
New techniques for multi-value homomorphic
evaluation and applications

Sergiu Carpov, Malika Izabachène, and Victor Mollimard

CEA LIST, Point Courrier 172, 91191 Gif-sur-Yvette Cedex, France

Abstract. In this paper, we propose a new technique to perform sev-
eral homomorphic operations in one bootstrapping call over a multi-value
plaintext space. Our construction relies on the FHEW-based gate boot-
strapping: we analyze its structure and propose a strategy we call multi-
value bootstrapping which allows to bootstrap an arbitrary function in
an efficient way.
The security of our scheme relies on the LWE assumption over the torus.
We give three applications: the first one is the efficient evaluation of an
arbitrary boolean function (LUT), the second one is the optimization of
the circuit bootstrapping from (Asiacrypt’2017) which allows to compose
circuits in a leveled mode, the third one is the homomorphic evaluation of
a neural network where the linear part is evaluated using a generalization
of the key-switching procedure and the non-linear part is evaluated with
our multi-value bootstrapping.
We have implemented the proposed method and were able to evaluate
arbitrary 6-to-6 LUTs under 1.2 seconds. Our implementation is based on
the TFHE library but can be easily integrated into other homomorphic
libraries based on the same structure, such as FHEW (Eurocrypt’2015).
The number of LUT outputs does not influence the execution time by
a lot, e.g. evaluation of additional 128 outputs on the same 6 input bits
takes only 0.05 more seconds.
Keywords: lwe-based FHE, multi-value bootstrapping, homomorphic
LUT

1 Introduction

Fully homomorphic encryption (FHE) allows to perform arbitrary computations
directly over encrypted data. The first FHE scheme has been proposed by Gen-
try [12]. The construction relies on a technique called bootstrapping , which han-
dles noise increase in FHE ciphertexts. This construction theoretically enables
to execute any computation directly over encrypted data but remains slow in
practice. Several works ([11, 4, 15, 20, 17] for example) followed Gentry’s initial
proposal and contributed to further improve FHE efficiency.

Fully homomorphic encryption schemes are divided in two types of construc-
tions. The first one is based on Gentry’s initial proposal, where basically the
bootstrapping procedure consists of the evaluation of the decryption circuit at
gate level. In this case, the operations remain slow but their design allows to
pack data efficiently using batching techniques.

The second one is based on the Gentry, Sahai and Waters Somewhat homo-
morphic scheme [13] proposed in 2013 which supports branching programs with
polynomial noise overhead and deterministic automata logic. Alperin-Sheriff and
Peikert [2] improved the bootstrapping by implementing an efficient homomor-
phic arithmetic function, showing that boolean function and Barighton circuit
can be avoided in bootstrapping. In 2015, Ducas and Micciancio [10] gave a
construction of bootstrapping with NAND gate evaluation, named FHEW, and
suggested extension for larger gates. They provided an implementation for their
scheme taking less than a second per bootstrapping on a single core. Biasse and
Riuz [3] adapted the FHEW construction for arbitrary gates. Recently, Chillotti,
Gama, Georgieva and Izabachène [7, 16] also improved the bootstrapping proce-
dure and provided a construction named TFHE. Their implementation [9] runs
in less than 13ms for any binary gate and 26ms for the MUX gate. They also
proposed new techniques for the TFHE toolbox which allow to pack data and
compose bootstrapped gates in a leveled mode with a new procedure they called
circuit bootstrapping. Recently, Bonnoron, Ducas, and Fillinger [14] introduced a
FHEW-based type scheme which allows to perform more computation per boot-
strapping call. They implemented their method for the evaluation of a 6-to-6 bit
LUT in about 10 seconds.

In this work, we also focus on the second line of FHE schemes based on the
Gentry, Sahai and Waters scheme. In this case, the bootstrapping procedure
is implemented via an homomorphic accumulator which evaluates the linear
part of decryption function followed by the non-linear part. In particular, the
bootstrapping algorithm can change the message. For this line of schemes, the
structure of the bootstrapping can be divided in 3 steps:

1. In the first step, the coefficients (a, b) of an input LWE ciphertext c =
(a, b) are mapped to ZT . A cyclic multiplicative group G, where ZT ' G,
is used for an equivalent representation of ZT elements. G contains all the
powers of X: X0, . . . , XT−1. T is defined as the smallest integer verifying
XT mod Φ(X) = 1 where Φ(X) is the quotient polynomial defining the
input Ring-LWE scheme. Most of the times Φ(X) is the T -th cyclotomic
polynomial.

2. In this step, a message m encrypted in input ciphertext c = (a, b) is trans-
formed to an intermediary GSW SHE scheme as an encryption of Xm.
Message m ∈ ZT is obtained from c = (a, b) using linear transformation
b − a · s ≡ m (i.e. the linear part of the decryption algorithm). Given en-
cryptions of Xsi one can homomorphically apply linear mapping ϕ to c.
We obtain the so-called accumulator ACC which contains an encryption of
Xϕ(c) ∈ G.

3. At the third step, a test polynomial TVF ∈ G is multiplied to ACC. The test
polynomial encodes output values of a function F for each possible input
message m ∈ ZT . Here F is a function from ZT to ZT . It finally extracts
an LWE encryption of F (m) from TVF · ACC (or from ACC · TVF if TVF is
applied after computing the accumulator) with a modified noise. As input
message m is a noised version of the actual message encrypted in c = (a, b)

2

function F is a composition of a ”payload” function f : Zt → Zt and a
rounding function r : ZT → Zt. The rounding function corresponds to the
final non-linear step of ciphertext c decryption.

Figure 1 gives a schematic overview of bootstrapping steps.

Fig. 1. Structure of the bootstrapping Algorithm. Setp (1): The ciphertext of m is
rescaled modulo T and the operations are mapped over the cyclic group G where
G = 〈X〉 is the group of T -th roots of unity associated to the cyclotomic polynomial
ΦT (X) (for example). Step (2): the accumulator ACC is computed using blind shift
operations in G which use encryptions of secret key in the powers of X. Step (3): a test
polynomial is applied to ACC, it can also be applied before blind shift operations, and
an LWE ciphertext of f(m) is extracted from ACC using the encoding of an alternative
representation of f over ZT .

For example, in [14], step (1) corresponds to a modulus switching from
Q to T = pq, step (2) computes the accumulator operation in the groups
G = {1, . . . , Xp− 1} and G = {1, . . . , Y q− 1} for primes p and q and recomposes
the result in the circulant ring Z[Z]/(Zpq − 1); at step (3), a test polynomial
(encoding F (x) = f(btx/pqe) where f is an arbitrary function) is applied to
the accumulator and a LWE ciphertext of f(m) is extracted, where the extrac-
tion is implemented by the trace function. In [9], G is the multiplicative group
{1, X, . . . ,X2N−1} where N is a power of 2. Function f implements a rounding
(i.e. torus most significant bit extraction); step (1) does the rounding from T to
Z2N and the test polynomial is applied before the computation of the accumu-
lator ACC; step (2) computes ACC ∈ G with a blind rotation; step (3) extracts
LWE(f(m)) by extracting the constant coefficient of TVF · ACC.

