
Indistinguishability Obfuscation Without Multilinear Maps:

iO from LWE, Bilinear Maps, and Weak Pseudorandomness

Prabhanjan Ananth
CSAIL, MIT

prabhanjan@csail.mit.edu

Aayush Jain
UCLA

aayushjain@cs.ucla.edu

Dakshita Khurana
UCLA

dakshita@cs.ucla.edu

Amit Sahai
UCLA

sahai@cs.ucla.edu

June 17, 2018

Abstract

The existence of secure indistinguishability obfuscators (iO) has far-reaching implications,
significantly expanding the scope of problems amenable to cryptographic study. All known
approaches to constructing iO rely on d-linear maps which allow the encoding of elements from
a large domain, evaluating degree d polynomials on them, and testing if the output is zero. While
secure bilinear maps are well established in cryptographic literature, the security of candidates
for d > 2 is poorly understood.

We propose a new approach to constructing iO for general circuits. Unlike all previously
known realizations of iO, we avoid the use of d-linear maps of degree d ≥ 3.

At the heart of our approach is the assumption that a new weak pseudorandom object exists,
that we call a perturbation resilient generator (∆RG). Informally, a ∆RG maps n integers to
m integers, and has the property that for any sufficiently short vector a ∈ Zm, all efficient
adversaries must fail to distinguish the distributions ∆RG(s) and (∆RG(s)+a), with at least
some probability that is inverse polynomial in the security parameter. We require that the
∆RG be computable by degree-2 polynomials over Z. We use techniques building upon the
Dense Model Theorem to deal with adversaries that have nontrivial but non-overwhelming
distinguishing advantage.

As a result, we obtain iO for general circuits assuming:

• Subexponentially secure LWE

• Bilinear Maps

• (1− 1/poly(λ))-secure 3-block-local PRGs

• 1/poly(λ)-secure ∆RGs

1

Contents

1 Introduction 3

2 Technical Overview 4

3 Preliminaries 9
3.1 Indistinguishability Obfuscation (iO) . 10
3.2 Slotted Encodings . 11

3.2.1 Generic Bilinear Group Model . 11
3.3 Threshold Leveled Fully Homomorphic Encryption 12
3.4 Useful Lemmas . 13

4 Tempered Cubic Encoding 14
4.1 Tempered Security . 16

5 Three-restricted FE 18
5.1 Semi-functional Security . 19

6 (Stateful) Semi-Functional Functional Encryption for Cubic Polynomials 21
6.1 Semi-functional Security . 22

7 Semi-Functional Functional Encryption for Circuits 24
7.1 Semi-functional Security . 25

8 Step 1: Instantiating TCE 27
8.1 Perturbation-Resilient Generator (∆RG) . 28
8.2 LWE Preliminaries . 28
8.3 Our TCE construction: . 29

9 Step 2: Construction of Three-Restricted FE from Bilinear Maps 36
9.1 Security . 38

10 Step 3: Construction of Semi-Functional FE for Cubic Polynomials 44
10.1 Construction . 45
10.2 Security Proof . 47

11 Step 4: (Sublinear) Semi-Functional Secret Key FE from Semi-Functional FE
for Cubic Polynomials 52
11.1 Randomizing Polynomials . 52
11.2 Security . 55

12 Step 5: Amplification 59
12.1 Security Proof . 61

13 Construction of iO 84

References 90

1 Introduction

Program obfuscation considers the problem of building an efficient randomized compiler that takes
as input a computer program P and outputs an equivalent program O(P) such that any secrets
present within P are “as hard as possible” to extract from O(P). This property can be formalized
by the notion of indistinguishability obfuscation (iO) [BGI+01, GR07]. Formally, iO requires that
given any two equivalent programs P1 and P2 of the same size, it is not possible for a computation-
ally bounded adversary to distinguish between the obfuscated versions of these programs. Recently,
starting with the works of [GGH+13b, SW14], it has been shown that iO would have far-reaching
applications, significantly expanding the scope of problems to which cryptography can be ap-
plied [SW14, KLW15, GGHR14, CHN+16, GPS16, HSW14, BPR15, GGG+14, HJK+16, BFM14].

The work of [GGH+13b] gave the first mathematical candidate iO construction, and since then
several additional candidates have been proposed and studied [GGH13a, CLT13, GGH15, CLT15,
Hal15, BR14, BGK+14, PST14, AGIS14], [BMSZ16, CHL+15, BWZ14, CGH+15, HJ15, BGH+15,
Hal15, CLR15, MF15, MSZ16, DGG+16], as well as more recently [Lin16, LV16, AS17, LT17].

Constructing iO. Securely building iO remains a central challenge in cryptography. In this work,
we show how to utilize new techniques to securely build iO. Most notably, we show new ways to
leverage bilinear maps and tools building upon the dense model theorem [JP14, CCL18, RTTV08]
in the context of constructing iO. Using these new tools, we show how to securely construct iO
without using cryptographic multilinear maps beyond bilinear maps. We now elaborate.

Graded Encodings. All known approaches for building iO crucially rely on the existence of a
graded encoding scheme [GGH13a, CLT13, GGH15], which generalizes the notion of a cryptographic
mulitilinear map [BS02]. In a degree-d graded encoding scheme, it is possible to compute encodings
[x] of values x, such that for any degree-d polynomial f with small coefficients, given only the

encodings [x], it is possible to efficiently test whether f(x)
?
= 0. For d = 2, this corresponds to

cryptographic bilinear maps [BF01], for which we know well-studied constructions based on the
hardness present in elliptic curve groups that admit pairing operations.

However, the situation for d > 2 is much more problematic. While candidate constructions of
such graded encoding schemes exist [GGH13a, CLT13, GGH15], their security is poorly understood
due to several known explicit attacks on certain distributions of encoded values [CHL+15, BWZ14,
CGH+15, HJ15, BGH+15, Hal15, CLR15, MF15, MSZ16].

Due to a recent line of work [Lin16, LV16, AS17, Lin17, LT17], based additionally on the subex-
ponential hardness of 3-blockwise-local PRGs and the Learning with Errors assumption (LWE),
it is known that achieving security for d = 3 is already enough to construct iO. Unfortunately,
however, the security of candidate graded encodings supporting d = 3 seems no better understood
than the general d > 2 case.

The state of our understanding strongly motivates the following central question:

Can we build iO without cryptographic multilinear maps?

Our Goals and Assumptions. We seek to build iO from as few non-standard components
as possible. Because LWE and cryptographic bilinear maps have a long history of security, we
consider using LWE or (generically secure) cryptographic bilinear maps as standard. Beyond these

3

standard tools, however, we will seek to qualitatively and quantitatively minimize the risk of any
new tools that we use. This is in contrast with existing candidate multilinear maps, where both
constructions [GGH13a, CLT13, GGH15] and standing security models [MSZ16] are complex and
therefore difficult to understand and analyze.

More specifically, we will show how to build iO from LWE, bilinear maps, and novel weakly
pseudorandom objects that we call perturbation-resilient generators (∆RG), that can be imple-
mented with degree-2 polynomials over Z. Informally speaking, a perturbation-resilient generator
is a generator ∆RG such that the distributions ∆RG(s) and (∆RG(s) + a) are somewhat hard
to distinguish as long as the perturbation a is relatively small. We describe ∆RGs in more detail
below in our technical overview, where we will also discuss why we conjecture that they exist (even
in light of [BBKK17, LV17]).

A key innovation of our work is that we can work with perturbation-resilient generators where
the security property only asks that efficient adversaries fail to distinguish between two distributions
with at least some 1/poly(λ) probability – i.e. some fixed inverse polynomial in the security
parameter. Thus, even if an efficient adversary correctly predicts whether a sample comes from the
∆RG(s) distribution or the (∆RG(s) + a) distribution 99% of the time, our iO scheme will still be
secure.

We stress that the new object (∆RG) that we introduce is quite simple – indeed crucially it
is implementable by degree-2 polynomials over Z. This simplicity stands in notable contrast to
candidate multilinear maps. More generally, our work motivates the further cryptanalytic study of
simple pseudorandom objects

We will also only need to use similarly weakened1 forms of 3-blockwise-local PRGs [LT17].
In particular, we obtain the following:

Theorem 1 (Informal). There is a construction of indistinguishability obfuscation for all polynomial-
sized circuits from,

• 1
λ -secure perturbation-resilient generators (see Section 8.1), with security against sub-exponential
size adversaries.

• (1 − 1
2λ)-secure three-block-local pseudorandom generators [LT17] of stretch n1+ε, for ε > 0

on seeds of length n, with security against sub-exponential size adversaries.

• Sub-exponentially secure learning with errors.

• Sub-exponentially secure assumptions on bilinear maps (that hold unconditionally in the generic
bilinear map model).

2 Technical Overview

We begin with a very high-level overview of our techniques.

1There will be a tradeoff between how much we can weaken the indistinguishability requirements of the ∆RG and
the 3-block-local PRG.

4

The story so far. Prior work, culminating in the most recent works of [AS17, Lin17, LT17]
showed us that the powerful primitive of indistinguishability obfuscation can be based on trilin-
ear maps and (sub-exponential) 3-block-local pseudorandom generators. Importantly for us, these
works also (implicitly) demonstrate that in order to achieve indistinguishability obfuscation, it suf-
fices to construct (sub-exponentially secure) secret-key sublinear FE for cubic polynomials, satisfy-
ing semi-functional security. Unfortunately, these prior approaches necessarily relied on multilinear
maps with degree at least 3 to build such a cubic FE scheme.

That is because intuitively such a cubic FE scheme guarantees a way to evaluate a cubic
polynomial on encrypted inputs without revealing any information about the input except the
evaluation of the polynomial. In other words, such a scheme provides a way to output the decryption
of a degree-3 polynomial evaluated “homomorphically” on encoded inputs. However, we seek to
accomplish this without the use of degree-3 maps.

Since we seek to operate homomorphically on encoded values, a natural starting idea is to
use fully homomorphic encryption (for concreteness and simplicity, in this paper we rely on the
GSW fully homomorphic encryption scheme [GSW13]) with polynomially bounded error in order
to perform cubic evaluations on encrypted inputs. The main challenge, however, is to reveal the
output of cubic evaluation without compromising security.

Initial approach. Our first observation is that computing the inner product 〈GSW.sk,GSW.CT〉
of a GSW secret key with a GSW ciphertext encrypting message M , outputs (M · bq/2c + e)
where the LWE modulus is q and e is a small error. With the assistance of a bilinear map, this
inner product can be carried out via pairings, such that the output (M · bq/2c + e) appears as
an exponent in the target group. Next, one can hope to test whether the message M is zero by
computing a discrete logarithm by brute-force checking all possible values, provided the output
range is polynomial, which would happen if M = 0.

A reader familiar with GSW will observe that this approach already runs into major hurdles.
The first problem is that brute-force computing the message M also reveals the error e to a potential
adversary, which is problematic when we try to invoke the semantic security of GSW. In fact, recent
work shows how knowledge of such error can be used to build devastating attacks [Agr17]. We will
crucially deal with this issue, but before we tackle this, let us first consider how we can force the
adversary to obtain only inner products 〈GSW.sk,GSW.CT〉 where the messages correspond to cubic
computations that the adversary is allowed to obtain.

3-Restricted FE. To accomplish this, we first define a restricted version of functional encryp-
tion – which allows for the computation of cubic polynomials of three inputs, where one remains
unencoded and is called the public component and the other two are encoded; these are the private
components.

One of our key technical contributions is to achieve a new way of (indistinguishably) enforcing
the output of such a 3-restricted FE scheme, despite the fact that one of the encodings is publicly
known to the adversary. We use these techniques to achieve security for this 3-restricted variant of
FE relying solely on asymmetric bilinear maps. While we only need the resulting 3-restricted FE
to be sublinear, our construction in fact achieves compactness, where the size of encoding is only
linear in the input length.

In Section 9, we provide details of our 3-restricted FE. Once we have such a restricted FE,
making the leap to cubic FE would require us to also keep the public encoding hidden. Therefore,

5

it is not clear whether we have achieved anything meaningful yet.
One way that we can hope to protect or hide the input that goes into the public component of

the 3-restricted FE, is to let this component itself be a GSW-based fully homomorphic encryption
of the input. We can then rely on 3-restricted FE to homomorphically evaluate the cubic function
itself and obtain a GSW encryption of the output of cubic evaluation. Note that releasing such a
GSW encryption as such is useless, because it does not allow even an honest evaluator to recover
the output of cubic evaluation.

At this point, let us go back to the initial approach described at the beginning of this section.
Notice that instead of relying on 3-restricted FE to only homomorphically evaluate the cubic func-
tion itself, we can also perform a decryption via 3-restricted FE. The secret key for GSW decryption
can be embedded as input into one of the private components of the 3-restricted FE. We show how
this can be carefully done via degree three operations only, to obtain output the GSW plaintext
with some added error, that is, we obtain out = µb q2c + e. Our actual method of bootstrapping
three-restricted FE to sublinear FE for cubic polynomials involves additional subtleties, and in
particular, we define and construct what we call tempered cubic encodings that serve as a useful
abstraction in this process. We now further discuss one of the main technical issues that arises in
this process.

Because the error e is sampled from a (bounded) polynomial-sized domain, it is possible to
iterate, in polynomial time, over all possible values of out corresponding to µ = 0 and µ = 1, and
therefore recover µ. Unfortunately, this process also reveals the error e, which can be devastating
as we noted before.

Preventing the revelation of error terms. To prevent this issue, we will reveal the value out
but with some added noise, so as to hide the error e via noise flooding. Unfortunately, this idea
still suffers from two major drawbacks:

• How should we generate such noise? A natural idea is to rely a pseudorandom generator
that can be computed via quadratic operations only. However, this is exactly the reason why
previous approaches from the literature could not rely on bilinear maps – in fact, the recent
works of [LV17, BBKK17] showed that such PRGs are quite difficult to construct. To overcome
this problem, we introduce and rely on a very weak variant of a pseudorandom object, that
instead of guaranteeing pseudorandomness, only guarantees perturbation resilience. We will
soon explain this object in more detail.

• For an honest evaluator to recover µ by iterating over all possible values of out, we crucially
require the added noise be sampled from a polynomial-sized domain. But such noise appears
to be insufficient for security, in particular, an adversary would have advantage at least

1
poly(λ) in distinguishing a message with added noise from a message without noise. Another
key technical contribution of our work is to find a way to amplify security, via tools inspired
by the dense model theorem. In the next two bullets, we describe these ideas in additional
detail.

The challenge of constructing degree-2 pseudorandomness. As we’ve outlined above, we
need a way to use degree 2 polynomials over Z to create pseudorandomness to (at least partially)
hide noise values. The most straightforward way to do this would be to build a pseudorandom
generator (PRG) whose output is indistinguishable from some nice m-dimensional distribution, like

6

a discrete gaussian. However, the works of [BBKK17, LV17] showed that there are fundamental
barriers to constructing such PRGs due to attacks arising from the Sum of Squares paradigm.
Because we will propose a direction to overcome this barrier, we now review how these attacks
work at a high level.

For simplicity, let’s restrict our attention to polynomials where every monomial is of degree ex-
actly 2. We can represent any such polynomial p as a symmetric n-by-n matrix P , where Pi,j = Pj,i
is equal to half the coefficient of the monomial xixj if i 6= j, and Pi,i is equal to the coefficient
of the monomial x2

i . Then we observe that p(x) = x>Px. Suppose, then, we have a candidate
PRG consisting of m degree-2 polynomials that we represent by matrices M1, . . . ,Mm. Thus, to
sample from this PRG, we sample a seed vector x from a bounded-norm distribution, and obtain
the outputs yi = x>Mix. The goal of an attack would be to distinguish such outputs from a set of
independent random values r1, . . . , rm, say from a discrete gaussian distribution centered around
zero.

The works of [BBKK17, LV17] suggest the following attack approach: Suppose we receive values
z1, . . . , zm. Then we construct the matrix

M =

m∑
i=1

ziMi

Observe now, that if zi = yi corresponding to some seed vector x, then we have:

x>Mx =
m∑
i=1

yix
>Mix =

m∑
i=1

y2
i

Intuitively, because the above sum is a sum of squares, this will be a quite large positive value,
showing that there exists x of bounded norm such that x>Mx can be quite large.

However, if the zi = ri, then the entries of the matrix M arise from a “random walk,” and thus
intuitively, the matrix M should behave a lot like a random matrix. However a random matrix has
bounded eigenvalues, and thus we expect that there should not exist any x of bounded norm such
that x>Mx is large. Indeed, this intuition can be made formal and gives rise to actual attacks on
many degree-2 PRGs [BBKK17, LV17].

There are several potential caveats to this attack, and indeed it is not known to be true that
no degree-2 PRGs can exist. Just as a few examples of such caveats, if the seed vector x comes
from a nonstandard distribution, or if the matrices Mi have special shapes or structures, then it is
unclear if the intuitive attack analysis above can be carried out.

However, we propose a different, arguably more conservative, way out:

Perturbation-Resilient Generators (∆RG). We observe that even though the most natural
way to “drown out” the GSW error term above is by adding some nice noise distribution, all
we actually need is something we will call a perturbation-resilient generator (∆RG): Informally
speaking, we want that for every polynomial bound B(λ), there should exist a degree-2 ∆RG using
polynomially bounded seeds and coefficients, such that for any perturbation vector a ∈ [−B,B]m,
it should be true that all efficient adversaries must fail to distinguish between the distributions
∆RG(x) and (∆RG(x)+a) with probability at least 1/poly(λ), which is a fixed inverse polynomial
in the security parameter. We stress again that we are not seeking a ∆RG with standard negligible
security, but only some quite low level of security.

7

Why should such weakly secure ∆RGs exist, resisting the attacks based on the Sum of Squares
paradigm above? In the attack above, now, zi = yi or zi = yi + ai. However, note that the
polynomials represented by Mi that make up the ∆RG can be designed so that the expected
value of |yi| is substantially larger than the bound B on the perturbation values ai. For instance,
we can design the ∆RG so that we expect |yi| = B2λ2. Now, when zi = yi, then indeed we
have an x such that x>Mx =

∑
i y

2
i . However, when zi = yi + ai, we still have an x such that

x>Mx =
∑

i yi(yi + ai). Because |yi| is expected to be so much larger than |ai|, it will be true that
x>Mx will be nearly as large in the case when zi = yi + ai as in the case when zi = yi. Because of
the large variance that each yi will have, we expect the overlap between the two cases to be quite
substantial. We cautiously conjecture that a high probability distinguishing attack based on the
Sum of Squares paradigm does not exist. We have conducted experiments using the basic SDPs
formulated in [BBKK17] and confirmed that indeed they do not directly yield a high probability
distinguishing attack (for small values of n).

Further in-depth research is certainly needed to explore our new assumptions. Indeed, we see
our work as strongly motivating the systematic exploration of the limits of various types of degree-2
pseudorandom objects over Z using the Sum of Squares paradigm and beyond.

Security Amplification. At this point, it is possible to show (as we do in our technical sections)
that relying on 1

λ -secure ∆RG in the approach outlined above, helps achieve a “weak” form of
sublinear FE (sFE), that only bounds adversarial advantage by 1

λ . Unfortunately, such an FE
scheme it not known to yield iO, and for our approach to succeed, we must find a way to amplify
security of sublinear FE.

How should we amplify security? An initial idea is to implement a direct-product type theorem
for functional encryption. However, a simple XOR trick does not suffice: since we are trying to
amplify security of a complex primitive like FE while retaining correctness, we will additionally need
to rely on a special kind of secure computation. More precisely, we will use (subexponentially secure)
n-out-of-n threshold fully homomorphic encryption (TFHE [MW16, BGG+]), that is known to exist
based on LWE [Reg05]. Recall that such a threshold (public key) fully homomorphic encryption
scheme allows to encrypt a ciphertext in such a way that all secret key holders can partially decrypt
the ciphertext, and then can recover the plaintext by combining these partial decryptions. However,
any coalition of secret key holders of size at most n− 1 learns no information about the message.

A simplified overview of our scheme, that makes use of t = λ2 weak sublinear FEs, is as follows:

• The setup algorithm outputs the master secret keys mski for all weak sublinear FEs.

• In order to generate the encryption of a plaintext M , generate a public key TFHE.pk and t
fresh secret keys TFHE.ski for a threshold FHE, and encryptM using the public key for thresh-
old FHE to obtain ciphertext TFHE.ct. Additionally, for all i, encrypt (TFHE.ct,TFHE.ski)
using the master secret key mski for the ith weak sublinear FE.

• To generate a function secret key for circuit C, generate t function secret keys for the sFEs,
each of which computes the output of the ith TFHE partial decryption of the result of homo-
morphic evaluation of the circuit C on TFHE.ct.

• Finally, to evaluate a functional secret key for circuit C on a ciphertext, combine the results of
the TFHE threshold decryptions obtained via the t outputs of sFE evaluation of the t function
secret keys.

8

The correctness of our scheme follows immediately from the correctness properties of the TFHE
scheme. Intuitively, security seems to hold because of the following argument. Upon combining λ2

independent, random instances of the weak sFE, with overwhelming probability, at least one must
remain secure. As long as a single instance remains secure, the corresponding secret key for TFHE
will remain hidden from the adversary. Now, TFHE guarantees semantic security against any
adversary that fails to obtain even one secret key, and as a result, the resulting FE scheme should
be secure. While this intuition sounds deceptively simple, many of these intuitive leaps assume
information-theoretic security. Thus, this template evades a formal proof in the computational
setting, and we must work harder to obtain our proof of security, as we now sketch.

From a cryptographic point of view, one of the early hurdles when trying to obtain such a proof
is the following. A reduction must rely on an adversary that breaks security of the final FE scheme
with any noticeable probability, in order to break 1

λ security of one of the λ2 “weak” FEs. However,
the reduction does not know which of the λ2 repetitions is secure, and therefore does not directly
know where to embed an external challenge. To deal with this, we rely on the concept of a hardcore
measure [Imp95, MT10]. Roughly speaking, we obtain measures of probability mass roughly 1

λ over
the randomness of the sFE schemes, such that no efficient adversary can break the security of the
sFE scheme even with some inverse subexponential probability.

However, unfortunately these hardcore measures can depend on other parameters in our system,
such as the TFHE public key. And unfortunately, this dependence is via extreme inefficiency; the
hardcore measure is not efficiently sampleable. This means that, for example, the hardcore measure
could in principle contain information about the TFHE master secret key. If this information is
leaked to the adversary, this would destroy the security of our scheme.

We overcome this issue through the following idea, which can be made formal via the work on
simulating auxiliary input [JP14, CCL18]. Because the hardcore measure has reasonable probability
mass 1

λ , it cannot verifiably contain useful information to the adversary. For example, even if the
hardcore distribution revealed the first few bits of the TFHE master secret key, the adversary
could not know for sure that these bits were in fact the correct bits. Indeed, we use the works
of [JP14, CCL18] to make this idea precise, and show that the hardcore measures can be simulated
in a way that fools all efficient adversaries, with a simulation that runs in subexponential time.

Finally, using complexity leveraging, we can set the security of the TFHE scheme to be such
that its security holds against adversaries whose running time exceeds this simulation. Thus, for
example, even if the original hardcore measure was revealing partial information about the TFHE
master secret key, we show that we can give the adversary access to a simulated hardcore measure
that provably does not reveal any useful information about the TFHE master secret key, and the
adversary can’t tell the difference!

In this way, we accomplish security amplification for sFE, which allows us to achieve iO for
general circuits when combined with previous work [AS17, LT17]. Along the way, our amplification
technique also shows that we can weaken the security requirement on the relatively new notion of
a 3-block-local PRG due to [LT17], in a way that still allows us to achieve iO.

3 Preliminaries

We denote the security parameter by λ. For a distribution X we denote by x← X the process of
sampling a value x from the distribution X. Similarly, for a set X we denote by x← X the process
of sampling x from the uniform distribution over X . For an integer n ∈ N we denote by [n] the set

9

{1, .., n}. A function negl : N → R is negligible if for every constant c > 0 there exists an integer
Nc such that negl(λ) < λ−c for all λ > Nc.

By ≈c we denote computational indistinguishability. We say that two ensembles X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are computationally indistinguishable if for every probabilistic polynomial time

adversaryA there exists a negligible function negl such that

∣∣∣∣Prx←Xλ [A(1λ, x) = 1]−Pry←Yλ [A(1λ, y) =

1]

∣∣∣∣ ≤ negl(λ) for every sufficiently large λ ∈ N.

For a field element a ∈ Fp represented in [−p/2, p/2], we say that −B < a < B for some positive
integer B if its representative in [−p/2, p/2] lies in [−B,B].

