
Hierarchical Attribute-based Signatures

Constantin-Cǎtǎlin Drǎgan, Daniel Gardham and Mark Manulis

Surrey Centre for Cyber Security, University of Surrey, UK

c.dragan@surrey.ac.uk, d.gardham@surrey.ac.uk, mark@manulis.eu

Abstract. Attribute-based Signatures (ABS) are a powerful tool allowing users with at-
tributes issued by authorities to sign messages while also proving that their attributes satisfy
some policy. ABS schemes provide a flexible and privacy-preserving approach to authenti-
cation since the signer’s identity and attributes remain hidden within the anonymity set
of users sharing policy-conform attributes. Current ABS schemes exhibit some limitations
when it comes to the management and issue of attributes. In this paper we address the lack
of support for hierarchical attribute management, a property that is prevalent in traditional
PKIs where certification authorities are organised into hierarchies and signatures are verified
along roots of trust.
Hierarchical Attribute-based Signatures (HABS) introduced in this work support delegation
of attributes along paths from the top-level authority down to the users while also ensuring
that signatures produced by these users do not leak their delegation paths, thus extending
the original privacy guarantees of ABS schemes. Our generic HABS construction also ensures
unforgeability of signatures in the presence of collusion attacks and contains an extended
traceability property allowing a dedicated tracing authority to identify the signer and reveal
its attribute delegation paths. We include a public verification procedure for the account-
ability of the tracing authority.
We anticipate that HABS will be useful for privacy-preserving authentication in applications
requiring hierarchical delegation of attribute-issuing rights and where knowledge of delega-
tion paths might leak information about signers and their attributes, e.g., in intelligent
transport systems where vehicles may require certain attributes to authenticate themselves
to the infrastructure but remain untrackable by the latter.

1 Introduction

Attribute-based Signatures. ABS schemes, introduced independently in [32] and [31], offer
a flexible, privacy preserving primitive for authenticating messages. When presented with an
attribute-based signature, verifiers are convinced that the signer owns a set of attributes satis-
fying the signing policy, however, they do not learn the signer’s identity nor the set of attributes
and hence provide for signer’s anonymity within a set of users holding policy-conform attributes.
Users who are not in possession of such attributes are not able to produce valid ABS signatures,
even if they collude and try to pool their attributes together. We note that while [32] enjoys an
expressive policy, [31] drops this fine-grained control in favour of a more efficient threshold-based
construction and such trade-off has commonly been seen in some later ABS schemes, e.g. [31, 21,
26]. ABS schemes can also be generalised to policy-based signatures [4].

Existing ABS constructions typically rely on zero-knowledge proofs in the signature generation
phase, with a vast majority of schemes, e.g. [19, 35, 34, 4, 18, 22, 17], being proposed in the standard
model based on bilinear maps and Groth-Sahai proofs [24]. A notable exception is the scheme in
[26], which uses the RSA setting yet requires random oracles.

While anonymity makes ABS schemes interesting for fine-grained privacy-preserving authenti-
cation, the ability to trace and identify signers for accountability is another useful property that
has been considered in the context of several ABS schemes [18, 15, 22].
Hierarchy and Delegation. Requiring that all signers obtain their attributes from a single au-
thority introduces scalability issues if the universe of signers or attributes becomes large. Therefore,
some ABS schemes, e.g. [32, 34, 18, 22], explicitly consider the case where multiple, possibly inde-
pendent authorities can issue attributes directly to the signers. On the other hand, if the ability

This is the full version of a paper that appears in CANS 2018, 17th International Conference on Cryp-
tology and Network Security, Naples, Italy, Sept 30 - Oct 2018. LNCS 11124 pages 213-234.

to issue attributes requires authorisation then some additional control mechanisms for delegation
of attribute-issuing rights would be needed.

From a more general view, it would require an ABS scheme to support a hierarchy of attribute
authorities, managed by some top-level (root) authority, and enable delegation of issuing rights
(for subsets of attributes) along various delegation paths consisting of intermediate authorities.
With such hierarchy, signers would be able to obtain attributes only from authorities that are
authorised to issue them. For practical purposes the hierarchy should be dynamically expandable,
i.e., it should be possible to add intermediate authorities (at any level) at any time. This setting
resembles conceptual similarity with traditional PKIs where certification authorities form a hier-
archy. The main difference is that, in the context of ABS schemes, such hierarchical delegation
imposes additional challenges on the privacy of signers since leakage of the delegation path from
the ABS signature may compromise the signer’s anonymity by leaking information about the sub-
sets of attributes that the signer might possess, e.g. if some authority is only responsible for a
small number of attributes or otherwise has some identifying information (for example, geographic
location) that could also be used to identify the signer. We note that a hybrid solution whereby
the hierarchy is defined by the CAs, delegation is performed via traditional PKI certification and
credentials issued to signers are standard ABS credentials would suffer from the same privacy-
leaking problems. Therefore, hierarchical ABS schemes must incorporate a proof of validity of the
delegation paths without disclosing any information about intermediate authorities, implying that
verification must be done in relation to the public key of the top-level authority and not of the
intermediate authorities.

This brings further challenges when it comes to accountability. The associated tracing mech-
anism needs to identify not only the signer (as in the case of existing ABS constructions) but
also delegation paths through which attributes were obtained. This is because the root authority
may not be aware that some particular user was issued attributes by an intermediate authority.
In addition, malicious intermediate authorities in the hierarchy can try to misuse their delegation
rights and create further fake authorities or users to issue rogue ABS signatures. The delegation
paths disclosed by the tracing algorithm would be able to detect this behaviour, thus extending
accountability to intermediate authorities.

Our Contribution: Hierarchical ABS. In this paper we solve the aforementioned challenges
by proposing Hierarchical ABS (HABS) to enable hierarchical management by a root authority
and delegation of attribute-issuing rights. HABS extends the anonymity guarantees by hiding not
only the signers and their attributes but also the delegation paths (i.e., intermediate authorities)
that were used for these attributes. We call this new property path anonymity. HABS supports
dynamic hierarchies, enables delegation of attribute-issuing rights to new authorities, and allows
signers to obtain attributes from multiple authorities within the hierarchy with guarantees that
the entire delegation path (incl. the signer) can be revealed by an independent tracing authority.
Moreover, we require public verifiability for the output of this tracing procedure to address the
case where the tracing authority tries to cheat. Needless to say, HABS offers extended unforgeabil-
ity guarantees, expressed through the non-frameability requirement, ensuring that only holders of
policy-conform attributes can sign, and in particular, preventing collusions between signers and
authorities. We formally define HABS and propose its generic construction from public key en-
cryption, digital signatures and non-interactive zero-knowledge proofs of knowledge. Our HABS
scheme can be instantiated using bilinear maps in the standard model under the DLIN, q-SDH and
Simultaneous Flexible Pairing (SFP) [1] assumptions. Our HABS scheme supports a more general
scenario where intermediate authorities and users can become part of multiple independent hier-
archies, each managed by a separate root authority. We also discuss the revocation of delegation
and signing rights in the context of HABS, which is known to be notoriously challenging for all
hierarchical signature schemes (incl. PKIs).

Applications. HABS can find applications in traditional ABS scenarios (cf. [32]) while enabling
hierarchical delegation of attributes. Due to their distinctive path-anonymity and path-traceability
properties we anticipate further applications in privacy-preserving authentication where there is a
need to also hide the intermediate authorities that were involved in issuing the attributes.

For example, in intelligent transport systems [39] there is a challenge to authenticate messages
sent by vehicles to other parties (e.g. other vehicles, infrastructure, police, etc) while preventing
that vehicles can be tracked. Existing approaches, based either on pseudonymous PKI certificates

2

[27, 23], group signatures [38, 25] or identity-based signatures [29, 40] have all their limitations with
regard to scalability and/or limited expressivity (cf. survey in [36]). As noted in [33] an attribute-
based approach would bring substantial benefits and while [33] aims at realisations with heavier
attribute-based credential systems, we believe that HABS could offer a more lightweight alternative.
For example, the root authority can be some regulatory authority while manufacturers, authorized
dealerships, local garages or testing facilities would define the hierarchy. Assume some town has
a policy that bans diesel vehicles that did not pass an emission test. By viewing a vehicle’s fuel
type and its emission test results as attributes issued by the manufacturer and some local testing
facility, respectively, the vehicle would be able to prove its compliance with the town’s policy
without disclosing any other information such as its make or which local facility performed the
test.