Our technique and comparisons to other works. In previous constructions, ex-
cept [9], test polynomial TVF is integrated at the end, after the accumulator is
computed, we have ACC · TVF 1. In the TFHE gate bootstrapping of [9], the
test polynomial TVF is embedded in the accumulator from the very start when
the accumulator is still noiseless and, at step 2 the accumulator is TVF · ACC.

1 In this paragraph only the evaluation order of an expression matters and is used for
a better illustration.

3

This allows to save a factor
√
N , where N is the dimension. On the other end,

they are only able to encode two possible values in TFHE Gate bootstrapping.
A naive idea for computing multi-value input function f would be to decompose
f into p Mux gate functions and then combine the results of the p gate bootstrap-
ping calls, but this method is quite inefficient. To optimize this construction, we

define a common factor TV
(0)
F which is shared between all the p calls. The most

expensive part is made once for the p calls. Then the specification with respect

to the 2-value functions is made at the end using a second test polynomial TV
(1)
F .

This last step consists only of a multiplication by constant polynomial, which is
much cheaper than p blind rotations.

The method we propose allows to evaluate multi-value functions efficiently.
In the same vein, we can also evaluate several multi-value functions over the
same input. Also, our scheme allows to decrease the output ciphertext noise by
choosing a low-norm second-stage test polynomials when compared to previous
methods integrating the test polynomial at the end.

Multi-value, multi-bit function. The multi-bit construction of [3] can be used to
evaluate a function on 2n values by replacing the encrypted output messages by
the value of the function at this point. It can be seen as dividing the torus in 2n

sections and associating one value of the function to each section. In this work,
we construct a multi-value bootstrapping which is used to evaluate a function on
n′ values. It decomposes the torus in at least n′ sections and associates n′ values
of the function to the n′ sections. This is why we call it multi-value instead of
multi-bit.

Application and Implementation results. We show that the multi-value boot-
strapping can be used to optimize the homomorphic evaluation of LUT functions.
As additional applications, we also show how to efficiently compose LUTs, how
to optimize the circuit bootstrapping of [16] and how to combine the multi-value
bootstrapping with functional key-switch for generic neural networks evaluation.
We implemented a 6-to-6 LUT bootstrapping in order to have a comparative case
study with [14] and obtained an implementation running in less than 2 seconds
for a concrete security of about 100 bits (asserted using the estimator from [18]).

Organization of the paper. We first review the mathematical backgrounds for
LWE and GSW encryption over the torus and give the building blocks from
the TFHE framework [9] used in our constructions. In section 3, we present the
optimized multi-value bootstrapping together with test polynomial factorization.
In section 4, we present applications to the homomorphic evaluation of arbitrary
functions. We then describe our implementation results for the case of a 6-to-
6 LUT function. Finally, we show how it could be used to optimize the circuit
bootstrapping from [16] and to evaluate a computational neural network system.

4

2 Preliminaries

The set {0, 1} is written as B. The set of vectors of size n in E is denoted En, and
the set of n×m matrices with entries in E is notedMn,m(E). The real torus R
mod 1 is denoted T. TN [X] denotes the Z-module R[X]/(XN + 1) mod 1 of
torus polynomials, here N is a fixed power of 2 integer. The ring Z[X]/(XN +1)
is denoted R. The set of polynomials with binary coefficients is denoted BN [X]

2.1 Backgrounds on TFHE

In this work, we will use the torus representation from [7] of the LWE encryption
scheme introduced by Regev [19] and the ring variant of Lyubashevsky et al [21].

Distance, Norm and Concentrated distribution We use the `p distance for torus
elements. By abuse of notation, we denote as ‖x‖p the p-norm of the repre-

sentative of x ∈ Tk with all its coefficients in
]
− 1

2 ,
1
2

]
. Note that it satisfies

the triangular inequalities while it is not a norm. For a torus polynomial P (X)
modulo XN +1, we take the norm of its unique representative of degree ≤ N−1.
A distribution on the torus is concentrated iff its support is included in a ball of
radius 1

4 of T except with negligible probability. In this case, we can define the
usual notion of expectation and variance over T.

For a normal distribution N (0, σ2) centered in 0 and of variance σ2,
we denote κ(ε) = mink{PrX←N (0,σ2) [|X| > k · σ] < ε}. And we have

PrX←N (0,σ2) [|X| > k · σ] = erf(k/
√

2). For example, for ε = 2−64, we can take
κ(ε) > 9.16 and for ε = 2−32, we can take κ(ε) > 6.33.

A real distribution X is said σ-subgaussian iff for all t ∈ R, E(exp(tX)) ≤
exp(σ2t2/2). If X and X ′ are two independent σ and σ′ subgaussian variables,

then for all α, γ ∈ R, αX + γX ′ is
√
α2σ2 + γ2σ′2-subgaussian. All the errors in

this document will follow subgaussian distributions.
In what follows, we review TFHE for encryption of torus polynomial ele-

ments.

TRLWE samples. To encrypt a message µ ∈ TN [X], one picks a Gaussian ap-
proximation of the preimage of ϕ−1

s (µ) over the Ω-probability space of all possi-
ble choices of Gaussian noise. If the Gaussian noise α is small, we can define the
expectation and the variance over the torus. The expectation of ϕs(c) is equal
to µ and its variance is equal to the variance of α. We refer to [7] for a more
complete definition of the Ω-probability space.

Definition 2.1 (TRLWE). LetM be a discrete subspace of TN [X] and µ ∈M
a message. Let s ∈ BN [X]k a TRLWE secret key, where each coefficient is chosen
uniformly at random. A TRLWE sample is a vector c = (a, b) of TN [X]k+1 which
can be either :

– A trivial sample: a = 0 and b = µ. Note that this ciphertext is independent
of the secret key.

5

– A fresh TRLWE sample of µ of standard deviation α: a is uniformly chosen
in TN [X]k and b follows a continuous Gaussian distribution of standard
deviation α centered in µ+ s · a and of variance α2.

– Linear combination of fresh or trivial TRLWE samples.

We define the phase ϕs(c) of a sample c = (a, b) ∈ TN [X]k × TN [X] under
key s ∈ BN [X]k as ϕs(c) = b − s • a. Note that the phase function is a linear
(kN + 1)-lipschitzian function from TN [X]k+1 to TN [X].

We say that c is a valid TRLWE sample iff there exists a key s ∈ BN [X]k

such that the distribution of the phase ϕs(c) is concentrated over the Ω-space
around the message µ, i.e. included in a ball of radius < 1

4 around µ.

Note that c =
∑p
j=1 rj · cj is a valid TRLWE sample if c1, . . . , cp are valid

TRLWE samples (under the same key) and r1, . . . , rp ∈ R. We also use the
function msg() defined as the expectation of the phase over the Ω-space.

