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Abstract. We construct a verifiable delay function (VDF). A VDF is a function whose evalua-
tion requires to run a given number of sequential steps, yet the result can be efficiently verified.
They have applications in decentralised systems, such as the generation of trustworthy public
randomness in a trustless environment, or resource-efficient blockchains. To construct a VDF,
we actually build a trapdoor VDF. A trapdoor VDF is essentially a VDF which can be evaluated
efficiently by parties who know a secret (the trapdoor). By setting up this scheme in a way that
the trapdoor is unknown (not even by the party running the setup, so that there is no need for
a trusted setup environment), we obtain a simple VDF. Our construction is based on groups of
unknown order (such as an RSA group, or the class group of an imaginary quadratic field). The
output of our construction is very short (the result and the proof of correctness are both a single
element of the group), and the verification of correctness is very efficient.

Note. The present version is an update of a preprint submitted on 20 June 2018. The terminology
has been updated to match with the recent work [4], and the construction has been simplified.

1 Introduction

We describe a function that is slow to compute and easy to verify: a verifiable delay function
(henceforth, VDF) in the sense of [4]. These functions should be computable in a prescribed
amount of time ∆, but not faster (the time measures an amount of sequential work, that
is work that cannot be performed faster by running on a large number of cores), and the
result should be easy to verify (i.e., for a cost polylog(∆)). These special functions are used
in [12] (under the name of slow-timed hash functions) to construct a trustworthy randomness
beacon: a service producing publicly verifiable random numbers, which are guaranteed to be
unbiased and unpredictible. These randomness beacons, introduced by Rabin in [14], are a
valuable tool in a public, decentralised setting, as it is not trivial for someone to flip a coin
and convince their peers that the outcome was not rigged. The VDF proposed in [12], sloth, is
not asymptotically efficiently verifiable: the verification procedure (given x and y, verify that
sloth(x) = y) is faster than the evaluation procedure (given x, compute the value sloth(x))
only by a linear factor. The new construction provides an exponentially faster verification.

The paper [4] was developed independently from the present work, yet we adopt their
terminology for verifiable delay functions, for the sake of uniformity. In addition to compiling
a variety of interesting applications of such functions in decentralised systems (notably for
resource-efficient blockchains), the authors of [4] propose practical constructions that also
achieve an exponential gap between evaluation and verification. These constructions, however,
do not strictly achieve the requirements of a VDF. For one of them, the evaluation requires
an amount polylog(∆) of parallelism to run in parallel time ∆. The other one is insecure
against an adversary that can run a large (but feasible) pre-computation, so the setup must
be regularly updated. The construction we propose is secure against pre-computation attacks,
and the evaluation requires a small, constant amount of parallelism.



Trapdoor verifiable delay function. To construct a VDF, we first construct a trapdoor VDF.
A party, Alice, holds a secret key sk (the trapdoor), and an associated public key pk. Given a
piece of data m, a trapdoor VDF allows to compute an output h from m such that anyone can
easily verify that either h has been computed by Alice (i.e., she used her secret trapdoor), or
the computation of h required an amount of time at least ∆ (where, again, time is measured
as an amount of sequential work). The verification that h is the correct evaluation of the VDF
at m should be efficient, for a cost polylog(∆).

We propose a practical construction based on groups G of unknown order (such as an RSA
group (Z/NZ)×, where N is a product of two large primes, or the class group of an imaginary
quadratic field). The trapdoor is the order of the group. The security of the construction is
proven assuming the classic time-lock assumption of [15] (but in G instead of necessarily in
an RSA group), and the difficulty of extracting roots in G.

Deriving a verifiable delay function. Suppose that a public key pk for a trapdoor VDF is
given without any known associated private key. This results in a simple VDF, where the
evaluation requires a prescribed amount of time ∆ for everyone (because there is no known
trapdoor).

Now, how to publicly generate a public key without any known associated private key?
In the construction we propose, this amounts to the public generation of a group of unknown
order. A standard choice for such groups are RSA groups, but it is hard to generate an RSA
number (a product of two large primes) with a strong guarantee that nobody knows the fac-
torisation. It is possible to generate a random number large enough that with high probability
it is divisible by two large primes (as done in [16]), but this approach severely damages the
efficiency of the construction, and leaves more room for parallel optimisation of the arithmetic
modulo a large integer, or for specialised hardware acceleration. It is also possible to generate
a modulus by a secure multiparty execution of the RSA key generation procedure among
independent parties contributing some secret random seeds (as done in [6]), but a third party
would have to assume that the parties involved in this computation did not collude to retrieve
the secret. A better approach would be to use the class group of an imaginary quadratic order.
Indeed, one can easily generate an imaginary quadratic order by choosing a random discrim-
inant, and when the discriminant is large enough, the order of the class group cannot be
computed. These class groups were introduced in cryptography by Buchmann and Williams
in [9], exploiting the difficulty of computing their orders (and the fact that this order problem
is closely related to the discrete logarithm problem and the root problem in this group). To
this day, the best know algorithms for computing the order of the class group of an imagi-
nary quadratic field of discriminant d are still of complexity L|d|(1/2) under the Generalised
Riemann Hypothesis, for the usual function Lt(s) = exp

(
O
(
log(t)s log log(t)1−s

))
, as shown

in [11] and [17].

Contribution. Fix a timing parameter ∆, a security level k (say, 128, 192, or 256), and a
well-chosen group G. The construction consists in solving an instance of the time-lock puzzle
of [15] in the group G (for a timing parameter ∆), and compute a proof of correctness. Our
construction has the following properties.

1. It is ∆-sequential (meaning that it takes ∆ sequential steps to evaluate) assuming the
classic time-lock assumption of [15] in the group G.
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2. It is sound (meaning that one cannot produce a proof for an incorrect output) under some
group theoretic assumptions on G, believed to be true for RSA groups and class groups
of quadratic imaginary number fields.

