the sVRF (we will refer

to them below as leaf strings), and uses the sCS simulator

to form the commitments. Then it builds a tree as in the

real protocol.

SimQuery takes as input the zks version t , the label label, the corre-
sponding value val (or ⊥ if label is not in Dt), and the up-

date tprev when labelwas added to the datastore. If val , ⊥
it chooses an unused leaf string from the tprevth update,

simulates the sVRF proof to show that that is the correct

value for label, and simulates an opening of sCS to val. If
val = ⊥, it chooses a random leaf string, simulates the

sVRF proof to show that that is the correct value for label,
and constructs the rest of the proof as in the real protocol.

Finally, it records that that leaf string has been assigned

to label. (Future Query’s for label will use the same leaf

string.)

SimUpdateDS takes as input the number of items added and the

set Q of new items for which there had been a previous

non-membership query. For each label inQ , it looks up the

leaf string that was assigned to label by SimQuery, for the

remaining number of items it chooses random leaf strings.

For each item it also uses the sCS simultator to form the

corresponding commitment. Then it performs the rest of

the update algorithm as in the real protocol.

The proof that this simulator satisfies the privacy definition follows

from a fairly straightforward series of games:

Game 1 : Real game

Game 2 : As in game 1, but commitments and openings are simu-

lated. Indistinguishable by the hiding property of the sCS.
Game 3 : As in game 2, but the sVRF public key and sVRF proofs

are generated by the sVRF simulator, and the leaf strings are

chosen at random. Indistinguishable by the simulatability
property of the sVRF.

Game 4 : Simulated game. Identical to game 3.
�

	Abstract
	1 Introduction
	2 Verifiable Key Directory (VKD)
	3 Append-Only Zero Knowledge Set (aZKS)
	4 SEEMless Construction
	5 aZKS Instantiations
	5.1 Append-Only Strong Accumulator (aSA) Construction
	5.2 aZKS Instantiations

	6 Persistent Patricia Trie
	7 Experiments
	7.1 Experimental Setup
	7.2 Performance Evaluation

	References
	A Discussion
	B Cryptographic Primitives for aZKS
	C Verifiable Key Directory
	D Tracing Vulnerability in CONIKS
	E Experiments
	F Related Work
	G aZKS definitions