If µ is in M, one can decrypt a TRLWE sample c under secret key s with
small noise (smaller that the packing radius) by rounding its phase to the nearest
element of the discrete message space M. We also use the function error Err(·)
of a sample defined as the difference between the phase and the message of the
sample. We write Var(Err(X)) the variance of the error of X and ‖Err(X)‖∞
its amplitude. When X is a normal distribution we have ‖Err(X)‖∞ ≤ κ(ε) ·
Var(Err(X)) with probability 1− ε.

Given p valid and independent TRLWE samples c1, . . . , cp under key s, if
c =

∑p
i=1 ei · ci, then msg(c) =

∑p
i=1 ei ·msg(ci) with ‖Err(c)‖∞ ≤

∑p
i=1 ‖ei‖1 ·

‖Err(ci)‖ and Var(Err(c)) =
∑p
i=1 ‖ei‖22 · Var(Err(ci)).

The TRLWE problem consists of distinguishing TRLWE encryptions of 0 from
random samples in TN [X]k × TN [X]. When N = 1 and k is large, the TRLWE
problem is the Scalar LWE problem over the torus and the TRLWE encryption
is the LWE encryption over the torus. We denote it TLWE. When N is large and
k = 1, the TRLWE problem is the LWE problem over torus polynomials with
binary secrets. In addition, the TLWE and the TRLWE correspond to the Scale
invariant variants defined in [22, 6, 8] and to the Ring-LWE from [21]. We refer
to Section 6 of [7] for more details on security estimates on the LWE problem of
the torus.

TRGSW samples . We define a gadget matrix that will be used to decompose
over ring elements and to reverse back. Other choices of gadget basis are also
possible.

6

H =

1/Bg · · · 0
...

. . .
...

1/B`g · · · 0
...

. . .
...

0 · · · 1/Bg
...

. . .
...

0 · · · 1/B`g

∈M(k+1)`,k+1(TN [X]).

A vector v ∈ TN [X]k+1 can approximately be decomposed as DecH,β,ε(v) =
u where u ∈ R(k+1)`, s.t. ‖u‖∞ ≤ β and ‖u ·H − v‖∞ ≤ ε. We call β ∈ R>0

the quality parameter and ε ∈ R>0 the precision of the decomposition.
In this paper, we use the gadget H where the decomposition in base Bg is a

power of 2. We have β = Bg/2 and ε = 1/2B`g.

Definition 2.2 (TRGSW Sample). Let ` and k ≥ 1 be two integers and
α ≥ 0 be a noise parameter. Let s ∈ BN [X]k be a TRLWE key, we say that
C ∈ M(k+1)`,k+1(TN [X]) is a fresh TGSW sample of µ ∈ </H⊥ with standard
deviation α iff C = Z + µ ·H where each row of Z ∈ M(k+1)`,k+1(TN [X]) is a
TRLWE sample of 0 with Gaussian standard deviation α. Reciprocally, we say
that an element C ∈ M(k+1)`,k+1(TN [X]) is a valid TRGSW sample iff there

exists a unique polynomial µ ∈ </H⊥ and a unique key s such that each row of
C−µ ·H is a valid TRLWE sample of 0 under the key s. We call the polynomial
µ the message of C.

Since a TRGSW sample consists of (k+1)` TRLWE under the same secret key,
the definition of the functions for the phase, message, error, norm and variance
and the result on the sum of TRLWE samples can easily be extended for TRGSW
samples.

External Product. We review the module multiplication of the messages of
TRGSW and TRLWE samples from [5, 7]. The external product operation is de-
fined as: � : TN [X]k+1 ×M(k+1)`,k+1(TN [X]) → TN [X]k+1. The operation �
has the following property :

Theorem 2.3 (Homomorphic module multiplication). If A is a valid
TRGSW sample of µA and b is a valid TRLWE sample of µb. Then, if
‖Err(A � b)‖∞ ≤ 1

4 , A � b is a valid TRLWE sample of µA · µb. We have
Var(Err(A�b)) ≤ (k+1)`Nβ2Var(Err(A))+(1+kN)‖µA‖22ε2 +‖µA‖22Var(Err(b))
where β and ε are the parameters used in the decomposition Dech,β,ε()̇.

Assumption 2.4 (Independence heuristic). All the previous results rely on
the Gaussian Heuristic: all the error coefficients of TRLWE or TRGSW samples
of the linear combinations we consider are independent and concentrated. In
particular, we assume that they are σ-subgaussian where σ is the square-root of
their variance.

7

2.2 TFHE gate bootstrapping

We review the TFHE gate bootstrapping and the key-switching procedure
from [7, 16]. The TFHE gate bootstrapping change the noise and can also change
the dimension of the ciphertexts. We note with an under-bar the input parame-
ters and with an upper-bar the output parameters, where needed.

Definition 2.5. Let K ∈ Bn, K̄ ∈ BkN and α be a noise parameter. We
define the bootstrapping key BKK→K̄,α as the sequence of n TGSW samples
BKi ∈ TGSWK̄,α(Ki).

TFHE gate bootstrapping. The ternary Mux gate takes three boolean values
c, d0, d1 and returns Mux(c, d0, d1) = (c ∧ d1) ⊕ ((1 − c) ∧ d0). We also write
Mux(c, d0, d1) = c?d1 : d0.

The controlled Mux gate, CMux takes in input samples d0,d1 of messages
µ0, µ1, a TRGSW sample C of a message bit m and returns a TRLWE sample of
message µ0 if m = 0 and µ1 if m = 1. Lemma 2.6 gives the error propagation of
CMux.

Lemma 2.6. Let d0,d1 be TRLWE samples and C ∈ TRGSWs(m) where mes-
sage m ∈ {0, 1}. Then, msg(CMux(C,d1,d0)) = msg(C)?msg(d1) : msg(d0) and
we have: Var(Err(CMux(C,d1,d0))) ≤ max(Var(Err(d0)),Var(Err(d1))) + ϑ(C)
where ϑ(C) = (k + 1)`Nβ2Var(Err(C)) + (1 + kN)ε2.

The gate bootstrapping from [16] also uses the BlindRotate algorithm recalled
below. If c = (a1, . . . , ap, b) is a LWE ciphertext under secret key s, the algorithm
computes the blind rotation of v by the phase of c.