Definition 1 (Distinguishing Gap). For any adversary A and two distributions X = {Xλ}λ∈N and
Y = {Yλ}λ∈N, define A’s distinguishing gap in distinguishing these distributions to be |Prx←Xλ [A(1λ, x) =
1]− Pry←Yλ [A(1λ, y) = 1]|

Now we define the notion of a measure,

Definition 2. A measure is a function M : {0, 1}k → [0, 1]. The size of a measure is |M| =
Σx∈{0,1}kM(x). The density of a measure, µ(M) = |M|2−k

Each measure M induces a probability distribution DM.

Definition 3. LetM : {0, 1}k → [0, 1] be a measure. The distribution defined by measure M
(denoted by DM) is a distribution over {0, 1}k, where for every x ∈ {0, 1}k, PrX←DM [X = x] =
M(x)/|M|.

At this point we remark, we will consider scaled version Mc of a measure M for a constant
0 < c < 1. We define Mc = cM. Note that Mc induces the same distribution as M

3.1 Indistinguishability Obfuscation (iO)

The notion of indistinguishability obfuscation (iO), first conceived by Barak et al. [BGI+01], guar-
antees that the obfuscation of two circuits are computationally indistinguishable as long as they
both are equivalent circuits, i.e., the output of both the circuits are the same on every input.
Formally,

Definition 4 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm iO is
called an indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists of circuits
C of the form C : {0, 1}n → {0, 1} with n = n(λ), if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}n, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(λ,C)

]
= 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) for all inputs x ∈ {0, 1}n and |C0| = |C1|, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

• Polynomial Slowdown: For every λ ∈ N, every C ∈ Cλ, we have that |iO(λ,C)| =
poly(λ,C).

10

3.2 Slotted Encodings

We define a relaxation of slotted encodings SE (originally constructed in [AS17]) with 4 slots to
bilinear setting. A slotted encoding scheme consists of the following algorithms:

• Secret Key Generation, Gen(1λ): It outputs secret encoding key SEsp, a pairing function
e along with a prime p > 2λ and public parameters PP. We assume that e,PP and p are
implicitly given to all the algorithms below.

• Encoding, Encode(SEsp, a1, .., a4, l ∈ {1, 2}): In addition to secret key SEsp, it takes as input
a1, .., a4 ∈ Fp and a level l ∈ {1, 2}. It outputs an encoding [a1 | a2 | a3 | a4]l.

• Multiply, e([a1 | a2 | a3 | a4]1, [b1 | b2 | b3 | b4]2) = [Σiaibi]T . The pairing operation takes
as input an encoding of a at level 1 and b at level 2 and it outputs an encoding of Σiaibi at
level T . We require the set GT = {[a]T |a ∈ Fp} to form an additive group of order p.

• Addition at the top level T , Given [a]T and [b]T , the operation ‘+′ computes [a + b]T =
[a]T + [b]T .

• Encoding at level T , Given a ∈ Fp and PP, EncodeT(·) is an efficiently computable iso-
morphism that maps a ∈ G to [a]T ∈ GT .

• Zero test at all three levels ZTest(u, l): The zero-test algorithm takes an element u at
level l ∈ {1, 2, T} and checks if u = [0 | 0 | 0 | 0]l if l ∈ {1, 2}. Otherwise it checks that
u = [0]T .

Remark 1. The algorithms for addition and multiplication suggests what polynomials can be eval-
uated on the encodings. Given level 1 and level 2 encodings one can compute an encoding of a
scaled inner product of the encoded element vectors at level T. At level 1 and level 2, we can only
add encoded vectors component wise.

Security: Since we prove security in the generic model, we require generic security from our
slotted encodings at level 1 and 2 when SEsp is kept hidden from the adversary.

3.2.1 Generic Bilinear Group Model

We describe the generic bilinear group model [BBG05] tailored to the slotted asymmetric setting.
This model is parameterized by slotted encodings SE, which encodes four dimensional vectors over a
prime field Fp at level 1 and 2, and it encodes element from Fp at the target level T . The encodings
are done over level 1, 2 and the target T . The multiplication operation computes encoding at level
T . The adversary in this model has access to an oracle O. Initially, the adversary is handed out
handles (sampled uniformly at random) instead of being handed out actual encodings. A handle is
an element in a ring Z of order p. The oracle O maintains a list L consisting of tuples (e,Y[e], u),
where e is the handle issued, Y[e] is the formal expression associated with e and e is associated
with encoding at level u ∈ {1, 2, T}.

The adversary is allowed to submit the following types of queries to the oracle:

11

• Addition/ Subtraction: The adversary submits (e1, u1) and (e2, u2) along with the operation
‘+’(or ‘-’) to the oracle where u1, u2 ∈ {1, 2, T}. If u1 6= u2 or If there is no tuple associated
with either e1 or e2, the oracle sends ⊥ back to the adversary. Otherwise, it replies according
to the following cases:

– u1 ∈ {1, 2}: In this case it locates (e1, p1,e1 , p2,e1 , p3,e1 , p4,e1 , u1) and (e2, p1,e2 , p2,e2 , p3,e2 ,
p4,e2 , u2). It creates a new handle e′ (sampled uniformly at random from R) and appends
(e′, p1,e1 +p1,e2 , p2,e1 +p2,e2 , p3,e1 +p3,e2 , p4,e1 +p4,e2 , u1) to the list (in case of subtractions
the polynomials are subtracted). It outputs e′ to the adversary.

– u1 = u2 = T : In this case the adversary locates the tuples (e1, pe1 , u1) and (e2, pe2 , u2).
It creates a new handle e′ (sampled uniformly at random from R) and appends (e′, pe1 +
pe2 , u1) (or (e′, pe1 − pe2 , u1)) to the list. The oracle sends e′ to the adversary.

• Multiplication: The adversary submits (e1, u1) and (e2, u2) to the oracle. If there is no tuple
associated with either e1 or e2, the oracle sends ⊥ back to the adversary. If u1 = u2, u1 = T
or u2 = T , the oracle outputs ⊥. Otherwise, it locates the tuples (e1, p1,e1 , p2,e1 , p3,e1 , p4,e1 , u1)
and (e2, p1,e2 , p2,e2 , p3,e2 , p4,e2 , u2). It creates a new handle e′ (sampled uniformly at random
from R) and appends (e′,Σj∈[4]pj,e1 ∗ pj,e2 , T) to the list.

• Zero Test: The adversary submits element (e1, u1) to the oracle. If there is no tuple associated
to e1 it outputs ⊥. Otherwise, if u1 = 1 or u1 = 2, it locates the tuples (e1, p1,e1 , p2,e1 ,
p3,e1 , p4,e1 , u1). It outputs 1 if pj,e1 = 0 for all j ∈ [4] otherwise it outputs 0. If u1 = T , it
locates the tuples (e1, p1,e1 , u1). It outputs 1 if p1,e1 = 0, otherwise it outputs 0.

Inspired from [Fre10], in [AS17] it was shown how to construct degree-2 slotted encoding scheme
in the bilinear generic group model. We remark here that the procedure given in [AS17], was
instantiated for higher degrees using graded encoding schemes. However, it can be instantiated for
degree two using bilinear maps. Thus, we have the following theorem.

Theorem 2 (Imported from [AS17]). There exists a construction of degree 2 slotted encoding
scheme in the generic bilinear group model.

3.3 Threshold Leveled Fully Homomorphic Encryption

The following definition of threshold homomorphic encryption is adapted from [MW16, BGG+].
A threshold homomorphic encryption scheme is a tuple of PPT algorithms TFHE = (TFHE.Setup,
TFHE.Enc,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) satisfying the following specifications:

• Setup, Setup(1λ, 1d, 1n): It takes as input the security parameter λ, a circuit depth d, and
the number of parties n. It outputs a public key fpk and secret key shares fsk1, . . . , fskn.

• Encryption, Enc(fpk, µ): It takes as input a public key fpk and a single bit plaintext µ ∈
{0, 1} and outputs a ciphertext CT.

• Evaluation, Eval(C,CT1, . . . ,CTk): It takes as input a boolean circuit C : {0, 1}k → {0, 1} ∈
Cλ of depth ≤ d and ciphertexts CT1, . . . ,CTk encrypted under the same public key. It outputs
an evaluation ciphertext CT. We shall assume that the ciphertext also contains fpk.

12

• Partial Decryption, pi ← PartDec(fski,CT): It takes as input a secret key share fski and a
ciphertext CT. It outputs a partial decryption pi related to the party i.

• Final Decyrption, FinDec(B): It is a deterministic algorithm that takes as input a set
B = {pi}i∈[n]. It outputs a plaintext µ̂ ∈ {0, 1,⊥}.

Definition 5 (TFHE). A TFHE scheme is required to satisfy the following properties for all param-
eters (fpk, fsk1, . . . , fskN) ← Setup(1λ, 1d, 1n), any plaintexts µ1, . . . , µk ∈ {0, 1}, and any boolean
circuit C : {0, 1}k → {0, 1} ∈ Cλ of depth ≤ d.

Correctness of Encryption. Let CT = Enc(fpk, µ1) and B = {PartDec(fski,CT)}i∈[n]. With all
but negligible probability in λ over the coins of Setup, Enc, and PartDec, FinDec(B) = µ1.

Correctness of Evaluation. Let CTi = Enc(fpk, µi) for 1 ≤ i ≤ k, ĈT = Eval(C,CT1, . . . ,CTk),
and B = {PartDec(fski, ĈT,)}i∈[n]. With all but negligible probability in λ over the coins of
Setup, Enc, and PartDec, FinDec(B) = C(µ1, . . . , µk).

Compactness of Ciphertexts. There exists a polynomial, poly, such that |CT| ≤ poly(λ, d) for
any ciphertext CT generated from the algorithms of TFHE.

Compactness of Partial Decryption Keys. There exists a polynomial, poly, such that |fski| ≤
poly(λ, d) for any index i ∈ [n] generated from the setup algorithm of TFHE.

Semantic Security of Encryption. There exists a constant c > 0 such that any adversary A
of size 2λ

c
has only advantage bounded by 2−λ

c
as a function of λ over the coins of all the

algorithms in the following game:

1. Run Setup(1λ, 1d, 1n)→ (fpk, fsk1, .., fskn). The adversary is given fpk.

2. The adversary outputs a set S ⊂ [n] of size n− 1.

3. The adversary receives {fski}i∈S along with Enc(fpk, b)→ CT for a random b ∈ {0, 1}.
4. The adversary outputs b′ and wins if b = b′.

Simulation Security. Let CTi = Enc(fpk, µi) for 1 ≤ i ≤ k, ĈT = Eval(C,CT1, . . . ,CTk), and
pi = PartDec(fski, ĈT,) for all i ∈ [n]. There exists a PPT algorithm Sim such that for any
subset S of the form [n] \ i∗, Sim(ĈT, {fsk}S , C(µ1, .., µk)) → p′i∗ the following distributions
are statistically close (in the security parameter):

(pi, fpk,CT1, ..,CTk, {fski}i∈[n]) ≈ (p′i∗ , fpk,CT1, ..,CTk, {fski}i∈[n]).

3.4 Useful Lemmas

We first import the following theorem from [MT10].

Theorem 3 (Imported Theorem [MT10]). Let E : {0, 1}n → X and F : {0, 1}m → X be two
functions, and let ε, γ ∈ (0, 1) and s > 0 be given. If for all distinguishers A with size s we have

13

| Pr
x←{0,1}n

[A(E(x)) = 1]− Pr
y←{0,1}m

[A(F (y)) = 1]| ≤ ε

Then there exist two measures M0 (on {0, 1}n) and M1 (on {0, 1}n) that depend on γ, s such
that:

• µ(Mb) ≥ 1− ε for b ∈ {0, 1}

• For all distinguishers A′ of size s′ = sγ2

128(m+n+1)

| Pr
x←DM0

[A(E(x)) = 1]− Pr
y←DM1

[A(F (y)) = 1]| ≤ γ

Now we describe a lemma from [Hol06], that shows that if we sample a set Set from any
measure M by choosing each element i in the support with probability M(i), then no circuit of
(some) bounded size can distinguish a sample x chosen randomly from the set Set from an element
sampled from distribution given by M. Formally,

Theorem 4 (Imported Theorem [Hol06].). Let M be any measure on {0, 1}n of density µ(M) ≥
1 − ρ(n) Let γ(n) ∈ (0, 1/2) be any function. Then, for a random set Set chosen according to the
measure M the following two holds with probability at least 1− 2(2−2nγ2(1−ρ)4/64):

• (1− γ(1−ρ)
4)(1− ρ)2n ≤ |Set| ≤ (1 + γ(1−ρ)

4)(1− ρ)2n

• For such a random set Set, for any distinguisher A with size |A| ≤ 2n(γ
2(1−ρ)4

64n) satisfying

| Pr
x←Set

[A(x) = 1]− Pr
x←DM

[A(x) = 1]| ≤ γ

We also import a theorem from [CCL18] that will be used by our security proofs. This lemma
would be useful to simulate the randomness used to encrypt in an inefficient hybrid.

Theorem 5 (Imported Theorem [CCL18].). Let n, ` ∈ N, ε > 0 and Cleak be a family of distin-
guisher circuits from {0, 1}n × {0, 1}` → {0, 1} of size s(n). Then, for every distribution (X,Z)
over {0, 1}n × {0, 1}`, there exists a simulator h : {0, 1}n → {0, 1}` such that:

• h has size bounded by s′ = O(s2`ε−2).

• (X,Z) and (X,h(X)) are indistinguishable by Cleak. That is for every C ∈ Cleak,

| Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]| ≤ ε

4 Tempered Cubic Encoding

In this section, we describe the notion of a Tempered Cubic Encoding scheme (TCE for short). The
encodings in this scheme are associated with a ring Zp, for an integer p ∈ Z≥0 that is fixed by the
setup algorithm. The plaintext elements are sampled from the set R ∈ ∩[−δ, δ] for some constant
δ. TCE consists of the following polynomial time algorithms:

14

• Setup, Setup(1λ, 1n): On input security parameter λ, the number of inputs n, this algorithm
outputs public parameters params.

• Setup-Encode, SetupEnc(params) : On input params, this algorithm outputs secret encoding
parameters sp.

• Setup-Decode, SetupDec(params) : On input params, this algorithm outputs (public) de-
coding parameters (q1, ..., qη) where η = n1+ε described in the security definition.

• Encode, Encode(sp, a, ind, S): On input the secret parameter sp, a plain-text element a ∈ R,
a set S = {i} with i ∈ {1, 2, 3} and an index ind ∈ [n], it outputs an encoding [a]ind,S
with respect to the set S and an index ind. Without loss of generality, this algorithm is
deterministic as all the randomness can be chosen during SetupEnc. This encoding satisfies
two properties:

– The encoding [a]ind,S = ([a]ind,S .pub, [a]ind,S .priv(1), [a]ind,S .priv(2)) consists of a public
component [a]ind,S .pub and two private components [a]ind,S .priv(1) and [a]ind,S .priv(2).

– [a]ind,S .pub, [a]ind,S .priv(1) and [a]ind,S .priv(2) are vectors over ZN.

• Decode, Decode(q, f, {[ai]i,1}i∈[n], {[bi]i,2}i∈[n], {[ci]i,3}i∈[n]) : The decode algorithm takes as
input a decoding parameter q, a polynomial f = Σi,j,kγi,j,kaibjck with |γi,j,k| ≤ δ. It also
takes encodings {[ai]i,1}i∈[n], {[bi]i,2}i∈[n] and {[ci]i,3}i∈[3]. It outputs leak ∈ ZN.

Efficiency Properties: Consider the following experiment associated with any n, λ ∈ N, any
index ind ∈ [n], any level ` ∈ [3] and any plaintext x ∈ [−δ, δ]:

1. Setup(1λ, 1n)→ params

2. SetupEnc(params)→ sp

3. Encode(sp, x, ind, `)→ [x]ind,`

Then we require |[x]ind,`| < poly(λ, log n) for some fixed polynomial poly.

(X,Y,Z)-Multilinear polynomials. We define the notion of (X,Y,Z) cubic multilinear poly-
nomials below.

Definition 6 ((X,Y,Z)-Multilinear). Let X = (x1, . . . , xn),Y = (y1, . . . , yn) and Z = (z1, . . . , zn)
be three sets of variables. A polynomial p ∈ ZN[x1, . . . , xn, y1, . . . , yn, z1, . . . , zn] is (X,Y,Z)-
multilinear if every term in the expansion of p is of the form τijk ·xiyjzk, for some i, j, k ∈ [n], τijk ∈
ZN.

Cubic Evaluation and Correctness: Consider the following experiment associated with any
n, λ ∈ N, any index ind ∈ [n], any index indQ ∈ [η], any level ` ∈ [3], any polynomial f =
Σi,j,kγi,j,kaibjck with γi,j,k ∈ [−δ, δ] and any plaintexts ai, bi, ci ∈ [−δ, δ] for i ∈ [n]:

1. Setup(1λ, 1n)→ params

2. SetupEnc(params)→ sp

15

3. SetupDec(params)→ (q1, ..., qη)

4. Encode(sp, a, i, 1)→ [a]i,1 for i ∈ [n]

5. Encode(sp, b, i, 2)→ [b]i,2 for i ∈ [n]

6. Encode(sp, c, i, 3)→ [c]i,3 for i ∈ [n]

7. Let q = qindQ

8. Decode(q, f, {[ai]i,1}i∈[n], {[bi]i,2}i∈[n], {[ci]i,3}i∈[n])→ leak

Cubic Evaluation: We now describe cubic evaluation property. This property states that the
Decode(q, f, {[ai]i,1}i∈[n], {[bi]i,2}i∈[n], {[ci]i,3}i∈[n]) algorithm evaluates an efficiently computable
cubic polynomial φq,f which depends on params, f, q, and which is a (X,Y,Z)-multilinear poly-
nomial over ZN with:

• X = ({[ai]i,1.pub, [bi]i,2.pub, [ci]i,3.pub}i∈[n])

• Y = ({[ai]i,1.priv(1), [bi]i,2.priv(1), [ci]i,3.priv(1)}i∈[n])

• Z = ({[ai]i,1.priv(2), [bi]i,2.priv(2), [ci]i,3.priv(2)}i∈[n])

Correctness: We require that with overwhelming probability over the randomness of the algo-
rithms:

• If f(a1, .., an, b1, .., bn, c1, .., cn) = 0, |leak| < TCEbound(λ, n) for some polynomial TCEbound.

• Otherwise, |leak| > TCEbound(λ, n).

4.1 Tempered Security

We present the definition of Tempered Security. Let F be a family of homogenous (X,Y,Z)-
multilinear δ-bounded polynomials, for some sets of vectors X,Y and Z (where each vector is of
size n). We define Sη to be a subset of η-sized product F × · · · × F (also, written as Fη).

We first describe the experiments associated with tempered security property. The experiment
is associated with a deterministic polynomial time algorithm Sim. It is also parameterised by
aux = (1λ, 1n,x,y, z, f1, ..., fη). Each vector x,y, z is in Zn and f1, ..., fη ∈ Sη.
Exptaux(1

λ, 1n, 0):

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

4. Now compute encodings as follows.

• Compute the encodings, [xi]i,1 ← Encode(sp, xi, i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, yi, i, 2) for every i ∈ [n].

• Compute the encodings, [zi]i,3 ← Encode(sp, zi, i, 3) for every i ∈ [n].

16

5. Compute leakj ← Decode(qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n]) for j ∈ [η].

6. Output the following:

(a) Public components of the encodings, {[xi]i,1.pub, [yi]i,2.pub, [zi]i,3.pub}i∈[n].

(b) Decoding parameters qj for j ∈ [η]

(c) Output of decodings, {leakj}j∈[η].

Exptaux(1
λ, 1n, 1):

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

• Compute the encodings, [xi]i,1 ← Encode(sp, 0, , i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, 0, i, 2) for every i ∈ [n].

• Compute the encodings, [zi]i,3 ← Encode(sp, 0, i, 3) for every i ∈ [n].

4. Compute the following for all j ∈ [η]:

l̂eakj ← Sim
(
qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n], fj(x,y, z)

)
to obtain the simulated outputs.

5. Output the following:

(a) Public components of the encodings, {[xi]i,1.pub, [yi]i,2.pub, [zi]i,3.pub}i∈[n].

(b) Decoding parameters qj for j ∈ [η]

(c) Output of decodings, {l̂eakj}j∈[η].

Definition 7 (Tempered Security). A tempered cubic encoding scheme TCE = (Setup, SetupEnc,
SetupDec,Encode,Decode) associated with plaintext space Z = [−δ, δ] is said to satisfy Tempered
security for polynomials (with coefficients over [−δ, δ]) if there exists an algorithm Sim so that
following happens:
∃c > 0, such that for all large enough security parameter λ ∈ N, and polynomial n = n(λ) and

any x,y, z ∈ Zn, (f1, .., fη) ∈ Sη and adversary A of size 2λ
c
,

|Pr[A(Exptaux(1
λ, 1n, 0) = 1]− Pr[A(Exptaux(1

λ, 1n, 1)) = 1]| ≤ 1− 2/λ+ negl(λ)

where aux = (1λ, 1n,x,y, z, f1, ..., fη) and negl(λ) is some negligible function.

Few remarks are in order:

17

Remark 2. For the rest of the paper, we abbreviate tempered security as Sη−tempered security to
explicitly mention the function class Sη. One can imagine Sη to be an arbitrary subset of F×· · ·×F .
However, to pursue our approach, we will set Sη as the η−sized product of cubic polynomials in
n(λ) variables with the sum of absolute value of coefficients being bounded by some polynomial (in
λ) independent of n. As described later, it turns out that this set contains the set of randomizing
polynomials constructed by [LT17], and suffices to get iO.

Remark 3. (On distinguishing gap being 1 − 2/λ) In the definition above and other definitions
described in the paper, we require distinguishing gap of any adversary of some bounded size to be
bounded by 1− 2/λ+ negl(λ), however it actually suffices if it is bounded by 1− 1/poly(λ) + negl(λ)
for any fixed polynomial poly. We do this for simplicity of description.

Remark 4. (On number of query polynomials) In the definition above, an implicit restriction on
the number of polynomials (i.e., η polynomials). Indeed, in the instantiation, we only support
η = n1+ε for some 0 < ε < 0.5. This choice of parameters will suffice for our construction of iO.
This ε will be set later.

5 Three-restricted FE

In this section we describe the notion of a three-restricted functional encryption scheme (denoted
by 3FE).

Function class of interest: Consider a set of functions F3FE = F3FE,λ,p,n = {f : {Fnp}3 → Fp}
where Fp is a finite field of order p(λ). Here n is seen as a function of λ. Each f ∈ Fλ,p,n takes as
input three vectors (x,y, z) over Fp and computes a polynomial of the form Σci,j,k · xiyjzk, where
ci,j,k are coefficients from Fp.

Syntax. Consider the set of functions F3FE,λ,p,n as described above. A three-restricted functional
encryption scheme 3FE for the class of functions F3FE (described above) consists of the following
PPT algorithms:

• Setup, Setup(1λ, 1n): On input security parameter λ (and the number of inputs n = poly(λ)),
it outputs the master secret key MSK.

• Encryption, Enc(MSK,x,y, z): On input the encryption key MSK and input vectors x =
(x1, .., xn),y = (y1, .., yn) and z = (z1, .., zn) (all in Fnp) it outputs ciphertext CT. Here x is
seen as a public attribute and y and z are thought of as private messages.

• Key Generation, KeyGen(MSK, f): On input the master secret key MSK and a function
f ∈ F3FE, it outputs a functional key sk[f].

• Decryption, Dec(sk[f], 1B,CT): On input functional key sk[f], a bound B = poly(λ) and a
ciphertext CT, it outputs the result out.

We define correctness property below.

18

B-Correctness. Consider any function f ∈ F3FE and any plaintext x,y, z ∈ Fp. Consider the
following process:

• sk[f]← KeyGen(MSK, f).

• CT← Enc(MSK,x,y, z)

• If f(x,y, z) ∈ [−B,B], set θ = f(x,y, z), otherwise set θ = ⊥.

The following should hold:

Pr
[
Dec(sk[f], 1B,CT) = θ

]
≥ 1− negl(λ),

for some negligible function negl.
Linear Efficiency: We require that for any message (x,y, z) ∈ Fnp the following happens:

• Let MSK← Setup(1λ, 1n).

• Compute CT← Enc(MSK,x,y, z).

The size |CT| ≤ n log2 p · poly(λ). Here poly is some polynomial independent of n.

5.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, f, θ): On input the master secret key MSK, func-
tion f and a value θ, it computes the semi-functional key sk[f, θ].