3. The output and the proof of correctness are each a single element of the group G.
4. The verification of correctness requires essentially two exponentiations in the group G,

with exponents of bit-length the security parameter k.
5. The proof can be produced in O(∆/ log(∆)) group operations.

For applications where a lot of these proofs need to be stored and repeatedly verified,
having very short, very efficiently verifiable proofs is invaluable.

Note that since the method we describe to compute the proof takes O(∆/ log(∆)) group
operations, there is an interval between the guaranteed sequential work ∆ and the total
work (1 + ε)∆, where ε = O(1/ log(∆)). For practical parameters, this ε is of the order of
0.1, and this part of the computation is easily parallelizable, so that the total evaluation
time with s cores is around (1 + 1/(10s))∆. This gap should be of no importance since
anyway, computational models do not capture well small constant factors with respect to
real-world running time: this factor 1+ε is considerably smaller than the speedup gained from
a low-end CPU to a high-end CPU, or from any CPU to some piece of specialised hardware.
Precise timing seems unlikely to be achievable without resorting to trusted hardware, thus
applications of VDF’s are designed not to be too sensitive to these small factors.

If despite these facts it is still problematic in some application to know the output of
the VDF slightly before having the proof, it is possible to eliminate this gap by artificially
considering the proof as part of the output (the output is now a pair of group elements, and
the proof is empty). The resulting protocol is still ∆-sequential (trivially), and as noted in
Remark 6, it is also sound.

1.1 Time-sensitive cryptography and related work

Rivest, Shamir and Wagner [15] introduced in 1996 the use of time-locks for encrypting data
that can be decrypted only in a predetermined time in the future. This was the first time-
sensitive cryptographic primitive taking into account the parallel power of possible attackers.
Other timed primitives appeared in different contexts: Bellare and Goldwasser [1, 2] suggested
time capsules for key escrowing in order to counter the problem of early recovery. Boneh and
Naor [7] introduced timed commitments: a hiding and binding commitment scheme, which
can be forced open by a procedure of determined running time. More recently, and as already
mentioned, the notion of slow-timed hash function was introduced in [12] as a tool to provide
trust to the generation of public random numbers. These slow-timed hash functions were
recently revisited and formalised by Boneh et al. in [4] under the name of verifiable delay
functions.

Pietrzak’s verifiable delay function. Independently from the present work, another efficient
VDF was proposed in [13]. The author describes an elegant construction, provably secure un-
der the classic time-lock assumption of [15] when implemented over an RSA group (Z/NZ)×

where N is a product of two safe primes. As discussed earlier, generating a public RSA
modulus is a difficult task without a trusted environment. Note that it might be possible to
obtain security proofs for [13] that would work in class groups, under some number-theoretic
assumptions, thus eliminating the need for a trusted setup. The philosophy of [13] is close
to our construction: it consists in solving the puzzle of [15] (for a timing parameter ∆), and
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computing a proof of correctness. Their proofs can be computed with O(
√
∆ log(∆)) group

multiplications. However, the proofs obtained are much longer (they consist of O(log(∆))
group elements, versus a single group element in our construction), and the verification pro-
cedure is less efficient (it requires O(log(∆)) group exponentiations, versus essentially two
group exponentiations in our construction — for exponents of bit-length the security level k
in both cases).

In the example given in [15], the security parameter is k = 100, the group G is an RSA
group for a 2048 bit modulus, and the time ∆ is set to 2τ sequential squarings in the group,
for τ = 40. The corresponding proofs are 10KB long, and the verification requires around
10K multiplications in G. In comparison, in the same setting, our proofs are 0.25KB long,
and the verification requires around 270 multiplications in G.

1.2 Notation

Throughout, the integer k denotes a security level (typically 128, 192, or 256), and the map
H : {0, 1}∗ → {0, 1}2k denotes a secure cryptographic hash function. For simplicity of expo-
sition, the function H is regarded as a map from A∗ to {0, 1}2k, where A∗ is the set of strings
over some alphabet A such that {0, 1} ⊂ A. The alphabet A contains at least all nine digits
and twenty-six letters, and a special character ?. Given two strings s1, s2 ∈ A∗, denote by
s1||s2 their concatenation, and by s1|||s2 their concatenation separated by ?. The function
int : {0, 1}∗ → Z≥0 maps x ∈ {0, 1}∗ in the canonical manner to the non-negative integer
with binary representation x, and bin : Z≥0 → {0, 1}∗ maps any non-zero integer to its binary
representation with no leading 0-characters, and bin(0) = 0.

2 Trapdoor verifiable delay functions

Let ∆ : Z>0 → R>0 be a function of the (implicit) security parameter k. This ∆ is meant
to represent a time duration, and what is precisely meant by time is explained in Section 3
(essentially, it measures an amount of sequential work). A party, Alice, has a public key pk
and a secret key sk. Let m be a piece of data. Alice, thanks to her secret key sk, is able
to quickly evaluate a function trapdoorsk on m. On the other hand, other parties knowing
only pk can compute evalpk(m) in time ∆, but not faster (and important parallel computing
power does not give a substantial advantage in going faster; remember that ∆ measures the
sequential work), such that the resulting value evalpk(m) is the same as trapdoorsk(m).

More formally, a trapdoor VDF consists of the following components (very close to the
normal VDF defined in [4]):

keygen→ (pk, sk) is a key generation procedure, which outputs Alice’s public key pk and
secret key sk. As usual, the public key should be publicly available, and the secret key is
meant to be kept secret.

trapdoorsk(m,∆)→ (h, p) takes as input the data m ∈ M (for some input space M), and
uses the secret key sk to produce the output h from m, and a (possibly empty) proof p.
The parameter ∆ is the amount of sequential work required to compute the same output
h without knowledge of the secret key.

evalpk(m,∆)→ (h, p) is a procedure to evaluate the function on m using only the public key
pk, for a targeted amount of sequential work ∆. It produced the output h from m, and
a (possibly empty) proof p. This procedure is meant to be infeasible in time less than ∆
(this will be expressed precisely in the security requirements).
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verifypk(m, h, p, ∆)→ true or false is a procedure to check if h is indeed the correct output
for m, associated to the public key pk and the evaluation time ∆, possibly with the help
of the proof p.