Algorithm 1 BlindRotate

Input: A TRLWE sample c of v ∈ TN [X] with key K.
1: p+ 1 int. coefficients a1, . . . , ap, b ∈ Z/2NZ
2: p TRGSW samples C1, . . . , Cp of s1, . . . , sp ∈ B with key K

Output: A TRLWE sample of X−ρ.v where ρ = b−
∑p
i=1 si.ai mod 2N with key K

3: ACC← X−b • c
4: for i = 1 to p
5: ACC← CMux(Ci, X

ai · ACC,ACC)
6: return ACC

Theorem 2.7. Let α > 0 ∈ R be a noise parameter, K ∈ Bn be a TLWE
secret key and K ∈ BN [X]k be its TRLWE interpretation. Given one sample
c ∈ TRLWEK(v) with v ∈ TN [X], p + 1 integers a1, . . . , ap, b ∈ Z/2NZ, and p
TRGSW ciphertexts C1, . . . ,Cp where each Ci ∈ TRGSWK,α(si) for si ∈ B the
BlindRotate algorithm outputs a sample ACC ∈ TRLWEK(X−ρ ·v) where ρ = b−∑p
i=1 aisi such that Var(Err(ACC)) ≤ Var(Err(c))+p(k+1)`Nβ2ϑC+p(1+kN)ε2

where ϑC = α2.

8

TRLWE-to-TLWE sample extraction. Given one TRLWE sample of message µ ∈
TN [X] the SampleExtract procedure allows to extract a TLWE sample of a single
coefficient of polynomial µ. Indeed, a TRLWE ciphertext of message µ ∈ TN [X]
of dimension k under a secret key K ∈ BN [X] can alternatively be seen as N
TLWE ciphertexts whose messages are the coefficients of µ. It is of dimension
n = kN and the secret key K is in Bn, where Ki =

∑N−1
j=0 KN(i−1)+j+1X

j .

Functional key-switching. The functional key-switching procedure allows to
switch between different parameter sets and between scalar and polynomial mes-
sage space. It allows to homomorphically evaluate a morphism from Z-module
Tp to TN [X]. We recall the extension of the key-switching procedure given in
Section 2.2 of [16] where the morphism f is public:

Algorithm 2 TLWE-to-TRLWE public functional key-switch

Input: p TLWE samples c(z) = (a(z), b(z)) ∈ TLWEK(µz) for z = 1, . . . , p, a public
R-lipschitzian morphism f from Tp to TN [X], KSi,j ∈ TRLWEK(Ki

2j).
Output: A TRLWE sample c ∈ TRLWEK(f(µ1, . . . , µp))
1: for i ∈ [[1, n]] do

2: Let ai = f(a
(1)
i , . . . , a

(p)
i)

3: Let ãi be the closest multiple of 1/2t to ai (i.e. ‖ãi − ai‖∞ < 2−(t+1))
4: Binary decompose each ãi =

∑t
j=1 ãi,j · 2

−j where ãi,j ∈ BN [X]
5: end for
6: return (0, f(b(1), . . . , b(p)))−

∑n
i=1

∑t
j=1 ãi,j × KSi,j

Theorem 2.8. (Public functional key-switch) Given p TLWE samples c(z) under
the same key K of µz with z = 1, . . . , p, a public R-lipschitzian morphism f from
Tp to TN [X], and a family of samples KSi,j ∈ TRLWEK,γ(Ki

2j) with standard
deviation γ, Algorithm 2 outputs a TRLWE sample c ∈ TRLWEK(f(µ1, . . . , µp))
with Var(Err(c)) ≤ R2Var(Err(c))+ntNϑKS +nN2−2(t+1), where ϑKS = γ2 is the
variance of the error of KS.

For p = 1 f is the identity function and we retrieve the classical key-switching
where the KSi,j is a sample TLWEs,γ(ci · 2−j) for i ∈ [[1, n]] and j ∈ [1, t]. In this
case, the output is a TLWE sample c of the same input message µ1 and secret
s, where Var(Err(c)) ≤ Var(Err(c)) + ntγ2 + n2−2(t+1).

We are now ready to recall the TFHE gate bootstrapping in Algorithm 3.
The TFHE gate bootstrapping algorithm takes as inputs a constant µ ∈ T, a
TLWE sample of x · 1

2 with x ∈ B, a bootstrapping key and returns a TLWE
sample of x · µ with a controlled error.

Lines 1 to 4 compute a TRLWE sample of message Xϕ · v where ϕ is the
phase of c (actually an approximated phase because of rescaling in line 2). The
SampleExtract extracts its constant coefficient (µ̂ if x = 1 and −µ̂ if x = 0)
encrypted in a TLWE sample. The final addition allows to either obtain a TLWE

9

Algorithm 3 TFHE gate bootstrapping

Input: A constant µ ∈ T, a TLWE sample c = (a, b) ∈ TLWEK,η(x · 1
2
) with x ∈ B,

a bootstrapping key BKK→K̄,α =
(
BKi ∈ TRGSWK̄,α(Ki)

)
i∈[[1,n]]

where K̄ is the

TRLWE interpretation of K̄.
Output: A TLWE sample c̄ = (ā, b̄) ∈ TLWEK̄,η̄(x · µ)
1: Let µ̂ = 1

2
µ ∈ T (Pick one of the two possible values)

2: Let b = b2Nbe and ai = b2Naie ∈ Z for each i ∈ [[1, n]]

3: Let TVF := (1 +X + · · ·+XN−1) ·X
N
2 · µ̂ ∈ TN [X]

4: ACC← BlindRotate((0, v), (a1, . . . , an, b), (BK1, . . . ,BKn))
5: Return (0, µ̂) + SampleExtract(ACC)

sample of 0 or a TLWE sample of 2 · µ̂ = µ. The error of the output ciphertext
is obtained from Theorem 2.7 and the error of the SampleExtract procedure. An
internal error δ is introduced in line 2 by the rescaling. We have δ ≤ h+1

4N where
h is the number of non-zero coefficients of TLWE secret key K and 4N comes
from the rescaling by 2N and rounding of (a, b) coefficients. This error does not
influence the output.

Theorem 2.9 (TFHE gate boostrapping). Let K ∈ Bn and K̄ ∈ BkN be
two TLWE secret keys, K̄ ∈ BN [X]k be the TRLWE interpretation of K̄ and
α > 0 ∈ R a noise parameter. Let BKK→K̄,α be a bootstrapping key, i.e n samples
BKi ∈ TRGSWK̄,α(Ki) for i ∈ [[1, n]]. Given a constant µ ∈ T and a sample
c ∈ Tn+1, Algorithm 3 outputs a TLWE sample c̄ ∈ TLWEK̄(µ̄) where µ̄ = 0 if
|ϕK(c)| < 1

4 − δ and µ̄ = µ if |ϕK(c)| > 1
4 + δ. We have Var(Err(c̄)) ≤ n(k +

1)`Nβ2ϑBK + n(1 + kN)ε2 where ϑBK is Var(Err(BKK→K̄,α)) = α2.

3 Multi-value bootstrapping

In the previous section, we recall the bootstrapping procedures based on an
auxiliary GSW scheme. Instead of the bootstrapping procedures where only a
”re-encryption” of input ciphertext is made, we explain here how to bootstrapp
an arbitrary function of the input message. For example in [7] the arbitrary func-
tion was the rounding (or modulus switching) of ciphertext decryption function.
Recall, G = 〈X〉 is the group of powers of X where X is a 2N -th root of unity.
This corresponds to the cyclotomic polynomial Φ2N (X) = XN + 1 defining the
TRLWE ciphertext polynomials.