Semi-functional Encryption, sfEnc(MSK,x, 1|y|, 1|z|): On input the master encryption key MSK,
a public attribute x and length of messages y, z, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above two auxiliary algorithms. We will
model the security definitions along the same lines as semi-functional FE.

Definition 8 (Indistinguishability of Semi-functional Ciphertexts). A three-restricted functional
encryption scheme 3FE for a class of functions F3FE = {F3FE,λ,p,n}λ∈N is said to satisfy indistin-
guishability of semi-functional ciphertexts property if there exists a constant c > 0 such
that for sufficiently large λ ∈ N and any adversary A of size 2λ

c
, the probability that A succeeds in

the following experiment is 2−λ
c
.

Expt(1λ,b):

1. A specifies the following:

• Challenge message M∗ = (x,y, z). Here each vector is in Fnp.

• It can also specify additional messages {Mk = (xk,yk, zk)}k∈[q] Here each vector is in
Fnp.

• It also specifies functions f1, . . . , fη and hardwired values θ1, . . . , θη.

19

2. The challenger checks if θk = fk(x,y, z) for every k ∈ [η]. If this check fails, the challenger
aborts the experiment.

3. The challenger computes the following

• Compute sk[fk, θk]← sfKG(MSK, fk, θk), for every k ∈ [η].

• If b = 0, compute CT∗ ← sfEnc(MSK,x, 1|y|, 1|z|). Else, compute CT∗ ← Enc(MSK,x,y, z).

• CTi ← Enc(MSK,Mi), for every i ∈ [q].

4. The challenger sends
(
{CTi}i∈[q],CT

∗, {sk[fk, θk]}k∈[η]

)
to A.

5. The adversary outputs a bit b′.

We say that the adversary A succeeds in Expt(1λ,b) with probability ε if it outputs b′ = b with
probability 1

2 + ε.

We now define indistinguishability of semi-functional keys property.

Definition 9 (Indistinguishability of Semi-functional Keys). A three-restricted FE 3FE for a class
of functions F3FE = {F3FE,λ,p,n}λ∈N is said to satisfy indistinguishability of semi-functional
keys property if there exists a constant c > 0 such that for all sufficiently large λ, any PPT
adversary A of size 2λ

c
, the probability that A succeeds in the following experiment is 2−λ

c
.

Expt(1λ,b):

1. A specifies the following:

• It can specify messages Mj = {(xi,yi, zi)}j∈[q]. Here each vector is in Fnp
• It specifies functions f1, . . . , fη ∈ F3FE and hardwired values θ1, . . . , θη.

2. Challenger computes the following :

• If b = 0, compute sk[fi]
∗ ← KeyGen(MSK, fi) for all i ∈ [η]. Otherwise, compute

sk[fi]
∗ ← sfKG(MSK, fi, θi) for all i ∈ [η].

• CTi ← Enc(MSK,Mj), for every j ∈ [q].

3. Challenger then sends
(
{CTi}i∈[q], {sk[fi]

∗}i∈[η]

)
to A.

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability 1
2 + ε.

If a three-restricted FE scheme satisfies both the above definitions, then it is said to satisfy semi-
functional security.

Definition 10 (Semi-functional Security). Consider a three-restricted FE scheme 3FE for a class of
functions F . We say that 3FE satisfies semi-functional security if it satisfies indistinguishability
of semi-functional ciphertexts property (Definition 8) and indistinguishability of semi-functional
keys property (Definition 9).

20

6 (Stateful) Semi-Functional Functional Encryption for Cubic Poly-
nomials

In this section, we define the notion of Semi-Functional Functional Encryption (referred to as FE3)
for cubic polynomials. This is defined along the same lines as the definition of projective arithmetic
functional encryption (PAFE), introduced by [AS17]. The main difference between our notion and
PAFE is that, we allow for evaluation of arithmetic circuits over values from a bounded domain
whereas PAFE allowed for evaluation of arithmetic circuits over large fields. Because of this, the
decryption in [AS17] was expressed in two steps (Projective Decrypt and Recover), whereas the
syntax of our decryption algorithm is the same as in a standard functional encryption scheme.

Function class of interest for FE3: We consider functional encryption scheme for cubic homoge-
nous polynomials over variables over integers Z. Formally, consider a set of functions FFE3,λ,n =
{f : [−ρ, ρ]n → Z} where ρ is some constant. Here n is interpreted as a function of λ. Each
f ∈ FFE3,λ,n takes as input x = (x1, .., xn) ∈ [−ρ, ρ]n and computes a polynomial of the form
Σci,j,kxixjxk over Z (where some variables can repeat) and each coefficient ci,j,k ∈ [ρ, ρ] and sum
of absolute values of the coefficients Σj,k|ci,j,k| < w(λ). Constructing functional encryption for
homogenous polynomials suffice to construct functional encryption for all cubic polynomials. This
is because we can always write any polynomial as a homogeneous polynomial in the same variables
and an artificially introduced variable set to 1.

Syntax. Consider the set of functions FFE3 = FFE3,λ,n as described above. A semi-functional
functional encryption scheme FE3 for the class of functions FFE3 (described above) consists of the
following PPT algorithms:

• Setup, Setup(1λ, 1n): On input security parameter λ and the length of the message 1n, it
outputs the master secret key MSK.

• Encryption, Enc(MSK,x): On input the encryption key MSK and a vector of integers x =
(x1, .., xn) ∈ [−ρ, ρ]n, it outputs ciphertext CT.

• Key Generation, KeyGen(MSK, i, f): On input the master secret key MSK and an index
i ∈ [η] denoting the index of the function in [η], function f ∈ FFE3 , it outputs a functional key
skf . Here, η denotes the number of key queries possible. Note that this algorithm is allowed
to be stateful.

• Decryption, Dec(skf ,CT): On input functional key skf and a ciphertext CT, it outputs the
result out.

We define correctness property below.

Correctness. Consider any function f ∈ FFE3 , any index i ∈ [η] and any plaintext integer vector
x ∈ [−ρ, ρ]n. Consider the following process:

• MSK← Setup(1λ, 1n)

• skf ← KeyGen(MSK, i, f).

21

• CT← Enc(MSK,x)

Let θ = 1 if f(x) 6= 0, θ = 0 otherwise. The following should hold:

Pr [Dec(skf ,CT) = θ] ≥ 1− negl(λ),

for some negligible function negl.

Remark 5. We consider a form of semi-functional functional encryption where the decryption
algorithm only allows the decryptor to learn if the functional value f(x) is 0 or not.

Linear Efficiency: We require that for any message x ∈ [−ρ, ρ]n the following holds:

• Let MSK← Setup(1λ, 1n).

• Compute CT← Enc(MSK,x).

The size |CT| ≤ n · poly(λ, log n). Here poly is some fixed polynomial independent of n.

6.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, i, f, θ): On input the master secret key MSK,
function f , an index i and a value θ, it computes the semi-functional key skf,θ.

Semi-functional Encryption, sfEnc(MSK, 1n): On input the master encryption key MSK, and
the length 1n, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above auxiliary algorithms.
We now define indistinguishability of semi-functional keys property.

Throughout the definition we denote by Sη a set of tuples of dimension η over FFE3 . Thus
Sη ⊆ FηFE3

.

Definition 11 (Sη-Bounded Indistinguishability of Semi-functional Keys). A Semi-Functional FE
scheme for cubic polynomials FE3 for a class of functions FFE3 = {FFE3,λ,n}λ∈N is said to satisfy
Sη−bounded indistinguishability of semi-functional keys property if there exists a constant
c > 0 such that for any sufficiently large λ ∈ N and any adversary A of size 2λ

c
, the probability

that A succeeds in the following experiment is 2−λ
c
.

Expt(1λ, 1n,b):

1. A specifies the following:

• It can specify messages Mj = {xi}j∈[q]. Here each vector is in [−ρ, ρ]n

• It specifies function queries as follows:

– It specifies (f1, . . . , fη) ∈ Sη ⊆ FηFE3
.

– It specifies values θ1, . . . , θη.

2. The challenger computes the following:

22

• MSK← Setup(1λ, 1n)

• CTi ← Enc(MSK,Mj), for every j ∈ [q].

• If b = 0, compute sk∗fi ← KeyGen(MSK, i, fi). Otherwise, compute sk∗fi ← sfKG(MSK, i, fi, θi)
for all i ∈ [η].

3. Challenger sends {CTi}i∈q and {sk∗fi}i∈[η] to A:

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability 1
2 + ε.

Definition 12 (Sη-Bounded Indistinguishability of Semi-functional Ciphertexts). For a semi-
functional FE scheme FE3 for a class of functions FFE3 = {FFE3,λ,n}λ∈N , the Sη−bounded indis-
tinguishability of semi-functional ciphertexts property is associated with two experiments.
The experiments are parameterised with aux = (1λ, 1n,Γ,Mi = {(xi)}i∈Γ,M

∗ = (x), f1, .., fη).
Exptaux(1

λ, 1n,b):

1. The challenger sets θi = fi(x) for i ∈ [η]. The challenger computes the following:

2. Compute MSK← Setup(1λ, 1n).

3. Compute skfk,θk ← sfKG(MSK, k, fk, θk), for every k ∈ [η].

4. CTi ← Enc(MSK,Mi), for every i ∈ Γ.

5. If b = 0, compute CT∗ ← Enc(MSK,M∗).

6. If b = 1 compute CT∗ ← sfEnc(MSK, 1n).

7. Output the following:

(a) CTi for i ∈ Γ and CT∗.

(b) skfk,θk for k ∈ [η]

(c) M∗ and {Mi}i∈Γ

(d) f1, ..., fη

A semi-functional FE scheme FE3 associated with plaintext space Z = [−δ, δ] is said to satisfy
η−indistinguishability of semi–functional ciphertexts property if the following happens:
∃c > 0 such that, ∀λ > λ0, polynomial n = n(λ), polynomial Γ, for any messages {Mi}i∈Γ ∈ Zn,
M∗ ∈ Zn , (f1, .., fη) ∈ Sη and any adversary A of size 2λ

c
,

|Pr[A(Exptaux(1
λ, 1n, 0) = 1]− Pr[A(Exptaux(1

λ, 1n, 1)) = 1]| ≤ 1− 2/λ+ negl(λ)

where aux = (1λ, 1n,Γ,Mi = {(xi)}i∈Γ,M
∗ = (x), f1, .., fη)

If a FE3 scheme satisfies both the above definitions, then it is said to satisfy semi-functional security.

Definition 13 (Sη−Bounded Semi-functional Security). Consider a semi-functional FE scheme
for cubic polynomials FE3 for a class of functions FFE3. We say that FE3 satisfies Sη−bounded
semi-functional security if it satisfies Sη−bounded indistinguishability of semi-functional cipher-
texts property (Definition 12) and Sη−bounded indistinguishability of semi-functional keys property
(Definition 11).

23

7 Semi-Functional Functional Encryption for Circuits

In this section, we define the notion of Semi-Functional Functional Encryption (referred to as sFE)
for circuits.

Syntax. A Semi-Functional secret-key functional encryption scheme for a message space χ =
{χλ}λ∈N and a function space C = {Cλ}λ is a tuple of PPT algorithms with the following properties:

• Setup, Setup(1λ): On input security parameter λ, it outputs the master secret key MSK.

• Encryption, Enc(MSK, x): On input the encryption key MSK and a message x ∈ χλ, it
outputs ciphertext CT.

• Key Generation, KeyGen(MSK, C): On input the master secret key MSK and a function
C ∈ Cλ, it outputs a functional key skC .

• Decryption, Dec(skC ,CT): On input functional key skC and a ciphertext CT, it outputs
the result out.

We define correctness property below.

Correctness. Consider any function C ∈ Cλ and any plaintext x ∈ χλ. Consider the following
process:

• MSK← Setup(1λ)

• skC ← KeyGen(MSK, C).

• CT← Enc(MSK, x)

The following should hold:

Pr [Dec(skC ,CT) = C(x)] ≥ 1− negl(λ),

for some negligible function negl.

Sub-Linear Efficiency: We require that for any message x ∈ [−ρ, ρ]n the following holds:

• Let MSK← Setup(1λ).

• Compute CT← Enc(MSK, x).

The size |CT| ≤ `1−εCC · poly(λ, |x|). Here poly is some fixed polynomial, εC > 0 is some constant,
|x| is the length of the message x and `C = max{size(C)}C∈Cλ .

24

7.1 Semi-functional Security

We define the following auxiliary algorithms.

Semi-functional Key Generation, sfKG(MSK, C, θ): On input the master secret key MSK, func-
tion C ∈ Cλ and a value θ, it computes the semi-functional key skC,θ.

Semi-functional Encryption, sfEnc(MSK, 1λ): On input the master encryption key MSK, and
the length 1λ, it computes a semi-functional ciphertext ctsf .

We define two security properties associated with the above auxiliary algorithms.
We now define indistinguishability of semi-functional key property.

Definition 14 (Indistinguishability of Semi-functional Key). A Semi-Functional FE scheme for
circuits sFE for a class of functions C = {Cλ}λ∈N is said to satisfy indistinguishability of semi-
functional key property if for sufficiently large λ ∈ N, there exists a constant c > 0 such that
for any adversary A of size 2λ

c
, the probability that A succeeds in the following experiment bounded

by 2−λ
c
.

Expt(1λ,b):

1. A specifies the following:

• It can specify messages Mj = {xj}j∈[q] for any polynomial q. Here each Mj ∈ χλ.

• It specifies function queries as follows:

– It specifies C ∈ Cλ.

– It specifies values θ in output space of C.

2. The challenger computes the following:

• MSK← Setup(1λ)

• CTj ← Enc(MSK,Mj), for every j ∈ [q].

• If b = 0, compute sk∗C ← KeyGen(MSK, C). Otherwise, compute sk∗C ← sfKG(MSK, C, θi).

3. Challenger sends {CTi}i∈q and {sk∗C} to A:

4. A outputs b′.

The success probability of A is defined to be ε if A outputs b′ = b with probability 1
2 + ε.

Definition 15 (Indistinguishability of Semi-functional Ciphertexts). For a semi-functional FE
scheme sFE for a class of functions C = {Cλ}λ∈N , the indistinguishability of semi-functional
ciphertexts property is associated with two experiments. The experiments are parameterised
with aux = (1λ,Γ,Mi = {xi}i∈Γ,M

∗ = x,C)
Exptaux(1

λ,b):

1. The challenger sets θ = C(x). The challenger computes the following:

2. Compute MSK← Setup(1λ).

25

3. Compute skC,θ ← sfKG(MSK, C, θ).

4. CTi ← Enc(MSK,Mi), for every i ∈ [Γ].

5. If b = 0, compute CT∗ ← Enc(MSK,M∗).

6. If b = 1 compute CT∗ ← sfEnc(MSK, 1λ).

7. Output the following:

(a) CTi for i ∈ Γ and CT∗.

(b) skC,θ.

(c) M∗ and {Mi}i∈Γ

(d) C

A semi-functional FE scheme sFE associated with plaintext space χ is said to satisfy indistin-
guishability of semi–functional ciphertexts property if the following happens: ∃c > 0 such
that ∀λ > λ0, any polynomial Γ, messages {Mi}i∈Γ ∈ χλ, M∗ ∈ χλ , C ∈ Cλ and any adversary A
of size 2λ

c
:

|Pr[A(Exptaux(1
λ, 0) = 1]− Pr[A(Exptaux(1

λ, 1)) = 1]| ≤ 1− 2/λ+ negl(λ)

where aux = (1λ,Γ,Mi = {xi}i∈Γ,M
∗ = x,C)

Definition 16 (Semi-functional Security). Consider a semi-functional FE scheme sFE for a class
of circuits Cn,s. We say that sFE satisfies semi-functional security if it satisfies indistinguishabil-
ity of semi-functional ciphertexts property (Definition 15) and indistinguishability of semi-functional
key property (Definition 14).

Remark 6. Note that if in the indistinguishability of semi-functional ciphertexts property if instead
of requiring the advantage of adversary to be bounded by 1−1/2λ+negl(λ), we require it to be 2−λ

c

for some constant c > 0, then this notion implies (sublinear) secret-key FE in traditional sense and
is already enough to imply iO.

Now, we rephrase the above definition of indistinguishability of semi-functional ciphertext se-
curity by using theorem 7.

Theorem 6. Fix 1λ, 1n,Γ, {Mi},M∗, C as above. Define two functions Eb for b ∈ {0, 1}, that
takes as input {0, 1}`b. Here `b is the length of randomness required to compute the following. The
functions do the following.

Consider the following process:

1. Compute MSK← sFE.Setup(1λ).

2. Compute CTi ← sFE.Enc(MSK,Mi) for i ∈ [Γ].

3. Set θ = C(M∗). Compute skC ← sFE.sfKG(MSK, C, θ).

4. If b = 0, compute CT∗ = sFE.Enc(MSK,M∗) and if b = 1, compute CT∗ = sFE.sfEnc(MSK, 1λ).

26

5. For b ∈ {0, 1}, Eb on input r ∈ {0, 1}`b outputs {CTi}i∈Γ, skC ,CT
∗.

If sFE satisfies indistinguishability of semi-functional ciphertexts property, then, there exists a con-
stant c > 0 such that there exists two computable (not necessarily efficient) measures M0 and M1

(Mb defined over {0, 1}`b for b ∈ {0, 1}) of density exactly 1/λ such that, for all circuits A of size
2λ

c
,

| Pr
u←DM0

[A(E0(u)) = 1]− Pr
v←DM1

[A(E(v)) = 1]| < 2−λ
c

Here both measures may depend on ({Mi}i∈Γ, C,M
∗)

Proof. We invoke theorem 7 to prove this. We recall the theorem below:

Theorem 7 (Imported Theorem [MT10]). Let E : {0, 1}n → X and F : {0, 1}m → X be two
functions, and let ε, γ ∈ (0, 1) and s > 0 be given. If for all distinguishers A with size s we have

| Pr
x←{0,1}n

[A(E(x)) = 1]− Pr
y←{0,1}m

[A(F (y)) = 1]| ≤ ε

Then there exist two measures M0 (on {0, 1}n) and M1 (on {0, 1}n) that depend on γ, s such
that:

• µ(Mb) ≥ 1− ε for b ∈ {0, 1}

• For all distinguishers A′ of size s′ = sγ2

128(m+n+1)

| Pr
x←DM0

[A(E(x)) = 1]− Pr
y←DM1

[A(F (y)) = 1]| ≤ γ

Due to security of sFE, we know that for any adversary A of size s = 2λ
c1 ,

| Pr
u←{0,1}`0

[A(E0(u)) = 1]− Pr
v←{0,1}`1

[A(E(v)) = 1]| < 1− 2/λ+ negl < 1− 3/2λ

Thus, there exists two measures M′0 (on {0, 1}`0) and M′1 (on {0, 1}`1) with density at least 3/2λ
such that for all adversaries A′ of size s′ = sγ2/128(`0 + `1 + 1),

| Pr
u←DM′0

[A(E0(u)) = 1]− Pr
v←DM′1

[A(E(v)) = 1]| < γ

Since s = 2λ
c1 we can set c such that s′ > 2λ

c
and γ = 2−λ

c
for some constant c > 0.

Now defineMb = (1
λµ(M′b)

)M′b for b ∈ {0, 1}. Note that the constants 1
λµ(M′b)

< 1 as the density

µ(M′b) ≥ 3/2λ. Thus, these measures can be scaled so that their density is exactly 1/λ. Since,Mb

induce the same distribution as M′b for b ∈ {0, 1}, the claim holds.

8 Step 1: Instantiating TCE

We start by describing the key ingredients and assumptions used to build our candidate. Then, we
present our candidate.

27

8.1 Perturbation-Resilient Generator (∆RG)

First we define the notion of a ε−polynomial sampler.

Definition 17. (ε-polynomial sampler) A randomized polynomial time algorithm Q is an ε− poly-
nomial sampler if it takes as input a security parameter 1λ, 1n, and B, and outputs (q1, ..., qn1+ε).

• Here each qi is a homogeneous multilinear quadratic polynomial in Z[x1, ..., xn].

• The coefficients of each polynomial are bounded by some polynomial B1(λ, n,B)

∆RG Assumption: There exists a constant ε > 0 such that there exists an ε− polynomial
sampler Q (with coefficient bound B1), such that for every polynomial B(λ), and for every large
enough polynomial n = n(λ), there exists a polynomial B2(n, λ) such that for all large enough λ,
the following is true: for every a1, ..., aη, where η = n1+ε, with |ai| ≤ B(λ), we have that for any
distinguisher D of size 2λ:

|Pr[D(x
$←− D1) = 1]− Pr[D(x

$←− D2) = 1]| < 1− 2/λ

Here D1 and D2 are defined below:

• Distribution D1: Sample ei
$←− [−B2, B2] for i ∈ [n]. For j ∈ [η], sample polynomials

Q(1λ, 1n)→ (q1, ..., qη). Output {qj , aj + qj(e1, .., en)}j∈[n1+ε]

• Distribution D2: Sample ei
$←− [−B2, B2] for i ∈ [n]. For j ∈ [η], sample polynomials

Q(1λ, 1n)→ (q1, ..., qη). Output {qj , qj(e1, .., en)}j∈[n1+ε]

Candidate Sampler Q: We now describe our candidate ε sampler Q for which ∆RG assumption
holds. Q takes as input 1n, 1λ, B and does the following:

1. Set B1 = 1 and B2 = B2λ2.

2. Sample polynomials qi(e1,, en) = Σj,k∈[n],j>kγj,kejek for i ∈ [n1+ε]. Here γj,k ← [−B1, B1]

8.2 LWE Preliminaries

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span
is Rm. The basis of Λ is a linearly independent set of vectors whose linear combinations are exactly
Λ. Every integer lattice is generated as the Z-linear combination of linearly independent vectors
B = {b1, ..., bm} ⊂ Zm. For a matrix A ∈ Zd×m

p , we define the “p-ary” integer lattices:

Λ⊥p = {e ∈ Zm|Ae = 0 mod p}, Λu
p = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
p is a coset of Λ⊥p .

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R,
let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter
σ. Next, we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We abbreviate this as DΛ,σ when c = 0. We note that DZm,σ is

√
mσ-bounded.

28

Let Sm denote the set of vectors in Rm whose length is 1. The norm of a matrix R ∈ Rm×m
is defined to be supx∈Sm ||Rx||. The LWE problem was introduced by Regev [Reg05], who showed
that solving it on average is as hard as (quantumly) solving several standard lattice problems in
the worst case.

Definition 18 (LWE). For an integer p = p(d) ≥ 2, and an error distribution χ = χ(d) over
Zp, the Learning With Errors problem LWEdi,m,p,χ is to distinguish between the following pairs of
distributions (e.g. as given by a sampling oracle O ∈ {Os,O$}):

{A, sTA + xT} and {A,u}

where A←Zd×m
q , s←Zd

p, u←Zmp , and x← χm.

Gadget matrix. The gadget matrix described below is proposed in [MP12, AP14].

Definition 19. Let m = d · dlog pe, and define the gadget matrix G = g2 ⊗ Id ∈ Zd×m
p , where the

vector g2 = (1, 2, 4, ..., 2blogpc) ∈ Zdlogpe
p . We will also refer to this gadget matrix as “powers-of-two”

matrix. We define the inverse function G−1 : Zd×m
p → {0, 1}m×m which expands each entry a ∈ Zp

of the input matrix into a column of size dlog pe consisting of the bits of binary representations.
We have the property that for any matrix A ∈ Zd×m

p , it holds that G ·G−1(A) = A.

8.3 Our TCE construction:

Below we present our TCE construction. This construction is inspired from the homomorphic
encryption construction of [GSW13].
Setting the parameters: Set the following parameters:

• d = λc1 for some constant c1 > 0

• Let p = O(2λ
c2) be a prime and m = ddlog pe for some constant c > 0 such that LWEd,m,pχ

holds for a distribution χ bounded by a polynomial B3(λ).

• Set B1 and B2 such that the ∆RG assumption holds for some constant ε > 0, length parameter
n, security parameter λ and the polynomial B(λ) (described below).

• Sη: We set Sη to be (Fn,B4)η. Here, Fn,B4 is the set of homoegenous cubic polynomials with
sum of absolute value of coefficients in [−B4, B4] for some polynomial B4(λ). This choice
turns out to be sufficient to construct iO. Looking ahead, these polynomials will come from
the set of degree three randomizing polynomials [LT17], which satisfy this property.

• B: The bound B is set to be m3B3B4. This is computed as the maximum norm on the
encodings for any function f ∈ Fn,B4 before smudging with q(·) values.