Note that the security parameter k is implicitly an input to each of these procedures. Given
any key pair (pk, sk) generated by the keygen procedure, the functionality of the scheme is the
following. Given any data m and time parameter ∆, let (h, p) ← evalpk(m,∆) and (h′, p′) ←
trapdoorsk(m,∆). Then, h = h′ and the procedures verifypk(m, h, p, ∆) and verifypk(m, h

′, p′, ∆)
both output true.

We also require the protocol to be sound, as in [4]. Intuitively, we want that if h′ is not
the correct output of evalpk(m,∆) then verifypk(m, h

′, ∆) outputs false. We however allow the
holder of the trapdoor to generate such misleading values h′.

Definition 1 (Soundness). A trapdoor VDF is sound if any polynomially bounded algo-
rithm solves the following soundness-breaking game with negligible probability (in k): given
as input the public key pk, output a message m, a value h′ and a proof p′ such that h′ 6=
evalpk(m,∆), and verifypk(m, h

′, p′, ∆) = true.

The second security property is that the correct output cannot be produced in time less
than ∆ without knowledge of the secret key sk. This is formalised in the next section via
the ∆-evaluation race game. A trapdoor VDF is ∆-sequential if any polynomially bounded
adversary wins the ∆-evaluation race game with negligible probability.

3 Wall-clock time and computational assumptions

Primitives such as verifiable delay functions or time-lock puzzles wish to deal with the delicate
notion of real-world time. This section discusses how to formally handle this concept. Given an
algorithm, or even an implementation of this algorithm, its actual running time will depend
on the hardware on which it is run. If the algorithm is executed independently on several
different single-core general purpose CPUs, the variations in running time between them will
be reasonably small as overclocking records on clock-speeds barely achieve 9GHz (cf. [10]),
only a small factor higher than a common personal computer. Then, parallelization has to
be taken into consideration. Some parallelizable algorithms can run significantly faster on
multiple parallel cores, up to a threshold where additional cores do not improve the running
time anymore. Then, specialized hardware can be built to run an algorithm much more
efficiently than any general purpose hardware.

Therefore a precise notion of wall-clock time is difficult to capture formally. However, for
most applications, a good enough approximation is sufficient. Such an approximation can be
obtained based on the choice of a model of computation, and defining time as an amount
of sequential work in this model. A model of computation is a set of allowable operations,
together with their respective costs. For instance, working with circuits with gates ∨, ∧ and
¬ which each have cost 1, the notion of time complexity of a circuit C can be captured by
its depth d(C), i.e., the length of the longest path in C. The time-complexity of a boolean
function f is then the minimal depth of a circuit implementing f , but this does not reflect
the time it might take to actually compute f in the real world where one is not bound to
using circuits. A random access machine might perform better, or maybe a quantum circuit.

A good model of computation for analysing the actual time it takes to solve a problem
should contain all the operations that one could use in practice (in particular the adversary).
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From now on, we suppose the adversary works in a model of computation M. We do not define
exactly M, but only assume that it allows all operations a potential adversary could perform,
and that it comes with a cost function c and a time-cost function t. For any algorithm A and
input x, the cost C(A, x) measures the overall cost of computing A(x) (i.e., the sum of the
costs of all the elementary operations that are executed), while the time-cost T (A, x) abstracts
the notion of time it takes to run A(x) in the model M. For the model of circuits, one could
define the cost as the size of the circuit and the time-cost as its depth. For concreteness, one
can think of the model M as the model of parallel random-access machines.

All forthcoming security claims are (implicitly) made with respect to the model M. The
time-lock assumption of Rivest, Shamir and Wagner [15] can be expressed as Assumption 1
below.

Definition 2 ((δ, t)-time-lock game). Let k ∈ Z>0 be a difficulty parameter, and A be an
algorithm playing the game. The parameter t is a positive integer, and δ : Z>0 → R>0 is a
function. The (δ, t)-time-lock game goes as follows:

1. An RSA modulus N is generated at random by an RSA key-generation procedure, for the
security parameter k;

2. A(N) outputs an algorithm B;

3. An element x ∈ Z/NZ is generated uniformly at random;

4. B(x) outputs y ∈ Z/NZ.

Then, A wins the game if y = x2
t

mod N and T (B, x) < tδ(k).

Assumption 1 (Time-lock assumption) There is a cost function δ : Z>0 → R>0 such
that the following two statements hold:

1. There is an algorithm S such that for any modulus N generated by an RSA key-generation
procedure with security parameter k, and any element x ∈ Z/NZ, the output of S(N, x)
is the square of x, and T (S, (N, x)) < δ(k);

2. For any t ∈ Z>0, no algorithm A of polynomial cost1 wins the (δ, t)-time-lock game with
non-negligible probability (with respect to the difficulty parameter k).

The function δ encodes the time-cost of computing a single modular squaring, and Assump-
tion 1 expresses that without knowledge of the factorisation of N , there is no faster way to
compute x2

t
mod N than performing t sequential squarings.

With this formalism, we can finally express the security notion of a trapdoor VDF.

Definition 3 (∆-evaluation race game). Let A be a party playing the game. The param-
eter ∆ : Z>0 → R>0 is a function of the (implicit) security parameter k. The ∆-evaluation
race game goes as follows:

1. The random procedure keygen is run and it outputs a public key pk;

2. A(pk) outputs an algorithm B;

3. Some data m ∈M is generated according to some random distribution of min-entropy at
least k;

4. BO(m) outputs a value h, where O is an oracle that outputs the evaluation trapdoorsk(m
′, ∆)

on any input m′ 6= m.