The bootstrapping procedure consists of a linear step where an approximate
phase m ∈ Z2N of the input ciphertext c is computed followed by a non-linear
step described by the following relation, here R(X) ∈ ZN [X] is a polynomial
with zero-degree coefficient equal to zero:

TVF (X) ·Xm ≡ F (m) +R(X) mod Φ2N (X) (1)

To ease the exposition, only the plaintext counterpart is presented. The
BlindRotate procedure is used to obtain ACC which encrypts the phase m in

10

the form of a power of X. This new representation is then multiplied by a test
polynomial TVF , for a function F : Z2N → Z2N . In the zero-degree coefficient
of the resulting polynomial the evaluation of function F in point m is obtained.
Several possibilities to evaluate relation (1) exist. Hereafter we present 3 different
ways to perform this evaluation and discuss their advantages and drawbacks.

TVF (X) · Xm – The first one is to start the BlindRotate procedure with
TVF already encoded in ACC. The main advantage is that the output noise is
independent of the test polynomial and is the lowest possible. The drawback is
that only one function can be computed per bootstrapping procedure. This is
how TVF is encoded in the bootstrapping of [7].

Xm ·TVF (X) – Another possibility is to integrate TVF after the BlindRotate
procedure is performed. In this case, one can use several test polynomials and
thus, compute several functions in the same input. This is how TVF is encoded
in the bootstrapping of [10, 3, 14]. The main drawback is that output ciphertext
noise depends on test polynomial coefficient values.

TV(0) (X) ·Xm · TV(1)
F (X) – Finally, we can split test polynomial TVF into

two factors, with a first-phase factor TV (0) and a second-phase factor TV
(1)
F (X)

test polynomials. The first-phase factor TV(0) does not depend on the evaluated
function F . Thus, as in the previous case, using different second-phase test poly-
nomials we are able to evaluate several functions on the same input. Another
condition when performing the factorization is to obtain the second-phase fac-
tors with low-norm coefficients. This is needed in order to obtain small noise
increase in output ciphertexts. We conclude that this new evaluation technique
allows to leverage the best of the first two possibilities.

The test polynomial is specific to a function f we want to evaluate. As the
phase m is a noised version of the message of the input c, it should be rounded
before function f is applied to. We have F = f ◦ round, where the function F is
a composition of a rounding function and the ”payload” function.

In the next subsection, we give a possible way to factorize test polynomials.
Afterwards, we examine an updated version of Algorithm 3 which implements a
bootstrapping procedure where the test polynomials are split.

3.1 Test polynomial factorization

Hereafter, we examine the conditions a function F should verify and we introduce
a ”half-circle” factorization of the test polynomial.

Theorem 3.1. Let F : Z2N → Z2N be a function to be evaluated in a bootstrap-
ping procedure using relation (1). Function F must satisfy relation F (m+N) =
−F (m) for 0 ≤ m < N .

11

Proof. Let P (X) be a polynomial from ZN [X]. Multiplying it by XN gives the
initial polynomial with negated coefficients, i.e. P (X) ·XN ≡ −P (X) ∈ ZN [X].
This is due to relation XN = −1 defining cyclotomic polynomial Φ2N (X), i.e.
the negacyclic property of the ring ZN [X]. If we apply this observation to the
left-hand side of equation (1) we have:

TVF (X) ·X(m+N) ≡ −TVF (X) ·Xm mod Φ2N (X) , 0 ≤ m < N

Respectively, the right-hand side must satisfy the condition F (m+N) = −F (m)
for 0 ≤ m < N .

In what follows we restrict equation (1) to values of m belonging to ZN . In
this way, the condition F (m+N) = −F (m) is automatically verified.

Half-circle polynomial bootstrapping. Let TVF be a test polynomial defined as
TVF =

∑N−1
i=0 tiX

i, where t0 = F (0) and ti = −F (N − i) for 1 ≤ i < N . Thus,

TVF equals to F (0) −
∑N−1
i=1 F (i) ·XN−i. It is straightforward to see that the

relation TVF ·Xm = F (m)+R(X) mod Φ2N (X) is satisfied for any 0 ≤ m < N .

The test polynomial TVF must be factored into two polynomials such that
the first one TV(0) does not depend on the evaluated function F . We did not
mentioned earlier but the factorization can be fractional. Let τ denote the least
common multiple of the factorization such that TV (0), TV

(1)
F ∈ ZN [X]:

τ · TV (0) · TV (1)
F ≡ TVF mod Φ2N (X)

We define the first-phase test polynomial as TV (0) =
∑N−1
i=0 Xi and τ = 1/2. Let

second-phase test polynomial be TV
(1)
F =

∑N−1
i=0 t′i ·Xi. Polynomials TV(0) and

TV
(1)
F being factors of TVF we have:∑

i

ti ·Xi ≡ 1/2 ·
∑
i

t′i ·Xi ·
∑
i

Xi mod Φ2N (X)

Using the fact that XN = −1, we obtain the following system of linear equations
with N unknowns t′i, 0 ≤ i < N :∑

0≤i≤k

t′i −
∑

k<i<N

t′i = 2tk, 0 ≤ k < N (2)

Theorem 3.2. The system of linear equation (2) admits an analytical solution
given by: t′0 = t0 + tN−1 and t′k = tk − tk−1 for k ≥ 1.

Proof. Observe that two consecutive tk−1 and tk differ only by t′k element sign.
Computing their difference, we have 2 · (tk − tk−1) =

∑
0≤i≤k t

′
i −
∑
k<i<N t

′
i −∑

0≤i≤k−1 t
′
i +
∑
k−1<i<N t

′
i = 2t′k. The case for t′0 is equivalently proved except

that for t0 and tN−1 only the sign of t′0 is the same.

12

Property 1. Suppose that function F has the same output value for consecutive
points N − k and N − k + 1, thus F (N − k) = F (N − k + 1). Observe that
t′k = tk − tk−1 = −F (N − k) − F (N − k + 1) = 0. We deduce that the second-
phase test polynomial coefficient t′k is zero in this case. More generally, this
test polynomial has exactly s non-zero coefficients where s is the number of
transitions of function F , i.e. s = |{F (k) 6= F (k + 1) : 0 ≤ k < N}|.

The test polynomial factorization introduced earlier can be graphically in-
terpreted as follows:

1. The first-phase test polynomial divides the torus in two parts. The bootstrap-
ping with test polynomial τ · TV (0) returns +τ for first half-circle [0, 1/2[of
torus and −τ for the other part.

2. The second-phase test polynomial builds a linear combination of such half-
circles, thus the half-circles described in step 1 are rotated by Xi and scaled
by t′i.