• TCEbound : TCEbound is the maximum norm of the decoded value for any function f ∈ Fn,B4

which evaluates to 0. It can be upper bounded by B + n2B1B
2
2 .

We describe a non-commutative product lemma that will be useful to describe our construction. In
particular, the function Fncp described in the below lemma will be used in the decode algorithm.

29

Lemma 1 (Non-commutative Product Lemma). Suppose we have a vector a ∈ Z1×d
q , matrices

U ∈ Zd×m
q ,V ∈ Zm×mq . There is a function Fncp : Znm2×1

q × Zd×m
q → Z1×m

q that given a ⊗ V
and U, computes aUV. That is, Fncp(a ⊗ V,U) outputs aUV. Moreover, Fncp(a ⊗ V,U) =
(q1(a ⊗ V,U), . . . , qm(a ⊗ V,U)), where qi is a quadratic polynomial with every term being a
product of an element in a⊗V and an element in U.

Proof. Let a = [a1 · · · ad]. The (i, j)th element in U is denoted by ui,j , for every i ∈ [d], j ∈ [m].
The (i, j)th element in V is denoted by vi,j .

Observe that the ith element, for every i ∈ [m], in aU is denoted by
∑m

j=1 ajuij . The ith element

in aUV, for i ∈ [m], is denoted by
∑m

k=1(
∑d

j=1 ajukj) · vik. The expression
∑m

k=1(
∑n

j=1 ajukj) · vik
can be rewritten as,

∑m
k=1

∑n
j=1(ajvik) · ukj . Recall that a⊗V is a vector consisting of ajvik, for

every i ∈ [d], j ∈ [m], k ∈ [m]. Thus,
∑m

k=1

∑n
j=1(ajvik) · ukj is a quadratic polynomial, denoted by

qi, with every term being a product of an element in aV and an element in U. Thus, qi(aV,U)
computes the ith element in aUV, for i ∈ [m]. This completes the proof.

Construction. We describe the scheme TCE below.

• Setup, Setup(1λ, 1n): On input security parameter λ, 1n, it sets params = (1λ, 1n, B1, B2,p).
Function class Sη and parameters B,B1, B2 are instantiated later.

• SetupEncode, SetupEnc(params): On input params = (1λ, 1n, adv, B1, B2,p), run the fol-
lowing steps:

1. Sample t
$←− Fd×1

p and C
$←− Fd×m

p .

2. Set b = CTt+ eT, where e← χm with ||e||∞ ≤ B3.

3. Set A = [CT||b]T in F(d+1)×m
p .

4. Also set s = (tT,−1) in F1×(d+1)
p

5. Sample ei ← [−B2, B2] for i ∈ [n].

6. Output sp = (s,A, e1, ..., en)

• Encode, Encode(sp, x, ind, `): On input sp = (s,A, e1, ..., en), plaintext x ∈ [−ρ, ρ], index ind
and level ` ∈ [3], proceed according to the three cases:

Sample uniformly Rind,`
$←− {0, 1}m×m. Let G ∈ F(d+1)×m

p denote the gadget matrix and let
its inverse function be G−1(·), as given in Definition 19. Set φ ∈ Zp such that φsGem =
b p

2n3B4ρ3
c, where em is an indicator vector of dimension m with the mth position containing

1 and the rest of the elements are zero. Compute ([x]ind,`.pub, [x]ind,`.priv(1), [x]ind,`.priv(2))
according to Figure 1.

We also assume that all these public and private parts of the encodings are padded appropri-
ately with string consisting of zeroes such that their lengths are same. This length is equal
to `enc = (d + 1)×m×m log p, which is computed from the length of [x]ind,`.priv(2).

Output ([x]ind,`.pub, [x]ind,`.priv(1), [x]ind,`.priv(2)).

30

[x]ind,`.pub [x]ind,`.priv(1) [x]ind,`.priv(2)

` = 1 (ARind,` + xφG, 1) (xφ, eind) (1, eind)

` = 2 ARind,` + xφ−1G G−1(−ARind,`) xφ−1s

` = 3 ARind,` + xφG 1 s⊗G−1(ARind,`)

Figure 1:

• Setup-Decode, SetupDec(params): On input params = (1λ, 1n, adv, B1, B2,p), generate
Q(1λ, 1n,)→ (q1, ..., qη), where Q is as defined in the ∆RG assumption.

• Decode, Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n]): Let f ∈ Sη = Σi,j,kγi,j,kxiyjzk. Sup-
pose Ui.priv(1) = (Qi,priv(1), ei) and Ui.priv(2) = (Qi,priv(2), ei). Consider the following opera-
tion:

– Computing a monomial: for every monomial of the form xiyjzk, compute the follow-
ing polynomial,

Zijk = Qi,priv(1)×Vj .priv(2)×Wk.pub+Fncp
(
Wk.priv(2), Ui.pub× Vj .priv(1)− Vj .pub×Qi,priv(1)

)
,

where Fncp is the function guaranteed by Lemma 1.

Output
∣∣∣(∑i,j,k γi,j,kZijk

)
em + q(ei, . . . , en)

∣∣∣.
We now prove the following properties.

Correctness: First, we prove correctness of homomorphic evaluation with respect to a monomial.
Then, we show how to extend this to homomorphic evaluation of arbitrary polynomials.

Consider plaintexts xi, xj , xk ∈ [−ρ, ρ], indices i, j, k ∈ [n]. Generate Setup(1λ, 1n) to obtain
params = (1λ, 1n, B1, B2,p). Generate SetupEnc(params) to obtain sp = (s,A, e1, ..., en). Compute
the following three encodings:

• Ui ← Encode(sp, xi, i, 1)
• Vj ← Encode(sp, xj , j, 2)
• Wk ← Encode(sp, xk, k, 3)

Let Ui.Priv(1) = (Qi,priv(1), ei) and Ui.Priv(2) = (Qi,priv(2), ei). Perform the following operations.

• Computing Int1 = Qi,priv(1) × Vj .priv(2)×Wk.pub:

Int1 = xiφ · xjφ−1s · (ARk + xkφG)

= xixjsARk + xixjxkφsG

• Computing Int2 = (Ui.pub× Vj .priv(1)− Vj .pub×Qi,priv(1)):

Int2 = ((ARi + xiφG)×G−1(ARj)− (ARj + xjφ
−1G)× xiφ

= ARiG
−1(A ·Rj) + xiφARj − xiφG−1(ARj)− xixjG

= ARiG
−1(ARj)− xixjG

31

• Computing Int3 = Fncp(Wk.priv(2), Int2): Recall that Wk = s ⊗ G−1(ARk). From
Lemma 1, we have

Int3 = Fncp(Wk.priv(2), Int2)

= s×
(
ARiG

−1(ARj)− xixjG
)
×G−1(ARk)

= sARiG
−1(ARj)G

−1(ARk)− xixjsARk

• Computing Int = Int1 + Int3:

Intijk = sARiG
−1(ARj)G

−1(ARk) + xixjxkφsG

We calculate |Intijk × em| below.

|Intijk × em| = |
(
sARiG

−1(ARj)G
−1(ARk) + xixjxksφG

)
em|

≤ |
(
sARiG

−1(ARj)G
−1(ARk)

)
em|+ |xixjxkφsGem|

= |
(
sARiG

−1(ARj)G
−1(ARk)

)
em|+ xixjxk

⌊
p

2n3B4ρ3

⌋
≤ m3||sA||∞ · ||Ri||∞ · ||G−1(ARj)||∞ · ||G−1(ARk)||∞ + xixjxk

⌊
p

2n3B4ρ3

⌋
≤ m3B3 + xixjxk

⌊
p

2n3B4ρ3

⌋
We now prove the correctness of evaluation of a polynomial f(x1, . . . , xn) =

∑
i,j,k∈[n] γi,j,kxixjxk.

We have,

Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n]) =
∑

i,j,k∈[n]

γi,j,kIntijk × em + q(e1, . . . , en)

There are two cases:

• Case f(x1, . . . , xn) = 0:

∣∣Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n])
∣∣ ≤

∣∣∣∣∣∣
∑

i,j,k∈[n]

γi,j,kIntijk × em

∣∣∣∣∣∣+ |q(e1, . . . , en)|

≤
∑

i,j,k∈[n]

γi,j,km
3B3 +

 ∑
i,j,k∈[n]

γi,j,kxixjxk

 · ⌊ p

2n3B4ρ3

⌋
+q(e1, . . . , en)

=
∑

i,j,k∈[n]

γi,j,km
3B3 + q(e1, . . . , en)

≤ n3m3B3 + n2B2

• Case f(x1, . . . , xn) = 1:

32

Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n]) ≤
∑

i,j,k∈[n]

γi,j,km
3B3 +

 ∑
i,j,k∈[n]

γi,j,kxixjxk

 · ⌊ p

2n3B4ρ3

⌋
+q(e1, . . . , en)

≤ n3m3B3 +
⌊p

2

⌋
+ n2B2

Also,

Decode(q, f, {Ui}i∈[n], {Vj}j∈[n], {Wk}k∈[n]) ≥

 ∑
i,j,k∈[n]

γi,j,kxixjxk

 · ⌊ p

2n3B4ρ3

⌋

≥
⌊

p

2n3B4ρ3

⌋
Cubic Evaluation Property. The cubic evaluation property can be observed from the descrip-
tion of Decode.

Security. We prove security below.

Theorem 8. The above scheme satisfies tempered security assuming the ∆RG assumption and
learning with errors.

Proof. We first describe the simulator associated with the above scheme.

Sim(qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n], fj(x,y, z)): On input polynomial qj , function fj

associated with index j ∈ [η], encodings {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n] and output fj(x,y, z),

• Sample ei ← [−B2, B2] for i ∈ [n].

• Compute (e′1, . . . , e
′
η)← (q1(e1, ..., en), ..., qη(e1, ..., en)).

• (Smudge), Set l̂eakj ← e′j + fj(x,y, z) ·
⌊

p
2n3B4ρ3

⌋
.

• Output (l̂eak1, . . . , l̂eakη).

We describe the hybrids below. Let aux = (1λ, 1n,x,y, z, f1, ..., fη). Each vector x,y, z is in Zn.

Hybrid1: This corresponds to the real experiment. In particular, the output of this hybrid is:

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

4. Now compute encodings as follows.

33

• Compute the encodings, [xi]i,1 ← Encode(sp, xi, i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, yi, i, 2) for every i ∈ [n].

• Compute the encodings, [zi]i,3 ← Encode(sp, zi, i, 3) for every i ∈ [n].

5. Compute leakj ← Decode(qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n]) for j ∈ [η].

6. Output the following:

(a) Public components of the encodings, {[xi]i,1.pub, [yi]i,2.pub, [zi]i,3.pub}i∈[n].

(b) Decoding parameters {qj} for j ∈ [η].

(c) Output of decodings, {leakj}j∈[η].

Hybrid2: In this hybrid, the leakage output by decode is instead generated by the simulator.

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

4. Now compute encodings as follows.

• Compute the encodings, [xi]i,1 ← Encode(sp, xi, i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, yi, i, 2) for every i ∈ [n].

• Compute the encodings, [zi]i,3 ← Encode(sp, zi, i, 3) for every i ∈ [n].

5. Compute {l̂eakj}j∈[η] ← Sim
(
qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n], fj(x,y, z)

)
.

6. Output the following:

(a) Public components of the encodings, {[xb,i]i,1.pub, [yb,i]i,2.pub, [zb,i]i,3.pub}i∈[n].

(b) Decoding parameters qj for j ∈ [η].

(c) Output of decodings, {l̂eakj}j∈[η].

Claim 1. Suppose that the ∆RG assumption is true then for any adversary A of size at most 2λ,
|Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2)]| ≤ 1− 2/λ+ negl(λ)

Proof. The only difference between Hybrid1 and Hybrid2 is in how the η number of leakages are
generated. In Hybrid1, the jth leakage is of the form qj(·) +aj . Note that aj = ej,fhe+fj(x,y, z) ·⌊

p
2n3B4ρ3

⌋
, where ej,fhe is some value in the range [−B,B]. In Hybrid2, the jth leakage is of the

form l̂eakj = qj(·) + fj(x,y, z) ·
⌊

p
2n3B4ρ3

⌋
.

Suppose the output distributions of Hybrid1 and Hybrid2 are computationally distinguishable
with probability greater than 1 − 2/λ + negl(λ), we can design an attacker that breaks the ∆RG
assumption as follows. This attacker first generates (e1,fhe, . . . , eη,fhe): this is performed by first
generating the TCE encodings and then computing (e1,fhe, . . . , eη,fhe) as a function of these en-
codings. The attacker submits this tuple to the challenger of the ∆RG assumption. The challenger

34

returns the polynomials (q1, . . . , qη) and (leak1, . . . , leakη). The attacker then submits the TCE en-

codings along with (q1, . . . , qη) and (leak1 +f1(x,y, z) ·
⌊

p
2n3B4ρ3

⌋
, . . . , leakη+f1(x,y, z) ·

⌊
p

2n3B4ρ3

⌋
)

to the distinguisher (who distinguishes Hybrid1 and Hybrid2). The output of the attacker is the
same as the output of the distinguisher. Thus, if the distinguisher distinguishes with probability ε
then the attacker breaks the ∆RG assumption with probability ε.

Hybrid3: In this hybrid, generate the encodings as encodings of zeroes. In particular, execute the
following operations.

1. Challenger performs Setup(1λ, 1n)→ params

2. The challenger samples (q1, ..., qη)← SetupDec(params).

3. Challenger performs SetupEnc(params)→ sp.

• Compute the encodings, [xi]i,1 ← Encode(sp, 0, i, 1) for every i ∈ [n].

• Compute the encodings, [yi]i,2 ← Encode(sp, 0, i, 2) for every i ∈ [n].

• Compute the encodings, [zi]i,3 ← Encode(sp, 0, i, 3) for every i ∈ [n].

4. Compute {l̂eakj}j∈[η] ← Sim
(
qj , fj , {[xi]i,1}i∈[n], {[yi]i,2}i∈[n], {[zi]i,3}i∈[n], fj(x,y, z)

)
to ob-

tain the simulated outputs.

5. Output the following:

(a) Public components of the encodings, {[xb,i]i,1.pub, [yb,i]i,2.pub, [zb,i]i,3.pub}i∈[n].

(b) Decoding parameters qj for j ∈ [η].

(c) Output of decodings, {l̂eakj}j∈[η].

Claim 2. Suppose the learning with errors assumption is true, then for any adversary A of size
2λ, it holds that |Pr[A(Hybrid2) = 1]− Pr[A(Hybrid3) = 1]| ≤ 2−λ.

Proof. We show the indistinguishability of Hybrid2 and Hybrid3 by considering the following
sub-hybrids.

Hybrid2.1: The only change between hybrids Hybrid2 and Hybrid2.1 are in the generation of b.

In this hybrid, generate b
$←− Fmp .

The indistinguishability of hybrids Hybrid2 and Hybrid2.1 follow from the learning with errors
assumption.

Hybrid2.2: The only change between Hybrid2.1 and Hybrid2.2 is in the generation of the public
parts of the encodings. Specifically, for every i ∈ [n], ` ∈ {1, 2, 3}, generate the public part of the
encoding of xi,` as [xi,`]i,`.pub = Ui,` +xi,`G. The statistical indistinguishability of Hybrid2.1 and
Hybrid2.2 follows from the extended leftover hash lemma.

Hybrid2.3: The only change between Hybrid2.2 and Hybrid2.3 is in the generation of the public
parts of the encodings. Specifically, for every i ∈ [n], ` ∈ {1, 2, 3}, generate the public part of the

35

encoding of xi,` as [xi,`]i,`.pub = Ui,`+0 ·G. The output distributions of Hybrid2.2 and Hybrid2.3

are identical.

Hybrid2.4: The only change between Hybrid2.2 and Hybrid2.3 is in the generation of the public
parts of the encodings. Specifically, for every i ∈ [n], ` ∈ {1, 2, 3}, generate the public part of the

encoding of xi,` as [xi,`]i,`.pub = ARi,` + 0 ·G, with A = [CT||bT], where (i) C
$←− Fd×m

p and, (ii)

b← Fd×1
p .

The statistical indistinguishability of the output distributions of Hybrid2.3 and Hybrid2.4 fol-
lows from the extended leftover hash lemma.

Finally, learning with errors assumption implies that the output distributions of Hybrid2.4 and
Hybrid3 are computationally indistinguishable. This concludes the proof.

9 Step 2: Construction of Three-Restricted FE from Bilinear
Maps

We construct a three-restricted FE scheme 3FE for the class of functions F3FE = {F3FE,λ,p,n}λ∈[N]

(recalled below). We later show that 3FE satisfies semi-functional security property. The tool to
construct this primitive is a 4-slotted encodings scheme, introduced by [AS17], of degree 2. We use
additive notation to indicate the group operation. Each slot will correspond to a group of order p.
We recall this definition in Section 3.2. The abstraction of this scheme is similar to bilinear maps
of composite order.

• Recall function class of interest. F3FE consists of all functions F3FE,λ,p,n = {f : {Fnp}3 → Fp}
where Fp is a finite field of order p(λ). Here n is seen as a function of λ. Each f ∈
F3FE,λ,p,n takes as input three vectors (x,y, z) over Fp and computes a polynomial of the
form Σci,j,kxiyjzk over Fp, where the coefficients are specified by the function f .

We describe the construction below. We assume that n is known to the algorithms implicitly.

Setup(1λ, 1n): On input security parameter λ,

• Sample αi, βi, γi ← Fp for all i ∈ [n]. Denote α = (α1, ..., αn), β = (β1, ..., βn) and γ =
(γ1, ..., γn).

• Sample S uniformly at random from Fp.

• Sample R uniformly at random from Fp.

• This algorithm also does setup for a slotted encoding scheme. For simplicity of notation, we
assume that the encoding key and public parameters of this scheme are implicitly known to
the encoding algorithm and public parameters are known to the evaluation algorithms. We
also assume that the slotted encoding encodes elements in Fp.

36

Set the master secret key to be MSK = (α,β,γ, S,R).

KeyGen(MSK, f): On input the master secret key MSK and function f ,

• Compute ki,j = [0 | βi · γj · S | 0 | 0]2, for every i, j ∈ [n].

• Sample r uniformly at random from Zp. Compute Θkey = [0 | V ·R | 0 | r]2. We compute
V as follows: let f be represented as a degree three polynomial g such that g is multilinear
over the variables x, y and z. Let g(x, y, z) =

∑
i,j,k∈[n] cijkxiyjzk with cijk ∈ Zp. We set

the value V as V =
∑

i,j,k∈[n] cijkαiβjγk.

Output the resulting functional key sk[f] = ({ki,j}i∈[n],j∈[n],Θkey).

Enc(MSK,x,y, z): The input message M = (x,y, z) consists of a public attribute x and private

vectors y, z. Denote by xi to be the ith component in the vector of x (and likewise for y and z).
Perform the following operations:

• Sample ∆ ∈ Zp uniformly at random.

• Compute CT2,i = [yi | βi ·∆ | 0 | 0]1, for every i ∈ [n].

• Compute CT3,i = [zi | γi ·∆ | 0 | 0]2, for every i ∈ [n].

• Compute CTxi = [0 | (αi + xi) ·∆2S−1 | 0 | 0]1, for every i ∈ [n].

• Compute Θct = [0 | ∆2 ·R−1 | 0 | 0]1.

Output the ciphertext CT = (x, {CT2,i}i∈[n], {CT3,i}i∈[n], {CTxi }i∈[n],Θct).

Dec(sk[f], 1B,CT): On input the functional key sk[f] and a ciphertext CT, perform the following:
Parse the ciphertext as CT = (x, {CT2,i}i∈[n], {CT3,i}i∈[n], {CTxi }i∈[n],Θct) and the functional key
as sk[f] = ({ki,j}i∈[n],j∈[n],Θkey).

• For all i, j, k ∈ [n], first compute e(CT2,i,CT3,j) to obtain ĈTi,j and then compute ĈTi,j,k =

xk · ĈTi,j .

• For all i, j, k ∈ [n], compute e(CTxk,ki,j) to obtain ĈTxi,j,k.

• For all i, j, k ∈ [n], compute ansi,j,k = ĈTi,j,k − ĈTxi,j,k.

• Let f be represented as a polynomial g = Σi,j,kci,j,kxiyjzk where each ci,j,k ∈ Fp. Compute
Σi,j,kci,j,kansi,j,k = ans∗.

• Compute e(Θkey,Θct) to get Θ∗.

• Compute out = ans∗ + Θ∗. Check if out = [j]T for some j ∈ [−B,B]. If so, output the value
j, otherwise output ⊥.

37

Correctness of Decryption: Note that given a key for any function f ∈ F3FE and a ciphertext
encrypting (x,y, z) the following happens: (please refer to the decryption algorithm)

1. First step ensures that ĈTi,j = [yizj + βiγj∆
2]T and ĈTi,j,k = [xkyizj + xkβiγj∆

2]T for all
i, j, k ∈ [n].

2. Second step ensures that ĈTxi,j,k = [(αi + xi)βjγk∆
2]T for i, j, k ∈ [n].

3. Third step ensures that ansi,j,k = [xiyjzk − αiβjγk∆2]T for i, j, k ∈ [n].

4. Fourth step ensures that ans∗ = [f(x,y, z)−Θ∗∆2]T

5. Final step ensures that out = [f(x,y, z)]T .

Efficiency: We now bound the size of the cipher-text. Each cipher-text consists of 3n+ 1 slotted
encodings and a vector x. Each encoding is of size log2 ppoly(λ). This proves the result.

9.1 Security

Theorem 9. Assuming the existence of a degree two slotted encoding scheme with four slots in
the bilinear generic group model, the construction 3FE is a semi-functionally secure three-restricted
functional encryption scheme in the generic bilinear map model.

We first describe the semi-functional algorithms.

sfKG(MSK, f, θ): On input master secret key MSK, function f and a value θ ,

• Compute ki,j = [0 | βi · γj · S | 0 | 0]2, for every i, j ∈ [n]

• Sample r uniformly at random from Zp.

• Compute Θkey = [0 | V ·R | θ | r]2. We compute V as follows: let f be represented as a
degree three polynomial g such that g is multilinear over the variables x, y and z. Let g(x,
y, z) =

∑
i,j,k∈[n] cijkxiyjzk with cijk ∈ Zp. We set the value V as V =

∑
i,j,k∈[n] cijkαiβjγk.

Output the resulting semi-functional key sk[f, θ] = ({ki,j}i∈[n],j∈[n],Θkey).

sfEnc(MSK,x, 1|y|, 1|z|): On input x ∈ Fnp and length 1|y|, 1|z| (which are equal to n), where x is

the public attribute and y, z is the private message. Denote by xi to be the ith component in the
vector of x.

• Sample ∆ uniformly at random.

• Compute CT2,i = [0 | βi ·∆ | 0 | 0]1, for every i ∈ [n].

• Compute CT3,i = [0 | γi ·∆ | 0 | 0]2, for every i ∈ [n].

• Compute CTxi = [0 | (αi + xi) ·∆2S−1 | 0 | 0]1, for every i ∈ [n].

• Compute Θct = [0 | ∆2 ·R−1 | 1 | 0]1.

38

Output the semi-functional ciphertext ctsf = (x, {CT2,i}i∈[n], {CT3,i}i∈[n], {CTxi }i∈[n],Θct).

First, we recall the generic (slotted) bilinear group model below. We use this model to argue
security.

Generic Bilinear Group Model We describe the generic bilinear group model [BBG05] tailored
to the slotted asymmetric setting. This model is parameterized by slotted encodings SE, which
encodes four dimensional vectors over a prime field Fp at level 1 and 2, and it encodes element
from Fp at the target level T . The encodings are done over level 1, 2 and the target T . The
multiplication operation computes encoding at level T . The adversary in this model has access to
an oracle O. Initially, the adversary is handed out handles (sampled uniformly at random) instead
of being handed out actual encodings. A handle is an element in a ring Z of order p. The oracle O
maintains a list L consisting of tuples (e,Y[e], u), where e is the handle issued, Y[e] is the formal
expression associated with e and e is associated with encoding at level u ∈ {1, 2, T}.

The adversary is allowed to submit the following types of queries to the oracle:

• Addition/ Subtraction: The adversary submits (e1, u1) and (e2, u2) along with the operation
‘+’(or ‘-’) to the oracle where u1, u2 ∈ {1, 2, T}. If u1 6= u2 or If there is no tuple associated
with either e1 or e2, the oracle sends ⊥ back to the adversary. Otherwise, it replies according
to the following cases:

– u1 ∈ {1, 2}: In this case it locates (e1, p1,e1 , p2,e1 , p3,e1 , p4,e1 , u1) and (e2, p1,e2 , p2,e2 , p3,e2 ,
p4,e2 , u2). It creates a new handle e′ (sampled uniformly at random from R) and appends
(e′, p1,e1 +p1,e2 , p2,e1 +p2,e2 , p3,e1 +p3,e2 , p4,e1 +p4,e2 , u1) to the list (in case of subtractions
the polynomials are subtracted). It outputs e′ to the adversary.