Further related work. As explained in [32], group signatures [14] and ring signatures [37] can
be viewed as special cases of ABS satisfying policies that would contain only disjunctions over
the attributes (identities). The proposed constructions of hierarchical group [41] and ring [30]
signatures, seen as special cases of HABS, also lack this richer expressivity of the attribute-based
setting. Mesh signatures [7], a generalization of ring signatures to monotone access structures that
can be satisfied by combinations of atomic signatures would not provide unforgeability against
colluding signers and would leak verification keys (attributes) for all atomic signatures used in
the clauses. As discussed in [32], anonymous credentials (AC) [13, 12], used for privacy-preserving
attribute-based credentials [11], are a more powerful, yet also less efficient, primitive than ABS.
AC schemes require costly zero-knowledge proofs during attribute acquisition since their goal is to
prevent that authorities can link users to whom they issue attributes. This property is not provided
by (H)ABS and may not even be needed for its applications (as in our example above where it
does not make sense to hide the manufacturer of a vehicle from the local testing authority that
carries out the emission test). Nonetheless, we note that the concept of delegation has also been
explored for AC schemes [3] where some delegation mechanisms also require zero-knowledge proofs
to provide similar guarantees as in the issue of anonymous credentials and in addition to prove that
the delegator is L levels away from the (top-level) authority, a property that is not needed for HABS
where intermediate authorities know their delegation paths. Anonymous credentials in this setting
have also been proposed [9]. Whilst the construction is more efficient, it only supports attribute
issuance along one delegation path and in particular, all attributes owned by an authority in the
path are required for verification. We also note the construction of a non-delegatable AC scheme
built from (homomorphic) ABS [28], where multiple root authorities issue attribute credentials
directly to the signers. However, to combine attributes obtained from distinct authorities requires
online collaboration of these authorities. In contrast, our scheme supports delegation and non-
interactive combination of attributes obtained from multiple authorities. Additionally, anonymous
proxy signatures [20] bear similarities with HABS in that the delegation path for the proxy signer is
not revealed upon verification of proxy signatures but can be traced through a dedicated authority.
These signatures are not attribute-based since tasks delegated to the proxy signer, when viewed
as attributes, are not hidden. Functional signatures [8, 2] are another primitive that allow for
controlled delegation of signing rights. A signing key is created w.r.t a function f , and one can
only sign a message if it is in the range of f , and in the case of delegatable schemes [2] allow
signatures to be modified by another specified party. When the message m is viewed as a set of
attributes satisfying some policy f , signers require separate signing keys for each possible policy
in the system, which is impractical. Another related primitive are homomorphic signatures, which
have been claimed to be equivalent to ABS [42]. This implication has only been shown in the
single user setting and thus does not capture the strong unforgeability requirements provided by
HABS. Similarly, in relation to policy-based signatures [4] (which imply ABS), we observe that, so
far, the only delegation mechanism proposed for these schemes in [4] neither supports separation
between users and authorities nor distinguishes between the signers. This allows authorities to forge
signatures on behalf of users (cf. Remark 1) and excludes the possibility of tracing signatures.

3

2 Model of Hierarchical Attribute-based Signatures

In this section we describe the entities, their roles and define the algorithms for HABS. The involved
entities are attribute authorities, users (signers), and a dedicated tracing authority.

Attribute Authorities. The root authority (RA) with its key pair (ask0, apk0) is at the top of
HABS hierarchy and defines its universe of attributes A. The RA can delegate subsets from A to
other authorities in the scheme, who are then able to delegate attributes from their subsets further,
creating a dynamically expandable hierarchy of attributes (see Fig. 1). In order to be admitted to
the hierarchy, each intermediate authority (IA) needs to generate its own key pair (aski, apki), i > 0
and become authorised by some already admitted authority by obtaining a subset of attributes. In
addition to delegation of attributes, each authority can issue attributes from its set to the end users
(signers). It is assumed that admitting authorities make sufficient checks on whether the entities
they admit are eligible to receive the attributes.

Hierarchy of attribute authorities

Users

apk0

apki apkj

upk

A

Ai, Aj ⊆ A

Aupk ⊆ Ai ∪ Aj

Fig. 1. Example of a HABS hierarchy where a user with public key upk receives its set of attributes
Aupk ⊆ Ai ∪Aj from two IAs i and j, who in turn receive their attribute sets Ai and Aj from the RA.

Users. Upon joining, each user generates its own key pair (usk, upk) and is issued with a subset of
attributes by one or more authorities from the hierarchy. Any admitted user can generate a valid
HABS signature on a message m with respect to some predicate Ψ using the secret key usk and
the set of issued attributes A as long as this set contains some subset A′ ⊆ A that are needed to
satisfy Ψ , i.e. Ψ(A′) = 1. HABS signatures will be verified with respect to Ψ and the RA’s public
key apk0. Note that, unlike authorities, users cannot delegate their attributes to other entities and
can be viewed as the lowest level of the hierarchy (see Fig. 1). We make use of a label ? to denote
the end of the delegation path, and prevent the user from further delegating his attributes. Note
we sometimes use j to differentiate users.

Warrants. For delegation of attributes to intermediate authorities and for their issue to the sign-
ers it is convenient to use warrants. That is, upon admission each HABS entity (IAs and signer)
obtains a warrant warr that contains all attributes a ∈ A (along with their delegation paths) that
the entity receives from the authority. However, upon signing we assume that a “reduced warrant”
warr containing only a reduced attribute set A′ for which Ψ(A′) = 1 will be used by the signer.
Note that by warr[a], for a ∈ warr, we denote the delegation path (apk0, . . . , {apki, {upk, ?}}),
starting with RA’s public key apk0 and ending with the entity’s public key, i.e. apki for the IA i or
upk followed by a fixed label ? (which is used to denote that this path cannot be extended further)
for the corresponding user. We use |warr| to denote the total number of attributes in warr and
use |warr[a]| to refer to the length of the delegation path for the attribute a.

Tracing Authority. A dedicated tracing authority (TA) with its own key pair (tsk, tpk) is re-
sponsible for tracing HABS signatures. The extended tracing procedure in HABS outputs warr
used by the signer. This means that tracing reveals all attributes and their delegation paths from
used warr and also the identity of the signer since its delegation paths include upk. Note that since
users can use reduced warrants, the tracing procedure does not necessarily reveal all attributes held
by the user but only those that were used to produce the signature. For accountability purposes
we require that the output of TA is publicly verifiable, i.e. is accompanied by some proof that can
be verified using a public judgment procedure.

4

Definition 1 (Hierarchical ABS Scheme). HABS := (Setup, KGen, AttIssue, Sign, Verify, Trace,
Judge) consists of the following seven processes:

• Setup(1λ) is the initialisation process where based on some security parameter λ ∈ N, the public
parameters pp of the scheme are defined, and the root and tracing authority independently
generate their own key pair, i.e. RA’s (ask0, apk0) and TA’s (tsk, tpk). In addition, RA defines
the universe A of attributes, and a label ? for users. We stress that due to dynamic hierarchy,
the system can be initialised by publishing (pp, apk0, tpk) with A and ? contained in pp.

• KGen(pp) is a key generation algorithm executed independently by intermediate authorities and
users. Each entity generates its own key pair, i.e., (aski, apki) for i > 0 or (usk, upk).

• AttIssue (aski,warri, A, {apkj |upkj}) is an algorithm that is used to delegate attributes to
an authority with apkj or issue them to the user with upk. On input of an authority’s secret
key aski, i ∈ N0, its warrant warri, a subset of attributes A from warri, and the public key of
the entity to which attributes are delegated or issued, it outputs a new warrant warr for that
entity.

• Sign ((usk,warr),m, Ψ) is the signing algorithm. On input of the signer’s usk and (possibly
reduced) warr, a message m and a predicate Ψ it outputs a signature σ.

• Verify (apk0, (m, Ψ, σ)) is a deterministic algorithm that outputs 1 if a candidate signature
σon a message m is valid with respect to the predicate Ψ and 0 otherwise.

• Trace (tsk, apk0, (m, Ψ, σ)) is an algorithm executed by the TA on input of its private key tsk
and outputs either a triple (upk,warr, π̂) if the tracing is successful or ⊥ to indicate its failure.
Note that warr contains attributes and delegation paths that were used by the signer.

• Judge (tpk, apk0, (m, Ψ, σ), (upk,warr, π̂)) is a deterministic algorithm that checks a candi-
date triple (upk,warr, π̂) from the tracing algorithm and outputs 1 if the triple is valid and 0
otherwise.

The correctness property of HABS requires that any signature σ output by any signer with
usk in possession of a legitimately issued warrant warr that contains attributes a ∈ A satisfying
Ψ can be successfully verified and traced, and that a triple (upk,warr, π̂) output by the tracing
algorithm for such σ passes the public judgment procedure.

2.1 Security Properties

In this section, we define three security properties of HABS schemes: path anony- mity, non-
frameability, and path traceability and use game-based definitions assuming some PPT adversary A
that interacts with the entities using oracles. We note that our definitions extend earlier definitions
for (multi-authority) ABS schemes, e.g. [32, 4, 18, 22], to account for the hierarchical setting and
potential corruptions within the hierarchy. In addition, our definitions of path-anonymity and
path-traceability focus on hiding resp. verifiable traceability of delegation paths from the signer’s
warrant, a distinctive feature of HABS. Our modeling techniques for these properties are inspired
by definitions behind anonymous proxy signatures [20] which do not apply directly to the attribute-
based setting.

Oracles for A. The oracles available to a PPT adversary A are defined in Fig. 2 and their
high-level description is provided in the following. In our oracles we take into account that only
authorities can delegate and issue attributes whereas only signers can generate HABS signatures.
– OReg: A can register new IAs and users for whom, in response, a key pair will be honestly

generated and the public key given to A. The oracle uses lists to keep track of the established
entities and their keys. Upon registration all entities are initially considered to be honest.

– OCorr: A can corrupt established entities. On input of the entity’s public key A receives the
corresponding private key, as long as this entity has been previously established. The oracle
keeps track of entities who were corrupted.

– OAtt:A can ask an authority to either delegate attributes for another IA or to issue attributes to
a user, as long as both involved entities are registered. Note that A can define which attributes
the oracle should use. If both entities are registered and the issuing entity has rights to issue
attributes provided by A then the output warrant warr is given to A.

– OSig: A can ask a signer to produce a HABS signature using the input warrant warr, a message
m and a predicate Ψ . If the provided warrant contains a set of attributes A satisfying Ψ and
the signer is not corrupted then the signature will be given to A.

5

OReg(·) with (·) = (i) and i /∈ HU

1 : (ski, pki)← KGen(pp)

2 : List← List ∪ {(i, pki, ski)}
3 : HU ← HU ∪ {i}
4 : return pki

OCorr(·) with (·) = (i)

1 : if i ∈ HU then

2 : HU ← HU − {i}
3 : return ski from List

OTr(·) with (·) = (m, Ψ, σ)

1 : return Trace(tsk, apk0, (m, Ψ, σ))

OAtt(·)

(·) = (i,warri, a, {apkj |upkj})
1 : L := {a|(a, pka, ska) ∈ List}
2 : if i ∈ L ∧ j ∈ L then

3 : warr ← AttIssue(aski,

warri, a, {apkj |upkj})
4 : return warr

5 : return ⊥

OSig(·) with (·) = (i,warr,m, Ψ)

1 : A← {a| a ∈ warr}
2 : if i ∈ HU ∧ Ψ(A) then

3 : σ ← Sign((uski,warr),m, Ψ)

4 : return σ

5 : return ⊥

Fig. 2. Oracles used in the HABS security experiments.