1 i.e., C(A, x) = O(f(len(x))) for a polynomial f , with len(x) the binary length of x.
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Then, A wins the game if T (B,m) < ∆ and evalpk(m,∆) outputs h.

Definition 4 (∆-sequential). A trapdoor VDF is ∆-sequential if any polynomially bounded
player (with respect to the implicit security parameter) wins the above ∆-evaluation race game
with negligible probability.

Observe that it is useless to allow A to adaptively ask for oracle evaluations of the VDF
during the execution of A(pk): for any data m′, the procedure evalpk(m

′, ∆) produces the
same output as trapdoorsk(m

′, ∆), so any such request can be computed by the adversary in
time O(∆).

Remark 1. Suppose that the message m is hashed as H(m) (by a standard cryptographic
hash function) before being evaluated (as is the case in the construction we present in the
next section), i.e.

trapdoorsk(m,∆) = tsk(H(m), ∆),

for some procedure t, and similarly for eval and verify. Then, it becomes unnecessary to give
to B access to the oracle O. We give a proof in Appendix A when H is modelled as a random
oracle.

Remark 2. At the third step of the game, the bound on the min-entropy is fixed to k. The
exact value of this bound is arbitrary, but forbidding low entropy is important: if m has a
good chance of falling in a small subset ofM, the adversary can simply precompute the VDF
for all the elements of this subset.

4 Construction of a verifiable delay function

Let m ∈ A∗ be the message at which the VDF is to be evaluated. Alice’s secret key sk is
the order of a group G, and her public key is a description of G allowing to compute the
group multiplication efficiently. We also assume that any element g of G can efficiently be
represented in a canonical way as binary strings bin(g). Also part of Alice’s public key is a
hash function HG : A∗ → G.

Remark 3 (RSA setup). A natural choice of setup is the following: the group G is (Z/NZ)×

where N = pq for a pair of distinct prime numbers p and q, where the secret key is (p−1)(q−1)
and the public key is N , and the hash function HG(m) = int(H(“residue”||m)) mod N . For
a technical reason explained later in Remark 5, we actually need to work in (Z/NZ)×/{±1},
and we call this the RSA setup.

Remark 4 (Class group setup). For a public setup where we do not want the private key to
be known by anyone, one could choose G to be the class group of an imaginary quadratic
field. The construction is simple. Choose a random, negative, square-free integer d, of large
absolute value, and such that d ≡ 1 mod 4. Then, let G = Cl(d) be the class group of the
imaginary quadratic field Q(

√
d). Just as we wish, there is no known algorithm to efficiently

compute the order of this group. The multiplication can be performed efficiently, and each
class can be represented canonically by its reduced ideal. Note that the even part of |Cl(d)|
can be computed if the factorisation of d is known. Therefore one should choose d to be a
negative prime, which ensures that |Cl(d)| is odd. See [8] for a review of the arithmetic in
class groups of imaginary quadratic orders, and a discussion on the choice of cryptographic
parameters.
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Given any string s, we denote by Hprime(s) the first odd prime number in the sequence
Hk(“prime”||bin(j)|||s), for j ∈ Z≥0, where Hk are the first k bits of H (recall that k is
the security parameter). Consider a targeted evaluation time given by ∆ = τδ for a timing
parameter τ , where δ is the time-cost (i.e., the amount of sequential work) of computing a
single squaring in the group G (as done in Assumption 1 for the RSA setup).

To evaluate the VDF at m, first let h = HG(m). The basic idea (which finds its origins
in [15]) is that for any τ ∈ Z>0, Alice can efficiently compute h2

τ
with two exponentiations,

by first computing x = 2τ mod |G|, followed by hx. The running time is logarithmic in τ .
Any other party who does not know |G| can also compute h2

τ
by performing τ sequential

squarings, with a running time τδ. Therefore anyone can compute h2
τ

but only Alice can
do it fast, and any other party has to spend a time linear in τ . However, verifying that the
published value is indeed h2

τ
is long: there is no shortcut to the obvious strategy consisting

in recomputing h2
τ

and checking if it matches. To solve this issue, we propose the following:

1. First compute a = h2
τ
.

2. Compute the prime number B = Hprime(bin(h)|||bin(a)).

3. Then compute b = hb
2τ

B
c.

4. The output of the VDF is (h, p) = (a, b).

Now, it might not be clear how Alice or a third party should compute b = hb
2τ

B
c. For Alice, it

is simple: she can compute r = 2τ mod B. Then we have b2τB c = 2τ−r
B , and since she knows

the order of the group, she can compute q = (2τ − r)B−1 mod |G| and b = hq. We explain
in Section 4.1 how to compute b without knowing |G|, with a total of O(τ/ log(τ)) group
multiplications. The procedures trapdoor, verify and eval are fully described in Algorithms 1, 2
and 3 respectively.

Verification. The verification consists in checking that bBhr = a, where B is the prime
Hprime(bin(h)|||bin(a)), and r is the remainder of 2τ divided by B. It is straightforward to
check that this holds if the evaluator is honest.

Now, what can a dishonest evaluator do? That question is answered formally in Section 6,
but the intuitive idea is easy to understand. We will show that given m, finding a pair (a, b)
different from the honest one amounts to solve a root-finding problem in the underlying
group G (supposedly hard for anyone who does not know the secret order of the group). As
a result, only Alice can produce misleading proofs.

Suppose that instead of setting B = Hprime(bin(h)|||bin(a)), we consider a protocol where
the evaluator first computes a, then a challenge B is received, then b is computed according
to this B (the non-interactive version is then a Fiat-Shamir transformation). Suppose that
the proof passes the verification, i.e., bBhr = a, where r is the least residue of 2τ modulo B.
Since r = 2τ −Bb2τB c, the verification condition is equivalent to

ah−2
τ

=
(
bh−b

2τ

B
c
)B

.