– u1 = u2 = T : In this case the adversary locates the tuples (e1, pe1 , u1) and (e2, pe2 , u2).
It creates a new handle e′ (sampled uniformly at random from R) and appends (e′, pe1 +
pe2 , u1) (or (e′, pe1 − pe2 , u1)) to the list. The oracle sends e′ to the adversary.

• Multiplication: The adversary submits (e1, u1) and (e2, u2) to the oracle. If there is no tuple
associated with either e1 or e2, the oracle sends ⊥ back to the adversary. If u1 = u2, u1 = T
or u2 = T , the oracle outputs ⊥. Otherwise, it locates the tuples (e1, p1,e1 , p2,e1 , p3,e1 , p4,e1 , u1)
and (e2, p1,e2 , p2,e2 , p3,e2 , p4,e2 , u2). It creates a new handle e′ (sampled uniformly at random
from R) and appends (e′,Σj∈[4]pj,e1 ∗ pj,e2 , T) to the list.

• Zero Test: The adversary submits element (e1, u1) to the oracle. If there is no tuple associated
to e1 it outputs ⊥. Otherwise, if u1 = 1 or u1 = 2, it locates the tuples (e1, p1,e1 , p2,e1 ,
p3,e1 , p4,e1 , u1). It outputs 1 if pj,e1 = 0 for all j ∈ [4] otherwise it outputs 0. If u1 = T , it
locates the tuples (e1, p1,e1 , u1). It outputs 1 if p1,e1 = 0, otherwise it outputs 0.

Now we describe a lemma that will be crucial for the rest of the proof.

Lemma 2 (Schwartz-Zippel-DeMillo-Lipton). Consider a polynomial h ∈ Fp[y1, . . . , yn] for a prime
p. Suppose the degree of h is at most deg then,

Pr
y1,...,yn

$←−Fp

[h(y1, . . . , yn) = 0] ≤ deg

p

39

We also give a generalisation of the lemma for rational polynomials which has also been re-proven
in [AS17].

Lemma 3 (Schwartz-Zippel-DeMillo-Lipton for Rational Polynomials). Consider two rational poly-
nomials h1 = p1

q1
and h2 = p2

q2
, where p1, q1, p2, q2 ∈ Fp[y1, . . . , yn]. Suppose the maximum degree of

p1, q1, p2, q2 is at most deg. If p = 2λ and deg = poly(λ) then,

Pr
y1,...,yn

$←−Fp

[h1(y1, . . . , yn) = h2(y1, . . . , yn) : h1 6= h2] ≤ negl(λ)

Now we consider three scenarios.

• Case 1: The adversary is given normal function keys and normal ciphertexts.

• Case 2: The adversary is given semi functional keys and normal ciphertexts.

• Case 3: The adversary is given semi-functional keys and one semi-functional ciphertext along
with remaining normal ciphertexts.

To argue indistinguishability of semi-functional keys property we need to argue that Case 1 is
indistinguishable to Case 2. To argue indistinguishability of semi-functional ciphertext property,
we need to argue Case 2 is indistinguishable to Case 3. We will argue this in the following manner:

• We assume that the adversary is given some set of encodings (depending on which case he is
in). Then the adversary submits a polynomial P for zero-test. The argument is similar for
multiple queries.

• Adversary wins if P evaluates to 0 in one case and non-zero in another.

• By a case analysis on P , we will show the if the adversary wins with non-negligible probability,
then P must contradict the shwartz zippel lemma.

In another words, we will show that if P evaluates to 0 with non-negligible probability in one case,
then it should also evaluate to 0 with almost the same probability in other cases. Let us analyse
these cases separately.

Case 1: In this case the adversary is given ciphertexts and keys which contain encodings at level
1 and 2. The adversary can query for any function key for functions fl for l ∈ [η]. He also gets
challenge ciphertext CT1 along with other ciphertexts for CTm for m ∈ [2, q]. Each key for fl
consists of the following encodings (variables denoted by α, β, γ,R, S,∆, r are chosen at random
from Zp):

• kj,k = [0 | βj · γk · S | 0 | 0]2, for every j, k ∈ [n]

• Θkey = [0 | Vl ·R | 0 | rl]2 for l ∈ [η].

Each ciphertext consists of the following encodings:

• CTm2,j = [ym,j | βj ·∆m | 0 | 0]1, for every j ∈ [n],m ∈ [q].

• CTm3,k = [zm,k | γk ·∆m | 0 | 0]2, for every k ∈ [n],m ∈ [q].

40

• CTm,xi = [0 | (αi + xm,i) ·∆2
mS
−1 | 0 | 0]1, for every i ∈ [n],m ∈ [q].

• Θm
ct = [0 | ∆2

m ·R−1 | 1 | 0]1 for every m ∈ [q].

Adversary can make a zero-test query to the oracle O of some polynomial P 6= 0 of degree 1.
Note that such a polynomial will output 0 with probability at most 2/p. This follows from lemma
3 and the structure of the encodings. This is seen analysis of the polynomials that will be formed
after addition of encodings at level 1 or 2. Analysis of this case is straightforward and hence we
omit the details.
The adversary can construct encodings over the target group. Each encoding formed, is a linear
combination of monomials/terms that are formed by evaluating multiplication of encodings of level
1 and level 2. We now list these monomials (note that an encoding of the form [a | b | c | d]T
gives rise to a monomial of the form a+ b+ c+ d):

1. VlRβj∆m for l ∈ [η], j ∈ [n],m ∈ [q].

2. βj1βj2γkS∆m for j1, j2, k ∈ [n] and m ∈ [q].

3. ym1,jzm2,k + βjγk∆m1∆m2 . for i, j, k ∈ [n] and m1,m2 ∈ [q]

4. (αi + xm,i)∆
2
mβjγk for i, j, k ∈ [n] and m ∈ [q]

5. (αi + xm,i)∆
2
mS
−1VlR for m ∈ [q], l ∈ [η] and i ∈ [n].

6. (αi + xm1,i)∆
2
m1
γkS

−1∆m2 for m1,m2 ∈ [q] and i ∈ [n].

7. Vl∆
2
m for l ∈ [η] and m ∈ [q]

8. βjγkSR−1∆2
m for m ∈ [q] and j, k ∈ [n]

9. γk∆m1R
−1∆2

m2
for k ∈ [n] and m1,m2 ∈ [q].

10. 1. This is generated from the encoding of 1 at the level T .

Consider a zero test polynomial query P of this kind to the oracle O.

Structure of P : Let us now consider a polynomial P which is a linear combination of monomials
with coefficients in Zp. Any monomial of type i ∈ [10] can have a coefficient of the form ci,... where
the ... is replaced with quantifiers of the variables in the monomials. For example, the coefficient
of first monomial is represented as c1,l,j,m for l ∈ [η], j ∈ [n] and m ∈ [q]. This polynomial P
can be represented as: k0 + Σmk1,m∆m+ Σm1,m2k2,m1,m2∆m1∆m2 + Σm1,m2k3,m1,m2∆2

m1
∆m2 where

each term ki is a function of variables independent of ∆. Now by using lemma 2, the probability
that P vanishes at (∆1, ..,∆q) is bounded by 3/p. So it must be the case with probability at least
1− negl(λ) that k0 = k1,m = k2,m1,m2 = k3,m1,m2 = 0 for all m,m1,m2 ∈ [q]. Now we analyse these
cases separately.

Case k3,m1,m2 = 0:

• This coefficient is formed due to linear combination of monomial of kind 6 and 9.

• The degree three term k3,m1,m2 is a linear combination of (αi + xm1,i)γjS
−1 for i, j ∈ [n] and

γiR
−1 for i ∈ [n].

41

• Viewing them first as polynomial over S−1 and R−1 and then over αi + xi and γi for i ∈ [n],
we can argue by lemma 3 that with probability at least 1 − negl(λ) that each coefficient in
this coefficient should be 0.

Case k1,m = 0:

• The degree one term k1,m is a linear combination of βj1βj2γkS for i, j, k ∈ [n] and VlRβj
for l ∈ [η], j, k, j1, j2 ∈ [n]. This is formed due to the monomials 1 and 2. Here each
Vl = fl(α,β,γ).

• Viewing them first as polynomial over S and R and then over βi and γi for i ∈ [n], we can
argue by shwartz-zippel lemma that with probability at least 1− negl(λ) that each coefficient
in this combination should satisfy some linear equation dependent on the coefficients of the
polynomial fl for l ∈ [η].

Case k2,m1,m2 = 0:

• First we look at the case when m1 6= m2. Such combinations are formed by combinations of
monomials 3. Due to lemma 3, it can be said that with probability 1−negl(λ), each coefficient
in the combination must be 0.

• Now we look at the case whenm1 = m2 = m. Such combinations are formed due to monomials
of type 3,4, 5, 7 and 8.

• The degree two term k2,m,m is a linear combination of (αi+xi)βjγk for i, j, k ∈ [n], βiγjR
−1S

for i, j ∈ [n], ViR(αj + xj)S
−1 for i ∈ [η], j ∈ [n], Vi for i ∈ [η], βiγj for i, j ∈ [9] generated

from monomials 3, 4, 5, 7 and 8.

• Here monomials 3, 4 and 7 gives us one condition while 5 and 8 give another.

• Now viewing theses combination as polynomial over S and R and then using shwartz-zippel
lemma it turns out that the coefficients corresponding to βjγkR

−1S is identically 0.

• The coefficients VlR(αi + xm,i)S
−1 are a function of the coefficients fl for l ∈ [η] with proba-

bility at least 1− negl(λ).

• The coefficients of monomials 3, 4 and 7, lead to an interesting condition. Σi,j,k,lc4,m,i,j,k(αi+
xm,i)βjγk + c7,m,lVl + c3,m,m,j,kβjγk = 0, implying with probability at least 1 − negl(λ),
c4,m,i,j,k+Σlc7,m,lfl,i,j,k = 0 and Σic4,m,i,j,kxi = −c3,m,m,j,k. This is the condition that ensures
that the decryptor can only compute linear combinations of fl for l ∈ [η] for the messages
which are encrypted. Here fl,i,j,k is the i, j, k coefficient of fl.

Case k0 = Σm1,m2k0,m1,m2 + k = 0:

• The degree zero term k0,m1,m2 is computed by taking linear combinations of the monomial
3. Which has been considered in the previous case. When m1 6= m2, the corresponding
coefficents c3,m1,m2,j,k are 0 with as discussed in the previous case. So k0,m1,m2 = 0 for
m1 6= m2.

42

• Whenm1 = m2 = m, k0,m,m = Σj,kc3,m,m,j,kym,jzm,k. But from previous case, Σic4,m,i,j,kxm,i =
−c3,m,j,k. Thus, k0,m,m = Σi,j,k−c4,i,j,kxm,iym,jzm,k. Hence, k0 = Σmk0,m,m = Σl,mc7,m,lfl(xm,ym, zm)+
k = 0 only if the corresponding linear combination of function values on input fl(xm,ym, zm)
for l ∈ [η] and m ∈ [q] add up to −k.

Hence, by a union bound with probability at least 1−negl(λ), all these conditions must be satisfied.

Case 2: The analysis of case 2 is the same as the previous one as the monomials generated are
the same. This ensures indistinguishability of case 1 and case 2.

Case 3: This case has monomials similar to case 1 except when the monomials are formed by
the semi-functional cipher-text CT1 and semi-functional keys with hardwired values θ1, ..., θη. We
describe all monomials explicitly.

1. Vlβj∆m for l ∈ [η], j ∈ [n],m ∈ [q].

2. βj1βj2γkS∆m for j1, j2, k ∈ [n] and m ∈ [q].

3. ym1,jzm2,k + βjγk∆m1∆m2 . for i, j, k ∈ [n] and m1 ∈ [2, q] and m2 ∈ [q].

4. βjγk∆1∆m. for i, j, k ∈ [n] and m ∈ [q].

5. (αi + xm,i)∆
2
mβjγk for i, j, k ∈ [n] and m ∈ [q]

6. (αi + xm,i)∆
2
mS
−1VlR for m ∈ [q], l ∈ [η] and i ∈ [n].

7. (αi + xm1,i)∆
2
m1
γk∆m2 for m1,m2 ∈ [q] and i ∈ [n].

8. Vl∆
2
m for l ∈ [η] and m ∈ [2, q]

9. Vl∆
2
1 + θl for l ∈ [η].

10. βjγkSR−1∆2
m for m ∈ [q] and j, k ∈ [n]

11. γk∆m1R
−1∆2

m2
for k ∈ [n] and m1,m2 ∈ [q].

12. 1. This is generated from the encoding of 1 at the level T .

Let us now consider a polynomial P which is a linear combination of monomials with coefficients
in Zp. Any monomial of type i ∈ [9] can have a coefficient of the form ci,... where the ... is replaced
with quantifiers of the variables in the monomials. For example, the coefficient of first monomial
is represented as c1,l,j,m for l ∈ [η], j ∈ [n] and m ∈ [q]. This polynomial P can be represented
as: k0 + Σmk1,m∆m + Σm1,m2k2,m1,m2∆m1∆m2 + Σm1,m2k3,m1,m2∆2

m1
∆m2 where each term ki is a

function of variables independent of ∆. Now by using lemma 3, the probability that P vanishes
at (∆1, ..,∆q) is bounded by 3/p. So it must be the case with probability at least 1 − 3/p that
k0 = k1,m = k2,m1,m2 = k3,m1,m2 = 0 for all m,m1,m2 ∈ [q].Most of the cases are same as before
but for completeness we argue them here.
Case k3,m1,m2 = 0

• The analysis of this case is exactly the same in the case of functional keys and ciphertexts as
the corresponding monomials for this case are same.

43

Case k1,m = 0

• The analysis of this case is also exactly the same in the case of functional keys and ciphertexts
as the corresponding monomials for this case are same.

Case k2,m1,m2 = 0

• The analysis of k2,m1,m2 for the following cases remains the same.

1. m1 6= m2. In that case the coefficients corresponding to monomials are identically 0.

2. m1 = m2 6= 1. In this case the monomials generated are the same, hence the analysis is
the same.

Case k2,1,1 = 0

• This term is generated by using linear combination of monomials of type 4, 5, 6, 9 and 10.
Monomials 6 and 10 are functions of R and S. They give some condition on the combination
with respect to the functions fl for l ∈ [η].

• The combination of monomials 4, 5 and 9 gives us the following condition. Σi,j,k,lc5,1,i,j,k(αi+
x1,i)βjγk + c9,1,lVl+ c4,m,j,kβjγk = 0, implying with probability at least 1−negl(λ), c5,m,i,j,k +
Σlc9,lfl,i,j,k = 0 and Σic5,1,i,j,kxi = −c4,1,j,k.

Case k0 = Σm1,m2k0,m1,m2 + k = 0

• This case is different. The only thing that changes is k0,1,1 as k0,i,j = 0 for i 6= j and k0,i,i for
i ∈ [2, q] is the same as in the case of functional ciphertexts and keys. This is because they
are generated from same monomials.

• k0,1,1 = Σlc9,1,lθl. Note that θl = fl(x1,y1, z1) . Hence, k0 = Σm≥2k0,m,m + k0,1,1 + k = 0
only if it is the corresponding linear combination of function values fl(xm,ym, zm) for l ∈ [η]
and m ∈ [q] add up to −k. Here k is the contribution of the last monomial.

Thus if on input P , O outputs 0 in case 1 and case 2, then with probability at least 1−/negl(λ),
it outputs 0 in case 3, for some negligible negl. Likewise, on input P , if O outputs 0 in case 3, then
with probability at least 1− negl(λ), it outputs 0 in case 1 and case 2, for some negligible negl(λ)
due to the structure of P . This completes the proof.

10 Step 3: Construction of Semi-Functional FE for Cubic Poly-
nomials

In this section we construct and then prove correctness, efficiency and security for semi-functional
functional encryption for cubic functions (referred as FE3). For this construction we assume the
existence of a three-restricted 3FE for a specific function class (defined below) and a tempered cubic
encoding scheme, TCE.

44

Function class of interest for FE3: We construct a semi-functional functional encryption
scheme for cubic homogenous polynomials over variables over integers Z. Formally, consider a
set of functions FFE3,λ,n = {f : [−ρ, ρ]n → Z}. Here n is seen as a function of λ and ρ is a constant.
Each f ∈ FFE3,λ,n takes as input x = (x1, .., xn) ∈ [−ρ, ρ]n and computes a polynomial of the
form Σci,j,kxixjxk over Z (where some variables can repeat) and each coefficient ci,j,k ∈ [−ρ, ρ]
and Σj,k|ci,j,k| < w(λ) for some fixed polynomial w(λ) independent of n. In order to implement
semi-functional functional encryption for this class of functions we use a 3FE scheme over some
large prime p and a TCE scheme with a plain-text space is Z ∩ [−∆,∆] for some large enough ∆.
Note that if p is large the result of computation is the same as the computation done over Z.

Setting parameters of TCE: We require the following notational properties of TCE which can
be instanitated as in Section 8.3.

1. We require the plain-text space Z to be Z ∩ [−∆,∆] for some polynomial ∆. ∆ should be
larger than w(λ)ρ3. This is so as to allow the computations of FFE3 to be done over Z (instead
of Z) as FFE3 contain polynomials that act on inputs in [−ρ, ρ]. This idea will be more clear
when we describe the construction.

2. (Representation) The encoding of any element a ∈ R at any level l ∈ {1, 2, 3} should consist
of three parts as described now: [a]l = ([a]l.pub, [a]l.priv(1), [a]l.priv(2)). Each part is thought
of as a vector of dimension d = d(λ) over Fp for some prime p = p(λ).

3. Security: We require that TCE scheme satisfy (Sη)−Tempered Security. We will prove that
if TCE satisfies Sη−tempered security, the semi-functional FE scheme for cubic polynomials
will satisfy Sη−Bounded semi-functional security. Thus, to construct a semi-functional FE
scheme for cubic polynomials for class of functions Sη, we need TCE to satisfy Sη−tempered
security. Denote by Sη = (FFE3,λ,n)η. Here, η is the maximum number of key queries handled
by the scheme.

4. Cubic Evaluation: We require that TCE.Decode(q, g, ·) for any cubic homogeneous polyno-
mial amounts to evaluating another cubic homogeneous polynomial φq,g on Fp over encodings
(with partial degree 1 in public as well as private components). This follows from the cubic
evaluation property of Tempered Cubic Encoding.

Function class for 3FE: To allow compatability with TCE we will use 3FE for the following class
of functions. F3FE,λ,3nd,p = {f : {F3nd

p }3 → Fp} where Fp is a finite field of order p(λ) takes as
input (x,y, z) where each vector over Fp is of length 3nd and computes a polynomial of the form
Σci,j,kxiyjzk over Fp.

10.1 Construction

Now we formally present our construction.

FE3.Setup(1λ, 1n) : On input the security parameter 1λ the setup algorithm does the following:

1. Compute TCE.Setup(1λ, 1n)→ params.

2. Sample (q1, ..., qη)← TCE.SetupDec(params).

45

3. Let Fp denote the prime field associated with TCE encodings. Let [−ρ, ρ]n for some n = n(λ)
denote the plaintext space of which the scheme needs to be constructed. Let d = d(λ) be the
dimension of each part of encoding of TCE.

4. Now let 3FE denote the scheme for the function class F3FE = F3FE,λ,3nd,p. Run 3FE.Setup(1λ)→
sk.

5. Then sample sp← TCE.SetupEnc(params). Encode vector z with zi = 0 for i ∈ [n] at all the
three levels. That is, compute [zi]i,j ← Encode(sp, zi, i, j) for every i ∈ [n] and j ∈ [3]. Denote
[zi]i,j = ([zi]i,j .pub, [zi]i,j .priv(1), [zi]i,j .priv(2)). Here, both public and private components
belong to Fd

p. These encodings are used only in the semi-functional algorithms.

6. Output MSK = (params, sk, sp, {[zi]i,j}i∈[n],j∈[3] , {qj}j∈[η]).

FE3.Enc(MSK,x = (x1, .., xn) ∈ [−ρ, ρ]n) : On input the encryption key and the plaintext message
in [−ρ, ρ]n the encryption algorithm does the following:

1. Run TCE.SetupEnc(params)→ sp1.

2. Encode each xi for i ∈ [n] at all the three levels. That is compute [xi]i,j ← Encode(sp1, xi, i, j)
for every i ∈ [n] and j ∈ [3]. Denote [xi]i,j = ([xi]i,j .pub, [xi]i,j .priv(1), [xi]i,j .priv(2)). Here
[xi]i,j .pub, [xi]i,j .priv(1) and [xi]i,j .priv(2) belong to Fd

p

3. Construct three vectors A,B and C in F3nd
p as follows.

• Set A as the vector of level pub parts of encodings. That is, A =
(
{[xi]i,j .pub}i∈[n],j∈[3]

)
.

• Set B as the vector of level priv(1) part of encodings. That is, B =
(
{[xi]i,j .priv(1), }i∈[n],j∈[3]

)
.

• Set C as the vector of level priv(3) part of encodings. That is, C =
(
{[xi]i,j .priv(2), }i∈[n],j∈[3]

)
.

4. Encrypt these encodings using 3FE scheme and output the resulting ciphertext. Formally,
output CT← 3FE.Enc(sk,A,B,C)

FE3.KeyGen(MSK, i, f ∈ FFE3,λ,n) : The key generation on input the master secret key MSK, an
index i and a cubic integer polynomial f with coefficients over n variables from [−ρ, ρ] does the
following:

1. Parse MSK = (params, sk, sp, {[zi]i,j}i∈[n],j∈[3] , {qj}j∈[η]).

2. See f as a polynomial with short coefficients over Z. Let φqi,f denote the resulting polynomial
in F3FE that computes TCE.Decode(qi, f, ·) ∈ Fp,

3. Compute a key for the function skf ← 3FE.KeyGen(sk, φqi,f). Output (qi, skf).

FE3.Dec ((q, skf),CT) : The decryption algorithm on input a 3FE functional key skf and TCE
decoding parameter q and a ciphertext CT does the following.

46

1. Compute temp ← 3FE.Dec(skf , 1
BFE3 ,CT) for some large enough polynomial BFE3 to ensure

correctness (described shortly).

2. temp is either a value in [−BFE3 , BFE3] or ⊥. If it is ⊥, output 1 otherwise output 0.

Now we argue the properties associated with the scheme.

Correctness: We argue correctness now. Consider the following:

• Ciphertext, CT← 3FE.Enc(sk, {[xi]i,j .pub}i∈[n],j∈[3], {[xi]i,j .priv(1)}i∈[n],j∈[3], {[xi]i,j .priv(2)}i∈[n],j∈[3]).

• Function key for f , skf ← 3FE.KeyGen(sk, φq,f). Here q is the decoding parameter.

Due to the correctness of the scheme 3FE and cubic evaluation property of TCE, the decryption
function , 3FE.Dec(skf , 1

BFE3 ,CT) does the following:
It checks |Decode(q, f, {[xi]i,j}i∈[n],j∈[3])| < BFE3 . If this is the case it outputs Decode(q, f, {[xi]i,j}i∈[n],j∈[3]),
otherwise it outputs ⊥. Now there are two cases:

• If f(x1, .., xn) = 0 then |Decode(q, f, {[xi]i,j}i∈[n],j∈[3])| < BFE3 due to correctness of TCE. In
this case we always output 0. Thus BFE3 = TCEbound(λ, n)

• If f(x1, .., xn) 6= 0 then |Decode(q, f, {[xi]i,j}i∈[n],j∈[3])| > TCEbound(λ, n) with overwhelming
probability due to correctness of TCE. In this case, we output 1 with overwhelming probability
as 3FE decryption outputs a ⊥ with overwhelming probability.

Efficiency: We now bound the size of the ciphertext encrypting x = (x1, .., xn) ∈ [−ρ, ρ]n.
Encryption of x consists of 3FE encryption of three encoding parts of xi for i ∈ [n]. The size of
each encoding |[xi]i,j | = 3 log2 p · d < poly(λ, log n) for some polynomial poly, due to the efficiency
of the TCE scheme. Due to the linear efficiency of 3FE the size of |CT| ≤ n · poly′(λ, log n) for some
polynomial poly′. Note that n < 2λ, hence, the claim follows.

10.2 Security Proof

Now we argue security.