– OTr: A can ask the TA to perform the tracing procedure on its input, in which case its output
(which can also be ⊥) is returned to A.

Path Anonymity. For HABS we extend the anonymity property of traditional ABS schemes to
achieve privacy of the delegation path, i.e., not only to hide the signer but also all intermediate
authorities that were involved in the delegation of attributes for that signer. Our game for path
anonymity in Fig. 3 requires the adversary to decide which user’s warrant and private key were
used in the generation of the challenge HABS signature σb. We consider a powerful two-stage PPT
adversary A = (A1,A2), who knows the private keys of the candidate signers and can moreover
establish its own HABS hierarchy (with IAs and users) by learning the secret key ask0 of the root
authority. This also means that the adversary comes up with the candidate warrants warr0 and
warr1 for the two users in the challenge phase. Since HABS signatures do not aim to hide the
length of the delegation paths nor the number of attributes used to satisfy the policy we require
that both warrants are of the same size and that they both satisfy the predicate Ψ output by the
adversary. Since attributes are contained in warrants our definition also implies attribute-hiding.

Exppa-b
HABS,A(λ)

1 : (pp, ask0, tsk)← Setup(1λ)

2 : (st, (usk0,warr0), (usk1,warr1),m, Ψ)← A1(pp, ask0 : OReg, OCorr, OTr)

3 : if |warr0| = |warr1| then

4 : σ0 ← Sign((usk0,warr0),m, Ψ), σ1 ← Sign((usk1,warr1),m, Ψ)

5 : if Verify(apk0, (m,Ψ, σ0)) = 1 and Verify(apk0, (m,Ψ, σ1)) = 1 then

6 : b′ ← A2(st, σb : OTr)

7 : return b′ ∧ A2 did not query OTr(tsk, (m,Ψ, σb))

8 : return 0

Fig. 3. Path-Anonymity Experiment

Definition 2 (Path Anonymity). A HABS scheme offers path anonymity if no PPT adversary
A can distinguish between Exppa-0

HABS,A and Exppa-1
HABS,A defined in Fig. 3, i.e., the following advantage

is negligible in λ:

AdvpaHABS,A(λ) =
∣∣∣Pr
[
Exppa-0

HABS,A(λ) = 1
]
− Pr

[
Exppa-1

HABS,A(λ) = 1
]∣∣∣ .

6

Non-Frameability. Another fundamental property for HABS is non-frameabili-
ty that extends unforgeability to ensure only authorized authorities can delegate and only attribute
policy-compliant users can sign. This property is formalized in Fig. 4, and requires the adversary A
to produce valid authorizations for attributes he does not satisfy: either as a valid HABS signature
σ for some honest user with upk, or as a valid tracing information that includes a warrant warr
issued by an honest authority. In the latter, it is enough for A to provide a single attribute a for
which the delegation path contains one honest authority i or an honest user with upk without
querying OAtt for that authority or user. We consider a PPT adversary A, who can admit IAs to
the HABS hierarchy using the RA’s private key ask0, and act on behalf of the TA using tsk.

Expnf
HABS,A(λ)

1 : (pp,ask0, tsk)← Setup(1λ)

2 : ((σ,m, Ψ), (upkj ,warr, π̂))← A(pp, ask0, tsk : OAtt, OSig, OCorr, OReg)

3 : if Verify(apk0, (m, Ψ, σ)) ∧ Judge(tpk, apk0, (m, Ψ, σ), (upkj ,warr, π̂)) then

4 : if j ∈ HU ∧ A did not query OSig((uskj ,warr),m, Ψ) then, return 1

5 : if ∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upkj , ?) = warr[a] ∧
6 : ((∃i ∈ [0, n− 1]. A did not query OAtt(i, · , a, apki+1) ∧ i ∈ HU) ∨
7 : (A did not query OAtt(n, · , a, upkj) ∧ n ∈ HU)) then, return 1

8 : return 0

Fig. 4. Non-Frameability Experiment

Definition 3 (Non-Frameability). A HABS scheme is non-frameable, if no PPT adversary A
can win the experiment Expnf

HABS,A defined in Fig. 4, i.e., the following advantage is negligible in λ:

AdvnfHABS,A(λ) = Pr
[
Expnf

HABS,A(λ) = 1
]
.

Remark 1 In the non-frameability experiment we consider a strong adversary that has full con-
trol of the hierarchy through the OReg and OAtt oracles. We capture the notion that malicious
authorities and colluding users should not be able to produce signatures on behalf of, and there-
fore framing, honest users. This is a stronger notion of security than considered in some existing
ABS schemes [32, 4].

Path Traceability. The final property we consider for HABS is path traceability in Fig. 5 that
offers accountability for the entire delegation path and the tracing authority, but also validity of the
entities in that delegation path. The adversary A is required to produce a valid HABS signature σ
that either cannot be traced, or can be traced to a warrant warr that contains at least one “rogue”
entity (some authority i or user with upk) within any of its delegation paths that has not been
previously registered through the registration oracle, i.e., is not contained in List. For honest and
registered authorities A can use the attribute-issuing oracle, which internally checks whether the
public key of the entity for which the warrant needs to be issued has been registered before. This
excludes a trivial attack where A obtains a legitimate warrant for some rogue entity from some
honest authority. In its attack we also equip A with the TA’s private key.

7

Exptr
HABS,A(λ)

1 : (pp,ask0, tsk)← Setup(1λ)

2 : ((σ,m, Ψ), (upk,warr, π̂))← A(pp, tsk : OAtt, OCorr, OReg)

3 : if Verify(apk0, (m,Ψ, σ)) then

4 : if Trace(tsk, (m,Ψ, σ)) = ⊥ then, return 1

5 : if Judge(tpk, apk0, (m,Ψ, σ), (upk,warr, π̂)) ∧
6 : (∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upk, ?) = warr[a] ∧
7 : ((∃i ∈ [0, n− 1]. i ∈ HU ∧ (i+ 1, apki+1, aski+1) /∈ List)∨
8 : (n ∈ HU ∧ (· , upk, usk) /∈ List))) then, return 1

9 : return 0

Fig. 5. Path-Traceability Experiment.

Definition 4 (Path Traceability). A HABS scheme offers path traceability if no PPT adversary
A can win the experiment Exptr

HABS,A defined in Fig. 5, i.e., the following advantage is negligible in
λ:

AdvtrHABS,A(λ) = Pr
[
Exptr

HABS,A(λ) = 1
]
.

3 Construction

In this section we describe and analyse our general construction for HABS that we build from
several well-known building blocks.

3.1 Preliminaries

Span Programs. For a given monotone boolean function Ψ : {0, 1}n → {0, 1}, a monotone span
program for Ψ over F is a pair (S, ρ) where S ∈ Ml×t

F and ρ : [l]→ [n] is a labelling function that
maps each row of S to an input variable of Ψ . For all inputs to Ψ , we have the following property:

Ψ(x1, ..., xn) = 1⇔ ∃ z ∈ F1×l s.t. zS = [1, 0, ..., 0] and (∀i : xρ(i) = 0 =⇒ zi = 0).

That is, Ψ(x1, ..., xn) = 1 iff the rows of S indexed by i s.t. xρ(i) = 1 span the vector [1,0,...,0].
Bilinear Groups. A tuple G := (G1,G2,GT , G1, G2, e) is a bilinear group if G1 and G2 generate
the groups G1 and G2 respectively, and e : G1 × G2 → GT is a non-degenerate bilinear map. In
particular, the following property holds: e(xa, yb) = e(x, y)ab for a, b ∈ Z, x ∈ G1 and y ∈ G2.
Complexity Assumptions.
DLIN [6]: For a group G := 〈g〉 of prime order p, given (ga, gb, gra, gsb, gt) for a, b, r, s, t ∈ Zp, it
is computationally infeasible to determine whether t = r + s or if t is random.
q-SDH [6]: For G1 := 〈g1〉 and G2 := 〈g2〉, both of prime order p, given a (q+2)-tuple (g1, g2, g

γ
2 ,

g
(γ2)
2 , ..., g

(γq)
2) as input, it is hard to output a pair (g

1/(γ+x)
1 , x) for the adversary’s choice of x ∈ Zp.

SFP [1]: For a bilinear group G and GZ , FZ , GR, FU random generaters of G1. Let (A, Ã), (B, B̃) be
random pairs in G1×G2. For j = 1, ..., q, let Rj := (Z,R, S, T, U, V,W) that satisfies (1) e(A, Ã) =

e(Gz, Z)e(GR, R)e(S, T) and (2) e(B, B̃) = e(FZ , Z)e(FU , U)e(V,W). Given (G, GZ , FZ , GR, FU ,
A, Ã, B, B̃) and uniformly chosen R1, ..., Rq, it is hard to find (Z∗, R∗, S∗, T ∗, U∗, V ∗,W ∗) that
fulfil relations (1) and (2) under the restriction that Z∗ 6= 1 and Z∗ 6= Z ∈ Rj for every Rj .