Example. We give in Figure 2 an example over T of the previously explained
procedure. We ignore the coefficient τ in this illustration. On the top torus circle
are denoted values returned by first-phase test polynomial, i.e. test polynomial
values projected on torus circle. The second-phase test polynomial has 3 terms
and is equal to t′aX

a + t′bX
b + t′cX

c. The 3 bottom torus circles denote the
linear mapping performed by each monomial of second-phase test polynomial.
Summing up these terms gives a torus circle values illustrated on the rightmost
part of figure. Observe the negacyclic property of cyclotomic polynomial XN +1
on the torus circles from the fact that symmetric output values are negated.

Fig. 2. Illustration of the high-level strategy for the multi-value bootstrapping

Function evaluation with rounding Let f be a function from Zt to Zq for t < 2N
and q ≤ 2N . Let r be a rounding function which takes as input a message from

13

Z2N and outputs a rounded message belonging to Zt. Function r is defined as
r (m) = bm · t/2Ne. This function corresponds to the rounding performed on
TLWE ciphertext phase in order to obtain the plaintext message.

Test polynomial TVf◦r =
∑
i ti for the composed function f ◦ r is defined

as: t0 = f ◦ r(0) and tk = −f ◦ r(N − k) for 1 ≤ k < N . Building the system
of linear equation (2) and using explicit solution given in Theorem 3.2 we can
deduce the coefficients for second-phase test polynomial.

Proposition 1 (Second-phase test polynomial norm). Let f be a function

from Zs to Zq and let TV
(1)
f◦r be the corresponding second-phase test polynomial.

The squared norm of this polynomial is given by:∥∥∥TV (1)
f◦r

∥∥∥2

2
≤ s · (q − 1)

2

Proof. (Number of non-zero coefficients) From the definition of the rounding
function r we have r(k) = l for any k such that l·2N/t ≤ k < (l+1)·2N/t. Without
loss of generality we suppose here that t divides 2N . Composed function f ◦ r,
denoted by F , has the same output value for 2N/t consecutive input messages
from Z2N , i.e. F (k) = f ◦ r(k) = f(l) for l · 2N/t ≤ k < (l + 1) · 2N/t. Using

Property 1 we deduce that the TV
(1)
f◦r polynomial is sparse and has exactly s

non-zero coefficients. Let S, |S| = s, be the set of indexes of non-zero coefficients,

we have TV
(1)
f◦r =

∑
i∈S t

′
iX

i.
(Coefficient range) Each non-zero coefficient t′i, i ∈ S, is defined as the differ-

ence between consecutive output values of function f ◦r, or equivalently function
f . Refer to Theorem 3.2 and TVf◦r definition. We have (t′i)

2 ≤ (f(k)− f(k′))
2

for any k, k′ ∈ Zt. As function f is defined over Zq relation 0 ≤ f(.) ≤ q − 1 is

verified. We deduce (t′i)
2 ≤ (q − 1)2

Combining these results we obtain the bound expression:

∥∥∥TV (1)
f◦r

∥∥∥2

2
=

∥∥∥∥∥∑
i∈S

t′iX
i

∥∥∥∥∥
2

2

=
∑
i∈S

(t′i)
2 ≤ s · (q − 1)2

3.2 Optimized multi-value bootstrapping

In this subsection we focus on multi-value bootstrapping procedure for Torus
FHE where the 2N -th cyclotomic polynomial XN + 1 defines TRLWE samples.

We assume that first and second phase test polynomials, TV (0), TV
(1)
F ∈ ZN [X],

together with scale factor τ verifying condition (3) are given.

τ · TV (0) (X) ·Xm · TV (0)
F (X) ≡ F (m) +R(X) mod Φ2N (X) (3)

Algorithm 4 illustrates the steps of optimized bootstrapping procedure using
split test polynomials. It takes as input a ciphertext encrypting a message m/2N,
m ∈ Z2N , and outputs a ciphertext encrypting F (m) ∈ Z2N . Test polynomial
TV (0) belongs to ZN [X]. It is mapped to TN [X] by multiplication with 1/2N ∈ T

14

and with scale factor τ (algorithm step 2). There is not need to map second-
phase test polynomial to TN [X] because in step 4 a linear transformation of ACC

by TV
(1)
F is performed.

Algorithm 4 Multi-value bootstrapping algorithm

Input: A TLWE sample c = (a, b) ∈ TLWEK,η(µ) where µ = m/2N, m ∈ Z2N

Input: First, second phase test polynomials TV (0), TV
(1)
F ∈ ZN [X] and scale factor τ

Input: A bootstrapping key BKK→K̄,α =
(
BKi ∈ TRGSWK̄,α(Ki)

)
i∈[[1,n]]

where K̄ is

the TRLWE interpretation of K̄.
Output: A TLWE sample c̄ ∈ TLWEK̄,η̄(F (m)/2N)
1: Let b = b2Nbe and ai = b2Naie ∈ Z2N for each i ∈ [[1, n]]
2: Let v ← TV(0) · 1/2N · τ ∈ TN [X]
3: ACC← BlindRotate((0, v), (a1, . . . , an, b), (BK1, . . . ,BKn))

4: ACC← TV
(1)
F · ACC

5: Return c̄ = SampleExtract(ACC)

Theorem 3.3. Given a TLWE input ciphertext c of message µ = m/2N, m ∈
Z2N , first-phase TV(0) ∈ ZN [X], second-phase TV

(1)
F ∈ ZN [X] test polyno-

mials, factorization factor τ verifying condition (3) and a valid bootstrapping
key BKK→K̄,α = (BKi)i∈[[1,n]], Algorithm 4 outputs a valid TLWE ciphertext c̄

of message F (m)/2N with error distribution variance verifying: Var(Err(c)) ≤∥∥∥TV(1)
F

∥∥∥2

2

(
n(k + 1)`Nβ2ϑBK + n(1 + kN)ε2

)
where ϑBK is the variance of boot-

strapping key Var(Err(BKK←K̄,α)) = α2.

Proof. (Correctness) The first 3 lines of Algorithm 4 compute a TRLWE cipher-
text of message Xb−aK · TV (0) · 1/2N · τ . Line 4 applies a linear transformation

to it and message τ/2N · Xb−aK · TV (0) · TV (1)
F is obtained. Input message µ

is a multiple of 1/2N on the torus so we have b − aK = µ · 2N . Recall that

τ ·TV (0) ·TV (1)
F ·Xm ≡ F (m)+ . . . for any m ∈ Z2N and m = µ ·2N . Thus, ACC

at line 5 contains an encryption of a polynomial whose zero-degree coefficient
is F (m)/2N. The SampleExtract function from the last line extracts from ACC a
TLWE sample of message F (m)/2N.

(Error Analysis) The error analysis for this method follows from the error
analysis of the TFHE gate bootstrapping. It adds one multiplication by a con-

stant polynomial TV
(1)
F and gives the following variation of error distribution:

Var(Err(c)) ≤
∥∥∥TV (1)

F

∥∥∥2

2

(
n(k + 1)`Nβ2ϑBK + n(1 + kN)ε2

)
.