Before the generation of B, the left-hand side α = ah−2
τ

is already determined. Once B is

revealed, the evaluator is able to compute β = bh−b
2τ

B
c, which is a B-th root of α. For an

evaluator to succeed with good probability, he must be able to extract B-th roots of α for
arbitrary values of B. This is hard in our groups of interest, unless α = β = 1G, in which case
(a, b) is the honest output.

8



Data: a public key pk = (G,HG) and a secret key sk = |G|, some data m ∈ A∗, a targeted evaluation
time ∆ = τδ.

Result: the output h, and the proof p.
h← HG(m) ∈ G;
x← 2τ mod |G|;
a← hx;
B ← Hprime(bin(h)|||bin(a));
r ← least residue of 2τ modulo B;
q ← (2τ − r)B−1 mod |G|;
b← hq;
(h, p)← (a, b);
return (h, p);

Algorithm 1: trapdoorsk(m, τ)→ (h, p)

Data: a public key pk = (G,HG), some data m ∈ A∗, a targeted evaluation time ∆ = τδ, a VDF
output h and a proof p.

Result: true if h is the correct evaluation of the VDF at m, false otherwise.
(a, b)← (h, p);
h← HG(m);
B ← Hprime(bin(h)|||bin(a));
r ← least residue of 2τ modulo B;

if bBhr = a then
return true;

else
return false;

end

Algorithm 2: verifypk(m, h, p, τ)→ true or false

Remark 5. Observe that in the RSA setup, this task is easy if α = ±1, i.e. a = ±h2τ . It is
however a difficult problem, given an RSA modulus N , to find an element α mod N other
than ±1 from which B-th roots can be extracted for any B. This explains why we need to
work in the group G = (Z/NZ)×/{±1} instead of (Z/NZ)× in the RSA setup. This problem
is formalized (and generalised to other groups) in Definition 6.

4.1 Computing the proof in O(τ/ log(τ )) group operations

In this section, we describe how to compute the proof p = hb
2τ

B
c with a total of O(τ/ log(τ))

group multiplications. First, we mention a very simple algorithm to compute p, which simply
computes the long division b2τ/Bc on the fly, as pointed out by Boneh, Bünz and Fisch [5],
but requires between τ and 2τ group operations. It is given in Algorithm 4.

We now describe how to perform the same computation with only O(τ/ log(τ)) group
operations. Fix a parameter κ. The idea is to express b2τ/Bc in base 2κ as

b2τ/Bc =
∑
i

bi2
κi =

2κ−1∑
b=0

b

 ∑
i such that bi=b

2κi

 .

Similarly to Algorithm 4, each coefficient bi can be computed as

bi =

⌊
2κ(2τ−κ(i+1) mod B)

B

⌋
,
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Data: a public key pk = (G,HG), some data m ∈ A∗, a targeted evaluation time ∆ = τδ.
Result: the output value h and a proof p.
h← HG(m) ∈ G;

a← h2τ ; // via τ sequential squarings

B ← Hprime(bin(h)|||bin(a));

b← hb
2τ

B
c ; // following the simple Algorithm 4, or the yet faster Algorithm 6

(h, p)← (a, b);
return (h, p);

Algorithm 3: evalpk(m, τ)→ (h, p)

Data: an element h in a group G (with identity 1G), a prime number B and a positive integer τ .

Result: hb
2τ

B
c.

x← 1G ∈ G;
r ← 1 ∈ Z;
for i← 0 to T − 1 do

b← b2r/Bc ∈ {0, 1} ∈ Z;
r ← least residue of 2r modulo B;

x← x2gb;

end
return x;

Algorithm 4: Simple algorithm to compute hb
2τ

B
c, with an on-the-fly long division [5].

where 2τ−κ(i+1) mod B denotes the least residue of 2τ−κ(i+1) modulo B. For each κ-bits
integer b ∈ {0, . . . , 2κ−1}, let Ib = {i | bi = b}. We get

hb
2τ

B
c =

2κ−1∏
b=0

∏
i∈Ib

h2
κi

b

. (1)

Suppose first that all the values h2
κi

have been memorised (from the sequential computation
of the value h = h2

τ
). Then, each product

∏
i∈Ib h

2κi can be computed in |Ib| group mul-
tiplications (for a total of

∑
b |Ib| = τ/κ multiplications), and the full product (1) can be

deduces with about κ2κ additional group operations. In total, this strategy requires about
τ/κ+ κ2κ group operations. Choosing, for instance, κ = log(τ)/2, we get about τ · 2/ log(τ)
group operations. Of course, this would require the storage of τ/κ group elements.

We now show that the memory requirement can easily be reduced to, for instance, O(
√
τ)

group elements, for essentially the same speedup. Instead of memorising each κ element of
the sequence h2

i
, only memorise every κ` element (i.e., the elements h2

0
, h2

κ`
, h2

2κ`
, . . . ),

for some parameter ` (we will show that ` = O(
√
τ) is sufficient). For each integer j, let

Ib,j = {i ∈ Ib | i ≡ j mod `}. Now,

hb
2τ

B
c =

2κ−1∏
b=0

`−1∏
j=0

∏
i∈Ib,j

h2
κi

b

=

2κ−1∏
b=0

`−1∏
j=0

 ∏
i∈Ib,j

h2
κ(i−j)

2κj

b

. (2)

In each factor of the final product, i− j is divisible by `, so h2
κ(i−j)

is one of the memorised
values. Evaluating this requires a total amount of group operations about τ/κ+`κ2κ, following
the strategy summarised in Algorithm 5. It requires the storage of about τ/(κ`) + 2κ group
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Data: an element h in a group G (with identity 1G), a prime number B, a positive integer τ , two

parameters κ, ` > 0, and a table of precomputed values Ci = h2iκ` , for i = 0, . . . , dτ/(κ`)e.
Result: hb

2τ

B
c.