3.2 Building Blocks

Our construction relies on standard notions of IND-CCA2 secure public key encryption PKE :=
(KGen, Enc, Dec) [10] and an unforgeable digital signature DS:=(KGen, Sign, Verify) [1] that
withstands chosen-message attacks. We rely further on an unforgeable tagged signature TS :=
(KGen, Sign, Verify) [1] that can sign blocks of messages, also used in [18], where an additional
tag t is used as input to the signing algorithm and the signature will not verify unless the verifier
uses the same tag. The adversary is allowed to query its signing oracle on tags that it can use
later to create a forgery. Although any unforgeable DS scheme can be used as a tagged signature if

8

its message space admits signing pairs (t,m), the explicit separation of t allows usage of different
spaces for tags and messages. Our HABS scheme further relies on a strongly unforgeable one-time
signature OTS := (KGen, Sign, Verify) [6], for which the signing oracle can be queried only once and
the adversary succeeds even if it can output a different signature on the message that it queried.
Finally, our HABS construction uses non-interactive zero-knowledge proofs NIZK = (Setup, Prove,
Verify, SimSetup, Sim) [5, 24] for a language L = {x | ∃w. R(w, x) = 1}, where R is some relation
over a witness w and a statement x. Typically, NIZK proofs require a common reference string crs
output during the setup phase. From NIZK we require the standard properties of completeness,
soundness, and zero-knowledge.

3.3 Generic Construction

High-Level Overview. We use the above general building blocks to construct our HABS scheme,
which is specified in Fig. 6. In the following we provide a high-level intuition behind its construc-
tion. Attribute authorities (RA and IAs) generate their key pairs (aski, apki), i ∈ N0 for the tagged
signature scheme TS. The TA holds a key pair (tsk, tpk) for the public key encryption scheme PKE.
The public parameters pp of the scheme also contain trusted common reference strings crs1 and
crs2 for the corresponding NIZK proofs.

Attributes a ∈ A are viewed as tags of the TS scheme whereas delegation paths attL :=
(apk0, . . . , {apki, {upki+1, ?}}) are treated as messages. In order to create a warrant warr for
some authority or signer, the corresponding IA with its aski will produce a TS signature on each
attribute a and its delegation path and include this signature into warr[a] as part of the list sigL.
Thus, a separate TS signature is used for each attribute and its path such that the signer can later
reduce its warr to attributes that are needed for a policy Ψ .

Each signer, after initialisation, holds a key pair (usk, upk) for the digital signature scheme DS.
A signer with usk and a reduced warr that satisfies Ψ can generate a HABS signature σ for some
message m.

The reduced warr together with the signer’s public key upk and a digital signature σs with
message otsvk are encrypted in a PKE ciphertext C under the TA’s public key tpk with randomness
µ. The signer generates a key pair (otssk, otsvk) for the one-time signature scheme OTS and uses
its usk to compute a digital signature σs on otsvk.

We model Ψ as a monotone span program S with a labelling function ρ that maps rows from
S to attributes in A. The signer attests the satisfiability of Ψ w.r.t its attributes from the reduced
warr by computing a vector of integers z such that zS = [1, 0, . . . , 0] and for any zi 6= 0 we have
ρ(i) ∈ warr. Then, the signer computes a NIZK1 proof π for the statement (C, otsvk, tpk, apk0, Ψ)
using as witness previously computed (upk, µ, z,warr, σs) such that the following relation is sat-
isfied:
PKE.Enc(tpk, (upk,warr, σs, otsvk);µ) = C ∧ DS.Verify(upk, otsvk, σs)

∧ zS = [1, 0, . . . , 0] ∧
(
∀i. zi 6= 0 =⇒ ai = ρ(i)

∧ ((apk0, apki1 , . . . , apkin , upk, ?)(σi1 , . . . , σin , σu)) = warr[ai]

∧ (∀1 ≤ j ≤ n. TS.Verify(apki(j−1)
, σij , ai, (apk0, apki1 , . . . , apkij)))

∧ TS.Verify(apkin , σu, ai, (apk0, apki1 , . . . , apkin , upk, ?))
)
.

The resulting HABS signature σ contains the aforementioned C, π, and otsvk, along with an
OTS signature σo, generated using otssk to bind these value together with the message m and Ψ .
The validity of such HABS signature σ can be verified using public parameters of the scheme and
RA’s public key apk0 by checking the validity of the NIZK1 proof π and the OTS signature σo.

The tracing algorithm, on input of a valid HABS signature ((σo,C, π, otsvk),
m, Ψ) uses tsk to decrypt the warrant warr from the ciphertext C. The decrypted warrant contains
all attributes and delegation paths, incl. signer’s public key upk, and signature σs.In addition, TA
outputs a NIZK2 proof π̂ for the statement (otsvk,C, tpk, (apk0,warr, σs)) using tsk as its witness
to prove the following relation:

PKE.Dec(tsk,C) = (upk,warr, σs, otsvk).

The output of TA on a valid HABS signature can be publicly judged by checking the validity of
the NIZK2 proof π̂.

9

AttIssue(aski, warri, A, {apkj |upkj})

1 : warr := ∅
2 : for a ∈ A do

3 : σa ← TS.Sign(aski, a, (apk1, . . . , apki, {apkj |{upkj , ?}}))
4 : (attL, sigL)← warri[a]

5 : warr[a]← (attL ∪ {apkj |{upkj , ?}}, sigL ∪ {σa})
6 : return warr

Sign((usk, warr), m, Ψ)

1 : (otsvk, otssk)← OTS.KGen(1λ)

2 : σs ← DS.Sign(usk, otsvk)

3 : C← PKE.Enc(tpk, (upk,warr, σs, otsvk);µ)

4 : compute z s.t. zS = [1, 0, ..., 0]

5 : π ← NIZK1.Prove
(
(upk, µ, z,warr, σs) : (C, otsvk, tpk, apk0, Ψ)

)
6 : σo ← OTS.Sign(otssk, (m, Ψ,C, π))

7 : σ ← (σo,C, π, otsvk), return σ

Verify(apk0, (m, Ψ , σ)) with σ= (σo,C, π, otsvk)

return NIZK1.Verify((C, otsvk, tpk, apk0, Ψ), π) ∧
OTS.Verify(otsvk, (m,Ψ,C, π), σo)

Trace(tsk, apk0, (m, Ψ , σ)) with σ = (σo,C, π, otsvk)

1 : if Verify(apk0, (σ,m, Ψ)) then

2 : (upk,warr, σs, otsvk
′)← PKE.Dec(tsk,C)

3 : π̂ ← NIZK2.Prove(tsk : (otsvk,C, tpk, upk,warr, σs))

4 : if otsvk′ = otsvk then return (upk,warr, (π̂, σs))

5 : return ⊥

Judge(tpk, apk0, (m, Ψ , σ), (upk, warr, π̂)) with σ = (σo, π,C, otsvk)

return Verify(apk0, (σ,m, Ψ)) ∧ NIZK2.Verify(tpk, (otsvk,C, upk,warr, σs), π̂)

Fig. 6. Algorithms of our general HABS scheme.

4 Security Proofs

In this section we prove our main theorem by showing the construction in Fig. 6 satisfies path
anonymity, non-frameability, and path traceability from assumptions underlying its cryptographic
building blocks.

Lemma 1 The generic HABS construction from Fig. 6 offers path anonymity, if NIZK1 and NIZK2
are zero-knowledge, PKE is IND-CCA2, and OTS is strongly unforgeable.

Proof. We follow a game-based approach and show that the advantage of the PPT adversary
A in the path-anonymity experiment for the HABS construction from Fig. 6, is bounded by the
advantages of the constructed adversaries for the underlying primitives. For simplicity, we assume
that adversary A asks n user registration queries and the probability for sampling one of these
users is 1/n.

Game G0: Let this be the experiment corresponding to Exppa-b
HABS,A(λ) in Fig. 3, where the

adversary A = (A1,A2) is required to distinguish between the signatures σ0 = (σ0
o ,C0, π0, otsvk0)

and σ1 = (σ1
o ,C1, π1, otsvk1).

Game G1: This game is obtained from the game G0 where the restriction “A2 did not query
OTr(m,Ψ, σb)” is enforced by theOTr oracle available toA2. This is done by aborting the game, ifA2

10

queries (m,Ψ, σb). We model this by adding the line “if (σo, C, π, otsvk)=(σo,b, Cb, πb, otsvkb) then
return abort”, when the adversary calls OTr(m,Ψ, (σo, C, π, otsvk)) and σb = (σo,b, Cb, πb, otsvkb).
The games G0 and G1 preserve the same probability with respect to the adversary A = (A1,A2).

Pr[G1 = 1] = Pr[G0 = 1] .

Game G2: We define G2 as game G1 except on the outputs of OTr, where we replace the
NIZK2 proof π̂ with a proof π̂′, provided by the simulator NIZK2.Sim. Additionally, in game G2

for NIZK2 we replace Setup by SimSetup. These changes are done to avoid the case where A may
”extract” tsk from NIZK2 proofs. Thus, for all future OTr oracle call we make use of a simulated
NIZK2 proof. We bind the probability of A to distinguish between these games by the advantage
of the (multi-theorem) zero-knowledge adversary Bnizk2 for NIZK2. Hence,

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ AdvzkBzk,NIZK2
(λ).

Game G3: Let G3 be the game obtained from G2 where the real NIZK1 proof πb from the
challenge signature σb = (σo,b, Cb, πb, otsvkb) is replaced with the simulated proof π′b by calling
NIZK1.Sim on the inputs (Cb, otsvkb, tpk, apk0, Ψ). Similar to the previous step, by now for NIZK1
we replace Setup by SimSetup. We bound the capabilities of the adversaryA to distinguish between
games G2 and G3 by the advantage of the zero-knowledge adversary Bnizk1 for the NIZK1 proof
system. The adversary Bnizk1 executes all steps from game G3, except for the calls to NIZK1 that
he replaces with oracle requests. There is only one sign challenge request performed only when the
adversary Bnizk1 constructs the signature σb. Hence,

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ AdvzkBnizk1,NIZK1
(λ).