Theorem 3.4. Under the same hypothesis as in Theorems 2.8 and 3.3, when
given a correct input ciphertext c of message µ, m = µ · 2N ∈ Z2N , the multi-
value bootstrapping followed by a key-switching outputs a ciphertext c̄ of message

15

F (m)/2N with error distribution variance:

Var(Err(c)) ≤
∥∥∥TV(1)

F

∥∥∥2

2

(
n(k + 1)`Nβ2ϑBK + n(1 + kN)ε2

)
+

ntϑ2
KS + n2−2(t+1) (4)

where ϑBK and ϑKS are respectively the variances of bootstrapping and key-
switching keys error distributions.

Multi-output version In many cases one needs to evaluate several functions
over the same encrypted message. The naive way is to execute bootstrapping
Algorithm 4 several times for each function. Remark that for equal first-phase
test polynomials TV (0) algorithm 4 performs the same computations up to line 3.
Thus, until second-phase test polynomial integration into the accumulator. By

repeating steps 4-5 for several second-phase test polynomials TV
(1)
F1
, . . . ,TV

(1)
Fq

the bootstrapping algorithm outputs encryptions of messages F1(m), . . . , Fq(m).
Figure 3 is a schematic view of the bootstrapping procedure which evaluates
several functions over same input message.

Fig. 3. Multiple output multi-value bootstrapping overview. Test polynomials
TV

(1)
F1
, . . . ,TV

(1)
Fq

correspond to q functions evaluated over message µ encrypted in the
input ciphertext.

4 Homomorphic LUT

In this section, we show how to use the multi-value bootstrapping introduced
earlier to homomorphically evaluate r-bit LUT functions over encrypted data.
Afterwards, we describe how to compose them in a circuit and give implemen-
tation details for the case r = 6.

16

4.1 Homomorphic LUT evaluation

A boolean LUT is a function defined as f : Zr2 → Zq2. It takes an r-bit word
as input and outputs a q-bit word. At first we focus on single-output LUTs,
i.e. the case q = 1. Afterwards we show how to efficiently evaluate multi-output
LUTs. It is straightforward to see an equivalent formulation for f over the ring
of integers modulo 2r, in particular F : Z2r → Z2. This formulation is obtained
using the linear mapping φ (m0, . . . ,mr−1) =

∑r−1
j=0 mj · 2j from Zr2 to Z2r . We

have F ◦ φ (m0, . . . ,mr−1) ≡ f (m0, . . . ,mr−1) for any (m0, . . . ,mr−1) ∈ Zr2.
The multi-value bootstrapping is used to evaluate LUT function F . The

bootstrapping procedure is instantiated as follows. We encode integers over the
torus as multiples of 1/2r+1. Only the first half-circle of torus is used for input
and output message spaces. In this way any function can be evaluated using
bootstrapping procedure, refer to restrictions from Theorem 3.1. Full message
space is used for the input j/2r+1 for j ∈ Z2r and only the first 2 elements are used
for the output messages j/2r+1 for j ∈ Z2. Test polynomial factorization described

in previous section is used. Recall, the first-phase test polynomial TV(0) is
∑
iX

i

and scaling factor is τ = 1/2. The second-phase test polynomial is computed
using Theorem 3.2 for LUT function F composed with a rounding function.

From Proposition 1 this test polynomial norm verifies relation
∥∥∥TV (1)

F◦r

∥∥∥2

2
≤ 2r.

4.2 LUT circuits

A naive solution for multi-output LUT evaluation is to map Zq2 to Z2q . Doing so,
we would be able evaluate functions F : Z2r → Z2q where q ≤ r. The drawback of
this method appears when we need to compose LUTs into a circuit and evaluate
it. A reverse mapping from Z2q to Zq2 is indeed needed. It will be an overkill to
use another function to extract bits from Z2q messages, because it implies to use
another multi-value bootstrapping.

Let F (`) : Z2r → Z2 be a multi-value input function computing the `-th
output bit of LUT function f : Zr2 → Zq2, ` = 1, . . . , q. Each of these functions,
F (1), . . . , F (q), is evaluated as described in the last subsection. Note that the
expensive blind rotate part from the bootstrapping Algorithm 4 is performed
once. Only the multiplication by second-phase test vector and sample extract is
done for each evaluated function.

Figure 4 illustrates intermediary steps for interfacing LUTs. Firstly, cipher-
texts encrypting messages m1, . . . ,mr ∈ B obtained from several bootstrapping
procedures are combined together into a multi-value message m using the lin-
ear transformation φ. Note that this transformation is performed in the output
key space of the bootstrapping procedure under the secret key K. Next, a key-
switching procedure is performed and a ciphertext of the same message m under
the secret K is obtained. This ciphertext is fed into the next bootstrapping and
the process can be repeated.

It is possible to reorder the linear mapping evaluation and the key-switching,
i.e. perform key-switching directly after the bootstrapping and evaluate the lin-

17

Fig. 4. LUT composition into circuits. On top are shown executed algorithms and at
the bottom obtained ciphertexts.

ear mapping afterwards. Besides the fact that r times more key-switching pro-
cedures are performed the noise increase will also be larger. Actually, the linear
map evaluation noise increase is multiplicative compared to the additive key-
switching noise. In the next subsection, we describe implementation in more
details.

4.3 Implementation details and performance

We implement the previous method for r = 6. We take n = 29, k = 1, h = 63
(TLWE key non-zero coefficient count) and Bg = 26. Let Amv-boot be the am-
plitude of the output of the bootstrapping and Akey-switching be the amplitude
of the output part induced by the key-switching. We can derive a bound on
Amv-boot and on Akey-switching from their variance using Theorem 3.3 and Theo-
rem 2.8 respectively. With ` equals to 23 and N = 214, we obtain bootstrapping
key standard deviation ≤ 2−47. Now setting t = 24, and using the inequality
from Theorem 2.8, we obtain that key-switching standard deviation ≤ 1/24·225

We have implemented the multi-value bootstrapping technique proposed
above on-top of the TFHE library [9] and a test implementation is available
in the torus generic branch. Several modifications were performed in order
to support 64-bit precision torus. Approximate sample sizes are: TLWE 8kB,
TRLWE 256kB and the TRGSW 4MB. As for the keys we have: multi-value boot-
strapping key 2GB and the switching key 3GB. The key sizes can be reduced
using a pseudo-random number generator as in [7]. Our experimental protocol
consisted in: (i) a 6 bit multi-value message is encrypted, (ii) parameters (i.e.
second-phase test polynomials) for several LUTs are generated randomly, (iii)
the multi-value bootstrapping is executed on this encrypted message (several
ciphertexts encrypting boolean messages are obtained), (iv) a weighted sum is
used to build a new multi-value message ciphertext from 6 of the output boolean
messages obtained previously, (v) finally a key-switching procedure is performed
in order to regain the bootstrapping input parameter space.