// define a function get block such that b2τ/Bc =
∑
i get block(i)2κi

get block← the function that on input i returns b2κ(2τ−κ(i+1) mod B)/Bc;
for b ∈ {0, . . . , 2κ − 1} do

yb ← 1G ∈ G;
end
for j ← `− 1 to 0 (descending order) do

for b ∈ {0, . . . , 2κ − 1} do
yb ← y2

κ

b ;
end
for i← 0, . . . , dτ/(κ`)e do

b← get block(i`+ j); // this could easily be optimised by computing the blocks

iteratively as in Algorithm 4 (but computing blocks of κ bits and taking steps

of κ` bits), instead of computing them one by one.

yb ← yb · Ci;
end

end
x← 1G ∈ G;
for b ∈ {0, . . . , 2κ − 1} do

x← x · ybb ;
end
return x;

Algorithm 5: Faster algorithm to compute hb
2τ

B
c, given some precomputations.

elements. Choosing, for instance, κ = log(τ)/3 and ` =
√
τ , we get about τ · 3/ log(τ) group

operations, with the storage of about
√
τ group elements. This method can be parallelised

in several ways, and can even be optimised further, as in Appendix B, where we take the
number of group multiplications down to about τ/κ+ `2κ+1.

5 Analysis of the sequentiality

In this section, the proposed construction is proven to be (τδ)-sequential, meaning that no
polynomially bounded player can win the associated (τδ)-evaluation race game with non-
negligible probability (in other words, the VDF cannot be evaluated in time less than τδ).
For the RSA setup, it is proved under the classic time-lock assumption of Rivest, Shamir and
Wagner [15] (formalised in Assumption 1), and more generally, it is secure for groups where
a generalisation of this assumption holds (Assumption 2).

5.1 Generalised time-lock assumptions

The following game generalises the classic time-lock assumption to arbitrary families of groups
of unknown orders.

Definition 5 (Generalised (δ, t)-time-lock game). Consider a sequence (Gk)k∈Z>0, where
each Gk is a set of finite groups (supposedly of unknown orders), associated to a “difficulty
parameter” k. Let keygen be a procedure to generate a random group from Gk, according to
the difficulty k.

11



Fix the difficulty parameter k ∈ Z>0, and let A be an algorithm playing the game. The
parameter t is a positive integer, and δ : Z>0 → R>0 is a function. The (δ, t)-time-lock game
goes as follows:

1. A group G is generated by keygen;
2. A(G) outputs an algorithm B;
3. An element x ∈ G is generated uniformly at random;
4. B(x) outputs y ∈ G.

Then, A wins the game if y = x2
t

and T (B, x) < tδ(k).

Assumption 2 (Generalised time-lock assumption) The generalised time-lock assump-
tion for a given family of groups (Gk)k∈Z>0 is the following. There is a cost function δ : Z>0 →
R>0 such that the following two statements hold:

1. There is an algorithm S such that for any group G ∈ Gk (for the difficulty parameter k),
and any element x ∈ G, the output of S(G, x) is the square of x, and T (S, (G, x)) < δ(k);

2. For any t ∈ Z>0, no algorithm A of polynomial cost wins the (δ, t)-time-lock game with
non-negligible probability (with respect to the difficulty parameter k).

The function δ encodes the time-cost of computing a single squaring in a group of Gk, and
Assumption 2 expresses that without more specific knowledge about these groups (such as
their orders), there is no faster way to compute x2

t
than performing t sequential squarings.

5.2 Sequentiality in the random oracle model

Proposition 1 (τδ-sequentiality of the trapdoor VDF in the random oracle model).
Let A be a player winning with probability pwin the (τδ)-evaluation race game associated to
the proposed construction, assuming HG and Hprime are random oracles and A is limited to
q oracle queries2. Then, there is a player C for the (generalised) (δ, τ)-time-lock game, with
winning probability p ≥ (1 − q/2k)pwin, and with same running time as A (up to a constant
factor3).

Proof. Build C as follows. Upon receiving the group G, C starts running A on input G. The
random oracles HG and Hprime are simulated in a straightforward manner, maintaining a
table of values, and generating a random outcome for any new request (with distribution
uniform and µ respectively). When A(G) outputs an algorithm B, C generates a random
m ∈M (according to the same distribution as the (τδ)-evaluation race game). If m has been
queried by the oracle already, C aborts; this happens with probability at most q/2k, since the
min-entropy of the distribution of messages in the (τδ)-evaluation race game is at least k.
Otherwise, C outputs the following algorithm B′. When receiving as input the challenge x, B′
adds x to the table of oracle HG, for the input m (i.e., HG(m) = x). As discussed in Remark 1,
we can assume that the algorithm B does not call the oracle trapdoorsk(−, h, ∆). Then B′ can
invoke B on input m while simulating the oracles HG and Hprime. Whenever B outputs h, B′
outputs h, which equals x2

τ
whenever h is the correct evaluation of the VDF at m. We assume

that simulating the oracle has a negligible cost, so B′(x) has essentially the same time-cost as
B(m). Then, C wins the (δ, τ)-time-lock game with probability p ≥ pwin(1− q/2k). ut
2 In this game, the output of A is another algorithm B. When we say that A is limited to q queries, we limit

the total number of queries by A and B combined. In other words, if A did x ≤ q queries, then its output
B is limited to q − x queries.

3 Note that this constant factor does not affect the chances of C to win the (δ, τ)-time-lock game, since it
concerns only the running time of C itself and not of the algorithm output by C(G)
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6 Analysis of the soundness

In this section, the proposed construction is proven to be sound, meaning that no polynomially
bounded player can product a misleading proof for an invalid output of the VDF. For the
RSA setup, it is proved under a new number theoretic assumption expressing that it is hard
to find an integer u 6= 0,±1 for which B-th roots modulo an RSA modulus N can be extracted
for arbitrary B’s following a distribution µ, when the factorisation of N is unknown. More
generally, the construction is sound if a generalisation of this assumptions holds in the group
of interest.