Game G4: Game G4 is identical to game G3, except we abort if A2 queries OTr(m,Ψ, (σo,C, π,
otsvk)) if (C, otsvk) = (Cb, otsvkb). The adversary A is able to distinguish between G3 and G4,
only if he can produce a valid OTS signature σo for a statement (Cb, π,m, Ψ) and verification key
otsvkb, without knowledge of the signing key otsskb. Essentially, breaking the strong unforgeability
of OTS.

We bound the capabilities of the adversary A to distinguish between this two games by the
advantage of the unforgeability adversary Bots for the OTS scheme that uses otsvkb as the public
key. The adversary Bots on input otsvkb does all the steps described in game G4, except he does
not call OSig to produce σb, instead he uses his OTS signing oracle to receive a signature σbo for
(m,Ψ,Cb, πb) and pass this to A2. Then, Bots waits for A2 to provide a valid input to OTr that
contains Cb, otsvkb and σo 6= σbo or π 6= πo, and use this as his forgery.

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ Adveuf-cma
Bots,OTS(λ).

Game G5: This game G5 is the same as G4, except we abort if A2 queries OTr(m,Ψ, (σo,C, π,
otsvk)) when C = Cb. The output of OTr remains unchanged between these two games, as the
oracle return ⊥ if otsvkb from C is different from otsvk received as input. Game G5 preserves the
same probability as G4:

Pr[G5 = 1] = Pr[G4 = 1] .

Game G6: Let G6 be the game obtained from G5 where the ciphertext Cb from the challenge
signature σb = (σbo, Cb, π

′
b, otsvkb) is replaced with the C0. The distinguishing capabilities of the

adversary A2, is bounded by the advantage of the IND-CCA2 adversary Bind for the PKE encryption
scheme. This only applies for the case b = 1. The adversary Bind performs all the steps in game
G6 except the ones that require interaction with PKE, where he uses the oracle he has access to. A
single challenge query is performed between the calls to A1 and A2 calls. A2 may ask OTr queries
for any signature that does not contain the challenge ciphertext, and Bind answers them by calling
the decryption oracle.

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ Advind-cca2B,PKE (λ).

The experiment G6 provides as challenge to A the exact same values independent of the random
bit b that A is asked to guess. Additionally, due to zero-knowledge of NIZK2 used in G1, A does

11

not have access to tsk. Therefore, the probability the adversary wins game G6 is 1
2 and hence the

advantage of A to win this experiment is 0.

Pr[G6 = 1] =
1

2
.

From the sequence of games above, the result of this lemma follows. ut

Lemma 2 The generic HABS construction from Fig. 6 is non-frameable, if NIZK1 is sound, TS and
DS are unforgeable, and OTS is strongly unforgeable.

Proof. We model our proof by dividing the non-frameability experiment from Fig. 4 into two
experiments based on the winning condition of the adversary A. The first experiment, denoted
E1, is defined in Fig. 7, and captures the probability of the adversary A to create a forgery.
For readability, the algorithms Verify and Judge are inlined. The second experiments E2 follows
the exact same steps as E1 except that ”j ∈ HU ∧ A did not query OSig((uskj ,warr), Ψ,m)” is
replaced by

′′∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upkj , ?) = warr[a] ∧
((∃0 ≤ i ≤ n− 1. A did not call OAtt(i, · , a, apki+1) ∧ i ∈ HU) ∨

(A did not call OAtt(n, · , a, upku) ∧ n ∈ HU))′′

The probability of winning the non-frameability experiment is bounded by the probability of
A winning either E1 or E2:

Pr
[
Expnf

HABS,A(λ)
]
≤ Pr[E1 = 1] + Pr[E2 = 1] .

E1 - The Expnf
HABS,A(λ) where A did not query OSig((usk,warr), Ψ,m)

1 : (pp,ask0, tsk)← Setup(1λ)

2 : ((m,Ψ, σ), (upkj ,warr, (ˆπ, σs)))← A(pp, ask0, tsk : OAtt, OSig, OCorr, OReg)

3 : (σo,C, π, otsvk) = σ

4 : if NIZK1.Verify((C, otsvk, tpk, apk0, Ψ), π) ∧
5 : OTS.Verify(otsvk, (m,Ψ,C, π), σo) ∧
6 : NIZK2.Verify(tpk, (otsvk,C, upkj ,warr, σs), π̂)∧
7 : j ∈ HU ∧
8 : A did not query OSig((uskj ,warr), Ψ,m) then

9 : return 1

10 : return 0

Fig. 7. Experiment E1

We start with the first experiment E1 that we will show has a negligible probability of success.
Intuitively, we want to argue over the values (upk′,warr′, m′, Ψ ′), (σ′o,C

′, π′, otsvk′) that corre-
spond to the input and output of the OSig oracle. We show that they are not sufficient for the
adversary A to create valid proofs and signatures (σo,C, π, otsvk) for the values (upk,warr,m, Ψ)
different from (upk′,warr′,m′, Ψ ′). More precisely, we take each element of the tuple (upkj ,warr,
m, Ψ) and try to reason about their relation with their prime counterpart from (upk′,warr′,m′, Ψ ′).

The first step considers if ”there has been any OSig request that contains upkj”, which sets the
direction for the rest of the proof. Next, we follow the same methodology by reasoning that the
values warr′,m′, Ψ ′ and otsvk′ have to coincide with warr,m, Ψ, otsvk for A to actually produce
valid proofs and signatures that pass the verification conditions in E1. For simplicity, we consider
the probability of any adversary to guess which oracle constructs the keys for a particular user is
1/n, given n user registration oracle calls.

Game G0. The game G0 is defined exactly as E1 except on line ”A did not query OSig((uskj ,
warr),m, Ψ)” that is replaced with a membership check (upku,warr,m, Ψ) /∈ sL for the list sL.

12

This list sL is initialized empty at the beginning of the experiment, and gets updated with the
inputs of the OSig oracle. Additionally, we introduce the list spL that stores the input and output
of the OSig oracle. We have that E1 and G0 have the same probability.

Pr[E1 = 1] = Pr[G0 = 1] .

Game G1. This game is defined exactly asG0 with the exception the additional test DS.Verify(upkj , otsvk, σs)
performed over the output of the adversary (((σo,C, π, otsvk),m, Ψ), (upkj , warr, (π̂, σs))). G1 is
indistinguishable from G0 due to the soundness of NIZK1: the probability of generating a valid
NIZK1 proof for a false statement (that does not pass DS verification).

Next, we reason if the adversary has submitted any OSig request that contains upk, and use
the list sL to check this. We split the probability in game G1 along two cases :

Pr[G1 = 1] = Pr[G1 = 1 ∧ (upkj , ?, ?, ?) ∈ sL] + Pr[G1 = 1 ∧ (upkj , ?, ?, ?) /∈ sL] .

Game G2. The game G2 is obtained from G1 by adding the condition (upkj , ?, ?, ?) /∈ sL. The
adversary in G2 managed to create a valid digital signature σs for upku that passes DS verification
without having access to the user’s secret key (as j ∈ HU).

The capabilities of A in this experiment are bounded by the advantage of an unforgeability
adversary Bs against the digital scheme DS that uses upkj . The coefficient 1/n is due to linking
upkj with the user for whom A produces the forgery.

Pr[G2 = 1] = Pr[G1 = 1 ∧ (upkj , ?, ?, ?) /∈ sL] ≤
1

n
× Adveuf-cma

Bds,DS
(λ).

Game G3. This game uses the exact steps performed by game G1, but in the setting where
A requested at least one signature that contains user upkj . There exists an adversary query
((upkj ,warr′,m′, Ψ ′), (σ′o,C

′, π′, otsvk′)) ∈ spL with (warr,m, Ψ) 6= (warr′,m′, Ψ ′). Hence,

Pr[G3 = 1] = Pr[G1 = 1 ∧ (upkj , ?, ?, ?) ∈ sL]
= Pr

[
G1 = 1 ∧ (upkj ,warr′,m′, Ψ ′), (σ′o,C

′, π′, otsvk′)) ∈ spL
]
.

Using the method applied on G1, we reason on the relation between the OTS public keys otsvk
and otsvk′. We split game G3 based on otsvk = otsvk′ and otsvk 6= otsvk′.

Pr[G3 = 1] = Pr[G3 = 1 ∧ otsvk = otsvk′] + Pr[G3 = 1 ∧ otsvk 6= otsvk′] .

Game G4. We define G4 as the game G3 where otsvk 6= otsvk′. In this case, the adversary A
is able to provide a forgery for the DS scheme by signing otsvk′ without knowledge of uskj . This
is similar to the method of computing the bound for G2, except that now A asks signature queries
for upk.

We can bind the capabilities of adversary A in this game, by constructing a forger B′ds for the
DS signing scheme. B′ds is identical to Bds except on OSig queries for upkj , that B′ds answers using
his DS.Sign oracle queries. We have,

Pr[G4 = 1] = Pr[G3 = 1 ∧ otsvk 6= otsvk′] ≤
1

n
× Adveuf-cma

B′ds,DS
(λ).

Game G5. The game G5 uses the steps of G3 with the additional restriction otsvk′ = otsvk.
With the upkj = upk′ restriction from G3 we further transform this game in the view of G1.

Pr[G5 = 1] = Pr[G3 = 1 ∧ otsvk′ = otsvk]
= Pr

[
G1 = 1 ∧ (upkj ,warr′,m′, Ψ ′), (σ′o,C

′, π′, otsvk)) ∈ spL
]
.

Currently, we reduced that A has made a OSig query for (upkj ,warr′,m′, Ψ ′) different from
(upkj ,warr,m, Ψ), but with the same OTS signature public key otsvk. We split the probability in
G5 based on the equality test between (m,Ψ) and (m′, Ψ ′).

Pr[G5 = 1] = Pr[G5 = 1 ∧ (m,Ψ) = (m′, Ψ ′)] + Pr[G5 = 1 ∧ (m,Ψ) 6= (m′, Ψ ′)] .