We have executed the algorithms on a single core of an Intel Xeon E3-1240
processor running at 3.50GHz. The bootstrapping and switching keys are gen-
erated in approximatively 33 seconds. Multi-value bootstrapping on 6 bit words

18

with 6 boolean outputs runs in ≈ 1.2 sec. with the bit combination plus key-
switching phase and in under 1 sec. without the key-switching. For comparison
the gate bootstrapping from TFHE library takes 15ms on the same machine. We
did not observed a significant increase in the execution time when the number of
LUT outputs augments. For example computing 128 different functions on the
same input message increased the execution time only by 0.05 sec., almost for
free ! We shall note that the combination and key-switching was performed a
single time in this last experiment. To estimate the security, we ran the estimator
from [18] which includes the recent attacks on small LWE secrets [1]. We found
that our instances achieve about 100 bits of security which is comparable to the
concrete security level of the 6-to-6 LUT implementation of [14].

5 Further applications

5.1 Improved circuit bootstrapping

Another application concerns the optimization of the circuit bootstrapping
from [16, Sec. 4.1] which allows to compose circuits in a leveled mode by turning
a TLWE sample into a TRGSW sample. The first step of the circuit bootstrap-
ping consists to make ` calls to the TFHE gate bootstrapping on the same
TLWE input sample. Here each bootstrapping call is associated to a different
test polynomial. We can apply the multi-value bootstrapping (in particular the
multi-output feature) to optimize this step: since the LWE input sample is the
same, the idea is to perform the BlindRotate Algorithm 1 only once for the `
bootstrapping calls, to adapt the output using corresponding test polynomials

TV
(1)
F as in Sub-section 3.2 and obtain the ` desired outputs. This allows to save

a factor ` in one of the circuit bootstrapping phases. We let the implementation
and the integration of this optimization in the TFHE project [9] for a future
work.

5.2 Homomorphic evaluation of neural networks

Our multi-value bootstrapping can also be used to homomorphically evaluate a
neural network. We give a very brief overview on how it works and let the specifi-
cation of the model and the detailed protocol analysis for another work. Assume
neurons x1, . . . , xp inputs and output y are encrypted as TLWE ciphertexts. The
computational neuron network functionality is defined by two functions, a lin-
ear function f : Tp 7→ T and an activation function g : T 7→ T. The result is
a TLWE sample of y = g(f(x1, . . . , xp)). Function f is usually implemented as
an inner-product. We can compute the inner-product between p neuron inputs
and a fixed weight vector using a functional key-switch, and afterwards, extract
the TLWE encryption from key-switch output (a TRLWE sample). Note that the
public functional key-switch allows to compute up to N inner-products. Thus,
using a single key-switch procedure we can compute all the linear functions of a
whole neural network layer! Afterwards, using our multi-value bootstrapping, we

19

compute a TLWE sample of g(.). Here, g is not an arbitrary function. Usually a
threshold function is used. In this particular case, the multi-value bootstrapping
can be more efficiently instantiated than for arbitrary functions.

Conclusion

In this paper, we introduced a bootstrapping procedure based on TFHE scheme
with split test polynomials. This bootstrapping procedure can be used to evalu-
ate multi-value functions and to increase the evaluation efficiency of multi-output
functions. We note that this method (the test polynomial split trick) can be eas-
ily adapted to other FHEW-based bootstrapping algorithms. We also studied
several associated tools and the applicability of the multi-value bootstrapping
to execute arbitrary LUT functions on encrypted data. The evaluation of a 6
input, 1 output LUT takes under 1.2 seconds. The evaluation of additional out-
puts on the same input comes at virtually no cost. We also introduced some
ideas on how to optimize the circuit bootstrapping used to compose circuits in
a leveled mode and how to evaluate a neural network system.

References

1. M. R. Albrecht. On dual lattice attacks against small-secret lwe and parameter
choices in helib and seal. In In Proc. of EUROCRYPT, volume 10211 of LNCS,
pages 103–129. Springer, 2017.

2. J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In
Crypto, pages 297–314, 2014.

3. J. F. Biasse and L. Ruiz. FHEW with efficient multibit bootstrapping. In Proc.
of Latincrypt 2015, LNCS 9230, pages 119–135. Springer-Verlag, 2015.

4. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325, 2012.

5. Z. Brakerski and R. Perlman. Lattice-based fully dynamic multi-key FHE with
short ciphertexts. In Crypto’2016, volume 9814, pages 190–213, 2016.

6. J. H. Cheon and D. Stehlé. On dual lattice attacks against small-secret lwe and
parameter choices in helib and seal. In In Proc. of EUROCRYPT, volume 9057 of
LNCS, pages 513–536. Springer, 2015.

7. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In Asiacrypt 2016, Part I 22,
pages 3–33. Springer, 2016.

8. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. A homomorphic lwe
based e-voting scheme. In Post-Quantum Cryptography, pages 245–265. Springer,
2016.

9. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully homo-
morphic encryption library. https://tfhe.github.io/tfhe/, August 2016.

10. L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryption in
less than a second. In Eurocrypt, pages 617–640, 2015.

11. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
https://eprint.iacr.org/2012/144, 2012.

12. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, volume 9,
pages 169–178, 2009.

20

13. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Crypto,
pages 75–92, 2013.

14. L. D. Guillaume Bonnoron and M. Fillinger. Large FHE gates from tensored
homomorphic accumulator. In Proc. of Africacrypt 2018, LNCS 10831, pages 217–
251. Springer-Verlag, 2018.

15. S. Halevi and I. V. Shoup. Helib - an implementation of homomorphic encryption.
https://github.com/shaih/HElib/, September 2014.

16. M. G. Ilaria Chillotti, Nicolas Gama and M. Izabachène. Improving tfhe: faster
packed homomorphic operations and efficient circuit bootstrapping. In Proc. of
Asicacrypt 2017, LNCS 10624, pages 377–408. Springer-Verlag, 2017.

17. T. Lepoint. FV-NFLlib: Library implementing the Fan-Vercauteren homomorphic
encryption scheme. https://github.com/CryptoExperts/FV-NFLlib, May 2016.

18. R. P. Martin Albrecht and S. Scott. On the concrete hardness of learning with
errors. J. Mathematical Cryptology, ePrint Archive 2015/046, 2015.

19. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

20. SEAL. Simple encrypted arithmetic library. https://sealcrypto.codeplex.com/.
21. C. P. Vadim Lyubashevsky and O. Regev. On ideal lattices and learning with

errors over rings. In In Proc. of EUROCRYPT, volume 6110 of LNCS, pages
1–23. Springer, 2010.

22. C. P. Z. Brakerski, A. Langlois, O. Regev, and D.Stehlé. Classical hardness of
learning with errors. In STOC, pages 575–584, 2013.

21