Theorem 10. If 3FE is a secure three-restricted functional encryption scheme and TCE satisfies
Sη−tempered security, then the scheme described in Section 10.1 is a Sη−bounded semi-functionally
secure semi-functional functional encryption scheme for homogenous degree three polynomials ac-
cording to definition 16.

Proof. First we present the semi-functional algorithms and then prove Sη−bounded indistinguisha-
bility of semi-functional ciphertexts and Sη−bounded indistinguishability of semi-functional keys
separately.

FE3.sfKG(MSK, k, f ∈ FFE3,λ,n, θ) : The key generation on input the master secret key MSK =
(params, sk, sp, {[zi]i,j}i∈[n],j∈[3] {qj}j∈[η]), a cubic integer polynomial f over n variables from [−ρ, ρ],

an index k ∈ [η] along with a value θ ∈ Fp does the following:

1. Compute leaksim ← TCE.Sim
(
qk, f, {[zi]i,1}i∈[n], {[zi]i,2}i∈[n], {[zi]i,3}i∈[n], θ

)
.

47

2. Compute a 3FE semi-functional key for the function φqk,f , skf,θ ← 3FE.sfKG(sk, φqk,f , leaksim).
Output skf,θ.

We now describe the semi-functional encryption algorithm:

FE3.sfEnc(MSK, 1n) : On input the encryption key MSK = (params, sk, sp,
{

[zi]{j}
}
i∈[n],j∈[3]

, {qj}j∈[η])

and the length of the plaintext message n, the encryption algorithm does the following:

1. Parse A =
(
{[zi]i,j .pub}i∈[n],j∈[3]

)
in F3nd

p .

2. Encrypt A using the semi-functional encryption algorithm of 3FE scheme and output the
resulting ciphertext. Formally, output ctsf ← 3FE.sfEnc(sk,A, 13nd, 13nd).

We now prove the indistinguishability of semi-functional key property.

Sη−bounded Indistinguishability of semi-functional key property: We do this by pre-
senting two hybrids, where the first hybrid correspond to the security where when the function
keys are honestly generated whereas the last hybrid corresponds to the security game when the
functional keys are semi-functional.

Hybrid0 : This corresponds to the security game with challenge bit b = 0:

1. Adversary outputs message queries Xk = (xk1, .., x
k
n) for k ∈ [q].

2. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the
TCE public parameters params and encoding parameter sp.It also samples decoding parame-
ters {qi}i∈[η].

3. The challenger computes CTk ← Enc(MSK,Xk) for k ∈ [q].

4. Now the adversary requests functions (f1, .., fη) ∈ Sη. It specifies values θi for i ∈ [η].

The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. The challenger computes leaki ← TCE.Sim(qi, fi, {[zi]i,j}i∈[n],j∈[3] , fi, θi)

6. Challenger outputs (qi, skfi ← 3FE.KeyGen(sk, φqi,fi)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Hybrid1 : This corresponds to the real security game with challenge bit b = 1. The change is
marked with the boldfaced word [Change]:

1. Adversary outputs message queries Xk = (xk1, .., x
k
n) for k ∈ [q].

2. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and
the TCE public parameters params and encoding parameter sp. It also samples decoding
parameters {qi}i∈[η].

48

3. The challenger computes CTk ← Enc(MSK,Xk) for k ∈ [q].

4. Now the adversary requests functions (f1, .., fη) ∈ Sη. It specifies values θi for i ∈ [η].

The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. The challenger computes leaki ← TCE.Sim(qi, fi, {[zi]i,j}i∈[n],j∈[3] , fi, θi)

6. [Change] Challenger outputs (qi, skfi,θi ← 3FE.sfKG(sk, φfi , leaki)) as the function key for
i ∈ [η].

7. Adversary outputs b′.

Lemma 4. If 3FE scheme satisfies indistinguishability of semi-functional key property then there
exists some constant c > 0 such that for any adversary of size 2λ

c
, |Pr[A(Hybrid0) = 1] −

Pr[A(Hybrid1) = 1]| < 2−λ
c
.

Proof. (Sketch) The only way in which the above two hybrids differ is the way the keys for functions
fi for each i ∈ [η] are generated. In Hybrid0 they are generated using 3FE.KeyGen, while in
Hybrid1 they are generated using 3FE.sfKG algorithm. Note that in both the hybrids 3FE.sfEnc is
not used. The reduction can be sketched as follows. The reduction generates the TCE parameters
and encodings itself. Then, it gets from the adversary the messages Xk, functions (f1, .., fη) and
values (θ1, .., θη). It generates values leaki (using TCE parameters) and passes it along with messages
and functions to the challenger of 3FE scheme. Challenger can then encrypt the cipher-text honestly.
It flips a coin and either sends functional keys or the semi-functional keys. These are then used to
simulate rest of the game. In the end the adversary outputs bit b′ which the reduction outputs as
it is. The indistinguishability now follows from the indistinguishability of semi-functional keys.

Sη−bounded Indistinguishability of semi-functional ciphertext property Fix messages
Mi = {(xi)}i∈Γ for some polynomial Γ and a challenge M∗ = (x,y, z). Also fix f1, ..., fη ∈ Sη.
This defines aux = (1λ, 1n,Γ,Mi = {(xi)}i∈Γ,M

∗ = (x∗), f1, .., fη). Set θi = fi(M
∗) for all i ∈ [η].

We now prove security by describing hybrids and arguing indistinguishability between them.
Hybrid0 : This corresponds to the security game with challenge bit b = 0:

1. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the

TCE public parameters params and encoding parameter sp and decoding parameters {qi}i∈[η].

2. The challenger computes CTk ← Enc(MSK,Mi) for i ∈ [Γ].

3. The challenger also encrypts M∗.

(a) Run TCE.SetupEnc(params)→ sp1.

(b) Encode each x∗i for i ∈ [n] at all the three levels. That is compute [x∗i]i,j ← Encode(sp1, x
∗
i , i, j)

for every i ∈ [n] and j ∈ [3]. Denote [x∗i]i,j = ([x∗i]i,j .pub, [x
∗
i]i,j .priv(1), [x∗i]i,j .priv(2)).

Here [x∗i]i,j .pub, [x∗i]i,j .priv(1) and [x∗i]i,j .priv(2) belong to Fd
p

(c) Construct three vectors A,B and C in F3nd
p as follows.

• Set A as the vector of level pub parts of encodings. That is, A =
(
{[x∗i]i,j .pub}i∈[n],j∈[3]

)
.

49

• Set B as the vector of level priv(1) part of encodings. That is, B =
(
{[x∗i]i,j .priv(1), }i∈[n],j∈[3]

)
.

• Set C as the vector of level priv(3) part of encodings. That is, C =
(
{[x∗i]i,j .priv(2), }i∈[n],j∈[3]

)
.

(d) Encrypt these encodings using 3FE scheme and output the resulting ciphertext. Formally,
output CT← 3FE.Enc(sk,A,B,C)

4. The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. The challenger computes leaki ← TCE.Sim(qi, fi, {[zi]i,j}i∈[n],j∈[3] , fi, θi)

6. Challenger outputs (qi, skfi ← 3FE.sfKG(sk, φqi,fi , leaki)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Hybrid1 : This corresponds is the same as the previous hybrid, except that function keys are
generated using a semi-functional key with different hardwired values. The change is marked with
boldfaced word [Change].

1. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the

TCE public parameters params and encoding parameter sp and decoding parameters {qi}i∈[η].

2. The challenger computes CTk ← Enc(MSK,Mi) for i ∈ [Γ].

3. The challenger also encrypts M∗.

(a) Run TCE.SetupEnc(params)→ sp1.

(b) Encode each x∗i for i ∈ [n] at all the three levels. That is compute [x∗i]i,j ← Encode(sp1, x
∗
i , i, j)

for every i ∈ [n] and j ∈ [3]. Denote [x∗i]i,j = ([x∗i]i,j .pub, [x
∗
i]i,j .priv(1), [x∗i]i,j .priv(2)).

Here [x∗i]i,j .pub, [x∗i]i,j .priv(1) and [x∗i]i,j .priv(2) belong to Fd
p

(c) Construct three vectors A,B and C in F3nd
p as follows.

• Set A as the vector of level pub parts of encodings. That is, A =
(
{[x∗i]i,j .pub}i∈[n],j∈[3]

)
.

• Set B as the vector of level priv(1) part of encodings. That is, B =
(
{[x∗i]i,j .priv(1), }i∈[n],j∈[3]

)
.

• Set C as the vector of level priv(3) part of encodings. That is, C =
(
{[x∗i]i,j .priv(2), }i∈[n],j∈[3]

)
.

(d) Encrypt these encodings using 3FE scheme and output the resulting ciphertext. Formally,
output CT← 3FE.Enc(sk,A,B,C)

4. The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. [Change] The challenger computes leaki ← TCE.Dec(qi, fi, {[x∗i]i,j}i∈[n],j∈[3])

6. Challenger outputs (qi, skfi ← 3FE.sfKG(sk, φqi,fi , leaki)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Lemma 5. If 3FE satisfies semi-functional security, then there exists a constant c > 0 such that
for any adversary A of size 2λ

c
, |Pr[A(Hybrid0) = 1]− Pr[A(Hybrid1) = 1| < 2−λ

c
.

50

Proof. (Sketch) The only difference between the two hybrids is the hardwirings while comput-
ing semi-functional functional keys. In both hybrids, ciphertexts are generated by using 3FE.Enc
algorithm. The indistinguishability follows from the indistinguishability of semi-functional keys
property of the 3FE scheme.

Hybrid2 : This corresponds is the same as the previous hybrid, except that challenge ciphertext
is generated using semi-functional encryption algorithm of 3FE scheme.

1. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the

TCE public parameters params and encoding parameter sp and decoding parameters {qi}i∈[η].

2. The challenger computes CTk ← Enc(MSK,Mi) for i ∈ [Γ].

3. The challenger also encrypts M∗.

(a) Run TCE.SetupEnc(params)→ sp1.

(b) Encode each x∗i for i ∈ [n] at all the three levels. That is compute [x∗i]i,j ← Encode(sp1, x
∗
i , i, j)

for every i ∈ [n] and j ∈ [3]. Denote [x∗i]i,j = ([x∗i]i,j .pub, [x
∗
i]i,j .priv(1), [x∗i]i,j .priv(2)).

Here [x∗i]i,j .pub, [x∗i]i,j .priv(1) and [x∗i]i,j .priv(2) belong to Fd
p

(c) Construct three vectors A,B and C in F3nd
p as follows.

• Set A as the vector of level pub parts of encodings. That is, A =
(
{[x∗i]i,j .pub}i∈[n],j∈[3]

)
.

• Set B as the vector of level priv(1) part of encodings. That is, B =
(
{[x∗i]i,j .priv(1), }i∈[n],j∈[3]

)
.

• Set C as the vector of level priv(3) part of encodings. That is, C =
(
{[x∗i]i,j .priv(2), }i∈[n],j∈[3]

)
.

(d) [Change] Encrypt these encodings using 3FE scheme and output the resulting cipher-
text. Formally, output CT← 3FE.sfEnc(sk,A, 13nd, 13nd).

4. The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. The challenger computes leaki ← φqi,fi(A,B,C) = TCE.Dec(qi, fi, {[x∗i]i,j}i∈[n],j∈[3]).

6. Challenger outputs (qi, skfi ← 3FE.sfKG(sk, φqi,fi , leaki)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Lemma 6. If 3FE is semi-functionally secure, then there exists a constant c > 0 such that for any
adversary A of size 2λ

c
, |Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1| < 2−λ

c
.

Proof. (Sketch.) The only difference between the two hybrids is the way CT∗ is generated. In
Hybrid1 it is generated using 3FE.Enc algorithm, encrypting (A,B,C). In Hybrid2, it is generated
as 3FE.sfEnc(sk,A, 13nd, 13nd). Note that function keys are generated according to the requirement
of the indistinguishability of semi-functional ciphertexts security game. The indistinguishability
follows from the indistinguishability of semi-functional ciphertext property of the 3FE scheme.

Hybrid3 : This corresponds to challenge bit b = 1. Namely, this hybrid is the same as the
previous one except that both A and leaki are generated as in TCE security game with challenge
bit 1.

51

1. Challenger runs Setup to get 3FE encryption key sk, the encodings {[zi]i,j}i∈[n],j∈[3] and the

TCE public parameters params and encoding parameter sp and decoding parameters {qi}i∈[η].

2. The challenger computes CTk ← Enc(MSK,Mi) for i ∈ [Γ].

3. The challenger also encrypts M∗.

(a) Run TCE.SetupEnc(params)→ sp1.

(b) Encode each x∗i for i ∈ [n] at all the three levels. That is compute [x∗i]i,j ← Encode(sp1, x
∗
i , i, j)

for every i ∈ [n] and j ∈ [3]. Denote [x∗i]i,j = ([x∗i]i,j .pub, [x
∗
i]i,j .priv(1), [x∗i]i,j .priv(2)).

Here [x∗i]i,j .pub, [x∗i]i,j .priv(1) and [x∗i]i,j .priv(2) belong to Fd
p

(c) Construct three vectors A,B and C in F3nd
p as follows.

• [Change] Set A as the vector of level pub parts of encodings. That is, A =(
{[zi]i,j .pub}i∈[n],j∈[3]

)
.

(d) Encrypt these encodings using 3FE scheme and output the resulting ciphertext. Formally,
output CT← 3FE.sfEnc(sk,A, 13nd, 13nd).

4. The polynomials (qi, fi) uniquely defines a cubic polynomial φqi,fi for each i ∈ [η].

5. [Change] The challenger computes leaki ← TCE.Sim(qi, fi, {[zi]i,j}i∈[n],j∈[3] , fi, θi).

6. Challenger outputs (qi, skfi ← 3FE.sfKG(sk, φqi,fi , leaki)) as the function key for i ∈ [η].

7. Adversary outputs b′.

Lemma 7. If TCE satisfies Sη−tempered security, then there exists a constant c > 0 such that for
any adversary A, |Pr[A(Hybrid2) = 1]− Pr[A(Hybrid3) = 1| < 1− 2/λ+ negl(λ).

Proof. (Sketch.) Note that both the hybrids depend only on public part of encoding A and leakages
θi. In Hybrid2, they correspond to actual encoding of M∗, in Hybrid3, they are simulated. The
indistinguishability follows from Sη tempered security of TCE scheme.

Thus we get the result from the above three lemmas.

11 Step 4: (Sublinear) Semi-Functional Secret Key FE from Semi-
Functional FE for Cubic Polynomials

11.1 Randomizing Polynomials

A randomizing polynomials scheme defined over a field Zp consists of probabilistic polynomial time
algorithms (CktEncd, InpEncd,Decd) and is associated with a class of circuits,

Fn,s = {C : {0, 1}n → {0, 1}m : C is of size s}

• CktEncd(1λ, C): On input security parameter λ, a circuit C, it outputs polynomials (p1, . . . , pN)
over Zp. This is a deterministic algorithm.

52

• InpEncd(x;R): On input x, randomness R, it outputs the input encoding x.

• Decd(p1(x), . . . , pN (x)): On input p1(x), . . . , pN (x), it outputs the decoded value y.

Definition 20. A tuple of algorithms RP = (CktEncd, InpEncd,Decd) is a randomizing polynomials
scheme with ε-sublinear randomness complexity for a class of circuits Fn,s over Zp if the following
properties are satisfied:

• Correctness: For every C ∈ Fn,s, input x ∈ {0, 1}n, for sufficiently large λ ∈ N, we have
Pr[Decd(p1(x), . . . , pN (x)) = C(x)] ≥ 1− negl(λ), for some negligible function negl, where:

- (p1, . . . , pN)← CktEncd(1λ, C)
- x← InpEncd(x;R), where R is sampled from uniform distribution.

• adv-Security: There exists a simulator Sim such that the following holds: for every C ∈
Fn,s, x ∈ {0, 1}n, sufficiently large λ ∈ N, consider CktEncd(1λ, C) → (p1, . . . , pN) and
InpEncd(x)→ x. Then, for all adversaries A of size at least 2λ,

Pr[A(p1(x), ..., pN (x)) = 1]− Pr[A(Sim(1λ, C, C(x))) = 1] < adv(λ) + negl(λ)

• ε-Sublinear Input Encoding: We require that the size of the circuit computing InpEncd(x;R)

is (n+ s
1

1+ε) · poly(λ).

Moreover, we say that RP is a degree-d randomizing polynomials scheme if every polynomial pi is
homogenous and has degree exactly d.

Definition 21. Let λ be the security parameter. By Cn,s we denote the set of circuits C : {0, 1}n →
{0, 1}∗ with size bounded by some polynomial s(n, λ) and depth λ. In particular, this class contains
NC1 circuits of size s(n, λ).

We construct a sublinear semi-functional secret key FE for Cn,s for s = n1+ε for some ε > 0
starting from semi-functional FE for Fλ,3, where Fλ consists of all polynomial-sized (in λ) cir-
cuits and Fλ,3 consists of all cubic polynomials over Z. As an intermediate tool, we consider
the notion degree three randomizing polynomials with ε-sublinear randomness complexity RP =
(CktEncd, InpEncd,Decd) for some ε > 0. Let SimRP be the simulator associated with the random-
izing polynomials scheme. Such RP was constructed in [LT17]:

Theorem 11 (Imported Theorem [LT17]). Assuming there exists pseudorandom generators with

• block locality three and stretch n1+ε′ for some ε′ > 0.

• distinguishing gap bounded by adv for adversaries of size 2λ

there exist a adv-secure degree three randomizing polynomials scheme with 1
1+ε′−sublinear efficiency.

We now describe the ingredients of the construction:

53

Ingredients.

• A degree 3 randomizing polynomials scheme RP for Cn,s with ε = 1
1+ε′ sublinear complexity.

Here ε′ > 0 is some constant. For any circuit C ∈ Cn,s, let N denote the number such that
CktEncd(1λ, C) = (p1, ..., pN). N is upper bounded by spoly(λ) for some polynomial poly.
Also, each polynomial pi is such that the sum of the absolute values of the coefficients are
bounded by a fixed polynomial w(λ). Let RP satisfy advRP−security.

• A Semi-functional FE scheme for cubic polynomials to be sFE3 = (Setup,KeyGen,Enc,Dec)
associated with semi-functional algorithms (sFE3.sfEnc, sFE3.sfKG). We require sFE3 to satisfy
Sη−Bounded semi-functional security. Sη is the set FN , where the set F denotes the set of all
homogeneous cubic polynomials with sum of absolute values of coefficients weight bounded by
w(λ). Note that the polynomials generated by RP are in class F . In Section 10, we construct
such a notion with distinguishing gap bounded by 1 − 2/λ, but for a general exposition we
assume that it is bounded by some advantage advsFE3 .

We denote the scheme we construct to be sFE.

Setup(1λ, 1n): On input security parameter λ, input length n, it executes the setup of the under-

lying semi-functional FE scheme to obtain sFE3.MSK ← sFE.Setup(1λ, 1n
′
). It outputs secret key

MSK = sFE3.MSK. Here n′ is the output length of |InpEncd(·, ·)|. Note that n′ = npoly(λ) for some
fixed polynomial poly.

KeyGen(MSK, C): It takes as input master secret key MSK and circuit C.

• Compute the polynomials associated with the randomizing polynomials scheme; (p1, . . . , pN)←
CktEncd(1λ, C).

• Compute the sFE3 keys associated with the polynomials (p1, . . . , pN); for every i ∈ [N],
compute sFE3.KeyGen(sFE3.MSK; pi) to obtain sFE3.skpi .

Output the functional key skC = (sFE3.skp1 , . . . , sFE3.skpN). Note that N = |C|poly(λ) for some
polynomial poly.

Enc(MSK, x): It takes as input the master secret key MSK and input x, of length n. It sam-
ples a binary string R uniformly at random of length `R. Here, `R is the length of randomness
used in algorithm InpEncd to encode a circuit of size |C| and input length n. It then computes
x ← RP.InpEncd(x,R). It then computes CT ← sFE3.Enc(MSK,x). It outputs the ciphertext
sFE.CT = sFE3.CT.

Dec(skC ,CT): It takes as input functional key skC and ciphertext CT. It executes the following
steps:

• Parse skC as (skp1 , . . . , skpN). Compute sFE3.Dec(skpi ,CT) to obtain ỹi, for ever i ∈ [N].

• Compute RP.Decode(ỹ1, . . . , ỹN) to obtain the output z.

Output z.

54

Correctness. Consider a circuit C ∈ Fλ and input x. Let the functional key, skC = (skp1 , . . . , skpN)
and ciphertext, CT = sFE3.Enc(MSK,x), where x← RP.InpEncd(x,R), be as generated in the above
scheme. From the correctness of sFE3, we have that sFE3.Dec(skpi ,CT) yields pi(x) for every i ∈ [N].
Moreover, from the correctness of randomizing polynomials, we have that the output of RP.Decode
on input (p1(x), . . . , pN (x)) is C(x).

Encryption Complexity. From the multiplicative overhead property in encryption complexity
of sFE3, we have:

|Enc(MSK, x)| = |x| · poly1(λ)

= n′ · poly1(λ)

= npoly2(λ) · poly(λ)

≤ |C|ε · poly(|x|, λ) (∵ ε-sublinear randomness complexity of RP)

Thus, the encryption complexity is ε-sublinear in |C|, as intended.

11.2 Security

We show that sFE satisfies semi-functional security. Before we show that, we need to demonstrate
the semi-functional algorithms.

sFE.sfEnc(MSK, 1|x|): On input master secret key MSK, length of input 1|x|, we compute sFE3.FkCT←
sFE3.sfEnc(MSK, 1|x|). Output the semi-functional ciphertext, FkCT = sFE3.FkCT.

sFE.sfKG(MSK, C,Θ): On input master secret key MSK, circuit C, value θ, compute Sim(1λ, C,Θ)
to obtain (θ1, . . . , θN). It then computes sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N],
where (p1, . . . , pN)← CktEncd(1λ, C). Output skC = (sFE3.sk1, . . . , sFE3.skN).

Theorem 12. Assuming the Sηbounded indistinguishability of semi-functional keys property of
sFE3, the scheme sFE satisfies indistinguishability of semi-functional keys property.

Proof. (Sketch.) There are just two hybrids in the proof. First hybrid corresponds to the case
when key and the ciphertexts are functionally generated. Second hybrid corresponds to the case
when ciphertexts are functionally encrypted while the key is semi-functionally generated. Since
sFE3 scheme satisfies indistinguishability of semi-functional keys property, the claim follows.

Theorem 13. Assuming advRP + advsFE3 < 1 − 2/λ, the Sηbounded semi-functional security of
sFE3 and advRP−security of RP, the scheme sFE satisfies indistinguishability of semi-functional
ciphertext property.

Proof. (Sketch.) We now list hybrids. First hybrid corresponds to the case when the ciphertext is
functionally encrypted and the keys are semi-functional, whereas, in the last hybrid the ciphertext
is semi-functionally encrypted and the keys are semi-functionally encrypted.

Hybrid0 :

1. Adversary A on input 1λ, outputs challenge message x∗, message queries {xi}i∈[Γ] and circuit
C.

55

2. The challenger samples MSK← sFE.Setup(1λ).

3. Encrypt message queries honestly CT← sFE.Enc(MSK, xi) for i ∈ [Γ].

4. To encrypt the challenge message do the following:

• Sample a binary string R uniformly at random of length `R. Here, `R is the length of
randomness used in algorithm InpEncd to encode a circuit of size |C| and input length
n.

• Compute x← RP.InpEncd(x∗, R).

• Compute CT∗ ← sFE3.Enc(MSK,x)

• Set θ = C(x∗)

5. To generate the function key, do the following.

• On input master secret key MSK, circuit C, value θ, compute Sim(1λ, C,Θ) to obtain
(θ1, . . . , θN). It then computes sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N],
where (p1, . . . , pN)← CktEncd(1λ, C). Output skC = (sFE3.fk.sk1, . . . , sFE3.fk.skN).

6. . Give the following to the adversary:

• Challenge ciphertext CT∗.

• Ciphertext queries {CTi}i∈Γ

• Function key skC .

7. A guesses bit b′.

Hybrid1 : This hybrid is the same as the previous one except that hardwirings in the semi-
functional keys are done differently. We describe the hybrid now. The change is described with
boldfaced word [Change].

1. Adversary A on input 1λ, outputs challenge message x∗, message queries {xi}i∈[Γ] and circuit
C.

2. The challenger samples MSK← sFE.Setup(1λ).

3. Encrypt message queries honestly CT← sFE.Enc(MSK, xi) for i ∈ [Γ].

4. To encrypt the challenge message do the following:

• Sample a binary string R uniformly at random of length `R. Here, `R is the length of
randomness used in algorithm InpEncd to encode a circuit of size |C| and input length
n.