We use ? to symbolize the existence of variables whose values we are not interested.
This is due to (upkj ,warr,m, Ψ) /∈ sL and (upkj ,warr′,m′, Ψ ′) ∈ sL.

13

Game G6. We define game G6 as the game G5 where (m,Ψ) 6= (m′, Ψ ′). That is, the adversary
A is able to provide a forgery for the OTS scheme by signing a message that contains (m′, Ψ ′)
without knowledge of otssk.

The capabilities of adversary A in this case, are bounded by the advantage of the unforgeability
adversary Bots for the OTS signature scheme that uses otssk as the secret key. There might be a
slight loss of accuracy as the Bots needs to identify which is the OSig query that uses (m′, Ψ ′) among
all OSig queries for upkj . He is able to do this with probability 1/k if A makes k sign queries for the
same upkj value. The factor 1/n is given by the guess Bots makes on which is the user registration
oracle with upk.

Pr[G6 = 1] = Pr[G5 = 1 ∧ (m,Ψ) 6= (m′, Ψ ′)] ≤
1

n
×

1

k
× Adveuf-cma

Bots,OTS(λ).

Game G7. We define game G7 as the game G5 where (m,Ψ) = (m′, Ψ ′). Because of the
(warr,m, Ψ) 6= (warr′,m′, Ψ ′) restriction, this leads to warr′ 6= warr. Going a little bit further,
and including the condition added by game G5 with respect to game G1, we have

Pr[G7 = 1] = Pr[G5 = 1 ∧ (m,Ψ) = (m′, Ψ ′)]
= Pr

[
G1 = 1 ∧ (upkj ,warr′,m, Ψ), (σ′o,C

′, π′, otsvk)) ∈ spL
]
.

Given warr 6= warr′, we now show that C 6= C′. This is guaranteed by the correctness
property of the encryption scheme PKE that builds C′. Let m0 = (upkj ,warr, σs, otsvk) and
m1 = (upkj ,warr′, σ′s, otsvk) be two different messages that both encrypt to C′. According to
the correctness of PKE, C′ must decrypt with overwhelming probability to one of the two message.
We divide the probability of G6 based on the equality of C and C′.

Pr[G7 = 1] = Pr
[
G7 = 1 ∧ C = C′

]
+ Pr

[
G7 = 1 ∧ C 6= C′

]
.

Game G8. Let G8 be the game defined by G7 with C 6= C′. In such a case, the adversary A
is able to create a forgery without knowledge of otssk, that passed the verification in the body of
experiment G7.

The probability of success for adversary A in this game, is bounded by the advantage of the
OTS forger B′ots which behaves exactly as Bots from game G6. The difference in this case is given
by the output of the adversary. Here, A provides an OTS signature that satisfies C 6= C′, while in
G6 the one-time signature is for (m,Ψ) 6= (m′, Ψ ′). Hence,

Pr[G8 = 1] = Pr
[
G6 = 1 ∧ C 6= C′

]
≤ Adveuf-cma

B,OTS (λ).

Game G9. The game G9 is defined as G7 where C = C′. In such a case, the adversary A has
managed to produce a ciphertext C that decrypts to two different messages m0 = (upkj ,warr, σs,
otsvk) and m1 = (upkj ,warr′, σ′s, otsvk). We build Bcorr that performs the steps in G7 and waits
for A to provide an output (((σo,C, π, otsvk),m, Ψ), (upkj ,warr, (π̂, σs))). Then, he uses that
output to construct message m0, and looks through the list spL for the query the adversary A has
made that produced the same ciphertext C and builds m1. Bcorr outputs the message that does
not appears when he does a decryption. For simplicity, this adversary also provides the randomness
needed to produce the same ciphertext in the body of the correctness experiment.We have,

Pr[G9 = 1] = Pr
[
G7 = 1 ∧ C = C′

]
≤ AdvcorrectnessBcorr,PKE (λ).

From the sequence of games starting G0, . . . , G9, it follows that the probability of E1 is bounded
by unforgeability of DS, OTS, and zero-knowledge of NIZK1.

The experiment E2 deals with the case where the adversary A is able to provide a forged TS

signature for an honest authority apki and some attribute a. The capabilities of the adversary A
in this case is bounded by the unforgeability adversary Bts for TS. Hence,

Pr[E2 = 1] ≤
1

t
× Adveuf-cma

Bts,TS (λ).

ut

14

E1

1 : (pp,ask0, tsk)← Setup(1λ)

2 : (((σo,C, π, otsvk),m, Ψ), (upk,warr, (π̂, σs)))← A(pp, tsk : OAtt, OCorr, OReg)

3 : if NIZK1.Verify((C, otsvk, tpk, apk0, Ψ), π) ∧ OTS.Verify(otsvk, (m,Ψ,C, π), σo) ∧
4 :

(
PKE.Dec(tsk,C) = ⊥ ∨ NIZK2.Prove(tsk : otsvk,C, tpk, upk, σs) = ⊥

)
then

5 : return 1

6 : return 0

E2

1 : (pp,ask0, tsk)← Setup(1λ)

2 : (((σo,C, π, otsvk),m, Ψ), (upk,warr, (π̂, σs)))← A(pp, tsk : OAtt, OCorr, OReg)

3 : if NIZK1.Verify((C, otsvk, tpk, apk0, Ψ), π) ∧ OTS.Verify(otsvk, (m,Ψ,C, π), σo) ∧
4 : NIZK2.Verify((otsvk,C, tpk, upk,warr, σs), π̂)∧
5 : (∃a. a ∈ warr =⇒ (apk0, apk1, . . . , apkn, upk, ?) = warr[a] ∧
6 : ((∃0 ≤ i ≤ n− 1. i ∈ HU ∧ (i+ 1, apki+1, aski+1) /∈ List)∨
7 : (n ∈ HU ∧ (· , upk, usk) /∈ List))) then, return 1

8 : return 0

Fig. 8. Experiment Traceability

Lemma 3 The generic HABS construction from Fig. 6 offers path traceability, if NIZK1 is sound
and TS is unforgeable.

Proof. We divide the advantage of the path traceability adversary A for the experiment Exptr
HABS,A

in Fig. 5 by the two winning conditions for the adversary:

1. Trace fails for a valid HABS signature, in experiment E1; and
2. there exists a signature in the warrant, for some attribute introduced for a ”rogue” entity, that

is not registered, by an honest authority, in experiment E2.

We have,
Pr
[
Exptr

HABS,A(λ)
]
≤ Pr[E1 = 1] + Pr[E2 = 1] .

We start with experiment E1, where we use the soundness of NIZK1 to show that PKE.Dec and
NIZK2 cannot fail.

Game G0. The game G0 is defined exactly as E1 in Fig. 8. From this, it immediately follows
that

Pr[G0 = 1] = Pr[E1 = 1] .

Game G1. We define game G1 as G0, except that we add the line

′′∃µ. C = PKE.Enc(tpk, (upk,warr, σs, otsvk)) ∧′′

between lines 3 and 4. This new check performed by G1 is one of the conditions encoded in the
relation for NIZK1, and A is able to notice the difference between G0 and G1 if he can produce a
valid NIZK1 proof for a false statement (that does not have a witness µ). We bind the probability of
A to distinguish this games, by the advantage of the soundness adversary Bsound for NIZK1: Bsound
performs all steps in G1 with the exception of those that require interaction with NIZK1 where he
uses his oracle access. Then, uses the NIZK1 proof π from the output of A as his output. Hence,

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ AdvsoundBsound,NIZK1
(λ).

Game G2. This game uses the correctness of the PKE to replace the test performed over the
encryption in G1 with the test over the decryption

′′∃µ. PKE.Enc(tpk, (upk,warr, σs, otsvk);µ) = C by

PKE.Dec(tsk,C) = (upk, warr, σs, otsvk)′′.

15

Additionally, we remove the line ”PKE.Dec(tsk,C) = ⊥” as this can be canceled by the change
above. The difference between these two games is bounded by the probability of an decryption to
fail after an encryption, even on adversarial valid inputs. We construct adversary Bcor for PKE that
calls Setup and A. Then, it uses (tpk, (upk,warr, σs) as the message and µ as the randomness.

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ AdvcorrBcor,PKE(λ).

Game G3. This game returns directly 0. The basis for this is that it should be hard for a NIZK2
proof created over a statement and witness that belong to the relation, to be declared invalid by
the verification algorithm. We quantify this difficulty, by building an adversary Bcom that tries to
win the completeness experiment for NIZK2. Bcom calls Setup and A, then builds the statement
(otsvk,C, tpk, upk,warr, σs) that is used to create a proof that will fail verification.

Pr[G2 = 1] = |Pr[G2 = 1]− Pr[G3 = 1]| ≤ Advcomplete
Bcom,NIZK2

(λ).

From the sequence of games starting G0, . . . , G3, it follows that the probability of E1 is bounded
by the soundness of NIZK1.

Experiment E2 models the setting where adversary A is able to provide a valid warr that
contains valid TS signatures from an honest authority apki to an entity, apki+1 or upk, not registered
- not in List. This means, he is able to forge signatures under the name of apki without knowledge
of the corresponding secret key aski. We bind the probability of A to win by the advantage of the
forger Bts for TS. First, Bts needs to guess which authority A would use to forge a signature in
the warrant, and does that with probability 1/t given exactly t registration queries for authorities.
Then, he uses the challenge public key for that authority, and answers all queries that A makes for
that authority with his TS signing oracle calls. Finally, Bts looks at the output of A for signatures
that contain that authority and has not been provided by his signing oracle.

Pr[E2 = 1] ≤
1

t
× Adveuf-cma

Bts,TS (λ).

ut

Theorem 1. The HABS construction in Fig. 6 offers path anonymity,
non-frameability, and path traceability under the assumptions that PKE is IND-CCA2 secure, TS

and DS are unforgeable, OTS is strongly unforgeable, NIZK1 and NIZK2 are both sound zero-knowledge
proofs.