6.1 The root finding problem

The following game formalises the root finding problem.

Definition 6 (The root finding game Groot). Let A be a party playing the game. The
root finding game Groot(A) goes as follows: first, the keygen procedure is run, resulting in a
group G wish is given to A (G is supposedly of unknown order). The player A then outputs
an element u of G. An integer B is generated according to the distribution µ and given to A.
The player A outputs an integer v and wins the game if vB = u 6= 1G.

In the RSA setup, the group G is the quotient (Z/NZ)×/{±1}, where N is a product of
two random large prime numbers. It is not known if this problem can easily be reduced to a
standard assumption such as the difficulty of factoring N or the RSA problem, for which the
best known algorithms have complexity LN (1/3). It is however definitely closely related, and
seems as difficult when µ is the uniform distribution over the primes in (0, 22k). Recall that k
is the security parameter, which is implicitly passed as a parameter to the procedure keygen.

Similarly, in the class group setting, this problem is not known to reduce to a standard
assumption, but it is closely related to the order problem and the root problem (which are
tightly related to each other, see [3, Theorem 3]), for which the best known algorithms have
complexity L|d|(1/2) where d is the discriminant.

We now prove that to win this game Groot, it is sufficient to win the following game GrootX ,
which is more convenient for our analysis of the soundess.

Definition 7 (The oracle root finding game GrootX ). Let A be a party playing the game.
Let X be a function that takes as input a group G and a string s in A∗, and outputs an
element X(G, s) ∈ G. Let O : A∗ → Z>0 be a random oracle with distribution µ. The player
has access to the random oracle O. The oracle root finding game GrootX (A,O) goes as follows:
first, the keygen procedure is run and the resulting group G is given to A. The player A then
outputs a string s ∈ A∗, and an element v of G. The game is won if vO(s) = X(G, s) 6= 1G.

Lemma 1. If there is a function X and an algorithm A limited to q queries to the oracle O
winning the game GrootX (A,O) with probability pwin, there is an algorithm B winning the game
Groot(B) with probability at least pwin/(q+ 1), and same running time, up to a small constant
factor.

Proof. Let A be an algorithm limited to q oracle queries, and winning the game with proba-
bility pwin. Build an algorithm A′ which does exactly the same thing as A, but with possibly
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additional oracle queries at the end to make sure the output string s′ is always queried to the
oracle, and the algorithm always does exactly q + 1 (distinct) oracle queries.

Build an algorithm B playing the game Groot, using A′ as follows. Upon receiving pk = G,
B starts running A′ on input pk. The oracle O is simulated as follows. First, an integer
i ∈ {1, 2, ..., q + 1} is chosen uniformly at random. For the first i − 1 (distinct) queries from
A′ to O, the oracle value is chosen at random according to distribution µ. When the ith
string s ∈ A∗ is queried to the oracle, the algorithm B outputs u = X(G, s), concluding
the first round of the game Groot. The game continues as the integer B is received, following
the distribution µ. This B is then used as the value for the ith oracle query O(s), and the
algorithm A′ can continue running. The subsequent oracle queries are handled like the first
i − 1 queries, by picking random integers with distribution µ. Finally, A′ outputs a string
s′ ∈ A∗ and an element v of G. To conclude the game Groot(B), B returns v.

Since O simulates a random oracle with distribution µ, A′ outputs with probability pwin a
pair (s′, v) such that vO(s

′) = X(G, s′) 6= 1G; denote this event winA′ . If s = s′, this condition
is exactly vB = u 6= 1G, where u = X(G, s) is the output for the first round of Groot, and
O(s) = B is the input for the second round. If these conditions are met, the game Groot(B) is
won. Therefore

Pr[B wins Groot] ≥ pwin · Pr
[
s = s′|winA′

]
.

Let Q = {s1, s2, ..., sq+1} be the q + 1 (distinct) strings queried to O by A′, indexed in
chronological order. By construction, we have s = si. Let j be such that s′ = sj (recall that
A′ makes sure that s′ ∈ Q). Then,

Pr
[
s = s′|winA′

]
= Pr [i = j|winA′ ]

The integer i is chosen uniformly at random in {1, 2, ..., q+ 1}, and the values given to A′ are
independent from i (the oracle values are all independent random variables with distribution
µ). So Pr [i = j|winA′ ] = 1/(q+ 1). Therefore Pr[B wins Groot] ≥ pwin/(q+ 1). Since B mostly
consists in running A and simulating the random oracle, it is clear than both have the same
running time, up to a small constant factor. ut

6.2 Soundness in the random oracle model

Proposition 2 (Soundness of the trapdoor VDF in the random oracle model). Let
A be a player winning with probability pwin the soundness-breaking game associated to the
proposed scheme, assuming HG and Hprime are random oracles and A is limited to q oracle
queries4. Then, there is a player D for the root finding game Groot with winning probability
p ≥ pwin/(q + 1), and with same running time as A (up to a constant factor).