• Compute x← RP.InpEncd(x∗, R).

• Compute CT∗ ← sFE3.Enc(MSK,x)

• Set θ = C(x∗)

5. [Change] To generate the function key, do the following.

56

• On input master secret key MSK, circuit C, do the following.

• Let (p1, . . . , pN)← CktEncd(1λ, C).

• Set (θ1, . . . , θN) = (p1(x), . . . , pN (x))

• compute sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N]. Set skC = (sFE3.fk.sk1, . . . , sFE3.fk.skN).

6. . Give the following to the adversary:

• Challenge ciphertext CT∗.

• Ciphertext queries {CTi}i∈Γ

• Function key skC .

7. A guesses bit b′.

Lemma 8. If sFE3 satisfies Sη indistinguishability of semi-functional key property then there exits a
constant c0 for any adversary D of size 2λ

c0 , |Pr[D(Hybrid0) = 1]−Pr[D(Hybrid1) = 1]| < 2−λ
c0 .

Proof. (Sketch). The only difference between the two hybrids is the way hardwirings θi for the keys
fk.ski for i ∈ [N] are generated. In Hybrid0, they are generated using RP.Sim, while in Hybrid1,
they are generated as pi(x) Note that in both hybrids CT∗ is functionally generated. The claim
then follows from the security of sFE3 scheme.

Hybrid2 : This hybrid is the same as the previous one except that ciphertext is generated using
sFE3.sfEnc algorithm. We describe the hybrid now.

1. Adversary A on input 1λ, outputs challenge message x∗, message queries {xi}i∈[Γ] and circuit
C.

2. The challenger samples MSK← sFE.Setup(1λ).

3. Encrypt message queries honestly CT← sFE.Enc(MSK, xi) for i ∈ [Γ].

4. To encrypt the challenge message do the following:

• Sample a binary string R uniformly at random of length `R. Here, `R is the length of
randomness used in algorithm InpEncd to encode a circuit of size |C| and input length
n.

• Compute x← RP.InpEncd(x∗, R).

• [Change] Compute CT∗ ← sFE3.Enc(MSK, 1λ)

• Set θ = C(x∗)

5. To generate the function key, do the following.

• On input master secret key MSK, circuit C, do the following.

• Let (p1, . . . , pN)← CktEncd(1λ, C).

• Set (θ1, . . . , θN) = (p1(x), . . . , pN (x))

• compute sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N]. Set skC = (sFE3.fk.sk1, . . . , sFE3.fk.skN).

57

6. . Give the following to the adversary:

• Challenge ciphertext CT∗.

• Ciphertext queries {CTi}i∈Γ

• Function key skC .

7. A guesses bit b′.

Lemma 9. If sFE3 satisfies Sη−bounded indistinguishability of semi-functional ciphertexts then
there exists a constant c1 for any adversary D of size 2λ

c1 , |Pr[D(Hybrid1) = 1]−Pr[D(Hybrid2) =
1]| < advsFE3 + negl(λ).

Proof. (Sketch). The only difference between the two hybrids is the way CT∗ is generated. In
Hybrid1, they are generated using sFE3.Enc algorithm, while in Hybrid2, they are generated
using sFE3.sfEnc algorithm. Note that the keys are semi-functionally generated with θi = pi(x), as
required by indistinguishability of semi-functional ciphertexts property game of sFE3. The claim
then follows from the security of sFE3 scheme.

Hybrid3 : This hybrid is the same as the previous one except that the function key is generated
using sFE3.sfKG algorithm. We describe the hybrid now.

1. Adversary A on input 1λ, outputs challenge message x∗, message queries {xi}i∈[Γ] and circuit
C.

2. The challenger samples MSK← sFE.Setup(1λ).

3. Encrypt message queries honestly CT← sFE.Enc(MSK, xi) for i ∈ [Γ].

4. To encrypt the challenge message do the following:

• Sample a binary string R uniformly at random of length `R. Here, `R is the length of
randomness used in algorithm InpEncd to encode a circuit of size |C| and input length
n.

• Compute x← RP.InpEncd(x∗, R).

• Compute CT∗ ← sFE3.Enc(MSK, 1λ)

• Set θ = C(x∗)

5. [Change] To generate the function key, do the following.

• On input master secret key MSK, circuit C, value θ, compute Sim(1λ, C,Θ) to obtain
(θ1, . . . , θN). It then computes sFE3.fk.ski ← sFE3.sfKG(MSK, pi, θi) for every i ∈ [N],
where (p1, . . . , pN)← CktEncd(1λ, C). Output skC = (sFE3.fk.sk1, . . . , sFE3.fk.skN).

6. . Give the following to the adversary:

• Challenge ciphertext CT∗.

• Ciphertext queries {CTi}i∈Γ

58

• Function key skC .

7. A guesses bit b′.

Lemma 10. If RP is advRP−secure then for any adversary D of size 2λ, |Pr[D(Hybrid2) =
1]− Pr[D(Hybrid3) = 1]| < advRP.

Proof. (Sketch). The only difference between the two hybrids is the way hardwirings θi are gener-
ated. In Hybrid2, they are generated as pi(x) where x← RP.InpEncd(x∗, R). In Hybrid3 they are
simulated using simulator of the RP scheme. Note that in both the hybrids CT∗ is semi-functionally
encrypted and x∗ is absent. The claim then follows from the security of RP scheme.

From the lemmas above, as long as the sum of advantages advRP + advsFE3 + negl < 1− 2/λ+
negl(λ), the claim goes through.

Remark 7. From the above proof, we observe that as long as advRP + advsFE3 < 1− 2/λ, the proof
goes through. Thus we can allow a trade off in the required level of security between a three block
local PRGs and ∆RG assumption. This is because advRP = advPRG and advRP = adv∆RG upto
negligible factors. Here advPRG and adv∆RG is the allowed distinguishing gap for a three block local
PRG and ∆RG respectively.

12 Step 5: Amplification

In this section, we construct sub-exponentially secure sublinear secret key FE (denoted by FE) for
circuits from three ingredients described below. More formally, let Cn,s be the class of circuits for
which FE has to be constructed. Now we write the ingredients and describe the properties needed.

• Sub-exponentially secure pseudorandom function PRF in NC1

• A compact sub-exponentially secure threshold fully homomorphic encryption scheme TFHE
for Cn,s. The definition can be found in Section 3.3. We note that for any circuit C ∈ Cn,s, the
circuit PartDec(·,Eval(C, ·);PRF (·, ·)) is in Cn′,s′ for n′ = n · p1(λ) and s′ = s · p2(λ). Here,
p1 and p2 are some fixed polynomials and λ is the security parameter.

• Sub-exponentially hard one-way functions. In particular, a sub-exponentially secure statisti-
cally binding commitment scheme.

• Semi-functionally secure sublinear Semi-Functional FE scheme sFE for circuit class Cn′,s′ .
This is defined in Section 7

We describe the the construction below.

• Setup(1λ) : Set t = λ2. On input the security parameter, it computes sFE.Setup(1λ) → ski
for i ∈ [t]. Output MSK = (sk1, ..., skt)

• Enc(MSK,m) :

1. Parse MSK = (sk1, ..., skt).

59

2. Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

3. Compute fct← TFHE.Enc(fpk,m).

4. Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

5. Compute CTi ← sFE.Enc(ski, fct, fski,Ki).

6. Compute Z = Com(K1,,Kt, fsk1, ..., fskt).

7. Output {CTi}i∈[t].

• KeyGen(MSK,C) :

1. Parse MSK = (sk1, ..., skt).

2. Let F be the following circuit described in Figure 2. Compute skC,i ← sFE.KeyGen(ski, F)
for i ∈ [t].

3. Output skC = (skC,1, ..., skC,t).

• Dec(skC,CT) :

1. Parse skC = (skC,1, ..., skC,t) and CT = (CT1, ...,CTt).

2. Parse CT = Z,CT1, ...,CTt.

3. Compute pi ← sFE.Dec(skC,i,CTi) for i ∈ [t].

4. Output TFHE.FinDec(p1, ..., pt)

F

Input: TFHE ciphertext fct, Partial Decryption Key fski and a PRF key Ki

• Compute fctC ← TFHE.Eval(C, fct).

• Compute r ← PRF(K, fctC).

• Output PartDec(fski, fctC ; r)

Figure 2: Description of the Circuit F .

Thus, we have the following :

Theorem 14. Assuming

• Subexponentially secure LWE,

• Semi-functionally sublinear secure semi-functional FE for Cn,s (security definition described
in Section 7)

there exists subexponentially secure sublinear secret key FE for Cn,s for any polynomial n(λ), s(λ)
for λ ∈ N.

Now we argue some properties about the scheme:

60

Correctness: Correctness of this scheme follows from the correctness of underlying sFE scheme
and TFHE scheme.

Sublinearity We now bound the size the size of ciphertext. Let Cn,s be the class of the circuits
for which the scheme is constructed. For any message {0, 1}n, observe that:
|CT| = |Z| + Σi∈[t]CTi where Z is the commitment and {CTi}i∈[t] are ciphertext components

generating using sFE.Enc algorithm.
Thus, |CT| ≤ |Z|+ t|CT1|. Now observe the following:

• |Z| = poly(λ) as it is a commitment of PRF keys (K1, ...,Kt) and partial decryption keys
fsk1, ..., fskt all of polynomial size in λ.

• Each CTi is an encryption of (fct, fski,Ki) where fct is a TFHE encryption of m. It is expected
to be decrypted for a circuit F (Figure 2), which is in class Cn′,s′ where n′ = np1(λ) and
s′ = sp2(λ) for some polynomials p1 and p2. Thus, by sublinearity of sFE, we have |cti| ≤
(s′)εpoly(λ, n′) for some polynomial poly and constant ε < 1. Thus, |cti| ≤ (s)εpoly′(λ, n) for
some fixed polynomial poly′.

Hence, |ct| ≤ (s)εpoly′′(λ, n) from the above two claims.

12.1 Security Proof

Theorem 15. Assuming

• Subexponentially secure LWE,

• Semi-functionally sublinear secure semi-functional FE for Cn,s (security definition described
in Section 7)

there exists subexponentially secure sublinear secret key FE for Cn,s for any polynomial n(λ), s(λ)
for λ ∈ N.

Proof. We now present hybrids and argue indistinguishability between them. First hybrid encrypts
m∗b where as the last one is independent of b.

61

Hybrid0 : In this hybrid, we have the following:

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

4. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

5. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

6. Then run the setup of the FE as follows: it computes sFE.Setup(1λ)→ ski for i ∈ [t] and sets
MSK = (sk1, ..., skt).

7. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.KeyGen(ski, F) for the circuit F described
in the key generation algorithm.

8. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i) for i ∈ [t].

9. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, CT∗i ← sFE.Enc(ski, x

∗
i) for i ∈ [t].

10. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

11. Adversary guesses b′ ∈ {0, 1}

62

Hybrid1 : This hybrid is the same as the previous one except that the function key are gener-
ated using semi-functional key generation algorithm. More precisely, In this hybrid, we have the
following. We describe the change from the previous hybrid using bold faced word change.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

4. [Change] Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

5. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

6. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

7. Then run the setup of the FE as follows: it computes sFE.Setup(1λ)→ ski for i ∈ [t] and sets
MSK = (sk1, ..., skt).

8. [Change] Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi) for the circuit
F described in the key generation algorithm.

9. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i) for i ∈ [t].

10. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, CT∗i ← sFE.Enc(ski, x

∗
i) for i ∈ [t].

11. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

12. Adversary guesses b′ ∈ {0, 1}

Lemma 11. If sFE scheme satisfies indistinguishability of semi-functional key property then for
any adversary A of size 2λ

c0 , |Pr[A(Hybrid0) = 1] − Pr[A(Hybrid1) = 1]| < 2−λ
c0 for some

constant c0 > 0.

Proof. (Sketch) In both the above hybrids, the ciphertexts are generated using honest encryption
algorithm. The only way the hybrids differ is the way functional keys are generated. In Hybrid0

they are functional while in Hybrid1 they are semi-functional We can invoke a series of t hybrids,
where one by one in each system the key is generated semi-functionally instead of functionally. The
claim thus follows from indistinguishability of the semi-functional keys property of sFE scheme.

63

Before, we describe the hybrid, we recall the following theorem about the scheme sFE proved
in Section 7:

Theorem 16. Fix 1λ, 1n,Γ, {Mi},M∗, C as above. Define two functions Eb for b ∈ {0, 1}, that
takes as input {0, 1}`b. Here `b is the length of randomness required to compute the following. The
functions do the following.

Consider the following process:

1. Compute MSK← sFE.Setup(1λ).

2. Compute CTi ← sFE.Enc(MSK,Mi) for i ∈ [Γ].

3. Set θ = C(M∗). Compute skC ← sFE.sfKG(MSK, C, θ).

4. If b = 0, compute CT∗ = sFE.Enc(MSK,M∗) and if b = 1, compute CT∗ = sFE.sfEnc(MSK, 1λ).

5. For b ∈ {0, 1}, Eb on input r ∈ {0, 1}`b outputs {CTi}i∈Γ, skC ,CT
∗.

If sFE satisfies indistinguishability of semi-functional ciphertexts property, then, there exists a con-
stant c > 0 such that there exists two computable (not necessarily efficient) measures M0 and M1

(Mb defined over {0, 1}`b for b ∈ {0, 1}) of density exactly 1/λ such that, for all circuits A of size
2λ

c
,

| Pr
u←DM0

[A(E0(u)) = 1]− Pr
v←DM1

[A(E(v)) = 1]| < 2−λ
c

Here both measures may depend on ({Mi}i∈Γ, C,M
∗)

Hybrid2 : This hybrid is inefficient. Let M0,i denote the (scaled) measure of density 1/λ
corresponding to encryption algorithm as described by the theorem above and let M1,i denote
corresponding measure for semi-functional encryption algorithm. For any measure M, let M
denote the measure 1−M. Now we describe the hybrid in more detail.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. [Change] Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability
1/λ and yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

64

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. If yi = 1 sample Ri ← DM0,i , otherwise, sample Ri ←
DM0,i

. We note here M0,i and M1,i may depend on (C, x∗i , {x
j
i}j∈[Γ])

9. [Change] Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for
i ∈ [t] and sets MSK = (sk1, ..., skt).

10. [Change] Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the
circuit F described in the key generation algorithm.

11. [Change] For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i)

for i ∈ [t].

12. [Change] Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i) for i ∈ [t].

13. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

14. Adversary guesses b′ ∈ {0, 1}

Lemma 12. For any adversary A, |Pr[A(Hybrid1) = 1]− Pr[A(Hybrid2) = 1]| = 0. xw

Proof. (Sketch) These hybrids are identical. Note that measure generated byM0,i for every i ∈ [t],
have density exactly 1/λ. With probability 1/λ, uniform randomness to generate encryption can
be thought of as if it was sampled from M0,i and with 1− 1/λ from its complement.

65

Hybrid3 : This hybrid is the same as the previous the hybrid except that challenger aborts if
y = 0t.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. [Change] Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability
1/λ and yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort
if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)
as follows. If yi = 1 sample Ri ← DM0,i , otherwise, sample Ri ← DM0,i

. We note here M0,i

and M1,i may depend on (C, x∗i , {x
j
i}j∈[Γ])

9. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

10. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

11. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

12. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i) for i ∈ [t].

13. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

14. Adversary guesses b′ ∈ {0, 1}

Lemma 13. For any adversary A, |Pr[A(Hybrid2) = 1]−Pr[A(Hybrid3) = 1]| < 2−λ
c2 for some

constant c2.

Proof. (Sketch) The probability that the string y = 0t is exactly (1 − 1/λ)t. Substituting t = λ2,
the claim follows.

66

Hybrid4 : In this hybrid we use the security of sFE and switch to encrypting challenge cipher-
texts semi-functionally whenever yi = 1. This hybrid is now described as follows:

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/λ and
yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. If yi = 1 sample Ri ← DM1,i , otherwise, sample Ri ←
DM0,i

. We note here M0,i and M1,i may depend on (C, x∗i , {x
j
i}j∈[Γ])

9. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

10. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

11. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

12. [Change] Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ←

sFE.Enc(ski, x
∗
i ; r4,i) otherwise CT∗i ← sFE.sfEnc(ski, 1

λ, 1λ; r4,i).

13. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

14. Adversary guesses b′ ∈ {0, 1}

Lemma 14. If sFE satisfies indistinguishability of semi-functional ciphertexts property, then for
any adversary A of size 2λ

c3 , |Pr[A(Hybrid3) = 1] − Pr[A(Hybrid4) = 1]| < 2−λ
c3 for some

constant c3 > 0.

67

Proof. (Sketch) This proof goes by fixing the “best possible” string y ∈ {0, 1}t which is sam-
pled according to the distribution specified in the hybrids. The claim is that if |Pr[A(Hybrid3) =
1]−Pr[A(Hybrid4) = 1]| > ε, then there must exists (a non zero) y such that |Pr[A(Hybrid3,y) =
1]−Pr[A(Hybrid4,y) = 1]| > ε. Where Hybrid3,y or Hybrid4,y represents the corresponding hy-
brid where string y is fixed.

This is because Σy∈{0,1}t Pr[y]|Pr[A(Hybrid3,y) = 1]−Pr[A(Hybrid4,y) = 1]| > |Pr[A(Hybrid3) =
1] − Pr[A(Hybrid4) = 1]| > ε. Since for every string y, 0 < Pr[y] < 1 (refer previous hybrid for
the calculation), Σy Pr[y] = 1, and |Pr[A(Hybrid3,0t) = 1] − Pr[A(Hybrid4,0t) = 1]| = 0 (as the
experiment is aborted) the claim follows by pigeon hole principle.

Fix any such y. We can construct w indistinguishable hybrids, where w is the weight of the string
y. For each such index i, with yi = 1, we define an intermediate Hybrid3,y,i, where the encryptions
for index j 6= i are generated as in the previous hybrid but encryption of j = i is generated
differently as follows. Instead of being computed using sFE.Enc algorithm using randomness from
M0,i, it is encrypted using sFE.sfEnc algorithm using the randomness generated from M1,i. Note
that for last such index i, such that yi = 1, Hybrid3,y,i is the same as Hybrid4,y.

Once this fixing is done, each intermediate hybrid is indistinguishable due to the security of
sFE. Note that to reduce to the security of sFE, reduction has to non-uniformly fix the randomness
generated for other indices j 6= i. Informally, we use this to advice to generate encryptions for
indices j 6= i in [t]. For index i, we get ciphertexts and the keys from the challenger. They are
either functionally encrypted using the randomness sampled fromM0,i or they are semi-functionally
encrypted using the randomness sampled from M1,i. Since the encryptions for indices j 6= i
are generated using non-uniformly fixed randomness and encryption for index i comes from the
challenger, the rest of the hybrid can be generated in polynomial time. Now the reduction can use
the adversary’s response to break the security of sFE.

68

We now restate theorem 4. We will use this theorem in this hybrid.

Theorem 17 (Imported Theorem [Hol06].). LetM be any measure on {0, 1}n of density µ(M) ≥
1 − ρ(n) Let γ(n) ∈ (0, 1/2) be any function. Then, for a random set Set chosen according to the
measure M the following two holds with probability at least 1− 2(2−2nγ2(1−ρ)4/64):

• (1− γ(1−ρ)
4)(1− ρ)2n ≤ |Set| ≤ (1 + γ(1−ρ)

4)(1− ρ)2n

• For such a random set Set, for any distinguisher A with size |A| ≤ 2n(γ
2(1−ρ)4

64n) satisfying

| Pr
x←Set

[A(x) = 1]− Pr
x←DM

[A(x) = 1]| ≤ γ

Hybrid5 : This hybrid is the same as the previous hybrid except that for every i ∈ [t], instead
of sampling from a measureMi (eitherM1,i orM0,i), we sample a set Seti from the corresponding
measure, and then sample uniformly from Seti. These sets are constructed according to theorem
4. Lets analyse it case by case. For the analysis, set the bound on distinguishing advantage γ to
be 2−λ.

• If yi = 0, measureMi =M0,i has density exactly 1− 1/λ. From Theorem 4 with probability

at least 1− 2(2−2`b−2λ/64λ4), density of Seti is atleast 1/2λ and the distinguishing advantage
is bounded by 2−λ for adversaries of size 2`b−2λ/(`bpoly(λ)).

• If yi = 1, measureMi =M1,i has density exactly 1/λ. From Theorem 4 we observe following.

With probability at least, 1 − 2(2−2`b−2λ(1−1/λ)4/64), density of Seti is atleast 1/2λ and the
distinguishing advantage is bounded by 2−λ for adversaries of size 2`b−2λ/(`bpoly(λ)).

Now we describe the hybrid in detail.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/λ and
yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

69

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)← Seti as follows. If yi = 1 set Seti is constructed using theorem 4

from measure M1,i. Otherwise, set Seti is constructed using theorem 4 from measure M0,i.

We note here Seti may depend on (C, x∗i , {x
j
i}j∈[Γ]).

9. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

10. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

11. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

12. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

13. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

14. Adversary guesses b′ ∈ {0, 1}

Lemma 15. Due to theorem 4, there exists a constant c4 > 0 such that with probability at least
(over construction of Seti) 1 − 2−λ

c4 , for any adversary A of size 2λ
c4 , |Pr[A(Hybrid4) = 1] −

Pr[A(Hybrid5) = 1]| < 2−λ
c4 for some constant c4 > 0.

Proof. (Sketch) This proof goes by fixing the “best possible” string y ∈ {0, 1}t which is sampled
according to the distribution specified in the hybrids. This can be proven by a series of t inter-
mediate hybrids. We can define t intermediate hybrids, Hybrid4,i for i ∈ [t]. Here Hybrid4,i is
similar to its previous hybrid except that for system i, randomness is sampled from Seti instead
of Mi. Note that Hybrid4,t is the same as Hybrid5. Note that if there exists an adversary A
(of size loosely bounded by 2λ

c
4 , refer description of the hybrid above for details) that distinguish

Hybrid4,i from Hybrid4,i+1 with advantage 2−λ , we can build a reduction that refutes theorem
4. In doing so, reduction fixes non-uniformly the randomness for other systems j ∈ [t] with j 6= i.
In particular, reduction generates keys and ciphertext for all indices j 6= i, as in the previous hybrid
using the non-uniformly fixed randomness. For index i, the keys and ciphertext are generated using
the randomness given by the challenger. It is either generated using measure Mi or from the set
Seti. Due to theorem 4, the security holds.

70

Hybrid6 : This hybrid is the same as the previous hybrid except that for every i ∈ [t], the
following happens. For every i ∈ [t], construct a new set SetRi as a set of λ2 random samples from
{0, 1}`i (here, let {0, 1}`i denote the domain of measureMi). For every i ∈ [t], instead of computing
the challenge encryption using randomness sampled from Seti, compute it from randomness sampled
uniformly from Seti ∩ SetRi. Abort if the intersection is empty. In this hybrid, let Machi denote
the (unbounded probabilistic) machine that takes as input SetRi along with (C, x∗i , {x

j
i}j∈[Γ]) to

compute an index ji ∈ [λ2] of the randomness sampled from SetRi.
We describe now the randomized algorithm Machi.

1. On input (SetRi, C, x
∗
i , {x

j
i}j∈[Γ]), sample the set Seti as in the previous hybrid.

2. If yi = 0, it is sampled from Mi = M0,i, otherwise from Mi =M1,i.

3. Randomly sample from Seti ∩ SetRi and output the index of the element in ji. Output ⊥ if
the intersection is empty.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/λ and
yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. For i ∈ [t], sample SetRi as a set of λ2 uniformly chosen inputs from support ofMi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. Run Machi(SetRi, C, x

∗
i , {x

j
i}j∈[Γ]) → ji. Set Ri as the

randomness with index ji in the set SetRi.

10. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

71

11. Generate skC = (sk1C, 1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

12. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

13. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

14. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

15. Adversary guesses b′ ∈ {0, 1}

Lemma 16. For any adversary A, |Pr[A(Hybrid5) = 1]−Pr[A(Hybrid6) = 1]| < 2−λ
c5 for some

constant c5 > 0. This indistinguishability is statistical.