Proof. The proof follows from Lemmas 1, 2 and 3.

4.1 Instantiating the HABS Building Blocks

Instantiation. We instantiate HABS in the bilinear group setting. For the digital signature DS

we use the constant-sized structure preserving scheme by Abe et al. [1], whereas for TS we use
their unbounded-message version of their scheme. These are unforgeable under the Simultaneous
Flexible Pairing (SFP) [1] assumption. We use an encryption scheme by Camenish et al. [10]
that is capable of encrypting message vectors for our IND-CCA2 PKE, which relies on the DLIN
assumption. Finally, for the one-time signature OTS we use the full Boneh-Boyen signature scheme
[6], which is strongly unforgeable under the q-Strong Diffie-Hellman (q-SDH) assumption.

For the proofs NIZK1 and NIZK2, we use Groth-Sahai (GS) proof systems [24], the security of
which is also based on the DLIN assumption in the symmetric setting. These are efficient, non-
interactive proof systems in the CRS model that are complete, sound, and zero-knowledge. Briefly,
the GS proof system works by commiting to the elements of the witness and then showing they
satisfy the source equation. The equation must take the form of either a Pairing Product Equation
(PPE), a Multi-Scalar Multiplication Equation (MSME) or a Quadratic Equation (QE). We refer
to [24] for full details and give an overview of our constructions for NIZK1 and NIZK2 in Appendix
A.

Efficiency. We briefly consider the efficiency of our HABS scheme. For our instantiation of OTS, the
public key requires 4 group elements and the short signature only requires 3 elements from G and

16

one element from Zp. The ciphertext C computed using PKE requires n+ 8 elements from G, where
n is the number of elements in the public keys and tagged-signatures from the delegation paths
in the warrant. However, the size of TS used to delegate and issue attributes depends linearly on
the distance of the intermediate authority from the root authority in the delegation path, simply
because the number of messages (authorities’ public keys) increases by one with each delegation.
Therefore, the proof NIZK1 that includes a proof that the warrant contains a valid path also grows
linearly in this parameter. We note that use of a public hash function on otsvk before encryption
immediately reduces the size of PKE to n+ 5 group elements.

To prove satisfiability of the signing predicate Ψ , a proof containing 2β elements from Zp is
constructed, where β is the size of the span program S. The proof that DS verifies is of constant
size and requires 72 elements of G.

Finally, the size of the proof in NIZK1 that C was encrypted correctly is linear in the number of
delegations in the warrant, this is inevitable since we need to prove the validity for each authority-
signature pair on the delegation path. Similarly, this is also the case for the proof of correctness
for decryption of C in NIZK2.

We note that if we consider HABS in the setting where the maximum delegation path of an
attribute has length 1, then the size of a HABS signature is linear in the size of the policy Ψ , which
is consistent with other ABS schemes that also offer flexible signing policies, e.g., [32, 18, 22].

4.2 Other properties

In the following we discuss some further properties that can be adopted within our general HABS
construction.

Revocation. Our generic HABS construction can be extended to support revocation of attribute
authorites and users by means of public revocations lists RL authenticated by the root authority.
These lists would include public keys of revoked authorities and users. To enable detection of re-
voked entities upon verification of HABS signatures, the proof NIZK1 can be extended to prove that
for all attributes used to satisfy the policy none of the public keys in the corresponding delegation
paths within the signer’s warrant warr is included into these lists. Since HABS signatures hide
delegation paths this approach would preserve privacy by ensuring that no verifier can identify the
revoked signer. Due to its complexity, O(r

∑
a |warr[a]|) where r is the number of revoked public

keys, this method might not scale well and hence finding more efficient revocation mechanisms can
be seen as an interesting open problem.

Independent hierarchies. Assume there are multiple HABS hierarchies, each managed by an
independent root authority, and any (intermediate) authority or user should be able to receive
attributes from different such hierarchies. Our general HABS construction naturally supports this
scenario. In particular, warrants can include attributes (along with their signed delegation paths)
that were issued to the entity by authorities belonging to other hierarchies and consequently the
proof NIZK1 can enable generation of HABS signatures for predicates Ψ requiring possession of
attributes from these hierarchies.

5 Conclusion

The notion of Hierarchical ABS (HABS) introduced in this paper extends the functionality for
existing (multi-authority) ABS schemes with some useful properties that can help to expand the
application domain of ABS signatures, e.g. to intelligent transport systems. The extended proper-
ties of HABS include: (1) support for dynamically expandable hierarchical formation of attribute
authorities, managed by some root authority, (2) hierarchical delegation of attribute-issuing rights
amongst the authorities, (3) the ability to issue attributes to signers by multiple authorities, possi-
bly located at different levels of the hierarchy, (4) generated ABS signatures that hide signers, their
attributes together with their delegation paths, (5) support for a publicly verifiable tracing proce-
dure that enables accountability for all entities that were involved in the delegation and issue of an
attribute to a signer. This brings ABS schemes closer to traditional hierarchically-organised PKIs
while preserving the valuable privacy properties and security guarantees of the attribute-based
setting. The proposed generic HABS construction makes use of standard cryptographic building
blocks that can be instantiated in the setting of bilinear maps based on the DLIN, q-SDH and SFP

17

assumptions. We discussed further how our HABS construction offers natural support for scenarios
where the same authority or user is admitted to multiple, independently managed hierarchies and
needs to bundle attributes obtained in these hierarchies to satisfy some predicate, and how it can
be extended to revoke attribute authorities and signers.

Acknowledgements. DG was supported by the UK Government PhD studentship scheme. CD
and MM were supported by the EPSRC project TAPESTRY (EP/N02799X). The authors also
thank the reviewers of CANS 2018 and Alfredo Rial for valuable comments.

References

1. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-Preserving
Signatures and Commitments to Group Elements. In CRYPTO 2010, pages 209–236, 2010.
https://eprint.iacr.org/2010/133.

2. M. Backes, S. Meiser, and D. Schröder. Delegatable functional signatures. In PKC (1)’16, pages
357–386, 2016.

3. M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Randomizable
Proofs and Delegatable Anonymous Credentials. In CRYPTO 2009, pages 108–125. LNCS 5677.

4. M. Bellare and G. Fuchsbauer. Policy-based signatures. In PKC 2014, pages 520–537, 2014. LNCS
8383.

5. M. Blum, P. Feldman, and S. Micali. Non-interactive Zero-knowledge and Its Applications. In
STOC’88, pages 103–112, 1988.

6. D. Boneh and X. Boyen. Short Signatures Without Random Oracles. In EUROCRYPT 2004, pages
56–73. LNCS 3027, 2004.

7. X. Boyen. Mesh Signatures. In EUROCRYPT 2007, pages 210–227. LNCS 4515.
8. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. In PKC

2014, pages 501–519, 2014.
9. J. Camenisch, M. Drijvers, and M. Dubovitskaya. Practical uc-secure delegatable credentials with

attributes and their application to blockchain. In ACMCCS’ 17, pages 683–699, 2017.
10. J. Camenisch, K. Haralambiev, M. Kohlweiss, J. Lapon, and V. Naessens. Structure Preserving CCA

Secure Encryption and Its Application to Oblivious Third Parties. Cryptology ePrint Archive, Report
2011/319, 2011.

11. J. Camenisch, I. Krontiris, A. Lehmann, G. Neven, C. Paquin, K. Rannenberg, and H. Zwingelberg.
H2.1 abc4trust architecture for developers. abc4trust.eu, 2011.

12. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In SCN 2002, SCN
2002, pages 268–289. LNCS 2576, 2003.

13. D. Chaum. Security without identification: Transaction systems to make big brother obsolete. Com-
mun. ACM, 28(10):1030–1044, 1985.

14. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT 1991, LNCS, pages 257–265.
Springer, 1991.

15. S. Ding, Y. Zhao, and Y. Liu. Efficient traceable attribute-based signature. In IEEE TRUSTCOM
2014, pages 582–589, 2014.

16. C.-C. Dragan, D. Gardham, and M. Manulis. Hierarchical attribute-based signatures. IACR Cryptol-
ogy ePrint Archive, 2018. https://eprint.iacr.org/2018/610.

17. A. El Kaafarani and E. Ghadafi. Attribute-based signatures with user-controlled linkability without
random oracles. In Cryptog. and Coding, pages 161–184, 2017.

18. A. El Kaafarani, E. Ghadafi, and D. Khader. Decentralized traceable attribute-based signatures. In
CT-RSA 2014, pages 327–348. LNCS 8366, 2014.

19. A. Escala, J. Herranz, and P. Morillo. Revocable attribute-based signatures with adaptive security in
the standard model. In AFRICACRYPT 2011, pages 224–241. LNCS 6737, 2011.

20. G. Fuchsbauer and D. Pointcheval. Anonymous proxy signatures. In SCN, volume 5229 of LNCS,
pages 201–217. Springer, 2008.

21. M. Gagné, S. Narayan, and R. Safavi-Naini. Short Pairing-Efficient Threshold-Attribute-Based Signa-
ture. In Pairing 2012, pages 295–313. LNCS 7708, 2013.

22. E. Ghadafi. Stronger security notions for decentralized traceable attribute-based signatures and more
efficient constructions. In CT-RSA 2015, pages 391–409. LNCS 9048, 2015.

23. S. Gisdakis, M. Lagana, T. Giannetsos, and P. Papadimitratos. SEROSA: service oriented security
architecture for vehicular communications. In IEEE VNC’13, pages 111–118, 2013.

24. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT
2008, pages 415–432, 2008. LNCS 4965.

25. J. Guo, J. P. Baugh, and S. Wang. A group signature based secure and privacy-preserving vehicular
communication framework. In Mobile NVE 2007, pages 103–108, 2007.