Proof. Instead of directly building D, we build an algorithm D′ playing the game GrootX (D′,O),
and invoke Lemma 1. Define the function X as follows. Recall that for any group G that we
consider in the construction, each element g ∈ G admits a canonical binary representation
bin(g). For any such group G, any elements x, y ∈ G, let

X(G, bin(x)|||bin(y)) = y/x2
τ
,

4 In this game, the output of A is another algorithm B. When we say that A is limited to q queries, we limit
the total number of queries by A and B combined. In other words, if A did x ≤ q queries, then its output
B is limited to q − x queries.
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and let X(G, s) = 1G for any other string s. When receiving pk, D′ starts running A with
input pk. The oracle HG is simulated by generating random values in the straightforward
way, and Hprime is set to be exactly the oracle O. The algorithm A outputs a message m, and
pair h = (a, b) ∈ G×G (if it is not of this form, abort). Output s = bin(h)|||bin(a) and v =

b/h
b 2τ

O(s)
c
. If A won the simulated soundness-breaking game, the procedure did not abort, and

vO(s) = X(G, s) 6= 1G, so D′ wins the game. Hence D′ has winning probability pwin. Since A
was limited to q oracle queries, D′ also does not do more than q queries. Applying Lemma 1,
there is an algorithm D winning the game Groot(B) with probability p ≥ pwin(1−ε)/(q+1). ut

Remark 6. The construction remains sound if instead of h = a and p = b, we consider
h = (a, b) and p is the empty proof. The winning probability of D in Proposition 2 becomes

p ≥ pwin(1− ε)/(q+ 1), where ε = negl
(

k
log log(|G|) log(q)

)
, by accounting for the unlikely event

that the large random prime O(s) is a divisor of |G|.
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A Proof of Remark 1

Model H as a random oracle. Suppose that

trapdoorHsk(m,∆) = tsk(H(m), ∆),

evalHpk(m,∆) = epk(H(m), ∆), and

verifypk(m, h, ∆) = vpk(H(m), h, ∆),

for procedures t, e and v that do not have access to H.
Let A be a player of the ∆-evaluation race game. Assume that the output B of A is limited

to a number q of queries to O and H. We are going to build an algorithm A′ that wins with
same probability as A when its output B′ is not given access to O.

Let (Yi)
q
i=1 be a sequence of random hash values (i.e., uniformly distributed random values

in {0, 1}2k). First observe that A wins the ∆-evaluation race game with the same probability
if the last step runs the algorithm BO′,H′ instead of BO,H , where

1. H ′ is the following procedure: for any new requested input x, if x has previously been
requested by A to H then output H ′(x) = H(x); otherwise set H ′(x) to be the next
unassigned value in the sequence (Yi);

2. O′ is an oracle that on input x outputs tsk(H
′(m), ∆).

With this observation in mind, we build A′ as follows. On input pk, A′ first runs AH
which outputs AH(pk) = B. Let X be the set of inputs of the requests that A made to H.
For any x ∈ X, A′ computes and stores the pair (H(x), evalpk(x,∆)) in a list L. In addition,
it computes and stores (Yi, epk(Yi, ∆)) for each i = 1, . . . , q, and adds them to L.

Consider the following procedure O′: on input x, look for the pair of the form (H ′(x), σ)
in the list L, and output σ. The output of A′ is the algorithm B′ = BO′,H′ . It does not require
access to the oracle O anymore: all the potential requests are available in the list of precom-
puted values. Each call to O is replaced by a lookup in the list L, so B′ has essentially the
same running time as B. Therefore A′ wins the ∆-evaluation race game with same probability
as A even when its output B′ is not given access to a evaluation oracle.

B Further optimisations of the computation of the proof

We show in this appendix that the computation of the proof p can be optimised further. The
strategy proposed in Algorithm 5 requires about τ/κ + `κ2κ group multiplications, and we
take it down to about τ/κ+ `2κ+1 group multiplications.

Swapping the first two products in Equation (2), we get

hb
2τ

B
c =

2κ−1∏
b=0

`−1∏
j=0

∏
i∈Ib,j

h2
κi

b

=

`−1∏
j=0

2κ−1∏
b=0

 ∏
i∈Ib,j

h2
κ(i−j)

b


2κj

.

This rewriting leads to an obvious alternative to Algorithm 5, with essentially the same
complexity, but one can do better. Write yb,j =

∏
i∈Ib,j h

2κ(i−j) , and split κ into two halfs, as

κ1 = bκ/2c and κ0 = κ− κ1. Now, observe that for each j,

2κ−1∏
b=0

ybb,j =

2κ1−1∏
b1=0

2κ0−1∏
b0=0

yb12κ0+b0,j

b12κ0

·
2κ0−1∏
b0=0

2κ1−1∏
b1=0

yb12κ0+b0,j

b0
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Data: an element h in a group G (with identity 1G), a prime number B, a positive integer τ , two

parameters κ, ` > 0, and a table of precomputed values Ci = h2iκ` , for i = 0, . . . , dτ/(κ`)e.
Result: hb

2τ

B
c.

// define a function get block such that b2τ/Bc =
∑
i get block(i)2κi

get block← the function that on input i returns b2κ(2τ−κ(i+1) mod B)/Bc;
// split κ into to halfs

κ1 ← bκ/2c;
κ0 ← κ− κ1;
x← 1G ∈ G;
for j ← `− 1 to 0 (descending order) do

x← x2
κ

;
for b ∈ {0, . . . , 2κ − 1} do

yb ← 1G ∈ G;
end
for i← 0, . . . , dτ/(κ`)e do

b← get block(i`+ j);
yb ← yb · Ci;

end
for b1 ∈ {0, . . . , 2κ1 − 1} do

z ← 1G ∈ G;
for b0 ∈ {0, . . . , 2κ0 − 1} do

z ← z · yb12κ0+b0 ;
end

x← x · zb12
κ0

;

end
for b0 ∈ {0, . . . , 2κ0 − 1} do

z ← 1G ∈ G;
for b1 ∈ {0, . . . , 2κ1 − 1} do

z ← z · yb12κ0+b0 ;
end

x← x · zb0 ;

end

end
return x;

Algorithm 6: Yet a faster algorithm to compute hb
2τ

B
c, given some precomputations.

The righthand side provides a way to compute the product with a total of about 2(2κ+κ2κ/2),
instead of κ2κ as in the previous strategy. The full method is summarised in Algorithm 6,
which requires about τ/κ+ `2κ+1 group multiplications.
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