Proof. (Sketch) These two hybrids are statistically close via construction of Machi. This can be
proven by a series of t intermediate statistically close hybrids. Define Hybrid5,i for i ∈ [t], where
randomness to encrypt challenge ciphertext is sampled as in previous hybrid for all indices j 6= i.
For index i, it is generated using intersection of Seti ∩ SetRi. Note that Hybrid5,t is the same
as Hybrid6. Let us calculate the statistical distance between the two hybrids. The statistical
distance is bounded by the sum of probability that Seti has a density less than 1/λ and the sum of
the probability that intersection of SetRi and Seti is empty. This is because once SetRi is chosen
and has a large enough size, sampling SetRi randomly and sampling from the intersection ensures
that the probability of choosing any element from Seti is identical by symmetry.

The probability that Seti has a density smaller than 1/λ is bounded by 2−λ
c

for some constant c
(due to theorem 4). Let us bound the probability that intersection of Seti and SetRi is empty. This
probability is bounded by (1− |Seti|2−`i)λ

2
. This is less than, (1− 2/λ)λ

2 ≤ e−λ/2 with probability
at least 1− 2−λ

c
over the construction of Seti (described by Hybrid5 according to theorem 4).

72

Hybrid7 : Let Yβ denote the set of indices i where yi = β for β ∈ {0, 1}. This hybrid is the
same as the previous hybrid except that the representation changes. Let Mach′ be an (unbounded)
machine that computes the result of Mach1, ...,Macht. Precisely, Mach′ takes as input y, SetRi for
i ∈ [t], circuit C, {xji}j∈[Γ],i∈[t], Z

∗, {x∗i }i∈Y0 and hardwired partial decryption values {θi}i∈Y1 . Note
that Mach′ does not take as input x∗i for i ∈ Y1 and in order to compute the result, it may have to
break commitment Z∗ to construct x∗i for i ∈ Y1.

Denote byX the distribution (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ).

Thus, Mach′(X)→ (j1, ..., jt) where ji is an index in [λ2]. Here is the pseudocode of Mach′.

1. On input X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ),take fol-

lowing steps.

2. Break Z∗ to compute (K1, ...,Kt, fsk1, ..., fskt).

3. For i ∈ Y1, compute x∗i = (fct, fski,Ki).

4. Output
(
Machi(C, x

∗, {xji}j∈Γ)
)
i∈λ2

We describe the hybrid in detail now:

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/λ and
yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. For i ∈ [t], sample SetRi as a set of λ2 uniformly chosen inputs from support ofMi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. [Change] Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

10. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. Run Mach′(X) → (j1, ..., jt). Set Ri as the randomness
with index ji in the set SetRi.

73

11. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

16. Adversary guesses b′ ∈ {0, 1}

Lemma 17. Hybrid7 is identical to Hybrid6.

Proof. The only change in the two hybrids is the representation if Com satisfies perfect binding.

74

We first restate theorem 5. We will use the following theorem in this hybrid.

Theorem 18. Let n, ` ∈ N, ε > 0 and Cleak be a family of distinguisher circuits from {0, 1}n ×
{0, 1}` → {0, 1} of size s(n). Then, for every distribution (X,Z) over {0, 1}n×{0, 1}`, there exists
a simulator h : {0, 1}n → {0, 1}` such that:

• h has size bounded by s′ = O(s2`ε−2).

• (X,Z) and (X,h(X)) are indistinguishable by Cleak. That is for every C ∈ Cleak,

| Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]| ≤ ε

Hybrid8 : This hybrid is the same as the previous one except that we now simulate Mach′ using
theorem 5. Note that output length of Mach′ is 2t log λ. Set the size of distinguisher to be 2λ+1 and
advantage bound to be 2−λ. Thus, by the theorem there exits a simulator h of size O(2λ

3+t log λ).
This size is bounded by 2λ

4
. In this hybrid use h to generate randomness for encryption. Observe

that the hybrid can be implemented by circuits of size 2λ
4
.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/λ and
yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

7. Compute Z∗ = Com(K1, ...,Kt, fsk1, ..., fskt). For other ciphertext queries j ∈ [Γ], compute
Zj similarly (using respective PRF and partial decryption keys).

8. For i ∈ [t], sample SetRi as a set of λ2 uniformly chosen inputs from support ofMi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

10. [Change] For every i ∈ [t], to compute the following steps, we generate randomness Ri =
(r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i) as follows. Run h(X)→ (j1, ..., jt). Let Ri be the randomness with
index ji in the set SetRi.

75

11. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

16. Adversary guesses b′ ∈ {0, 1}

Lemma 18. Due to theorem 5 the following holds, for any adversary A of size 2λ, |Pr[A(Hybrid7) =
1]− Pr[A(Hybrid8) = 1]| < 2−λ.

Proof. Here, we give our reduction. We are given (X, aux) whereX = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

as defined in stage 1− 8 of Hybrid7 and Hybrid8. aux is either equal to h(X) or Mach′(X). As-
sume that we have an adversary A (of size 2λ) that distinguishes the hybrids with probability
greater than 2−λ. Then the reduction proceeds as follows:

1. Parse X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , {Zj}j∈Γ)

2. For i ∈ Y0, set θi = F (x∗i).

3. Parse aux = (j1, ..., jt). Set Ri as the randomness with index ji in the set SetRi. Parse
Ri = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i).

4. Then run the setup of the FE as follows: compute sFE.Setup(1λ; r1,i) → ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

5. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

6. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

7. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

8. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

9. Adversary guesses b′ ∈ {0, 1}

10. Output adversary’s guess as its own output.

Note that the reduction emulates the either Hybrid7 (if aux is generated using Mach′) or
Hybrid8 (if aux is generated as h(X)). Hence, the advantage of A is exactly the same as the
advantage of reduction to win in the game of theorem 5. Note that if A has size 2λ, the size of
reduction is 2λ + poly(λ) for some fixed polynomial poly. Claim now follows from the way the
parameters are set in theorem 5.

76

Hybrid9 : This hybrid is the same as the previous one except that Z∗ is now a commitment of 0.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/λ and
yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample t PRF keys Ki ← PRF.Setup(1λ) for i ∈ [t].

• Set x∗i = (fct, fski,Ki).

5. Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ [t].

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as above.

7. [Change] Compute Z∗ = Com(0`) where ` is set as the length of (K1, ...,Kt, fsk1, ..., fskt).
For other ciphertext queries j ∈ [Γ], compute Zj as in the previous hybrid (using respective
PRF and partial decryption keys).

8. For i ∈ [t], sample SetRi as a set of λ2 uniformly chosen inputs from support ofMi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , {Zj}j∈Γ)

10. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)
as follows. Run h(X)→ (j1, ..., jt). Set Ri as the randomness with index ji in the set SetRi.

11. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

16. Adversary guesses b′ ∈ {0, 1}

77

Lemma 19. If Com is secure against adversaries of size 2λ
4
, then there exists constant c8 > 0 such

that for any adversary A of size 2λ
c8 , |Pr[A(Hybrid8) = 1]− Pr[A(Hybrid9) = 1]| < 2−λ

c8 .

Proof. Note that both hybrids Hybrid8 and Hybrid9 can be computed in time roughly the size
of h, and can be bounded by 2λ

4
. The reduction to the commitment scheme works by using the

challenge commitment Z∗ (either a commitment of 0 or respective PRF keys and TFHE partial
decryption keys) to generate a hybrid. In Hybrid8, Z∗ is a commitment of PRF keys and partial
decryption keys. In Hybrid9, it is a commitment of 0. If there is an adversary A, that distinguishes
the hybrids with probability greater than 2−λ

c8 , the reduction uses the challenge commitment to
generate either Hybrid8 or Hybrid9 (depending on Z∗) and runs A on it. Then it just outputs
response of A as its guess. The advantage of A then becomes the advantage of the reduction. Note
that reduction runs in time bounded by 2λ

4
(bound on running time of generating the hybrid and

running time of A). Since, Com is secure against circuits of this size, the claim follows.

78

Hybrid10 : This hybrid is the same as the previous one except that for i ∈ Y1, θi is computed
honestly using the PartDec algorithm using true randomness, instead of using PRF key Ki.

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/λ and
yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• [Change] Sample PRF keys Ki ← PRF.Setup(1λ) for i ∈ Y0.

• [Change] Set x∗i = (fct, fski,Ki) for i ∈ Y0.

5. [Change] Let F be the circuit described in the key generation algorithm. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ Y0, otherwise set θi = PartDec(fski,Eval(C, fct))
using fresh and independent randomness.

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as in previous hybrids.

7. Compute Z∗ = Com(0`) where ` is the length in the previous hybrid. For other ciphertext
queries j ∈ [Γ], compute Zj as in the previous hybrid (using respective independently sampled
PRF and partial decryption keys).

8. For i ∈ [t], sample SetRi as a set of λ2 uniformly chosen inputs from support ofMi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , {Zj}j∈Γ)

10. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)
as follows. Run h(X)→ (j1, ..., jt). Set Ri as the randomness with index ji in the set SetRi.

11. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

79

16. Adversary guesses b′ ∈ {0, 1}

Lemma 20. If PRF is secure against adversaries of size 2λ
4
, then there exists constant c9 > 0 such

that for any adversary A of size 2λ
c9 , |Pr[A(Hybrid9) = 1]− Pr[A(Hybrid10) = 1]| < 2−λ

c9 .

Proof. Note that both hybrids Hybrid9 and Hybrid10 can be computed in time roughly the size
of h, and can be bounded by 2λ

4
. The only difference between the hybrids is the way commitment

θi is generated for i ∈ Y1. This is proven by fixing a best possible y. In Hybrid9 it is generated
using randomness derived from PRF keys. In Hybrid10, they are generated using true randomness.
Note that for i ∈ Y1, the PRF keys are absent. The security then holds due to the security of PRF
against adversaries of size 2λ

4
.

80

Hybrid11 : This hybrid is the same as the previous one except that for first index i0 ∈ Y1 ,
θi0 is simulated using the simulator of the TFHE partial decryption keys {fski}i 6=i0 . That is, set
θi0 = TFHE.Sim({fski}i 6=i0 , fct, C, C(m0)).

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/λ and
yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• Compute fct← TFHE.Enc(fpk,m∗b).

• Sample PRF keys Ki ← PRF.Setup(1λ) for i ∈ Y0.

• Set x∗i = (fct, fski,Ki) for i ∈ Y0.

5. [Change] Let F be the circuit described in the key generation algorithm. Let i0 be the first
index in Y1. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ Y0, otherwise set θi = PartDec(fski,Eval(C, fct))
for i ∈ Y1 \ i0. Set θi0 = TFHE.Sim({fski}i 6=i0 , fct, C, C(m0))

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as in previous hybrids.

7. Compute Z∗ = Com(0`) where ` is the length in the previous hybrid. For other ciphertext
queries j ∈ [Γ], compute Zj as in the previous hybrid (using respective PRF and partial
decryption keys).

8. For i ∈ [t], sample SetRi as a set of λ2 uniformly chosen inputs from support ofMi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , {Zj}j∈Γ)

10. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)
as follows. Run h(X)→ (j1, ..., jt). Set Ri as the randomness with index ji in the set SetRi.

11. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

81

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

16. Adversary guesses b′ ∈ {0, 1}

Lemma 21. If TFHE is statistically simulation secure, then there exists constant c10 > 0 such that
for any adversary A, |Pr[A(Hybrid10) = 1]− Pr[A(Hybrid11) = 1]| < 2−λ

c10 .

Proof. The only difference between the hybrids is the way commitment θi0 is generated for first
i0 ∈ Y1. This is proven by fixing a best possible y. In Hybrid10 it is generated using TFHE.PartDec.
In Hybrid11, it is generated using TFHE.Sim. Note that these two distributions are statistically
close. The security then holds due to the security of TFHE.

82

Hybrid12 : This hybrid is the same as the previous one except that now we generate fct as an
encryption of 0

1. Adversary gets as input the security parameter 1λ and outputs a circuit C ∈ Cn,s. He also
gives out some messages m0, ...,mΓ,m

∗
0,m

∗
1 ∈ {0, 1}n such that C(m∗0) = C(m∗1).

2. Sample a bit b ∈ {0, 1}.

3. Sample a string y ∈ {0, 1}t such that for every i ∈ [t], set yi = 1 with probability 1/λ and
yi = 0 with probability (1− 1/λ). Here, each bit yi is chosen independently. Abort if y = 0t.

4. To encrypt challenge ciphertext, compute x∗ = (x∗1, ..., x
∗
t) as follows.

• Run TFHE.Setup(1λ, 1t)→ (fpk, fsk1, ..., fskt).

• [Change] Compute fct← TFHE.Enc(fpk, 0|m0|).

• Sample PRF keys Ki ← PRF.Setup(1λ) for i ∈ Y0.

• Set x∗i = (fct, fski,Ki) for i ∈ Y0.

5. Let F be the circuit described in the key generation algorithm. Let i0 be the first index in
Y1. Set θi = F (x∗i) =
PartDec(fski,Eval(C, fct);PRF(Ki,Eval(C, fct))) for i ∈ Y0, otherwise set θi = PartDec(fski,Eval(C, fct))
for i ∈ Y1 \ i0. Set θi0 = TFHE.Sim({fski}i 6=i0 , fct, C, C(m0))

6. To compute encryption of mi for i ∈ Γ, also construct xij for j ∈ [t] as in previous hybrids.

7. Compute Z∗ = Com(0`) where ` is the length in the previous hybrid. For other ciphertext
queries j ∈ [Γ], compute Zj as in the previous hybrid (using respective PRF and partial
decryption keys).

8. For i ∈ [t], sample SetRi as a set of λ2 uniformly chosen inputs from support ofMi (which is
equal to M1,i if yi = 1 and M0,i otherwise).

9. Define X = (y, {SetRi}i∈[t], C, {x
j
i}j∈[Γ],i∈[t], {x∗i }i∈Y0 , Z∗, {θi}i∈Y1 , fct, {Zj}j∈Γ)

10. For every i ∈ [t], to compute the following steps, we generate randomnessRi = (r1,i, r2,i, {r3,j,i}j∈[Γ], r4,i)
as follows. Run h(X)→ (j1, ..., jt). Set Ri as the randomness with index ji in the set SetRi.

11. Then run the setup of the FE as follows: it computes sFE.Setup(1λ; r1,i)→ ski for i ∈ [t] and
sets MSK = (sk1, ..., skt).

12. Generate skC = (skC,1, .., skC,t) where skC,i ← sFE.sfKG(ski, F, θi; r2,i) for the circuit F
described in the key generation algorithm.

13. For j ∈ [Γ], compute CTj = (Zj ,CTj1, ..,CT
j
t). Here, CTji ← sFE.Enc(ski, x

j
i ; r3,j,i) for i ∈ [t].

14. Compute CT∗ = (Z∗,CT∗1, ..,CT
∗
t). Here, for every i ∈ [t], if yi = 0, CT∗i ← sFE.Enc(ski, x

∗
i ; r4,i)

otherwise CT∗i ← sFE.sfEnc(ski, 1
λ, 1λ; r4,i).

15. Give the following to adversary (skC , {CTji}j∈[Γ],i∈[t],CT
∗)

83

16. Adversary guesses b′ ∈ {0, 1}

Lemma 22. If TFHE is semantic secure against adversaries size 2λ
4
, then there exists constant

c11 > 0 such that for any adversary A of size 2λ
c11 , |Pr[A(Hybrid11) = 1] − Pr[A(Hybrid12) =

1]| < 2−λ
c11 .

Proof. To prove this, we non-uniformly fix y. Note that both hybrids Hybrid11,y and Hybrid12,y

can be computed in time roughly the size of h, and can be bounded by 2λ
4
. The only difference

between the hybrids is the way encryption fct is generated. In Hybrid11 it is generated as an
encryption of m∗b , while in Hybrid12 it is generated as an encryption of 0. In both hybrids, for first
i0 ∈ Y1, partial decryption key fski0 is missing. The security then holds due to semantic security of
TFHE.

Lemma 23. Hybrid12 is information theoretically independent of b.

Proof. This claim follows by construction.

From these lemmas we prove the theorem.

13 Construction of iO

From Section 12, we have the following result:

Theorem 19. Assuming

• Subexponentially secure LWE.

• Subexponentially secure three restricted FE scheme 2.

• PRGs with

– Stretch of k1+ε (length of input being k bits) for some constant ε > 0.

– Block locality three.

– Security with negl distinguishing gap against adversaries of subexponential size3.

• ∆RG assumption (refer Section 8.1).

there exists subexponentially secure sublinear secret key FE for Cn,s for any polynomial n(λ), s(λ)
for λ ∈ N.

Once, we have subexponentially secure secret key FE for Cn,s, then we invoke the following
theorem from [AS17, LT17]. This theorem is based on the work of [BNPW16], which showed
that sublinear secret key FE implies sublinear public key FE (assuming LWE), and the work of
[AJ15, BV15] which showed that any subexponentially secure sublinear public key FE implies iO.

2See Section 9 for a construction of a three-restricted FE scheme from bilinear maps. The security of this con-
struction is justified in the generic group model.

3As pointed before in Section 11, we allow a trade-off between the required level of security of ∆RG and a three-
block local PRG.

84

Theorem 20 ([LT17, AS17]). Assuming

• Subexponentially secure LWE.

• Subexponentially secure sublinear secret key FE for Cn,s.

there an indistinguishability obfuscation scheme for P/poly.

Thus, we have the following result.

Theorem 21. Assuming

• Subexponentially secure LWE.

• Subexponentially secure three restricted FE scheme 4.

• PRGs with

– Stretch of k1+ε (length of input being k bits) for some constant ε > 0.

– Block locality three.

– Security with negl distinguishing gap against adversaries of sub-exponential size5.

• ∆RG assumption (refer Section 8.1).

there exists a secure iO scheme for P/poly.

Now we provide a more general theorem that allows a trade-off between the required level of
security of ∆RG and a three-block local PRG. This follows from the results in Section 11.

Theorem 22. For two distinguishing gaps adv1, adv2, if adv1 + adv2 ≤ 1− 2/λ then assuming,

• Subexponentially secure LWE.

• Subexponentially secure three restricted FE scheme 6.

• PRGs with

– Stretch of k1+ε (length of input being k bits) for some constant ε > 0.

– Block locality three.

– Security with distinguishing gap bounded by adv1 against adversaries of sub-exponential
size.

• ∆RG assumption with distinguishing gap bounded by adv2 against adversaries of size 2λ(refer
Section 8.1).

there exists a secure iO scheme for P/poly.

As a corollary, we get:

4This can be implemented in the generic bilinear group model as described in Section 9
5As pointed before in Section 11, we allow a trade-off between the required level of security of ∆RG and a three-

block local PRG.
6This can be implemented in the generic bilinear group model as described in Section 9

85

Corollary 1. Assuming,

• Subexponentially secure LWE.

• Subexponentially secure three restricted FE scheme 7.

• PRGs with

– Stretch of k1+ε (length of input being k bits) for some constant ε > 0.

– Block locality three.

– Security with distinguishing gap bounded by 1/λ against adversaries of subexponential
size.

• ∆RG assumption with distinguishing gap bounded by 1 − 3/λ against adversaries of size
2λ(refer Section 8.1).

there exists a secure iO scheme for P/poly.

Acknowledgements

We thank Boaz Barak for insights and extremely helpful suggestions about how attacks based on
the Sum of Squares paradigm could impact our new assumptions on degree-2 perturbation-resilient
generators.

References

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfusca-
tion: Avoiding Barrington’s theorem. In ACM CCS, pages 646–658, 2014.

[Agr17] Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions
and attacks. In CRYPTO, pages 3–35, 2017.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Advances in Cryptology–CRYPTO 2015, pages 308–326.
Springer, 2015.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In CRYPTO, pages 297–314, 2014.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. EUROCRYPT, 2017.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In EUROCRYPT, pages 440–456, 2005.

[BBKK17] Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh Kothari. Limits on low-
degree pseudorandom generators (or: Sum-of-squares meets program obfuscation).
Electronic Colloquium on Computational Complexity (ECCC), 24:60, 2017.

7This can be implemented in the generic bilinear group model as described in Section 9

86

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In CRYPTO, 2001.

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfus-
cation and uces: The case of computationally unpredictable sources. In CRYPTO,
pages 188–205, 2014.

[BGG+] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homomor-
phic encryption. IACR Cryptology ePrint Archive, 2017.

[BGH+15] Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrede Lepoint, Amit Sahai, and Mehdi
Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint
Archive, Report 2015/845, 2015. http://eprint.iacr.org/.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume
2139 of Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In CRYPTO, pages 221–238, 2014.

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In Advances in
Cryptology - EUROCRYPT, pages 764–791, 2016.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania
to obfustopia through secret-key functional encryption. Cryptology ePrint Archive,
Report 2016/558, 2016. http://eprint.iacr.org/2016/558.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding
a nash equilibrium. In FOCS, 2015.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25, 2014.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
324, 11 2002.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In FOCS. IEEE, 2015.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against
zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

[CCL18] Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the complexity of simulating
auxiliary input. IACR Cryptology ePrint Archive, 2018:171, 2018.

87

http://eprint.iacr.org/
http://eprint.iacr.org/2016/558

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New MMAP attacks and their limitations. In CRYPTO, 2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT, 2015.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC, 2016.

[CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the new clt mul-
tilinear maps. Cryptology ePrint Archive, Report 2015/934, 2015. http://eprint.

iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 476–493, 2013.

[CLT15] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New multilinear maps
over the integers. In CRYPTO, 2015.

[DGG+16] Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee. Ob-
fuscation from low noise multilinear maps. IACR Cryptology ePrint Archive, 2016:599,
2016.

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In EUROCRYPT, pages 44–61, 2010.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In EUROCRYPT, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In TCC, pages 498–527, 2015.

88

http://eprint.iacr.org/
http://eprint.iacr.org/

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 74–94, 2014.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In CRYPTO, 2016.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In TCC, pages
194–213, 2007.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
CRYPTO, pages 75–92, 2013.

[Hal15] Shai Halevi. Graded encoding, variations on a scheme. IACR Cryptology ePrint
Archive, 2015:866, 2015.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology ePrint
Archive, 2015:301, 2015.

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and
Mark Zhandry. How to generate and use universal samplers. In ASIACRYPT, pages
715–744, 2016.

[Hol06] Thomas Holenstein. Strengthening key agreement using hard-core sets. PhD thesis,
ETH Zurich, 2006.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In EUROCRYPT, 2014.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS,
pages 538–545, 1995.

[JP14] Dimitar Jetchev and Krzysztof Pietrzak. How to fake auxiliary input. In TCC, pages
566–590, 2014.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In STOC, 2015.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 28–57. Springer, 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5
prgs. In CRYPTO, pages 599–629. Springer, 2017.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from bilinear maps
and block-wise local prgs. Cryptology ePrint Archive, Report 2017/250, 2017. http:

//eprint.iacr.org/2017/250.

89

http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2017/250

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. In FOCS, pages 11–20. IEEE, 2016.

[LV17] Alex Lombardi and Vinod Vaikuntanathan. On the non-existence of blockwise 2-local
prgs with applications to indistinguishability obfuscation. IACR Cryptology ePrint
Archive, 2017:301, 2017.

[MF15] Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilinear map over
the integers. Cryptology ePrint Archive, Report 2015/941, 2015. http://eprint.

iacr.org/.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700–718, 2012.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Advances in Cryp-
tology - CRYPTO, 2016.

[MT10] Ueli M. Maurer and Stefano Tessaro. A hardcore lemma for computational indistin-
guishability: Security amplification for arbitrarily weak prgs with optimal stretch. In
TCC, pages 237–254, 2010.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In EUROCRYPT, pages 735–763, 2016.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, pages 500–517, 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

[RTTV08] Omer Reingold, Luca Trevisan, Madhur Tulsiani, and Salil P. Vadhan. Dense subsets
of pseudorandom sets. In FOCS, pages 76–85, 2008.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484.
ACM, 2014.

90

http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Technical Overview
	Preliminaries
	Indistinguishability Obfuscation (iO)
	Slotted Encodings
	Generic Bilinear Group Model

	Threshold Leveled Fully Homomorphic Encryption
	Useful Lemmas

	Tempered Cubic Encoding
	Tempered Security

	Three-restricted FE
	Semi-functional Security

	(Stateful) Semi-Functional Functional Encryption for Cubic Polynomials
	Semi-functional Security

	Semi-Functional Functional Encryption for Circuits
	Semi-functional Security

	Step 1: Instantiating TCE
	Perturbation-Resilient Generator (RG)
	LWE Preliminaries
	Our TCE construction:

	Step 2: Construction of Three-Restricted FE from Bilinear Maps
	Security

	Step 3: Construction of Semi-Functional FE for Cubic Polynomials
	Construction
	 Security Proof

	Step 4: (Sublinear) Semi-Functional Secret Key FE from Semi-Functional FE for Cubic Polynomials
	Randomizing Polynomials
	Security

	Step 5: Amplification
	Security Proof

	Construction of iO
	References