18

26. J. Herranz. Attribute-based Signatures from RSA. TCS, 527:73–82, 2014.

27. J.-P. Hubaux, S. Čapkun, and J. Luo. The security and privacy of smart vehicles. IEEE Security and
Privacy, 2(3):49–55, 2004.

28. N. Kaaniche, M. Laurent, P.-O. Rocher, C. Kiennert, and J. Garcia-Alfaro. PCS, A Privacy-Preserving
Certification Scheme. In Data Privacy Management, Cryptocurrencies and Blockcain Technology, pages
239–256, 2017.

29. P. Kamat, A. Baliga, and W. Trappe. An identity-based security framework for vanets. In ACM
VANET 2006, pages 94–95. ACM, 2006.

30. L. Krzywiecki, M. Sulkowska, and F. Zagórski. Hierarchical ring signatures revisited – unconditionally
and perfectly anonymous schnorr version. In Security, Privacy, and Applied Cryptography Engineering,
pages 329–346, 2015.

31. J. Li, M. H. Au, W. Susilo, D. Xie, and K. Ren. Attribute-based Signature and Its Applications. In
ACM ASIACCS 2010, pages 60–69. ACM, 2010.

32. H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In CT-RSA 2011, pages
376–392, 2011.

33. G. Neven, G. Baldini, J. Camenisch, and R. Neisse. Privacy-preserving attribute-based credentials in
cooperative intelligent transport systems. In IEEE VNC’17, pages 131–138, 2017.

34. T. Okamoto and K. Takashima. Decentralized attribute-based signatures. In PKC 2013, pages 125–142.
LNCS 7778, 2013.

35. T. Okamoto and K. Takashima. Efficient attribute-based signatures for non-monotone predicates in
the standard model. In PKC 2011, pages 35–52. LNCS 6571, 2011.

36. J. Petit, F. Schaub, M. Feiri, and F. Kargl. Pseudonym schemes in vehicular networks: A survey. IEEE
Comm.s Surveys and Tutorials, 17(1):228–255, 2015.

37. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT 2001, volume 2248
of LNCS, pages 552–565. Springer, 2001.

38. K. Sampigethaya, M. Li, L. Huang, and R. Poovendran. AMOEBA: Robust Location Privacy Scheme
for VANET. IEEE J-SAC, 25(8):1569–1589, 2007.

39. F. Schaub, Z. Ma, and F. Kargl. Privacy requirements in vehicular communication systems. In CSE’09,
pages 139–145, 2009.

40. J. Sun, C. Zhang, Y. Zhang, and Y. M. Fang. An identity-based security system for user privacy in
vehicular ad hoc networks. IEEE Trans. Parallel Distrib. Syst., 21(9):1227–1239, 2010.

41. M. Trolin and D. Wikström. Hierarchical Group Signatures. In ICALP 2005, volume 3580 of LNCS,
pages 446–458. Springer, 2005.

42. R. Tsabary. An equivalence between attribute-based signatures and homomorphic signatures, and new
constructions for both. In TCC (2)’17, pages 489–518, 2017.

A Constructions of NIZK Proofs

Here we give an overview of the constructions for NIZK proofs NIZK1 and NIZK2 based on the
instantiation introduced in Section 4.1 and refer to the literature for further details. The instanti-
ation described requires use a public hash function H to map attributes into the tag space of the
tagged-signature scheme.

For reference, the keys for the primitives TS and PKE are given below, respectively. All elements
here belong to a group G.

(ask, apk) =
(
(α̃, β̃, γZ , δZ , {γi, δi}ki=1),

(GZ , FZ , GR, FU , {Gi, Fi}ki=1, {Ai, Ãi, Bi, B̃i}1i=0, S−1, V−1)
)

(tsk, tpk) =
(
({αi}ni=1, {βi}

n+4
i=0), (g1, g2, g3, {hi,1, hi,2}ni=1, {fi,1, fi,2}

n+4
i=0)

)
Construction of NIZK1. To create a proof NIZK1, we consider each statement of the language in
turn.
• For the span program S ∈ M|Ψ |,β(F) representing the predicate Ψ , the signer proves they have
knowledge of some z such that zS = [1, 0, ..., 0]. This encodes what attributes are used to satisfy
the predicate. We commit to the vector z and show:∑|Ψ |

i=1(ziSi,1) = 1 and
∑|Ψ |
i=1(ziSi,j) = 0 for j = 2, ..., β.

19

These are β linear equations in Zp and in the symmetric setting, the Groth-Sahai proof consists of
2β elements in Zp.
• Show that for every attribute used to satisfy the predicate, we have a valid delegation path. That
is, we prove:
zi 6= 0 =⇒ ∀apkij ∈ warr[ai]. TS.Verify(apkij ,warr[ai][j], ai, (apki1 , . . . , apkij)). We achieve
this by raising each pairing in the verification equations for the signatures in the delegation path of
ai to zi. Then, if zi 6= 0, warr[a] is only a valid delegation path for a if each TS signature verifies. If
zi = 0 then the verification equation will trivially verify since each pairing will evaluate to 1 ∈ GT .

The unbounded-message scheme we use for our instantiation amounts to chaining together an
arbitrary number of constant size signatures of a scheme also given in [1]. To realise this, the
message is split into blocks. The intuition is to input the nth signature as part of the message of
signature n + 1, which the structure preserving property ensures is possible. Verification requires
verifying each signature in the chain w.r.t the message block, the verification key and the previous
signature. In the instantiated scheme, it is actually sufficient to only sign on part of the previous
signature, due to the signature binding property as detailed in original work [1]. Hence, we only
need to consider how to construct the GS proof for the constant sized scheme, as the unbounded-
message version amounts to verifying multiple constant-sized signatures. With this, we consider
the verification equation for the constant sized signature.

The messages ml ∈ G are the group elements of the public keys apkj and the attribute H(ai)
split into message blocks w of size k − 2. A constant sized signature is created for each message
block where Sw and Vw are part of the signature for message block w − 1, with the exception of
S−1 and V−1 which are part of the verification key apkj .

A TS signature verifies if it satisfies the following equations.(
Ḡl = Gzil

)k
l=1

Ā0 = Azi0 Ā1 = Azi1 ḠR = GziR ḠZ = GziZ S̄ = Szi

e(Ā0, Ã0)e(Ā1, Ã1) = e(ḠZ , Z)e(ḠR, R)e(S̄, T)e(Ḡk, Sn−1)e(Ḡk−1, Vn−1)
∏k−2
l=1 e(Ḡl,ml)

(
F̄l = F zil

)k
l=1

B̄0 = Bzi0 B̄1 = Bzi1 F̄Z = F ziZ F̄U = F ziU V̄ = V zi

e(B̄0, B̃0)e(B̄1, B̃1) = e(F̄Z , Z)e(F̄U , U)e(V̄ ,W)e(F̄k, Sn−1)e(F̄k−1, Vn−1)
∏k−2
l=1 e(F̄l,ml)

Each constant sized signature consists of 7 elements from G, and so the size of the signature on an
unbounded message is 7 · dn+1

k−2 e, where k is the size of the message space and n is the number of
message blocks. In the case that k does not divide the number of messages to be signed, we append
1G to complete the message in the final block. This does not increase the size of the signature.
To evaluate the verification equations in zero-knowledge, we are required to prove 2k + 10 linear
multi-scalar multiplication equations and 2 product pairing equations for each message block.

We prove the statement

“TS.Verify(apkin , σu, ai, (apk0, apki1 , . . . , apkin , upk, ?)”

in much the same way, with upk taking the role of the final public key in the delegation path. We
choose ? to be some predefined fixed element from G.
• Prove that the ciphertext was constructed correctly. We let the plaintexts ti ∈ G for i = 1, ..., n
be the group elements that comprise the public keys and signatures (of TS and DS) in the warrant,
and the public key of the one-time signature otsvk. The randomness is given by µ and µ′ (in Zp)
and is part of the witness. To prove the correctness of the ciphertext (C, c1, ..., cn, u1, u2, u3), we
show the following relation holds [10].

u1 = gµ1 , u2 = gµ
′

2 , u3 = gµ+µ
′

3

ci = ti · hµi,1h
µ′

i,2, for i = 1, ..., n

C =
∏3
i=0 ê(f

µ
i,1f

µ′

i,2, ui) ·
∏n+3
i=4 ê(f

µ
i,1f

µ′

i,2, ci−3)

For a warrant containing n group elements, this proof requires n+3 linear MSME and one PPE,
hence requires 2n + 15 elements from G. Note n used here is equal to n + 8 from the efficiency
discussion in Section 4.1.
• Prove DS is constructed correctly. Since we instantiate DS with the same scheme as TS, and hence
we follow the same proof structure as above but with k = 2, i.e. there are only 2 messages which

20

are comprised of the component parts of the one-time public key otsvk.

In addition to the proof, each GS commitment is in G3, the PKE ciphertext consists of n+4 elements
from G while the OTS (including verification key) consists of 3 elements from G and one from Zp.

Construction of NIZK2. Here we prove the following relation:

PKE.Dec(tsk,C) = (upk,warr, σs, otsvk).

For the instantiation of PKE above, this is achieved by showing equality of the following equations.
For the ciphertext (C, c1..., cn, u1, u2, u3) :

C =
∏3
i=0 ê(u

βi,1

1 u
βi,2

2 u
βi,3

3 , ui) ·
∏n+3
i=4 ê(u

βi,1

1 u
βi,2

2 u
βi,3

3 , ci−3)

ti = ci · (u
αi,1

1 u
αi,2

2 u
αi,3

3) for i = 1, ..., n.

Computing NIZK2 consists of n linear MSME and one PPE, which requires 2n+9 elements from G
where n is the number of group elements in upk, warr and σs. Again, each GS commitment is in G3.

21

